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Summary: 

Research was conducted to evaluate the feasibility of wavelet transforming 

second order statistics. To identify the modulation type and to extract signal 

modulation parameters of frequency hopped signals the wavelet transform is 

applied to the 2-dimensional instantaneous correlation function. Parameters of 

interest are switching times and hop frequencies. The characteristics of the 

wavelet transform of the correlation function are derived. The wavelet transform 

of the correlation function can replace the requirement to Fourier transform the 

complete correlation surface with a Fourier transform once per hop to estimate the 

hop frequency of a given hop. Wavelet processing is applied along the delay and 

time axes. 

Processing along the delay axis leads to the following conclusions: 

• To perform visual identification an SNR of 3 dB is required. 

• For frequencies larger than 1/16 of the sampling rate the hop frequencies can be 

estimated with a success rate of 100% for SNR levels of 0 dB or better. 

• To estimate the hop times with an accuracy of 12 to 17.5 % an SNR of 6 dB or 

better is required. 

• If the true start and stop time are used we can obtain an improvement of the 

spectral estimation performance by about 2 dB. 

• Processing along the time axis allows detection of the transition times of 

frequency and time hopped signals. The current implementation is limited to work 

with one transition per observation interval but permits robust detection at an SNR 

level of 3 dB. 

1X1 



1. Introduction 

This work focuses on the wavelet transform of the second order moment function to 

enhance detection and classification of frequency hopped signals. There are four useful and 

important representations when dealing with non-stationary processes: 

i) the temporal correlation function, 

ii) the ambiguity function, 

iii) the spectral correlation function, and 

iv) the time frequency distribution. 

Any of the four representations can be reached from any other representation by performing a 

one or two-dimensional Fourier transforms (Fig. 1). 

We will use the temporal correlation function as the starting point and examine the two 

domains reachable by a one-dimensional Fourier transform. If we Fourier transform over the 

delay or time axis of the correlation function, we obtain the Wigner-Ville Distribution or the 

ambiguity function, respectively. In all discussions we use an approximation for the true 

correlation function. If the expectation operator is left out then 

Rx (t,t) = E[x*(t-x/2) x(t+x/2)] becomes x*(t-t/2) x(t+x/2). 

This is not an unusual approximation since we cannot apply an expectation operator to 

the data nor can we apply time domain averaging. Our work will focus on this correlation 

function which is called the instantaneous correlation function. In particular we will replace the 

traditional Fourier transform with the wavelet transform. Chapters 1-2 deal with general 

background, chapters 3-5 address transformation over the delay axis, while chapter 6 focuses on 

the transformation over the time axis. 
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Figure 1: Time frequency representation. 



2. General Background 

In some applications there is the desire to intercept digital communication signals. The 

task of intercepting a communication signal can be summarized by i) detect the signal's 

presence, ii) classify the modulation type, iii) estimate the reception control parameters, iv) 

decode the data, and v) decrypt the information content. The process can be stopped at any 

intermediate step. 

Spread spectrum (SS) modulation is a widely used modulation technique. Frequency 

hopping (FH) is a modulation subset of SS, and is primarily addressed in this report. 

Many signal processing tools are available to help to achieve the tasks listed above. In 

particular, correlation processing and wavelet analysis of the time domain data have been used 

for the interception task. In this work we will address the merging of wavelet and correlation 

concepts to enhance detection, classification and signal parameter estimation. For the interested 

reader an extensive reference section [1-64] is provided. 

The FH signal is a non-stationary process having a two-dimensional correlation 

function. Application of wavelet analysis to correlation functions is a new area and is still in the 

exploratory stage. This work assesses wavelet processing of the correlation function along the 

delay and time axis. 



2.1 INTERCEPTION OF DIGITAL COMMUNICATION SIGNALS 

Interception of communication signals is of interest to a wide range of applications in 

surveillance, intelligence, reconnaissance, geo-location, spectral monitoring and jamming [1]. 

Digital communication systems can use a large number of modulation techniques (i.e., ASK, 

BPSK, BFSK, QAM, MPSK ,MFSK, Spread Spectrum). Interception of digital communication 

signals consists of detection, classification, parameter estimation, decoding, and decryption. 

A large number of publications address the interception of digital communication signals. 

Signal processing is used for the interception and can be grouped into the following approaches: 

• Second order moments: Spectral analysis and correlation analysis 

• Linear: Linear transforms including the wavelet transform 

• Nonlinear: Higher-order spectra, spectral correlation, and cyclic-feature processing 

• Other: Eigen-analysis, singular-value decomposition, and stochastic resonance. 

Demodulation of ASK, QAM, BPSK, and DPSK are addressed in [2-14,17,32]. Time 

domain correlation and Spectral correlation are used on FSK related problems in [2,33], 

higher-order moments are used in [3], and wavelet analysis is used in [5,17,56,65]. 

2.2 Spread Spectrum Signals 

Interception of spread spectrum signals is addressed in [17-31]. These techniques differ 

mainly in the bandwidth of the interception filter(s) relative to the bandwidth of the FH signal 

and the number of parallel channels relative to the number of hopping frequencies. 

2.3 FOURIER ANALYSIS, TIME FREQUENCY DISTRIBUTIONS AND WAVELETS 

Signal analysis treats time signals as a linear combination of elementary basis functions. 
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Well-known examples are the Shannon, the Karhunen-Loeve, the Gram-Schmidt expansion, the 

Eigen-decomposition, and the Fourier analysis. We will review the Fourier analysis, Time 

Frequency Distributions and Wavelet analysis [41,52-58,61]. 

2.4 Fourier Transform 

The Fourier transform (FT) is the most popular signal decomposition [36]. It is used to 

decompose stationary signals into sinusoidal or complex exponential components. A 

non-periodic continuous time signal, x(t), can be represented as 

*(0 = f~   Xif) e™ df 
J —oo 

with (1) 

X(f) =  f   x(t) e -fl*ft dt   ; 
J — oo 

where the signal and its transform are continuous functions of time and frequency, respectively. 

2.5 Short Time Fourier Transform 

To track time evolution the short time Fourier transform (STFT) was developed. The STFT 

windows the signal around a given time instant, performs the frequency domain analysis, and 

repeats the process at other time instants of interest. The basic assumption is that the windowed 

signal has a non-time-varying spectrum (local stationarity) within the time window. The STFT 

for a continuous signal x(t) is given by 

Xtf,x) = f"   x(t) w *(f-T) e -W dt. (2) 

where w(t) is the window function. X(f,t) is the spectral description of x(t), * denotes 

conjugation and the time window is centered at x.  If the window has a Gaussian shape, the 
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STFT is called the Gabor transform. Time and frequency localization are controlled by the 

effective window duration. The STFT has a fixed-time and fixed-frequency resolution, which 

results in a uniform tiling of the time-frequency plane. For discrete time signals the STFT is 

defined as 

X(k,m) = £--  x(n) w(m-n) e^**"" 

where k = 0,l,2,..Jl/-l. 

2.6  Discrete Fourier Transform 

A finite-length non-periodic discrete signal has a continuous-frequency-domain 

representation. The discrete Fourier transform (DFT) and its fast implementation, the fast 

Fourier transform (FFT), use a finite integration time. For digital signal processing it is 

convenient to represent the process by its discrete-frequency samples. This leads to the discrete 

Fourier transform (DFT). The DFT pair is given by 

*(*) = ET*   *(«> *****   -for n,k = 0,1,..^-!.      (4) 

The DFT requires  N2 complex multiplication operations and N(N-1) complex additions. The 

fast Fourier transform (FFT) implements the DFT with fewer multiplications. The FFT has 

computation complexity (number of multiplications) of N/2 log2 N. Time or frequency 

uncertainty can be reduced by using overlapping techniques [20]. 

6 



2.7 Time Frequency Distributions 

A Time Frequency Distribution (TFD) [38] can describe non-stationary signals by 

displaying  the energy density as a function of time and frequency. The most popular TDF is the 

Wigner-Ville Distribution (WVD) [15,38,39,40]. The WVD of the signal s(t) is defined by: 

WVDS (t,(£i) =    f" s\t-x/2) s(t+xl2) e~}™ dx; (5) 

where co =2 n f. The WVD of the sum of two signals (i.e., s(t) = S! (t) + s2 (t)) is given by 

W(t,to) = W„ (t,o>) +W22 (t,o) +W12 (t,o>) +W21 (t,(D), where 

Wv (f,<D) = —  Cs*{t-xl2) sft+x/2) e -J™ dx (6) 
2% J -•» 

is a cross term. The cross term is complex-valued, but W12 = W2I* and hence 

W12 (t,o>) + W21 (t,w) is real and W (t,o) = W„ (t,o>) +W22 (t,(o) +2 Re [W12 (t,co) ], where 

the cross term 2 Re [W,2 (t,o>) ] is an interference term. Window functions can be chosen to 

improve me WVD by minimizing cross terms. 

