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AFIT/DS/ENY/98M-01 Abstract 

The full, three-dimensional Favre-averaged Navier Stokes equations, coupled with the second- 

order Zhang, So, Gatski and Speziale (ZSGS) Reynolds stress turbulence model (RSTM) and the 

ZSGS K-e model were used to numerically simulate injection into supersonic flow. The solution 

was computed with an implicit second-order accurate algorithm based on a diagonalized, Beam and 

Warming approximate factorization scheme with second-order Roe flux differencing. 

A multi-phase study evaluated the validity of the turbulence models and the algorithm for 

normal injection of air with two-dimensional slot nozzles and oblique injection at a 25° angle with 

a three-dimensional elliptic nozzle into the primary flow. Numerical results were compared to 

experimental data and the turbulence models were evaluated qualitatively and quantitatively for 

accurate prediction of thermo-mechanical mean flow variables, Reynolds stresses, flowfield shock 

structure and boundary-layer phenomena. 

Comparison of the RSTM simulation results to experimental data for two- and three- 

dimensional configurations revealed physically consistent and accurate predictions for the mean 

flow and turbulent quantities. Simulations with the K - e model for the same configurations 

resulted in non-physical and inconsistent turbulence predictions which make the K - e formulation 

inappropriate for detailed numerical simulations of this f lowfield when physically correct turbulent 

quantities are needed from the simulation. 

Simulations of the three-dimensional flowfield with the RSTM showed that the vortical motion 

in the jet plume was caused by the recompression shock induced (RSI) vortices. These vortices 

were generated through the combined effects of the inflow air upwash behind the plume and the 

mirrored trailing-edge oblique-barrel (MTE OB) shock, which was mirrored across a reflection 

point downstream of the plume. Furthermore, it was shown that lateral expansion of the plume was 

impeded by the upwash recompression (UR) shock and the inflow air sidewash. The combined 
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effects of the UR shock, the inflow sidewash and the boundary of the jet plume acted to sustain the 

jet induced (JI) vortices. The JI vortices were initially formed at the sides of the nozzle orifice and 

extended back along the sides of the jet plume. The mechanisms sustaining the JI vortices retarded 

plume expansion by directing inflow sidewash back towards the center of the test section and into 

the plume. The mechanisms which generated the RSI vortices accelerated plume expansion by 

creating an outflow sidewash forcing the injectant to move out and away from the center of the test 

section. It was seen that once the MTE OB shock and the UR shock intersected, the mechanisms 

sustaining the JI vortices were disrupted and lateral expansion of the plume accelerated. 

It was also observed that the skin friction predictions from the two models were nearly identical 

for the entire flowfield. 
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ANALYSIS OF TURBULENCE MODELS AS APPLIED 
TO TWO- AND THREE-DIMENSIONAL INJECTION 

FLOWS 

Chapter 1 - Introduction 

1.1  Background 

Resurgent interest in supersonic/hypersonic vehicles and highly maneuverable aircraft 

employing thrust vector control has prompted a flurry of experimental and numerical investigations 

attempting to describe the flowfield generated by transverse jet injection into supersonic flow 

(TJISF) [5,6,20,50,52,70,88,112]. Comprehensive descriptions and accurate predictions of the 

shock structure generated by this flowfield are critical to the design of SCRAMjet combustors [60], 

film cooled turbine fans [49], rocket motor thrust vector regulation systems [65] and high speed 

flight vehicle reaction control jets [65]. However, incomplete data describing the physics of the 

flowfield and the accompanying turbulent stresses generated by TJISF continues to hinder advances 

in many areas of the aerospace industry. 

The driving thrust of research into TJISF is enhanced mixing of fuel and air in SCRAMjet 

combustors. Mixing efficiency is critical because the time available to mix the fuel and inflow air, 

combust the mixture and exhaust the products in SCRAMjets is on the order of milliseconds [20,50]. 

Mixing efficiency, hence, thrust efficiency, is dependent on the injection angle, fuel-to-air pressure 

ratio, total pressure and shock losses, fuel penetration depth and many other variables too numerous 

to list [60]. 

Injection angle is critical to fuel penetration depth. Tangential injection is one of two extremes 

for the injection angle. When tangential injection is used, penetration is nonexistent and if the 

fuel-to-air pressure ratio is unity, mixing is slow. However, tangential injection has the advantage of 



lower airstream total pressure losses and all of the momentum gained from fuel injection contributes 

to thrust production. Normal injection is at the other extreme for injection angle and this angle 

maximizes fuel penetration, however, the large total pressure losses and the minimal momentum 

contribution of the injected fuel are counter productive to the advantages gained from the rapid 

initial mixing [50]. 

An optimized oblique injection configuration has the potential of deep injectant penetration and 

a significant momentum contribution to the streamwise wise. The potential advantages of oblique 

injection has lead to many studies trying to characterize this injection concept [50,51]. 

Underexpanding the injectant also promotes rapid initial mixing by quickly increasing the 

frontal area of the plume thus, providing a larger area for fuel and air interaction. However, excessive 

underexpansion of the fuel causes shocks to form within the plume and reduces total pressure. 

Figures 1 and 2 illustrate typical two- and three-dimensional TJISF generated by normal 

injection of an underexpanded fluid. The two-dimensional flowfield illustrated in Figure 1 is 

generated by sonic injection through a two-dimensional slot normal to the supersonic freestream. 

In the two-dimensional flowfield, the underexpanded gas penetrates the turbulent boundary layer 

and sets up a system of shock and recirculation regions fore and aft of the slot. The flowfield 

obstruction of the injectant plume induces a bow shock and boundary-layer separation results from 

the subsequent adverse pressure gradient upstream of the slot. Between the separation point and the 

slot, a recirculation region forms consisting of counter-rotating primary and secondary upstream 

vortices (PUV and SUV respectively). A separation shock also forms as a result of the boundary- 

layer displacement caused by the vortices in the upstream recirculation region and a sonic surface 

resembling a compression ramp forms between the recirculating region and the separation shock. 

Upon exiting the nozzle, expansion waves from the expanding injectant, reflect off of 

the boundary between the jet plume and the inflow air as compression waves.   The reflected 



compression waves form a barrel shock at the boundary of the plume and the inflow air. At the 

point where the reflected compression waves converge inside the plume, a Mach disk is formed. 

Downstream of the jet, the flow is turned parallel to the surface, producing a recompression 

shock and a corresponding separated, recirculation region behind the nozzle. This region consists of 

counter-rotating primary and secondary downstream vortices (PDV and SDV respectively). These 

structures collectively act as an expansion ramp over which downstream turning of the fluid occurs. 

The three-dimensional flowfield illustrated in Figure 2 is generated by underexpanded 

injection through a circular nozzle normal to the supersonic freestream. As discussed by Santiago 

and Dutton [70], this figure depicts the supersonic freestream flowfield with injection through the 

bottom of the wall. The obstruction caused by the jet generates a bow shock in the freestream 

(not shown). After leaving the orifice, the jet expands through a Prandtl-Meyer fan and then 

recompresses through the barrel shock which ends in a Mach disk. Beyond the Mach disk, the 

jet plume is quickly turned downstream and from the outset of the injection, a pair of counter- 

rotating crossflow vortices are shown in the jet plume. This vortical or rotational secondary 

flow is the primary source of injectant entrainment into the surrounding inflow and according to 

Santiago and Dutton [70], these structures dominate the jet's downstream velocity field [116]. Other 

vortical structures present in the TJISF are the horseshoe vortex (a secondary flow), which wraps 

around the upstream side of the jet and trails downstream, shear layer vortices that form around the 

circumference of the jet (not shown), and wake vortices periodically shed near the base of the inner 

jet core [70]. 

1.2 Primary Research Issues 

Now, more than ever before, the high cost associated with full-scale wind tunnel testing dictates 

that potential engine designs be dry tested prior to wind tunnel testing and test stand firing. One of 

the most effective cost cutting tools available for dry testing is computational fluid dynamics (CFD). 



Unfortunately, the full potential of CFD is still far from being realized because of a lack of robust 

turbulence models capable of accurately describing the complex turbulent flowfield generated by 

TJISF. 

