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ABSTRACT 

This thesis investigates the use of wavelet transforms in the detection and 

estimation of spread spectrum frequency hopping signals. The technique developed in 

this work makes only two basic assumptions of a minimum hopping time and a minimum 

frequency hopping differential. The approach is based on the phase information of the 

temporal correlation function and the resulting discrete wavelet transform is used to 

estimate the hopping time of frequency hopping signals. Results show the proposed 

scheme is robust to additive white noise for SNR levels of 3 dB and above. 
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I. INTRODUCTION 

A.       BACKGROUND 

Spread spectrum communications schemes have received ever increasing attention 

over the past two decades as numerous civilian applications have joined the military 

applications [1]. Originally, spread-spectrum communications were developed to provide 

a secure means of communication in the hostile environments of World War II [1]. This 

work remained mostly classified until 1970s, but by the late 1970s the literature was 

starting to amass [1]. Naturally, it was not long before civilian applications for spread 

spectrum communications began to develop. One such system, the Global Positioning 

System (GPS), which was originally developed for the military, soon found widespread 

civilian application in position location for civilian vehicles, commercial vehicles and 

ships, and hunters and fishermen [1]. Other applications include cellular telephony and 

personal communication systems, both of which are still growing rapidly [1]. 

With this increased use of spread-spectrum communications, naturally, came the 

question of unauthorized interception. This question was not only of importance to the 

military, but also to communications regulatory boards, such as the Federal 

Communications Commission (FCC) [2]. This question has, therefore, given rise to a 

considerable amount of research over the past decade focused on the detection and 

estimation of spread-spectrum communications signals [2]-[6]. Two main assumptions 

typically found in the literature are that the hop timing is constant and known, and that the 

hopping frequencies are selected from a known class of candidate frequencies.   Even 
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when the hop timing is not assumed known, it is still usually assumed constant [3]. 

These assumptions generally restrict the detection and estimation schemes to frequency 

hopping (FH), one of the more popular spread-spectrum communications techniques. 

During approximately the same period as the detection and estimation of FH 

signals research was being conducted an analysis technique called wavelet analysis began 

finding wide spread use in signal processing [7]. One reason wavelet analysis was of 

particular interest is its multiresolution analysis capabilities. In other words, wavelet 

analysis allows one to "zoom in" for a detailed look at a signals characteristics, or "zoom 

out" for a global view of the signal. To use a map analogy, the former would be a map of 

city streets (a "large" scale map) while the latter would be a map of the United States (a 

"small" scale map). 

A spread-spectrum communications signal consists of both long duration 

relatively low frequency components ("large" scale) in the carrier frequencies and short 

duration high frequency components ("small" scale) in the transitional hops. As 

mentioned above, wavelet analysis is, in theory, well suited for analyzing signals of this 

type. Indeed, the two have met [4] and wavelet analysis was shown effective in detecting 

frequency hopping signals. 

B. GOALS 

The primary goal of this thesis is to provide a new approach for the detection and 

estimation of frequency hopping signals which makes none of the restrictive assumptions 

listed above.   By not making such restrictive assumptions, it is hoped that a secondary 



goal of wider application to the detection and estimation of other spread-spectrum 

communications techniques (i.e., direct sequencing, time hopping and hybrids of the 

three) given in Peterson [1] can be obtained. 

This thesis is composed of six chapters with this introduction being the first. 

Chapter II introduces frequency hopping signals which are derived from one particular 

spread-spectrum communications signaling technique. Chapter III defines and explains 

wavelet analysis by analogy with the more familiar Fourier analysis. Chapter IV provides 

the theory behind wavelet-based transient detection and introduces a few preprocessing 

tools which will be used in the detection and estimation algorithm. Chapter V 

enumerates the steps of the algorithm, describes the simulation used in the testing of the 

algorithm, applies the algorithm to an example FH signal, and provides the results of the 

simulation. Chapter VI provides a summary, conclusions and proposed further study. 





II. FREQUENCY HOPPING SIGNALS 

In communications there exist techniques for spreading the spectrum of 

transmitted signals. These techniques are called spread spectrum (SS) because the actual 

transmission bandwidth is much greater than the minimum bandwidth which would 

otherwise be required to transmit the given information [8]. Such techniques provide 

several benefits which include signal interference suppression, low probability of signal 

detection, and multiple access by many signals to the same spectral region. This section 

introduces frequency hopping (FH) signals which are one candidate scheme in SS 

applications. We first describe the concept of frequency hopping, then give a simple 

example, and finally, discuss some of the aforementioned benefits of spectrum spreading. 

A.       SPREADING THE SPECTRUM 

It has been shown that for signals of bandwidth W and duration T that the 

dimensionality of the signaling space is approximately equal to 2WT [9]. The idea 

behind SS is to increase this dimensionality (i.e., to increase the size of the signal space), 

in order to realize the benefits mentioned above. It can readily be seen that there are only 

two options for accomplishing this spread, either increase W or increase T. One method 

for increasing the bandwidth, W, is called frequency hopping. Increasing the time 

variable. T, can be accomplished via time hopping (TH). A detailed survey of other SS 

techniques and/or TH techniques can be found in Sklar [8]. 
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Figure 2.1: FH/MFSK system 

Although the particular modulation scheme is not of great importance to the 

detection algorithm described in this thesis, M-ary frequency shift keying (MFSK) will be 

used in the discussion and example which follow since this modulation scheme is most 

commonly found in FH systems. It should be noted, however, that it will be the FH 

properties of the signal, not the particular modulation scheme which will be of 

importance later when the detection algorithm is described. In FH systems the available 

bandwidth, W^, is subdivided into a large number of frequency slots, N. The data symbol 

modulates the carrier frequency, fk, where k is selected by a pseudorandom number (PN) 

generator to be between 1 and N. The FH system can be thought of as a two-step 

modulation process, although in practice the two steps would be combined into one. The 

first step. MFSK modulation, would be followed by the second step, FH modulation, as 

shown in Figure 2.1. Note that the pattern of transmitted signal in the time-frequency 

plane will be affected primarily by the FH modulation step, regardless of the particular 

modulation scheme or the number of symbols transmitted per hop. For a given hop, the 

occupied bandwidth, W, is the same as that for conventional MFSK. However, averaged 



over many hops a much greater bandwidth equal to Wss is occupied, and the spectrum has 

been spread. 

B.       FREQUENCY HOPPING EXAMPLE 

Assume that the bandwidth, Wss> is equal to 20 MHz (5 MHz - 25 MHz) and that 

the minimum frequency hopping interval, Af, is equal to 1 KHz. This implies that fi=5 

MHz, f2=5.001 MHz, f3=5.002 MHz, ...,fN=25 MHz where: 

W 
N = -f- , (2.1) 

A/ 

equals 20,000.   Now, if the PN generator produces the sequence {7500, 1250, 17727, 

11667, 2143}, the first hopping frequency will be: 

/7500 = 5,000,000 + A/ • 7,500 = 125 MHz, (2.2) 

and similarly, the next four frequencies will be f|2so = 6-25 MHz, f^ni = 22.727 MHz, 

fii66?= 16.667 MHz, and f2H3 = 7.143 MHz. The pattern for this particular FH signal in 

the time-frequency plane is shown in Figure 2.2. For a given hop (for example, between 

0 and 20 (is) we see that the occupied bandwidth, W, is the same as that for conventional 

MFSK. However, averaged over many hops, a bandwidth of Wss is occupied. Hence, the 

spectrum has been spread from W to Wss. Note that depending on the definition of 

bandwidth that this example does not completely cover Wss. However, it should be 

obvious that as transmission time increases and the carrier frequency, fk, for each hop is 

randomly selected, eventually, the entire Wss will be covered. 
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Figure 2.2: An example of a FH pattern 

C.       BENEFITS OF SPREAD SPECTRUM 

1.        Interference Suppression 

Consider signals of bandwidth WB and duration T where Wa is the SS bandwidth. 

By definition, white Gaussian noise (WGN) has infinite power spread uniformly over all 

frequencies [8]. It can be seen from this definition that regardless of where within Wss 

the actual information resides, it suffers from the same amount of interference from 

WGN. However, jammers must be of a fixed finite power. Therefore, the jammer must 

decide to either spread this power in small quantities over the whole or a large portion of 
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Figure 2.3: Effect of spectrum spreading (a) in the presence of GWN and 
(b) in the presence of an intentional jammer. From Ref. [8] 

Wss or to concentrate this finite power on one or a few smaller portions of the total 

bandwidth, Wss. 

Figure 2.3 shows the effects, in the frequency domain, of spreading the spectrum 

both in the presence of GWN and an intentional jammer. In Figure 2.3a, the shaded 

region, N0, is the power spectral density (PSD) of GWN, G(f) is the power spectrum of a 

signal g(t) before spreading it from signal space W to Wss, and Gss(f) is the power 

spectrum of g(t) after spreading its signal space. We can see that interference due to 

GWN has the same effect on the signal both before and after the spectrum spreading, 

since the GWN's infinite power is spread uniformly over all frequencies. In Figure 2.3b, 

J is the finite power of the jammer and the shaded region, J0 = JAV, is the jammer's 

power spectral density. Here we see, in contrast to the GWN case, that SS does reduce 

the interference due to an intentional jammer, since it typically will not occupy the same 

spectral location as the jammer for the duration of the transmission. Once the spectrum is 



spread, the jammer has the choice of either covering the entire spread spectrum 

bandwidth, Wss, lightly with its finite power as shown in Figure 2.3b (middle), or of only 

covering only a portion of Wss with increased concentration of its finite power as shown 

in Figure 2.3b (bottom). Note how the shaded region which is the PSD, Jo, of the 

jamming signal is, in the case of Figure 2.3b (middle), wide and short, indicating that the 

effective jamming power is distributed relatively lightly over all of Wss. In the case of 

Figure 2.3b (bottom), however, the shaded region is narrower, but taller, indicating that 

the effective power being delivered is increased by reducing the spread spectrum signal 

bandwidth coverage to, p (0 < p < 1), a portion of Wss. Therefore, the jammer has 

chosen to concentrate its finite power, J, to a portion of the spread spectrum, Wss , in 

order to have an effect on the SS signal when it resides in this portion (the shaded region 

of Figure 2.3b (bottom)). 

2.   Energy Density Reduction 

Another benefit of spread spectrum techniques in signaling is that they provide a 

low probability of detection (LPD) [8]. As seen earlier a SS signal's energy is spread 

throughout a bandwidth much larger than that used in conventional schemes. Therefore, 

the signal energy present at any given frequency is very small. Hence, the SS signal will 

appear buried in noise to any potential receiver which does not possess the synchronized 

spreading signal for FH demodulation. 

Energy density reduction also is desirable in unrelated and broader (i.e., civilian as 

well as military) applications.   In satellite communications, the downlink transmissions 
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must meet international regulations on the spectral density which is transmitted [8]. 

Spread spectrum schemes allow an increase in the total transmitted power while adhering 

to these regulations. 

3.  Multiple Access 

A benefit of spread spectrum signaling which has found wide application in 

cellular telephony is code-division multiple access (CDMA) [1]. This technique provides 

simultaneous users with separate unique spreading signal codes. Therefore, many 

simultaneous users can share the same spectrum, Wss, by simply not occupying the same 

portion of the spectrum at the same time. The insurance that they will not occupy the 

same coordinates in Wss is provided by the unique spreading signal code. In addition, 

CDMA offers some measure of privacy as it will be difficult to decode the signal without 

a synchronized replica of the spreading signal code. 

In this chapter we have introduced frequency hopping signals. Particular attention 

was paid to the FH properties of the signal instead of the particular modulation scheme, 

since these are the properties which will be used to detect and estimate hopping times. In 

the following chapter wavelets and wavelet transforms are introduced. The wavelet 

transform will be the primary tool used in our detection and estimation algorithm 

developed in Chapter V. 
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III. WAVELETS 

Wavelet analysis has become widely known within the last ten to twelve years, 

although similar analysis techniques were employed in various disciplines within 

engineering, physics, and mathematics as early as the beginning of the century [7]. There 

are various methods for describing and explaining wavelet analysis. However, the most 

useful method might be that based on analogies with the more familiar classical Fourier 

analysis [7, 10, 11]. Thus, first, we will provide a brief review of Fourier analysis, and 

next present an introduction to wavelet analysis. 

