UNCLASSIFIE

GUIDING CENTER HAMILTONIAN THEORY

; OF FREE-ELECTRON LASERS
i HAN S. UHIM
CELSO GREBOGI

~ NSWC MP 84348
™
?_.
= PLASMA PHYSICS PUBLICATION NO. 84-8
.
-
A AUGUST 1984
" Approved for public release; distribution is unlimited.
E
19980309 363
, )

| ‘ DIIC QUALITY INSPECTED 4
NAVAL SURFASgPEOV;’ggASPONS CENTER PLEASE RETURN To:
) Oak, Silver Spring, Maryland 20910 BMD TECHNICAL INFORMATION CENTER
| | BALLISTIC MISSILE DEFENSE ORGA
U370 | 7100 DEFENSE Pﬁmggg"mzmow

S jb{ g N C m S S E F E gz @ WASHINGTON D.C. 20301-7100

!

F ~ SLL 85-U-432 |



Accession Number: 3801

Publication Date: Aug 01, 1984

Title: Guiding Center Hamiltonia Theory of Free-Electron Lasers
Personal Author: Uhm, H.S.; Grebogi, C.

Corporate Author Or Publisher: Naval Surface Weapons Center, White Oak Laboratory, Silver Spring, MD Report Number: NSWC
MP 84-348

Comments on Document: Archive, RRI, DEW

Descriptors, Keywords: Directed Energy Weapon DEW Guide Center Hamiltonian Theory Free Electron Laser FEL Ponderomotive
Derivation Wiggler Geometry Axial Guide Reaction Kinetics Propagation Motion Electromagnetic Wave Physic

Pages: 26

Cataloged Date: Oct 19, 1992
Document Type: HC

Number of Copies In Library: 000001
Record ID: 24969

Source of Document: DEW



GUIDING CENTER HAMILTONIAN THEORY
OF FREE-ELECTRON LASERS

Celso Grebogi* and Han S. Uhm
- Naval Surface Weapons Center
White Oak, Silver Spring, Maryland 20910

ABSTRACT

The relativistic guidfng center ponderomotive Hami1t6nian for ffee-
electron lasers is derived. The derivation takes into account arbitrary
signal wave polarization and wiggler field geometry including guide field
‘nonuniformities. In particular, it is allowed (i) for a tapered axial guide
quasistatic magnetic field along its direction of propagation, (i1) for a
realizable wiggler to be tapered both in amplitude and in period, and (iii)
for the signal electromagnetic wave to be a growing modulated wave of
arbitrary geometry propagating in the direction of the static magnétic
field. The equations of motion are then derived including the guiding center

perpendicular drifts and beam quasistatic self-fields.

*papmanent address: Laboratory for Plasma and Fusion Energy Studies
University of Maryland
College Park, Maryland 20742




I. INTRODUCTION

In a previous paper! (henceforth referred as “1"), a general expression
for the relativistic ponderomotive Hamiltonian of two interacting
electromagnetic waves was derived. It was found that relativistic effects
introduce new terms in the expression for the ponderomotive Hamiltonian ' .
similar to those found earlier? in the case of a single electromagnetic
wave. The derivation in "I" was as general as possible. It was allowed for

arbitrary ke, E“/E w/Q, kl/kn’ v/c < 1, polarization, and for slowly growing

K
and spatially modulated waves. It was necessary to use Hamiltonian theory in
order to account for all that and to introduce nonuniformities in the
background fields in a systematic way. The calculation was an application of
relativistic guiding center théory2 modified by the averaging over the two

interacting electromagnetic waves.

The theory developed in "I" is suitable for free-electron lasers? with a
gdiding magnetic field in which the gyroperiod is comparable to the period of
the signa1 wave and to the time it takes for the electron beam to travel one
wavelength of the wiggler [Q ~w ~ kw“Uu]. This is the FEL operating regime
which gives maximum efficiency.“ The guiding center theory of the nonlinear
response of a relativistic particle beam in a guide magnetic field to the
signal wave and the wiggler field has not been adequately treated in its

generality. In this work, we reduce the general relativistic ponderomotive

Hamiltonian expression obtained in "I" to free-electron lasers and derive the L

equations of motion.




