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Multiscale Methods in Molecular Mechanics 

A. Brandt 
Department of Applied Mathematics and Computer Science 

The Weizmann Institute of Science 
Rehovot, 76100, Israel 

1.    Introduction 

To maintain the lead in the area of developing large and complex highly- 
specialized macromolecules with controlled properties, the fastest and most cost 
effective way is to design them first theoretically and then synthesize, process and 
characterize those candidates having sought after properties. However, current 
computational methods severely restrict the modeling effort since only relatively 
small molecular systems can be studied at atomic detail. The introduction of more 
advanced massively parallel supercomputers will not by itself radically change this 
situation, since the complexity of current algorithms rise very steeply with the 

problem size. 

A sequence of preliminary model studies has indicated that the various types 
of scaling difficulties encountered in computational chemistry can in principle be 
overcome by multiscale algorithms. In collaboration with Dr. Ruth Pachter at the 
Materials Directorate, WL/MLPJ, Wright-Patterson AFB it has been decided to 
focus the present effort forward developing and demonstrating multiscale methods 
in molecular mechanics. Future, related efforts, depending on suitable support 
will include multiscale ab-initio calculations of electronic structures and the even 
more basic and accurate modeling of chemical reactions by multigrid Monte-Carlo 
methods for real-time Feynman path integrals. 

It was decided that the fastest way to start the present project off is to use 
the contract money to hire Dr. Dov Bai (an American citizen) to work on it 
with Prof. Brandt, most of the time at the Weizmann Institute. Although Dr. 
Bai, with M.Sc. degree in physics and Ph.D. in applied mathematics, had little 
previous involvement with molecular mechanics, he has had extensive experience 
in multiscaling projects in several other scientific computation fields. 

The actual work started on November 1, 1994. The three past months were 
devoted to the following. 



(1) Learning. Dr. Bai has repeated computer experiments reported in [1] 
and practiced some of the previously-developed multiscale methods for fast force 
summations (cf. Sec. 3.1 below). Bai and Brandt have studied those parts of the 
molecular mechanics literature which seemed most relevant for the project: an 
annotated list is given in Sec. 2 below. 

(2) Outlining the long range objectives of the project, based on the closer 
acquaintance with the subject obtained from our literature studies. See a summary 
of these objectives in Sec. 3 below. 

(3) Initial work on multiscale energy minimization methods. Detailed ap- 
proaches and development stages were planned. They are described in Sec. 4 

below. 

2.    Studied Bibliography 

A considerable amount of time was spent on getting acquainted with the field 
of molecular dynamics in general and dynamics of macromolecules in particular. 

The classical works of L. Verlet [1] and A. Rahman [2] were useful in get- 
ting to know the basic capabilities of molecular dynamics methods in providing 
information about physical properties of systems in thermal equilibrium. Ref. [8] 
provided information about non-multileveled algorithms for summation of poten- 

tials and forces. 

For larger molecules, Sees. II and V of [4] provided useful and comprehensive 
information about many types of molecular interaction terms as well as various 
techniques used in studying molecular statics and dynamics. 

The publications of T. Schlick with coworkers (Refs. [6]-[10]) were very helpful 
in getting acquainted with the more recent attempts at increasing the time steps 
by using Newton and normal mode techniques to solve implicit schemes. These 
studies are most relevant to our current project as a reference point, being a similar 
attempt at fast algorithms for minimizing similar energy functionals. 

We have also been delighted to discover several articles, such as [11]—[13], 
where some rudimentary forms of multiscaling have already been attempted, mo- 
tivated by physical insights, with considerable gains. Unaware of several basic 
multiscale techniques, though, these attempts do not go far enough. 

3.    Long Term Objectives 

Our study of the molecular mechanics literature has enabled us to outline in 
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detail the basic long term objectives of the project. They can be summarized as 
the following six tasks, ordered roughly according to the chronological order in 
which we have started or intend to continue to work on them, although much back 
and forth interaction between these coupled tasks is of course expected. 

3.1    Fast summation of forces 

Direct calculation of all the electrostatic interactions between N particles costs 
CN2 computer operations, where C is around 10. Instead, several methods exist 
to sum the forces in just C\N operations (see, e.g., survey [GR]), although note 
that in three dimensions C\ > 104, so these methods become advantageous only 
for N > 103. A multiscale method for fast evaluation, suggested in [OS] (based 
on an idea described earlier in [G2] and [TO]), will be used by us. It is based 
on a decomposition of the two-particle potential into a local part and a smooth 
part, the latter being evaluated at larger scales (interpolated from coarser grids), 
where a similar decomposition is being recursively used. One possible advantage of 
this approach is considerably smaller values of C\. More important, the involved 
decompositions will give the kind of multiscale description of the force fields which 
is needed for the efficient multiscaling of the other tasks described below; see in 
particular the use of this decomposition in Sees. 4.2, 4.5 and 4.7 below. 

Since we have already acquired enough preliminary experience with this force 
summation task, we will not develop it immediately further, until the need indeed 
arises in conjunction with our other tasks, described next. 

3.2    Fast macromolecular energy minimization 

This task serves two somewhat different objectives: one in statics, the other 
in dynamics. In statics, the objective is to calculate the lowest energy or the most 
stable conformations of large TV-atom molecular structures; to find, in other words, 
the atom conformation r = (r\,r2,... ,r/v) for which the potential energy E(r) 
is minimal. In dynamics, the objective is the solution of the system of equations 
arising at each time step of implicit dynamic simulations. 

"Implicit" refers to the method which evaluates the forces (or the gradient 
of E(r)) at each time step (partly or wholly) in terms of the particle arrival 
positions, i.e., positions at the end of the step. This method ensures stability 
of very large time steps, but it does not yield the arrival positions explicitly. 
Instead, they should be calculated by solving a large system of equations. (Also, 
this method damp molecular vibrations at scales not resolved by the large time 
step; we return to this point below.) Solving the implicit system of equations is 
equivalent to minimizing an augmented energy functional, identical to E(r) except 
for an additional quadratic kinetic term (cf., e.g., [6]).  For large time steps this 
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additional term is locally very small, but its large-scale effect is still profound. 

