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GUIDING CENTER HAMILTONIAN THEORY 
OF FREE-ELECTRON LASERS 

Celso Grebogi* and Han S. Uhm 
Naval Surface Weapons Center 

White Oak, Silver Spring, Maryland 20910 

ABSTRACT 

The relativistic guiding center ponderomotive Hamiltonian for free- 

electron lasers is derived.    The derivation takes into account arbitrary 

signal wave polarization and wiggler field geometry including guide field 

nonuniformities.    In particular, it is allowed (i) for a tapered axial  guide 

quasi static magnetic field along its direction of propagation,  (ii)  for a 

realizable wiggler to be tapered both in amplitude and in period, and (iii) 

for the signal  electromagnetic wave to be a growing modulated wave of 

arbitrary geometry propagating in the direction of the static magnetic 

field.    The equations of motion are then derived including the guiding center 

perpendicular drifts and beam quasi static self-fields. 

♦Permanent address:    Laboratory for Plasma and Fusion Energy Studies 
University of Maryland 
College Park, Maryland    20742 



I.     INTRODUCTION 

In a previous paper1   (henceforth referred as  "I"), a general  expression 

for the relativistic ponderomotive Hamiltonian of two interacting 

electromagnetic waves was derived.    It was found that relativistic effects 

introduce new terms in the expression for the ponderomotive Hamiltonian 

similar to those found earlier2 in the case of a single electromagnetic 

wave.    The derivation in "I" was as general  as possible.    It was allowed for 

arbitrary kp, E„/Eif w/fl, k±/kB. v/c < 1, polarization, and for slowly growing 

and spatially modulated waves.    It was necessary to use Hamiltonian theory in 

order to account for all that and to introduce nonuniformities in the 

background fields in a systematic way.    The calculation was an application of 

relativistic guiding center theory2 modified by the averaging over the two 

interacting electromagnetic waves. 

The theory developed in "I" is suitable for free-electron lasers3 with a 

guiding magnetic field in which the gyrpperiod is comparable to the period of 

the signal wave and to the time it takes for the electron beam to travel  one 

wavelength of the wiggler [a ~ <o ~ k    U ].   This is the FEL operating regime 
w» 

which gives maximum efficiency.1*    The guiding center theory of the nonlinear 

response of a relativistic particle beam in a guide magnetic field to the 

signal wave and the wiggler field has not been adequately treated in its 

generality.    In this work, we reduce the general   relativistic ponderomotive 

Hamiltonian expression obtained in  "I" to free-electron lasers and derive the 

equations of motion. 



We should mention that the Hamiltonian formulation of free-electron 

lasers has the advantage of expressing the vector evolution equations in terms 

of a single scalar function on phase space. Furthermore, since the guiding 

center equations have been averaged over gyrations, they are much more 

suitable for use in numerical integrations and simulations of free-electron 

lasers. Namely, instead of integrating along the gyrating trajectories for 

each of the electrons in the beam, it is possible now, for the averaged 

equations, to take a two orders of magnitude larger integration steps with 

equivalent savings in computer time. In addition, because the guiding center 

transformation has been done in the Hamiltonian, the derived equations 

conserve phase volume exactly and thus enhancing the equations predictability 

power. Finally, although we are dealing with single particle motion, the 

derivation of the averaged Hamiltonian is the major part of the work for a 

derivation of the nonlinear relativistic gyrokinetic equation for two 

interacting waves. Once we have the ponderomotive Hamiltonian for the free- 

electron laser in a guide magnetic field, the Vlasov equation for the 

distribution of guiding centers F in the Poisson bracket form 

f +{F. K}-0, 

is the gyrokinetic equation.      This will  be reported in the future. 

In Sec. II, we present a summary of the essential  results derived in 

"I".    Because the formulas presented here are so general we can reduce them to 

arbitrary signal  wave polarization and any wiggler field geometry including 



guide field nonuniformities. Hence, in Sec. Ill, as an illustrative 

application of our theory, we obtain the guiding center relativistic 

ponderomotive Hamiltonian for free-electron lasers by considering: 

(i)    the axial  guide quasistatic magnetic field to be tapered6 along its 

direction of propagation; 

(ii)    the realizable7 wiggler field to be tapered8    both in period and 

amplitude; 

(iii)    the signal electromagnetic wave to be a growing modulated wave of 

arbitrary geometry propagating in the direction of the static guide 

field.9 

In Sec.  IV., we derive the guiding center free-electron laser equations 

of motion for the Hamiltonian derived in Sec.  III. including the guiding 

center perpendicular drifts and beam quasistatic self-fields.    A conclusion is 

presented in Sec. V. 