We should mention that the Hamiltonian formulation of free-electron
lasers has the advantage of expressing‘the vector evolution equations in terms
of a single scalar function on phase space. Furfhermoré, since the gujding
center equations have been averaged over gyrations, they are much more
suitable for use in numerical integrations and simulations of free-electron
lasers. Namé]y, instead of integrating along the gyrating trajectories for
each of the electrons in the beam, it is possible now, for the averaged
equations, to take a two orders of magnitude larger integration steps with
equivalent savings in computer time. In addition, because the guiding center
transformation has been done in the Hamiltonian, the derived equations
conserve phase volume exactly and thus enhancing the equations predictability
power, Finally, although we are dealing with single particle motion, the
derivation of the averaged Hamiltonian is the major part of the work for a
derivation of the nonlinear relativistic gyrokinetic equation for two
interacting waves. Once we have the ponderomotive Hamiltonian for the free-
electron laser in a guide magnetic field, the Vlasov equation for the

distribution of guiding centers F in the Poisson bracket form

is the gyrokinetic equation.5 This will be reported in the future,

In Sec. II, we present a summary of the essential results derived in
"I", Because the formulas presented here are so general we can reduce them to

arbitrary signal wave polarization and any wiggler field geometry including




guide field nonuniformities. Hence, in Sec. III, as an illustrative
application of our theory, we obtain the guiding center relativistic

ponderomotive Hamiltonian for free-electron lasers by considering:

(i) the axial guide quasistatic magnetic field to be tapered® along its
direction of propagation; , .
(ii) the realizable’ wiggler field to be tapered® both in period and
amplitude;
(iii) the signal electromagnetic wave to be a growing modulated wave of
arbitrary geometry propagating in the direction of the static guide

field.®

In Sec. IV., we derive the guiding center free-electron laser equations
of motion for the Hamiltonian derived in Sec. III. including the guiding

center perpendicular drifts and beam quasistatic self-fields. A conclusion is

presented in Sec. V.




II. RELATIVISTIC PONDEROMOTIVE HAMILTONIAN
OF TWO INTERACTING WAVES

As derived in "I", the two electromagnetic waves are represented by their
scalar and vector potentials ¢ and A in an arbitrary gauge. They are assumed

to have the form

o(x,t)
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A(x,t) = + C.C, (1b)

i N

Ei(f’t)

i=1

where the over-tilde represents the slowly varying amplitude of the wave
packet. The local wavenumbers k; and ko and frequencies Wy and w, of the

waves are given by

ki (x,t) = Vo, (x,t), 1 =12, (2a)
and
v (x,t)
w, ()_(,t) = -3 i=1,2. (2b)

The relativistic particle Hamiltonian is given by




H(xsp) = ImPc® + Plp - £ Ay(xut) - £ Ax,t)]}2
+ e¢0(§,t) + ed(x,t), : (3)

where we allow the unperturbed fields, as given by ¢0 and 50, to be slow
functions of position and time. Physically, this means that the scale length
of the spatial inhomogeneities in ¢, and A, (or E, and B,) are smaller than
the gyroradius, which is the standard approximation in guiding center theory
and true in free-electron lasers. In addition, it means that we allow

and A, to change appreciably on a drift time scale.

% 0

Because we are interested in the ponderomotive Hamiltonian, which is a
second order effect, we expand (3) up to second order in the waves

amplitudes. The result is

H= HO + H1 + H2,
where
H., = ep. + mczy- (4a)
0 0 0’
Hy = e S | (4b)
1 YoC = i
L
and \
ol 2 2
Hy = ——5= [&" - =5 (up * A" (4c)
2Y0mc Yoc




As discussed in Ref. 2, we introduced a velocity-like variable Ug by

Yomc2 is the energy of the injected relativistic beam. The introduction of
Uy allows us to exhibit the perturbation in the Hamiltonian explicitly instead
of in the Poisson brackets.