Starting from a close enough first approximation to the desired minimal energy 
configuration, current minimization methods would converge to that configuration, 
in the case of a strongly coupled JV-atom structure, in 0(N3) computer operations 
(not even including the operations for electrostatic force calculations, discussed 
above). Multiscale methods promise to obtain a solution in just 0(N) operations. 
This, however, requires a very careful development. Since this is our main current 
work, it is described in detail separately (Sec. 4 below). That description also 
includes a discussion of multiscale approaches to the harder situation where the 
given first approximation is not so close (Sees. 4.5-4.9). 

3.3    Normal mode analysis 

Near a given configuration of an iV-atom molecular structure, the normal 
modes are the harmonic vibrations, i.e., the eigenfunctions of the harmonic (quad- 
ratic) approximation to the energy functional. They are important to approximate 
equilibrium and dynamic properties. In particular, the high-frequency modes may 
describe the vibrations not resolved by the large implicit time steps (see above), 
while low modes may describe important large-scale behavior. 

The multiscale calculation of many low modes is expected to be extremely 
efficient, since it will be done on the coarser levels of the multiscale fast-solver 
described below (Sec. 4). Moreover, on those coarser levels one can also directly 
calculate the combined action of all these modes, and thus, due to the FAS version 
(see Sec. 4.6), calculate large-scale anharmonic effects as well. (This becomes 
rather similar to performing many large-scale statistical passes: see idem (d) in 
Sec. 3.4.) 

We plan to demonstrate such basic capabilities after the multiscale solver 
(discussed in Sec. 4 below) is sufficiently developed. 

In a less obvious way, a multiscale structure can also be very efficient in cal- 
culating higher modes, including the highest ones, since the separation between 
increasingly closer modes can be done on increasingly coarser levels. Simple mod- 
els indicate that a well structured multiscale eigenbase for an iV-atom molecule 
may be calculated in as little as 0(N log N) operations. Such a calculation is, 
however, rather complicated, and its importance is questionable, because the ex- 
act large-scale separation of close high-frequency modes may have little physical 
significance. Probably more relevant to the high-frequency behavior are the sta- 
tistical approaches, discussed next (Sees. 3.4 and 3.5). 
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3.4 Monte-Carlo methods at equilibrium 

In equilibrium at temperature T, the probability of each configuration r to 
appear is proportional to P(r) = exp(—E(r)/T). To calculate equilibrium statis- 
tics, an atom-by-atom Monte-Carlo process is usually performed. In this process, 
each atom in its turn changes position stochastically, according to the probabil- 
ity density distribution P(r). Making repeated sweeps of this process, one can 
calculate the desired statistics on the sequence of produced configuration. 

To calculate accurate averages of some observable, however, an extremely long 
sequence of configurations is needed. There are two basic reasons for this com- 
plexity: (1) Due to the local nature of the Monte-Carlo process, only very slowly 
it affects large-scale conformational features, hence extremely many Monte-Carlo 
sweeps are needed to produce each new, statistically independent configuration. 
(2) Many such independent samples are needed to average out the deviation ob- 
served at each of them. 

For some model problems, multigrid Monte-Carlo algorithms were developed 
which overcome both these complexity reasons (see [BG] and [LI]). The algorithms 
are similar to the multiscale cycles described below (Sec. 4), with the following 
four modifications. 

(a) The energy functional should be the true potential E(r), not the aug- 
mented one (cf. Sec. 3.2). 

(b) The Gauss-Seidel relaxation (atom-by-atom minimization) sweeps should 
be replaced by atom-by-atom Monte-Carlo sweeps. 

(c) The approximation of the Hamiltonian (energy functional) E in the coars- 
ening process should be done in a stochastic manner, to retain the statistical 
fidelity (the "detailed balance"). Methods to achieve that are highly nontrivial, 
and may require careful research and development. However, in view of the ap- 
proximate nature of the molecular-mechanics Hamiltonian to begin with, exact 
detailed balance may not be required, as long as statistical fidelity is retained in 
the limit of very smooth fluctuations. This can be achieved much more easily. 

(d) The multiscale cycle should switch many times back and forth between 
coarse levels, before returning to finer levels. In this way many samples of large- 
scale features can be averaged over. Not so many passes are needed at the finer 
scales, because many fine-scale features are already present, and hence averaged 
over, in any one configuration. 

3.5 Small-scale statistics with large-scale dynamics 

The multiscale structure allows the combination of statistical simulations at 
small scales with time-accurate dynamics at large scales.   For this purpose the 



multiscale solver (Sec. 4) should be modified in two ways. 

First, the time-step discretization should be such that it gives accurate (non- 
damping, energy conserving) approximations for all scales whose time-accurate 

dynamics need be simulated. 

Secondly, at all finer scales (finer levels of the multiscale solver), the Gauss- 
Seidel relaxation sweeps should be replaced with Monte-Carlo sweeps, as described 

above (Sec. 3.4). 

This scheme comes close to the one described, with a slightly different moti- 

vation, in Sec. 4.9 below. 

3.6    Material "homogenization" 

The coarse-level energy functional of a well-developed multiscale solvers should 
effectively yield the large-scale behavior of the simulated material. This would 
yield the crucial link between the atomistic level description and the continuum- 
level material modeling, thus enabling a basic understanding and design of phe- 
nomena at various scales. 

