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Exploiting Stochasticity in Systematic Search: 
Results on a Highly Structured Domain 

Carla P. Gomes 
Rome Laboratory* 
gomes@ai.rl.af.mil 

Abstract 

We introduce a new benchmark domain for hard computational 
problems that bridges the gap between purely random instances and 
highly structured problems. We show how to obtain interesting search 
problems by introducing random perturbations into a structured do- 
main, and how such problems can be used to study the robustness 
of search control mechanisms. Our experiments demonstrate that the 
performance of search strategies designed to mimic direct constructive 
methods degrade surprisingly quickly in the presence of even minor 
perturbations. On the other hand, our experiments show that by 
adding a random element to a complete search procedure we can dra- 
matically improve the performance of deterministic methods. These 
results apply both for the case of finding consistent models as well as 
for the case of proving inconsistency, complementing the well-known 
success of using randomness in incomplete model-find procedures. We 
pushed the idea of exploiting stochasticity one step further by combin- 
ing algorithms that exhibit competing behavior into portfolios. Our 
results show that a portfolio approach can have a dramatic impact in 
terms of the overall performance, in comparison to the performance of 
each of its component algorithms. An interesting special case is when 
the best strategy consists of combining copies of the same algorithm. 
This portfolio is analogous to the practice of "restarts" for stochastic 
procedures, where the same algorithm is run repeatedly with different 
seeds, a common practice in the theorem-proving community. Com- 
bining copies of the same algorithm into a portfolio might be a good 
strategy, especially in the cases that one algorithm dominates for a 
given class of problems. 

•Carla P. Gomes works for Rome Laboratory as a Research Associate. 



1    Introduction 

A lot of progress has been made in the understanding of the computational 
complexity of hard problems through experimental work. Due to the diffi- 
culty in gathering realistic data, researchers heavily resort to random instance 
distributions. Using random instance distributions, hard search problems 
have been identified. Such instances have pushed the development of new 
search methods, both in terms of systematic and stochastic procedures (Hogg 
et al. 1996). 

The study of highly structured problems, such as those from various fi- 
nite algebra domains, has also driven the development of search procedures. 
For example, the question of the existence and non-existence of certain dis- 
crete structures with intricate mathematical properties gives rise to some of 
the most challenging search problems (Lam et al. 1989; Fujita et al. 1993; 
McCune 1996). 

An important question is to what extent real-world search and reasoning 
tasks are represented by such problems. It seems clear that random instances 
lack certain structure that is often present in realistic problems. On the 
other hand, the highly structured mathematical problems contain too much 
structure from the perspective of realistic applications. 

In this report we propose a new benchmark domain that bridges the gap 
between the purely random instances and the highly structured problems. 
We consider structured problems from the area of combinatorics. Our goal 
is to study the properties of such structured domains in the presence of 
perturbations to their structure. 

As our starting point, we selected the quasigroup, a basic discrete struc- 
ture that can be characterized by a set of simple properties. As we will 
see, finding basic quasigroups is a relatively easy problem, for which direct 
constructions are known. However, the nature of the problem changes dra- 
matically if we impose additional constraints that are locally consistent but 
not necessarily globally consistent. In particular, we perturb the structure 
of the quasigroup by requiring that it satisfies an incomplete initial pattern. 
Even though this initial pattern is consistent with the properties of quasi- 
groups, there are no guarantees that a complete quasigroup can be derived 



from it. 
The quasigroup completion problem enables us to study the impact of 

perturbations on the complexity of the underlying well-structured problem. 
Using the spectrum of difficulty of the quasigroup completion problem, we 
study the performance of various forms of search control. 

Our experiments show that the performance of search heuristics that 
mimic direct constructive methods for quasigroups degrade rapidly in the 
presence of even the smallest possible perturbations. Somewhat surprisingly, 
this finding suggests that it can be counterproductive to design search control 
strategies that specifically replicate constructive search methods. Specialized 
search control has of course been shown to be quite effective in certain do- 
mains. Our results merely question the robustness of such sophisticated 
search methods in the presence of perturbations. Apparently, even very 
small perturbations can "throw off" the specialized search control, making 
it inferior to a more general method. These results are consistent with the 
empirical finding that simple generic search methods often outperform more 
sophisticated ones when applied to a range of problem instances. 

On the other hand, our experiments showed that more generic heuris- 
tics, which do not perform so well on the original problem, degrade much 
more gracefully in the presence of perturbations, and quickly outperform the 
search method that replicated a constructive method. To some extent, for 
general search procedures, small perturbations actually facilitate the search 
for solutions, i.e., the introduction of random perturbations to the original 
problem helps the more generic heuristics, especially for lower levels of per- 
turbations. This result led us to conjecture that adding a stochastic element 
to deterministic procedures would improve their performance. 

In recent years we have seen the development of stochastic search meth- 
ods. However, the main emphasis of stochastic procedures has been in terms 
of local search approaches. Local search procedures have proven very power- 
ful. For example, local search methods are among the best known procedures 
for solving some hard classes of satisfiability problems. Nevertheless, due to 
their inherent incomplete nature, local search methods are limited a priori, 
since they are unsuitable for proving inconsistency. 

In this report we study the use of stochastic strategies in conjunction with 



complete search methods, using the quasigroup completion problem as our 
benchmark domain. We start by examining the effect of adding a randomized 
element into complete search methods per se. The resulting procedures retain 
the completeness property, i.e., they always find a solution or prove that it 
does not exist, but their run time profiles vary from instance to instance. 
They are referred to as Las Vegas style algorithms. 