Next we transform the Hamiltonian (4) to the relativistic guiding center
variables, by the transformation (5,90) > (K,Uu,u,e]. The first three
variables X represent the location, in physical space, of the particle's
guiding center. The variable u, is called the parallel world velocity of the

gbiding center; it is, except for the relativistic factor, the parallel
guiding center drift to lowest order in the waves fields. The next variable
u is the magnetic moment and is related to the perpendicular guiding center
drift by u = mUi/ZBO, where U, is essentially the gyrophase average of uol.
Finally, © is the gyroaveraged gyrophase whose timeQderivative to lowest order

is the local relativistic gyrofrequency. The new guiding center variables are

defined by?

meu,

i R ?
Z = E - £ eBO a+ O(E ), (Sa)
U, =uy + 0(e), (5b)




mu
0
2By !
and
0 =8 + 0(¢), (5d)
where the fields are evaluated at (§,t) and € is the dimensionless parameter , ¢

which indicates the order of various terms in the guiding center expansion.
Since in this section we are presenting only results, we will set € = 1 from
now on to recover the physical formulas. The instantaneous gyrophase 6 is
defined implicitly by

cos erl - s1n612, : (6a)

Qv
n

and

A -

- sinét, - cosoT,. (6b),

()
]

The perpendicular unit vectors ; and E rotate with the particle. ; is in the

and ¢ is given by Ug = uoub + uolc,
= b x ¢, The perpendicular unit

direction of the gyroadius as given by (5a)
where b = By/Bg- The triad (a,b,c) obeys a

vectors do not rotate with the particle and satisfy ;1 x 1, = B. They have a

slow dependence on (§,t) since §0 itself does.

For the Hamiltonian structure to be complete we need the Poisson brackets .

among the relativistic guiding center variables. The guiding center variables
2

are noncanonical and the nonvanishing Poisson brackets are given by




(xt=-<4, (72)

XU} = == B", (7b)
=27 -0
mB
0
and
=&
{@,u} = mee (7c)
where b;; is the tensor dual to the unit vector b {bij Ty = - (B x T); for
*
any T] and B is defined by
8 =p +IC Yy b(X); (8)
=0 =0 e "W 2

and V = 8/35. The Poisson brackets are exact to all orders in €. In terms of
the fundamental Poisson brackets (7), the Poisson bracket of two arbitrary

 phase functions f and g is given by the chain rule? :

[f.9} = - —S— b « (VF x vg) + =B « (vF 3L - vg 2T
By 50 53U
eB mB It i
0 0
] 1
e (3f 3g  af 3g '
G il 500 - (9)

This formula will be useful in deriving the equations of motion from the

guiding center Hamiltonian.

In terms of the guiding center variables (5), the unperturbed Hamiltonian

(4a) becomes




i 2
HO = e¢0 + mc T, (10)

where

]/
2 _
2uBO(K,t) Uﬁ) (1)
PR - S ) .
mc2 c2

T = [1 +

The first order Hamiltonian (4b) is given by the following Fourier expansion!

2 += iy, (X, t)+i a.(X,t) + 3
H, = 2 +Z {H, e1¢1( Jrisle v oi(1t) ¢ 2]+ c.c.}, (12)

where H. is the ath 8-Fourier coefficient of the first order perturbation due
e

to the ith wave and a, ( t) is the angle between k; and ;]. We introduce the
-~ ~ ~ ~ -L ~ ~
triads (kil, b x kil’ b) for i = 1, 2, in which kil = cosa; Ty + sin a; T,.
The Fourier coefficients are then given by
2]
I ic, @ in R N
Hi, = @ b ¢ i [Vyagb + g (2dgky + 2iu = b x kg J1, (13)
1l 1 i

2.1 eB ’

where J = J,(k; o), 0 (ch Ly A’ Q = Tﬁ%’ and V, = U /T. As for the second

B
order Hamiltonian, we only kegp the slow terms in Eq. (4c) since we are

interested in the ponderomotive Hamiltonian., We average over gyration and
oscillation of both waves but keep the slow beating terms of the form

expi[¥;(X,t) - v,(X,t)]. The result is!

