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Abstract: 

2-dimensional and 1-dimensional computer simulations of shock-wave 

phenomena and uniform high-rate deformation in composite, porous 

and brittle materials have been performed. A resonance regime of 

shock compression of 1-D laminated model of the composite is 

discussed. An empirical constitutive relationship has been 

constructed to describe the dispersive effects in a composite in 

continuous manner. Computer simulation of dynamic compaction shows 

changing symmetry of pores. The formation of shear bands of 

various configurations with friction and without friction was 

analyzed in two-dimensional geometry. It has been shown the shear 

bands can be responsible for the multi-wave structure forming at 

shock compression of brittle material. The constitutive model of 

brittle material has been proposed and tested in series of 1-D 

hydrodynamic calculations. The model includes two parallel 

elements. One of them works as an usual elastic-plastic body, 

another element describes the friction and dilatancy in the 

comminuted component. The comminuted component fraction is a 

scalar damage variable which grows from a value of 0 to 1 as a 

result of inelastic deformation of the intact component. 



1. INTRODUCTION 

Ceramics, composite and porous materials are widely used as 

structural materials in the space and rocket technology. To 

predict consequences of intense attacks like micrometeorit 

impacts, it is necessary to describe the behavior of similar 

materials under shock-wave loading. Usual way to analyze such 

phenomena is its computer simulation where materials properties 

are described by equations of state and constitutive 

relationships. Current hydrocode modeling capabilities are 

confined almost exclusively to homogeneous isotropic media and 

deal with a macroscopic continuum. It seems that constitutive 

relationships for routine using in hydrocodes have to be continual 

also. 

For heterogeneous materials, which consist of two or more phases, 

several factors complicate constitutive relation constructing. 

Response of such kind of materials is determined by behavior of 

individual components as well as their interactions and has to 

depend on the space distribution of components in the material. A 

characterization of the dynamic behavior of heterogeneous material 

requires more profound understanding of the phenomena. Current 

hydrocode modeling capabilities are confined almost exclusively to 

homogeneous isotropic media and deal with a macroscopic continuum. 

It seems that final constitutive relationships for routine using 

in hydrocodes have to be continual also. On the other hand, a 

computer simulation of processes in model heterogeneous materials 

can give a necessary information to construct these relationships. 

The main objective of this work is the analysis and description of 

the behavior of composite, porous and brittle materials under 

impact loading. The goal is to construct models of heterogeneous 

materials and constitutive relationships for computer simulation 

of impact phenomena. The work includes two-dimensional computer 

simulation of deformation processes in models of these 

heterogeneous materials. Two-dimensional computer simulation gives 

a detailed picture of the process on the microscopic level. 

Results of the simulations are then used to construct constitutive 

relationships that are incorporated then into the hydrodynamic 

codes. 



The Part 2 of this report presents the state of the problem. It 

includes a literature overview of experimental and theoretical 

results in field of response of composite, porous and brittle 

materials to the impact loading and some analysis of 

compressibility of mixtures. Part 3 presents results of 2-D 

computer experiments. Part 4 contains constitutive models and data 

of 1-D calculations. Mathematical models and codes are described 

in Appendix. 

2. BACKGROUND AND LITERATURE OVERVIEW 

2.1. COMPOSITE MATERIALS CONTINUUM MODELS. 

Series of simplified approaches have been developed to describe a 

viscous-elastic behavior of composite materials at low and 

moderate strain rates [1-4]. These approaches are based on various 

methods of the mechanical parameters averaging. For example, 

effective modules theory [1,2] uses assumption that average 

stresses Ö and average strains e are related by the Hooke's 

low through the effective modules C   x 

dn  =CijkÄj 

Effective modules depend on elastic properties of components as 

well as on the geometrical form and space distribution of 

components. This theory is based on an approach that all 

components of stress tensor and strain tensor averaged in some 

volume are egual to corresponding tensor components for composite 

material taken as a whole. Effective toughness theory and its 

modifications are used for description of composites with fibers. 

It is assumed the fibers-matrix interaction occurs due to matched 

displacement of fiber axis and matrix. Kinetic and potential 

energies of the composite deformation are the sum of corresponding 

energies of the composite components, which are taken with weights 

assigned in according to volume fraction of components. 

Anisotropie model of composite materials involving strength 

effects is discussed in ref. [5]. 

In conditions of shock-wave loading materials work mainly in the 

plastic deformation region. As a result, many factors considered 

in theories mentioned above have an insignificant influence on the 



dynamics of media. On the other hand, these theories are based, as 

a rule, on the acoustic approach and can not be applied for 

description of intense dynamic loading. An additional factor of 

the impact loading of composites is the acoustic interaction 

between matrix and fibers. Wave reflections between components of 

the material occur as a result of their different dynamic 

impedances. Wave reverberations produce a dispersion of a load 

pulse in the matter. This leads to changing attenuation of the 

load and has to be taken into account at analysis of hypervelocity 

impact phenomena. In order to calculate the composite material 

response to shock-wave loading, it is necessary to have in 

computer code an equation of state of the material and 

constitutive relations describing dispersion properties of the 

material. 

2.2. SHOCK COMPRESSIBILITY OF COMPOSITE MATERIALS. 

The shock compressibility of mechanical mixtures of two materials 

with known Hugoniots is calculated as a sum of the components 

compressibilities [6]. According to this additive approach, the 

specific volume V of mixture under pressure P is 

V(P)  = a 7 (P) + (i - a) 7 (P), 

where a is the mass fraction of first component in the mixture, 

V (P) and V (P) are specific volumes of components under pressure 

P. The most consistent consideration of shock compressibility of 

two-component mixture has been done by G.E.Duvall and S.M.Taylor 

[7]. As a rule, the thermal equilibrium is not reached in real 

situations. Fortunately, wave propagation is not very sensitive to 

thermal effects in the moderate pressure region. Comparison of 

additive calculations with experimental data [6] shows reasonably 

well agreement between measured and calculated Hugoniots of 

mixture when Hugoniots of components were used to calculate V± (P) 

and V (P). Then the shock front velocity and other kinematic 

parameters of shock waves in the mixture are determined through 

the Hugoniot. Some formal approximate equation of state can be 

constructed also using the P(V) Hugoniot of the mixture [8]. 

Calculations of compressibility of the mixture using the mixture 

theory  [9]  or  some mechanical  models  [10]  are much more 



complicated but provide approximately the same results. 