Our results show that by adding a random element to a complete search 
procedure we can dramatically improve the performance of the deterministic 
methods, for a given level of risk. These results apply both for the case of 
finding consistent models as well as for the case of proving inconsistency, 
complementing the well-known success of using randomness in incomplete 
model-find procedures. 

A third aspect that we examine in this report is the combination of dif- 
ferent stochastic algorithms. Various approaches have been developed to 
combine different algorithms to take into account the computational resource 
constraints and to optimize the overall performance. This research has led to 
the development of anytime algorithms (Dean and Boddy 1988), decision the- 
oretic metareasoning and related approaches (Horvitz and Zilberstein 1996; 
Russell and Norvig 1995), and algorithm portfolio design (Huberman et al. 
1997). However, despite the numerous results obtained in these areas, so 
far they have not been exploited much by the traditional communities that 
study hard computational problems, such as operations research (OR), con- 
straint satisfaction (CSP), theorem proving, and the experimental algorithms 
community. 

In order to bridge this apparent gap, we study the possibility of combin- 
ing algorithms in the context of the recent results concerning the inherent 
complexity of computationally hard search and reasoning problems. We pro- 
vide a rigorous empirical study of the performance profiles of several of the 
state-of-the-art search methods on a distribution of hard search problems. 
We use the quasigroup completion problem as our benchmark domain. 

We discuss the conditions under which the composition of different algo- 
rithms into a portfolio can have a dramatic impact in terms of the overall 
performance, in comparison to the performance of each of its component al- 
gorithms. As a particular case, we discuss the strategy of creating a portfolio 



consisting of different copies of the same algorithm. This portfolio is analo- 
gous to the practice of "restarts" for stochastic procedures, where the same 
algorithm is run repeatedly with different seeds. Quite often this strategy 
of combining copies of the same algorithm into a portfolio has a tremendous 
pay-off, especially in the cases where one algorithm dominates for a given 
class of problems. 

This report is structured as follows. In the next section, we introduce 
quasigroups and define the quasigroup completion problem. We also discuss 
the theoretical complexity of the problem. In section 3 we present empir- 
ical results on the quasigroup completion problem. Section 4 contains the 
evaluation of deterministic search strategies and their scaling properties. In 
section 5 we introduce several complete stochastic search methods and, in 
section 6, we give their performance distribution profiles on the quasigroup 
completion problem. In section 7 we design and evaluate various algorithm 
portfolios. Finally, in section 8, we summarize our results and discuss future 
directions. 

This work has been done in collaboration with Bart Selman (Gonies and 
Selman 1997a and 1997b). 



2    The Quasigroup Completion Problem 

A quasigroup is an ordered pair (Q, •), where Q is a set and (•) is a binary 
operation on Q, such that the equations a • x = b and y • a = b have a 
unique solution for every pair of elements a, b in Q. The order N of the 
quasigroup is the cardinality of the set Q. A good way to understand the 
structure of a quasigroup is to consider its N by N multiplication table as 
defined by its binary operation. (For each pair of elements x and y, the table 
gives the result of x • y.) The constraints on a quasigroup are such that its 
multiplication table defines a Latin square. This means that in each row of 
the table, each element of the set Q occurs exactly once; similarly, in each 
column, each element occurs exactly once (Denes and Keedwell 1974). 

An incomplete or partial latin square P is a partially filled N by N table 
such that no symbol occurs twice in a row or a column. The Quasigroup 
Completion Problem is the problem of determining whether the remaining 
entries of the table can be filled in such a way that we obtain a complete 
latin square, that is, a full multiplication table of a quasigroup. We view 
the pre-assigned values of the latin square as a perturbation to the original 
problem of finding an arbitrary latin square. As we will discuss below, there 
are direct constructive methods for generating a latin square of any order. 
However, the situation is quite different for completing a partial latin square. 

Evans (1960) conjectured that every N by N partial latin square with at 
most (TV - 1) cells occupied can be completed to a latin square of order N. 
This is known as the Evans conjecture. Despite the fact that the problem 
received much attention, and many partial solutions were published, it took 
until 1981 for the conjecture to be proved correct (Smetaniuk 1981). 

Andersen and Hilton (1983), through independent work, proved Evans 
conjecture with stronger results. They give a complete characterization of 
those partial latin squares of order TV with N non-empty cells that cannot be 
completed to a full latin square. However, it appears unlikely that one can 
characterize non-completable partial latin squares with an arbitrary num- 
ber of pre-assigned elements. This is because the completion problem was 
shown to be NP-complete by Colbourn (1983, 1984). Of course, this makes 
the problem computationally interesting from the perspective of search and 
constraint satisfaction. 

An interesting application area of latin squares is the design of statisti- 
cal experiments.  The purpose of latin squares is to eliminate the effect of 



certain systematic dependency among the data (Denes and Keedwell 1974). 
Another interesting application is scheduling and timetabling. For example, 
latin squares are useful in determining intricate schedules involving pairwise 
meetings among the members of a group (Anderson 1985). The natural per- 
turbation of this problem is the problem of completing a schedule given a set 
of pre-assigned meetings. 