- . o 1y =)
Hy = By (2 + gplekpe) (B c Ke | P 4] (14) .
1 2 v aw -
s [(uB_ + mU LA, | +|A ol8ke)(A, = A, e )
2 ' 1 | S T
| . ~ oo 1(0y=9,)
+c.c.) + 2uB, [|A1“|2+|A2“'2+ Jo(ak ) (K Ke 1w e,

!

10




Y 2 1 Y
where ak = [ky + ks = 2y k, cos(a; - az)] and we made use of the

L L Ll
Bessel identity

+ » 1z(a1 - az)
e Jg(klp) Jz(kzp) = JO(AkLp).

A==
At this point we subject the Hamiltonian H = HO + H1 + Hz'to an averaging
transformation to eliminate gyration and fast oscillations contained in H, but
keeping the beating terms expi(wl - ¢2). This canonical transformation is effected

by using Lie transforms which leads to the following ©-independent Hamiltonian

K = K0 + KZ’ (15)
where Ky = Hy as given by Eq. (10), or

K0 = epy * mczr, (16)
and the ponderomotive quf?tonian Ko contains two parts

K, = Ky + Kg. | (17)
The first paré Kg = ;2 which is given by Eq. (14). The second part comes frém

the canonical transformation of H, and can be expressed asl

'2 l{H - 1(9;-9,)+ 12(a;-a,) |
+- e - T+ C.C.
2 11 22
‘ ]
I ot T ki" Vy- i

~
o
1
H o~
~1
YarunY
1)
=
IQ)
+
@
|
o
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and H, are given by Eq. (13). It is possible to absorb

Ty 20,

expif.(a1 - azj into Hy . In this case the triad of unit vectors for both
. .

A ~

, b x k , B) in which we drop the subscript 1,
1.L ]'_L .

Where H

waves is (k

12




IIT. RELATIVISTIC PONDEROMOTIVE HAMILTONIAN
’ FOR FREE-ELECTRON LASERS

We consider a relativistic electron beam propagating in the tapered guide

field B, = BO(Z,t)B. The free-electron laser effect results from the bunching

0
of the beam due to the beatfng of the signal wave, represented by the
potentials ¢S and Bs’ and the magnetostatic wiggler Ew' For the purpose of
illustrating our theory, we reduce the relativistic guiding center Hamiltonian
of two interacting waves, as given by Egs. (13) - (18), by assuming the

following signal and wiggler fields geometry:

(1) The signal electromagnetic wave is a growing modulated wave of

arbitrary geométry propagating in the Z direction,

ifz[ks (2')+ nk, (2')]dz" - fot
0

A(Xt) = L& (Xt)e ! : +cuc. (19)
n "1
and
JA
i [k (2') + nk, (2')]dz' - iwt
o (Xot) = L F(xt)e O “ +cuc.,  (20)
n

where the sum is over the wiggler harmonics and the subscripts L and 1

indicates perpendicular and parallel to the local B, respectively.