In frames of additive approach the bulk sound velocity in mixture 

C   is formally calculated through known bulk sound velocities in 

components using relationship 

(W      (W avo       v
2 (i) 

_ = a —
1 +  (i-a) — = - — 

dP        dP dP C2 

Thus, a square of the initial bulk sound velocity in mixture is 

calculated as 

C2  = 
(2) 

a /p* C2  + (l-co/p* C 2    nZ 
2 

It is interesting to mention that sound velocity value for mixture 

can be less then sound velocity values for both components. Figure 

1 shows the sound velocity of a aluminum/tungsten mixture 

calculated as a function of the tungsten mass fraction. The 

dependence has a minimum near 0.9 mass fraction of tungsten. 

Another interesting point is a relationship between a shock front 

velocity and a particle velocity in mixtures. It is known this 

relationship is, as a rule, linear one for metals, alloys and 

other individual matters. Figure 2 shows Hugoniots of mechanical 

mixtures of tungsten/aluminum, tungsten/epoxy and aluminum/epoxy 

calculated for volume fraction of heavy component equal to 0.375 

using linear Hugoniots of all components. One can see Hugoniots of 

mixtures are not exactly linear but curvature is not significant. 

2.3. POROUS MATERIALS 

The initial stage of the compression of a porous body is 

characterized by elastic strains. The yield strength decreases 

with increasing initial porosity of the medium. Irreversible 

compaction occurs above the elastic limit. The load required to 

produce a given density is found to increase with decreasing 

initial density of the body. This is explained by strain hardening 

of grains in the material during the process of compaction. 

Removal of the load is not accompanied by a large change in 

porosity. Complete compaction of porous material is attained at 

compression stress, which is somewhat higher than the Hugoniot 

elastic limit for solid material. 



Several constitutive models were developed to describe a behavior 

of the porous media through the solid materials properties and 

some mechanics of a shock wave interaction with pores. Each model 

contains several free parameters or material constants that can be 

determined only by fitting these models to experimental Hugoniot 

data. The compaction models have frequently been formulated by 

solving the stress-strain relationships in a specific porous 

geometry. A theoretical prediction of the unique equilibrium 

compaction relation requires detailed knowledge on material 

property, pore collapsing mechanism, and microscopic stacking 

geometry of matrix material. 

One from first models of porous body is so-called p-a model of 

W.Herrmann [10]. Parameter of porosity a in this model is the 

ratio of the pores specific volume V to the specific volume of 

solid matrix V  . A total volume of the porous mater under stress 
m 

is changing due to closing pores and due to changing volume of the 

matrix. The Herrmann's relationship for porosity is 

a = 1 + <ay - i)[(ps - P)/(PS - 7p)]
2, 

where a is a porosity value at the yield stress, Ps is the 

pressure of complete compaction, Y is yield stress for the 

incipient porous material. A thermodynamic equation of state for 

porous material p = p(V/d, E) is the same like one for the solid 

material. 

R.R.Boade [11] has found that the exponential p-a model fits 

experimental data more accurately. The exponential p-a model was 

given by 

A 

a = i + «x - lje"0^"^*, 

where a and p are the fit constants. 

M. Carroll and A. Holt [12] used an equation of state in the form p 

= a_1/(7/a, E)    which takes into account decreasing area in the 

body cross-section of the pressure acting due to the porosity. 

A simple constitutive model for the shock Hugoniot of porous 

materials in the incomplete compaction regime was developed in 

ref. 13. The model is based on the assumptions that: (1) the 

compacted powder geometry in the incomplete compaction regime is 



approximately similar for the shock compaction and the quasi- 

isostatic compaction, and (2) the net effect of the strain rate 

and the high temperature developed in the shock compaction results 

in a material strength whose magnitude is similar to that 

appearing in the case of the quasi-isostatic compaction. With 

these assumptions the constitutive relationship has been obtained 

in the following form: 

r-vp>[i+(-^iK'"-""-v]. 
o 

where V (p) is a specific volume of solid matrix as a function of 

pressure, V       and V    are initial specific volume values for porous 

and solid materials, n   « 2.1 to 2.5 is the Meyer work-hardening 

index of solid material defined from hardness measurements at 

different loads, 0    is yield strength of the porous material. 
y 

Models described above do not consider a stress relaxation during 

compacting. In the ref. 14 by Carroll and Holt some simple 

kinetics of the spherical pores collapsing was incorporated into 

the model using the Maxwell's viscosity: 

a = 1(a) I p +  J, 

where M(öl)    is a function describing an elastic behavior of a, 

p (a) is an equilibrium pressure for given a value. Ansamble of 

spheres with radius 0  each of them contained an internal void 

with radius a    was considered. The porosity a is related with a  , 
o 

0 through the relationship 

(b0/ao)
3  = ao/(ao-i). 

According to this model, the relaxation time T is proportional to 

the pore size a : 

T = [pa* (37(ao- i)2/3]1/2, 

where p is the solid matrix density, 7 is yield stress of the 

matrix. Results of computer simulation of the porous aluminum with 

this model and work-hardening incorporated to it (ref. 15) show 

generally good agreement between theory and experiment, including 



both quasistatic and shock data. It has been shown the viscosity 

is more important to describe the shock front rise time than size 

of pores. An adequate description of the width of a steady 

compression wave in porous aluminum was achieved by using 

viscosities in the range 1-10 Pa s. 

Model of Carroll and Holt was developed in ref. 16 with more 

careful description of viscosity and dynamics of pores collapse. 

Two material parameters K = (1/D) (Y/po )1/2 and R = T)/[ao (Ypo )
1/2 ] 

allows to analyze the behavior of mater over a wide range of 

stresses and material properties. 

Following development of model has been done in ref. 17 through 

the incorporation of deviatoric stresses into the model. It has 

been done by such a way that porosity and evolution of the pores 

form is determined not only by pressure but by full tensor of 

stresses. According to model, pores can be closed even by shear 

stresses only. The constitutive relationship is based on the 

conception of the yield surface in the space of stresses which is 

varied as a function of the porosity a. 

The shock compression of porous media produces greater heating of 

the medium than the shock compression of solid materials. The 

distribution of dissipated shock energy in the medium depends 

mainly on how the pores are collapsed during compression. The 

porous-body model, simulated by a set of steel balls, has been 

used in ref. 18 to show that the deformation produced during the 

impact compression of a porous body is localized mostly near the 

surface of granules. The theoretical analysis of viscoplastic 

heating of matter in the neighborhood of collapsing spherical 

pores was carried out in refs. 19 to 22. A micro-level numerical 

simulation shows the overheating matter near the pores at shock 

compression also. It was demonstrated in calculations of Mader 

[23] of shock-wave propagation in liquid media containing closed 

cavities. The shock-wave interaction with density discontinuities 

leads to formation of regions of high temperatures. The size of 

similar "hot spots" is close to initial diameter of pores. The 

same effect was observed in ref. 24 where consolidation of 

composite material and evolution of the particles form at shock 

compression were analyzed. 