II. RELATIVISTIC PONDEROMOTIVE HAMILTONIAN 
 OF TWO INTERACTING WAVES 

As derived in "I", the two electromagnetic waves are represented by their 

scalar and vector potentials * and A in an arbitrary gauge. They are assumed 

to have the form 

2        i>.-(x,t) 
♦(x,t) = I  ♦1(x,t)e  "  + c.c, da) 

i=l 

and 

A(x,t) = I A.(x,t)e 1 "  + c.c, (lb) 
i=l 

where the over-tilde represents the slowly varying amplitude of the wave 

packet. The local wavenumbers kj and k? and frequencies ^ and u^ of the 

waves are given by 

k.(x,t) = Vij;.(x,t),  i = 1,2, (2a) 

and 

3f.(x,t) 
^(x.t) = %i '  i = 1,Z' 

The relativistic particle Hamiltonian is given by 

(2b) 



H(x,p)  = {m2c4 + c2[p - | An(x,t)  - | A(x_,t)]}V2 

+ e*0(x,t) + e<t>(x,t), (3) 

where we allow the unperturbed fields, as given by <j)Q and AQ, to be slow 

functions of position and time.    Physically, this means that the scale length 

of the spatial  inhomogeneities in $Q and AQ (or Efl and BQ) are smaller than 

the gyroradius, which is the standard approximation in guiding center theory 

and true in free-electron lasers.    In addition, it means that we allow 

<j>n and An to change appreciably on a drift time scale. 

Because we are interested in the ponderomotive Hamiltonian, which is a 

second order effect, we expand  (3)  up to second order in the waves 

amplitudes.    The result is 

where 

H = H0 + H1 + H2, 

H0 = ed>0 + mc2Y0, (4a) 

Hi - e* - Y^ % " 4. 
(4b) 

and 

H2 =-^V[A2 --ry(«0- ti2]- (4c) 
2y0mcZ yd

Qc
d 



As discussed in Ref. 2,    we introduced a velocity-like variable uQ by 

mÜ0 = 2 " c -0 = m- + c -> 

where u = YV is the world velocity and 

Ynmc2 is the energy of the injected relativistic beam.    The introduction of 

un allows us to exhibit the perturbation in the Hamiltonian explicitly instead 

of in the Poisson brackets. 

Next we transform the Hamiltonian (4) to the relativistic guiding center 

variables, by the transformation (x,uQ) ■»■ (X,UB ,M,0) .   The first three 

variables X represent the location, in physical  space, of the particle's 

guiding center.    The variable Un is called the parallel world velocity of the 

guiding center; it is, except for the relativistic factor, the parallel 

guiding center drift to lowest order in the waves fields.    The next variable 

u is the magnetic moment and is related to the perpendicular guiding center 

drift by y = muJ/2B0, where U± is essentially the gyrophase average of uQ . 

Finally, e is the gyroaveraged gyrophase whose time-derivative to lowest order 

is the local  relativistic gyrofrequency.    The new guiding center variables are 

defined by2 

mcun 

X = x - e 
eBn 

ia+0(e2)., (5a) 

U.  = un   + 0(e), (5b) 
ull 



2 
mu0( 

»=-OTT + 0(e), (5C) 
2B0 

and 

0=9+ 0(e), (5d) 

where the fields are evaluated at (x,t) and e is the dimensionless parameter 

which indicates the order of various terms in the guiding center expansion. 

Since in this section we are presenting only results, we will set s = 1 from 

now on to recover the physical formulas. The instantaneous gyrophase 9 is 

defined implicitly by 

a = cos 9T. - sin9x?, (6a) 

and 

c = - sin9-r, - COS9T2# (6b) 

A A A 

The perpendicular unit vectors a and c rotate with the particle, a is in the 
A A A 

direction of the gyroadius as given by (5a)  and c is given by uQ = uQ b + uQ c, 
A A   A   A A        A        A II X 

where b = Bn/Bn. The triad (a,b,c) obeys a = b * c. The perpendicular unit 
A A A 

vectors do not rotate with the particle and satisfy x. * T? = b. They have a 

slow dependence on (x,t) since BQ itself does. 

For the Hamiltonian structure to be complete we need the Poisson brackets 

among the relativistic guiding center variables. The guiding center variables 

are noncanonical and the nonvanishing Poisson brackets are given by11 

k 



and 

'I! 