(2) The realizable wiggler field is tapered both in period and amplitude

13




,
if Ky (2*)dz

- % 0 i

As indicated by Eq. (17), we split the ponderomotive Hamiltonian in two

parts. The first part Kg is given by'Eq. (14) and its reduction for free .
electron lasers is straightforward by identifying, say, 51 = 55 and 52 = Aw.
Then for the signal and wiggler fields, as given by Eqs. (19) and (21), <
JO(Aklp) = 1 and we obtain '
2 uB
a e 0 ~ 12,15 12
K2 = (1 - =) [|A. |°+|A
2 rpc? r2mc? '-Sl 'WLI
o ke 4
+2 ] |& <&, | cos ([ [k(2') -k, (2')]dZ" - wt), (22)
n 1 L 0 I
where T is given by Eq. (11) and k, = ks * k. e observe that the fields
! I
amplitudes |A_ | and |A | depend on (X,t).
s, W, s
The second part Kg is given by Eq. (18) where Hg and H, is given by
' 2 [
Eq. (13). The reduction of Kg for free electron laser fields (19) - (21) is
more involved than for Kg, For both signal and wigg]er, only the 2 = 0 and
2 = + 1 Fourier components are different from zero, as given by
H = ed_, (23a)
sly = o 'S ¢
H =0 ' (23b) N
Wlg=0
le 5% - iugx
H = «x=QpA. F —A (23c)
Slg =+ 1 2 c s, Tp Sy i
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|

and
H - legn ygi , (23d)
o4 Wx o} Wy

=
—
no| —

%*
where we absorbed expiz(aS - aw) in Hw , € is the signed electron charge, and
A~ ~ ~ A~ ~ 2
we chose x = kl and y = b x ki' Therefore, ASX, Asy and wa, ;
relation to the x,y frame. In view of expressions (23), K2 can be written as

A in
w  are

the Cartesian components of the vector potentials

which are obtained from Eq. (18). For £ = 0, we obtain

I N ~ 2
b k 'e¢sl

LA
n M ool tw-kyV,

|2 o (25)

In taking the derivative in Eq. (25) we should keep in mind that V, = U /T

where T depends on Uu as given by Eq. (11). Thus, we obtain

. v?
b ezkuzlgs‘z(l "“12")
2=0 n nfe-kV)
To evaluate Kgl , we need the abéo]ute values of Egs. (23c) and (23d)
"l = ¢ 1
and their cross product as given by
2,2
eV
RN b &
2 =3%1 c L '
2,2
v
2 1%+ 2
H = = —==|A s (27b)
, w'g = + ]l 4 CZ '-wl'




and

22
H H G S VIR . (27¢)
Slpop1 Mooy F 2 USLow s W
where p = VL/Q. Hence, substituting expressions (27) in Eq. (18) we obtain .
2.2 \
18V e
. 4
K ' =1 [(El -t &
2 g =41 noom BU“ mc ou’ w - IIVu+ Q
2,2
5 J-e Vi ot
+ (_ﬁl._i_ +.E_.2_J[4 c® " ] (28)
mau"mcau -k V. F Qi -
Wl
where
RE = IR |2+|K Y [cos (fz[k'(Z') -k (2')] dz' - wt)
S 'SJ. 'S.L -wl 0 [} w“
~ e Z
t |R. x K |sin(f [k (2') -k, (2')]dZ' - wt); (29a)
S o ! "y
and
RE = | [2+|K Yy |cos(fz[k'(z') -k (2')] dZ' - wt) <
w W, -sl W, 0 i w,
.
~ ~% Z
£ |A. x & | sin (f [k1(2') -k, (2')] dZ' - wt). (29b)
-s_L -wl 0 I W,

16




o~

To evaluate the derivatives in Eq. (28) we should again realize that V, and @

depend on T which in turn depends on u and Uu' Taking that into account, we

obtain

2,2 K2 c?
| 1 (0 — &
2lg =+ 1 narmc” (-k, v, 7 )2
I
W= 22 o o2
. D2 -k v, 7 k;“c” = (kv 7 2 1’ (30)
OV TR gy, 7 ) 5