Connected to our work is the work in the area of automated theorem 
proving, in particular the work on quasigroups and finite algebra in general 
(Lam et al. 1989; Fujita et al. 1993; Stickel 1994; McCune 1996). One inter- 
esting question is to what extent special search heuristics that can guide the 
search to find general unrestricted quasigroups are also of use in finding spe- 
cial quasigroups with interesting mathematical properties. In addition, the 
notion of completing partial solutions may be useful in exploring the total 
space of solutions. As discussed below, partial instantiations of the quasi- 
groups can actually guide the search. The completion problem also provides 
some insights into the density of solutions. For example, easy completion of 
partial structures does suggest a high density of solutions. 



3    Computational Results for the Quasigroup 
Completion Problem 

We now consider the practical computational difficulty of the quasigroup 
completion problem. There is a natural formulation of the problem as a 
Constraint Satisfaction Problem. We have one variable for each of the N2 

entries of the multiplication table of the quasigroup, and we use constraints to 
capture the requirement of having no repeated values in any row or column. 
All variables have the same domain, namely the set of elements Q of the 
quasigroup. Pre-assigned values are captured by fixing the value of some of 
the variables. 

A natural question to consider is how the difficulty of the quasigroup 
completion problem depends on the number of pre-assigned values. Figure 1 
gives the median number of backtracks needed to find a completion or to show 
none exists. Along the horizontal axis we give the fraction of pre-assigned 
values (out of a total of iV2 values, where N is the order of the quasigroup). 
From the figure, we observe that the costs peak roughly around the same 
ratio (approximately 42% pre-assignment) for different values of N. Figure 
2 uses a log-scale plot to better show the scaling behavior. 

What we observe here is a clear phase-transition in the problem domain. 
Figure 3 further confirms this. It plots the fraction of unsolvable cases as 
a function of the fraction of pre-assigned elements in the quasigroup. We 
see that the transition — from almost all instances solvable to almost all 
unsolvable — occurs around the same ratio as the peak in the computational 
difficulty. (Each data point is generated using 1,000 problem instances. The 
pre-assigned values were randomly generated. We used the specialized control 
heuristic described below.) 

The more detailed median cost curves in Figure 2 show an interesting 
asymmetry. The right-hand side of the median cost peak is very steep, which 
shows that instances become easily solvable or proved unsolvable. The slope 
on the left-hand side is much less abrupt. Similar asymmetries have been 
observed in, for example, the work on random Boolean satisfiability (SAT) 
problems (Mitchell et al. 1992; Crawford and Auton 1993; Kirkpatrick and 
Selman 1994). However, the slope in those curves is much steeper on the 
left-hand side, i.e., the satisfiable area. The slope on the right-hand side is 
much less steep because proving unsatisfiability of random Boolean expres- 



sions requires large search trees (Chvatal and Szemeredi 1988). It's quite 
interesting to see the opposite phenomenon here. The difference may be due 
to the fact that we start from a highly structured problem with the random- 
ness being introduced only as a perturbation. In the random SAT problems 
all the constraints (Boolean disjunctions) are randomly generated. 

This is in contrast with our approach, where we start with a highly reg- 
ular original set of constraints, defining the quasigroup structure. We then 
perturb this structure by randomly pre-assigning a set of values. Therefore, 
our instances combine a relatively high degree of structure with an element 
of irregularity or uncertainty due to the pre-assigned values. The fact that 
we again observe a clear phase transition phenomenon is evidence for the 
practical relevance of the phase transition work across a wide range of con- 
straint satisfaction problems. See, for example, Cheeseman et al. (1991), 
Crawford and Auton (1993), Mitchell et al. (1992), Kirkpatrick and Selman 
(1994), and Smith and Dyer (1996). Hogg et al. (1996) contains a collection 
of recent papers in the area. 

Some important related work on hard problem instances involving some 
underlying structure is that of Gent and Walsh (1995) and Zhang and Korf 
(1996). Both teams use the structure of combinatorial optimization prob- 
lems, such as the Traveling Salesman Problem and real-world Timetabling 
problems. By varying the constraint density of their problem instances they 
obtain varying degrees of difficulty. One important difference is that in our 
approach we start with an initial problem structure for which a direct con- 
struction is known. As we will discuss below, this allows us to consider 
search control mechanisms that mimic the constructive methods and study 
their robustness under perturbations. We also believe that our domain fits 
more naturally with reasoning style problems ("satisfaction problems") as 
opposed to optimization style problems. 

In the next section we discuss how our problem instances enable us to 
evaluate the robustness of different search strategies. We will show that the 
relative performance of search strategies varies, depending on the location 
of the problem instances with respect to the phase transition. This suggests 
ways of chosing search control depending on the statistical properties of the 
problems under consideration. 

Finally, let us briefly contrast the type of behavior observed for our in- 



stances with another, less constrained structured problem, namely the now 
"infamous" N-queens problem. This problem used to be a fairly popular 
benchmark within the CSP community but recently the problem has been 
shown to be surprisingly easy, at least for certain stochastic methods. To in- 
vestigate the structure of the solution space of this problem we consider the 
completion problem for the N-queens. The idea is to provide an initial partial 
placement of non-attacking queens on the board and consider the question 
of whether this initial pattern can be completed to a placement of N non- 
attacking queens. Figure 4 shows the phase transition for this problem. From 
the figure, it is clear that the phase transition in this case is not confined to 
a single region, but rather the transition shifts to the right. In some sense, 
we're dealing with a "vanishing" phase transition. More accurately, in the 
limit, for large values of N, the transition shifts to 1. This means that we can 
randomly pre-place up to (TV — 1) queens (which does not appear to be diffi- 
cult), and still be able to successfully complete the pattern. This provides a 
nice intuitive explanation for the success of the stochastic procedures on this 
problem. Such procedures can solve the N-Queens problem with, for exam- 
ple, one million queens in under a minute on a Sparc workstation (Minton 
et al. 1991; Gu 1989). It would be interesting to find a provable polyno- 
mial procedure for the N-Queens completion task or to show the problem is 
NP-complete. Note that there are known constructive methods for dealing 
with the case of zero preplacements. See, for example, Yaglom and Yaglom 
(1964), Bruen and Dixon (1974), Falkowski and Schmitz (1986), and Erbas 
et al. (1992). 
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4    A Comparison of Deterministic Search Heuris- 
tics 