{X,U„} =-VB.;, (7b) 
mBo„ 

{e,u}=^, (70 

A A 

where ^ • is the tensor dual to the unit vector b [b^. T. = - (b x T)i for 

* 
any T] and Bn is defined by 

§o  - Bo ♦^«.'-£Cx)! «) 

and V = 3/3X.    The Poisson brackets are exact to all  orders in e.    In terms of 

the fundamental  Poisson brackets (7), the Poisson bracket of two arbitrary 

phase functions f and g is given by the chain rule2  : 

{f,g}  - - -V b •  (Vf x vg) + -V B0 •  (Vf fth - vg If) 
eBn mBn II H 

ull UU 

+ e_ fills _ illi)      . (9) 
mc ^30 3y      3y 30J * ' 

This formula will  be useful  in deriving the equations of motion from the 

guiding center Hamiltonian. 

In terms of the guiding center variables  (5), the unperturbed Hamiltonian 

(4a)  becomes 



H0 = e*0 + mc2r, (10) 

where 

mc c 

The first order Hamiltonian  (4b)  is given by the following Fourier expansion1 

2    + - i4>.(X,t)+U[9 + a.(X,t) +i] 
H. =   I     I     {H.    e    " " d + cc}, (12) 

1 i=l   £ = -» ^ 

where H.    is the 4th 9-Fourier coefficient of the first order perturbation due 

to the ith wave and a.(x,t) is the angle between k.    and x,.   We introduce the 

triads  (k.   , b * k.   , b)  for i  = 1, 2, in which k.    = cosa.  T] + sin a.  x^ 

The Fourier coefficients are then given by 

«1    " -1 *1  "I V ^A" +TTlU\ + 2iy TT > X \)]' (13) 

where j! s j (k. P), P = (3^)1/?, Q = j£, and V,t = U,/r.    As for the second 
l e 8n 

order Hamiltonian, we only keep the slow terms in Fq. (4c)  since we are 

interested in the ponderomotive Hamiltonian.    We average over gyration and 

oscillation of both waves but keep the slow beating terms of the form 

explf+jCx.t) - *2(X,t)]. The result is1 

»S»  " "A UÄl|2+|A2|
2 + JnC^xP)   [?l   '  V0"1   " ^    + CC]     (14) 

*     i (i|(.   - ij;   ) 

+ -V KwB   + mU2)  [|Ä    |2+|A    |2 + J^Ak^)^    • A2    e 
mc 11 11 

+ cc) + 2uBn [|A,   |2+|A9  |2+ J (Ak P)(A,  A?*e     1    2 + cc)]}), 

10 



where Ak.  = [k?    + \&    - 2k,  k„    cos(a   - a )] k   and we made use of the 

Bessel  identity 

+ «     i*(a,   - O 
I      e       X       l    J Ckxp) J (k2p)  = J0(AkiP). 

At this point we subject the Hamiltonian H = HQ + Hj + H2 to an averaging 

transformation to eliminate gyration and fast oscillations contained in Hj but 

keeping the beating terms expl^. - i|>2). This canonical transformation is effected 

by using Lie transforms which leads to the following 0-independent Hamiltonian 

K = KQ + K2, (15) 

where Kg = Hg as given by Eq.  (10), or 

Kg = e<j>g + mc2r, (16) 

and the ponderomotive Hamiltonian K2 contains two parts 

K2 = K* + KJJ. (17) 

The first part Y! = H2 which is given by Eq. (14).    The second part comes from 

the canonical transformation of H^ and can be expressed as1 

,       ,2    1 *    1(*i-*?)
+ H(a,-a ) 

2      +. 
ki lHi   l+ilH,  H?e ' + c.c] 

b_   f.       r    rfl i_ + __i _L_1        * *    l 

2      4S  » mc 3u       m   3U/ w.  - k.    V„ - £Q 
1 = 1    *=-°° II T II 

(18) 

11 



Where H,    and H„    are given by Eq.  (13).    It is possible to absorb 
A *       * 

expU(a,  - a )  into H?  .    In this case the triad of unit vectors for both 

waves is (k,   , b * k1   , b)  in which we drop the subscript 1. 