Efforts to numerically simulate flowfields similar to those shown in Figures 1 and 2 have 

historically been confined to algebraic mixing-length models and eddy viscosity models [7,23,53, 

67,112]. While these simulations have provided the engineering community with gross estimates 

of the f lowfield structure, the turbulence models employed are incapable of correctly modeling the 

secondary flow structures or the turbulent stresses found in injection flowfields [90,109]. 

The overriding deficiency of mixing length models is the absence of a second turbulent 

microscale [109]. Mixing length models only account for the length microscale and completely 

ignores the turbulent velocity and time microscales. Therefore, they "will work well only for the 

flows for which they have been fine tuned . . . [and] . . . there is very little hope of extrapolating 

beyond the established data base for which an algebraic model is calibrated [109]." 

Eddy viscosity models compensate for many of the deficiencies of the algebraic models by 

incorporating two additional transport equations which model two of the three turbulent microscales. 

However, these models are still limited to flowfields where the Boussinesq approximation is valid 

[109]. 

The Boussinesq approximation provides closure for the components of the Reynolds stress 

tensor, r^. This tensor, henceforth referred to as the Favre-averaged Reynolds stress tensor 

(FARST), is defined in component form as 

(1) Tij = U% Uj 

As described in Chapter 3, the double primed velocities represent the Favre-averaged fluctuating 

portion of the instantaneous velocities and the over bar represents time averaging. This tensor is 

an integral component of the Favre-averaged Navier-Stokes (FANS) equations and the turbulent 
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transport equations (see Chapters 3 and 4 for the forms of these equations). 

The fundamental assumption of the Boussinesq approximation is ". . . that the principal axes 

of the [components of the] Reynolds stress tensor, TJJ, are coincident with those of the mean strain- 

rate tensor, S^, at all points in a turbulent flow, . . . [where] ... the constant of proportionality 

between r^ and Sij is the eddy viscosity, pt [109]." This approximation provides adequate results 

for a limited number of flow fields, but often provides poor turbulence predictions for many other 

flowfields, including three-dimensional flows, flows in ducts with secondary motions, and rotating 

flows [109]. 

Second-order Reynolds stress turbulent models (RSTM) can predict the secondary flow 

structures and the Reynolds stresses found in the aforementioned flowfields, but these models are 

much more complex than the eddy viscosity models. In addition to the five thermo-mechanical 

equations, RSTM's use six additional transport equations derived from the Reynolds stress 

equation (RSE) to describe the behavior of r^ (a derivation of the RSE is presented in Appendix 

A). According to Wilcox [109], an RSTM corrects many of the Boussinesq approximation's 

shortcomings because an RSTM automatically accounts for the convection and diffusion of r^- 

and the effects of flow history. These models also include convection and production terms that 

automatically respond to effects such as streamline curvature and system rotation [109]. Finally, the 

RSTM "... gives no a priori reason for the normal stresses to be equal when the mean strain rate 

vanishes. Rather their values will depend upon initial conditions and other flow process, so that the 

model should behave properly for flows with sudden changes in strain rate [109]." 

Despite the many apparent advantages of RSTMs, limited computational resources has 

confined numerical simulations with second-order RSTMs to very simple geometries with 

flowfields only slightly more complex than flow past a shallow compression ramp [59]. However, 

improved computational resources1 (computational speed, memory, and archival resources) have 

aeronautical Systems Command Major Shared Resource Center, Wright-Patterson AFB, OH. 
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made it possible to apply RSTMs to more complex flowfields. In light of the current resources 

available and the mathematical evidence that second-order RSTMs can more accurately capture 

the secondary flow structures and the turbulent stresses found in three-dimensional rotating 

flowfields than lower order models, two questions immediately present themselves: 

1. How accurate are RSTMs in the modeling of complex secondary flows associated with TJISF? 

2. Are the differences provided by RSTM and K-e models different enough to warrant the added 

complexity needed to implement an RSTM? 

These questions and many others are addressed by the objectives stated in the next section. 

1.3 Objectives 

In light of the apparent superiority of the RSTM and the availability of improved computational 

resources, the primary objectives of this research are 1) numerical simulation of the three- 

dimensional flowfield generated by oblique injection into a supersonic inflow; 2) validation 

of a second-order RSTM for turbulence closure, and 3) investigation of the flowfield near the 

nozzle. Upon meeting these objectives, the following contributions to the current state-of-the-art 

for turbulence modeling and mixing enhancement are anticipated: 

1. Physically correct simulation of the Reynolds stresses in secondary flowfields 

2. Qualitative and quantitative comparison of a second-order RSTM and K — e model to 

experimental data for two-dimensional and three-dimensional flowfields resulting in a greater 

understanding of the strengths and weaknesses of these two classes of turbulence models 

3. Examination the physical flowfield predicted by the RSTM resulting in greater understanding 

of the behavior of the Reynolds stresses, thermo-mechanical mean flow quantities and the 

vorticity in the region immediately surrounding the jet orifice 



4. Visualization of the effects the secondary flow system in the boundary layer has on temperature 

and skin friction beyond current experimental capabilities 

5. Enhanced description of the vortical mixing mechanism generated by oblique injection 

1.4 Document overview 

This document is divided into chapters, which are intended to provide a logical progression of 

the steps taken to achieve the stated objectives. In the chapter immediately following this one, the 

methodology used to meet the stated research objectives is outlined. Following the discussion of the 

methodology, the significance of the Favre-averaged form of the governing equations is presented 

in Chapter 3. Chapter 3 is followed by a detailed review of the theory behind eddy viscosity models 

and some of the limitations of the Boussinesq approximation. After presentation of the K - e 

model theory, a discussion of the second-order Reynolds stress turbulence model is provided. This 

discussion details the evolution of RSTMs beginning with the fundamental assumptions made by 

Rotta [69] and Kolmogorov [36] about the velocity-pressure-gradient correlation tensor and the 

dissipation-rate tensor, and progresses through the work of Launder, Reece, and Rodi's [40] up to 

the current RSTM model of Zhang, So, Gatski and Speziale (ZSGS) [113] used for this research. 

Chapter 5 presents a comprehensive description of the underlying theory upon which the algorithm 

ISAAC is based. The material presented in Chapter 5 discusses the discretization and solution of the 

governing equations, including linearization, diagonalization, and the Roe flux differencing method. 

Presentation and discussion of the results is divided into two chapters. Chapter 6 contains the 

results of the two-dimensional analyses and is followed by the three-dimensional model validation 

and flowfield analysis in Chapter 7. The final chapter is a summary of the conclusions and 

contributions, and a discussion of recommended areas for continued research. 



Chapter 2 - Methodology 

Prior to discussing how the objectives will be met, a review of some past experimental and 

computational research results as well as some relevant algorithm performance issues will be 

helpful in establishing some of the obstacles to accurate modeling of TJISF. Once a basis for the 

methodology is established, the individual steps that will be taken over the course of this research 

is presented. 

2.1 Basis for Methodology 

This section begins with a review of some computational results from previous numerical 

simulations of TJISF using eddy viscosity models. Then, experimental results available for model 

validation are presented and evaluated. Next, a discussion of several algorithm performance 

issues that must be considered prior to defining an approach to the numerical simulation of three- 

dimensional turbulent f lowfields is provided. Finally, some secondary research issues are addressed. 

2.1.1   Computational Data Base 

There have been many numerical simulations for two- and three-dimensional TJISF [7,23, 

53, 65, 110, 112]. However, the major thrust of these simulations was prediction of the mean 

flow properties and the species concentration [7,110]. The modeling of Reynolds stresses and 

the assessment of turbulence model accuracy were only given cursory treatment in the majority 

of these simulations, most of which used the simple Baldwin-Lomax mixing length model for 

turbulence closure of the Navier-Stokes equations [7,53,110]. Attempts that more correctly account 

for the effects of the Reynolds stresses were made by Rizzetta [65] and Gerlinger, Algermissen, and 

Bruggenmann [23] for two-dimensional flows, and by McClure and Ervin [53] and Yokota and 

Kaji [112] for three-dimensional flows. Each of the aforementioned authors used an eddy viscosity 

model to simulate the effects of turbulence in their numerical simulations. 