There are several direct methods for generating basic quasigroups of any 
order N. For example, consider placing the elements of the quasigroup in 
the first row of the multiplication table in some arbitrary order. Now, we 
can generate the next row, by simply shifting the elements from the first 
row, one place to the right (the rightmost element wraps around and moves 
to the leftmost position of the second row). We repeat this process for the 
third row by shifting the pattern of the second row another cell to the right. 
The remaining rows are filled in a similar manner. By this construction, it is 
clear that there will be no repeated elements in any row, nor in any column. 
We therefore end up with a latin square of order N, which again defines the 
multiplication table of a quasigroup. 

We can mimic this constructive method using a backtrack procedure with 
appropriate search control. In particular, we can add a tie-breaking criterion 
to the generic First-Fail heuristic. In the First-Fail heuristic, one selects 
as the next branching variable the one with smallest remaining domain. We 
add the following tie-breaking criterion: select from among the variables with 
the smallest current domains, the variable with the smallest minimal value 
in its current domain. (We can assume some arbitrary fixed order on the 
quasigroup elements.) 

We encoded this problem in C++ using ILOG SOLVER, a powerful C++ 
constraint programming library (Puget 1994). ILOG provides a backtracking 
mechanism that allows us to keep track of variables and their domains, while 
maintaining arc-consistency (van Hentenryck et al. 1992). 

Our experiments below show that the First-Fail heuristic with the tie- 
breaking as defined above generates quasigroups of any order with zero back- 
tracks. So, the tie-breaking rule effectively mimics a constructive method for 
the quasigroup. The key question is how robust such a heuristic is in the 
presence of perturbations to the structure. 

In Figure 5 we compare the performance of this specialized heuristic with 
the more general First-Fail strategy on the quasigroup completion problem 
with no pre-assigned values. (So, the task is to generate any quasigroup of 
order N.) The figure uses a logarithmic scale. In order to show the specialized 
heuristic on instances with 0 pre-assigned values using a logarithmic scale, 
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we added "2" to its median number of backtracks. The figure clearly shows 
that the specialized control indeed does not create any backtracks. However, 
the number of backtracks for the general heuristic increases sharply with 
increasing N, reaching our cutoff of 100,000 when N is 32. 

We now consider the change in behavior when we slightly perturb the 
quasigroup structure by pre-assigning 5% of the elements of its multiplica- 
tion table. See Figure 6. The figure shows the performance of our special- 
ized heuristic degrades dramatically. In fact, the general First-Fail heuristic 
without tie breaking actually scales substantially better than our customized 
control. (Note the logarithmic scale.) In other words, the specialized control 
heuristic is surprising "fragile" in the presence of small perturbations. 

Figure 7 further confirms the difference in performance of the specialized 
and the general heuristic. This time we consider problems in the hardest area 
of the phase transition (about 40% pre-assignment). We see that the special- 
ized tie-breaking rule performs consistently worse on the hardest quasigroup 
completion problems, near the phase transition. Notice that even on a log 
scale the gap between the heuristics actually widens for larger N. (Our 
search cutoff actually hides some of this difference.) So, except for com- 
pletely unperturbed versions of our search problem, the First-Fail heuristic 
with tie-breaking is consistently worse than the First-Fail heuristics by itself. 
This despite the fact that the tie-breaking rule mimics a constructive method 
for the quasigroup structure in the unperturbed version. 

Figure 8 illustrates in more detail the performance of the general heuris- 
tic. With a small number of pre-assigned values (1%), the heuristic performs 
better than with no pre-assigned values at all. However, its performance 
deteriorates again in the hard area of the phase transition. Apparently, the 
small number of randomly pre-assigned values helps the heuristic in finding 
a completion of the quasigroup. This is consistent with the fact that the spe- 
cialized heuristic actually performs worse. The tie breaking strategy in this 
heuristic makes it more deterministic, which appears to hurt its performance 
on the completion task. 

To summarize, we observed that the performance of a specialized search 
control — designed to mimic a constructive method to generate quasigroups 
— degrades rapidly in the presence of small perturbations. A more general 
heuristic appears more robust. In fact, we saw how small perturbations can 
actually improve the performance of such a heuristic. We believe that ran- 
domness versus determinism plays a key role in these phenomena.   These 
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findings suggest care should be taken in the use of tailored heuristics: their 
performance can degrade dramatically in the presence of minor perturba- 
tions. In the presence of such perturbations, less sophisticated, more generic 
heuristics may very well have better scaling properties. This is an interest- 
ing issue for further exploration. In the next section we study the effect of 
directly introducing a random element into a complete search method. 