2.4. BRITTLE MATERIALS 

The high-strain-rate behavior of ceramics and other brittle 

materials has more individual peculiarities than do metals. 

Different modes of a brittle materials deforming under compressive 

and shear stresses are illustrated schematically in Figure 3. 

Oxides and intermetallic compounds have a very high energy of 

nucleation of dislocations which are responsible for the plastic 

deformation mechanisms of metals and other ductile crystalline 

materials. Instead of dislocations, inelastic deformation of 

brittle materials is governed by the cracking. At low pressure the 

shear cracks and cracks oriented parallel to the compression 

direction nucleate under stresses of 1/3 to 2/3 of the elastic 

limit [25]. The cracking is accompanied with some small volume 

increment, - so called dilatancy, of order of 1% or less. 

A number of physical mechanisms [25] are responsible for the 

dilatational response of brittle materials at triaxial compression 

tests. They include, for example, the opening of secondary cracks, 

void growth in the vicinity of the crack tips resulting from a 

locally tensile stress field, and void opening at the 

intersections of cracks. In the case of granular materials, 

compressional dilatancy may result simply from a loss of closed 

compactness. Initially separate micro-cracks are not united and do 

not cause the body fracture on the whole. The growth and collision 

of cracks at following increasing shear stresses produce a 

fracture of the material. If pressure is high enough, a plastic 

deforming requires less energy than cracking and brittle materials 

become ductile. 

A deformation of solids in shock waves is one-dimensional one and 

shear stresses arise simultaneously with increasing pressure. 

Depending on a relation between elastic modules and the cracking 

threshold as a function of pressure, the state of material can 

pass through the dilatation area or come directly to the area of 

plastic deformation. It seems, both these cases were observed in 

series of experiments with plane-shock-wave loading of different 

ceramics performed during last decade. 

Most advanced and informative measurements of shock compression 



and release in high-strength ceramics were performed by M.E.Kipp 

and D.E.Grady [26-28]. The shock load/unload profiles of silicon 

carbide, titanium diboride, boron carbide and zirconium dioxide 

ceramics subject to plate impact provide distinctive features of 

the material response that can be used in the formulation and 

development of constitutive models. Important results were 

obtained also by the group of Z.Rosenberg, S.Bless, and N.S.Brar 

[29-31] and D.P.Dandekar et al. [31-33] for the alumina and 

titanium diboride, W.-D. Winkler and A.J.Stilp [34] for alumina, 

titanium diboride, silicon carbide, and boron carbide. These 

groups measured also the spall strength at shock intensities 

below and above the Hugoniot elastic limit and deviator stresses 

in shock-compressed ceramics. The post-test examination of 

recovered ceramic samples was carried out [32,33,35,36]. 

Results of experiments with ceramics exhibit all possible load 

ways shown in Fig.3. For example, stress-strain diagram of the 

silicon carbide is typical for elastic-plastic materials; shock 

compression of the boron carbide ceramics is accompanied with 

cracking and, as a consequence, with decreasing shear strength; 

it seems the behavior of the titanium diboride is some 

intermediate between former two cases with crack nucleation start 

below the elastic limit and obvious elastic-plastic following 

behavior. 

The theories called usually the damage continuum mechanics are 

widely used for phenomenological description of high-strength 

brittle material response [37-44], The state of material element 

(for simplicity, in isothermal approximation) is characterized by 

e - total strain tensor, ep - plastic (or viscous) strain tensor, 

w - tensor's or scalar parameter of damage. Being the material 

reaction, the stress tensor is supposed to be a function of actual 

strains and damage, i.e. 

0  = G(e,ep,w) 

System of constitutes equations is also including the law of 

plastic (viscous) flow 

dep/dt = $(Q,ep,v) 

10 



and an equation of a damage evolution 

dw/dt = Q(G,ep,w) 

In case of rate-independent materials the functions $ and Q 

depends also on the rate of G changing. Relationships (2) , (3) 

connect rates of the plastic strain and damage evolution with the 

actual state of material element. The second group of essential 

assumptions includes the suppositions concerning to existence of 

yield surface and damage one, gradientality (or nongradientality) 

of plastic flow and damage evolution process etc. The 

phenomenological description of damaged materials is connected 

with definition of damage measure. 

Series of attempts to construct reasonable constitutive model for 

description of response of hard ceramics are known. F.L.Addessio 

and J.N.Johnson [45] are developing a microphysically based model 

of the brittle materials inelastic deformation by cracking, which 

includes the progressive loss of strength and degradation of shear 

module as well as the post-failure response of a granular material 

with friction. Crack instability conditions and inelastic strains 

are obtained by considering the response of individual micro- 

cracks to an applied stress field. Similar model of D.J.Grove and 

A.M.Rajendran [46] assumes preexisting randomly distributed 

microcracks in ceramics, plastic flow above the yield strength, 

degradation of elastic modules and strength due to microcracking 

under both compression and tension. D.Steinberg [47] has performed 

a computer simulation of the shock-wave processes in ceramics with 

phenomenological approach which was successfully used earlier for 

metals. He described the yield strength as a function of the 

pressure, temperature, strain and strain rate. The description 

includes also the simplest form of the Cochran-Guinan Baushinger 

model [48] with degrading shear module at reverse deformation. The 

phenomenological model with the damage softening term was used 

also in calculations of J.F.Davis et al. [49], The damage 

evolution was assumed to be a function of the plastic work rate in 

compression only. 

One have to say that good agreement between results of computer 

simulation and experimental profiles takes place just for rather 

elastic-plastic materials like the silicon carbide. This does not 

take a place for the materials, like boron carbide, which are 

11 



crushed under compression with the shear component. It seems the 

advanced model should include both the strain hardening and 

softening, Baushinger effect, dilatancy and a factor of the strain 

rate. 

3. RESULTS OF 2-D COMPUTER EXPERIMENTS. 

Computer simulation of the heterogeneous materials response to 

impact loading has been carried out with 2-D Lagrangian code on 

triangular grid. The mathematical model is described in Appendix A. 

3.1. 2-D SIMULATION OF SHOCK WAVES IN A COMPOSITE MATERIAL. 

On the first stage we studied in the hydrodynamic approach the 

dissipative properties of aluminum reinforced by tungsten fibers. 