A.       FOURIER ANALYSIS 

1.  Fourier Series 

a.        Continuous-Time Representation 

Recall that a periodic function, x(t), with a fundamental period To and 

fundamental frequency /0 = — , has a complex Fourier series expansion in terms of 

complex exponentials given by: 

*(')= j>>4e't2*"', (3.1) 

where e ^2",f are the set of harmonically related complex exponentials. 
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The Fourier series coefficient, ak, represents the amount the &-th harmonic of the basis 

functions, e Jk2^0', is present in x(t). Multiplying both sides of Equation 3.1 by e ~]nlm 

and then integrating the result over one period T0, leads to: 

\\{t)e-jn2«°'dt= % ak\\\
i(k-n)2«°'dt (3.2) 

Note that J ° eJik'n)2,tfo'dt = 0 for k * n, as the integration is carried out over one full 

period of the complex exponential. Thus: 

\\me^d,    =     %at[£ j(k-n)27tfat dt, (3.3) 

= aj0- 

Therefore, Equation 3.3 leads to: 

«. = T\x{t)e'in1^ dt (3.4) 
'°r0 

Equations 3.1 and 3.4 define the Fourier series of a periodic signal. Recall that Equation 

3.1 is called the synthesis equation and Equation 3.4 the analysis equation [12]. Note that 

the ao coefficient given as: 

a0= — jx(0dt , (3.5) 
'0   r„ 

represents the dc component, or average value, of x(t). 
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b.  Discrete-Time Representation 

For discrete time periodic applications, the discrete time Fourier series 

expansion of a periodic signal, x[n], is given by: 

n] = Y,^ik[lnlN)n . (3-6) 

where the Fourier series coefficient, a*, is given by: 

Nn=0 

2.  Fourier Transform 

at=^%*ny*to* . (3.7) 

a. Continuous-Time Representation 

The introduction of the Fourier transform which allows the representation 

of not only periodic (as we saw in the last section), but also aperiodic signals as linear 

combinations of complex exponentials was one of Fourier's most significant 

contributions to this form of signal analysis [12]. 

The Fourier transform is obtained by examining the limiting behavior of 

the Fourier series representation as the period. To, is allowed to grow arbitrarily large to 

infinity [12]. The resulting Fourier transform pair is given by: 

*(')= J2Xif)e'2,*df , (3.8) 

X{f) = \2x(t)e-J2*'dt. (3.9) 
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By convention, the analysis equation, Equation 3.9, is called the Fourier transform, while 

the synthesis equation, Equation 3.8, is called the inverse Fourier transform [12]. Note 

that the Fourier series coefficients can be calculated via the Fourier transform since, for 

periodic signals, X(f) will have amplitudes {ak} as given by Equation 3.4 which will occur 

only at a discrete set of harmonically related frequencies, kf, k=0, ±1, ±2, ... . In contrast, 

for aperiodic signals the complex exponentials of Equation 3.9 occur with amplitude 

X(f){df) over a continuum of frequencies [12]. 

b.   Discrete-Time Representation 

Fourier synthesis and analysis equations can also be defined for discrete 

time aperiodic signals using a discrete-time representation of the Fourier transform. 

Letting Q = 27tf represent the digital frequency to distinguish from the continuous 

frequency/, leads to: 

1 
x[n] = —\x(Q)ejandQ, (3.10) 

OTT J 2*2* 

X(Q)=y£x[n)e-inn. (3.11) 

3.  Short-Time Fourier Transform 

While the Fourier transform works very well for stationary signals, its limitations 

quickly become apparent when this analysis technique is applied to a non-stationary 

signal. Consider the signal from the example in section E-B. The signal Xi(t) consists of 
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one frequency, f75oo = 12.5 MHz, for 0 < t < 20 fis and then a hop to frequency, fi2so = 

6.25 MHz, for 20 JLLS < t < 40 ^is, as shown in Figure 3.1a. The Fourier transform Xi(/) 

clearly shows the two component frequencies of this signal, as illustrated in Figure 3.1c. 

Now, consider a second signal, x2(t), of a duration equal to 40 \is. However, instead of a 

having a frequency hop the signal is now made up of the summation of two pure 

sinusoidal signals x75oo(t) and xi25o(t) with frequencies, f75oo and fi25o, respectively, each 

with duration of 40 |is, as shown in Figure 3.1b. The resulting Fourier transform X2(/) is 

very similar to X\(f), as shown in Figure 3.Id. Thus, this example illustrates the fact that 

the Fourier transform does not provide any temporal information. 

Suppose, now, that we window xi(t) into two, 20 (is sections, xia(t) and Xib(t). 

These two new signals will now consist of only one frequency each, f75oo and fi25o> 

respectively. If we now take the Fourier transform of xia(t) and xib(t), separately, we 

obtain Xu(/) and Xib(f) as shown in Figure 3.2. Results show that for 0 < t < 20 (is, only 

f75oo is present, while for 20 ^is < t < 40 (is, only fi25o is present. Hence, we now have 

reintroduced some temporal information into our analysis by windowing the data. This, 

time localization via windowing, is the basic idea behind the short-time Fourier transform 

(STFT) which provides a surface as the time-frequency structure which represents a given 

signal in the time-frequency plane [13]. 

17 
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Figure 3.1: Time traces (a) of xt(t) showing the change from f750o to fiKo at t = 20 
us and (b) of \2(t) showing the addition of two single sinusoid signals x7Soo(t) and 
Xi25e(t) over the same time span 18 to 22 us. The power spectrums of X|(t) and 
x2(t) are shown in (c ) and ( d ), respectively, as being the same even though the 
two signals are different All frequencies are given in Hertz. 
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Figure 3.2: Power spectrums (a) of Xi,(t) which is the portion of xt(t) from 0 to 20 us, 
and (b) of X|b(t) which is the portion of xt(t) from 20 us to 40 us showing how 
temporal information can be reintroduced into the signal analysis.   Frequencies are 
in Hertz. 
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Assume that a signal, x(t), is stationary in a window, g(t), centered at time x. The 

Fourier transform of the windowed signal x(t) g*(t-t) leads to the STFT expansion given 

by: 

STFT(T,/) = \x(t)g*(t-T) e ^ dt , (3.12) 

where * denotes the complex conjugate. The STFT is a function of two variables, Tand/, 

which represent time and frequency, respectively. Therefore, the STFT function maps a 

function, x(t), of only one variable t, representing time, into a two-dimensional time- 

frequency plane. 

There is a dual interpretation of the STFT as shown in Figure 3.3 [7]. The first 

interpretation is that of "windowing the signal" as illustrated by the sliding window, g(t), 

in Figure 3.3. In this interpretation, a window size is selected around some center time, T, 

Sfcfing 
WMow g(t) 

förfa ■*-T 

STFT(t,/) 

STFTttffl 

3TFT(tf2> 

Figure 3 J: The time-frequency plane of the Short-Time Fourier Transform. It can be viewed 
either as a succession of Fourier Transforms of windowed segments of the signal (vertical bars) or 
as a modulated filter bank (horizontal bars).   From Ref. [7] 
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and all frequencies within this window are computed. The second interpretation is that of 

a modulated window function, or a "filter bank" as illustrated by the implied modulated 

filter bank of Figure 3.3. Under this interpretation a bandpass filter is centered on some 

frequency, f, and all times within this filter are computed. With this dual interpretation in 

mind, let us call the bandwidth of the bandpass filter Af and the window, g(t), size At. 

Now, from the uncertainty principle we recall that the time-bandwidth product, At Af, has 

a lower bound given by: 

A?A/> 
AK 

(3.13) 

Therefore, one cannot simultaneously obtain good time and frequency resolution, but has 

to trade one for the other. One potential drawback of the STFT is that this time frequency 

partitioning is fixed for the entire transform, as shown in Figure 3.4. Figure 3.4b shows 

u c    —— ——— ——  
o 
3 

o 
I—     ____ _____ _____ _____ ______ 

U. 

 1 1 1 1 L, 

o 
c u 
3 
O" 
<L> u. 
u. 

► 

Time 

(a) 

Time 

(b) 

Figure 3.4: Tiling of the time-frequency plane by the Short-Time Fourier Transform ( a ) a 
generic case and ( b ) the pattern from the example in Figure 2.2. 

20 



how the tiles are filled in the case of the example given in section II-B. If our signal of 

interest was composed entirely of transients or entirely of sinusoidal terms we would be 

able to choose a short window in the former case or a narrow filter in the latter case, and 

the STFT would prove to be adequate for our analysis. In practice, however, many 

signals have both long duration sinusoidal and transient components. For these types of 

signals the STFT is often not the right tool for adequate analysis. What is needed for 

these types of signals is a multiresolution analysis, one type of which may be obtained 

with wavelets. 

B.        WAVELET ANALYSIS 

The Fourier series analysis equation, given in Equation 3.4, shows that the 

coefficients are formed by projecting the signal x(t) onto a set of complex exponential 

basis functions,  e 'ik2^0', where k = 0, ±1, ±2  One might call this form of analysis, 

"wave" analysis, since complex exponentials are wave functions (i.e., sines and cosines). 

In "wavelet" analysis, instead of using wave functions as our basis, we use wavelets. A 

wavelet, literally meaning "small wave" [14], has its energy concentrated in time [11]. 

Therefore, although it still has oscillating, wave-like, characteristics facilitating frequency 

analysis, its localization in time allows transient analysis [11]. 
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1.   Wavelet Series 

This section is titled "wavelet series," even though by convention the techniques 

about to be described are called wavelet transforms, to follow the analogy to Fourier 

analysis. We will remain consistent with the Fourier analysis terminology, but will also 

continue to point out conventional names found in the wavelet literature. This method 

will hopefully allow the reader to more closely follow the analogies, while still allowing 

comparisons to other discussions presented in the literature. The reader is encouraged to 

refer to Table 3.1 to avoid confusion. 

a.   Continuous-Time Representation 

This representation of the wavelet series, called the discrete wavelet 

transform, will be developed by analogy with its counterpart in Fourier analysis, the 

Fourier Series. Consider the Fourier series equations pair reproduced here for 

convenience: 

Common 
name 

Consistent 
name 

Time, 
CorD 

Transform, 
CorD 

Input 
periodic 

Output 
periodic 

FS CTFS C D Yes No 
DFT DTFS D D Yes Yes 

DTFT DTFT D C No Yes 
FT CTFT C C No No 

DWT CTWS C D Yes or No Yes or No 
DTWT DTWS D D Yes or No Yes or No 

- DTWT D C No No 
CWT CTWT C C No No 

Table 3.1: ( C ), Continuous, and ( D ), discrete, periodic and non-periodic 
input and output relations for the Fourier and wavelet transforms. After 
Ref. [11] 
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k 

(0= 2>te
w (3.14) 

= — \x(t)e-jk2*o' dt (3.15) ak      T 
10    TO 

In the case of the Fourier series analysis equation, we have a set of basis functions, 

e-jk2*s<f ^ wjiere fc = o, ±1, ±2, .... In wavelet analysis, we have a set of basis functions 

derived from our wavelet function, \)/(t), which is also referred to as the generating 

wavelet, mother wavelet, or analyzing wavelet [11]. As discussed at the beginning of 

section DI-B, wavelets are useful for transient, as well as, dynamic sinusoidal signal 

analysis. This suggests that a wavelet transform will be a function of two parameters, 

namely frequency and time, much like the STFT. The first parameter introduced will 

position the wavelet in time by integer translations as shown below: 

y/T(t) = y(t-T), t = 0,±l,±2  (3.16) 

The remaining parameter to be considered is frequency. Multiresolution analysis 

techniques allow the window size, At, and the bandwidth, Af, to vary across the time- 

frequency plane within the confines of the uncertainty principle. Variations are obtained 

in wavelet analysis by forcing the ratio of the bandwidth, Af, to center frequency, fc, to be 

constant. This constraint results in "constant-Q" filtering and the time-frequency plane 

partitioning shown in Figure 3.5 [7]. Figure 3.5 also illustrates the good time resolution, 

but poor frequency resolution obtained at high frequencies. Conversely, low frequencies 

display good frequency, resolution, but poor time resolution. 
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Figure 3.5: The tiling of the time-frequency plane by the wavelet transform. 