Indeed, to simulate a material at macroscopic scales, a multiscale processing 
needs not resolve the atomic scales over a macroscopic domain. Rather, a tiny 
domain (but still very large compared with the smallest inter-atomic distances) 
can first be simulated. This simulation should employ 4D (space + time) periodic 
boundary conditions, using a 4D multiscaling; i.e., periodicity and coarsening is 
used not only in space, but also in time. (The optimal adjustment of the period 
size in each space direction and in time can very inexpensively be performed at 
the coarsest levels of such a solver.) In the next stage the periodicity is used 
to extend the domain (e.g., double the period size in each direction), while the 
description is coarsened (i.e., the finest scale of the multiscale solver is dropped, 
retaining the energy functional it supplied to the coarser levels). Then a simulation 
with this coarsened descriptions erase the original periodicity, retaining periodicity 
only at the extended domain boundaries. Repeating this procedure, the algorithm 
can simulate ever larger domains with ever coarser descriptions, until macroscopic 

scales are attained. 

We hope to demonstrate simple instances of such multiscale expansions in 
some, much later stages of the project. 

4.    Energy Minimization 

The first crucial step in constructing a fast multiscale energy minimizer is 
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to design its inner cycle: such that it yields fast convergence near the minimum, 
i.e., for sufficiently close first approximations. We discuss this cycle first (Sees. 
4.1-4.4). Later (Sees. 4.5-4.9) we will discuss the nonlinear aspects of driving the 
cycles when the initial approximation is not so good. 

When linearized, the molecular energy minimization problem is somewhat 
similar to the minimization problem encountered in structural mechanics, for which 
very efficient multigrid solvers have been developed. Of those, the closest to the 
ones needed in molecular mechanics are the algebraic multigrid (AMG) solvers 
[Al]-[A4], which do not assume that the problem arises from a continuum structure 
or that the unknowns are really placed on a grid. Some of the basic ideas of the 
AMG solvers, as well as the experience obtained with them, will be important in 
our present development. 

4.1    Main difficulty and a model 

There are several types of computational difficulties peculiar to molecular 
energy functionals. To develop an efficient multiscale solvers we must start by 
studying each of these difficulties in separation from the others, by treating ap- 
propriate model problems. 

The main special difficulty arising in (linearized) molecular structures is that 
different kinds of forces are associated with very different coupling strengths (man- 
ifested for example in different time scales of the corresponding dynamics). This 
has profound implications for the multiscale cycle. 

To explain and develop the principles of efficient cycles under such situations, 
we have started with a simple 2D model problem: A chain of N atoms at the 
planar positions r; = (x{, y;), (i = 1,..., iV), with the energy functional 

N N-l 

i=2 i=2 
where 0{ is the angle between the vector r{+\ — r-j and the vector r, — rj_i, and 
where the bond constants Bi/bf are much larger than the angle constants K{. To 
make the problem nontrivial, some of the atom positions (e.g., r\ and r^r) may be 
fixed. This two-dimensional model mimics the three-dimensional situation where 
dihedral angle couplings are much weaker than those of both bonds and bond 
angles. (We will of course insist on applying to this model methods which do 
not depend on its special, non-representative features. For example, we will avoid 
using the bond lengths and angles as the dependent variables, which would yield 
a straightforward separation between weak and strong interactions, but would not 
be applicable in more general situations. Similarly we will refrain from solution 
techniques taylored only for one dimensional problems. For example, the technique 
of [11] can be very effective for such problems, but much less generally). 
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In the presence of such highly nonuniform couplings, the simple atom-by- 
atom minimization procedure (equivalent to Gauss-Seidel relaxation) is extremely 
inefficient. For example, in the model problem, if the 2fj's are comparable to e 
times the typical size of Bi/bf, with some 0 < e < 1, then the convergence of 
an atom-by-atom relaxation process would require 0(N3/e) computer operations. 
Since coupling strengths in molecules range over at least four orders of magnitude, 
e f« 10-4 can be considered typical. 

For small e, the naive multigrid solvers (using the usual coarse-to-fine interpo- 
lation schemes) would also be quite ineffective, requiring 0(N/e) operations. By 
contrast, we believe that the general multigrid principles outlined below should 
solve any (harmonic) molecular energy minimization in just O(N) operations, in- 
dependently of coupling strength ratios. We describe below these general principles 
and, as an example, their specific application to the model problem. 

4.2    Relaxation 

The relaxation is a local process whose purpose in multiscale solvers is just 
the fast reduction of "non-smooth" errors, or their fast replacement by "smooth" 
ones. A given error function is considered "non-smooth" (or "locally reducible") if 
it is associated with relatively large residual forces, where "relatively large" means 
that they are comparable to the largest residual forces producible by any error 
comparable in magnitude to the given one. 

The usual Gauss-Seidel (GS) relaxation (or atom-by-atom minimization) is 
actually very efficient in reducing non-smooth errors. 

The only concern is the amount of work in calculating long-range (e.g., elec- 
trostatic forces). In the GS relaxation, the forces summed for each atom movement 
are based on the most recent locations of all other atoms. For long range forces, 
such a separate summation for each atom would be too expensive. On the other 
hand, the Jacobi-type relaxation, where the forces are based on atom positions at 
the beginning of the relaxation sweep and can therefore be based on efficient simul- 
taneous summation of all forces, has smoothing properties much less satisfactory 
and requires carefully chosen under-relaxation parameters. 

The best scheme seems indeed to be a combination of the Gauss-Seidel and 
Jacobi schemes, based on the decomposition of forces into a local part and a smooth 
part (see Sec. 3.1 above): The smooth part of the forces can be updated once per 
sweep, while the local forces should be updated during relaxation. Actually, since 
the local forces greatly diminish toward the margin of their support, it is suspected 
that only a fraction of them, those closest to the affected atom, need to be updated 
inside the relaxation sweep. 

An interesting further possibility we want to explore is to entirely neglect the 
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smooth part of the forces during relaxation, since its significant effect is only on 
smooth errors. This would mean that the smooth part of the forces need not even 
be interpolated to the atom positions, implying a substantial work saving. 