With this goal 2-D computer simulation of steady shock waves in 

the composite has been performed. Steady shock waves are most 

convenient for interpretation and analysis because the strain 

rate, the rate of a longitudinal stress increase, and deviator 

stresses are related by simple dependencies in this case. 

Dimensions of triangular Lagrangian grid were 200x40 with the 5 \m 
initial size of cells. The volume fraction of hexagonally placed 

tungsten fibers was equal to 0.375. The average diameter of 

tungsten fibers was 60 \Xttl. A cross-section of fibers at the 

triangular grid was approximated by hexagons. Rectangular shock 

pulses of various intensities were introduced into the material 

through the left boundary by linear increasing its velocity or 

pressure. Due to limited computer resources, it is practically 

impossible to calculate with high resolution the steady wave 

buildup from the initial shock jump. In order to have a 

possibility of calculations with small cells of the grid and to 

keep an accuracy of calculations, we have performed series of 

calculations with varied rise time of the incipient load pulse. 

Results of calculations were internal deformation of the material 

and longitudinal stress profiles in different moments of time. 

An example of the digitized microstructure after shock compression 

is shown in Fig. 4. Figure 5 shows an example of integral pressure 

(longitudinal stress) profiles which were constructed by averaging 

pressure values in cells of greed, including viscous components, 

12 



along series of cross-sections perpendicular to the load 

direction. The weight averaging was done taking into account the 

fraction of crossed cell. Due to limited amount of fibers in the 

composite and to finite grid dimensions the calculated pressure 

profiles are not monotonous. It is necessary to mention that in 

case of pure aluminum the compression wave evolution was 

monotonous and the calculated minimal shock-front thickness was 

approximately equal to 4 or 5 cell sizes, that is 20-25 \JJ7l. The 

compression wave thickness is much more in the case of composite 

materials. This means the numerical and approximation viscosities 

do not have any essential contribution into the digitized rise 

times for the composite material case. 

Calculations with the initial rise time 100 ns provide the steady 

compression wave buildup at 1 mm of the propagation distance. A 

steadiness of the compression wave was verified through its 

average propagation velocity. The propagation velocity of steady 

wave equals to the shock front velocity calculated for the 

aluminum-tungsten mixture. The thickness of steady compression 

waves in composite amounts to several (3 to 5) periods of fibers 

layers and decreases gradually with increasing the shock 

intensity. 

Figure 6 shows stress profiles which were calculated taking into 

account elastic-plastic properties of both matrix and fibers 

materials. The yield strength Y0 was 0.5 GPa for aluminum and 3 

GPa for tungsten. Calculations show much more steep middle part of 

the compression wave in the case of elastic-plastic behavior in 

the low pressure range. Obviously there are two reasons of the 

fact: (i) an increased average sound velocity accelerates the wave 

reverberations; (ii) a resistance to shear strains in solids 

promotes to faster buildup of a final configuration of the shock- 

compressed composite. Only very weak precursor is observed in the 

case of 2-dimensional elastic-plastic composite, but the final 

stress exceeds the shock pressure in corresponding liquid-like 

material. It seems the difference in average final axial stresses 

is controlled by the yield strength of the matrix. 

3.2. POROUS MATERIALS. 

Some preliminary results for porous materials were obtained in two 

13 



modes of dynamic compaction. 2-D computer simulation was performed 

in the same geometry, as shown in Figure 4, with a gas placed 

instead of fibers in composite material. Solid component of porous 

matter was described as an ideal elastic-plastic body without 
strain-hardening. 

Figure 7 shows a deformation of the grid in the initial stage (71 

ns after the process start) of shock wave propagation in porous 

aluminum. The boundary velocity was 1 km/s. Contrary to usual 

models of shock compaction, one can see a non spherical closing of 
pores at one-dimensional shock compression. 

A computer simulation permits one to study a uniform compression 

of the material. For this mode the uniform velocity distribution 

along the sample axis was used as an initial condition and the 

constant values of velocity (uO for the left boundary and 0 for 

the right boundary) were used as the boundary conditions. Figure 8 

shows the sample deformation after 80 ns at U =3 km/s. In this 

case pores are closed more symmetrically in comparison with shock- 

wave compaction, but nevertheless the spherical symmetry is not 

kept. Figure 9 shows the average axial stress in porous tungsten 

as a function of strain at uniform compression. After small 

initial elastic part of the diagram a remarkable growth of 

stresses is beginning just near the end of the compaction process. 

Obviously this is because the strain-hardening and viscosity were 
not involved in calculations. 

The elastic limit of one-dimensional compression is 1.9 GPa. 

Meanwhile the yield strength of tungsten used in calculations was 

3 GPa what corresponds to 5 GPa of the Hugoniot elastic limit of 

solid tungsten. According to Steinberg's model [56] the elastic 

limit of porous tungsten was expected to be 1.70 GPa. Results of 

calculations some exceed preestimated value, but the discrepancy 

is not very large. It is possible to say that simple Steinberg's 

model can be quite used as a constitutive model of porous elastic- 

plastic body. To take into consideration the strain hardening 

effect, it is necessary to use modified models, like model of Ki- 
Hwan Oh and Per-Anders Persson [13]. 

14 



3.3. 2-D SIMULATION OF SHOCK COMPRESSION OF A BRITTLE MATERIAL 

The dynamic compression of brittle material was simulated in our 

calculations artificially as a shear bands formation in the ideal 

elastic-plastic body. Shear bands are formed in preliminary 

determined places of the sample when the stressed state in sample 

reached some threshold conditions (usually half of the yield 

strength of the main material). After that the resistance to a 

shear deformation inside the bands was set to be zero or was 

proportional to pressure like a friction. The friction coefficient 

was considered as a free parameter and was varied. At high 

pressure the friction forces can exceed the yield strength. In our 

calculations we limited the friction resistance to shear by the 

yield strength of the ceramic. An equation of state and elastic- 

plastic parameters of the SiC ceramic were used in all 2-D 

calculations. 

Two series of calculations with various geometry of shear bands 

have been performed. An example of deformation of a brittle sample 

with intersecting shear bands, is shown in Figure 10. Figure 11 

shows the stress-strain diagrams for samples with different 

frictions inside shear bands. In general, these diagrams are quite 

similar to observed experimentally [26,27] for ceramics. In the 

case of zero friction, hydrostatic states are created inside the 

shear bands. As a result, after the shear bands formation the 

structure of the solid ceramic is changed to structure of solid 

grains surrounded by liquid layers. As a result, the stressed 

state of the material on the whole becomes the hydrostatic one 

also. We did not see any interactions between grains and 

dilatancy effects in our model. In the case of non-zero friction 

the stressed state after the shear bands formation is controlled 

by the friction coefficient. 