2.8 Wavelets 

Wavelet analysis is a new approach to represent non-stationary signals. In the following 

discussion we introduce wavelet analysis concepts. The function f(t) may be expressed as 

M = E*  ak vfc(0   ; 
with 

at = <A0,vi(0> (7) 

=  r At) vk(t) dt   ; 
J   —CO 

where the set vk(t) typically forms an ortho-normal set and <>notation denotes an inner 
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product, i.e., a projection of the time data onto the k* basis function. 

There are different types of wavelets; orthogonal, non-orthogonal, and bi-orthogonal 

wavelets. The Daubechies family, Symmlet, Coiflet, and Meyer wavelets are examples of 

orthogonal wavelets, while the Morlet wavelet is an example of a non-orthogonal wavelet 

[16,34,35,37,42-47]. 

2.9 Continuous Wavelet Transform 

The continuous wavelet transform (CWT) forms the mathematical basis for wavelet 

analysis. In the wavelet analysis all basis functions can be generated from a single function 

called the mother wavelet, which is usually denoted by i|/(t). The other wavelets can be generated 

using two distinct operations; scaling and translation. Scaling is the dilation or compression of 

the wavelet function according to a specific scaling value. The scale is denoted by s. The 

translation allows shifting of the (scaled) wavelet to a desired position in time. This shift is 

denoted by a. The scaled and translated wavelet is denoted by 

%ß) = \lfs m-a)/s); 

where Vs is a normalization factor. The integral form of CWT of the finite energy signal f(t) 

with respect to the wavelet function i|r(t) is given by [42,46] 

Wf(s,a) = T At)%ß)dt 

= llfs f   M m~a)/s) dt. 

The wavelet analysis computes inner products of the signal and the wavelet functions. We 

can also interpret the wavelet analysis as a linear operation which transforms the signal using 

modified kernel functions. The kernel of the transform is the mother wavelet, and the 
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modifications are the scaling and translation operations [44,45]. The wavelet operation 

can be interpreted as a bandpass function which implies that the wavelet must be an oscillatory 

function. 

2.10 Scalogram 

Using the scalogram, a signal f(t) is characterized by the distribution of | Wf (s,a)|2 over 

the time-scale plane. The quantity | Wf (s,a)|2 may be viewed as a spectral density in units of 

power per scale [44]. Consequently, the scalogram represents the power spectral density of the 

signal over the time-scale plane. The quantity 

-~ f \W£,a)\2 da 
<V2 J-~ 

represents the portion of the signal energy contained within the scale s. Here 

J  -00 to 

and T(o) is the Fourier transform of i|r(t). This fact is exploited in identifying the scale for each 

frequency hop. In summary, the CWT is a linear, tme-shift-invariant, time-scaling-invariant, 

and frequency-scaling-invariant operator. 



2.11 Discrete Wavelet Transform 

The CWT is defined by an integral transform over continuous variables in the scale s and 

the time shift a. In practice a discrete grid for s and a is used. A widely accepted discretization is 

to specify s=s0
m and k=na0s0

m, where m and n are integers, s0> 1, and a„> 0 [45]. Furthermore, 

if we select s0 = 2 and a0 = 1 we obtain the well-known dyadic wavelet sampling (tiling) grid. 

Hence the scaled and translated wavelet indexed by m and n is given by 

^(t) = 2-m/2i|;(2-mt-n). 

We will briefly introduce the WT from the perspective of the multi-resolution (MR) analysis. 

The signal (or the time function) f(t) is expanded in terms of the wavelet functions. These 

wavelets have a frequency bandpass shape, so they result in a set of successive details of the 

signal. For the approximation we need a special basis, called the scaling function <f> (t), which is 

not a wavelet. It has a low pass frequency behavior and performs averaging. The discrete wavelet 

synthesis equation is given by 

m = Er=- <**)<!>*(')+17.0 Er=o <*(/.*)%ß% 

where j and k are integers, the coefficients c(k) constitute the coefficients of the approximation, 

while d(j,k) constitutes the coefficients of the added details or equivalently the fine resolutions 

[47]. If the wavelets and the associated scaling functions form an ortho-normal set of basis 

functions the coefficients are given by c(k) = < f(t),4>k (t) >, and d(j,k) = < fijt),T|rjJc(t) >. 

Here 4>(t) is a lowpass function whose frequency response is the same as the frequency response 

of i|r(t) except that the frequency center of the bandpass filter is shifted to baseband (i.e., centered 

at DC). 

10 



2.12 Scaling and Wavelet Equations 

The Multi-resolution subspace representation leads to a method to formulate two 

equations in terms of the unknown scaling and wavelet functions: 

(j)(0 = y/l £fc h0(k) (J>(2f-*). 

This equation includes two different scales of the scaling function and is known as the scaling or 

dilation equation. The coefficients h0 (n) are called the scaling filter coefficients. We also have 

which is called the wavelet equation. The coefficients h, (n) are the wavelet filter coefficients 

[42,47]. 

For discrete data the filter-bank concept leads to a simple method for computing the 

wavelet coefficients. The wavelet function is replaced by the coefficients of the wavelet filter 

h,(n) and the scaling function is replaced by the coefficients of the scaling filter h^n). In 

[42,46,47], the following two recursive equations are obtained: 

c(/»*) = £„   h0(m-2k) c(j+\,m) 
d(j,k) = £m   h^m-lk) c(f+l,m) . 

These two recursive equations enable us to compute the j* scale wavelet transform and is known 

as Mallat's algorithm [46]. 

2.13 Daubechies Wavelet Family 

The Daubechies wavelet family is a compactly supported ortho-normal set of wavelet 
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functions [42]. The Daubechies wavelet are obtained by solving the scaling and wavelet 

equations. An additional set of constraints is applied to satisfy the maximum number of 

vanishing moments for each wavelet. This report, and the Matlab wavelet toolbox [59], uses the 

notation that a Daubechies wavelet of order N has 2N coefficients. The wavelet of order N has 

finite support over [0,2N-1], or equivalently the corresponding FIR filter has 2N multipliers. The 

number of vanishing moments is an indication of the smoothness of the wavelet filter. The 

number of vanishing moments implies the number of zeros of Y(o)) at o> = iz. The higher the 

order the longer and smoother the Daubechies filter will be. 
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3. WAVELET TRANSFORMS AND CORRELATION FUNCTIONS 

Correlating two functions provides a measure of their similarity. The Wiener-Khinchin 

theorem relates the signal's auto-correlation function and power spectral density for a stationary 

process. Wavelet decomposition can be used to represent non-stationary signals over the 

time-scale plane. We will examine the wavelet transform of the correlation function as an 

alternative for non-stationary signal representation. 

3.1 Correlation Functions 

Depending on the underlying process, various definitions can be given to the 

auto-correlation function (ACF). The process may be deterministic, stochastic, stationary or 

non-stationary. 

The ACF of a stochastic process is the correlation between two samples of the process 

taken at t, and t,, and is defined as Rft.tj) = E{x (t,) x*(tj)} , where E { } is the expectation 

operator and * stands for the complex conjugation. For a stationary (i.e., wide-sense stationary) 

process, R^) depends only on the time lag x= t, -t^. The Wiener-Khinchin theorem defines 

the relationship between the correlation function and spectral density as 

Sxx(<°) = J RCO exP(-J w "0 dr. 

3.2 The Instantaneous Correlation Function 

The ACF of a deterministic or stochastic process is computed using time domain 

averaging or the expectation operator, respectively. This means that a smoothing process has to 

be applied to compute the correlation functions. The instantaneous correlation function (ICF) 

does not use an averaging operation. The instantaneous correlation function is simply defined as 

the product of two samples of the process. These two samples are drawn at two time instants 

centered about time t. The instantaneous correlation function R\ t,x) is defined as 

13 



R'( t,t) = x (t+T/2) x* (t- T/2), where i stands for the instantaneous nature of the correlation 

function [49]. 