Thus, the time-frequency tiling described above is implemented by scaling the mother 

wavelet by a scaling factor, a, where a is inversely proportional to frequency, /. Our 

wavelet function can now be written as: 

VaA*) = 
1 

V 
t-x 

\   a 
(3.17) 

where the l/va term is used for energy normalization [7]. The relationships between 

scale, a. frequency,/, time resolution and frequency resolution are summarized in Table 

3.2. Now, restricting a to dyadic scales only (i.e., a - 2') and let x = n2', we can write our 

SCALE FREQUENCY FREQUENCY 
RESOLUTION 

TIME RESOLUTION 

low high poor good 
high low pood poor 

Table 3.2: Relationships between scale, frequency and resolution. 
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wavelet series expansion of a given signal, x(t), as: 

1 J ' t \ 

J? =vl\ a' — n 
J 

(3.18) 

The two-dimensional set of coefficients, c,-,„, are called the discrete wavelet transform of 

x(t), and are analogous to the Fourier series coefficients, an, in Equation 3.4. 

We mentioned earlier that the wavelet function is also sometimes referred 

to as the "mother" wavelet. This term hints to the existence of another type of wavelet, 

the "father" wavelet. This function is more commonly referred to as the scaling function. 

We define the scaling function, cp(t), much as we did the wavelet function in Equation 

3.24, namely: 

<Pa.r(t)=-r<P\—- Vfl    V   a   J 

or, again using a = 2' and i = nil we have: 

Define the subspace of L2 spanned by these scaling functions as: 

(3.19) 

(3.20) 

V,=Span \<p\— t (3.21) 

Similarly, the subspace of L2 spanned by the wavelet functions can be defined as: 

V^ = Span^ y/n ¥' (3.22) 
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where Wj is the orthogonal complement of V, in subspace V/.y. Therefore, the 

relationships of these subspaces is given by: 

L2 =VN ®WN®---®W2 0 Wt, (3.23) 

where VN is the final space spanned by the scaling function which is usually chosen to 

represent the coarsest detail of interest. The relationships between these subspaces are 

illustrated in Figures 3.6 and 3.8. Equation 3.23 allows us to rewrite Equation 3.18 in 

terms of both the wavelet and scaling functions for any function x(t) e L2 as: 

N     +~ 

*(/) = S a(*)p„w+X 2>o»v,»- (3-24) 
1=1 n=- 

Note here that a(n) are the coefficients of the scaling function, %{t), which spans V„ of 

Equation 3.23. Similarly, d(i,n) represent the N sets of coefficients of the wavelet 

functions, y/,.„(t), which span A^subspaces, W„ where *'=1,2,...,N. 

The coefficients a(n) and d(i,n) define the discrete wavelet transform of 

xit) in terms of both the scaling and wavelet functions, just as the coefficients, c,-.„, of 

H'.j.H'jiwg.v, 

Figure 3.6: Orthogonal Vector Spaces V, and Wt representing the spaces spanned by the scaling 
function ip^t) and yfujfl), respectively.   After Ref. [ 11] 
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Equation 3.18 did in terms of just the wavelet function. If these basis functions cp(t) and 

y/(t) form an orthonormal basis or at least a tight frame [11], the coefficients may be 

derived as: 

a(n) = \x(t)(pn(t)dt, (3.25) 

and: 

4(n) = j40lMO*. (3-26) 

b. Discrete-Time Representation 

The nesting of subspaces, as shown in Figure 3.6, is achieved with the 

dilation equation given by: 

(p(t) = ^h(n)j2(p(2t-n), n = 0,±1,±2,... (3.27) 
n 

where h(n) is the scaling function coefficients and v2 maintains the norm of the scaling 

function as each successive dyadic scale is calculated [11]. Similarly, we can define the 

wavelet function in terms of the scaling function by: 

V(t) = 1£h)(n)j2<p(2t-n), w = 0,±l,±2,... (3.28) 

where, 

hl(n) = (-l)nh(N-\-n), (3.29) 

where N is the finite even length of h(n), as shown in Burrus [11]. Equation 3.27 can be 

interpreted as obtaining lower resolution by down-sampling by two after lowpass filtering 

with the half-band filter with impulse response h(t).   Similarly, Equation 3.28 can be 
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interpreted as obtaining lower resolution by down-sampling by two after highpass 

filtering with the half-band filter with impulse response hj(t). The analysis filter bank just 

described are illustrated in Figure 3.7. 

The coefficients of Equations 3.27 and 3.28, namely h(n) and hj(n), can be 

viewed as digital filters and the coefficients of Equation 3.24, namely a(n) and dj(n), can 

be viewed as digital signals. With this view it can be shown [11] that the coefficients of 

Equations 3.25 and 3.26 become: 

«,-+i (") = X h(m - 2nk o») • (3-3°) 
m 

and: 

dM{n)^hiim-2n)ai{m), (3.31) 
m 

respectively. The above discussion leads to what is commonly referred to as the filter 

bank view of the DWT or the discrete time wavelet transform (DTWT) [11]. These last 

two equations show that we obtain the coefficients at the next level of scale, /+/, by 

convolving the approximation coefficients, arfm), at level /' with the time reversed filter 

coefficients, h(-n) and hi(-n), and then down-sampling by two. This idea is illustrated in 

block diagram form in Figure 3.7, where il indicates decimation, or down-sampling, by 

two and the other blocks represent filtering operations. As mentioned previously, h(n) is a 

lowpass filter and h,(n) is a highpass filter. Originally, we have a signal, x[n]. For this 

case, if the samples of the input function, x[n], are above the Nyquist rate, they represent 

a good approximation to the  scaling  coefficients at that scale,  meaning that the 
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coefficients, a0, equal x[n] [11]. Next, we filter a0 with h(n) and hi(n) and down-sample 

by two, to get the next scale level coefficients, ai and du respectively. The resulting 

coefficients represent the next coarser scale level which give better frequency resolution, 

but poorer time resolution. We can repeat the process with the approximation 

coefficients, aj, to get a2 and d2, as indicated in Figure 3.7, which represent the next 

coarser scale level with even better frequency resolution at the price of even poorer time 

resolution. Normally, this process is repeated until the desired level of coarseness, or 

frequency resolution, is obtained. 

Wavelet transforms can also be described in terms of filter banks as shown 

in Figure 3.7. Let i=0 for the example to follow. When the sampled signal is passed 

through the first filter bank consisting of hrf-k) and h(-k), the highpass filter and lowpass 

filter, respectively, the original space is divided into Wj and V; as shown in Figure 3.8a. 

After passing through the second stage of the filter bank, Vt is divided into W2 and V2. If 

we assume that we have now reached our coarsest scale desired, we now have the entire 

signal space of interest represented by Wt © W2 © V2, as shown in Figure 3.8b. If we have 

Figure 3.7: Analysis filter bank for calculating the discrete time wavelet transform. 
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Figure 3.8: Spectral Partitioning by analysis filter bank. 

not reached the coarsest scale desired, we continue to iterate the filter bank to further 

partition the frequency bands, as shown in Figures 3.8c and 3.8d.  Note that the gain of 

the frequency response in Figure 3.8 has been normalized for all bands. In actuality, the 

areas under the curves would be equal in order to meet the requirements for conservation 

of energy. 

Synthesis is performed by simply reversing the process as shown in the 

filter bank representation of Figure 3.9 and given by: 

a, in) = Xa,., (m)h(n - 2m) + X«/1+1 (m)hx {n - 2m). (3.32) 
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Note in Figure 3.9 that T2 indicates up-sampling by two by inserting a zero between 

each point, and that the result is filtered with h(n) and hj(n) not their time reversed 

counterparts. The analysis Equations 3.30 and 3.31 taken together with the synthesis 

Equation 3.32 are known as Mallat's algorithm [15]. Recall that the two transforms we 

have just introduced, called the DWT and the DTWT, are in the Fourier analysis 

terminology called the continuous time wavelet series and the discrete time wavelet 

series, respectively. Therefore, we are left to draw an analogy with the "continuous" 

Fourier transforms (see Table 3.1). 

2.   Wavelet Transform 

a.   Continuous-Time Representation 

Recall that the STFT of Equation 3.12 is of the form: 

STFT(T,f) = l*x(t)y/*(t-T)dt, (3.33) 

where y(f) = g(t)e'2Mo'. If we introduce the scaling factor a into Equation 3.33, we 

obtain the continuous time wavelet transform (CTWT) expansion given by: 

Figure 3.9: Synthesis filter bank for calculating the discrete time wavelet transform. 
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1    f+- ( t-T) 
CWT(T,a) = -H   x(t)W*\ \dt, (3.34) 

Va J-TC V   a   ) 

where a = f0/f and the term if 4a term is introduced for energy normalization [7]. 

Although not used in this work, one can define the inverse CWT as: 

x(t) = Kjj — CWT(a,T)d \dadx, (3.35) 
V   a 

where the normalizing constant is: 

K-Vj^äf, (3.36) 

and ¥(/) is the Fourier transform of y/(t) [11]. 

b.   Discrete-Time Representation 

Signal processing in most real world applications is performed on a digital 

computer. This implies that we must use the discrete, sampled, version, x[n], of the 

continuous signal, x(t), which we wish to process. This necessity leads us to the need for 

a discrete time continuous wavelet transform (DTCWT), or to be consistent with Fourier 

analysis terminology, simply a discrete time wavelet transform (see Table 3.1). The 

actual analysis and synthesis Equations for the DTCWT will not be presented here, but 

rather the important conceptual differences with the DWT will be discussed. 

Recall that for the DWT that the scales, a, are restricted to dyadic scales 

(i.e., a = 2', for i = 0, ±1, ±2,...) to allow for the filter bank implementation. However, 

no such restriction needs to be made for the DTCWT.  The scale ranges, continuously. 
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from that of the original signal, up to whatever maximum the user desires [16]. This 

continuous range of scale is the first important difference compared to the DWT. The 

second significant difference is that shifting of the wavelet function by the DTCWT is 

continuous [16]. The analyzing wavelet is shifted just as smoothly over the time domain 

of the signal being analyzed as it is scaled over the frequency domain. In the next chapter 

we will look at the abilities and limitations of the DTCWT in detecting transients by 

using the Wavelet Toolbox's implementation of this transform. 

So far we have introduced frequency hopping signals and the various 

forms of wavelet analysis. In the next chapter we will apply the latter to the former to see 

how wavelet analysis might be used in the detection and estimation of frequency hopping 

signals. 
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IV. WAVELET BASED TRANSIENT DETECTION 

The frequency hopping detection scheme considered in this work involves the 

detection of discontinuities. This chapter, first, briefly reviews how wavelets can be used 

to detect signal discontinuities. Next, it defines the temporal correlation function used in 

our detection scheme. Finally, it introduces several preprocessing tools used to minimize 

potential performance degradation when additive white Gaussian noise is present in the 

communication signal. 

A.       DETECTING DISCONTINUITIES USING WAVELETS 

Consider the three signals given in Figure 4.1.   Figure 4.1a represents a signal, 

x(t), with a discontinuity, Figure 4.1b represents a signal with a discontinuity in the first 

derivative, and Figure 4.1c represents a signal with a discontinuity in the second 

derivative. Wavelets may be used to detect each of these discontinuities, if the chosen 

wavelet is able to represent the highest order derivative present in the signal function, as 

any wavelet with, at least, p vanishing moments can be used to detect a discontinuity in 

the />-l derivative [10]. However, the wavelet's ability to detect these discontinuities 

erodes quickly in the presence of noise, as will be shown later. 
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Figure 4.1: Function discontinuities (a) in the function (step function), ( b) in the first derivative 
(interrupted ramp function), and (c ) in the second derivative (frequency hopping function). 