4.3    Coarse-level correction 

The errors which are not reduced efficiently by the atom-by-atom minimiza- 
tion sweeps must exhibit relatively small residuals, as defined above. Hence such 
errors must be "smooth", or, more precisely, they nearly belong to the subspace 
spanned by the lower eigenfunctions (of the linearized system). They can thus be 
described by a smaller number of degrees of freedom. These degrees of freedom 

form the (first) "coarse level". 

In the case of multigrid solvers for isotropic elliptic PDEs discretized on a 
uniform grid, relaxed errors (i.e., errors left after a couple of Gauss-Seidel relax- 
ation sweeps) must be smooth in the usual sense (a grid function having small 
local differences compared with the function itself). Hence such errors can well be 
approximated by functions interpolated from a coarser grid. Thus the degrees of 
freedom of the "coarse level" are those of a courser-grid functions. This function 
is calculated by solving the "coarse-grid equations", and its interpolation is then 
used as a correction to the former solution on the original (fine) grid. The coarse- 
grid equations themselves are determined by the requirement that the resulting 
interpolated correction lowers the energy as far as possible. 

In the case of molecular structures, the sense of "smoothness" of relaxed 
errors is more complicated, due to the unevenness of the couplings and the lack of a 
uniform grid structure. Hence both the coarse level variables and the interpolation 
from them to form the corrections to the atom positions are also more complicated. 

The coarse-level variables always represent displacements, i.e., changes, in 
atomic position (since they are designed to approximate the errors). One approach 
for choosing these variables is, as in AMG, to simply choose a subset of all the 
displacements of the original variables. We tend to take this approach for the first 
coarsening step discussed here. (By contrast, at coarser levels, where movements 
will no longer be constrained by very uneven couplings, the next-coarser level 
variables should probably best be defined on a 3D spatial grid, especially in the 
(usual) case where the molecules, including solvent, are not one dimensional, but 
fold and fill the full three dimensional space.) 

The interpolation should directly reflect the strongest couplings. For example, 
in the above 2D model problem, the coarse level variables may simply include the 
displacement (vector) of every other atom, say those with even indices. The inter- 
polation to the odd-numbered atoms is uniquely determined by the requirement 
that, to a first order, the bond lengths are unchanged. 
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In a more complex situation, the most general approach is to find the "sense of 
smoothness" of the relaxed errors by a local computation of the lowest eigenmodes. 
By this we mean, for example, computing the lowest eigenmodes of a system which 
only includes the interactions between the atoms inside a certain local box. In 
some interior subdomain of that box, a good coarse-to-fine interpolation can then 
be determined by the requirement that it is fully compatible with (exactly satisfied 

by) each of the lowest eigenmodes. 

Although local in principle, this general procedure for deriving the interpo- 
lation is still quite expensive. Fortunately, at the finest (atomistic) level, a more 
explicit choice, based (as in the example) on the strongest couplings, will usually 
be quite straightforward and effective. (When the coarsening process is later ap- 
plied at a coarser base level, with more complex interactions, it may be important 
to employ the general procedure, but its cost then will be much lower, due to the 
smaller number of variables at that coarser base level.) 

Once the coarse-to-fine interpolation has been chosen, the coarse-level energy 
functional follows directly from the given (fine-level) energy functional. More pre- 
cisely, a polynomial approximation (a Taylor expansion) for the latter (around the 
current fine grid solution) yields a polynomial (of the same degree) approximation 
for the former, since interpolation is a linear operator. 

After minimizing this coarse-level energy functional (by the method discussed 
in the next section), the minimizing function is interpolated to the fine-level and 
used as a correction to the previous solution there. Then the process may be 
repeated: some Gauss-Seidel relaxation sweeps are made, followed by a new calcu- 
lation of the coarse-level energy functional, its minimization, and interpolation of 
the minimum to further correct the atomic positions. And so on, producing fast 

converging iterations. 

4.4   Recursion: multilevel cycle 

The method for fast approximate minimization of the coarse-level energy is 
the same as that we have described for the original (atomistic) level. Namely, a 
couple of Gauss-Seidel relaxation sweeps (now on the coarse level) are followed 
by calculation of an energy functional for the next coarser level, (approximate) 
minimization of the latter, interpolation of the obtained minimum as a correction 
to the (first) coarse-level configuration, and perhaps some additional Gauss-Seidel 
sweeps for the latter. In this way we can recursively define the multilevel (or 

"multiscale") cycle. 

The main remaining task in constructing the cycle is to choose, at each cur- 
rent level, the next-coarser-level variables and the coarser-to-current interpolation 
operator. These choices will determine the efficiency of the algorithm. Some of the 
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main approaches for making them were indicated above. The development and 
testing of versatile and efficient coarsening schemes will be our major task during 
at least the first research year. 

4.5    Nonlinear aspects 

So far we have dealt with fast convergence to the minimum of polynomial 
(e.g., quadratic) approximations to the energy functional. To be sure, the atom- 
by-atom relaxation process is actually performed with the full energy functional 
(local-Newton Gauss-Seidel relaxation); but the coarsening process is done in terms 
of a polynomial (Taylor) expansion of the energy functional around some current 
configuration. The expansion does not really assume small displacements: In terms 
of local forces (including the local part of the electrostatic force, in the sense of the 
decomposition mentioned in Sec. 3.1), the expansion only assumes small strains, 
i.e., small displacement differences, or, in other words, smooth displacements. 
Since what we want the coarse level to perform are just such smooth moves, the 
expansion holds true even for large displacements (except for the smooth part of 
the electrostatic forces — discussed below). 

However, when the initial configuration is not close enough to the desired 
minimum of the full energy functional, just making a couple of iterations of poly- 
nomial approximations (e.g., a couple of global Newton steps) may not work. We 
plan several kinds of multiscale devices to deal with the nonlinear, more global 
convergence; they are described in the next sections (Sees. 4.6-4.9). 