If x(t) is a sinusoidal signal then the multiplication to obtain the values of R\ t,x) 

generates cross terms in the ICF. For example, the real-valued sinusoidal signal 

x(t) = A cos (a) t) has an ACF given by R(T) = A212  cos (co T), while the ICF is given by 

R( t,i) = A2/2 [cos (2 u t's) + cos ( w x) ]. 

The ACF of a single sinusoidal signal has only one component and no cross term, while the ICF 

has cross terms. If the signal x(t) is represented by its analytic form, say x(t)=A exp (j w t), then 

its ICF is given by R'( t,x) = A2 exp (j wt). 

That is, the ICF of a single complex exponential signal has no cross term. To minimize cross 

terms from the negative frequency components we use the analytic form of the data [49]. 

3.3 WAVELET TRANSFORMS OF CORRELATION FUNCTIONS 

The wavelet transform of the stochastic ACF of a stationary process is addressed in [48]. 

The wavelet transform of the ACF of a deterministic signal will have a similar expression. Let 

Wxx (s,a) denote the wavelet transform of R(T). Note, the subscript in W^ (s,a) stands for the 

wavelet transform of the ACF of x(t) in contrast to Wx (s,a) which denotes the wavelet 

transform of x(t). The wavelet basis function is denoted by g(-c). The wavelet transformation 

will transform the lag variable T to the shift variable a and the scale s. W^ (s,a) ,for positive s 

is given by: 

= fs f'jxJf) G\sfl eW df. 
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This equation has the form of an inverse Fourier transform from the variable f to the variable a. 

We can write W^ (s,a) = f1 {Js   S^  (F) G*(sf) } and deduce that the wavelet transform, at 

any scale s > 0, represents a linear filtering operation using a band pass filter whose impulse 

response is the (time-reversed) wavelet function at scale s. Equivalently, the filter has a 

frequency response given by the FT of the scaled wavelet. 

The wavelet transform of the ACF, R(T ), of the stationary finite-energy signal x(t), 

gives a band pass filtered version of the power spectral density Sxx (f) of this signal (up to a 

constant, Vs, the band pass filter used dependents on the chosen wavelet function and scale. 

3.4 The Wavelet Transform of the Instantaneous Correlation Function 

The Wigner-Ville Distribution (WVD) is used to represent non-stationary processes. 

The WVD applies a one-dimensional Fourier transformation to the ICF. The Fourier transform 

takes the delay x to the frequency f, leaving the global time variable t unchanged. This allows 

the display of the time evolution of the spectrum of the signal. For one-dimensional time signals, 

the one-dimensional wavelet transform carries out a transformation from one global time variable 

t to the two wavelet variables, the shift a and the scale s. Consequently, the signal is represented 

by a time-scale distribution in the wavelet domain. The wavelet domain is called the time-scale 

domain. For the two-dimensional surface, indexed by time t and the delay x, we carry out the 

wavelet transformation along the delay axis. This permits a display as a function of time. Let 

Vx (t,f) denote the WVD of the signal x(t), 

vx W        = r *<£t-xl2) x \t+x/2) e -*** dx 

=  t~ R'xWe-W dx   , 
J -oo 
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and let the Fourier transform of the wavelet basis function be given by 

s 
so 

g(IZ£) =  r s G{sf) e-W df, 
S J -OB 

then using 

W 'a (t;Sia) = -±- f Rx (t,X) g* (1^) dx ; 

we have 

W 'xx («*•«) =is f G* {.sf) Vx (tj) eW df 

This equation is in the form of an inverse Fourier transform. Wn' (t; s,a) and 

\/s G* (sf) Vx (t,f) are a Fourier transform pair with respect to the variable a and f. This relation 

suggests that we can obtain a filtered version of the WVD by Fourier transforming W^' (t; s,a). 

3.5 FREQUENCY HOPPED SIGNALS AND THEBR CORRELATION FUNCTIONS 

Communication systems can utilize a large number of digital modulation techniques; 

spread spectrum modulation being one of them. Spread spectrum refers to any modulation 

scheme that produces a transmitted bandwidth much larger than the information bandwidth [50]. 

We will briefly address different digital modulation schemes and focus on frequency hopping. 
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3.6 SPREAD SPECTRUM COMMUNICATION SIGNALS 

Spread spectrum (SS) communication signals are characterized by a wide transmission 

bandwidth and a low power spectral density [19, 50,51]. SS signals have two main advantages: 

i) The message has a low probability of being intercepted (DPI) as a result of the wide frequency 

band and the low power spectral density of the signals. 

ii) SS systems can reject jarnming signals and allow users to share the same frequency band. 

Among the different possible SS modulation formats, the following three are prevalent: 

Frequency Hopping (FH), Direct Sequence (DS) Modulation and Time Hopping (TH). 

3.7 THE INSTANTANEOUS CORRELATION FUNCTION OF FREQUENCY 

HOPPED SIGNALS 

Spread spectrum studies usually consider the FH signal as a stationary process 

[19, 50,64] even though the spectrum of the FH signal varies with each hop interval. The 

stationary correlation representation, using time averaging, is not suitable for this process. 

One way to identify the FH signal is to monitor the time-frequency evolution of the 

signal. Hence, we need to keep the time dependency in the correlation representation. This is 

achieved by using the instantaneous correlation function (ICF). 

The FH signal may be represented as successive intervals (i.e., hops) of single frequency 

complex exponential (Fig. 2a). The frequency within each interval (i.e., the hop frequency) is 

controlled by a random (but known to the user) sequence. We assume without loss of generality 

that any two successive hops will have different frequencies. 

The frequency difference of adjacent hops will generate the patterns of the instantaneous 

correlation functions. The BFC for values of |T| <. Th (i.e., allows correlating adjacent hops 

only) and using values of (t+r/2) and (t-t/2) such that the values are confined to be within the 
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Figure 2a: Time behavior of an FH signal. 

Figure 2b: FH signal and the cellular (diamond) structure of the ICF. 
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L* hop, is given by:      R(t,t) = ej("*, 

where w is the radian frequency of the complex valued sinusoid. We note that the values of 

(t+i/2) and (t-x/2) are confined to be within the same L* hop if they satisfy 

(L-l)Th   < (t+T/2) and (t-t/2) <   LTh. This inequality forms the boundaries of a diamond 

pattern for a given value of L. This cellular structure is shown in Figure 2b. Inside each diamond 

the ICF is obtained by correlating signals from the same hop, while outside the diamond the ICF 

is obtained by correlating signals belonging to two consecutive hops. 

The correlation function R^ (t,t) (i.e., in region Umn) is given by: 

Ki,n (VO = exP J (wm "wn)l +(wm + WJ */2; where m and n are the indices of the two adjacent 

hops. We note that within the main diamond of the n* hop, (i.e., m=n), the ICF is given by 

Rm,!! (VO = exp j (con T) while outside the main diamond (i.e., in the upper triangle between hop 

numbers n and n+1), the ICF is given by R^ (t,T) = exp {j (co^, -wj t +(o)n+1 + &>„) T/2} . 

The lower half of the ICF has hermitian symmetry relative to the upper half and does not provide 

any additional information. 

In summary, the instantaneous correlation function of a FH signal will exhibit cellular 

(i.e., diamond) patterns. Inside the L* diamond the ICF has a single complex exponential 

component along the delay axis representing the L* hop frequency. Outside the diamond, R!(t,T) 

is a product of two terms, exp j (o)m -oj t and exp j (a)m + wj T/2 , where wra and o>n are two 

consecutive hop frequencies. 
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4.   PROCESSING  SCHEME 

The wavelet transform generates one surface for each scale. One can visually inspect the 

wavelet surfaces to identify the FH signal and obtain an estimate for the hop time interval. 

Alternatively, one can use a processing scheme to estimate the hop start/stop times, the hop-scale 

pattern, and the hop frequency. For the extraction of the hop start/stop times an edge detector is 

used. An estimate of the hop-scale pattern can be obtained by performing an energy analysis. 

The energy analysis assigns a scale index (called the proper scale) to each hop. The proper 

scale, is that scale which has the greatest energy content (i.e., spectral components live in the 

spectral region covered by the scale under consideration). The sequence of proper scales, 

representing the hop sequence, is called the hop-scale pattern. 

If a hop-scale pattern is detected, it provides the evidence that a frequency hopped signal 

is present. If some or all frequencies of an FH signal reside in the spectral region of one scale 

then a follow-on spectral estimation will indicate different frequency components as a function 

of the hop intervals which still permits the identification of the FH process. 