Now, consider the various wavelets shown in Figure 4.2. The Morlet wavelet is an 

example of a continuous wavelet that can represent all three of the functions in Figure 

4.1, if appropriately compressed or dilated (i.e., it can be compressed to until it contains a 

vertical portion, dilated to match a ramp region, or dilated less to match the sinusoidal 

terms). The Haar wavelet shown in the figure has only one, p=l, vanishing moment and, 

therefore, can only detect discontinuities in the zero, p-\=0, derivative (i.e. the function 

itself)- Further, note the Haar wavelet does contain a portion which can match functions 

with discontinuities, such as the step function of Figure 4.1, exactly, but no portions 

which can match the ramp or sinusoidal functions of Figure 4.1. Therefore, it is not able 

to detect discontinuities in either the first or second derivatives, as shown in the next 
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Figure 4.2: The ( a) Moriet, ( b ) Haar, ( c ) Daubechies-4 and (d ) Daubechies-6 wavelets with 
their scaling functions shown as dashed lines. 

section. Similar arguments hold for the Daubechies-4 (p=2) and Daubechies-6 (p=3) 

wavelets shown in Figure 4.2 which are able to detect discontinuities in functions or their 

derivatives up to the first and second degree, respectively. 

1.  The Continuous Wavelet Transform 

As mentioned earlier, the continuous wavelet transform (CWT) can be used to 

detect discontinuities in a function and its first and second derivatives. The discrete time 

continuous wavelet transform of Subsection ITJ.B.2.b was used to detect the 

discontinuities of the functions shown in Figure 4.1, using the Moriet wavelet. Figure 

4.3. shows that it is able to detect discontinuities in the function shown in Figure 4.1a, in 

the first derivative of the function shown in Figure 4.1b, and in the second derivative of 
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the function shown in 4.1c.  However, since the CWT is computationally expensive, we 

will choose not to use it in our detection algorithm. 

2.  The Discrete Wavelet Transform 
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Figure 4.3: The first level detail coefficients, dt, from the Continuous Wavelet Transform of the 
functions of Figure 4.1, ( a ) the step function, ( b ) the interrupted ramp function, and ( c ) the 
frequency hopping function, using the Morlet wavelet of Figure 4.2a. 

Recall that the Daubechies-6 wavelet has three vanishing moments allowing it to 

detect discontinuities in a function and discontinuities in both the first and second 

derivative of a function. Figure 4.4 shows that the Daubechies-6 was indeed able to 

detect such discontinuities in the functions shown in Figure 4.1 using the DTWT of 

section HJ.B.l.e. Further, recall that the Daubechies-4 and the Haar wavelets have only 

two and one vanishing moments, respectively. As shown in Figure 4.5, the Daubechies-4 
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wavelet was only able to detect the discontinuities in the step and interrupted ramp 

functions, but not the discontinuity in the second derivative of the frequency hopping 

function. Figure 4.6 shows the results of performing a DWT on the functions shown in 

Figure 4.1 using a Haar wavelet. As expected, it was only able to detect the discontinuity 

in the step function. 
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Figure 4.4: The first level detail coefficients, d|, from the Discrete Wavelet Transform of the 
functions from Figure 4.1, ( a ) the step function, ( b ) the interrupted ramp function, and ( c ) the 
frequency hopping function, using the Daubechies-6 wavelet of Figure 4.2d. 
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Figure 4.5: The first level detail coefficients, di, from the Discrete Wavelet Transform of the 
functions of Figure 4.1, ( a ) the step function, ( b ) the interrupted ramp function, and ( c ) the 
frequency hopping function, using the Daubechies-4 wavelet of Figure 4.2c. 
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Figure 4.6: The first level detail coefficients from the Discrete Wavelet Transform of the 
functions in Figure 4.1, ( a ) the step function, ( b ) the interrupted ramp function, and ( c ) the 
frequency hopping function using the Haar wavelet of Figure 4.2b. 
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3.  The Continuous Wavelet Transform Applied to Functions with Additive 

Noise 

Adding white Gaussian noise (AWGN) to the signal, x(t), to obtain a SNR of 60 

dB, results in the signal shown in Figure 4.7. Note that the noise is not even perceptible 
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Figure 4.7: Functions of Figure 4.1 embedded in 60 dB of AWGN. 

with the given figure's resolution. However, by examining the wavelet transforms of 

these functions with this moderate noise, insight may be gained into the robustness of 

these discontinuity detection techniques. Figure 4.8 shows the results obtained when 

using the DTCWT with the Morlet wavelet.   Note, that even though it is still able to 
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Figure 4.8:    The first level detail coefficients, di, from the DTCWT on the functions of 
Figure 4.7 using the Morlet wavelet. 

detect a discontinuity in the step function in noise, it fails to detect discontinuities caused 

by the first and second derivatives of the functions of Figures 4.7b and 4.7c, respectively. 

4.  The Discrete Wavelet Transform Applied to Functions with A WGN 

Applying the DTWT using Daubechies-6, Daubechies-4, and Haar wavelets to 

the functions shown in Figure 4.7 leads to the results shown in Figure 4.9 to 4.11. We 

note that discontinuities in the first and second derivatives are not detected due to noise 

degradations present in the signals. Therefore, one can conclude that a scheme based on 

detecting discontinuities in the function itself, vice its derivatives, is more robust. 

Thus, the next question becomes: when all these wavelets can detect these 

discontinuities in the function itself, how does one decide which wavelet to use when 

looking for such discontinuities? The DTWT computed using filter coefficients, h(n) and 

h|(n), of short length are not only less expensive computationally, but also produce better 
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time localization [10].  Based on the latter consideration the Haar wavelet should be a 

good candidate, since it has the shortest filters of the three. 
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Figure 4.9: The first level detail coefficients, di, from the DTWT of the functions of Figure 4.7 
using the Daubechies-6 wavelet 

5.   Averaging of Scales 

The averaging of several scales can enhance a wavelet's ability to detect 

discontinuities in noise. The idea is that for true discontinuities, the spikes will line up 

across all scales, while the spikes due to noise will not line up. Consider, for example, the 

stair step function shown in Figure 4.12a and the same function in noise in Figure 4.12b. 

The Haar wavelet detects the discontinuities perfectly in the no-noise case, as shown in 

Figure 4.12c. However, the performance is seriously degraded by the noise, as shown in 

Figure 4.12d. 
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Figure 4.10: The first level detail coefficients, di, from the DTWT of the functions 
of Figure 4.7 using the Daubechies-4 wavelet. 
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Figure 4.11: The first level detail coefficients, dt, of the DTWT of the functions of Figure 4.7 
using the Haar wavelet. 
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Figure 4.13 shows the DTWT of the stair step function in noise at scales 1 through 

6 computed using the Haar wavelet. Note that all step times can be detected if the 

wavelet coefficients obtained from the first six scales are summed and clipped at some 

threshold, as shown in the top middle plot of Figure 4.13 labeled "Output of detector" 

[10]. 

Input Signal Input Signal 

Haar Wavelet, level 1 

(a) 

Haar Wavelet, level 1 

(b) 

(c) 

Figure 4.12: Detection of the stair step function ( a ) with no noise, ( b ) in noise with the 
corresponding detector output shown in ( c ) and ( d ), respectively.   From Ref. [10]. 
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Figure 4.13:  Detection of stair step function in noise using scale averaging.    From 
Ref. [10]. 
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B.       THE TEMPORAL CORRELATION FUNCTION 

The temporal correlation function (TCF) of a signal x(t) is defined as: 

TCF.(t,T) = Jt t + - 
.     2) 

(     A t — (4.1) 

where t is the absolute center time and T is the lag time. This function has been shown 

useful when analyzing nonstationary signals [17]. Note that the TCF is conjugate 

symmetric along the T axis as: 

TCF(t, T) = TCF* (t ,-T) , (4.2) 

where * represents the complex conjugate [17]. Therefore, no additional information is 

gained by calculating the function for negative values of the lag, T. In addition, note that 

the TCF of a real signal may exhibit interference terms due to its nonlinear definition. 

For example, consider a real sinusoidal signal x(t): 

x(t) = sin(2/r // + 0). (4.3) 

The resulting TCF of x(t) is given by: 

TCF(t. T) = j [cos(2;r /1) - cos(2;r[2/ ]t + 20)]. (4.4) 

The first term inside the square brackets consists of auto-terms at the frequency,/, of x(t), 

while the second term consists of interference terms at twice the frequency,/, of x(t) [17]. 

Note, however, that the TCF of the analytic signal, xjt), obtained from x(t) given by: 
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Xg(t) = eJ2'*+e, (4.5) 

leads to the TCF function: 

TCF^(t,T) = e;2**. (4.6) 

Equation 4.6 shows that the TCF expression contains only auto terms at the frequency of 

xjt) [Fried]. For this reason the analytic form of the signal, x(t), is often preferable to its 

real counterpart and is the form we will choose to work with in our detection scheme to 

be developed. 

Next, consider the nonstationary analytic signal given by: 

xa (t) = e™ [u(t) - u(t - Thop)] + e12*» [u(t - Thop +1) - u(t - T)], (4.7) 

for 0 < t < T, where Thop is the time of the hop (or change in frequency) from// to/2, and 

where u(t) is the unit step function given by: 

/x     fl   ,forr>0 
[0   , for t < 0 

Substituting Equation 4.7 into Equation 4.1 leads to: 
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V 2 """y 

rCF,(t,T) + TCF2(t,r) + TCFl2{t,r), 

where TCF|(t, T), TCF2(t, T), and TCF]2(t, T) represent the 1SI, 2nd, and 3rd terms of 

Equation 4.9. Figure 4.14a presents a phase plot of Equation 4.9 for some arbitrary// and 

f:. The combinations of the different shifted versions of the unit step functions, u(t), force 

the TCF to only take on values within the regions shown in Figures 4.14b to 4.14d. Note 

that TCF|(t, T) is a function of// and Tonly. The second term, TCF2(t, T), is a function of 

f2 and ronly. while the last term, TCFi2(t, r), is a function of//,/2, t, and r. Note that the 

frequency hopping time, Th„n = 100, is located where the region covered by TCF|(t, T) 

ends and the region covered by TCF2(t, T) begins. Further, note that for a given value of 

T, the terms within the triangles (i.e., the regions where TCFi(t, T) and TCF^d, T) are 

defined) are constant, although at different levels. This fact is further illustrated in Figure 

4.15a for a few values of T, and will be exploited in our detection algorithm. Equation 

4.9 showed that the phase behavior within the cross-terms region, TCFi2(t, r) is linear. 
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The phase expression is periodic over 2TC producing discontinuities at regular intervals 

across TCFi2(t, T). It is important to realize, however, that the period of these intervals is 

a function of// and/2 and, therefore, not predictable without knowing/; and/2, which in 

general we do not. Nevertheless, for any given value of the lag, T < Thop, this region of 

cross-terms is centered on the hop time, Thop, another fact which may be exploited. 

It should be further highlighted that within a given auto-term triangle, there is only 

Complete TCF Rxl terms of TCF1 

J00- 

D 

100- j I !► 
o 

0 
1 

100 
1 

200 

l»J 
(e) (4) 

Figure 4.14: Phase plot of the Temporal Correlation Function obtained from x,(t) defined in 
Equation 4.7. ( b ) shows the portion of ( a ) which contains the auto-terms, TCF|, due to// only, ( c ) 
shows the portion of ( a ) which contains the auto-terms, TCF2, due to/; only, and ( d ) shows the 
portion of ( a ) which contains the cross-terms, TCF)2, due to both// and/;. 
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one frequency component along the T axis. Therefore, if one were to calculate the 

frequency response within one of these triangles, across the values of T, an estimate of 

the frequency during the period of t, covered by the given triangle could be extracted. 

So far, only signals without the presence of noise have been considered. In 

practice, some amount of noise is always present and the following section introduces 

additional preprocessing tools designed to facilitate the extraction of frequency hopping 

features in noisy environments. 