4.6    FAS cycles 

One device is the FAS ("Full Approximation Scheme") version of multigrid 
algorithms. In this scheme, the coarse-level variables are shifted: instead of us- 
ing the displacement variables (those which, upon interpolation, describe atom 
displacements), each FAS variable is the sum of a displacement variable and the 
corresponding atom location just before the coarsening process. Since that location 
has been assumed (in the polynomial energy expansion) to be fixed throughout 
the solution processes for the coarse level (including the processes on still coarser 
levels), this shift is just a simple additive constant shift for each variable. (Note 
that the FAS variable actually describes the full new location of the atom; hence 
the term "full approximation" scheme. But the interpolation to atoms not rep- 
resented on the coarse grid is still done in terms of the displacements, which are 
calculated by back-shifting the FAS variables.) The advantage of the FAS vari- 
ables is that they allow to write the coarse-level equations in a special way, such 
that the approximation holds for a much wider range of coarse-level displacements 
(see detailed description, for the case of PDEs, in Chapter 8 of [G2]). In essence, 
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the FAS allows taking into account nonlinear (anharmonic) interactions at the 
coarse levels, since it retains knowledge of the full approximation, not just its 

displacements. 

This in particular applies to the smooth part of the electrostatic forces: In 
term of the FAS variables that part can retain its form in the coarse level. Then 
later, on that coarse level, this smooth part will again be decomposed into a local 
part and a smooth part, "local" and "smooth" now in a larger-scale sense; and 
in the next coarsening, from the first coarse level to the next coarser one, it will 
be that new (larger-scale) smooth part that will retain its form. And so on, to 
increasingly coarser levels with increasingly smoother parts of the electrostatic 
interaction. This will make the energy Taylor expansions (cf. Sec. 4.5). valid for 
large (smooth) displacements even in terms of the electrostatic forces. (This also 
reinforces the importance of the smooth + local decomposition of electrostatic 
forces, as discussed in Sec. 3.1 above.) 

4.7 FAS-FMG algorithm 

The actual multiscale solver that will be used at each time step of molecular 
dynamics is the FAS-FMG solver (or the UF cycle"; described, e.g., in [PR]). In 
it, an (approximate) energy functional is first transferred to increasingly coarser 
levels, in terms of FAS variables. Then a so-called FMG (= "full multigrid") 
solver is applied. This solver starts at the coarsest level and sequentially proceeds 
to increasingly finer "base levels". At each base level, a first approximation is 
obtained by interpolating the displacements from the previous (next coarser) base 
level. Then the approximation is improved by several multilevel cycles, of the 
type described in Sec. 4.4, except that they start at the current base level, not 
at the original (finest, atomistic) level. Then the solution is interpolated to the 
next, finer base level; and so on, until the finest level (of atoms) is reached and 
multilevel cycles are performed for it. 

Actually, the experience with PDEs is that only one multilevel cycle at each 
base level is usually enough, since the initial approximation, obtained from the next 
coarser level, is already very good. One multilevel cycle is usually also enough at 
the finest level, for the same reason, making this solver very inexpensive. Effec- 
tively, the FAS-FMG algorithm makes global-Newton iterations unnecessary. 

4.8 Continuations 

A general powerful technique to deal with difficult nonlinear problems is to 
combine the FMG process with a continuation (parameter embedding) process (see 
Sec. 8.3.2 in [G2]). This means that at the initial stages of the FMG solver (at 
multilevel cycles for coarse base levels) some problem parameters are changed, to 
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allow large scale movements not to be excessively affected by small scale details. 
As the FMG process advances to even finer base levels, the problem parameters 
are gradually restored, to finally reach their true value when the algorithm reaches 
the finest (the target, atomistic) level. 

In particular, a natural FMG-continuation process for molecular mechanics 
is to ignore, at each base level, the local part of the electrostatic interactions of 
the next finer base level. That is, in the formulation of the base level energy 
functionals in the beginning of the FAS-FMG algorithm, this part is omitted; it is 
however not omitted in any coarsening within any of the multilevel cycles. 

A related technique is to use a continuation process with a sequence of several 
multilevel cycles for the same base level, the finest base level in particular. Natural 
continuation parameters in this respect are the stiffness coefficients of the strongest 
couplings. For example, in the above 2D model problem (Sec. 4.1), the values of 5; 
may be softened (lowered) when the approximate energy functional of the coarse 
level is calculated (see end of Sec. 4.3; this softening is especially important in case 
higher-than-quadratic Taylor expansions are used). As convergence is approached 
at subsequent cycles, the softening can be gradually taken out. The full-strength 
(unsoftened) coefficients should still be used in all the relaxation sweeps between 
coarsening steps. The softening at each coarsening step is such that it allows 
the expected size of the large-scale displacements not to be stifled by the strong 
couplings. (Although the effect of the latter vanishes to a first order if interpolation 
is designed as described in Sec. 4.3, the second-order effect may still be stifling if 
the coupling strength ratio is very large.) Since such a stifling (being a second order 
effect) disappears for sufficiently small displacements, the softening can indeed be 
gradually taken out as convergence is approached. 

4.9    Stochasticity, combined with dynamics 

A powerful method to escape local energy minima in search of a more global 
minimum is to add stochasticity to the minimization process. Simulated annealing 
is the most well known example. Since in molecular mechanics problems a multi- 
tude of local minima comes with multiscale attraction basins, a multiscale version, 
called multilevel annealing (see Sec. 4 of [RA]), can be much more effective (as 
shown in [RA] for spin glass problems). 