Substituting Egs. (26) and (30) into Eq. (24), we obtain the expression for

the second part of the ponderomotive Hami1ton1an which is given by

e k'2|¢ ’ (1 + Z“Bﬁ

=1
n I‘3m(w - k“Vn)2
2,2 2 2
I I +
] —= {01+ ALY
n 4Tmc (-k, Vv, - @)
2 2
“w, © - kyVy - @ i 2c” = (-kjvy - )’
U IR *+ 2 v ? Rs
(-k, vV, + @) o (0 - KV, - )
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IV, FREE-ELECTRON LASER EQUATIONS OF MOTION

The equations of motion for the relativistic guiding center Hamiltonian
resulting from the beating of the wiggler and signal fields are found with the
help of Eq. (9). We obtain six equations of motion corresponding to each one

of the dynamical variables, | N

A. Guiding center magnetic moment,

n o= {u,k} =0, or, u = constant. (32)

Eq. (32) represents the adiabatic invariance of the magnetic moment; it is not
an exact invariant because the ponderomotive Hamiltonian still depends on the
gyrophase to order cubic in the fields. As it was shown in "I", the adiabatic
magnetic moment can be expressed in terms of mUi/ZBO, which contains the fast

oscillations of 'the signal and wiggler, by

Y % ﬁw exp(ie, ) L ﬁs exp(ie )
p o= .Z—B:-L- - e—-{ 2 [ kz v ﬂ,ﬂz + z t.v f.:i ] + C.C-},
o ™ e=%1 Twou T n® Yy - -
(33)

where

®, = v, (Xst) + 2 [0 +a (Xt) + w/2],

and similar expression for @S .
L

18




B. Nonlinear gyrofrequency.

The last term is the nonlinear gyrofrequency shift due to the ponderomotive

potential. The u derivative of Eq. (22) gives

e 2.y 2da (3N B, (el - B, [eosllfkiok, Yo7t
& .. 1 -« = — A +|A +2|A o A fcos{[(k!-k )dZ'-wt];}.
mc oJu n rzmzc4 2 CZ |'51| |-wl =1 -wl’ 0 i W,
We use Eq. (31) to evaluate aKg/au, which gives
b 2,12 2 2 '
3_3_K_2_=2 2e lel ‘¢S‘ .l_] 1+ﬁ)§_+ kll.v|| )]
mc du n I.2'“2c2(m _ kﬁvm)z r 2 2 w - EI:V||
k2 C2 k2 c2
e R e— g
n 2rm"c (-k “V“ Q) (—kw“V“ - v
2.2 2 22 2
k1“c® - r - k!¢ -r
2r+ I -4y o 2r 1 - -
+ ( + RT + + R
w, m2 ) S (m_ wZ S}
+ -
2 2 2 2
i/ ST M SO L. B
- 3+ R+ [3 + R”
ar?nf c® (=k, v, 2)2" ¥ (-k, v, + 2)? Y
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+ " + +
+ [ - (3 -—J]R
w 2 3 2 w S
w+ m+ UJ+ +
8r_ 7r€ 2r§ kl‘lzc2 2r_
A
rt Z - kl;vIl F Q and wt Zw - kl‘lv|l ¥ Q, (37)

The sum of Egs. (35) and (36) is the nonlinear gyrofrequency shift

indicated in Eq. (34).

C. Parallel force on a guiding center.

md, = {muy, Ky + Ky} o= = b e 9(Ky + K,). (38)
From Eq. (10) we obtain

- b« WKy = b+ (eE, - 7 By), (39)

where go(g,t) is the electric field due to the beam self-fields and By(Z,t) is

the tapered guide field., From Eqs. (22) and (31) we obtain the contribution

of the ponderomotive Hamiltonian to the parallel force, which is given by ‘
i
b« K, =] 26" (1 -EEQ—)( R )‘K - A 'sin[[z(k' -k )dz' - wt]
n Imc? rlpc? ! W ol=Sy Wy I Wy