C.       PREPROCESSING TECHNIQUES 

As mentioned before, noise added to the signal impedes our ability to detect 

discontinuities in frequency hopping signals, or in general, to detect transients. This 

section investigates how the additive noise alters the TCF expression, and presents 
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Figure 4.15: Phase behavior of the TCF at lags 16 (top), 48 (middle), and 60 (bottom) for ( a ) the 
case with no noise and ( b ) the case with additive WGN. 
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several preprocessing techniques to minimize the noise effects. Specifically, we will 

investigate how the noise affects the phase information in the TCF computed on the 

analytic signal, xa(t), given in Equation 4.7. Recall that the frequency value information 

and the hopping time may be obtained using the phase of the TCF computed from an 

analytical frequency hopping signal, x(t), as shown earlier. In addition, note that: 

1) the phase components of the auto-terms, TCFi(t,T) and TCF2(t,T), have 

constant values for a given lag time v, 

2) the phase components of the cross-terms, TCFi2(t,T), are linear in t for a given 

lag time T. 

Figure 4.15 plots the phase information obtained from the TCF expression shown in 

Figure 4.14 for lags T= 16, 48 and 60 in noise free and noisy environments. Note that the 

hopping time (Thor = 100) occurs in the middle of the linear phase excursion. Also, note 

that the noise causes random spikes in the phase information. Such spike occurrences 

must be minimized if we are to produce a robust, reliable detection algorithm. 

1.   Unwrapping the Phase 

The phase, p(t), of a signal, x(t), may be unwrapped as: 

unwrap (M/)) = 
pit) if \p(t)-p(t-\)\<n, 

p(t) + In   if pit) - pit - 1) < -n, (4-,0) 
pit)-In   if p{t)-p(t-\)>n. 
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Unwrapping the phase serves two purposes. First, it removes the discontinuities present 

in the region covered by TCFi2(t,T). The resulting unwrapped phase becomes purely 

linear for a given lag time T in the region covered by TCFi2(t,T), as shown in Figure 

4.16a. Second, the unwrap function is, also, very effective at removing the random spikes 

in the phase due to noise, as shown in Figure 4.16b. However, as we shall see, the 

wavelet transform is sensitive to even low level noisy behavior. The same properties 

which make the WT adept at detecting transients make it susceptible to false alarms due 

to the noise. Therefore, further "noise quieting" techniques prove beneficial. 

2.   Median Filter 

A median filter of size N, is given by: 
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Figure 4.16: Unwrapped phase behavior at lags r equal to 16 (top), 48 (middle), and 60 (bottom) 
for (a) the case with no noise and (b) the case with additive WGN (SNR = 10 dB). 
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xMF(t) = mcdian(x(t)wN(t)), (4.11) 

where w^t) is a window of length N centered on t. The median filter is a nonlinear filter 

with the important characteristic that it does not average and, therefore, preserves 

discontinuities. Examples of the effects of the median filter on our noisy phase 

information will be given in the next chapter. 

3.   Differentiation 

Consider a function which is at a constant value, Q,   for some period of time, 

0<t <r,, then ramps up with slope, m, for another period, f, <t<t2, and is then 

assumes another constant value, C2, for the remainder of its duration, t2 <t <T, as 

shown in Figure 4.17a for C,= -1.2474, C2= 13.832, t,=10, f2=130, and 7=256. For future 

reference, note that this figure closely resembles that of Figure 4.16a (bottom) with the 

exception that the end terms, which will be discussed later, have been set to the same 

constant value as those before and after the ramp (i.e. the constant levels due to the auto- 

terms of Figure 4.14a). Differentiating the function shown in Figure 4.17a, leads to 

Figure 4.17b as the constant terms go to zero, and the ramp portion becomes a constant 

C, -C 
equal to the slope, m = — L = 0.251, of the ramp. Therefore we have created a pulse, 

a function with two discontinuities, of height m = 0.251 and width equal to t2- // = 60 as 

shown in Figure 4.6b. This is another key feature which we will exploit in our detection 

algorithm. 
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The corresponding desired results obtained from the application of these functions 

are listed as follows: 

1. The TCF produces a two-dimensional correlation function with the property 

that when applied to a analytic signal such as the one in Equation 4.7 (i.e. a 

complex sinusoid with one frequency hop) it results in a pattern, as shown in 

Figure 4.14. Furthermore, the cross-terms, TCF12, are centered on the hopping 

time, t=Thop, for 0 < t < T and 0 < T < Thop. 

2. When the TCF phase is unwrapped, for any given lag, T, it results in a signal 

which is constant for the period of the first auto-terms, TCFi, then is a ramp 

for the period of the cross-terms, TCF12, and then is constant again, at a 

different level, for the period of the second auto-terms, TCFo. 

100 200 
Time (samples) 

(a) 

8  0.2 
«  0.1 
S:     0 

-0.1 ^-_____--AMW^^ 

0 100 200 
Time (samples) 

(b) 

Figure 4.17: A ramp function is shown in ( a ), and its 
derivative in ( b ). 
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3. The application of a median filter to the phase information in noise can 

smooth out the noise, but with the important characteristic that it will preserve 

the discontinuities. 

4. Differentiation of a function of the type described in item two above results 

in a pulse centered on the hopping time, Thop, for T< Thop- 

Having explored the abilities and limitations of using wavelet transforms to detect 

discontinuities, and having examined some preprocessing tools, we are now ready to 

develop our frequency hopping signal detection algorithm. 
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V. DETECTION AND ESTIMATION ALGORITHM AND SIMULATION 

A.       DETECTION AND ESTIMATION ALGORITHM 

Using the tools described in the last chapter, the algorithm steps for the detection 

and estimation of frequency hopping signals in noise can now be enumerated. The steps 

are as follows: 

1. Transform the real signal into an analytic signal. 

2. Segment data into frames of length less than or equal to the minimum 

hopping time, Thop_min. This assumption ensures that, at most, one hop will 

be present in the processing frame. 

3. Compute the temporal correlation function on each frame. 

4. Extract the phase information by calculating the angle of the TCF. 

5. Unwrap the phase of the TCF along the time axis, t. This step is done to 

remove artificial discontinuities in the cross-terms region due to the phase 

being periodic in 2K. Unwrapping the phase, also, reduces the apparent 

random spikes in the phase due to noise. 

6. Apply a median filter to the phase of the TCF along the time axis, t, of length 

five. This step is done to reduce the noise effects prior to differentiating, 

since differentiating accentuates these effects due to noise. 

7. Differentiate the phase information along the time axis, t. This step changes 

the unwrapped phase of the TCF from a ramp function to a pseudo-pulse. 
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8. Apply another median filter along the time axis, t, of length 25. The length 

of 25 has proven to work well with the Thop_min chosen for our simulations 

which will be described below. This step is done to again remove the effects 

due to noise which were accentuated by the differentiation operation in step 

seven. 

9. Calculate a discrete wavelet transform along the time axis, t (i.e. for each lag, 

T, of the TCF) using the Haar wavelet. This step is done to detect the 

discontinuities at the edges of the cross-terms region. 

10. Sum the wavelet coefficients of the first two scales, di and d2 of the DWT. 

Since each successive scale is down-sampled by two when performing a 

DWT, this step is accomplished by setting d2(2n+l) = d2(2n) for n = 

0,1,2,...,N-1 where N = length(d2), before performing the summation. 

11. Perform a 457135° summation across all values of lag, x, to obtain a 

detection vector which has time as its index. This step will be explained 

further in Subsection V.C.6. 

12. Threshold the data in the resulting detection vector obtained in step 11. 

Further details regarding this threshold scheme are presented in Appendix B 

and Subsection V.C.7. 

13. If the thresholded detection vector contains peaks, the maximum peak value 

time index represents the estimated hopping time. 
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With the detection and estimation algorithm given above, we will use the remainder of 

this chapter to describe the simulation process, apply the algorithm to an example frame, 

and, finally, to provide the simulation results. 

B.       SIMULATION 

Simulations  were conducted to test the effectiveness  of the detection  and 

estimation algorithm given above. The Matlab source code for conducting the 

simulations is given in Appendix A. Five hundred trial experiments were conducted in 

six different signal to noise ratios (SNR) ranging from 15 dB down to -3 dB. The basic 

idea behind the experiments was to simulate signals that had already been segmented, as 

specified in steps one and two of the algorithm. The problem then becomes to determine: 

a) whether or not a frequency hop exists within the given frame; b) to estimate the 

hopping time when a frequency hop is detected. 

1.   Assumptions 

As stated in the introduction, it was desired to make as few assumptions as 

possible on the nature of the frequency hopping signal. With this goal in mind the 

assumptions were limited to three. The first assumption is of a frequency range within 

which the spread spectrum signal remains. For the simulations conducted, this range was 

assumed to be from 1 MHz to 24 MHz. The second assumption was of a minimum 

hopping time, Thop.mm- which was chosen to be 256 sample points. At a sampling rate of 

50 MHz, this translates into a minimum hopping time of 5.12 \is. The third, and final, 
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assumption was on a minimum frequency differential, Af, for the hop which was chosen 

to be 1 KHz. 

2.   Signal Generation 

The signals were generated by first choosing a random hopping time, Thop, 

between sample point 26 and 231 of the 256 point sample frame. The first and last 25 

points were disallowed as candidates due to problems with edge effects. In practice, an 

overlapping scheme could be used for full coverage of the signal. If it is determined that 

a hop will occur within a simulation frame (i.e. Th0p * 0), then both first and second 

frequencies (i.e. frequencies before and after the hop) are randomly generated. The result 

is a signal with, at most, one hop which can be from any frequency,/;, to any frequency, 

f2, such that 1 MHz <fhf2 ^ 24 MHz, and |/, - /2| > A/ . 

The SNR, in decibels, is defined in the simulations as: 

SM? = 101og 10 
rsignal 

Kä
r~ j \      noise J 

(5.1) 

where o denotes the standard deviation squared, or variance, of the noise, and pSignai is the 

signal power. Forcing the signal to be of unit amplitude, Equation 5.1 becomes: 

( 
SNR = 101og 10 

1/2 

VCT2      , \     noise / 

(5.2) 

which allows the calculation of the standard deviation of the additive white Gaussian 

noise as: 

60 



'1 -SNR 

a .   =1--10 l0   . (5.3) noise        V 9 

C.       APPLICATION OF DETECTION AND ESTIMATION ALGORITHM TO 

A SAMPLE FRAME 

1. Choosing a Sample Frame 

We choose the eighth frame of the signal defined earlier in Section II-B, for the 

example. This frame is 256 sample points long from sample 1793 to sample 2048, as the 

frequency hopping signal is segmented into frames of size Thop_min equal to 256 points. 

Therefore, the eighth frame starts at point 256-7 + 1 = 1793, and ends at point 

256-8 = 2048. The hopping time for this frame is at 40 (is, which corresponds to point 

2000 for a sampling frequency of 50 MHz. Thus, the hopping time is located at time 

sample 2000 - 1792 = 208 inside the frame. The hopping time within our sample frame is 

called Tk,r. The frequencies on either side of the hop are/y25o = 6.250 MHz and//7727 = 

22.727 MHz. Finally, white Gaussian noise is added to the signal to obtain a SNR equal 

to 10 dB. 

2. The Temporal Correlation Function 

Figure 5.1 plots the phase of the TCF expression for the analytical function 

derived from the communication signal. Recall that the bottom triangle is due to the 

auto-terms at frequency f^so and the top triangle is due to the auto-terms at frequency 

j17727, while the rest are cross-terms due to both frequencies. Figure 5.1b shows the 

values of the TCF phase for a constant lag equal to 30, T>O. 
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3.   Extracting Phase Information from the TCF 

Steps four and five of the detection and estimation algorithm manipulate the phase 

information of the TCF into a convenient form using the preprocessing tools introduced 

in Chapter IV. Figure 5.2 plots the unwrapped phase of the TCF shown earlier in Figure 

5.1. Figure 5.2b shows the effect of unwrapping the phase at lag, t30. 

PhaM>oiTCFo{«B[n] 

(a) 

Lag f teu) Equal to 30 

Figure 5.1: The ( a ) phase of the Temporal Correlation Function computed on an analytic 
frequency hopping signal in noise and ( b ) a closer view at the constant value of lag equal to 30. 
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0 50 100        150       200       250 
Time (samples) 

(b) 
Figure 5.2: The unwrapped phase information of the TCF of Figure 5.1. 