The energy functional discussed thus far is the augmented one, including the 
quadratic kinetic term (see Sec. 3.2 agove). This augmented energy would be 
used in the annealing processes at each time step. For the dynamics of large 
biomolecules, however, the most natural stochasticity, and possibly the only one 
to guarantee correct dynamics, is the one associated with the true temperature 
of the material. This suggests a multiscale process where on finer scales (those 
scales associated with vibrations not resolved by the time step), instead of the 
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Gauss-Seidel relaxation, a Monte-Carlo process (cf. Sec. 3.4) will be applied. It 
will use the relevant physical temperature and the bare (not augmented) potential 
energy. This process comes in fact close to that of Sec. 3.5, except that it may 
be simpler because it can gloss over the problem of detailed balance. Also, it may 
be desired to finish the process off by an annealing phase (letting the temperature 
decrease gradually to zero). 

References 

[I] L. Verlet, Computer 'experiments' on classical fluids, I. Thermodynamical 
properties of Lennard-Jones molecules, Phys. Rev. 98 (1967). 

[2] A. Rahman, Correlations in the motion of atoms in liquid Argon, Phys. 
Rev. 136 (1964) A405. 

[3] M.P. Allen and D.J. Tildesley, Computer Simulation of Liquids, Oxford 
University Press, New York (1990). 

[4] B.R. Brooks, R.E. Bruccoleri, B.D. Olafson, D.J. States, S. Swaminathan 
and M. Karplus, CHARMM: A program for macromolecular energy, mini- 
mization and dynamics calculations, J. Comput. Chem. 4 (1982) 187. 

[5] W.F. van Gunsteren, H.J.C. Berendsen and J.A.C. Rullmann, Stochastic 
dynamics for molecules with constraints Brownian dynamics of n-alkanes, 
Molecular Phys. 44 (1981) 69. 

[6] C.S. Peskin and T. Schlick, Molecular dynamics by backward-Euler method, 
Comm. Pure Appl. Math. 42 (1989) 1001. 

[7] A.M. Nyberg and T. Schlick, Increasing the time step in molecular dynam- 
ics, Chem. Phys. Lett. 198 (1992) 538. 

[8] P. Derreumaux, G. Zhang, T. Schlick and B. Brooks, A truncated New- 
ton minimizer adopted for CHARMM and biomolecular applications, J. 
Comput. Chem. 15 (1994) 532. 

[9] T. Schlick, S. Figueroa and M. Mezei, A molecular dynamics simulation of 
water droplet by the implicit Euler/Langevin scheme, J. Chem. Phys. 94 
(1991) 2118. 

[10]      G. Zhang and T. Schlick, The Langevin/implicit-Euler/normal-mode scheme 
for molecular dynamics of large time steps, J.  Chem. Phys.   101 (1994) 
4995. 

[II] M.H. Hao, S.C. Harvey, Analyzing the normal mode dynamics of macro- 
molecules by the component synthesis method, Biopolymers 32 (1992), 
1393. 

- U - 



[12] M.E. Tuckerman, B.J. Berne and A. Rossi, Molecular dynamics algorithm 
for multiple time scales: systems with disparate masses, J. Chem. Phys. 

94 (1991) 1465. 

[13] M.E. Tuckerman and B.J. Berne, Molecular dynamics in systems with mul- 
tiple time scales: systems with stiff and soft degrees of freedom and with 
short and long range forces, J. Chem. Phys. 95 (1991) 8362. 

[Al] A. Brandt, S. McCormick and J. Ruge, Algebraic multigrid (AMG) for 
automatic multigrid solution with application to geodetic computations, 
Institute for Computational Studies, POB 1852, Fort Collins, Colorado, 

1982. 

[A2] A. Brandt, S. McCormick and J. Ruge, Algebraic multigrid (AMG) for 
sparse matrix equations, in: Sparsity and its Applications (D.J. Evans, 
ed.), Cambridge University Press, Cambridge, 1984, pp. 257-284. 

[A3] A. Brandt, Algebraic multigrid theory: The symmetric case, Appl. Math. 
Comp. 19 (1986) 23-56. 

[A4] J. Ruge and K. Stuben, Algebraic multigrid, in: Multigrid Methods (S.F. 
McCormick, ed.), SIAM, Philadelphia, 1987, pp. 73-130. 

[BG] A. Brandt, M. Galun and D. Ron, Optimal multigrid algorithms for calcu- 
lating thermodynamic limits, J. Stat. Phys. 74 (1994) 313-348. 

[G2]     A. Brandt, Guide to multigrid development, in: Multigrid Methods (W. Hack- 
busch and U. Trottenberg, eds.), Springer-Verlag, 1982, pp. 220-312. 

[GR] L. Greengard, Fast algorithms for classical physics, Science 265 (1994) 

909-914. 

[LI] A. Brandt, Multigrid methods in lattice field computations, Nucl. Phys. B 

(Proc. Suppl.) 26 (1992) 137-180. 

[OS] A. Brandt, Multilevel computations of integral transforms and particle in- 
teractions with oscillatory kernels, Comp. Phys. Comm. 65 (1991) 24-38. 

[PR] A. Brandt and J. Greenwald, Parabolic multigrid revisited, in: Multigrid 
Methods III (W. Hackbusch and U. Trottenberg, eds.), Birkhäuser Verlag, 
Basel, 1991, pp. 143-154. 

[RA] A. Brandt, D. Ron and D.J. Amit, Multi-level approaches to discrete-state 
and stochastic problems, in: Multigrid Methods II (W. Hackbusch and 
U. Trottenberg, eds.), Springer Verlag, 1986, pp. 66-99. 

[TO] A. Brandt and A.A. Lubrecht, Multilevel matrix multiplication and fast 
solution of integral equations, J. Comp. Phys. 90 (1990) 348-370. 