Besides the geometry shown in Fig. 10, simulations with non- 

crossing bands were performed at the same relative area of 

inclined shear bands. It was expected that in the last case the 

shear bands formation should not be accompanied with hydrostatic 

states of the matter. Figure 12 shows the calculated stress- 

distance profiles for the ceramic in frame of the pure elastic- 

plastic model (without shear bands), and in frame of the model of 

elastic-plastic matter with shear bands. Of course, the shear 
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bands formation lowers the Hugoniot elastic limit. In the case of 

non-zero friction, the simulation gives three-wave structure when 

the friction forces inside the shear bands exceed the yield 

strength. These three-wave structures are some similar to 

experimental velocity profiles measured for the titanium diboride 

ceramic. Qualitatively stress profiles are not changed with 

varying the bands geometry. 

4. CONSTITUTIVE MODELS AND 1-D COMPUTER SIMULATION. 

4.1. SHOCK-WAVE PROCESSES IN LAYERED COMPOSITES. 

Behavior of sophisticated systems is usually investigated on 

simple models. Such a simple model of composite materials can be 

presented as a plate composed of alternating flat layers of two 

different materials perpendicular to the direction of shock 

propagation. Shock-wave phenomena in laminated composites were 

discussed earlier in refs. [50-52]. In this case the first shock 

wave decays very rapidly due to numerous waves reflections at 

interfaces. It has been shown the wave front induced a large 

amount of ringings as it passed through the layers of the 

composite. Obviously, the final shock-compressed state has to 

correspond to the Hugoniot of the mixture. 

Figure 13 shows results of computer simulation of shock 

compression of laminated plate consisting of the copper and 

polyethylene layers. The pressure and particle velocity 

distributions at several moments of time show the resonance 

behavior of such periodical one-dimensional composite. The 

pressure (and compression) oscillations are concentrated mainly 

inside the soft polyethylene layers. Due to that one can expect 

the main dissipation has to be localized in the soft material 

also. The velocity oscillations are concentrated mainly at more 

heavy copper layers. Figure 14 shows pressure histories in the 

middle sections of copper- polyethylene and aluminum-polyethylene 

targets. One can see the pressure oscillations have an 

approximately constant period and are near harmonic in form. The 

period of oscillations approximately corresponds to the sound 

propagation time through two alternating layers of the composite. 

Wave reflections between layers smear the wave front, but its 

average propagation velocity is practically equal to the shock- 
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front velocity in the mixture calculated for a given boundary 

velocity. An average pressure also corresponds to the Hugoniot of 

the mixture. The rise time of first compression wave approximately 

equals the period of oscillations. The pressure oscillations can 

pass to a homogeneous barrier placed behind of the layered target 

if the dynamic impedance of the barrier is high enough. 

A reality of oscillations has been examined experimentally. With 

this goal the pressure profile at the interface between the 

target, consisting from 10 copper foils 0.2 mm thick and 10 

polyethylene films 0.2 mm thick, and copper plate was measured 

with manganin pressure gauge. The initial load pulse was 

triangular in form with a total duration about 20. Result of 

measurements presented in Figure 15 confirms an appearance of 

oscillation. Relatively small amplitude of measured oscillations 

and relatively fast decay of them are explained by the viscosity 

of soft polyethylene layers where a main deformation occurs. 

Figure 16 shows an influence of stress relaxation in the 

polyethylene layers on the computed wave profiles. One can see 

oscillations decay much faster if the relaxation time is some less 

than half-period of oscillations. In the case of large relaxation 

time behavior of soft layers becomes closer to elastic one, what 

can be seen as increasing the average propagation velocity and 

decreasing the period of oscillations. The stress relaxation in 

heavy rigid layers does not produce any essential effect. 

Elastic-plastic response of both components increases the wave 

dispersion in a composite and damps resonance oscillations. This 

can be seen in Fig. 17 that shows calculated pressure profiles at 

the interface between a tungsten barrier and the Al/W layered 

composite with the tungsten volume fraction of 0.375. The weak 

precursor increases the total rise time of the first compression 

wave and oscillations decay much faster in the elastic-plastic 

composite. 

4.2. 1-D COMPUTER SIMULATION OF THE WAVE DISPERSION IN COMPOSITE 

MATERIAL. 

A dispersion of shock front takes place in composite materials due 

to waves' reflections between components with different dynamic 

17 



impedances. Comparison of the wave propagation characteristics of 

composite and viscous (i.e., stress relaxing) materials reveals 

that there are some basic similarities in their wave profiles. 

Composite and viscous materials appear to sustain the steady wave. 

The smooth wave transitions in viscous materials, which are 

attributable to rate effects, appear to be similar to smooth wave 

transitions in the composite which are attributable to dispersive 

effects. In view of this similarity the gross behavior of a 

composite can be described by an appropriate viscous material 

constitutive model, even though the individual constituent 

materials of the composite may be strain rate independent. Such a 

model was discussed earlier by L.M.Barker [51]. 

Following to Maxwellian model, L.M.Barker has introduced a 

metastable (instantaneous) and equilibrium stress-strain paths of 

loading, and stress relaxation from an instant state to the 

equilibrium one. It is necessary to say that determination of the 

metastable loading path for composite is a problem. On the other 

hand, computations and available measurements of shock-wave 

processes in composite materials do not reveal any signs of the 

ultimate metastable states. 

In this work we tried to describe the process with an empirical 

constitutive relationship without determination of metastable 

paths. Instead of metastable states we assume that fast bulk 

compression produces superfluous pressure in matter which depends 

on compression rate. Then an establishing the mechanical 

equilibrium occurs through the superfluous pressure relaxation to 

zero. Total pressure p is presented as a sum of equilibrium 

component  D   determined  by  the  equation  of  state,  and 1  e 

nonequilibrium component D which depends on the strain rate and 

load history. Nonequilibrium pressure components at compression 

were calculated using the empirical kinetic relationship 

(3) 

where t  =   Is, K  , Tl,    and relaxation time T  are the material 
o 1 

constants. An acceleration of the reverberation process due to 

increasing the sound velocity with pressure is taken into account. 
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The same relationship with a reverse sign at dV    is used for 

rarefaction. 