4.   Constructing the Pulse 

Steps six to eight in the detection and estimation algorithm transform the phase 

information into a pulse-like signal, or pseudo-pulse. Note that the phase information is 

usually very sensitive to noise degradation. Thus, several steps are added to minimize 

noise effects.  We first apply a median filter of length 5 to minimize the effects due to 
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noise while preserving the global trend of the phase information. Next, we differentiate 

the phase along the time axis t to obtain the pseudo-pulse. Finally, we apply a second 

median filter of length 25 to again minimize noise effects while preserving the pulse-like 

shape of the function. Figure 5.3 plots the resulting signal obtained from the TCF phase 

for the lag time T30- We now have constructed a pseudo-pulse having the width of the 

cross-terms and, roughly, centered on Thop- A few comments can be made; 

• when the signal is noise free, such processing leads to a perfect pulse of a height 

equal to the slope of the unwrapped TCF phase, a width equal to the width of 

cross-terms, and centered on Thop (i.e. centered at sample point 208 of the time 

axis). 

• discontinuities at each edge of the pseudo-pulse are preserved when the signal is 

filtered with the median filter of length 25. 

Pseudo-Pulse at Lag (tau) Equal to 30 

0 50        100       150      200       250 
Tune (samples) 

Figure 5.3: The pseudo-pulse formed by differentiating and median filtering the signal of Figure 
5.2b. 
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5. Detecting Discontinuities with the DWT 

Next, steps nine and ten, of our detection and estimation algorithm are applied to 

the pseudo-pulse function. Step nine computes the discrete wavelet transform using the 

Haar wavelet. The transform is well matched to detect discontinuities at the leading and 

trailing edges of the pseudo-pulse. Next, the wavelet coefficients obtained for the first 

two scales are averaged to minimize the noise degradation, and to enhance the probability 

of detecting the discontinuities, as shown earlier in Subsection V.D.4.  Figure 5.4 plots 

DWT on Preprocessed TCF of x8(n] 

100 150        200        250 
lag (samples) 

(a) 

DWT on Prsproc——d TCF at Lag 30 

(b) 

Figure 5.4: DWT coefficients computed for each value of x ( a ) on the preprocessed phase of the 
TCF(t,T), and ( b ) for x = 30. 
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the resulting wavelet transform obtained from the TCF phase information on the entire 

TCF, and a detailed view of the transform obtained for lag x30. 

6.   Constructing the Detection Vector 

Step 11 of our algorithm constructs what will be called the detection vector by 

performing a 457135° summation on the DWT matrix. The Matlab code for this 

summation can be found in Appendix A. However, the basic idea is to sum all the values 

which represent the edges of the cross-terms in the TCF at 45° and 135°, so that they 

reinforce each other only at Thop, which we recall is located at point 208 in this example. 

Figure 5.5a shows pictorially the effects of this summation. The arrows in Figure 5.5b 

show the directions of summation arrows pointing upward representing 45° and the 

TOP o« x8{n] 

(a) 
(b) 

ThiOtUctaiVKM 

(C) 

Figure 5.5: Detection vector constructed by performing a 457135° summation across the columns 
of the signal shown in Figure 5.4a. ( a ) shows a representation of the effects of the summation 
shown in ( b ) where the arrows indicate the direction of summation.   ( c ) shows a plot of the 
actual detection vector. 
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arrows pointing downward representing 135°. The actual detection vector is plotted in 

Figure 5.5c. Note that the peak indeed appears to very close to point 208. 

7.   Threshold Determination 

Once the detection vector has been formed a decision must be made as to whether 

or not a hop has occurred within the frame. The statistics of the empirical data from the 

experiments suggested that the variance of the detection vector would be the best 

indicator of whether or not a hop had occurred. As a result, the threshold, Threshold, is 

chosen as a multiple, k, of the variance of the detection vector when no hop has occurred 

within the frame as: 

T,hr<sh„u = k ■ ^(detection vectorni)hop (f)). (5.4) 

The threshold determination was also guided by the fact that the cost associated with the 

probability of a missed detection, Pm = [1 - probability of detection (PD)] far outweighs 

the cost associated with the probability of a false alarm, PFA, as the hopping time 

estimation is only the first step in a complete frequency hopping signal detection scheme. 

Note that once the hopping times are estimated, the signal frequencies need to be 

extracted to demodulate the actual message. This step can easily be done by applying 

frequency analysis to the estimated hopping intervals. Thus, in the case of false alarms, 

frequency analysis would show the same frequencies in two, or more, consecutive 

hopping intervals, resulting in no message degradation. However, a missed hopping time 

will result in degradations in the frequency estimation step, and errors in the decoded 

message. 
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Receiver operating characteristics (ROC) curves were generated for each of the 

six SNR levels and an appropriate threshold chosen for each. This curve, along with the 

plots of PD VS. Threshold and PFA VS. Threshold, is shown in Figure 5.6 for the SNR = 10 dB 

case. Similar plots for the other SNR levels are shown in Appendix B. When the SNR = 

10 dB, the threshold is chosen to be £=30 times the variance of the detection vector 

generated in a "no hop" frame, which leads to Tthreshnld = 1.8907 x 10"6. Simulations show 

that the detection vector variance is equal to 0.0076, which exceeds the selected 

threshold, Tthreshold = 1.8907 x10~6. Therefore, a hop is detected. The value of the hop 

time is estimated next by locating the time index of the detection vector maximum value. 

This point is 207, which results in an error of one time sample, or a percentage error equal 

to /255 • 100% = 0.39% of Thop_min or approximately 20 ns. 

W «Tnw&hoU iraiCp« 

0«? 

0 0!        0 2       0.9       04       OS 
PU 

(a) 

2Vatfno hop) « Tnmhoti * aoOVaifno hop) 

ThmhoM chown m 3Cvar(no nop) 

|Snn> 10 dB) 

Figure 5.6: Signal in noise at SNR= 10 dB, ( a ) the ROC curve, ( b ) PD vs. T,^,,^, and ( c ) PFA 

vs. Ta^iuu. Threshold, TümthoU, chosen as 30 times the variance of a detection vector generated in 
a "no hop" frame. 
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D. RESULTS 

1.  Detection 

The detection results given in Table 5.1 show the probability of detection, PD, the 

probability of false alarm, PFA, and the percentage of errors in classification for the 

selected threshold, Tthreshold, at each of the six SNRs considered. Note the entries under 

the column labeled "£" represents a multiple of the variance of the detection vector 

generated from a "no hop" frame for each respective SNR level. The column labeled "% 

Error" shows the percentage of misclassifications (i.e., the percentage of false alarms plus 

misses). Note, also, that the a low probability of false alarm was sacrificed for higher 

probabilities of detection for reasons discussed earlier. For example, the entries in the 

row for SNR = 3 dB show that if a 11.4 % misclassification rate and a PFA=0.1961 can be 

tolerated, then we can expect to detect 89.53% of the hops in a given frequency hopping 

signal. 

SNR k Pd Pfa % Error 
15 dB 140 1 0 0.0 
10 dB 30 0.9866 0.0196 1.4 
6 dB 15 0.9844 0.1569 3.0 
3 dB 11 0.8953 0.1961 11.4 
DdB 1 0.8129 0.3529 20.4 
-3 dB 3 0.6927 0.3333 31.0 

Table 5.1: Detection statistics of 500 experiments 
applying the detection and estimation algorithm of 
this chapter. 
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2.  Estimation 

Simulation results described in Section V-B are given in Table 5.2.  The column 

labeled "Avg. Error" gives the average error obtained at each SNR level. For example, at 

the SNR level of 3 dB, out of all the hops which were detected, the average distance from 

the true hopping time was 10.48 sample points. This value equates to 

4.1 % of the minimum hopping time Thl)pmin.   Columns with numeric headings indicate 

the hop detection probability within a given percentage of Thopmin. For example, at the 

SNR level of 3 dB, the column labeled "1%" indicates that 36% of all detected hops were 

located within 1% of Th0p_min or within 2 points of the true hop time, Thop. Similarly, 72% 

of all detected hops were located within 5% of Thop^min or within 12 points of the true hop 

time, Thop- Figure 5.7 plots the distribution of the hopping time detections for all SNR 

levels considered. Note that as the SNR decreases the distribution spreads out indicating 

less and less accuracy in the estimation, which is to be expected. 

SNR 
(dB) 

1% 5% 10% 15% 20% 30% 40% 50% 75% 100% Avg. Error 
(# of samples) 

15 0.790 0.984 0.992 0.996 0.996 0.998 1.00 1.00 1.00 1.00 2.22 
10 0.726 0.964 0.974 0.978 0.982 0.986 0.986 0.986 0.986 0.986 2.70 
6 0.558 0.888 0.926 0.940 0.950 0.960 0.968 0.970 0.970 0.970 5.46 
3 0.360 0.720 0.758 0.794 0.828 0.862 0.874 0.882 0.886 0.886 10.48 
0 0.116 0.302 0.418 0.510 0.572 0.684 0.752 0.768 0.796 0.796 28.48 
-3 0.090 0.174 0.276 0.382 0.456 0.568 0.614 0.646 0.686 0.690 30.99 

Table 5.2: Estimation statistics for the 500 experiments at each SNR level using the 
detection and estimation algorithm described in this chapter. Columns with numeric 
headings, show the probability that estimated hops are found within a given distance, 
expressed in percentage of T^ «„,, from true hopping times. 
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Figure 5.7: The distribution of hopping detections for selected values of SNR. 
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VI. CONCLUSIONS AND RECOMMENDATIONS 

A.       CONCLUSIONS 

This thesis considered the application of correlation functions and wavelet 

analysis to the detection and estimation of frequency hopping signals in additive white 

Gaussian noise. First, we described frequency hopping signals and briefly explained how 

they are used in spread spectrum communications techniques. Second, we introduced 

wavelet transforms and showed how they can be used to detect discontinuities in 

functions and their derivatives. Third, we introduced preprocessing techniques designed 

to improve the robustness of the detection and estimation scheme in noisy environments. 

Finally, the detection and estimation algorithm was presented and simulation results 

shown. 

The algorithm developed has only two restrictive assumptions: 

1. a minimum hopping time; 

2. a minimum frequency differential. 

Thus, it can find applications where the minimum hopping time is not held constant; i.e., 

in time hopping signals and hybrid techniques involving either frequency hopping or time 

hopping. Results show that the algorithm developed produces acceptable results for SNR 

levels as low as 3 dB. At this SNR level the percentage of misclassifications is 11.47c 

and the average error is 4.1 % of the minimum hopping time Thop_mm- 
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B. RECOMMENDATIONS 

Although the algorithm developed in this work succeeded in meeting its goals, it 

is believed that improvements could be obtained by altering the approach in two specific 

areas. First, the temporal correlation function produces a two-dimensional "image." 

However, the algorithm developed here chose to perform one-dimensional wavelet 

analysis for each individual value of lag, T. Thus, a possible extension involves 

considering the problem as an image processing or a pattern recognition problem, due to 

the specific triangular pattern produced by calculating the TCF of frequency hopping 

signals. As a result, applying two-dimensional edge detection schemes, such as wavelet- 

based techniques, are expected to improve the robustness of the detection and estimation 

algorithm. In addition, one could use neural networks to recognize the triangular patterns 

of the TCF calculated for frequency hopping signals. Both extensions are presently under 

consideration. 
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APPENDIX A. MATLAB SOURCE CODE 

The Matlab source code for the detection and estimation algorithm developed in 

chapter five is provided in this appendix. Functions referenced, but not provided here are 

either a part of basic Matlab or a part of the Wavelet Toolbox [16]. 

A. SIMULATION PROGRAM 

ft This MATLAB code runs simulations of detection and 
ft estimation of frequency hopping signals. The simulations 
ft have been designed to conduct 500 experiments at each of 
ft 7 noise levels as listed in the SNR_db vector below. 
ft 
ft Uses DETECT2V, ERRLOC2 

ft Filename: d_esimul.m 
ft 
3 Capt Howard Overdyk, last revised 970902 

CZ •»»»»•»»»»»»«a*************************************************** 

ft 
ft Create required signals: 

clear 

load seed. % Using set seed only to ensure results are 
rand('seed'.seed); ft reproduceable. 

dclta_f=1000; % 1 KHz 
T_min=256; ft T_min = 256 pts = 5.12 us 
f_min=!0A6; ft 1 MHz 
f_max=24» 10*6; % 24 MHz 
fs=50* 10*6: ft Sampling frequency = 50 MHz 
Nf=(f_max-f_min>/delta_f; ft Number of different random freqs fk 
Nc=S00. ft Number of experiments 

ft Produce random hop times. Th. 