Closely connected to our work is the study of search control and var- 
ious constraint processing techniques (Ginsberg, Korf, van Beek, Preuder, 
Dechter, Prosser, Smith, Preuder), and the work on selecting appropriate 
search heuristics (see eg. Minton). We hope that our approach will stimu- 
late more research into the robustness of the various methods. The idea of 
completing partial solutions is, of course, applicable in many CSP domains. 
Therefore, by asserting partial solutions, that are at least locally consistent, 
one can study whether special search techniques degrade gracefully. 
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5    Exploiting Stochasticity 

In the previous section we considered the performance of the generic First- 
Fail search heuristic and compared it to a more specialized strategy on the 
quasigroup completion problem. Our specialized control generates quasi- 
groups without backtracking for the case with no pre-assigned values. In 
some sense, the method mimics a constructive method for generating quasi- 
groups. However, as we showed, the strategy rapidly deteriorates in the pres- 
ence of even very minor perturbations (only 5% pre-assigned values). On the 
other hand, we found that such small perturbations actually substantially 
improve the performance of the general First-Fail heuristic. 

The pre-assigned values add a stochastic element to the original set of 
the quasigroup problem constraints. This led us to conjecture that adding a 
stochastic element to the First-Fail search procedure itself would improve its 
performance. Below we describe the experiments that we performed to ex- 
plore this conjecture. We considered various ways of introducing a stochastic 
element to the First-Fail search procedure: both in terms of variable selection 
and value selection. 

Our base strategy is the First-Fail principle with systematic variable selec- 
tion (i.e., breaking ties in lexicographic order) and systematic value selection 
(i.e., lexicographically first from remaining domain). We refer to this strat- 
egy as "SS". Next, we introduce to this basic strategy a random tie breaking 
rule for the variable selection, while maintaining systematic value selection 
("RS"). A third strategy is to keep the systematicity for the variable se- 
lection, but to select values at random from the remaining domain values 
("SR"). As a final, fourth strategy, we introduce random tie-breaking for the 
variable selection, as well as, random value selection ("RR"). 

We should stress that we maintain completeness in our approach. As men- 
tioned before, we encoded the different search strategies in ILOG SOLVER 
(Puget 1994). ILOG's underlying backtracking mechanism allows us to keep 
track of variables and their domains, while maintaining arc-consistency (van 
Hentenryck et al. 1992). This approach should be contrasted with various 
random "probe" strategies, in which one uses random variable selection in 
going down a branch of the search tree but no record is kept of which parts 
of the search space have been visited. An implementation of such probing 
strategy can be very efficient but unfortunately one loses completeness. (For 
a debate on some of the tradeoffs involved, see Freuder et al. 1995). Closely 
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connected to our work is the study of search control and various constraint 
processing techniques (Dechter 1991, Preuder et al. 1995, Ginsberg and Ged- 
dis 1991, Kondrak and van Beek 1995), and the work on selecting appropriate 
search heuristics (see eg. Minton 1996). 

Figure 9 shows the performance of our various strategies on the problem 
of finding quasigroups with no values pre-assigned. From the four strategies, 
we see that the ones that have a stochastic element clearly outperform the 
completely deterministic procedure ("SS"). This confirms our initial intuition 
that an element of randomness introduced directly into the First-Fail search 
strategy itself would improve its performance on the structured quasigroup 
search problem. 

From the other three stochastic strategies, "SR" appears to perform some- 
what better than the other two but this difference may not be qualitatively 
significant. 

In Figure 10 we show the performance of our strategies on the quasi- 
group completion problem with 5% pre-assigned values. Again, the stochas- 
tic element improves upon the base strategy, but the effect is somewhat less 
dramatic than in the case of no pre-assigned values. The main reason for 
the diminished difference in the strategies appears to be due to the fact 
that randomness is now also introduced into the problem via the randomly 
pre-assigned quasigroup values. In other words, perturbations introduced 
into the quasigroup constraints (through the pre-assigned values) help the 
deterministic First-Fail heuristic in a similar way as the stochastic element 
introduced directly into the search method itself, as in our "RS", "SR", and 
"RR" strategies. 

Figure 11 shows the behavior of our procedures in the hardest region 
of our search space, namely at the phase transition point. In this case, 
the random element of the underlying problem instances overshadows the 
positive effect of the stochastic element in our search strategies. However, 
our stochastic strategies still dominate the deterministic one for dealing with 
some of the hardest instances in this area, namely to show inconsistency. This 
is not directly apparent from Figure 11, because it only gives the median cost 
values. We will return to this issue in the next section. 

To summarize, our empirical results confirm that stochasticity can im- 
prove upon the purely deterministic strategy, both for showing consistency 
and inconsistency. The resulting procedures (First-Fail with a stochastic el- 
ement) are more robust then either First-Fail by itself or First-Fail with lex- 
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icographic tie-breaking , since it performs competitively over the full range 
of pre-assigned values (from 0% and up). 
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6    Distribution Profiles 

Our stochastic First-Fail strategies are examples of Las Vegas style algo- 
rithms. They always return a correct answer (either showing consistency of 
proving inconsistency), but the running time of the procedures varies from 
run to run due to the random element. 

Figure 12 shows the distribution of the "RR" procedure for finding a 
quasigroup of order 20 (no pre-assigned values).1 The distribution is obtained 
over 500 runs of "RR" on the quasigroup problem. The deterministic First- 
Fail procedure takes 645 backtracks on this instance. From the figure, we see 
that "RR" takes less than 30 backtracks in 75% of the runs. This suggests 
that the best way of running this kind of procedure is either in parallel or 
sequentially using several short runs (e.g., a cutoff of 100). 

