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Abstract 

This paper describes a technique to accelerate diagnostic 
fault simulation of sequential circuits using fault sampling. 
Diagnostic fault simulation involves computing the indistin- 
guishability relationship between all pairs of modeled faults. 
The input space is the set of all pairs of modeled faults, thus 
making the simulation computationally intensive. The di- 
agnostic simulation process is accelerated by considering a 
sub-space of the input space that is obtained using fault sam- 
pling. Results on performance speedup and diagnostic res- 
olution loss are provided for the ISCAS 89 benchmark cir- 
cuits. 

1   Introduction 

The aim offault location or diagnosis is to locate device fail- 
ures. For diagnosis, test sets need to distinguish between as 
many faults as possible. Efficient generation of diagnostic 
test vectors requires a fast diagnostic simulator capable of 
determining the diagnostic capability of a given test set. Re- 
cent developments in diagnostic fault simulation have pro- 
vided significant speedups [1,2]. However, the complexity 
and the size of the problem requires considerable further per- 
formance gains before very large circuits can be evaluated. 
This paper describes an approach to speed up the diagnostic 
fault simulation of sequential circuits using fault sampling. 
The diagnostic simulation process is accelerated by consid- 
ering a sub-space of the input space. The two key questions 
of speed up and accuracy of the diagnostic measures are ad- 
dressed. The sampling process is intended to determine the 
diagnostic quality of a test set. However, it does not identify 
if a specific pair of faults are distinguished. 
During fault simulation of a circuit from an unknown state, 
a good or faulty sequential circuit can produce a 0,1 or X 
on each primary output for each test vector input, where X is 
an unknown value whose actual binary value depends on the 
initial state of the machine. If fault simulation indicates that 
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a fault fi produces an output of 0 and another fault fj pro- 
duces an output of 1 on the same primary output for the same 
input vector, then the faults /, and fj are said to be distin- 
guished. However, if a fault fi produces an output of 0 or 1 
and another fault fj produces an output of X, then the faults 
fi and fj may possibly not be distinguished. Therefore, the 
pessimistic assumption is typically made that an output of 1 
or 0 is indistinguishable from an output of X. 
Diagnostic Power (DP) is the fraction of faults that are fully 
distinguished [3]. A fault is fully distinguished if the test set 
distinguishes it from every other fault in the fault list. Diag- 
nostic Expectation (DE) [4] is the average size of the list of 
faults indistinguishable from any fault, given that all faults 
are equally likely to occur. 
Diagnostic fault simulation is the process of determining 
these measures. Diagnostic fault simulation for sequential 
circuits by Rudnick et al. [5] uses a distinguishability matrix. 
The distinguishability matrix is an /-by-/ matrix, where / 
is the number of faults. An entry of 1 indicates that the two 
faults specified at the intersection of the row and column 
are distinguished by some sequence of test vectors in the 
test set. It requires 0(/2) space, and the time complexity is 
0(v • o • f2), where v is the number of vectors in the test 
set, o the number of outputs in the circuit and / the num- 
ber of faults. It is obvious that the computational require- 
ments increase considerably with the increasing number of 
simulated faults. Recently a diagnostic fault simulator for 
stuck-at faults in sequential circuits was developed that is 
both time- and space-efficient [2]. The representation is dif- 
ferent from earlier work in that it does not explicitly store the 
indistinguishability relationship between all pairs of faults 
but represents the indistinguishability relationship between 
classes of faults. Each fault is present in only one of the 
classes. 
Although sequential diagnostic fault simulation has made 
important performance gains, it still needs significant CPU 
time to complete the entire diagnostic simulation for the 
largest benchmark circuits. Fault Sampling [6,7,8] has been 
proposed as a technique that reduces the cost of fault simu- 
lation by simulating only a random sample of faults. How- 
ever, this strategy cannot be directly applied to diagnostic 
fault simulation since the indistinguishability relationship 
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Table 1: Output Responses of an Example Circuit 
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Figure 1: Input Space and The Sampled Sub-Space 

between pairs of faults needs to be determined. Chakravarty 
[9] proposed a sampling technique for diagnostic simulation 
by sampling the equivalence classes. This technique cannot 
be directly used to sample the indistinguishability classes for 
sequential circuits since a fault may be present in multiple 
indistinguishability classes. 
In this paper a sampling technique to perform diagnostic 
fault simulation of sequential circuits is proposed. The in- 
put space for diagnostic fault simulationis the set of all pairs 
of faults (F x F), where F is the set of all modeled faults. 
The sampling technique uses a sub-space (Fs x F) of the 
input space, where Fs is a set of sampled faults. This is il- 
lustrated in Figure 1. Sampling is performed by maintaining 
the sets of faults indistinguishable from each of the sampled 
faults. The sampling procedure identifies classes of faults 
that need to be maintained to determine these sets. The rest 
of the classes are dropped to speed up the simulation. The 
variance in the estimation due to sampling is also investi- 
gated. 