Empirical kinetic relationship (3) contains three parameters: Ki , 

Tl, and T, , which, in principle, can be estimated from series 

profiles of steady shock waves with different peak pressures. When 

a steady wave propagates through a material, all parts of the wave 

propagate with the same constant velocity, and the material, 

therefore, is loaded along a Rayleigh line to the final state on 

the equilibrium behavior curve. Intermediate states in the steady 

compression wave contain some superfluous pressures that equal the 

difference between stresses at the Rayleigh line and equilibrium 

pressures corresponding to the material equation of state: 

Pn    - ?0   V2     <70 " 7> " P(7);     k    = "Po ^ ^    " a2)' 

2 
(IP        1/2 

where U   is the shock front velocity, a  = (- V„ TTTT )    is the o 
Lagrangian sound velocity. In some intermediate point of the shock 

wave the superfluous stress passes through the maximum. In this 

point p = 0 and, according to (3), 

K2T - F'UC/C^ 
(    t dV ) 

__0   

v at 
o 

Thus the strain rate dependence on the pmax value give an 

estimation of the K % product and the power index n. A slope of 
the shock-wave just in the front point, where a superfluous stress 

is steel zero and sound velocity is C , gives us o 

p   = -p2 V (Ü2  - C2)  = K 
t dV 1 
_0   

V dt 
0 

Last relationship can be used to find the K value. It shows also 

the power index n has to exceed unit because in the case of 72=1 

initial slope of the steady compression wave does not depend on 

its intensity, and in the case of n < 1 the slope decreases with 

increasing shock intensity. 

Results of 1-D simulation with K    = 1.5*10s Pa/s, n  = 1.5, and % = 
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2*10~8s are compared with 2-D data in Figures 18. Equation of state 
based on the Hugoniot of mixture was used in 1-D calculation. One 
can see a sufficient agreement between results of two kinds of 

calculations. 

4.3. CONSTITUTIVE MODEL FOR DYNAMIC RESPONSE OF BRITTLE MATERIALS. 

To construct rather simple constitutive model of the brittle 

material we used as a basis the structural Marzing model [53]. 

This model reflects a micro-nonunifortuity of real materials and is 

successfully used for the Baushinger effect description at the 

repeated-alternating loading. 

In frame of the Marzing model model each elementary volume of body 

is represented as consisting from N parallel elastic-viscous- 

plastic subelements. Subelements have equal elastic modulus, but 

different yield strengths and viscosities. The stress in each 

subelement is determined as 

-1°, 
l 

where O* are stresses inside the subelements, gfc are weight 

factors which can be presented as relative areas of subelements 

cross-sections. Inelastic strain component appears at moment when 

an yield strength of the weakest subelement is reached. The 

ultimate stress in this model is 

N 

l 

Effective elastic modulus after yield stress reached in n 

subelements is 

n 
E        =  E (l - ^ 
n+ 1 gj, L   &K 

1 

where E     is the elastic modulus of subelements. The model can be 
o 

generalized on the arbitrary stresses state [53]. 

For high-strain-rate conditions it is necessary to take into 

account the viscosity of matter. Measurements of the shock front 

structure [54] show the shear plastic strain rate in the range of 

104 to 107 s_i is related to shear stress as 
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7 = A    (T - Y/2) 
■p 

where A'    is constant. In frame of the multi-elements model the 

plastic strain rate of subelements can be calculated as [55] 

'f   = A     [ - (T*- Yk  /2)]2 , 
Y, 

Both strain hardening and softening of subelements describe a 

complex response of materials to the shock-wave loading. 

Most of practical applications of the computer simulations of 

the brittle materials dynamic response require are associated with 

three-dimensional analysis. From this point of view it is 

necessary to avoid superfluous details which can be prohibitively 

expensive in realization of the computer model. In relation to 

multi-elements model this means that we have to reduce to minimum 

the number of elements. In fact, two elements are quite enough to 

describe with sufficient accuracy the main peculiarities of the 

material response. 
Our model of brittle material includes two parallel elements. One 

of them works as usual elastic-plastic body, possibly - with 

strain hardening. Another element describes the resistance to 

deformation of the comminuted component. For this second element 

the resistance to shear is a friction. Initially we deal with 

solid undamaged ceramic, so it is naturally to assume the initial 

fraction of the comminuted component to be zero. With beginning of 

an inelastic deforming the brittle material is cracking and the 

fraction of comminuted component is growing with increasing 

inelastic strain. After some strain the initial intact material 

becomes completely failed, that means the fraction of comminuted 

component reaches 1 and the resistance to shear is determined by 

friction in a granular material only. Thus in frame of this model 

the comminuted component fraction is a scalar damage variable 

which ranges from a value of 0 to 1. In the model the fraction of 

comminuted components grows with increasing inelastic deformation 

of intact component: 

ßf r 'p 

2   i + ßT1 
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where 71 is the inelastic strain of the intact component, 
■p 

A dilatational effect has been formally incorporated into the 

model to take into consideration an increase in volumetric strain 

resulting from cracks growth. In the present model the dilatancy 

is associated with inelastic deformation of comminuted component 

and is expressed in terms of increments of relative volume of 

voids. Obviously shear strains under compression can produce just 

limited volume of voids. On the other hand, positive pressure 

above some threshold has to close voids. Basing on these simple 

ideas we have tried to describe the dilatancy by the following 

empirical relationship 

dV kg 
V 1     °2 P    ~    P 

.* 2 

-(V1) v Ctf      i + k   V       *•     pn 

where V    = V    /  V    is  the  relative volume  of voids,   T2   and go   are 
v v 0 P 2 

the inelastic deformation and weight factor of the comminuted 

component, k , k , p* , p are the material constant parameters. 

Voids are not closed when pressure does not exceed the threshold 

value p . 

The model does not include any degradation of shear module with 

inelastic compression. The shear module dependence on the pressure 

is calculated in the approach of constant Poisons ratio which 

means that ratio of the shear module to the bulk module is not 

changed with changing pressure and temperature. Yield strength of 

the intact component is changed proportionally to the shear 

module. The tensile strength of the matter was supposed to be 

negligible. 

A computer simulation of shock-wave experiments [26,27] with 

boron carbide ceramic has been performed. The boron carbide 

ceramic was analyzed because previous calculations [45-49] for 

this ceramic were lest successful. Results of calculations with 

our constitutive model are compared with experimental [26,27] 

velocity profiles in Figure 19. It seems the agreement between 

results of calculations and experimental data is quite reasonable. 

Figure 20 shows states of material during shock compression and 
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unloading. One can see the strong Baushinger effect is described 

well by the model. The dilatancy effect is most essential at last 

stages of unloading. 