For FH signals, the ICF displays a cellular pattern (i.e., see Fig.2), where each hop 

results in a diamond pattern with a width equal to the hop interval. The diamond intersects the 

time axis at the hop start/stop times. The wavelet surface at the proper scale emphasizes signals 

which belong to that scale, while other signals (i.e., out of band components) are attenuated. 

The interception problem usually assumes some prior knowledge about the signal of 

interest. In our case, we assume the minimum and maximum hopping frequencies are 

approximately known and the data is properly sampled. 
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4.1 Discrete-Time Implementation of the Instantaneous Correlation Function 

Let R(n,u) define the ICF of the discrete-time signal x(n), given by: 

R(n,u) = x (n+u/2) x* (n-u/2), where n is time and u is the delay. The combined index 

n ± u/2 should assume integer values. We can insert zeros into the ICF (i.e., R(n,u), for odd u, 

is set to zero), or we can let u = 2m. The last approach is the one adopted in this report. 

A one-dimensional wavelet transform is performed in the direction of the delay u for 

each time element of the correlation function. The Matlab wavelet toolbox [59] is used with the 

convention that the highest band of passband frequencies is denoted by scale number 1. 

4.2 VISUAL IDENTIFICATION 

We investigated different types of wavelets as well as different surface representations. A 

complex-valued Daubechies wavelet of order 3 is given in [60] and is used for comparison with 

the real valued Daubechies wavelet of the same order. Operating on the complex valued ICF with 

a real or complex valued wavelet results into a complex valued scale (surface) output. A complex 

valued surface can be represented by its magnitude, phase or potentially the real or imaginary 

component. A visual identification technique was used to select the type of wavelet and the type 

of scale representation. Based on a large number of simulations in conjunction with an opinion 

test it was concluded that a real valued wavelet will suffice and the surfaces, using the real 

output, provide superior results. Hence in all follow-on work, real valued wavelets and real 

valued scale surfaces are used. This processing approach was also verified using the Morlet 

wavelet [56]. 

The objective of the opinion test is to identify the frequency hop, interpreting the cellular 

structure in the wavelet surface, and to identify the diamond's time axis intercepts to serve as an 

estimate of the hop start/stop times. 
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Figures 4.1 and 4.2 show examples of the real part of the WT obtained with the 

real-valued Daubechies wavelet of order 3. Figure 4.1 and 4.2 display the real part of the IFC and 

the real part of the first 5 scales of a FH signal with an SNR of 10 and 3 dB, respectively. The 

frequencies of the FH signal are such that they hop the scales in a staircase fashion (i.e. time 

segment 1 or hop 1 is on scale 1, time segment 2 or hop 2 is on scale 2, etc.). We note that we are 

unable to identify the FH structure from the original ICF surface, denoted by "CF." Wavelet 

surfaces, labeled "Sir",.., "S5r", allow identification of diamond patterns at hop number 1,.., 5 

, respectively. The diamond patterns are detectable since they are presented by contour lines of 

constant height that run from left to right. If we were to plot the delay trace that goes through a 

diamond, for a given fixed value of time, we will observe a sinusoidal pattern having a fixed 

frequency. These figures demonstrate that we can identify the FH structure from the wavelet 

surfaces, while it is not possible to do so from the ICF surface. At high SNR's (i.e., 10 dB or 

better), we can also determine the hop times (i.e., where the diamond intercepts the time axis) 

easily. A color coded display is superior to the black and white representation used in this report. 

4.3   ENERGY ANALYSIS AND SCALE IDENTIFICATION 

If correct hop timing information is available, we can perform an energy analysis for each 

hop. Parseval's theorem for the complete orthogonal filter bank (over L partitions) is applicable 

to the discrete time wavelet analysis [45]. So ||x(n)||2= SaeZ  ( |C(L,2a)|2+ Sj=, L  |d(j,2a+l)|2 ), 

where C(L,2a) are the scaling coefficients at the scale L, d(j,2a+l) are the wavelet coefficients at 

scale j, and a is the wavelet shift variable. The quantity E(j) =    2 a=^ " | d(j,a) |2   represents the 

signal energy over the j* scale. Energy per sample is defined as: A(j) = E(j)/ N(j), where j is the 

scale index, E(j) is the total energy at the j* scale, and N(j) is the number of wavelet coefficients 

at this scale. 
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Figure 4.1 Wavelet Surfaces of FH Signals Using Daub-3 at 10 dB (scale 1-5). 
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Figure 4.2 Wavelet Surfaces of FH Signals Using Daub-3 at 3 dB (scale 1-5). 
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To identify the proper scale one can use the maximum value of the wavelet coefficients, 

the total energy, or the energy per sample. Table 1 summarizes the energy distribution obtained 

via wavelet analysis using Daubechies wavelet of order 2 (Daub-2) and order 10 (Daub-10). The 

signal is 64 samples long and consists of three sinusoids. The first signal has a frequency of 3/8 

Fs, the second has 3/16 Fs, and the third has 3/32 Fs, where Fs is the sampling frequency. Hence 

the first, second, and third input signal is contained in the first, second, and third scale, 

respectively. Using the information from table 1 we can conclude that the total energy of the 

input signals is distributed across the scales and that the sum of the total energies over the scales 

is slightly less than the total signal energy since we disregard any contribution from the low pass 

section. The proper scale (where the signal resides) has the greatest share of the total energy. 

This share increases with an increase of the wavelet length. This is attributable to the smaller 

spectral leakage of longer wavelets. Energy per sample at the proper scale is larger if the signal 

resides at a higher scale. The gain factor in energy per sample (if the signal resides within scale 2 

rather than scale 1) is about 1.41 and 1.64 for Daub-2 and Daub-10, respectively. Ideally, the 

gain factor in energy per sample should be 2 per scale index. For an automated detection scheme 

the energy or energy per sample is the superior test statistics. To declare that a signal belongs to a 

particular scale, that scale must be the dominant one relative to all other scales: The larger the 

ratio the better the (^crimination. We note in table 1 that the energy and energy per sample 

outperform the maximum coefficient at all scales and all wavelet sizes tested. 

4.31   Hop-Scale Pattern 

The scale identification assigns a scale index to each hop of the observed signal. The hop 

is assigned to the scale whose energy per sample is the largest among the values of the other 
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Table 1:   Energy Distribution of Daub-2 and Daub-10 Wavelets 

Measure Wavelet Scale / = (3/8)F5 

Signal with 
/ = (3/16)*; / = (3/32) F. 

Max 
Coefficient 

Daub-2 
1 
2 
3 

1.3365 
0.5753 
0.3743 

0.6574 
1.6998 
0.3594 

0.4349 
1.0356 
1.8480 

Daub-10 
1 
2 
3 

1.2524 
0.3968 
0.1854 

0.3818 
2.0331 
0.3859 

0.3284 
0.5504 
2.8296 

Total 
Energy 

Daub-2 
1 
2 
3 

29.7687 
1.1313 
1.0495 

7.2565 
23.3282 

0.9492 

0.8486 
8.2775 

21.2601 

Daub-10 
1 
2 
3 

31.4508 
0.3980 
0.0875 

1.6228 
29.9017 

0.3900 

0.4040 
1.9671 

29.0447 

Sample 
Energy 
(average 

per sample) 

Daub-2 
1 
2 
3 

0.9201 
0.0628 
0.1049 

0.2199 
1.2960 
0.0949 

0.0257 
0.4599 
2.1260 

Daub-10 
1 
2 
3 

0.7671 
0.0133 
0.0036 

0.0396 
0.9967 
0.0163 

0.0099 
0.0656 
1.2102 
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scales. This should correspond to the true scale location of the frequency hop and is called the 

proper scale. A sequence of hops will result in a sequence of proper scales forming the hop-scale 

pattern. 

4.32    Success Rate 

The performance of scale identification is evaluated via the success rate Pid. This is done 

by generating known hop-scale patterns and obtain the percentage of the correctly identified 

hop-scales. The success rate is defined as: Pid = number of correct hop-scales / total number of 

hops. The quality of scale identification depends on the height of the greatest energy per sample 

relative to the other sample energies from, other scales. 

The spectral density of the ICF for a white noise input, in the delay direction, has a 

triangular spectral shape. To allow comparison the spectral shape the energy per sample for all 

wavelet scales must be corrected accordingly. Performance in terms of the success rate Pid is 

given in chapter 5. 