2   Diagnostic Fault Simulation 

In the following the diagnostic fault simulation procedure 
[2] is summarized. First the definitions and concepts essen- 
tial to understanding the simulation are given. 

Definition 1 Two faults fi and fj are indistinguishable with 
respect to a test set T, if for every primary output and every 
input vector, either one (or both) of the output values of fi 
or fj is an X, or both the output values are not X but are 
the same. 

Definition 2 Two faults fi and fj are diagnostically equiv- 
alent with respect to a test set T, if for every primary output 
and every input vector, output values of fi and fj are the 
same. Here an X response is considered a different response 
from a 1 or a 0 response. 

Definition 3 A diagnostic equivalence class is a set of faults 
such that every pair of faults in the class is diagnostically 
equivalent by definition 2. 
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Definition 2 defines an equivalence relation over the set of 
faults F, and partitions F into sets of diagnostic equivalence 
classes. Each fault /{ G F is present in only one diagnos- 
tic equivalence class. The faults within a diagnostic equiv- 
alence class cannot be distinguished by the given test set. 
However, these faults may not be equivalent in the boolean 
algebraic sense. However, definition 1 does not define an 
equivalence relation. A fault fi G F may be present in more 
than one indistinguishability class. 

Definition 4 An indistinguishability class is a set of faults 
such that every pair of faults in the class is indistinguishable 
by definition 1. 

Table 1 gives the output responses of an example circuit with 
3 primary outputs, 7 faults and 2 test vectors. The good and 
7 faulty circuits are considered. The diagnostic fault simula- 
tion procedure can be explained using the notion of a diag- 
nostic tree. A diagnostic tree is a connected, directed acyclic 
graph. A level in a diagnostic tree corresponds to one simu- 
lated test vector, while an edge in the tree corresponds to one 
set of distinct primary output values after the correspond- 
ing vector is simulated. Each node represents a diagnostic 
equivalence class. The diagnostic tree for the example cir- 
cuit of Table 1 can be seen in Figure 2. 
It is possible for two faults in two different diagnostic equiv- 
alence classes to be indistinguished due to the X values gen- 
erated during sequential circuit simulation starting from an 
unknown state. Such faults and their diagnostic equivalence 
classes are said to be potentially distinguished. This is rep- 
resented using a potentially distinguished pointer between 
the two classes. For example, in Table 1, fault (/3) with 
a response XIX, and faults (/2, /4, ft) with a response 
0X1 on test vector ul, cannot be declared as distinguished 

Figure 2: Diagnostic Tree for the Example Circuit 
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as there is no primary output with a response of 1 for one 
class and 0 for the other. 
The diagnostic simulator simulates the test vectors and gen- 
erates new diagnostic equivalence classes and potentially 
distinguished pointers between these classes corresponding 
to each new test vector. Figure 3 illustrates the diagnostic 
simulation process. The diagnostic measures are then com- 
puted as follows. The DP is computed as 

_ (#o/ uniquely distinguishable faults ) 
= (Total # of faults ) 

The DE is computed as 

DE=     £ 
V faults f 

# of faults indistinguishable from f 
total # of faults 

(2) 

During diagnostic fault simulation based on three-valued 
logic, if a fault /l has a response X and a fault /2 has a re- 
sponse 1 (or 0) on the same output, then we cannot distin- 
guish /l and /2 with certainty. The pessimistic assumption 
made is that the two faults are indistinguishable [5]. Mea- 
sures based on this assumption are pessimistic measures. As 
opposed to this, optimistic diagnostic measures make the as- 
sumption that the response X is different from a 1 or 0, i.e., 
faults with a response X are considered to be distinguished 
from faults with a response 1 or 0. The pessimistic measures 
and optimistic measures are the lower and upper bound of 
the actual diagnostic capability of a test set. 

3   Sampling Technique 
Consider the distribution of the number of faults indistin- 
guishable from each fault /, in the set of modeled faults F 
= {/i> /2, • ■ •) IN}- Figure 4(a) shows an example distribu- 
tion. Here U refers to the set of faults indistinguishable from 
fault fi (including the fault fi). The diagnostic fault simu- 
lator implicitly represents this distribution in the diagnostic 
equivalence classes and potentially distinguished pointers as 
shown in Figure 4(b). 
This distribution (with finite population size N) induces a 
probability distribution function P{X), which is defined in 

- - 5=-  Potentially distinguished pointers 

Figure 3: Diagnostic Fault Simulation 
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Figure 4: Distribution of Indistinguishable Faults 

Equation 3. Here |S| refers to the cardinality of the set S. 
The random variable X is the value of \Ij | obtained by pick- 
ing a fault fj at random from the set of modeled faults F. 
The expected value p = E(X) of this random variable X is 
the diagnostic expectation of the test set as shown by Equa- 
tion 4. 