Nevertheless, care should be taken in the use of stochastic procedures, 
because they can have a remarkably wide range of running times. For exam- 
ple, "RR" also has some chance of making bad choices. In fact, it takes 645 
or more than 645 backtracks on about 12% of the runs.2 In general, short 
runs with rapid restarts appears to be the best way to exploit the random 
element of such procedures. 

In their recent Science paper, Huberman et al. (1997) discuss the im- 
portance of considering the variance of the performance distribution of an 
algorithm as a measure of the quality of the algorithm. In fact, they view it 
as a measure of the inherent risk associated with an algorithm, in the sense 
that it determines how much variation its performance can have. Drawing 
an analogy with a typical approach in economics, where utility is optimized 
considering a given level of risk, they suggest the construction of "portfolios" 
of algorithms with a whole range of performance and risk characteristics. By 
using such an approach, one can optimize the use of computational resources 
considering the desired level of performance and risk. In our case, a portfolio 
of algorithms could be obtained, for example, by combining runs of "RR" 
with runs of "RS". "RS" has an expected run time value somewhat higher 
than "RR", but it has a much smaller variance. 

Finally, Figure 13 gives the distribution profile of "RR" on an inconsistent 
quasigroup completion problem. The deterministic First-Fail procedure takes 

JThe other two stochastic procedure have similar distribution profiles. 
2 "SR" took only a maximum of 400 backtracks on our sample of 500 runs. 
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2946 backtracks to show inconsistency of this instance. We see how "RR" 
outperforms the deterministic strategy. In fact, on this instance, "RR" never 
took more than 1373 backtracks in our sample of 500 runs. Also, the mode 
of the distribution lies around 400. Again, given the run time profile, one 
can design an optimal strategy for running the procedure either in parallel 
or sequentially, using short runs. 

The main point we would like to stress here is that even though we have 
to cover the entire search space to prove the non-existence of the completion 
of the quasigroup, the stochastic branching and variable selection leads to 
significant reduction of the expected overall size of the search tree (needed 
to show inconsistency). So, although the usefulness of randomization is a 
well-established fact for local procedures, our results suggest that a random 
element is also a useful addition to a complete, systematic method, even for 
discovering inconsistencies. 

We have provided experimental results showing the potential payoff of 
adding a stochastic element to complete search methods. The payoff is 
largest on the most structured problem instances. Our results show that 
stochasticity can also be useful in showing inconsistency. This complements 
the well-known success of using randomness in incomplete model-find proce- 
dures. 

In the next section we study the design of portfolios of stochastic algo- 
rithms. 
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7    Portfolio Design 

A portfolio of algorithms is merely a collection of different algorithms and/or 
different copies of the same algorithm running on different processors.3 Here 
we consider the case of independent runs without interprocess communica- 
tion. We are considering Las Vegas type algorithms, i.e., stochastic algo- 
rithms that always return a model satisfying the constraints of the search 
problem or demonstrate that no such model exists (Motwani and Raghavan 
1995). The computational cost of the portfolio is therefore a random vari- 
able. The expected computational cost of the portfolio is simply the expected 
value of the random variable associated with the portfolio and its standard 
deviation is a measure of the "dispersion" of the computational cost obtained 
when using the portfolio of algorithms. In this sense, the standard deviation 
is a measure of the risk inherent to the portfolio. 

The main motivation to combine different algorithms into a portfolio is to 
improve on the performance of the component algorithms, mainly in terms 
of expected computational cost, but also in terms of the overall risk. As 
we will show, some portfolios are strictly preferable to others, in the sense 
that they provide a lower risk and also a lower expected computational cost. 
However, in some cases, we cannot identify within a set of portfolios the one 
that is best both in terms of expected value and risk. This set of portfolios 
corresponds to the efficient set or efficient frontier, following terminology 
used in the theory of mathematical finance. Within this set of portfolios, in 
order to minimize the risk, one has to deteriorate the expected value or, in 
order to improve the expected value of the portfolio, one has to increase the 

risk. 
In this context, where we characterize a portfolio in terms of its expected 

value and variance, combining different algorithms into a portfolio only makes 
sense if they exhibit different probability profiles and none of them dominates 
the others over the whole spectrum of problem instances. Algorithm A domi- 
nates algorithm B if the cumulative frequency distribution of algorithm A lies 
above the cumulative frequency distribution of algorithm B for all points.4 

Let us consider a set of two algorithms, algorithm 1 and algorithm 2. 
3 One can also consider the somewhat more general case of interleaving the execution 

of algorithms on one or more processors. 
4Another criterion for combining algorithms into a portfolio is given by the correlation 

of the algorithms. 
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We assume that neither one strictly dominates the other. Let us associate a 
random variable with each algorithm: 

Al - the number of backtracks that algorithm 1 takes to find the 
first solution or to prove that a solution does not exist 

A2 - the number of backtracks that algorithm 2 takes to find the 
first solution or to prove that a solution does not exist 

Let us assume that we have N processors and that we design a portfolio 
using nl processors with algorithm 1 and n2 processors with algorithm 2. 
So, N = nl + n2. Let us define the random variable associated with this 
portfolio: 

X - the number of backtracks that the portfolio takes to find the 
first solution or to prove that a solution does not exist 

The probability distribution of X is a "weighted" probability distribu- 
tion of the probability distributions of algorithm 1 and algorithm 2. More 
precisely, the probability that X = x is given by the probability that one 
processor takes exactly x backtracks and all the other ones take x or more 
backtracks to find a solution or to prove that a solution does not exist. 