12 



III.    RELATIVISTIC PONDEROMOTIVE HAMILTONIAN 
FOR  FREE-ELECTRON  LASERS 

We consider a relativistic electron beam propagating in the tapered guide 

field Bn = 8n(Z,t)b.    The free-electron laser effect results from the bunching 

of the beam due to the beating of the signal wave, represented by the 

potentials 4    and A , and the magnetostatic wiggler A .    For the purpose of 
s -s -« 

illustrating our theory, we reduce the relativistic guiding center Hamiltonian 

of two interacting waves, as given by Eqs. (13) - (18), by assuming the 

following signal  and wiggler fields geometry: 

(1)    The signal electromagnetic wave is a growing modulated wave of 

arbitrary geometry propagating in the Z direction. 

1/ [ks (Z')+ nkw (Z')]dZ'  - Tut 

A.(X,t) = I \ (X,t)e °       " " + cc. (19) 
"5 " n ~bl " 

and 

Z 
1/ [ks (Z') + nkw (Z')]dZ'   - 1»t 

♦e(X,t)  = I ♦.(X.t)e    Oil + c>c#j      (20) 
n    s 

where the sum is over the wiggler harmonics and the subscripts l and a 

indicates perpendicular and parallel to the local  b, respectively. 

(2)    The realizable wiggler field is tapered both in period and amplitude 

13 



1/ k    (Z')dZ' 

fiw(jf.t) Aw (X,t)e 
0    WH + c.c, (21) 

As indicated by Eq.  (17), we split the ponderomotive Hamiltonian in two 

parts.    The first part id is given by Eq.  (14)  and its  reduction for free 

electron lasers is straightforward by identifying, say, A^  = Ag and A^ = Aw. 

Then for the signal  and wiggler fields, as given by Eqs. (19) and (21), 

Jn(Ak,p) = 1 and we obtain 

K2     „„2 
I2.IT    |2 a    e2 O-^tßsNil5 

rmc" rSic*        bi i 

+ 2 I   |A      • A    | cos (/  [kJ(Z')  - k    [l')]dr   - «at), 
n      sl       wl 0      ' wn 

(22) 

where r is given by Eq.  (11)  and k!  = k     + nk    . We observe that the fields w„ 
amplitudes IÄ I and |A I depend on (X,t). 

"sl     "wl 

The second part IC is given by Eq. (18) where H  and H  is given by 

Eq. (13). The reduction of !C for free electron laser fields (19) - (21) is 

more involved than for id. For both signal and wiggler, only the A = 0 and 

I = + 1 Fourier components are different from zero, as given by 

1 = 0 
■ e<|,s' 

(23a) 

w A = 0 
= o, (23b) 

I  » + 1   c  c   sx  lp sy 
(23c) 

14 



and 

w 
£  = +   1 

1 e _ -X   _ in if (23d) 

where we absorbed expUfa    - a )  in H    , e is the signed electron charge, and r    *■ s       w' w ' 
A /% A A A A» 

we chose x = k. and y = b x k,. Therefore, Ac , A. and A , A  are in 
1 l x     y       bx     y 

relation to the x,y frame.    In view of expressions  (23), K~ can be written as 

the Cartesian components of the vector potentials 

h    h\ + ic + c 
% = 0 IA  =  1 4  = ■-  1 

(24) 

which are obtained from Eq.  (18).    For l = 0, we obtain 

•    .       i ~ i2 

(25) 

In taking the derivative in Eq. (25) we should keep in mind that V^ = U(|/r 

where r depends on Uy as given by Eq. (11). Thus, we obtain 

U, 

= 1 
e2k„2|?s|

2(l +^) 

A = 0     n     P0m(ü) - kjV,)' 
(26) 

To evaluate ic| , we need the absolute values of Eqs.  (23c)  and  (23d)   . 
dh = + 1 

and their cross product as given by 

2 ? 
, e V 1      vi 

'A  = ±  1 
4      2 

(27a) 

w 
% = ± 1 

2 2 
1 S Vli~    .2 
4      ?    -w       : [27b) 

15 



and 

H  ' " ' 
Hwl =i-^it   • L * 1?.  *L). (27c) 

ä = ± i   wu = ± 

where p = V./8.    Hence, substituting expressions  (27)  in Eq.  (18) we obtain 

2 2 

where 

and 

k' 4     2s 
./  I Y  rr  H   3      ,   e    9  .        c* 

2L = + 1      n     m   3UII      mc 3y   u ' kiV 
2 2 

kw 4      2      w 
rJ!iJ_+ e_2_ir_£_ 1 (28) 
L m    3U„ * mc 3yJL  -kw V„ ? ßJ ' v 

"t "=  l?s/+l?Si •  \H C/Vj(Z')  - kW|j(Z')]  dZ'   - -t) 

z 
±  |AS    - Aw |sin(/  [kJ(Z')  - k    (Z')]dZ'   - u>t), (29a) 

sl      ~V        0 I 

R* = l?wJ
2+l?Si • ij^CHiciCz') - kW|(z')] dz- - -t) 

±  |AS    x f  |  sin (/  [kJ(Z')  -kW|(Z')]  dZ'   -at). 