While each of these studies have points of merit, only the RSTM, which none of these studies 



used, has the potential to accurately predict the Reynolds stresses and the secondary flow structures. 

2.1.2   Experimental Data Base 

There is an abundance of experimental studies focusing on two- and three-dimensional TJISF. 

Some of the more recent of these studies include the works of Aso, Okuyama, Ando and Fujimori 

[5]; Aso, Okuyama, Kawai and Ando [6] and Aso, Tannou, Maekawa, Okuyama, Ando, Yamane and 

Fukuda [7]. Some less current, but still valuable studies are those of Schetz and Billig [76]; Schetz, 

Hawkins and Lehman [77] and Spaid and Zukoski [88]. Unfortunately, many of these studies only 

measured mean flow quantities and species distributions and do not include any turbulence data. 

Of the reports listed here, only those by Spaid and Zukoski [88] and Aso, Okuyama, Kawai, and 

Ando [6] report mean flow data for a two-dimensional flowfield in a readable format with sufficient 

fidelity to allow turbulence model validation of the mean flow quantities. In their experiments, 

both Spaid and Zukoski [88] and Aso et al. [6] injected a sonic fluid normal to the inflow through 

a two-dimensional slot. Both of these reports provide data describing the shock structure and Mach 

contours of the f lowfield at various jet-to-freestream pressure ratios and surface static-pressure data 

for the different pressure ratios along with the boundary-layer separation points. 

Reports for the three-dimensional injection experiments by Mays, Thomas and Schetz [50] 

and Aso, Okuyama, Ando and Fujimori [5] also lack turbulence data. However, each of these 

experiments has added to the overall understanding of the mean flow characteristics of three- 

dimensional TJISF. Experiments conducted by Mays et al. [50] for oblique, sonic injection through 

a circular nozzle at injection angles of 15° and 30° found that bow shocks exist very close to the 

jet, indicating that reversed flow is limited to a small region or is altogether absent upstream of the 

jet [50]. This is in contrast to the substantial separation zones reported by Aso et al. [5] ahead of 

the jet for normal injection through a circular nozzle. Aso et al. also conducted three-dimensional 

normal injection experiments with sonic jet conditions at three different jet~to-freestream pressure 



ratios using circular nozzles with diameters of 3mm and 5mm. Many of the flow structures found 

in the oil smears presented in their report are similar to those shown in Figure 2. Based on the oil 

smears, Aso et al. reported primary and secondary separation lines upstream of the nozzle. These 

structures imply that a horseshoe vortex is generated in front of the nozzle and extends downstream 

of the jet. Behind the nozzle, flow attachment lines between the horseshoe vortex and the centerline 

are observed. Aso et al. [5] also observed that as the pressure ratio is increased, the primary and 

secondary separation points move forward of the jet and the attachments lines behind the jet become 

wider. 

The data presented in the aforementioned documents have identified many important 

flow structures arising from two-dimensional TJISF and many of the surface characteristics of 

three-dimensional TJISF. However, turbulence model development and validation depends on 

experimental data; if the data is poor, so is any model based on that data. According to Settles 

and Dodson [79,80], experimental data suitable for compressible turbulence model development 

and validation should adhere to the following standards: 

1. be for turbulent flows with a Mach number greater than or equal to Mach 3.0 

2. have a geometry simple enough that it may be modeled by CFD methods 

3. provide meaningful data at flowfield locations other than the surface 

4. have well-defined experimental boundary conditions 

5. have well-defined experimental error bounds 

6. provide consistent results 

7. provide machine readable data 

8. provide adequate spatial resolution of data. 
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Unfortunately, when Settles and Dodson compiled their databases [79,80], they did not find 

any experimental data for TJISF that satisfied their criteria. Thus, analysis of TJISF must use data 

published since Settles and Dodson's list was compiled or use data satisfying most, but not all the 

aforementioned criteria. The dearth of quality data has recently been remedied by two-dimensional 

experiments conducted by Tucker [100] and three-dimensional experiments conducted by McCann 

and Bowersox [52]. Tucker conducted experiments with a normally injected, supersonic TJISF 

for both heated and cooled injectants. Experimental values for the mean flow properties, rxy 

and K were measured at a single station 11.4cm ( x/d = 72, d = 0.15875cm) downstream of 

the nozzle. Additional data available from Tucker's experiment are shadow graphs describing the 

flowfield shock structure, upstream boundary layer separation point, downstream boundary layer 

reattachment point, and jet penetration height. 

McCann and Bowersox [52] specifically set out to conduct an experimental investigation 

of TJISF that satisfied all of criteria for inclusion in Settles and Dotson's database. The data 

collected during their experiment provides the clearest view to date of the three-dimensional oblique 

supersonic TJISF. Experimental values for the mean flow and turbulence data for rxy, rxz and K 

were measured at two stations, 7.72cm (x/d = 20, d = 0.3861cm) and 15.44cm (x/d = 40), 

downstream of the jet [51,52]. Shadow graphs were also reported which described the flowfield 

shock structure and oil smears describing the surface flow conditions. McCann and Bowersox 

stated that the recompression shock behind the jet was somewhat unsteady and based this statement 

on changes observed in the shape and location of the shock in the shadow graphs [51]. This unsteady 

flow situation was not noted in the reports cited above for three-dimensional normal sonic TJISF. 

Another unexpected feature reported by McCann and Bowersox were prominent asymmetries in the 

flowfield. While the asymmetries were present in all of the flow variables reported by McCann, 

they were especially evident in variables whose signs reverse when the test section centerline was 
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crossed, i.e. W,TXZ and ryz. Minor asymmetries in flow variables were also reported by Williams 

and Hartfield [110] and by Wilson [111]. However, these asymmetries were significantly smaller 

than those reported by McCann and Bowersox. 

2.1.3   Algorithm Performance Issues 

The major emphasis of this research is turbulence model validation and investigation of 

the TJISF structure. Therefore, an existing algorithm requiring minimal modifications was an 

absolute requirement for this study. This prerequisite required the author to consider several 

algorithm characteristics prior to selection of the final algorithm used to model TJISF. Of particular 

interest were 1) turbulence models incorporated into the software; 2) discretization method; 3) flux 

differencing method; 4) total energy expression; 5) computational efficiency and effectiveness; and 

6) temporal accuracy. 

The turbulence models available in a particular program was of vital importance. Since the 

present research is based upon the assumption that the Boussinesq approximation is inappropriate 

for the f lowfield under investigation, a solver that incorporates second-order RSTMs must be used. 

The domain discretization strategy was also considered when selecting the solver. The greater 

flexibility for grid development provided by finite-volume methods are usually preferred over finite- 

difference methods when modeling complex three-dimensional domains [30]. 

A flux differencing scheme which automatically captures shock structures was mandatory. 

Two commonly used schemes satisfying this requirement are the van Lear [103] and Roe [68] flux 

differencing methods. An algorithm with a second-order accurate implementation of either one of 

these schemes was acceptable. 

Another issue of concern during the comparison turbulent flow solvers was the expression 

used for the Favre-averaged total energy, E. The complete form of the total energy expression for 

the FANS equations is given by Vandromme and HaMinh [102] as 
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where 

E = e + ^ + K (2) 

K = T-f (3) 
Li 

e is the Favre-averaged specific internal energy and ü* are the Favre-averaged velocity vector 

components. 

It is not uncommon for algorithm developers to add turbulence models to laminar flow solvers 

and omit K from the calculation of E. For subsonic and supersonic flows near Mach one, this 

omission may not have much effect on the outcome of the solution, however, for high speed flows 

and TJISF, this omission may have a significant impact. Huang and Coakley [32] reported that 

excluding K from E in their two-dimensional K—u model computations resulted in a 50% increase 

in size of the separation bubble created by a hypersonic flow encountering a compression shock. 

They did not report the effect excluding K had on three-dimensional, rotational flows or the effect 

it had on their K-e model computations. Thus, the relevance of omitting K from the computation 

of E has on more complicated flowfields is left open to speculation. 