Th=round(206*rand( 1 .Nc)); ft 206 to allow for removing 25 pts from 
ft each end. 0 => no hop 
ft In practice, overlapping technique 
ft would be employed to account for 
ft removing edges, 

for i2=0:49. 

Th( 1 +i2* 10)=0; ft ensure 10ft are no hops to fully test 
ft detection portion of algorithm 
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end 

rand('seed',seed); 

% Produce random frequencies, Fh, where 1st row is hop from freq. 
% and the 2nd row is the hop to freq. 

Fh=(round(Nf*rand(2,Ne)).*delta_f)+f_min; 

hops=zeros( 1 ,Ne); % to keep track of if there is a hop and where. 
% zero (0) => no hop or else it will be hop pt. 

x=[]; % Initialization purposes 

% Use random hop times, Th, and random freqs, Fh, to produce signals 
% for 500, Ne, experiments. 

foril=l:Nc, 

ifTh(il) = 0, 

n=l:T_min; 
x=[x cos(2*pi*Fh(l,il)/fs*n)]; 

elseifFh(l,il) = Fh(2,il), 

n=l:T_min; 
x=[x cos(2*pi*Fh(l,il)/fs*n)]; 

else 

hops(il)=Th(il)+25; % RN btwn 26 and 231 
n 1 = 1 :hops(i 1); % for first freq 
n2= 1 :T_min-hops(i 1);       % for second freq 
x=[xcos(2*pi*Fh(l,il)/fs*nl)cos(2*pi*Fh(2,il)/fs*n2)]; 

end        9 if statement 

end °k loop 

•X Create Noise and embed signal in it and make analytic. 

SNR_db=[ 15 10 6 3 0 -3]; % SNR in dB 
Thresh=I 140 30 15 11 1 3], % Thresholds pre-determined from ROC 

% function 

sigma=[sqrt(10.A(-SNR_db(l)/10)./2)... 
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sqrt(10.A(-SNR_db(2)/10)./2)... 
sqrt(10.A(-SNR_db(3)/10)./2)... 
sqrt(10.A(-SNR_db(4)/10)./2)... 
sqrt(10 A(-SNR_db(5)/10)./2)... 
sqrt( 10 A(-SNR_db(6)/10)./2)]; 

randn('seed',seed); 
w 1 =randn(6,length(x)); 

for i= 1:6, 

w(i, :)=sigma(i). *w 1 (i,:); 
xn(i,:)=hilbert(x+w(i,:)); 

end 

xn(7,:)=hilbert(x); % No noise case 

% 
% Perform Experiments 

foril = l:7, 

fori2=l:Ne, 

|d(i 1 .i2).d(i 1 +7,i2)]=detect2v(xn(i 1 ,(i2-1 )*T_min+1 :i2*T_min)); 

end 

Thrcshld=Thresh(il)*d(i 1+7,1);      % First experiment is known 
% to be a no hop case 

indl=d(il+7,:)>Threshld; % Create an indexing vector 
9f Which equals one only if the 
9? variance of the detection 
9f vector exceeds the pre- 
% determined threshold. 

da=d(il.) *mdl; % All detections which do not 
% exceed the threshold are set 
% to a miss 

9 Analysis of Results call errloc2 

|dclla_th(i 1 ,:).Pd(i 1 ),Pfa(i I ),pcnt_err(i 1 ).avg_err(i I )]=errloc2(da,hops,Fh); 
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end 

B. DETECTION FUNCTION 

function [t,v]=detect2v(x) 
% [T,V]=DETECT2V(X) given signal X, detects the hop time of 256 
% samples of a signal X and returns the hop point in T and 
% the var(WT summed coeffs) in V. 
% 
% Uses TCF3, TRDET3U3, SUMLAGS3 

% Filename: detect2v.m 
% 
% Capt Howard Overdyk, last revised 970813 

^♦llc*************************************************************** 

min_lag=0; 
max_lag=length(x)/2; 

Rxt=tcß(x,min_lag,max_lag); 

c=trdet3u3(Rxt,min_lag,max_lag); 
(cal,ca2,ca]=sumlags3(c); 

cs=[0 ca( 1 :length(ca)-1 )]+[ca(2:length(ca)) 0]; 

v=var(cs); 

(m.t)=max(cs); 

C. TEMPORAL CORRELATION FUNCTION 

function Rx=tcf3(x, arg2,arg3) 
9t TCF3(X.ARG2,ARG3) returns the temporal correlation function(TCF) 
* of X. If arg2 is present the tcf will only be calculated 
9f from min_lag=arg2 out to max_lag=arg3, otherwise the whole 
9t TCF will be computed for positive values of lag, tau. 

9 Filename: icß.m 

*k Capt Howard Overdyk, last revised 970512 

(jj. »*»»•»»**»***♦*»»**»»»»*»«******»***»**********»**************** 
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if nargin>l 

min_lag=arg2; 
max_lag=arg3; 

else 

min_lag=0; 
max_lag=length(x)/2; 

end 

Rx=zeros(length(x)+1 ,length(x)/2+1); 

for lag=min_lag:max_lag; 

for i=lag+l:length(x)-lag, 

Rx(i,lag+l)=x(i+lag)*conj(x(i-lag)); 

end 

end 

G^*** 3|c4c3tc3|c34c?|c34e4e 4c4c3|e4e *************** *************************** ******* 

% Compute the TCF for negative values of lag, tau. 

%Rx(:,l:length(x)/2)=conj(fliplr(Rx(:,length(x)/2+... 
% 2:length(x)+l))); 

D. WAVELET TRANSFORM OF TCF FUNCTION 

function ca=trdct3u3(R,min_lag,maxJag) 
% TRDET3U3(R.MIN_LAG,MAX_LAG) performs wavelet transforms, using 
fc Haar wavelet, on all lags from MIN_LAG to MAX_LAG on phase 
% of temporal correlation fen, R, and then sums the 
% coefficients of the first two scales of each transform. 
^ Returns the matrix of summed coefficients CA. 
* 
9 Uses UNWRAP. ANGLE. DIFF. MEDFILT. WLOOKNP 

% Filename trdct3u3.m 

"X Capt Howard Ovcrdyk. last revised 970420 

<£••••»»»*•••••»»••»•»•»••*••»•**»••»***********»*****»**»*********** 

°k Extract unwrapped angle of TCF. 

Rxa=unwrap(angle(R)); 
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ßt**************^:****** ************************************* ********* 

% 
% Investigate different lags of TCF of complex signal to 
% determine hop time 

level=4; 

ca=zeros( 129,length(R(:, 1))-1); 

for lag=min_lag:max_lag, 

% median filter Rxa with length 5, then differentiate 
% and finally, median filter with length 25 before 
% performing the wavelet transforms. 

Rxtmf=medfilt(diff(medfilt(Rxa(:,lag+l).',lag,5)),lag,25); 
c=wtnp(Rxtmf,'db 1',level); % Haar == dbl 

ca(lag+l,:)=sum(abs(c(l:2,:)));       % sum the 1st two scales 

end 

E. MEDIAN FILTER FUNCTION 

function xmf=medfilt(x,lag,f_size) 
% MEDFILT(X) given data X, which LAG the data came from, and 
% filter size, F_SIZE, this function returns the median 
% filtered data in the vector XMF. 
% LAG is used to determine how large of area outside of 
% the TCF is zeros and so, the function can set these 
% values to the median of the first three values within 
% the TCF. 

% Uses MEDIAN 

% Filename: medfilt.ni 
% 
* Capt Howard Overdyk, last revised 970421 

if nargm < 3 

f_size=3; 

end 

for i2=l:lag. 
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x(i2)=median(x(lag+l :lag+3)); 
x(length(x)-i2+l)=median(x(length(x)-lag-2:length(x)-lag)); 

end 

for i= 1 :ceil(f_size/2), 

xmf(i)=median(x( 1 :f_size)); 

end 

for i=ceil(f_size/2)+l :length(x)-ceil(f_size/2), 

xmf(i)=median(x(i-ceil(f_size/2)+l:i+floor(f_size/2))); 

end 

for i=length(x)-ceil(f_size/2)+l :length(x), 

xmf(i)=median(x(length(x)-f_size+l:length(x))); 

end 

F. FOUR LEVEL WAVELET TRANSFORM FUNCTION 

function m=wtnp(x,wavfamn,level) 
% WTNP(X,WAVFAMN,LEVEL) given signal, X, 
% WAVFAMN, the wavelet name (e.g. 'db2'), and 
% the dyadic LEVEL for decomposition, the function 
% returns the wavelet transform coefficients in 
% matrix, M. 
% 
% Level <= 4 
% 
9t Uses COEFMAT4, WAVEDEC 

<* Filename: wtnp.m 

* Capt Howard F. Overdyk. last revised 2/7/97 

^£. •*•••••••••*•»*********•****•**»** ********************** 

|c.ll=wavedec(x,level.wavfamn); 

m=cocfmat4(c,l.level,wavfamn), 
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G. WAVELET TRANSFORM COEFFICIENT MATRIX FUNCTION 

function data=coefmat4(c,l,level,arg3,arg4) 
% COEFMAT4(C,L,LEVEL,arg3,arg4) returns an level x Ns matrix of 
% the wavelet coefficients (details only) Unnormalized 
% coefficients using the DWT tiling and 
% using either a specific wavelet ('wname' see WFILTERS) 
% or specific wavelet decomposition filters. 
9c Ns is the length of the signal X 
% 
% The structure is organized as: 
% C     =[app. coef.(N)ldet. coef.(N)l... Idet. coef.(l)] 
% L(l)  = length of app. coef.(N) 
% L(i)  = length of det. coef.(N-i+2) for i = 2.....N+1 
% L(N+2) = length(X). 
% 
9f Level <= 4 
<X 
<* Uses DETCOEF, WFILTERS, WKEEP 

9i Filename: coefmat4.m 

9t Howard F. Overdyk last modified 970807 

t% ***************************************************************** 

9r Check arguments 

if nargin=4 
|LoF_D.HiF_D]=wfilters(arg3,'d'); 

else 
LoF_D = arg3;    HiF_D = arg4; 

end 

*3S Extract approximation and details 

N=l(lcngth(D). 

•5F Expand d I 
dln=dclcocf(c.l,l). 
dl=wkecp<dln.N/2Al.T); 

il = l:2:N.i2=2:2:N: 
init=zcros(l,N); 
ddl(il)=dl;ddl(i2)=dl; 

9? Expand d2 
if (level >= 2) 

82 



d2n=detcoef(c,l,2); 
d2=wkeep(d2n,N/2A2,T); 
il=l:4:N; i2=2:4:N; i3=3:4:N; i4=4:4:N; 
dd2=init; 
dd2(i 1 )=d2;dd2(i2)=d2;dd2(i3)=d2;dd2(i4)=d2; 
end 

% Expand d3 
if (level >= 3) 
d3n=detcoef(c,l,3); 
d3=wkeep(d3n,N/2A3,T); 
il=l:8:N; i2=2:8:N; i3=3:8:N; i4=4:8:N; 
i5=5:8:N; i6=6:8:N; i7=7:8:N; i8=8:8:N; 
dd3=init; 
dd3(i 1 )=d3;dd3(i2)=d3 ;dd3(i3)=d3 ;dd3(i4)=d3; 
dd3(i5)=d3;dd3(i6)=d3;dd3(i7)=d3;dd3(i8)=d3; 
end 

% Expand d4 
if (level >= 4) 
d4n=detcoef(c,l,4); 
d4=wkeep(d4n,N/2M,T); 
il = l:16:N; i2=2:16:N; i3=3:16:N; i4=4:16:N; 
i5=5:16:N; i6=6:16:N; i7=7:16:N; i8=8:16:N; 
i9=9:16:N;ilO=10:16:N;ill=ll:16:N;il2=12:16:N; 
il3=13:16:N; il4=14:16:N; il5=15:16:N; il6=16:16:N; 
dd4=init; 
dd4(i 1 )=d4;dd4(i2)=d4;dd4(i3)=d4;dd4(i4)=d4; 
dd4(i5)=d4;dd4(i6)=d4;dd4(i7)=d4;dd4(i8)=d4; 
dd4(i9)=d4;dd4(il0)=d4;dd4(ill)=d4;dd4(il2)=d4; 
dd4(il3)=d4;dd4(iI4)=d4;dd4(il5)=d4;dd4(il6)=d4; 
end 

data=[ddl;dd2;dd3;dd4]; 

H. 45° MATRIX SUMMATION FUNCTION 

function [cal.caZ,ca)=sumlags3(c) 
9f SUMLAGS3(C) performs a 45 degree summation over all columns of the 
'k wavelet transform coefficients, C, in both directions 
°k of 45 deg and returns a row vector CA with the result. 
% CA1 contains results of summing only in 45 deg direction. 
9L CA2 contains results of summing only in 135 deg direction. 
9f Edges arc clipped to avoid edge effects using EFILT2. 