CONCLUSION 

Results presented here can be considered as encouraging in sense 

that way of investigation of the heterogeneous materials response 

to dynamic loading using the 2-D computer simulation of the 

phenomena can be really productive. Some important details of 

the dynamic compression process in composite, porous and brittle 

materials have been established due to 2-D simulation. Reasonable 

constitutive relationships were then designed to describe behavior 

of composites and brittle materials under impact loading. The 

following work can be directed to more advanced analysis of 

the deformation process, to development of constitutive models and 

to finding the models parameters values for some determined 

materials. 
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APPENDIX A. 

MATHEMATICAL MODEL FOR 2-D COMPUTER SIMULATION 

One can hope that computer simulation of the dynamic 

deformation processes in composite material can make clear details 

of these processes and find correlation between mechanical 

properties of material and its components. Some preliminary 

results were obtained in our previous research. 

Calculations are based on fundamental conservation lows [1] 

and are conducted in Lagrangian material coordinates. Conservation 

of momentum is described by equations 

au 
2 

ar = v 

f d(s  - P)    as    i 
XX .      XX 

 5x   + ~dx~ 

( a (2   - P)    as 
z z 

"ax" ~dx 

(1) 

(2) 

Equation of conservation of energy is 

dB 
ar = v ai 

ax + v p  av 
v ~ar + v f s e 

I    XX  X X 
+ 2 e + 

z z z z 

+ 2 e I + V 
X Z  X z 

a 
ax A, dT 

m + m x aT 
az (3) 

The first term in the right part of equation (3) is energy release 

due to external source; second term is the work of bulk 

strain; third term is the work of shear strain; fourth term 

describes the internal energy increment due to thermocondactivity; 

au.au .      au     au 
e = ^% and e = ^x + ^ exx= ax' • ezz= az ' *I1U cxz= az  T ax are strain rates. 

The mass  conservation  is  carried  out  automatically  due  to 

Lagrangian variables used. 

Elastic-plastic behavior of the material is described by the 

Hooke's low for strain rates [2] 

as 
9T = 2G •   _  p   av exx  ST ~ar 

as > (4) 
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as 
2 

m 

as 

= 2G 

= G 

•   _  p  av 
ezz   3v ~m 

öS 

5S} 
Ff' 

(5) 

(6) 

A rotation angle A(p of element of media in the x-z plane during 

small time step At is 
-»    au     au 

Acp = At rot U = ^x - ö^
z. 

Corresponding corrections in equations (4)-(6) are calculated as 

[3] 

öS  = ( S - S )sin Acp + 2S slnAcp cosAcp 
Z Z      XX 

ÖS = - ÖS 

ÖS     = ( S   - S    )sinA(p cosAcp + 2S   sin2Acp 
Z Z       XX 

Yielding is tested using Mises criterion. According to this 

criterion, when 

2 v2 f = 2 ( S' + S^ + S' + S S ) > % Y% 
XX     XZ     ZZ     XX  zz       o   o 

(T) 

where Y is yield strength, yielding has occurred and the deviator 

stresses are reduced in the usual way [81: 

S : = S 
XX 

S : = S 
X z 

S : = S 

X X 

2 
3T 

V              J 

X z 

f               \ 

2 
31 

V                   J 

z z 
2 
31 

1 /2 

Y„ , 

1 /2 

Y. , 

(8) 

(9) 

1 /2 

Y . 
o 

do: 

A scalar artificial viscosity is used to damp nonphysical 

oscillations. Combination of the linear q and square q2 
viscosities is used in our code: 

where 
qt = qt + q2 

qi =  - C^.AZ V/V , 

(11) 

(12) 
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q, = C AI2 VW , (13) 

A7=v 4 A2/Ö is a characteristic size of the Lagrangian mesh [l], A 

is the mesh area, Ö is the sum of the squares of the mesh sides, 

V = i av is the dilatation rate, 0^0,5 and C2^2,0 are 

constant coefficients. Artificial viscosity is set equal to zero 

when dilatation rate is positive. 

Natural viscosity has been included into the model in form 

[4], The bulk viscosity is described as 

I + §T) V. (14) 

q  and q values are added to pressure in eqs. (l)-(3). Deviator 

components of viscous stress are [4] 

qzz - 2T| 

q  = 2T) e 

1 e - A v 
xx     o 

1  * e - X v 
z z   O 

(15) 

(16) 

(17) 

In order to damp oscillations of stress components, deviator 

pseudoviscosities have been introduced into the code also as a 

combination of the linear [3] and square [1] regarding strain 

rates terms. 

Components of the deviator of the linear pseudoviscosity 

tensor are 

q» = C aAle /V, q' = C a M  e /V, 
^xx    3 xx      iz z    3 zz 

q' = C a M  e /V , 
^xz      3 xz 

and components of the deviator of square pseudoviscosity are 

q" = C AZ2 e H/V , xx x      4        xx 

q" = C AZ2 e* H/V , 

q" = C AZ2 e "H/V , 
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where H = 2 v J  is the shear strain rate intensity, 

J  = (e - e  )2/6 + 3/2 e2  is the second invariant of the 
2        xx     z z xz 

strain rates deviator, C ^0,5, and C2^2,0 are constants. A total 

pseudoviscosity is sum of linear and square components: 

q     = q'    + q"    , 
^X X Axx xxx 

rv 

q     = q'    + q"    , xz z xz z ^z z 

rv 

q      = q'    + q"    , ^x z •Lx z -"-x z 

Components of deviator of visco-elastic stresses in eqs. (l)-(3) 

are determined as 

2  = S  + q  + q XX      XX     xxx     Axx 

rv 

2  = S  + q  + q z z     z z    Az z    xz z 

rv 

2  = S  + q  + q 
X Z      X z     xx z     xx z 

An equation of state of the matter was used in form of ref. 

[4] with correction in field of small densities. The pressure at 

specific volume V < V is calculated using Hugoniot of 

matter: 

P = PH + }  (E - EH) , (18) 

where PH= C
2
(VQ- V)/[VQ- SQ(VO- V)]

2 and  EH= PH (VQ- V)/2 are 

pressure and energy on the Hugoniot. 