P(X = i) = K/i = |Jjl = OI 
N 

for\<i<N     (3) 

N r" IM 
E{X)    =   Y,XiP(XJ=     % 

i=l 

=     Diagnostic Expectation (DE)     (4) 

Consider the random variable Y defined by Equation 5. The 
probability distribution function of Y is given in Equation 6. 
The expected value of this random variable E(Y) is the di- 
agnostic power of the test set as shown in Equation 7. 

Y(f)-l l   iflJil = 1 (5) yU*>-\ 0   if|7i|^l W 

P(Y = 1) \{fj ■■ \Ii\ = 1)1 
N 

(6) 

N 

E(Y) = J2Yip(Yi)= Diagnostic Power (DP)  (7) 
i=l 

A simple random sample of size n is picked without replace- 
ment from the set of N modeled faults. The sample mean 
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given by X = £(-Xi H h Xn) can be used as an esti- 
mator for the value of the diagnostic expectation. Similarly, 
the sample mean given by Y = i(Yi + • • • + Yn) can be 
used as an estimator for the value of the diagnostic power. 
The expected value of X, E(X) = E(X), and the expected 
value of F, E(Y) = E(Y). Thus, X and Y are consistent 
estimators for diagnostic expectation and diagnostic power 
respectively. The Xi and Yi values can be obtained from the 
sets of faults indistinguishable from each of the n sampled 
faults. 

3.1   Sampled Diagnostic Simulation 

Although conceptually simple, sampling cannot be done di- 
rectly during diagnostic simulation of sequential circuits for 
two reasons. The set of faults indistinguishable from a given 
fault is not explicitly maintained.   Further, the complete 
distribution is obtained only after processing all test vec- 
tors. The diagnostic simulation procedure is modified as fol- 
lows. After each test vector is processed to generate new 
equivalence classes and potentially distinguished pointers, 
the faults indistinguishable from each of the sampled faults 
are determined. For each of the sampled faults, the follow- 
ing computation is performed. The faults in the diagnostic 
equivalence classes containing the sampled fault are indis- 
tinguishable from the sampled fault. Further, faults in equiv- 
alence classes that are potentially distinguished from this 
class are also indistinguishable from the sampled fault. All 
such equivalence classes, their corresponding faults and po- 
tentially distinguished pointers, are marked. The unmarked 
equivalence classes and their corresponding faults are dis- 
tinguished from all the sampled faults. Thus, the unmarked 
equivalence classes, their corresponding faults, and the un- 
marked potentially distinguished pointers are not required 
for computing the sets of faults indistinguishable from each 
of the sampled faults, and can hence be dropped during sim- 
ulation. This speeds up the simulation process. 
Figure 5 illustrates the sampled diagnostic simulation. Con- 
sider the set of modeled faults F = {/i, /2, • • •, fa}- Fig- 
ure 5(a) shows the distribution of the faults indistinguish- 
able from each of the faults in F. The sampled set is Fs = 
{fa, fa}. One level of the diagnostic tree is shown in Fig- 
ure 5(b). The classes {/i,/e} and {/3} contain the sam- 
pled faults and are hence marked. The class {fa} is poten- 
tially distinguished from {/3 } and is hence marked. The po- 
tentially distinguished pointers from class {fa, fa} to class 
{/s}, and from class {fz} to class {/s} are marked. The 
class {fa, fa, fa} and the potentially distinguished pointer 
from class {fa, fa, fa} to class {fa} are unmarked and can 
be dropped from the simulation. 

3.2   Sampling Variance 

In the case of simple random sampling without replacement 
from a finite population of size N, the variance of the sam- 
pling distributions X and Y are given by Equation 8 [10]. 
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Figure 5: The Sampling Process 

Here, a\ and a2, are the variance of the distributions of the 
random variables X and Y respectively. The variance of the 
sampling distributions X and Y are a measure of the ex- 
pected estimation errors for diagnostic expectation and di- 
agnostic power respectively. 

a2N 
variX) = —^- ——- and var(Y) v   '       n  N -1 v   ' 

ay N — n 

~~n N-l 
(8) 

ay can be expressed as a function of DP. From Equations 5 
and 7 it follows that E(Y2) = E(Y) = DP. Hence of = 
E(Y2) - p2 = DP{\ - DP). Thus the variance of the 
estimated diagnostic power is given by Equation 9. 

var(Y) = —-— 
n N-l 

±.DP(l-DP){l-jj)   (9) 