15  - 



Special Project SPC-94-4110 
CONTRACTOR/PURCH ORDER NOA F6170894W0939 

Multiscale Methods in Molecular 
Mechanics 

Achi Brandt 
Department of Applied Mathematics and Computer 

Science 
The Weizmann Institute of Rehovot, Israel 76100 

Second Quarterly Progress Report 
Covering the period FebA 1, 1995 to AprA 30, 1995 
Delivered to: Dr.Ruth Pachter 
Material Directorate WL/MLPJ 
Wright-Patterson AFB OH 45433-6533 

General 

The former Report [1] has outlined the general research strategy we have developed for 
introducing fast multiscale methods into the computation of molecular dynamics, statics 
and statistics. The first crucial step in this strategy is the design of a multiscale cycle for 
fast energy minimization in the neighborhood of the minimum, i.e., when starting with 
sufficiently close first approximation. This cycle will serve to solve efficiently the large 
system of equations arising at each time step of dynamics simulations when an implicit 
time discretization is used (allowing very large time steps). Together with other 
techniques outlined in [1], including real-temperature stochastic steps at fine levels, this 
cycle will also be pivotal in energy minimizations starting {\it farV} from the minimum. 
The coarsening techniques developed for such a cycle will later also be central for other 
molecular dynamics tasks sketched in [1], including fast normal mode analysis, multiscale 
Monte-Carlo processes at equilibrium, combination of small-scale statistics with large- 
scale dynamics, and derivation of bulk material properties. 

Latest work 

The main work over the last several months involved a sequence of technical steps aimed 
at a systematic development and examination of some of the basic numerical devices 
required for multiscaling of large molecular structures. Mostly we worked on designing 
{\it coarsening principles}, the core of any multiscale scheme. 
A coarsening step is a procedure for transforming the system from a given fine level to 
the next coarser one. The objective of the step is to create a system (the coarser level) 
with substantially reduced (e.g., halved) number of degrees of freedom, but in which the 
same large-scale motions can still be described, associated with energy differences similar 
to those in the given (the fine) system. The construction of each such coarsening step 
consists of three inter-connected aspects: the choice of the coarse-level degrees of 
freedom, the design of the coarse-to-fine interpolation, and the derivation (and 
simplification) of the coarse-level energy functional. Each of these aspects depends on the 



special features of the given fine level. 
The dominant special feature of the {\it finestV} level at hand (the given molecular 
structure, with all its degrees of freedom) is that different kinds of forces are associated 
with very different coupling strengths. To develop a general approach for dealing with 
such a situation, various simplified models exhibiting this feature were investigated (see 
for example the model in SecA 4.1 of [1]). For each model, to separately study each of 
the above three aspects of coarsening, we have concentrated on two-level tests with 
"unigrid" interpolations and/or "unigrid" energy calculation. 
In {\it two-levelV} tests, only one coarsening step at a time is studied (minimizing the 
coarse-level energy exactly, disregarding the question of how to do this efficiently). In 
" {\it unigridV}" experiments, the fine-level changes associated with each pointwise 
coarse-level motion are immediately introduced along with that motion (instead of 
introducing all the fine-level changes after completing the coarse-level energy 
minimization). In " {\it unigrid" interpolations}, the fine level changes associated with a 
coarse-level motion are defined by a (possibly long) process of local energy minimization 
(instead of some simple chosen interpolation). In " {\it unigrid" energy calculations}, the 
energy difference associated with each coarse-level motion is calculated by explicitly 
finding the energy difference of the corresponding fine-level changes. All these types of 
simplified experiments involve of course procedures much less efficient then the ultimate 
algorithm, but they help to investigate the three aspects of coarsening separately from 
each other. 

Tentative conclusions 

Although our investigations are not yet completed, some preliminary conclusions already 
emerge. The most important one is that the first coarsening step (the only one we 
thoroughly researched) should be very efficient indeed: the two-level tests show very fast 
convergence (more than an order-of-magnitude residual-force reduction per cycle). This 
efficiency critically depends, however, on the correct choice of the interpolation. 
We have developed a general computational approach for deriving the interpolation 
weights from the relative displacements resulting in local sequences of dummy relaxation 
steps. This approach is not restricted to the simple models we have used to develop and 
test it. 
Another conclusion is that the nature of couplings can completely change from level to 
level. For example, they can become much more uniform and isotropic than in the base 
level. 

Next task 

Our next task will be to extend our studies to increasingly coarser levels and more 
realistic models. We will do it by introducing further features one by one, repeating for 
each of them the type of artificial cycles described above, as well as other technical steps, 
designed to separate out the development of coarsening principles into a systematic 
investigation of one aspect at a time. 
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1.     Review 

The former Reports have outlined the general research strategy we have de- 
veloped for introducing fast multiscale methods into the computation of molecular 
dynamics, statics and statistics (see [1] and a brief summary in Sec. 1 of [2]). The 
main work so far has involved a sequence of technical steps aimed at a systematic 
development and examination of relaxation principles (see Sec. 2 below) and coars- 
ening principles (Sec. 3), together constituting the core of any multiscale scheme. 
Also a new stochastic dynamics approach has been advanced, which will allow very 
large time steps with natural thermalization of all the unresolved high-frequency 
modes (Sec. 4). A workshop for teaching and discussing these investigations and 
related research has been held at the Weizmann Institute (see Sec. 5). 

2.     Relaxation Principles 

2.1   Relaxation as a solver 

A theoretical study of a simple model of an iV-atom polymer shows that 
minimizing the energy through simple atom-by-atom relaxation steps requires 
0(N3e~2) computer operations, where e ~ 10"2 is the ratio between short and 
long time scales associated with, respectively, the strongest (bond length) and 
weakest (torsion) local couplings. We have shown that this amount of work can 
be reduced to 0(N3) by relaxing simultaneously /J, atoms at a time. The number 
\x is such that /i atoms could simultaneously still move even in the limit case of 
rigid bond lengths and rigid angles. For simple chains, at last \i — 4 is required 
to obtain e-independent convergence, and increasing \i up to \i = 6 (allowing the 
simultaneous move to be fully three dimensional) would still substantially improve 
the convergence rate. Increasing fi beyond 6 would be a waste of effort. 