16 

(29b) 



To evaluate the derivatives in Eq. (28) we should again realize that VJ_ and Q 

depend on r which in turn depends on y and U„.   Taking that into account, we 

obtain 

?    2 

ZU = ± 1     n 4rnic4 (-k    V„ + fl) 
wil  ' 

-k,!V„ + a k!2cz - (-kjv.T nf 

Substituting Eqs. (26) and (30) into Eq. (24), we obtain the expression for 

the second part of the ponderomotive Hamiltonian which is given by 

e2k.2|?s|2(l+2HB^ 

KÜ -I 
n     r3m(" - kjV,,)2 

2    2 
H kw,c 

n Mine'' (-k   V, - nr 
u 

s 

-*;vi+ ° + 
k;2c2 - ^;v.i+ ^2 

TVnr+   (a) - kjv. + n): 
,  r?        II ,     » '  "   »        J  1   p-} (3D 

17 



IV.    FREE-ELECTRON LASER  EQUATIONS OF MOTION 

The equations of motion for the relativistic guiding center Hamiltonian 

resulting from the beating of the wiggler and signal   fields are found with the 

help of Eq.  (9).    We obtain six equations of motion corresponding to each one 

of the dynamical  variables. 

A.    Guiding center magnetic moment. 

ü = {vtK}  = 0, or, y = constant. (32) 

Eq.  (32)  represents the adiabatic invariance of the magnetic moment;  it is not 

an exact invariant because the ponderomotive Hamiltonian still  depends on the 

gyrophase to order cubic in the fields.    As it was shown in "I", the adiabatic 

magnetic moment can be expressed in terms of mUT/2B0, which contains the fast 

oscillations of "the signal  and wiggler, by 

mU*      e * \ **M\)       , * VXP(1V 
'^^^l 1[    -V«  " *°     + n a " k.iV»  " M ] + C'C,}' 

" (33) 

where 

X» 

and similar expression for *    . 

18 



B. Nonlinear gyrofrequency, 

P 
3K? 

The last term is the nonlinear gyrofrequency shift due to the ponderomotive 

potential. The u derivative of Eq. (22) gives 

j 

mc 3y 

2 
r    2e ft    ri 
i~JTJ l 
n r m c 

Ail |2+|?w |2+2l?s ' ?w |cosf/^irk
w ^dz,-ut^ 

(35) 

We use Eq.  (31) to evaluate 3K2/3y, which gives 

e   < 
.20,,2,~ ,2 

e C_ _ y  U    'S'        r-, 
mc3v     nrWc» -k,;v,)zL 

II k'V 

r c^ ll   II 

.2    2 k2c2 

2 2 4 
n zrVc* (-"» V, - 0) 

2J    w 
w„   II 

(-kwv„ -a) 2
J    w 

'2r+ ,  "11 
) R-Sl 

eW 
n   4rnrc° 

k2c2 

(-kw Vt| - a) 
wll " 

] R! + [3 + 

1,2      2 k      c 
w„ 

2J  ,vw (-k   V„ +a) 
3 K 2    J  ' w 

19 



8r\      7r2     2r3      kjc2 2r. 

hr --r-r ♦-V & - =r>K 
+ Ü) Ü) (I), + 

+ + + 

8r       7r2     2r3      k'2 c2 2r + ^-v+^+4— ^r^R;- (36) 
OJ Ü) ÜJ 

r+ = - kjVj + a and o>+ = <D - kjjV„ + a. (37) 

The sum of Eqs. (35)  and (36) is the nonlinear gyrofrequency shift 

indicated in Eq. (34). 