It is not unreasonable to expect K to be at a maximum in regions containing strong shocks, 

boundary layer separation points, strong vortical motion or combusting gases. Therefore, it is likely 

that K comprises a significant fraction of the total energy in these regions. Thus, these regions of 

the f lowfield are where the omission of K from the computation of E may have a significant impact 

on the flowfield solution [32]. 

The bandwidths of the matrices solved at each time step greatly influences the computational 

requirements necessary to reach a converged solution. The large bandwidth of matrices arising 

from the discretization of the nonlinear fluid and turbulence closure equations can be lessened by 

splitting large systems of equation into smaller subsets of equations. In this split-equation approach, 
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an iterative solution of the five FANS equations is obtained and the updated values of the mean flow 

variables are then used in the solution of the turbulence model equations. This approach is often 

taken by programers who have added a turbulence model to a laminar flow solver [21]. 

A significant draw back to splitting the governing equations is a decrease in temporal fidelity 

and the loss of equation coupling. Lagging the turbulence model introduces an O (At) error to 

the solution since the time step used to solve the mean flow equations may differ from the time 

step used to solve the turbulence equations. Temporal fidelity is not an issue when evaluating a 

predominately steady flowfield, as in the case of TJISF. However, the loss of equation coupling 

may cause a reduced rate of convergence since some of the information about the solution is not 

available to the algorithm. 

Temporal fidelity is preserved when the system of equations are simultaneously solved 

at equivalent time levels. However, large computational time requirements can result from 

simultaneous integration of the discrete equations even when approximately factored matrices are 

used. Diagonalization of the discrete equations is a technique, which reduces computation time and 

memory requirements by reducing the block tri-diagonal inversion of the approximately factored 

matrices to simple matrix multiplication and scalar tri-diagonal inversions [63]. According to 

Steger and Pulliam [63], this can result in a 40% savings in computation time for two-dimensional 

inviscid flow and results in an almost linear change in computation time when equations are added 

or subtracted from a system [57]. The near linear change in computational time is a significant 

improvement over the quadratics change seen in undiagonal ized schemes [63]. 

It would appear that diagonalization of the approximately factored equations would be the 

preferred method for solution of steady flows, since significant savings in computational time and 

memory requirements can be realized. 
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2.1.4   Secondary Research Issues 

The discussions in the previous sections have given rise to some additional research issues that 

warrant investigation: 

1. What is the source of the asymmetries reported by McCann and Bowersox [52]? 

2. What impact does the form of E have on theflowfield solution? 

The approach to resolving these issues and the primary research issues raised in Section 1.2 are 

addressed in Section 2.2. 

2.2 Approach to Meeting the Objectives 

It is clear from the review of the computational database that significant efforts to validate 

an RSTM suitable for modeling the two- and three-dimensional flowfields remain. Equally clear 

from the review of the experimental database is that aspects of the three-dimensional flowfield 

remain uncharacterized. Aside from profile and surface data extracted from shadow graphs and oil 

smears, the region immediately surrounding the nozzle is largely uncharacterized. Additionally, 

characterization of the boundary layer and the flowfield surrounding the jet itself have been 

difficult due to mechanical and thermodynamic limitations of physical probes and flowfield seeding 

limitations of LASER Doppler velocimetry (LDV). The lower limit of McCann and Bowersox's 

and Tucker's experiments was approximately 0.16cm above the surface [52,100]. Crossflow planes 

examined with hot wire probes have been limited to planes 20 nozzle diameters or more downstream 

from the jet [20,50,51]. The LDV measurements of Santiago and Dutton [70] were at station 3 and 

5 nozzle diameters (d), where d = 4mm, downstream of the jet. Data upstream of the jet was not 

reported. Thus, aside from data inferred from shadow graphs and a few crossflow data planes, the 

flow structure, Reynolds stresses, and vorticity evolution of the TJISF is largely unknown. 

Clearly, a better understanding of how the flowfield changes from the upstream boundary layer 
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Separation point to the downstream cross flow data planes requires a validated second-order RSTM 

capable of modeling a TJISF. Once a suitable model has been validated, numerical simulations to 

investigate TJISFs are possible and the objectives of the study satisfied. Thus, the approach taken 

to meet the objectives are outlined in the ensuing discussion. 

2.2.1   Solver and Turbulence Model Selection 

The numerical solver selected for use in this study was version 3.7 of NASA Langley's 

Integrated Solution Algorithm for Arbitrary Configurations (ISAAC) [56]. ISAAC is a three- 

dimensional finite-volume program that uses time integration of the governing equations to compute 

a steady-state solution of the Favre-Averaged Navier-Stokes equations [56]. This software package 

satisfied all of the selection criteria discussed in Section 2.1.3. ISAAC is a maturing code which has 

undergone extensive testing and validation [58]. A detailed discussion of the algorithm is presented 

in Chapter 5. 

Several two-equation and second-order RSTMs suitable for modeling a variety of flow 

conditions are incorporated into ISAAC. However, for supersonic, wall-bounded flows, only the 

ZSGS K - e model [113] and ZSGS RSTM [113] are fully operational in the current version of 

ISAAC. The ZSGS RSTM has been validated for fully turbulent, flat-plate flowfields by Zhang et 

al. [113] and Morrison [56], and for flow past a compression ramp by Morrison, Gatski, Sommer, 

Zhang, and So [59]. Morrison et al. reported favorable comparisons between predictions made by 

ISAAC with a two-dimensional grid and experimental findings of Settles and Dodson [79] for ramp 

angles of 8° and 16°. However, at a ramp angle of 20°, the comparison was poor. Morrison et al. 

attribute the failure at 20° to three-dimensional effects not accounted for by the two-dimensional 

grid [59]. 

2.2.2   Two-dimensional validation and evaluation 

The second phase of this investigation extended the validation of the ZSGS RSTM to sonic and 
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supersonic two-dimensional slot injection flowfields. After the initial code familiarization process, 

the two-dimensional data reported by Aso et al. [6] and Spaid and Zukoski [88] were selected for 

model validation. Prior to simulation of the two configurations, appropriate jet boundary condition 

subroutines were developed/modified (see Appendix E for details of the jet boundary condition 

implementation). Once the jet boundary conditions were established, temporal and grid convergence 

criteria were established (see Appendix F for details). The Aso et al. [6] and Spaid and Zukoski [88] 

experimental conditions were simulated numerically with the ZSGS K - e turbulence model and 

the ZSGS RSTM. The predictions from these two models for mean flow structures and surface 

static pressure were compared to each other and to experimental data. Furthermore, contour plots 

of vorticity and two-dimensional Reynolds stress predictions and profiles of the Reynolds stress 

predictions at selected streamwise locations were used to evaluate the differences between the two 

models. However, comparison of the model predictions for the turbulent quantities was not possible, 

since neither Aso et al. nor Spaid and Zukoski reported any turbulence data. 

Turbulence data for two-dimensional supersonic TJISF were reported by Tucker [100]. 

Therefore, Tucker's configuration was simulated numerically with both ZSGS models to better 

establish the accuracy of each model's predictions of the Reynolds stresses. As with the previous 

configuration, a grid convergence study was performed for this configuration and the results are 

summarized in Appendix F. Profiles of the experimental turbulence data and the predictions from 

the two models were compared to each other to establish the validity of the turbulence predictions. 

Mean flow data, contour plots and shock structure predictions were also evaluated to establish the 

validity of the RSTM for this class of injection flowfields. 

The significance of including K in the definition of E is evaluated for each of the two- 

dimensional experimental configurations simulated. The relevance of K is evaluated by examining 

contour plots of K/E. 

17 



2.2.3   Three-dimensional validation and evaluation 

The third phase of this investigation extended the validation of the ZSGS RSTM to the three- 

dimensional oblique supersonic injection flowfield generated by McCann and Bowersox's [52] 

experimental configuration and characterized the flowfield generated by the oblique injection. Prior 

to preforming any analyses of this flowfield, a subroutine to model the three-dimensional elliptic 

nozzle boundary conditions was developed and a grid convergence study performed (see Appendices 

E and F for details of the boundary condition implementation and the grid study). 