2.2   Relaxation as a smoother 

As a smoother in a multiscale solver, however, relaxation does not require 
such simultaneous moves. (Moreover, of course, the multiscale target complexity 
is O(N), not 0(N3).) On the other hand the smoother can be made substantially 
more efficient by being done in terms of internal coordinates. Thus, for example, 
in a simple chain, for each relaxed atom at its turn the energy to be minimized 
should be written (and the forces be linearized) in terms of the atom distances 
from its two neighbors and its angle of rotation around the axis through them. 
Only such steps efficiently smooth not just the bond-length errors, but also the 

bond-angle errors. 

3.     Coarsening Principles 

A coarsening step is a procedure for transforming the system from a given 
fine level to the next coarser one. The objective of the step is to create a system 
(the coarser level) with substantially reduced (e.g., halved) number of degrees of 
freedom, but in which the same large-scale motions can still be described, associ- 
ated with energy differences similar to those in the given (the fine) system. The 
construction of each such coarsening step consists of three inter-connected aspects: 
the choice of the coarse-level degrees of freedom, the design of the coarse-to-fine 
interpolation, and the derivation (and simplification) of the coarse-level energy 
functional. Each of these aspects depends on the special features of the given fine 
level. 

The dominant special feature of the finest level at hand (the given molecu- 
lar structure, with all its degrees of freedom) is that different kinds of forces are 
associated with very different coupling strengths. To develop a general approach 
for dealing with such a situation, various simplified models exhibiting this feature 
were investigated. For each model, to separately study each of the above three 
aspects of coarsening, we have focussed our research on two-level tests with "uni- 
grid" interpolations and/or "unigrid" energy calculation (see explanations in [2]). 
Some of the main findings are the following. 

For typical molecular structures we have found that efficient coarsening can 
be obtained by taking as the coarse-level degrees of freedom a certain subset of 
the atomic positions. In particular, for simple chains, one can simply choose every 
other atom to serve as a coarse atom. In the usual case of length, angle and 
torsion couplings, an even more efficient choice is to include in the coarse level the 
first two atoms from each subsequent disjoint quintuple. With this choice, for any 
given coarse-level positions, the location of all atoms is uniquely determined by 
the stronger couplings alone (i.e., by the bond-length and bond-angle couplings 
only). 

The general computational approach for deriving the coarse-to-fine interpola- 
tion which was reported in [2] has been replaced by a new one, which is easier and 



faster to apply. Briefly, the scheme is as follows. The three-vector displacement 
(i.e., position change) of each atom is interpolated from the coarse-level-atom 
displacements. The three-by-three-matrix interpolation coefficients are uniquely 
determined by the relations prevailing when a localized energy functional (the 
functional obtained by including only interactions between atoms in a certain 
neighborhood) is minimized. 

In summary, we have developed most of the tools necessary for efficient coars- 
ening procedures. For simple models of long chains with typical length, angle and 
torsion bond interactions, very fast convergence (close to an order-of-magnitude 
residual-force reduction per multigrid cycle) has been obtained. 

4.     Stochastic Dynamics 

The need to execute very large time steps 6t raises the question of how to 
model those oscillatory molecular modes whose period is not resolved by St. We 
have developed a new approach, called stochastic dynamics, which "thermalizes" 
such modes in a natural way, particularly compatible with the multiscale frame- 

work. 
Our starting point is a usual (deterministic) implicit-time-step discretization 

of Newton dynamics, which generates a set of equations that should be solved 
at each time step. This set of equations is equivalent to the minimization of a 
functional H(x), having the general form 

H(x) = E(x) + T(x,x0,v0), 

where x and x0 are the vectors of atomic positions at the end and at the beginning 
of the time step, respectively, v and v0 are the corresponding velocity vectors, the 
relation between velocities and positions being given by 

x — x0 1 
—-— = v + a(v0 - v), 0 < a < -, 

ot £ 

E(x) is the potential energy, and T is a certain "kinetic term", quadratic in x. 
Such a time step would damp down all the unresolved molecular vibrations, thereby 
severely distorting also the large-scale dynamics, which depend on those vibrations 
for its heat-bath supply of energy and stochasticity. Instead, the new approach 
is to replace the minimization of H{x) by a Monte-Carlo choice of x, with the 
Boltzmann-like probability distribution 

P(*) =!*-'*<•), 

where ß = (^T)"1, kB is the Boltzmann constant, T is the absolute temper- 
ature, and Z is a normalizing constant.    This Monte-Carlo choice of x can be 



performed very efficiently by a multiscale cycle using methods analogous to those 
being developed for the deterministic minimization. 

It can be shown that oscillatory modes with periods small compared with 8t 
are fully thermalized (slip into equilibrium statistics) within one such stochastic- 
dynamics time step, thereby acting as the required heat bath, while large scale 
modes still assume nearly deterministic Newtonian evolution. Also, the multiscale 
stochastic simulation is expected to be easier than the deterministic energy mini- 
mization for very large time steps, at which the minimization process would often 
be plagued with a multitude of false local minima. The multiscale stochastic sim- 
ulation employing the natural temperature of the material is likely to stride much 
more efficiently over that landscape of many local minima embedded in multiscale 
cascades of attraction basins. 

We have started a detailed study of this approach, including normal-mode 
analyses and numerical simulations for simple models. 

5.     Workshop 

Together with Prof. Tamar Schlick from Courant Institute of Mathematics at 
New York University, we have organized a workshop entitled, "Multigrid Tutorial, 
with Applications to Molecular Dynamics", held on October 10-12, 1995 here at 
the Weizmann Institute. The research supported by the present EOARD contract 
has been reported in detail by Brandt and Bai to an audience of about 35 investi- 
gators from the US, Israel, Germany and France, in addition to basic teaching of 
the multigrid background and several lectures on other computational approaches 
to molecular mechanics, delivered by others. See [3] for details. 
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