4.4   FREQUENCY ESTIMATION 

The Fourier Transform of the wavelet surface gives a bandpass filtered version of the 

WVD. The hop frequency can be obtained from a Fourier transform over the delay direction of 

the wavelet surface (i.e., over the main diagonal of the appropriate diamond region). 

The Fourier transform of the wavelet coefficients can be used as a spectral estimate (i.e., 

periodogram) at all scales. The frequency resolution dependents on the parameters of the Fourier 

transform. 

The frequency resolution (i.e., the minimum spacing between two resolved narrow band 
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components) oftheDFTis approximately equal to Af=/N. At any given scale k, the number of 

data points N(k) is related to the number of input data points N by N(k) = N/ 2k. The sampling 

frequency of the scale output (i.e., detail function) is scale dependent, i.e., Fs (k) = F/2k, where 

Fs is the input sampling frequency. At the k* scale, both the number of data points (wavelet 

coefficients) and the sampling frequency have been reduced by the same factor. Consequently, 

the FT of the N(k) data points has a frequency resolution that is constant, independent of the 

wavelet scale being addressed. 

4.41     Success Rate 

Performance of the frequency estimation procedure is evaluated in terms of the success rate, Pf. 

The hop frequency is considered correctly estimated if the spectral peak is at the true spectral bin. 

Pf is defined as: Pf = number of correct hop frequencies/ total number of hops. 

The hop frequency is given by the bin number corresponding to the peak of the magnitude of the 

FT over a specified region of the wavelet surface. The quality of the frequency estimation 

depends on the spectral height of the peak relative to the average background. 

Given the correct hop start/stop times, the hop frequency may also be estimated directly 

from the time signal or from the ICF surface. To extract the frequency from the original time 

signal we can use the FFT of the time data over the hop length. The FFT is a matched filter for 

sinusoidal signals in white Gaussian noise. Thus, an optimal performance is expected relative to 

the nonlinear processing of the signal through the ICF computation and the linear wavelet 

transformation. 

WeusePfcand P6 to denote the success rates of the frequency estimator when using the 

original time signal and the ICF surface, respectively. Results are provided in chapter 5. 
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4.5     ESTIMATION OF HOP TIMES 

We recall that the ICF surface and wavelet surfaces have a cellular structure consisting of 

diamonds, where each diamond is associated with a specific hop. The diamond's interception of 

the time axis defines the start/stop point of the hops. The diamond width corresponds to the hop 

interval Th. The sides (edges) of the diamonds of hops are mutually parallel and spaced by the 

hop interval Th. There are many approaches one can use to solve the problem of hop time 

estimation. In what follows we will use a technique based on an edge detection operator. 

Edge detection is a fundamental problem in image analysis since edges help in 

identifying objects. There are two basic types of edge operators, the gradient operators and the 

compass gradient operators [62,63]. The gradient operator measures the gradient of the 

two-dimensional image in two orthogonal directions. It is usually  applied to detect edges with 

unknown directions. The compass operator measures the gradient of the two-dimensional image 

in a specific direction (i.e., ± %IA in the ICF or scale outputs). 

The compass operator is applied to the upper half of the wavelet surfaces summing up all 

contributions according to the compass weights. The maximum value is extracted and 

determines the point where the compass array matches an edge. To make the data applicable to 

compass operations one needs to add a positive number, equal in magnitude, to the smallest 

(i.e., the most negative) surface value. Results are presented in chapter 5. 
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5.   SIMULATIONS AND RESULTS 

This chapter provides simulation results of the techniques introduced in chapter 4. 

Chapter 5 deals with wavelet transforms exclusively applied along the delay axis. We will 

address visual inspection, scale identification, frequency and hop time estimation. Results for 

wavelet processing along the delay axis are given in chapter 6. 

5.1 VISUAL INSPECTION 

To detect and to identify the FH modulation we performed an opinion test by examining 

the wavelet surfaces visually. Ten participants were involved, each one was asked to identify the 

diamond patterns of the FH signal from the wavelet surfaces at all pertinent scales and for all 

hops. Two types of wavelets were used; the Morlet wavelet and the Daubechies wavelet of order 

3. Both wavelet types were used in their real and complex form. Four SNR values were used; 

10, 6, 3 and 0 dB. Four different surface representations were examined; the real part, imaginary 

part, magnitude, and phase. To minimize biasing of the test results, all participants started to 

identify the surfaces going from the lowest SNR to the highest SNR value. More detailed 

scoring tables and the scoring code are given in [56 ]. The FH signal occupies the first five scales 

at different hop times. 

Table 2 shows scoring results based on the real values of the scale surfaces for an SNR of 

10 and 3 dB. 10 dB is the highest SNR value tested, while 3 dB is the minimum value that still 

provides an acceptable identification score. The values of the ratings range from 0.2 to 1. Here 1 

indicates perfect identification of the hop diamond patterns at their proper time locations while 

0.2 indicates just a detection of a hop pattern in the background noise. 

The visual opinion test indicates that: 
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Table 2: Summary of the Identification Score Using the Real Part of the Scales. 

Wavelet 
Type 

SNR 
[dB] 

Scales 
SI S2 S3 S4 S5 

Real 10 1.0 1.0 1.0 0.95 0.95 
Morlet 3 1.0 1.0 1.0 0.95 0.9 

Complex 10 1.0 1.0 1.0 0.9 0.75 
Morlet 3 0.7 0.8 0.9 0.5 0.4 

Real 10 1.0 1.0 0.8 0.2 0.2 
Daub-3 3 0.8 0.7 0.5 0.2 0.2 

Complex 10 1.0 1.0 1.0 0.3 0.2 
Daub-3 3 0.6 0.5 0.7 0;4 0.2 

• Scores vary between 0.2 and 1, where 

• 1 : perfect identification of hop diamonds. 
0.2: just distinction of hops from background noise. 
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i)  The FH signal can be identified from the wavelet surfaces by its cellular structure which is 

dominant at the proper scales. That is, each scale will emphasize the hops which belong to the 

scale and attenuate other out of band spectral components. The (diamond) cellular structure can 

be used in the visual estimation of the hop start/stop times. 

ii)  The FH signal can be easily identified at SNR levels of -3 dB and above. 

iii) The real part (or imaginary part) provides the best representation for visual inspection. 

iv) The real value of the wavelet function provides a better surface representation than the 

complex valued wavelets. We tested the Morlet and Daubechies (Daub-3) wavelets [56]. Other 

types of wavelets may perform differently but were not evaluated. 

v)  Other modulation schemes such as ASK, PSK, MFSK and noise only patterns will have 

patterns residing at one scale only or have no discernible patterns at all. Typical plots are given in 

[56] verifying that if diamond patterns are noted at different scales, FH signals are present. 

5.2   SCALE IDENTIFICATION 

A processing scheme is used to extract hop start/stop times, the hop-scale pattern, and 

the hop frequency. Initially, we investigate scale identification and hop frequency estimation 

assuming that correct hop timing is available. Estimation of hop start/stop times is examined in 

section 5.4. For section 5.2 and 5.3 the parameters of the simulations are as follows: 

i) Signal pattern length: 5 hops. 

ii) Wavelet scales occupied: SI, S2, S3, and S4 (i.e., one scale is used twice), 

iii) Wavelet types: Daub-2, Daub-4, and Daub-8. 

iv) SNR range: -10 to 10 dB. 

v) Number of realizations: 10 per scale per SNR value. 
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The hop frequencies of the FH signal are spaced to generate the hops according to a 

known fixed scale test pattern. The test pattern occupies scales SI through S4. The wavelet 

surfaces are generated from the ICF surfaces at the relevant scales (i.e., scales 1 through 4). The 

total energy of each hop at each scale is computed and the energy per samples is obtained by 

dividing the total energy by the number of wavelet coefficients at each scale. 

For each hop, the scale with the greatest energy per sample is designated as the proper 

scale. The resultant hop pattern is compared to the known hop pattern and the probability of 

correct identification is computed. To avoid bias from the colored noise of the ICF surfaces an 

equalization is performed at all scales prior to the estimation procedure. 

Figures 5.1 to 5.3 show the performance of scale identification using the success rate Pid. 