In their experiments, McCann and Bowersox injected supersonic air from an elliptic nozzle 

angled 25° downstream into a supersonic primary flow. A sketch of the configuration used by 

McCann and Bowersox is shown in Figure 3 [52], along with the relative location of the nozzle 

orifice (x/d = 0.0, where d = 0.3861cm) and the two downstream locations (x/d = 20 and 

x/d = 40) where the turbulence data was collected. 

The large computational domain required to capture both data locations, both sides of the jet 

and the upstream shock structures naturally lead to segmentation of the research into three parts. 

The first part examined a reduced domain that encompassed the region shown in Figure 4. The 

associated grid is referred to as the "full-plane" grid because the grid is wide enough to capture 

the majority of the flow structure on both sides of the nozzle orifice. This grid extends far enough 

upstream of the nozzle to capture the undisturbed inflow conditions and far enough downstream of 

the nozzle to encompass the experimental data collection point at x/d = 20. The grid also extended 

far enough in the y direction to capture the majority of the flow structures normal to the wall. 

Contour plots of the numerical results at x/d = 20 from both turbulence models are compared 

to each other and to the experimental data collected at this location. These comparisons are used to 

establish the validity of the RSTM for this flowfield and to establish the symmetry of the computed 

flowfield. Contour plots of the RSTM predictions at other locations within this grid's domain are 



also used to examine the f lowfield in and around the jet plume and to describe the development of 

the vortical structures as the injected fluid moves downstream and interacts with the surrounding 

fluid. 

The computational domain shown in Figure 5 is used in the second part of the three- 

dimensional phase of this study. The associated grid is referred to as the "half-plane" grid since it 

models only half of the wind tunnel. The domain of this grid extends to the walls at the top, bottom 

and right-hand-sides of the test section. A symmetry boundary condition is applied at z/d = 0 to 

simulate the test section centerline. This grid also extends far enough upstream of the nozzle to 

capture the undisturbed inflow air and far enough downstream to encompass the experimental data 

collection point at x/d — 40. 

The second part of the three-dimensional phase evaluated the validity of the symmetry 

boundary condition.   This was carried out by comparing contours of the RSTM predictions at 

x/d = 20 from the full-plane grid to the RSTM predictions at x/d = 20 from the half-plane grid. 

After validation of the half-plane grid, the three-dimensional analysis was performed, in which 

RSTM predictions are compared to experimental data at x/d = 40. 

The third part of the three-dimensional phase evaluated the flowfield near the nozzle orifice. 

This phase of the research used the results obtained from the simulations with the full-plane grid. 

2.2.4   Validation Criteria 

The following criteria are used to determine a turbulence model's validity for simulating a 

particular flowfield: 

1. correct prediction of the magnitude of the quantity under investigation 

2. correct prediction of the profile or contour shape of the quantity under investigation 

3. absence of non-physical predictions for the quantity under investigation 
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4. consistent behavior in the predictions of the quantity under investigation from one evaluation 

station to another 

5. consistent behavior when boundary conditions change 

A turbulence model does not need to satisfy all of these criteria to be a valid and useful model. 

However, the more criteria each of the mean flow and turbulence variables satisfy, the greater the 

confidence in the model's ability to correctly simulate flowfields other than the one currently under 

investigation. 
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Chapter 3 - Governing Equations 

3.1 Introduction 

The equations of fluid mechanics fundamental to the present research are presented in this 

chapter. In the first part of this chapter, conservation of mass, momentum and energy are expressed 

through the fully three-dimensional Navier-Stokes equations. In the second part of this chapter, these 

mathematical relationships are placed in a form more suitable for turbulence modeling by separating 

the conserved variables into mean flow and fluctuating parts through the Favre averaging process. 

3.2 Navier-Stokes Equations 

In the strictest sense, the complete three-dimensional Navier-Stokes equations are comprised 

of only the three momentum equations, one for each of the independent coordinate directions. 

However, for purposes of compactness, the continuity and energy equations are often lumped 

together with the momentum equations and are collectively called the Navier-Stokes equations. 

When taken together the five aforementioned equations are more correctly called the conservation 

laws of fluid motion, however, when simulating complex fluid flows, equations other than the 

Navier-Stokes equations are often included in the system, i.e., turbulence models. Thus, it has 

become common practice to refer to the Navier-Stokes equations and any other equations being 

discretized as the conservation laws or the conservation equations when discussing discretization. 

Thus, compressible Navier-Stokes equations in conservative, differential form for a rectilinear 

coordinate system are given as follows: 

dp     d(puk) 
dt        dxk 

(4) 

d (puj)     d (pujuk + pSjk) _ dojk _ (5. 
dt dxk dxk 

d (pE)     d (pukH)     d {uiUij - qk) 

dt dxk dxk 
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where 

&ik = Z^Sik + XSjjSih (7) 

Sik = l(^l + ^) (8) 
2 V dxj-      dxi 

1 
E = e + -UiUi (9) 

H = E + ?- (10) 

dT 
qk = -«^— (n) 

and by Stokes hypothesis, the second viscosity constant is given as 

A = -|^ (12) 

In Eqs. 4,5 and 6 the first terms on the left-hand side are the unsteady flow terms and the second 

terms are the convection terms. The terms on the right-hand-side are the diffusion, or viscous terms. 

The symbols used in the above equations are defined as follows: p is density, Ui are velocity vector 

components, p is pressure, t is time, and T is temperature. Also, cr^ are the components of the stress 

tensor, Sit are the components of the strain-rate tensor, fi is the molecular viscosity, E is the specific 

total energy, e is the specific energy, H is the specific total enthalpy, qk are the components of the 

heat transfer rate vector per unit area, K is the convective heat transfer coefficient, and Sik is the 

Kronecker delta. The subscripts i, j and k are indices that represent the three Cartesian coordinate 

directions. 

Much of current state-of-the-art CFD research is aimed at simulating turbulent flow. The small 

length scales associated with turbulent flow necessitates the use of statistical correlations to predict 

flow characteristics [97]. Proper modeling of the statistical correlations is a major challenge to the 

aerospace engineer. 
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Typical methods used within the engineering community for turbulence modeling is to 

statistically separate instantaneous flow variables into a mean flow values and a fluctuating flow 

values. These statistical formulations are then substituted into the Navier-Stokes equations, resulting 

in a number of higher order statistical correlations. These correlations are then modeled as terms that 

are numerically calculated or experimentally measured. The two most prevalent statistical methods 

used are Reynolds time-averaging and Favre mass-averaging. Since Favre averaging is the more 

suitable of the two methods for the compressible flowfield examined here, it will be discussed in 

greater detail in the next section. See Appendix A for additional details on Reynolds averaging. 

3.3 Favre-Averaged Navier-Stokes Equations 

Favre-averaging is the preferred method of decomposing the flow variables in high speed 

flows because the resultant system of equations has many similarities to the laminar Navier-Stokes 

equations [19]. Introduced in 1965, Favre decomposed the flow variables into mean flow and 

fluctuating parts as follows: 

= & + <% (13) "2 Tl 

where " ~ " denotes the mean flow part of a Favre-averaged variable and "" " denotes the fluctuating 

part of a Favre-averaged variable. In Favre's decomposition the mean flow part is defined as 

~,       //+rp(xfc,r)^(xfc,r)dr 

It        p(*k,T)dT 

and after some algebraic manipulations (see Appendix A) the time average of the Favre-averaged 

fluctuating part can be expressed as 

I77_      P_ 

P 

,'A' 
„ -     -? * 0 (15) 

where the "'" indicates a fluctuating part of a Reynolds-averaged variable. Furthermore, it can be 

shown that p<f>" = 0 (see Appendix A). 
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The Navier-Stokes equations are mass averaged using a combination of Favre- and Reynolds- 

averaged flow properties, which are decomposed as follows: 