For moderate pressures in a range of approximately 0.5 to 50 

GPa, a difference between the Hugoniot and isentrope of the matter 

is not significant [5]. A temperature in this region V < VQ is 

T = T + (E - E )/C , H    v       H '        v  ' 
where the temperature on the Hugoniot T is calculated as [8] 

H 

7(v - v)   (V - V)P„ 

31 



7v/v - 7v/v 
"2CT P e"   ° [ 2 - }  (Vo- V)] dV 

J V 

A pressure in field of specific volumes more than initial 

one ( V > Vn) is calculated using the Gruineisen equation of 

state 

where 

P = }  (E - Es) , 

E=(BK   )/T (V - V) 

(19: 

K   = e 
c o r r 

((v/v )2- 1) 
(20) 

7 = 2/3 + (7 - 2/3)K i i o c o r r 

The correcting factor K    decreases the bulk modulus value 
c o r r 

B from B at V = V  (what corresponds to usual initial conditions) 
o o 

to zero. By this way the energy of tension of the condensed matter 

E  is reduced to zero at V -» oo affording a smooth transfer to the 
s 

gas state region. The relationship (20) for K is constructed 

by such a way that E value becomes negligible at V = (3 * 5) VQ 

[6]. 

The temperatures in region of V > V„ is 

T = T + E/C . 
O V 

Calculation of the heat capacity as a function of 

temperatures C = f(T) is done in the Debye's approach 

[V]: 

C = 3 nk [4 D(x) - 3 x/(ex-1 )] , 

where  D(X) 
X' 

x3dx 
(ex-1) 

is Debye's integral, X = 6/T, 9 is 

the Debye's temperature. The Debye's integral is calculated using 

standard tables with linear interpolations. The Debye's 

temperature 8 is assumed to be function of the volume only and is 

calculated as [8]: 
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k0 = [lf58/(2 + 22)] [p^/d+p)*]   [ev], 

where p = V ,/V, 4> = 0,6Z1/9,  V   = 0,009 Z°" 3/W, r      ref       T ref 

Z is the atom number, W is the atom weight. 

The set of equations (1) - (3) is solved by the finite 

differences method on the Lagrangian triangular greed. 
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APPENDIX B. SIMPLE CODES. 

A series of simple codes for personal IBM-compatible computers has 

been created to estimate an equation of state of composites and to 

test constitutive relations. All codes have been written in 

FORTRAN and presented in diskette. 

B.l. MIXTURE is a code to calculate Hugoniots of mechanical 

mixtures through known Hugoniots of components. It works together 

with the file "HUGS.DAT" which contains Hugoniots of series of 

materials. You can include any additional Hugoniots into HUGS.DAT 

file using the same format. In this case you have also to change 

the number in first position of the "hugs.dat" file (amount of 

Hugoniots in the list). To use this code just do run it and follow 

to questions. The system of units is SI. 

B.2. MIXSOUND is a code to calculate the sound velocity as a 

function of the content of components in a mixture. It works with 

the "HUGS.DAT" file too. 

B.3. EOS is a code to check an equation of state which was used in 

1-D calculations. It is the equation of state of the Mie-Gruneisen 

type. The cold compression isentrope is calculated through the 

Hugoniot of matter basing on coinciding of the Hugoniots and 

isentrope in the pressure - particle velocity coordinates: 

p C2 V -V r0     0 0 
P  =    [exp(4S  ) -1], 

AS V o 

where C , 8 are coefficients of the linear relationship between 

shock velocity and particle velocity. The Gruneisen parameter is 

assumed to be constant. This simple equation of state gives enough 

good description of compressibility of solids and sound velocity 

near the Hugoniot. Results of calculations with EOS show 

variations of the Gruneisen parameter along Hugoniot when this 

equation of state is used. 

B.4. COMPOS is 1-D Lagrangian code used to check constitutive 

relation which describes a wave dispersion in composites. It works 
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together with COMPINST file where all parameters of calculations 

are established. COMPINST contains commentaries to all parameters. 

B.5. DUBRI is 1-D Lagrangian code to calculate shock-wave 

processes in the system impactor-target-window. Three different 

materials can be included in calculations and each of them can be 

ductile or brittle. This code works together with the file 

"PARAMS" where all necessary parameters are installed. The system 

of units is SI. Commentaries to parameters are given in the PARAMS 

file. The elastic-plastic properties of materials are described by 

the structural Marzing model which has been presented in part 4.3 

of this report. Two parallel elastic-plastic elements have been 

incorporated into the code. 
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Figure 1. Sound velocity in the aluminum and tungsten mixture 

calculated in additive approach. 
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Figure 4. Deformation of the composite material in shock wave. 

Boundary velocity is 1 km/s. 

39 



0.0 0.2     0.4  x  0.6     0.8 

Distance (mm) 
1.0 

Figure 5. A stress wave evolution in composite at 100 ns of 

the initial rise time. Hydrodynamic approach. 
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Figure 6. Comparison of the shock-wave stress profiles in the 

composite calculated in hydrodynamic (points) and 

elastic-plastic (lines) approaches. 
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t=       70.855   ns   Nstep =       Z395 

Figure 7.   Shock compression of porous aluminum. 
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t=   80.016 ns Nstep =   573 

Figure 8. Uniform dynamic compression of porous tungsten at 1 

km/s of boundary velocity. 
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Figure 9. Average stresses in porous tungsten as a function of 

the strain at uniform dynamic compaction. 
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t=  1ZB.11Z ns Nstep =   1411 

Figure 10. Shock compression of hard ceramic with shear bands. 
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Figure 11. Average stresses in the hard ceramic as a function of 

strain at the uniform dynamic compression. Friction 

coefficient was varied from 0 to 0.33. 
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Distance (mm) 
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Figure 12. Compression wave profiles in hard ceramic as a result 

of 2-D simulation. Solid line shows the elastic-plastic 

approach. Dotted lines show results of calculations 

with intersecting shear bands. In case of the dashed 

lines the shear bands were not intersected. 
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Figure 13. Pressure and particle-velocity oscillations in one- 

dimensional model of the composite material. 
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Figure 14. Pressure histories in the middle sections of two layered 

composites. 
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Figure 15. Results of the pressure profile measurement with 

manganin gauge at the interface between the layered 

copper-polyethylene composite and a copper plate. 
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Figure 16. An influence of stress  relaxation  in polyethylene of 

the  layered  copper-polyethylene  composite  on  the 

pressure profile at the interface with a copper barrier. 
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Figure 17. An influence of elastic-plastic properties of the layered 

aluminum-tungsten composite on the pressure profile at 

interface with a tungsten barrier. 
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Figure 18. Comparison of 2-D (points) and 1-D (lines) simulations 

of shock waves in the composite. 

53 



Simulation 
including   fracture   and   dilatancy 
1500 

Time   (ns) 

Figure 19. Simulated (solid lines) and measured (dashed lines) 

particle velocity profiles at shock compression of the 

boron carbide ceramic. 
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