The accuracy of the estimate depends on three factors: the 
absolute size of n, the relative size of n/N, and the value of 
DP. In a manner similar to that in the analysis by Agrawal 
[6], the estimated DP (Y), for large N, can be approximated 
by a normal distribution with mean fiy = E(Y) = DP, and 
variance a2

T=var(Y). For large values of N (N ^- n), n/N 
can be approximated to 0. This is true for the realistic case of 
large circuits with large values of N and small sample sizes. 
The accuracy now depends on the size of n and value of DP. 
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For a confidence level of 99.7 percent, the estimated diag- 
nostic power is in the interval [DP — Scry, DP+3ay]. The 
estimation error is almost certainly bounded by Say. Thus, 
from Equation 9, the maximum error is given by emax = 
3 x y/DP(l — DP)l/n. The worst case occurs when DP 
= 50%. For this case a sample size of n=1000 ensures a max- 
imum error of 5% [11]. 

4 Experimental Results 

The sampling technique was implemented on top of the di- 
agnostic fault simulator (RAPSIM) [2]. The sampled diag- 
nostic fault simulator was run on a SUN SPARCstation 20 
with 64MB of memory for the ISCAS89 benchmark circuits 
[ 12] and a synthesized circuit piirS which is an 8-bit IIR DSP 
filter. The diagnostic capabilities of the test set generated by 
HITEC [13] were evaluated. All large benchmark circuits 
were considered. Partial scan versions of sl3207, sl5850, 
s38417 and s38584 were used to get deterministic test sets 
with reasonable fault coverage. Strictly undetected faults 
(faults that have the same response as the good circuit for 
the test set) were removed using fault simulation with fault 
dropping. These faults form one large diagnostic equiva- 
lence class. The rest of the faults were considered for the 
full and sampled versions of the diagnostic fault simulator. 
Table 2 gives the execution time for full diagnostic fault 
simulation (n=all) and the speedup for varying sample sizes 
(500, 1000, 1500). Note that the largest circuit takes about 
5 hrs of CPU time for full diagnostic fault simulation. The 
execution time for the sampled simulation is the average of 
ten executions performed using different seeds for the ran- 
dom number generator. As expected, the simulation time 
required decreases with smaller values of n. For the three 
largest circuits, a sample size of 1000 faults speeds up the 
simulation by a factor of 6 on the average. 
Table 3 shows the diagnostic measures for the full diagnos- 
tic simulation (n=all) and the estimated diagnostic measures 
for varying sample sizes (500, 1000, 1500). The estimated 
diagnostic measures are the average often simulations. The 
error between the exact and estimated diagnostic measure is 
expressed as a percentage. As expected, the error decreases 
with increasing sample size. Note that the error for DP is 
less than 5% for a sample of 1000 faults, as predicted. The 
error for DP power is about 1% on the average for a sam- 
ple size of 1000 faults. The error for DE is about 2% on the 
average for a sample size of 1000 faults. The sampled diag- 
nostic simulation also has lower memory requirements than 
full diagnostic simulation. 

5    Summary 

A sampling technique for diagnostic fault simulation of se- 
quential circuits has been described. The sampling tech- 
nique uses a sub-space of the input space.   Sampling is 

Table 2: Execution Time Speedup by Sampling 

Circuit Test Faults Sample Average Speedup 
Vec. Size Exec. 

Time (s) 

sl3207s 2753 6766 n=all 2081.55 
n=500 820.2 2.5 

n=1000 1122.8 1.8 
sl5850s 2119 8453 n=all 1902.4 

n=500 565.5 3.3 
n=1000 738.2 2.5 

piir8 347 16613 n=all 1178.8 
n=500 368.2 3.2 

n=1000 510.0 2.3 
n=1500 602.1 1.9 

S35932 383 34417 n=all 4099.5 
n=500 446.8 9.1 

n=1000 561.8 7.3 
n=1500 695.2 5.9 

s38417s 3499 21586 n=all 14195.8 
n=500 2390.7 5.9 

n=1000 3541.0 4.0 
n=1500 4060.2 3.5 

s38584s 3002 31528 n=all 18217.0 
n=500 2178.8 8.3 

n=1000 2964.2 6.1 
n=1500 3747.3 4.9 

performed by maintaining the sets of faults indistinguish- 
able from each of the sampled faults. The sampling proce- 
dure identifies classes of faults that need to be maintained 
to determine these sets. Experimental results show that the 
method obtains good speedups by considering a fixed sam- 
ple of about 1000 faults and using a simple random sample. 
The procedure results in a small loss of accuracy in the re- 
sulting diagnostic measures. The variance in the estimation 
is investigated theoretically and experimentally. For a small 
sample size of 1000 faults the error in the estimation of the 
diagnostic measures is about 2% on the average. 
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