C.    Parallel  force on a guiding center. 

mU„  = {mU|t KQ + Kg} = - b •  v(KQ + Kg). (38) 

From Eq.  (10) we obtain 

b •  VK0 = b •   (eEQ -£ 7B0), (39) 

where EQ(X,t) is the electric field due to the beam self-fields and BQ(Z,t)  is 

the tapered guide field.    From Eqs. (22) and (31) we obtain the contribution 

of the ponderomotive Hamiltonian to the parallel  force, which is given by 

^■^-li^-h^ A^vy^-v«'--] 

20 



and 

•Z#ki-kiJ * Z 
+ » L- {T   A      . A    |sln[/  (k'  - k    )dZ'   - cot] 

4rm<T x .   1 l'        0      II II 

where 

- T?i?s    x ?w lcos^  (ki  - kw )dZ'   " wtH« c\    1 1'        0 II 

(40) 

k2 c2 

w„ k2 c2 

w„c 2r.      2r 
h = 2 + " 5" + " 5- + TT"11 + 77^ 1 C-kM v„ - a)2     (<, v, + üf    »+     »- W„    II w„   li 

kj2c2 - r2     kj2c2 - r2 

+ + s 

(D. U) 
(41) 

To 

k      ? . 2    2 k    c w„ 

K, v-°)    (-KW|I 
+ °) 

2r+      2r_ 

2     ü),        a) 
w„  II 

k;2c2 k'2c2 
K
ll c 

(42) 

D.    Guiding center drifts 

* 3K 

x=^K(£-uvB0-c_E0) + b(Vl| ^äir). B 0 
(43) 

21 



The first term in Eq.  (43)  are the perpendicular drifts.    The second term is 

the guiding center parallel   velocity which differs  from Vy  by the 

ponderomotive term correction.    Explicitly,  (1/m)  3K2/8U|t  is evaluated using 

expressions (22)  and (31)  which yields 

m 3U„ = -l 
e2V„ 

2    4 n rmc 
(1 

3yBf 

?    2 rmc 

Hi *** 

K \2+2\\ mK lcos^ (ki -kw^dZ' -^ -wi!     !"si   "wi!      o 

and 

(44) 

2k,! i9K2   yjW_[1+i]f!i   
iäC'-^TT T^1    C2JL

C2    r2[ü) _ k,V||) 
■]. 

"        nm2r4(u,-ki;v11) 

3e2V2V„ 

-I-TT4UI 
+ 

k2c2 

w„ 

n 4r2m2c6 « V. - a) 
] R> [1 + 

2    ? 
k    c 

w„c 

2J  'w 
w„   II 

f-k   v.. + a) 
w, 

yl ^ 

?r        k|2c2 

♦ P^ILI. 
'U). 

r2 ?r k,2c2 - r 

w. 
0) 

Ü) 
■)R;I. 

+ i 
e2V2 

Vi" 
2k2 c2 

WII 
(• 

k    V. 
wil  ' 

n 4r2m2c\  V k   v, - a)2   -y,, -4K> 
a     c 

2k2 c2 

wi. 
(- 

k    V. 
w„  ii 
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V2       . 
2   *-kA -r+T       k2c2    + 

—3—- c - -T-J «;• 
+ 

V? 
Z^C-kjV,  -r.-i) k2c2 

(i --V) R;I. («) 3 v 2 ;    s 

The sum of Eqs. (44) and (45) are the ponderomotive correction to the parallel 

velocity drift. 

Equations (32), (34), (38), and (43) are the complete guiding center 

equations for free electron lasers.    Having these equations at hand, we can 

obtain the equation for the energy variation of the particles which is given 

by1'2 

dE _ 3^0 + ^      e ft .»froTAL (46) 
BT at c -        at   » [™} 

where AT0T..   = £n + £s + -w + e~ Unb and - is given by Ecl' (43)*    Similarly, 

we can straightforwardly write the equation for the phase variation, which is 

given by 

^- -» + [kjCx,]  -k    (X„)]  X„, (47) 

where XB is obtained from Eq. (43) 
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V. CONCLUSIONS 

We have obtained a general  expression for the ponderomotive Hamiltonian 

for free-electron lasers as given by Eqs.  (22)  and (31).    From this expression 

we derived the general  guiding center equations of motion governing the full 

free-electron laser phase space dynamics.    They can be simplified depending on 

the specific experimental  system under consideration.    For instance, whole 

terms will  drop out just by assuming U^ « U^.    Further simplifications can be 

done by keeping the terms with the right resonant denominator for a given 

problem0 

We should also mention that although we assume X to be Cartesian in our 

derivation, we can express X in terms of other systems of coordinates, say, 

cylindrical, flux, or Hamada, by the application of the chain rule. 

Our final expressions are given in terms of the scalar potential ?(X,t) 

and the perpendicular vector potentials A    (X,t) and A    (X,t).  It is necessary 
5i " 1 

to choose the appropriate form of these realizable potentials for a given 

experimental  situation. 
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