Results are obtained for Daubechies wavelets of order 2,4, and 8 for scales SI through S4. For 

the scale identification performance we consider the minimum SNR at which Pid is still unity as 

the figure of merit. Over all tested scales the success rate, Pid  assumes the value of 1 at different 

minimum input SNR values. This is a function of the order of the wavelet and the scale. Figure 

5.1 shows that the performance of Pid obtained from Daub-2 achieves a Pid of 1 at an SNR of 

-1 dB at all scales, hence,-1 dB is considered me minimum SNR value for Daub-2. The 

minimum SNR value for Daub-4 is -2 dB at all scales as shown in Figures 5.2. Figure 5.3 

indicates that an SNR level of-1 dB or better is required to guarantee a Pid level of 1. For a Pid of 

0.9 we need -1 dB, - 2 dB, and - 3 dB for Daub-2, Daub-4, and Daub-8, respectively. This shows 

that longer wavelets perform better than shorter ones in terms of Pid. The exception ofthat case 

is the performance at scale SI to S4. The performance degradation, as the length of the wavelet is 

increased, may be due to a non-ideal equalization of the ICF spectral shape. 
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Figure 5.1   Pid for Daub-2. 
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Figure 5.2  Pid for Daub-4. 
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Figure 5.3  Pid for Daub-8. 
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Theoretically, wavelet surfaces at higher scales have higher SNR values than those at 

lower scales due to the reduced passband regions at higher scales. Generally, the scale 

identification performance increases with increases in scale number, wavelet length, and SNR. 

There are some small inconsistencies, but we attribute the anomalies to the non-ideal 

equalization and the non-ideal filter transfer functions (in a spectral sense). 

5.3    FREQUENCY ESTIMATION 

We carried out simulations to evaluate the performance of frequency estimation using 

the data specified in section 5.2. The hop frequencies are estimated by taking the FT of the 

wavelet coefficients located at the center of the diamond patterns in the direction of the delay. 

The bin corresponding to the peak value represents the estimated hop frequency. The estimated 

hop frequency is compared to the true hop frequency and the probability of correct frequency 

extraction (the success rate Pf) is computed. The estimated frequency is considered correct if the 

estimation error is less, in percentage of the true frequency, than   1/N, where N is the length of 

the vector of the wavelet coefficients. Figures 5.4 to 5.6 plot the success rate Pf obtained for 

different wavelets as a function of scale. For the frequency estimation we consider the minimum 

SNR for a given Pf value as the figure of merit. 

Figure 5.4 shows that the Pf value for Daub-2 is 1 at an SNR equal to 0 dB at 

most of the scales. A Pf of 0.9 is obtained for all scales for SNR levels greater or equal to -1 dB. 

The rmnimum SNR value for Daub-4 and Daub-8 at a Pf of 0.9 is -2 dB, as shown in Figures 5.5 

and 5.6. For Daub-2, Daub-4 and Daub-8 at a Pf of 1.0, the minimum SNR level is 0 dB at scales 

SI, S2, and S3. 
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Figure 5.4  PfforDaub-2. 
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Figure 5.5  PfforDaub-4. 
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Figure 5.6  PfförDaub-8. 
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Values of the success rate Pf show that the hop frequency can be reliably estimated from most 

wavelet surfaces at an SNR s 0 dB by using only one FFT at the center of the diamond area in 

the direction of the delay. 

Hopping frequencies may also be estimated directly from the original signal or from the 

ICF. Figure 5.7 plots the performance Pfe and Pfc obtained from the time signal and from the 

ICF, respectively. The plots are indexed by the SNR and assume that exact estimates of hopping 

start/stop times are available. By contrast, using the wavelet surface, under the best 

circumstances (i.e., scale 3, Daub-8), we need an SNR ^ -3 dB to obtain perfect performance. 

The SNR should be about -3 to -5 dB for using the raw time signal (i.e., need hop timing 

information). The frequency estimation success rate using the ICF, at a Pfc of 1, requires an SNR 

value of 0 dB or better. 

This shows that, assuming exact estimates of hopping start/stop times are available, hop 

frequencies may be estimated by processing the original signal at lower SNR values than can be 

achieved using the wavelet or the ICF surfaces. The benefit obtained by analyzing the ICF 

surface by wavelet analysis is significant in case of unknown hop start/stop times. We also note 

that fewer computations are needed when we estimate the frequency from wavelet surfaces. This 

is due to applying only one FT per hop, using few coefficients (i.e., decimated wavelet output). 

41 



-15 -10        -5 0 5 
SNR [dB] 

-15 -10        -5 0 5 
SNR [dB] 

Figure 5.7 Pfe Using the Time-Signal and Pfc Using the ICF. 
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5.4      HOP TIMES ESTIMATION 

This section presents hopping time estimation results obtained using the compass 

operator referred to earlier. The wavelet surface can be represented by its upper half plane. Then 

the areas of interest (i.e., Fig. 2) have a triangular pattern instead of a diamond pattern. The line 

compass operator is used over the surface moving from left to right. The location of the peak 

value of the resultant provides the hop start/stop time. The difference between the true and the 

estimated starting time is the estimation error. It is evaluated in terms of points of the time axis. 

For each SNR 20, realizations are used with a 128-point hop interval. 

Figures 5.8a - 5.8c plots the mean square estimation error (MS) as a function of SNR and 

Daubechies wavelet length. At an SNR z 10 dB, the MS is 200 or better. We notice that the 

shorter wavelet (i.e. Daub-2) has the better performance (i.e., at an SNR £ 6 dB the MSE is about 

200). This observation agrees with the notion that longer wavelets relative to shorter ones have 

better frequency localization but have poorer time localization. 
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Figure 5.8a Hop-Timing Mean Square Estimation Error for Daub-2. 
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Figure 5.8c Hop-Timing Mean Square Estimation Error for Daub-8. 
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6. Wavelet-Based Hopping Time Detection 

6.1   INTRODUCTION 

As discussed earlier, spread spectrum communications schemes have received ever 

increasing attention over the past two decades as numerous civilian applications have joined military 

applications [22,27,28,32,50,64]. Two main assumptions typically found in the literature are that 

the hop timing is constant and known, and that the hopping frequencies are selected from a known 

class of candidate frequencies. Even when the hop timing is not assumed known, it is still usually 

assumed constant [28]. These assumptions generally restrict the detection and estimation schemes 

to frequency hopping (FH), one of the more popular spread-spectrum communications techniques. 

The primary goal of this section is to provide a new approach for the detection and estimation 

of frequency hopping signals which makes none of the restrictive assumptions listed above. By not 

making such restrictive assumptions, it is hoped that a secondary goal is obtained. This goal is the 

application to the detection and estimation of other spread-spectrum communications techniques, 

such as direct sequencing, time hopping and hybrids of the three. 

Section 6.2 briefly reviews the definition of the temporal correlation function used as the 

backbone of the analyzing scheme. Section 6.3 introduces the preprocessing tools used to increase 

the robustness of the analyzing to noise. Next, Section 6.4 briefly explains how wavelet analysis fits 

in our procedure. Section 6.5 presents the detection scheme developed. Section 6.6 presents the 

overall detection algorithm and simulation results. Finally, Section 6.7 provides conclusions and 

proposed extensions. 
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6.2   TEMPORAL CORRELATION FUNCTION 

The temporal correlation function (TCF), also called ICF, of a signal x(k) is defined as: 

TCFx(k,x)=x(k^)x\k-x), 

where k is the absolute center time and r is the lag time, expressed in number of samples.  Consider 

the following analytical frequency hopping signal x(k) given by: 

for 0<k<T, where Thop is the time of the hop (or change in frequency) from// to^, and where u(k) 

is the unit step function. The resulting TCF function is defined as: 

=TCFl{k,xyTCF2(k,-z)*TCFll{k,x), 

where TCF,(k,z), TCF2(k,T), and TCF12(k,z) represent the 1st, 2nd, and 3rd non overlapping terms 

contained in the TCF expression. Note that computing the TCF of the real frequency hopping signal 

has drawbacks as additional "crossterms" are present in the resulting expression, making the 

frequency identification process more complex [63]. Thus, we only consider the analytical 

frequency hopping signal. In practical situations, the analytical signal can easily be generated by 

applying a Hubert transform to the real signal [50]. 
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Figure 6.1a presents the phase plot of an analytical frequency hopping signal x(k) for some 

arbitrary// and/, hoping time Thop=208, and for positive t values. The combinations of the different 

shifted versions of the unit step functions force the TCF to take on non-zero values only within the 

overall triangular within the regions shown in Figure 6.1 a.  Note that: 

1) TCF,(k, r) is a function of/) and r only. The second term, TCF2(k, r), is a function of/ 

and ronly, while the last term, TCF12(k,r), is a function of/,/, k, and r. 