Let us assume that we have N processors and our portfolio consists of N 
copies of algorithm 1. In this case, P[X=x] is given by the probability that 
one processor take exactly x backtracks and the other (N — 1) take more 
than x backtracks, plus the probability that two processors take exactly x 
backtracks and the other (iV — 2) ones take more than x backtracks, etc., 
plus the probability that all the processors take exactly x backtracks to find 
a solution or to prove that a solution does not exist. The following expression 
gives the probability function for such portfolio. 

Given N processors, and let nl = N and n2 = 0. P[X=x] is given by 

P[Al = x]iP[Al>xfrf-Q m 
If we now consider two algorithms we just have to generalize the above 

expression, considering that X = x can occur just within the processors 
that use algorithm 1, or just within the processors that use algorithm 2, or 
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within both. As a result, the probability function for a portfolio with two 
algorithms is given by the following expression: 

Given N processors, nl and n2 such that 0 < nl < N, and 0 < nl < N. 
P[X=x] is given by 

£ £ ( U} ) P[Al = x]eP[Al > xfnl-*> xH) P[A2 = xfP[A2 > x}^'^] 
i=l i'=0 V l   J \      / 

The value of i" is given by i" = i -i', and the term in the summation is 
0 whenever i" < 0 or i" > n2. 

In the case of a portfolio involving two algorithms the probability distri- 
bution of the portfolio is a summation of a product of two expressions, each 
one corresponding to one algorithm. In the case of a portfolio comprising M 
different algorithms, this probability function can be easily generalized, by 
having a summation of a product of M expressions, each corresponding to a 
algorithm. 

Having derived the probability distribution for the random variable asso- 
ciated with the portfolio, the calculation of its expected value and standard 
deviation is straightforward. 

7.1    Empirical results for portfolio design 

We consider a popular extension of the First-Fail heuristic, called the Bre- 
laz heuristic (Brelaz 1979). The Brelaz heuristic was originally introduced 
for graph coloring procedures. It provides one of the most powerful graph- 
coloring and general CSP heuristics (Trick and Johnson 1996). 

The Brelaz heuristic specifies a way for breaking ties in the First-Fail rule: 
If two variables have equally small remaining domains, the Brelaz heuris- 
tic proposes to select the variable that shares constraints with the largest 
number of the remaining unassigned variables. A natural variation on this 
tie-breaking rule is what we call the "reverse Brelaz" heuristic, in which 
preference is given to the variable that shares constraints with the smallest 
number of unassigned variables. Any remaining ties after the (reverse) Bre- 
laz rule are resolved randomly. One final issue left to specify in our search 
procedure is the order in which the values are assigned to a variable. In 
the standard Brelaz, value assignment is done in lexicographical order (i.e., 
systematic). In our experiments, we consider four strategies: 
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• Brelaz-S — Brelaz with systematic value selection, 

• Brelaz-R — Brelaz with random value selection, 

• R-Brelaz-S — Reverse Brelaz with systematic value selection, and 

• R-Brelaz-R — Reverse Brelaz with random value selection. 

Figure 14 shows the performance profile of our four strategies for the 
problem of finding a quasigroup of order 20 (no pre-assigned values). Each 
curve gives the cumulative distribution obtained for each strategy by solving 
the problem 10,000 times. The cost (horizontal axis) is measured in num- 
ber of backtracks, which is directly proportional to the total runtime of our 
strategies. For example, the figure shows that R-Brelaz-R finished roughly 
80% of the 10,000 runs in 15 backtracks or less. The top panel of the figure 
shows the overall profile; the bottom part gives the initial part of the profile. 

First, we note that that R-Brelaz-R dominates R-Brelaz-S over the full 
profile. In other words, the cumulative relative frequency curve for R-Brelaz- 
R lies above that of R-Brelaz-S at every point along the x-axis. R-Brelaz-S, 
in turn, strictly dominates Brelaz-R. As we will see below, we often en- 
counter such patterns, where one strategy simply consistently outperforms 
other strategies. Unfortunately, this leaves no room for combining strate- 
gies: one simply picks the best strategy. This may explain why some of the 
ideas about combining algorithms has not received much attention in the 
traditional communities that deal with hard computational problems.5 

From the perspective of combining algorithms, what is most interesting, 
however, is that in the initial part of the profile (see bottom panel, Figure 14), 
Brelaz-S dominates R-Brelaz-R. Intuitively, Brelaz-S is better than R-Brelaz- 
R at finding solutions quickly. However, in the latter part of the cumulative 
distribution (for more than five backtracks), R-Brelaz-R dominates Brelaz-S. 
In a sense, R-Brelaz-R gets relatively better when the search gets harder. As 
we will see in the next section, we can exploit this in our algorithm portfolio 
design. 

Figure 15, shows the performance profiles for quasigroups with 10% pre- 
assigned values. We see essentially the same pattern as in Figure 14, but the 
region where Brelaz-S dominates is relatively smaller. 

5There is still the issue of multiple runs with the same method. We'll return to this 
below. 
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When we increase the percentage of pre-assigned values (20% pre-assigned, 
Figure 16), we see that R-Brelaz-R completely dominates the other strategies 
over the whole problem spectrum. This pattern continues for the higher num- 
bers of pre-assigned values (Figure 17, at the phase transition with roughly 
40% pre-assigned). 