Ui = üi + u" e = e + e" (16) 

p = p + p' p = p + p' (17) 

o-ik = °ik + o'ik qi = qi + q'i (18) 

h = h + h" (19) 

where h is the specific enthalpy. Substitution of the above decompositions into the Navier-Stokes 

equations a yields set of equations commonly referred to as the Favre-averaged Navier-Stokes 

equations. These equations can be found in many sources including the works of Speziale [91] 

and Morrison [56] and are derived in Appendix A. They are given here as: 

dp + d(puk) =Q (20) 

dt        dxk 

d (puj)     d (pujük + pSjk) _ d (äjk - pTjk) = 0 ,21. 
dt dxk dxk 

d (pEj      d (pükHj      d (üiäik - püiTik - q~k + ufiik + pE"u'n 

dt dxk dxk 

where 

Tik = « (23) 

E = e + -üiüi + K (24) 

H = h + \ü%üi + K (25) 

K=^- (26) 

pE»u'l = ukalk - -K« - CPP<
T

" <27> 2 
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The term, r^ represents the components of the kinematic, or specific, Favre-averaged 

Reynolds-stress tensor and hereafter are referred to as the Reynolds stress tensor components. Note 

that while the more common definition for the components of the Favre-averaged Reynolds-stress 

tensor is rik = -pu"u'£,, the notation used in Eq. 23 is adopted to maintain consistency with sources 

and software cited from the NASA Langley Research Center. As in Section 2.1.3, E is the Favre- 

averaged total energy. Furthermore, H is the Favre-averaged specific total enthalpy and Cp is the 

specific heat at constant pressure. Finally, it should be understood that henceforth K refers to the 

Favre-averaged turbulent kinetic energy. 

The Favre-averaged transformation of the Navier-Stokes equations is extremely advantageous 

to turbulence model developers. After Favre-averaging, the resultant form of the turbulent 

flow continuity equation is identical to the laminar flow continuity equation, the Favre-averaged 

momentum equations are equivalent to the laminar flow momentum equations plus one additional 

term to model, and the apparent unsteady energy term found in the Reynolds-averaged Navier- 

Stokes (see Appendix A) does not appear in the Favre-averaged energy equation. Furthermore, all 

of the additional turbulent terms in the Favre-averaged Navier-Stokes equations have analogous 

laminar expressions that can be employed to simplify the solution of the equations. 

In addition to the turbulent closure models which are discussed in the Chapter 4, an equation- 

of-state must be specified. The perfect gas equation-of-state is used for this study and defined as 

[102] 

p = p(1-l)(E-±üiüi-K) (28) 

where 7 is the ratio of specific heats. The presence of K in Eq. 28 is a result of the Favre-averaging 

process. It will be seen in Section 4.2.1 that this term creates a strong coupling between the Favre- 

averaged Navier-Stokes equations and the turbulence transport equations. 
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Chapter 4 - Turbulence Models 

4.1 Introduction 

All fluid models must have appropriate characteristic scales to capture properly the fluid 

motion. Magnitudes of the independent variables at some specified location or time are often used 

as characteristic scales. While characteristic scales for mean flow equations can be quite large, 

characteristic scales for turbulence equations can be quite small [97]. Therefore, caution must be 

exercised when selecting characteristic scales for the fluid model, otherwise pertinent information 

about the flowfield may be masked. 

Consider flow over something as simple as a flat plate. The appropriate length scale for 

the mean flow equations outside of the boundary layer might be the length of the plate, while in 

the boundary layer the appropriate length scale is the boundary layer thickness [108]. Neither of 

these lengths is small enough to capture the turbulent flow characteristics. To capture the turbulent 

fluctuations, the turbulent microscales of length, time, and/or velocity must be used [97] and a 

turbulence model is said to be complete if it contains two of the three characteristic microscales 

[109]. 

As noted in Section 1.2, turbulence models are generally classified as either zero-equation, 

one-equation, two-equation, or second-order. The zero- and one-equation models are examples of 

incomplete turbulence models. These models are easy to implement because they only use one of the 

microscales, or some term derived from a combination of microscales, e.g., the eddy viscosity, jit. 

These model's relative ease of implementation makes them very attractive engineering tools and are 

frequently employed when modeling simple flowfields. Unfortunately, the lack of two independent 

microscales limits their usefulness when modeling complex flowfields [109]. 

4.2 Two-Equation Models 

The simplest complete turbulence model is the two-equation model. Most two equation models 

26 



have characteristics that are advantageous in certain flow situations, but may be unsuitable in others. 

The most popular two-equation model currently in use is the K — e model. This model uses the 

turbulence kinetic energy, K, as the velocity microscale, the turbulence dissipation rate, e, as the 

second independent turbulence variable and the Boussinesq approximation to model the RSTC [93]. 

4.2.1   The K-e Model 

Most of the K - e models currently in use are based on the Launder-Spalding model [44] 

or one of its many modified forms. First introduced in 1972, the Launder-Spalding K-e model 

is reasonably well behaved away from a solid boundary and has achieved moderate success when 

applied to a variety of engineering problems. Some variations of the original Launder-Spalding 

K-e model currently in use are the models of Jones and Launder [33], Launder and Sharma [42], 

Lam and Bremhorst [39], Chien [12], Coakley and Huang [14], Zhang, So, Speziale and Lai [114] 

and many others. Each of these models have either provided a correction to an earlier model or is 

tailored for a specific type of flowfield. 

The exact transport equation for K is given by Speziale and Sarkar [94] as 

D(pK)     dDl     dDv 

Dt dxk      dxk 

where 

Pik + Ili - pe (29) 

m=m+ükm (so) 
Di        dt dxk 

and the turbulence production, pressure-velocity-gradient correlation, turbulent diffusion, and 

viscous diffusion are respectively defined as 

D      -      düi nn 
P^pT*kdx-k 

(31) 

IL = -p'ui (32) 

Dl = --pu'jUju'k (33) 
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IT = »f- (34) 
OXk 

As stated by Wilcox [109]: "Morkovin hypothesized that the effects of density fluctuations on the 

turbulence is small provided they remain small relative to the mean density." Thus, by Morkovin's 

hypothesis [54] and the equation-of-state, the pressure-velocity-gradient correlation, Eq. 32, is 

assumed to be negligible. The turbulent diffusion term is modeled using the gradient transport 

hypothesis such that [93] 

Dt= _B.?IL (35) 
aK dxk 

The gradient transport hypothesis assumes a term, F, can be modeled by the gradient of a 

characteristic variable,^, and a constant of proportionality, £,such that [75] 

F = 6p- (36) 
oxk 

In Eq. 35 the constant of proportionality is the turbulent eddy viscosity which is given as 

K2 

tk = CßfßP— (37) 

The damping function /M and values for constants Cß and aK are dependent on the particular model 

being used. 

The exact transport equation for the dissipation rate is given as [29] 

2iei_«3_^= (38) 
Dt        oxk      oxk 

where Pe, De, D\, and D" are, respectively, the dissipation production, destruction, and viscous 

diffusion. The reader is referred to Speziale, Abid and Anderson [93] for the exact expressions for 

these terms, however, the modeled forms are given here as follows: [93] 

F- = c^F^fi <39) 

28 



De = C€2hi^ (40) 

D» = t±Jt- (41) 
ae dxk 

D-''Ä (42) 

where ae, C€l and C€2 are constants particular to the model and /i and f2 are wall damping functions 

also particular to the model. 

The K - e model is best suited to high-Reynolds number situations where the flow is not 

constrained by a solid surface. However, many engineering problems are constrained by solid 

surfaces and require integration directly to the surface (a low-Reynolds number condition). This 

requirement causes the K - e model to loose much of its robustness [93]. This is brought about 

by stiffness problems that arise from asymptotic inconsistencies and a lack of natural boundary 

conditions at the wall for the dissipation rate equation. The problem is further exacerbated by the 

appearance of higher order correlations in the dissipation rate equation [93]. 