2) The frequency hopping time Thop is located where the region covered by TCFj(k, r) ends 

and the region covered by TCF2(k,t) begins. 

3) For a given value of r, the terms within the triangular regions (i.e., the regions where 

TCF,(k,r) and TCF2(k,z) are defined) are constant, although at different levels, while the 

phase behavior within the "cross-terms" region, TCF12(k,r) is linear. This fact is further 

illustrated in Figure 6.1b which plots the unwrapped phase of the TCF function for the value 

z=30. It is important to realize, however, that the phase values over these three regions are 

a function of/ and/ and, therefore, not predictable without knowing/; and/, which in 

general we do not. Nevertheless, for any given value of the lag, r< T^ this region of cross- 

terms is centered on the hop time, Thop, another fact which is exploited. 

6.3   PREPROCESSING STEPS 

The main idea behind the proposed scheme is to take advantage of the TCF phase behavior 

along the time axis k (i.e., for fixed values of z). As shown earlier the unwrapped TCF phase along 

the time axis is constant prior and after the frequency jump, while it is linear in a region centered 

around the frequency hopping time, resulting in a constant-ramp-constant phase behavior along the 

time axis k, as illustrated in Figure 6.1b. Differentiating such phase leads to a pulse centered around 
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the hopping time, as shown in Figure 6.1c. Detecting the edges of the pulse is then all what is 

needed to identify the hopping time, as it can then be estimated as the midpoint between the two 

edges. Therefore, the hopping time detection problem can be viewed as an edge detection problem, 

which the wavelet transform is well-matched to address. 

However the additive noise contained in the communication signal results in phase noise, 

degrading the quality of the resulting pulse. Furthermore, the differentiating step increases the effects 

due to noise. Thus, we apply median filtering before and after the differentiating step to minimize 

these phase noise effects. The main advantage behind this filter is that it preserves the ramp and step 

behavior and eliminates outliers. The length of the median filter operation was selected in order to 

preserve the step discontinuities present in TCF(k, r) for fixed r. Further details may be found in 

Overdyk [63]. 

6.4 WAVELET TRANSFORM BASED DETECTION 

Edge detection is an important problem in numerous applications ranging from image 

processing to transient detection, and wavelet transforms have been used extensively for detecting 

discontinuities in a given signal or its derivatives.  Recall that wavelets may be used to detect 

discontinuities in a signal or its derivatives, if the chosen wavelet function is able to represent the 

highest order derivative present in the signal function, as any wavelet with, at least p vanishing 

moments, can be used to detect a discontinuity in the (p-l)81 derivative [46]. For our problem, we 

are interested in identifying pulse edges, i.e., a signal discontinuity, and the Haar wavelet is 

sufficient for the task. In addition, detecting discontinuities can be done quite simply using the 

decimated Version of the wavelet transform [46]. 

The presence of noise makes identification of discontinuities more complicated. In such a 
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case, the averaging of several scales can enhance the wavelet's ability to detect discontinuities in 

noise. The basic idea is that for true discontinuities, the spikes will line up, while those associated 

to noise will not [46]. As a result, we averaged the first two scales in our simulation to improve the 

robustness of the detection scheme to noise degradations. 

Figure 6.2a plots the result obtained by averaging the first two scales of the DWT applied 

to the unwrapped phase of the TCF expression for an analytical frequency hopping (FH) signal. The 

FH function has frequencies on either side of the hop, located at time sample 208,/7 = 6.250 MHZ 

andf2 = 22.727 MHZ. The SNR level is equal to 10 dB. Figure 6.2b illustrates the resulting wavelet 

transform of the pre processed phase of the TCF obtained at lag p=30. Figure 6.2b shows that the 

wavelet transform clearly detect the location of the pulse ends, as expected. Note that the width 

between each spike obtained from taking the wavelet transform of the TCF phase along the time axis 

k (i.e., for fixed lag time r) increases as r increases. The next step sums all the values which 

represent the edges of the cross-terms in the TCF in 45° and 135°directions so that they reinforce 

each other, as illustrated in Figure 6.3b. Figure 6.3c shows the "detection vector" obtained from this 

summation. Further details may be found in Overdyk [63]. Note that the resulting spike is located 

at the hopping time Thop=2C5. 

6.5    DETECTION SCHEME 

Once the detection vector has been formed, a decision must be made as to whether or not a 

hop has occurred within the frame. Experiments suggested that the variance of the detection vector 

would be the best indicator of whether or not a hop had occurred. As a result, the threshold, TAreshM, 

is chosen as a multiple, k, of the variance of the detection vector when no hop has occurred within 
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the frame. The threshold determination was also guided by the fact that the cost associated with the 

probability of a missed detection, Pm = [1 - probability of detection (PD)] far outweighs the cost 

associated with the probability of a false alarm, PFA, as the hopping time estimation is only the first 

step in a complete frequency hopping signal detection scheme. This is described in detail in the next 

paragraph. 

Note that once the hopping times are estimated, the signal frequencies need to be extracted 

to demodulate the actual message. This step can easily be done by applying frequency analysis to 

the estimated hopping intervals. Thus, in the case of false alarms, frequency analysis would show 

the same frequencies in two, or more, consecutive hopping intervals, resulting in no message 

degradation. However, a missed hopping time will result in degradations in the frequency estimation 

step, and errors in the decoded message. Receiver operating characteristics (ROC) curves were 

generated for six SNR levels and an appropriate threshold chosen for each. Further details regarding 

the choice of specific thresholds may be found in Overdyk [63]. 

6.6    DETECTION ALGORITHM AND RESULTS 

As stated earlier, it was desired to make as few assumptions as possible on the nature of the 

frequency hopping signal. With this goal mind the assumptions were limited to three: 

1. Known spread spectrum frequency range. This range was assumed to be limited from 

1 MHZ to 24 MHZ in the simulations conducted, 

2. Known minimum hopping time, T^^. This parameter was chosen to be equal to 256 

sample points in our simulations. At a sampling rate of 50 MHZ, this translates into a minimum 

hopping time of 5.12 us, 

3. Minimum frequency differential, Af, for frequency hops. This parameter was chosen to 
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be 1 Khz in our simulations. 

Detection Algorithm 

Using the tools described above, the algorithm steps for the detection and estimation of 

frequency hopping signals in noise can now be enumerated as follows: 

1. Transform the real signal into an analytic signal. 

2. Segment data into frames of length less than or equal to the minimum hopping time, 

ThoP_min- This assumption ensures that, at most, one hop will be present in the processing 

frame. 

3. Compute the temporal correlation function on each frame. 

4. Extract the TCF phase information and unwrap the phase along the time axis k. 

5. Apply a median filter to the phase of the TCF along the time axis k, of length 5. This step 

is done to reduce the noise effects prior to differentiating, since differentiating accentuates 

the effects due to noise. 

6. Differentiate the phase information along the time axis k. This step changes the 

unwrapped phase of the TCF from a ramp function to a pseudo-pulse. 

7. Apply a second median filter along the time axis k of length 25. The length of 25 has 

proven to work well with the Tkopmin chosen for our simulations [63]. This step is done to 

again remove the effects due to noise which were accentuated by the differentiation operation 

in step 6. 

8. Calculate DWTs along the time axis k (i.e., for each lag, T, of the TCF) using the Haar 

wavelet. This step is done to detect the discontinuities at the edges of the cross-terms region. 
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9. Average the wavelet coefficients of the first two scales of the DWT. 

10. Perform a 457135° summation across all values of lag, t, to obtain a detection vector 

which has time as its index, 

11. Threshold the data in the resulting detection vector obtained in step 10. When detected 

above the threshold, the maximum peak value time index represents the estimated hopping 

time. 

Simulation results 

Simulations were conducted to test the effectiveness of the detection and estimation 

algorithm given above. Five hundred trial experiments were conducted in six different signal to 

noise ratios (SNR) between -3 to 15 dB. The basic idea behind the experiments was to simulate 

signals that had already been segmented, as specified in steps 1 and 2 of the algorithm. The problem 

then becomes to determine: a) whether or not a frequency hop exists within the given frame; b) to 

estimate the hopping time when a frequency hop is detected. 