20




S T 1 ) 1
+ T.1A. <« A |{sin k' - k )dZ' - wt
arme” llfsl - 1‘ oo W
K x T Jeosl] (k! - k )z - ut]]
- T,jA. x A |cos k! - k )dZ' - wt];,
2'°SL -wl| 0 f W,
(40)
where
2 2 2 2
kw“C kw"c 2r‘+ 2r_
=2+ 7 * 2y
(-kan“ ) (-kw“v“ +2) + -
kl;zc2 - ri kl;zc2 - r%
o , (41)
(n*‘_ w_ .
and
2 2 2
. kw“,c2 kw"C 2r+ 2r
TZ = 2 - 2 Mram -
(-kw"vII - Q) (-kw" + Q) + -
kﬁzcz - ri kl;zc2 - r? .
+ 2 - 2 . (42)
w+ w_
D. Guiding center drifts
" aK
(=2« (S b 1_2
X =g-x (75 178y - cE) + b (V, + 577 (43)

0 I

21




The first term in Eq. (43) are the perpendicular drifts. The second term is
the guiding center parallel velocity which differs from-V, by the

ponderomotive term correction. Explicitly, (1/m) BKZ/aU“ is evaluated using

expressions (22) and (31) which yields )
LN
a 2
3K eV 3uB z
1 2 i ( 0 ~ 92.1% 12,5137 ~% ' '
= = . 1- A | +|A I +2'A « & Jeos[[ (k! -k )dZ' - wt]}
m U, n I'zmc4 I'zmc2 '"SL v =Sy 'wl' n ! v
(44)
and
b 2,'21~ 12 2 .
1 %, e“k,“[4] uy o 3Y, 2k,
w0 - s (1+5) [—=-3 .
I n mzr4(w kv, ) c ¢t e - kV,)
2.2 K2 2 k2 ¢?
cp 2y, ] RE (14— ] R
n arém?c® (=K, Y, Q)e” W (-k, Vv, + Q)2 W
I Wy
2r+ kﬁzc2 - ri + 2r_ kﬁzcz - r? -
* (w+ * W’ ) R + ( w_ * w2 Rs}’
+ -
2 2 [
2,2 2k~ ¢ k Vv 2
.o eV Wy Wy Yoo o+
’ % arlnlc®y (- kv - @)% -k v, -0 "2 R .
i W w1 T ¢
2k2 2 kv 2
N I wy . Vu) R-
(kv + 2)? -kw“V“ tao 2w




22 kv -, v (22
* 3 === R
U)+ w
2 v
205 (=kv, =r ZEJ 22
—s (1 - L) &), (45)

The sum of Eqs. (44) and (45) are the ponderomotive correction to the parallel

velocity drift.

Equations (32), (34), (38), and (43) are the complete guiding center
equations for free electron lasers. Having these equations at hand, we can
obtain the equation for the energy variation of the particles which is given
byl *2

*
kg + Kp) oo Bhpora

dE _
C A | - S T (46)

(21X )

* _ mec ,, o o . . N
where BTOTAL = 50 + As + éw + ET'Uub and X is given by Eq. (43). Similarly,
we can straightforwardly write the equation for the phase variation, which is

given by

L=+ k(%) -k, (x)] K, (47)

where Ru is obtained from Eq. (43).

23




V. CONCLUSIONS

We have obtained a general expression for the ponderomotive Hamiltonian
for free-electron lasers as given by Egs. (22) and (31). From this expression
we derived the general guiding center equations of motion governing the full
free-electron laser phase space dynamics. They can be simplified depending on w
the specific experimental system under consideration. For instance, whole

2

terms will drop out just by assuming Ui < Uy, Further simplifications can be

done by keeping the terms with the right resonant denominator for a given

problem,

We should also mention that although we assume X to be Cartesian in our
derivation, we can express X in terms of other systems of coordinates, say,

cylindrical, flux, or Hamada, by the application of the chain rule.

Our final expressions are given in terms of the scalar potential $(§,t)
and the perpendicular vector potentia'ls_ﬁ_S (X,t) and Ew (X,t). It is necessary
1 1
to choose the appropriate form of these realizable potentials for a given

experimental situation.
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