9 Uses results of EDGEFILT2 

•* Filename: sumlags3.m 
% 
°k Capt Howard Ovcrdyk, last revised 970707 
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% 

load efilt2; % see code of edgefilt2.m 
[m,n]=size(c); 
c=efilt2.*c; % Remove edges of WT coeffs. 
cal=zeros(l,n); 
ca2=zeros(l,n); 

for il = l:n-m+l, % covers area where we have all rows to 
% sum over at 45 degrees 

for i2 = 1 :m, 

cal(il)=cal(il)+c(i2,il-l+i2); 

end 
end 

ca 1 =ca 1 ./m; % Normalize summation 

cl=l; 

for il = n-m+2:n, % covers end where we aren't summing over 
% all rows at 45 degrees. 

for i2 = 1 :m-c 1, 

cal(il)=cal(il)+c(i2,il-l+i2)./(m-cl); 

end 
cl=cl+l; 

end 

for i 1 = n:-1 :m.    % covers area where we have all rows at 135. 

for i2 = m:-l:l, 

ca2(i 1 )=ca2(i 1 )+c(i2.i l-i2+1); 

end 
end 

ca2=ca27m;        % Normalize summation 

cl = l; 
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for i 1 = m-1:-1:1, % covers area where we don't have all rows 
% at 135 degrees. 

fori2 = m-cl:-l:l, 

ca2(i 1 )-ca2(i 1 )+c(i2,i 1 -i2+1 )./(m-c 1); 

end 
cl=cl+l; 

end 

ca=cal+ca2; 

I.   EDGE FILTER CREATION PROGRAM 

% EGDEFILT creates a matrix which will filter off the edge effects 
% of a wavelet transform of a TCF of size 129 x 256. 

% Filename: edgefilt2.m 

% Capt Howard Overdyk, last revised 970707 

gf. ************************************************************************ 

clear 

cutoff=25; 
m=l29; 
n=256; 
ml = 128-cutoff; 

. fl=zeros(ml.ml). 

fonl = l:ml. 

fl=fl+diag(ones(I.il).(il-ml)); 

end 

f2=|niplr(fl)fl|: 
f2=flipud(f2); 
f=!f2;zcros(26.2*ml)); 
cfilt2=I zeros! m.25) f zcros(m.25)l; 

save /homc/dspOb/ovcrdyk/matlab/thcsis/fq_wk7/efiU2.mat efill2; 

J.   DETECTION AND ESTIMATION ANALYSIS FUNCTION 

function (dclia_th,Pd.Pfa,pcnt_err.avg_err]=eiTloc2(d,hops) 
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% [DELTA_TH,Pd,Pfa,PCNT_ERR,AVG_ERR]=ERRL0C2(D,H0PS) will 
% given:    D           - a 1x500 vector containing the location of the 
% detected hops for each experiment. 
% HOPS    - a 1x500 vector containing the actual location 
% of the hops for each experiment. 
% 
% returns: 
% DELTA_TH- a 1x257 vector containing the distribution 
% of correctly detected hops versus the 
% distance from the actual hop time in # 
% of samples. 
% PD        - a scalar value of the probability of detection 
% PFA       - a scalar value of the probability of a 
% false alarm. 
% PCNT_ERR- a scalar value of the percentage of mis- 
% classifications. 
% AVG_ERR         - a scalar value indicating, of the actual 
% detections, what the average distance, in 
% # of samples, from the true hop time was. 
% 
% side effects: 
% Produces two plots of the distribution of the location 
% of the detections relative to the actual hopping time 
% once in line graph format and then in bar graph format. 

% Filename:             errIoc2.m 
% 
% Capt Howard Overdyk, last revised 970805 

^********************************************************************* 

% 
% Analysis of Results 

Ne=500; 
Tot_hops2=Ne; 
Ntcf=256; 

N=Ne*Ntcf: 
max_dth=Nicf. 
dih_ind=0:max_dth. 
dclta_th=zeros( I .max_dth+1); 
dclta_m=zcros( 1 .max_dth+1); 
loc_ind=0:Ntcf; 
loc=zeros( 1.257); 
f_of_m=zcros(2.Ne); 9t first two rows correspond to freq either 

<X side of missed hops on experiment # = col # 

% Initialize output variables 

Pd=0; 
Pfa=Pd; 
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dets=Pd; 
fa=Pd; 
miss=Pd; 
nn=Pd; 

i 1 = 1; % remains constant 

for i2= 1 :Ne, % the number of experiments 

acth=hops(i2); 

exph=d(i 1 ,i2); % hops detected by experiment 

delta_h=abs(acth-exph); 

if acth ~= 0, % hop exists 

if exph -= 0, % found hop 

delta_th(i 1 ,delta_h+1 )=delta_th(i 1 ,delta_h+l)+1; 
delta_m(il,i2)=delta_h; 
dets(il)=dets(il)+l; 

else % missed detection 

loc(i 1, acth )=loc(il, acth) + 1; 
miss(il) = miss(il)+ 1; 

end        % found hop if statement 

else % no hop exists case 

if exph -= 0, % false alarm case 

fa(il) = fa(il) + 1; 

else % no hop no detect case 

dclta_th(i 1 ,delta_h+1 )=delta_th(i 1 ,delta_h+1)+1; 
delta_m(i 1 ,i2)=delta_h; 
9f delta_h always equals zero (0) here. 
nn(il) = nn(il)+l'. 

end        % false alarm if statement 

end        9f hop exists if statement 

end        9f Inner for loop i2 

•fcend % Outer for loop i 1 
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figure 
orient tall 

[i3,i4,v]=find(hops~=0); 

% Print relavent statistics to MATLAB session 

Tot_hops=sum(v) 

dels 
miss 
fa 
nn 
Pd=dets/Tot_hops 
Pfa=fa/(Ne-Tot_hops) 

subplot(221) 
plot(dth_ind,delta_th(l,:)/Tot_hops2,'m-'); 
xlabelfdeltaTrO.ylabelCDetections') 
title('Distribution Hopping Time Detection') 

9f print out in tabular form the percentage of detections 
% within 1. 5, 10, 15, 20, 30, 40,50,75, and 100 percent 
5f of the minimum hop time. 

p_tothop=sum(delta_th.')/Tot_hops2 
p_totl=sum(delta_th(:,l:3).')/Tot_hops2 
p_tot5=sum(delta_th(:,l:13).')/Tot_hops2 
pjot 10=sum(delta_th(:, 1:26).')/Tot_hops2 
p_tot 15=sum(delta_th(:, 1:39).')/Tbt_hops2 
p_tot20=sum(delu_th(:, 1:52).')/Tot_hops2 
p_iot30=sum(dclta_th(:, 1:77).,)/Tot_hops2 
p_to»40=sum(delta_th(:, 1:103).')/Tot_hops2 
p_tot50=sum(delta_th(:, 1:129).')/Tot_hops2 
p_tot75=sum(delta_lh(:,l:193).')/Tot_hops2 
p_tot 100=sum(delta_th.")/Tot_hops2 

subploi(222) 
bar(0:max_dth.dclta_th( 1 .:)/Tot_hops2); 
axis(|0.max_dth.-inf,inf]) 
titleCDistribution Hopping Time Detection') 

avg_em=mean(delta_m) 
pcnt_err=(fa + miss)/Ne 
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K. RECEIVER OPERATING CURVES GENERATION FUNCTION 

function [Pd,Pfa]=roc(d,hops, inc_size) 
% [Pd,Pfa]=ROC(D,HOPS,INC_SIZE) given a vector, D, of detected hops 
% a vector, HOPS, of actual hops, and INC_SIZE which is the 
% amount to increase the threshold by at each increment, will 
% return a probability of detection vector, PD, and a 
% probability of false alarm vector, PFA. 

% Filename: roc.m 
% 
% Capt Howard Overdyk, last revised 970913 

% 
% Analysis of Results 

Ne=500; 
Tot_hops2=Ne; 
Ntcf=256; 

N=Ne*Ntcf; 
max_dth=Ntcf; 
dth_ind=0:max_dth; 
delta_th=zeros( 1 ,max_dth+1); 

9c Initialize output variables 

Pd=zeros( 1,100); 
Pfa=Pd; 
dets=Pd; 
fa=Pd; 
miss=Pd; 
nn=Pd; 

Th=d(2.1) 

|i3.i4.v]=find(hops-=0); 
Tot_hops=sum( v) 

for il = l:100; 

TTh=inc_size*i I *Th; 
indl=d(2,:)>TTh; 
dl=d(l.:).*indl; 

for i2= 1 :Ne, % the number of experiments 

acth=hops(i2); 
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exph=d 1 (i2); % hops detected by experiment 

delta_h=abs(acth-exph); 

if acth -= 0, % hop exists 

if exph ~= 0, % found hop 

dets(il)=dets(il)+l; 

else % missed detection 

miss(il) = miss(il) + 1; 
end        % found hop if statement 

else % no hop exists case 

if exph -= 0, % false alarm case 

fa(il) = fa(il)+l; 

else % no hop no detect case 

% delta_h always equals zero (0) here. 
nn(il) = nn(il)+l; 

end        % false alarm if statement 

end        % hop exists if statement 

end        % Inner for loop i2 

end % Outer for loop i 1 

Pd=dcts/Tot_hops; 
Pfa=fa/(Ne-Tot_hops); 

figure 
subplot(221) 
p!ot(Pfa.Pd) 
xlabeI('Pfa).ylabcl('Pd') 
title(ROC) 
grid on 

k=inc_sizc"[ UOOJ: 
subplot(222) 
plot(k.Pd) 
titleCPd vs Threshold multiple') 
grid on 
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subplot(224) 
plot(k,Pfa) 
title('Pfa vs Threshold multiple') 
grid on 
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APPENDIX B. THRESHOLD DETERMINATION 

Figures B.l to B.5 plot the curves used to select detection threshold values for 

SNR levels of 15 dB, 6 dB, 3 dB, 0 dB, and -3 dB, respectively. The threshold, Tthreshoid, 

is given by: 

threshold = k ■ vm[detection vectornoJu>p{t)), (B.l) 

where k is the multiple which needs to be determined. The horizontal axis in plots ( b ) 

and ( c ) of Figures B.l to B.5 represents the parameter k. Therefore, the selection of k is 

based on choosing an acceptable PD level or an acceptable PFA level. The parameter, k, is 

chosen so that it leads to a high probability of detection, PD, and an acceptable PFA level. 

This selection procedure is explained in further detail in Section V.C.7. 

For example, let us consider the 6 dB case plotted in Figure B.2. Let us assume 

that we need PD = 0.985. Figure B.2b shows that the corresponding required value of k 

equals 15. This value of k results in a PFA level equal to 0.16. Note, that these values of 

PD and PFA are located at a point very near the "elbow" of the ROC curve shown in 

Figure B.2a. 
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Tiknik,u- Threshold. 7",*^*^, chosen as 140 times the variance of the detection vector generated in a 
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