Communication signals were generated by choosing random hopping time, Thop, and hopping 

frequencies/},^ selected randomly in a predefined range. The resulting signal is a signal with, at 

most, one hop which can be from any frequency,/}, to any hopping frequency, such that 1 MHZ < 

f,f2z 24 MHZ. 

Table 6.1 shows the probability of detection, PD, the probability of false alarm, PFA, and the 

percentage of errors in classification for the selected threshold, T^^, at each of the six SNRs 

considered. Note the entries under the column labeled "A" represents a multiple of the variance of 

the detection vector generated from a "no hop" frame for each respective SNR level. The column 
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labeled "% Eiror" shows the percentage of mis classifications (i.e., the percentage of false alarms 

plus misses). Note, also, that the low probability of false alarm was sacrificed for higher 

probabilities of detection for reasons discussed earlier. For example, the entries in the row for SNR 

= 3 dB show that if a 11.4 % mis classification rate and a PFA=0.1961 can be tolerated, then we can 

expect to detect 89.53% of the hops in a given frequency hopping signal. 

Simulation results are shown in Table 6.2. The column labeled "Avg. Error" gives the 

average error obtained at each SNR level. For example, at the SNR level of 3 dB, out of all the hops 

which were detected, the average distance from the true hopping time was 10.48 sample points (i.e., 

4.1% of the minimum hopping time). Columns with numeric headings indicate the hop detection 

probability within a given percentage of T^^. For example, at the SNR level of 3 dB, the column 

labeled "1%" indicates that 36% of all detected hops were located within 1% of Thop miR or within 2 

points of the true hop time, Thop. Similarly, 72% of all detected hops were located within 5% of 

TkoP_min or within 12 points of the true hop time, Thop. 

6.7 CONCLUSIONS 

This section considered the application of temporal correlation functions and wavelet analysis 

to the detection and estimation of frequency hopping signals in additive white Gaussian noise. The 

algorithm developed has only two restrictive assumptions: 1) a minimum hopping time; 2) a 

minimum frequency differential. Thus, it can find applications where the minimum hopping time 

is not held constant; i.e., in time hopping signals and hybrid techniques involving either frequency 

hopping or time hopping. We showed how the detection problem can be formulated as an edge 

detection problem, and how wavelet analysis can be used in the hopping time detection problem. 
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Third, we introduced preprocessing techniques designed to improve the robustness of the detection 

and estimation scheme in noisy environments. Results show that the scheme is robust to noise 

degradations down to 3 dB. 

Although the algorithm developed succeeded in meeting its goals, improvements can 

potentially be obtained by taking advantages of the specific two-dimensional structure of the 

hopping pattern. Thus, a possible extension involves considering the problem as an image 

processing or pattern recognition problem, due to the specific triangular pattern generated by the 

TCF of frequency hopping signals. As a result, applying more sophisticated two-dimensional edge 

detection schemes may improve the robustness of the detection and estimation scheme to noise 

distortions. As in the first part (i.e., chapters 1-5), improvements in the estimation of the TCF (or 

ICF) will improve the performance of the estimation procedure, that is improve detection and 

estimation of hop times. Such extensions are left for further research. 
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SNR k Pd Pfa % Error 
15 dB 140 1 0 O.O 
10 dB 30 0.9866 0.O196 1.4 
6dB 15 0.9844 0.1569 3.0 
3 dB 11 0.8953 0.1961 11.4 
OdB 1 0.8129 0.3529 20.4 
-3 dB 3 0.6927 0.3333 31.0 

Table 6.1: Detection statistics of 500 experiments applying the detection and estimation algorithm. 

SNR 
(dB) 

1% 5% 10% 15% 20% 30% 40% 50% 75% 100% Q   Avg. Error 
I (# of samples) 

15 0.790 0.984 0.992 0.996 0.996 0.998 1.00 1.00 1.00 1.001       2.22 
10 0.726 0.964 0.974 0.978 0.982 0.986 0.986 0.986 0.986 0.9861      2.70 
6 0.558 0.888 0.926 0.940 0.950 0.960 0.968 0.970 0.970 0.9701      5.46 
3 0.360 0.720 0.758 0.794 0.828 0.862 0.874 0.882 0.886 0.8861     10.48 
0 0.116 0.302 0.418 0.510 0.572 0.684 0.752 0.768 0.796 0.7961     28.48 
-3 0.090 0.174 0.276 0.382 0.456 0.568 0.614 0.646 0.686 0.690|     30.99 

Table 6.2: Estimation statistics for the 500 experiments at each SNR level using the detection and estimation 
algorithm described in Section B. Columns with numeric headings, show the probability that estimated hops 
are found within a given distance, expressed in percentage of T^pjon, from true hopping times. 
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7.   CONCLUSIONS AND RECOMMENDATIONS 

7.1   CONCLUSIONS 

Wavelet analysis of 2-D correlation functions is a new area of investigation. It can be 

applied to the interception of communication signals. This work aims at applying wavelet 

analysis to the instantaneous correlation function to identify frequency hopped signals. The 

instantaneous correlation function (ICF) of the complex-valued FH signal is shown to have a 

cellular (diamond) pattern, where each hop generates one main diamond structure. Inside a given 

diamond, the ICF of the signal consists a single complex exponential component representing the 

hop frequency in the delay direction and some noise. In the time direction, inside a given 

diamond pattern, the wavelet transformed data tends to be a constant perturbed by noise. The 

intersections of the diamond with the time axis determine the hop start/stop times while the 

width of a given diamond corresponds to the hop interval. 

The wavelet transform of the ICF surface generates a number of surfaces. The wavelet 

surface, at any scale, emphasizes the frequency hops which reside there and attenuates spectral 

components that do not belong to the particular scale (i.e., bandpass filter) under consideration. 

If we apply the wavelet transform along the delay axis, we can address the interception 

problem in two different ways. We can visually inspect the wavelet surfaces to identify and 

classify based on the structure the modulation due to an FH signal. This also allows to obtain a 

rough estimate of the hop time interval. Alternatively, we can apply a processing scheme which 

can be used to automate the interception task. This processing scheme estimates the hop 

start/stop times, the hop-scale pattern, and the hop frequency. 

The estimation of the hop start/stop times can be addressed using an edge detection 

approach. We applied a compass operator to find edges in the wavelet filtered ICS. The hop scale 
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pattern is obtained by applying an energy analysis. 

The frequency of each hop can be extracted from the wavelet surface at the proper scale, 

or from the original time data using the hop time parameters. 

Visual inspection of the wavelet surfaces permits the identification of FH signals at SNR 

levels of 3 dB and above. Other modulation schemes such as ASK, PSK, and MFSK will only 

have cellular patterns on one of the wavelet surfaces, that is their frequency bandwidth does not 

span more than one wavelet scale. Hop timing estimation shows that the hop start/stop times 

can be estimated with an accuracy of 12 to 17.5 per cent at SNR levels of 6 dB or better. 

The performance of longer duration wavelets is better than that of shorter ones since 

longer wavelets have better spectral energy concentration than shorter ones. The success rate of 

frequency estimation from the wavelet surfaces showed that the probability of correct frequency 

estimation from the wavelet surface is 1.0 for input SNR's of 0 dB and above. A frequency 

estimation success rate of 1.0 requires an SNR level of-3 dB or about -3 dB to -5 dB using the 

time data directly or wavelet surfaces, respectively. The minimum SNR required for an 

automated estimation of hop times is 6 dB. 

Processing along the time axis allows detection of the transition times of frequency 

and time hopped signals. The current implementation is limited to work with one 

transition per observation interval but permits robust detection at an SNR of 3 dB. 

7.2       RECOMMENDATIONS FOR FUTURE WORK 

There are other ways to define or estimate the instantaneous (or temporal) correlation 

function. A study to evaluate different candidate ICS (or TCS) should be performed. 
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For processing of the ICS along the delay axis we recommend the following: 

i)  Refine the automatic recognition of the cellular structure of the FH signal over the wavelet 

surfaces. 

ii) Improve the performance of the hop-scale identification at lower SNR by reexamining the 

equalization of the spectrum of the ICF surfaces. 

iii) Investigate other wavelet types, and the use of other definitions for the instantaneous 

correlation function, 

iv) Combine information from different wavelet surfaces to improve parameter estimation. 

For processing the ICS along the time axis we recommend investigation of extensions for 

successful operation when more than one transition (jump) is present during the observation 

interval. 

Finally, both approaches, transformation over time and delay, will benefit from an 

improved edge detection scheme. This problem should be addressed in more detail. 
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