Finally, Figure 18 gives the performance profile for showing the incon- 
sistency of a quasigroup completion problem. The instance in question has 
43% pre-assigned values. Here we again observe that Brelaz-S is somewhat 
better at finding inconsistencies quickly but again R-Brelaz-R dominates for 
most of the profile. Again, the good initial performance of Brelaz-S can be 
exploited by combining many short runs, as we will see below. 

We now design different portfolios based on our performance profiles. We 
focus oil the case of finding a quasigroup of order 20 with no-preässigned 
values. The performance profiles are given in Figure 14. Note that this is an 
interesting case from the portfolio design perspective because Brelaz-S dom- 
inates in the initial part of the distribution, whereas R-Brelaz-R dominates 
in the latter part. 

Figures 19, 20, 21, and 22 give the expected values and the standard 
deviations of portfolios for 2, 5, 10, and 20 processors, respectively. (Results 
derived using the formula given above.) We see that for 2 processors (Figure 
19), the portfolio consisting of two copies of R-Brelaz-R has the best expected 
value and the lowest standard deviation. This portfolio dominates the two 
other 2-processor portfolios. 

When we increase the number of processors, we observe an interesting 
shift in the optimal portfolio mix. For example, for 5 processors, using 2 
Brelaz-S gives a better expected value at only a slight increase in the risk 
(standard deviation) compared to zero Brelaz-S. In this case, the efficient 
set comprises three portfolios. One with 5 R-Brelaz-R, one with 1 Brelaz-S 
and 4 R-Brelaz-R, and one with 2 Brelaz-S and 3 R-Brelaz-R. The situation 
changes even more dramatically if we go to yet more processors. In partic- 
ular, with 20 processors (Figure 22), the best portfolio corresponds to using 
all processors to run the Brelaz-S strategy (the lowest expected value and 
the lowest standard deviation). The intuitive explanation for this is that by 
running many copies of Brelaz-S, we have a good chance that at least one of 
them will find a solution quickly. This result is consistent with the common 
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use of "random restarts" in stochastic search methods in practical applica- 
tions. It's interesting to see that our rigorous analysis confirms this intuition. 
Our portfolio analysis also gives the somewhat counter-intuitive result that, 
even when given two stochastic algorithms, where neither strictly dominates 
the other, running multiple copies of a single algorithm is preferable to a mix 
of algorithms (under certain resource constraints; Figure 19 and Figure 22). 

We have provided concrete empirical results showing the computational 
advantage of a portfolio approach for dealing with hard combinatorial search 
and reasoning problems as compared to the best more traditional single al- 
gorithm methods. Our analysis also showed what properties of the problem 
instance distributions lead to the largest payoff for using a portfolio ap- 
proach in practice. Finally, we saw how the use of random restarts of a good 
stochastic method is often the optimal strategy. These results suggest that 
ideas developed in the flexible computation community can play a significant 
role in practical algorithm design. 
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Figure 19: Portfolios for two processors combining Brelaz and R-Brelaz-R. 
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Figure 20: Portfolios for five processors combining Brelaz and R-Brelaz-R. 
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Figure 21: Portfolios for ten processors combining Brelaz and R-Brelaz-R. 
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Figure 22: Portfolios for twenty processors combining Brelaz and R-Brelaz-R. 
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8    Conclusions 

We propose a new benchmark problem for the evaluation of search proce- 
dures, the quasigroup completion problem. This problem is very challeng- 
ing from a computational point of view. Furthermore, this domain offers 
a tremendous research potential for the study of different aspects of search 
methods applied to structured domains. In fact, not only does the quasigroup 
domain possess inherent interesting structural properties, we can easily add 
additional structural properties to this domain. As an example, we might 
require that the quasigroup be idempotent. 

Using the quasigroup completion problem as a benchmark, we showed 
that it can be very counterproductive to design a search procedure that 
mimics a particular constructive method. As a matter fact, a specialized 
search control, designed to mimic a constructive method for the quasigroups, 
degrades rapidly in the presence of even small perturbations. On the other 
hand, a more general heuristic is more robust in the presence of perturbations. 

The realization that small perturbations improved the performance of 
a general heuristic led us to study the effect of adding a stochastic ele- 
ment directly into a deterministic complete search method. Our results on 
the quasigroup completion problem showed that stochastic complete search 
methods can improve the performance of a deterministic complete search 
method dramatically. Nevertheless, care should be taken, since these results 
are measured probabilisticly. 

We pushed the idea of exploiting stochasticity one step further by com- 
bining algorithms that exhibit competing behavior in terms of expected per- 
formance, measured in terms of the expected number of backtracks of the 
algorithm, and in terms of risk, measured in terms of the variance of the 
algorithm, into a portfolio of algorithms. Our results showed that a portfolio 
approach can have a dramatic impact in terms of the overall performance, in 
comparison to the performance of each of its component algorithms. More- 
over, our results clearly show that the optimal mix of algorithms is directly 
dependent on the resources available. An interesting special case is when 
the best strategy consists of combining copies of the same algorithm. This 
portfolio is analogous to the practice of "restarts" for stochastic procedures, 
where the same algorithm is run repeatedly with different seeds, a common 
practice in the theorem-proving community. Combining copies of the same 
algorithm into a portfolio might be a good strategy, especially in the cases 
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that one algorithm dominates for a given class of problems. 
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