A perturbation analysis of the K - e model as the wall boundary is approached reveals the 

source of the numerical stiffness within this model [93]. By performing a Taylor series expansion 

for the components, Hinze [29] showed that near the wall 

K = 0(y2) fit   =   0(y3) e = 0(l) 

^ = 0(1) ^   =   0(y2) ^V = 0(y3) 
oy 

^ = 0(y4) ^   =   0(y2) Tljuhj=0(ys) 

D^Oiy) Pe   =   0(y) D\ = 0{1) 

Dc = 0{\) V2K   =   0(1) V2e = 0(l) 

Substituting the asymptotic relations given above into the K and e equations, reveals that since 
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fit must be of 0(y3) near the wall for asymptotic consistency, /M must be of 0(l/y) in this region. 

Furthermore, for asymptotic consistency of the dissipation production and dissipation destruction, 

/i must be 0(1) and /2 must be 0(y2) near the wall. All three of these damping functions must 

approach unity away from the wall. "It thus follows that the K — e model will generate solutions 

for K, e, and u'v' that are asymptotically consistent if the damping functions f^ = 0(l/y) and 

f2 = 0{y2) near a wall with f\ = 1. [29]" 

Although the K - e model can be made asymptotically consistent near the wall, the problem 

of appropriate boundary conditions is still unresolved. An absence of turbulent kinetic energy at 

the wall, K = 0, is the natural boundary condition for K. However, natural boundary conditions 

do not exist for the dissipation-rate equation. Therefore, several derived boundary conditions have 

been used to complete the closure of the model. One commonly used boundary condition is 

»w=pe ( } 

which is derived from Eq. 29 as the wall is approached. However, this boundary condition requires 

information about K at cells away from the wall in order to achieve second-order accuracy for the 

second derivative of K, a requirement which can lead to considerable numerical stiffness [61]. The 

Neumann boundary condition 

£ = 0 (44) 
dy 

has been shown to be a more robust boundary condition than Eq. 43, but it is completely ad hoc 

with no real theoretical or experimental justification [39]. 

The final difficulty with the K - e model lies in the balance of terms for Eq. 38 at the wall. 

At the wall, Eq. 38 reduces to 

d2e 

f^ = D- (45> 
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The above expression involves higher-order correlations and second-order derivatives which is more 

difficult to compute since information about e at cells away from the wall is required to achieve 

second-order accuracy of the second derivative of e. Also, extreme accuracy is required for the near 

wall modeling of the destruction of dissipation, De, which can further exasperate the already stiff 

system of equations [93]. 

The preceding analysis was based on a model formulated for incompressible flow conditions. 

However, the observations made are still valid for the compressible flow regime provided 

asymptotic consistency of the equations is maintained. 

There are many flowfields of interest (including the flowfield to be studied here) which 

experience compressibility effects which are not accounted for by incompressible models. 

Several methods have been developed to account for flowfield compressibility and one such 

method is Sarkar, Erlebacher, Hussaini, and Kreiss's compressibility correction [74]. This is 

the compressibility correction model used by Rizzetta [65] when he model the sonic injection 

experiment conducted by Aso et al. [6] with the Jones-Launder K — e model. 

Sarkar et al.'s compressibility correction provides a means by which the incompressible 

dissipation-rate correlations and equations can be applied to compressible flows [74,94]. Sarkar 

et al.'s compressibility correction is based on the premise that the dissipation rate can be separated 

into solenoidal, or incompressible, and compressible components such that the dissipation rate can 

be expressed as e = es + ec. In this model es, is the solenoidal component and ec is the compressible 

component. Sarkar et al. proposed that the compressible component can be modeled as 

ec = €saM} (46) 

where a = 0.5 is a numerical constant based upon direct simulation data and Mt = ^/^i^|äoo is the 

turbulent Mach number [73]. Thus, e is now expressed as [74] 

e ^ es (1 + aMt
2) (47) 
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The solenoidal dissipation rate, es, is computed with the high Reynolds number isotropic dissipation- 

rate equation where es is used in place of e. Complete closure of the Jones-Launder K—e model with 

Sarkar et al.'s correction is found in Rizzetta's AI A A paper Numerical Simulation of Slot Injection 

into a Turbulent Supersonic Stream [65]. 

Another method to account for compressibility is to develop a model specifically designed to 

account for compressibility effects. The Zhang, So, Gatski and Speziale (ZSGS) K — e model used 

in this study is a contraction of the ZSGS Reynolds-stress turbulence model for compressible flow 

(discussed in detail in Section 4.3.2.5) [113]. Closure for the ZSGS K-e model, as given by Zhang 

etal. is [114] 

^=Pg (48) 

,t      (th\ dK 

*»=    £    8* (49> 

Pik = -pTik^-2- (5°) 

IL. = 0 (51) 

Mik = 0 (52) 

where aK is a constant taken to be 0.75 and the RSTC in the turbulent production term are modeled 

using the standard eddy viscosity formulation. Zhang et al. [113] gives the RSTC as 

rlk = -2^ (Sik - ^SjjSik^j + \Kbik (53) 

where /xt is the eddy viscosity defined in Eq. 37 in the eddy-viscosity formulation, Cß = 0.096 and 

the damping function is given as [113] 

/„ = (l + 3.45/x/W) tanh (y+/115) (54) 
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where 

K2 

Ret = — (55) 
ve 

y+ = l /ZJ£ (56) 
V V Pv, 

du 

dy 
(57) 

y=0 

is the shear stress at the wall [11]. The pressure-velocity-gradient correlation and mass flux terms 

are assumed to be negligible by Morkovin's hypothesis [54]. The dissipation-rate transport equation 

developed for the ZSGS RSTM is also used for the K - e model. However, for the two-equation 

model, D\ is modeled as (fxt/a€) de/dxk and ae = 1.45 [113]. 

4.2.2   The Boussinesq Approximation and Secondary Flowfields 

The fundamental assumption of the Boussinesq approximation is ". . . that the principal axes 

of the Reynolds stress tensor, r^, are coincident with those of the mean strain-rate tensor, Sij, at 

all points in a turbulent flow . . . [where] ... the constant of proportionality between r^- and 

Sij is the eddy viscosity, fj,t [109]." The Boussinesq approximation provides adequate results for 

a limited number of flowfields, but completely breaks down for many other flowfields, including 

three-dimensional flows, flow in ducts with secondary motions, and rotating flows [109]. 

The contribution of the normal Reynolds stresses on vorticity and secondary flow is shown 

with the following summary of an analysis given by Speziale [90]. From Speziale, the transport 

equation for the x component of vorticity, ux, is 

DK)    =    d2  (TZZ   - Tyy) d2Tyz    _   Ö'''Tyz 

Dt dydz dy2 dz1 

where 
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and 

ux = — - — (60) 
oy     oz 

As a result of Eq. 60, Speziale states that the development of secondary flow is directly tied to the 

presence of a nonzero axial mean vorticity ux and it is clear that the streamwise vorticity source 

term 

d2  (TZZ   - Tyy)   +   d2TyZ   _   d^Tyz ^ 

dydz dy2        dz2 

is the cause of secondary flow.   Speziale goes on to make the point that a unidirectional mean 

turbulent flow exists (i.e. an absence of secondary flow) in a pipe unless 

ryz = 0 (62) 

Hence, secondary flow will develop if the condition 

d2 (TZZ - T. yyJ (63) 
dydz 

is violated. 

A simple integration of Eq. 63 yields 

Tzz — Tyy = constant (64) 

However, since Reynolds stresses vanish at the wall, the constant must be zero, i.e. 

TZZ   -Tyy   =   0 (65) 

Consequently, if the streamwise mean velocity gives rise to a nonzero normal Reynolds stress 

difference 

TZZ   -  Tyy   ^   0 (66) 

secondary flow will occur. 

34 



The limitations of the Boussinesq approximation with respect to Speziale's analysis are 

dramatically illustrated by Speziale for the special case of incompressible, fully turbulent flow 

in a square duct [90,91]. Under these flow conditions, Speziale has shown that the Boussinesq 

approximation used to model the Reynolds stresses in the standard K-e model, predicts rzz = ryy 

and Tyz = 0. Thus, the K - e predictions imply that secondary flows do not form in a square duct 

[90]. This is known to be incorrect since Brundrett and Bains [10] have shown experimentally that 

there are secondary flows in the planes perpendicular to the axial flow direction. 

Speziale has also shown that for a separated turbulent flow over a backward-facing step, the 

standard K - e model yields inaccurate values for the separation length and for the Reynolds stresses 

[91]. These inaccuracies arise because the Reynolds stresses are not properly related to each other by 

the Boussinesq approximation. This improper relationship becomes clear after Speziale shows that 

the standard K-e model predicts TXX + ryy = 2TZZ for all locations in the flowfield. Obviously an 

impossibility in a recirculating flowfield [91]. Clearly, a turbulence model which does not depend 

upon the Boussinesq approximation to model the Reynolds stresses is required to correctly model 

flowfields with secondary flows or recirculation. One such model is the second-order RSTM. 

4.3  Second-Order Reynolds Stress Turbulence Models 

The next step up in turbulence model complexity is the second-order model. These models are 

often referred to as RSTM because they treat the individual components of the Reynolds-stress 

tensor as independent variables to be solved along with the mean flow variables. Thus, these 

models are significantly more complex than the two-equation models, but they are not limited by 

the Boussinesq approximation. Development of Reynolds-stress equation modeling and the higher- 

order correlations necessary to close the models are presented in the following sections. 

4.3.1   Reynolds-Stress and Dissipation-Rate Transport Equations 

The foundation upon which second-order turbulence models are built is the Reynolds-stress 
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tensor. This tensor and its trace are fundamental components of the FANS equations and the 

equation-of-state. Thus, expressions for the computation of the tensor are required before a solution 

to the system of equations can be obtained. When turbulent flow conditions are encountered, the 

RSTCs can be interpreted as transport properties; therefore, a transport equation can be derived for 

Tij. Expressions for the Favre-averaged Reynolds-stress (FARS) transport equation are found in 

several sources, including Gatski, Sarkar, Speziale, Balakrishnan, Abid and Anderson [22], Zhang 

et al. [113] and Morrison [56]. A derivation of this equation is found in Appendix A, and the results 

are presented here: 

djpTij)     djpükTjj)     dD%     9Uti_ M.._ €..,n.. (67) 

In Eq. 67, the terms on the left-hand side represents the unsteady transport, convection, 

turbulent diffusion, £>|-, and viscous diffusion, £>?-, of the turbulent stresses. While, the terms on 

the right-hand side represents the turbulent stress transport produced by the turbulent production, 

Pij, the mass flux variation, Mij, the viscous dissipation-rate tensor, e^-, and the velocity-pressure- 

gradient correlation tensor, 11^ [22]. The expressions in Eq. 67 are given as 

D\. = -puJ'«X (68) 

ßy = ">i+ *;*«« <69> 

_     düj     _      düi , m 

M« = <(ä^T- dx~) + u> fe " ä£' (71) 

du',       .   dxi 
£ij = aik 

i      J + <„TrL C72) 
dxk       jk dxk 
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and .       
, dp'       t dp' n-=(»^+^l C73) 

The velocity-pressure-gradient correlation tensor is often expressed as 

~aV       du'; \      d (p'u'iSJk + P'u'jSik 
nf "P.   —I— fif 1     n« = ['ej+*sj) - -^-3*—L <74) 

where the first grouping is the pressure-strain-rate and the second grouping is the pressure diffusion. 

As with two-equation models, an additional equation is needed in conjunction with the FARS 

equations to model the transport of the turbulence dissipation-rate. Referring to the defining 

relationship for the dissipation-rate tensor given in Eq. 72, one can see that the dissipation- 

rate transport equation can be derived by taking moments of the Reynolds-averaged fluctuating 

momentum equation. Thus, a general form of the dissipation-rate transport equation, as found in 

So, Lai, Zhang and Hwang [85] and Wilcox [109], is 

S|f) + 8|M_ftD?_|Di = +Pe__De + gp + 5 (75) 

at oxk oxk      oxk 

The terms on the right-hand side of Eq. 75 are the molecular diffusion, D", turbulent diffusion, 

D\, dissipation turbulent production, P€, viscous dissipation of the dissipation-rate, De, extra 

production, *, and near-wall corrections, £. The first four terms on the right-hand side are 

traditionally modeled as 

Dl = ßp- (76) 
oxk 

Dt = Cep-Tikp- (77) 
e      dxk 

Pe = C€^P (78) 

De = Ce2pj{ (79) 
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where P = \PÜ. The remaining two terms, # and £, and the constants Ce, C£l, and C£2, are closure 

model dependent. 

4.3.2   Higher-Order Correlation Models for the Reynolds-Stress Transport Equation and the 
Dissipation-Rate Transport Equation 

Developing higher-order correlations is one of the fundamental challenges in turbulence 

modeling.   While in the incompressible regime ".   .   .   several well established models have 

been tested and proven in a variety of flow situations.   [However,] the modeling of the unknown 

correlations in the compressible case is not as mature . . . [56]" With this statement in mind, two of 

the most challenging terms to model are the velocity-pressure-gradient correlation tensor, 11^, and 

the dissipation-rate tensor, e^-. 

4.3.2.1   Launder, Reece, and Rodi (LRR) RSTM Closure 

Ground breaking work on the modeling of the velocity-pressure-gradient correlation tensor 

and the dissipation-rate tensor was performed by Rotta [69] and Kolmogorov [36] respectively. 

Kolmogorov had developed an isotropic model for the dissipation-rate tensor in 1941 and Rotta had 

assumed that for a high Reynolds number flow the pressure diffusion can be neglected because the 

pressure-strain rate correlation dominates the velocity-pressure-gradient correlation tensor. Thus, 

the isotropic assumption was extended to the velocity-pressure-gradient correlation tensor and was 

put forth by Rotta as the return-to-isotropy model in 1951 [69]. 

Rotta's work was extended by LRR in their landmark paper Progress in the Development of 

a Reynolds-Stress Turbulence Closure [40]. In this paper, LRR put forth a high Reynolds number 

model with near wall corrections. LRR recognized the importance of the pressure-diffusion term in 

the near-wall region and accounted for it with a near-wall correction. The general form of the LRR 

velocity-pressure-gradient correlation tensor model is 

nii = ^,i + ^-,2 + C- (80) 

38 



where ^,- x is Rotta's [69] return-to-isotropy model 

^,1 ~>r2K 

bi3; 2 is LRR's [40] pressure redistribution model 

-Cip— f Tij - -KSij 

hj,2   =   -«i (p*j - gflfcfc^tj j - ßi {Dij - -PkAj j 

-2^xpK ( Sij - -Skk^ij 

and (/% is LRR's near-wall correction to the high-Reynolds number model [40]. 

% 0.125-^ (uj - ^KSij ) + 0.015 {Pij - Dijj 
K~2 

ex2 

In the above expressions 

*■ ij —     PT~ik 
düj_ 

dxk 

D. ij —      pT~ik 
duk 

dxj 

pi~jk 

PTjk 

düj 

dxh 

dük 

dxi 

(81) 

(82) 

(83) 

(84) 

(85) 

Jii — X 
1 /düi     du. 

+ ■ 13     2 V dxj  '  dxi 

a.\ 
_C2 + 8 
~     11 

ßi: 
_ 8C2 - 2 

11 

_ 30C2 - 2 
55 

(86) 

(87) 

(88) 

(89) 

where d = 3.0 and C2 = 4.0. 

To complete the closure of their model, LRR modeled the dissipation-rate tensor, e^, after 

Kolmogorov [36]. The Kolmogorov model is simply 

2 
<=ij öPeS v (90) 
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where e is computed with an additional dissipation-rate transport equation. The LRR model 

computes e with the dissipation-rate transport equation given in Section 4.3.1 with Ce = 0.11, 

C6l = 1.44, and C£2 = 1.90. 

Since its publication in 1975, the LRR model has become the standard starting point for 

virtually every second-order model put forth since. However, since the LRR model's introduction, 

research has found that for any modern Reynolds-stress model to be of practical use, it must 

satisfy two constraints [92]. The first is realizability. Realizability, as stated by Schumann 

[78], requires that the component energies of a Reynolds-stress model have positive values, i.e., 

Taa > 0, with no summation on a, for any turbulent flow. The second constraint is frame 

invariance. Frame invariance was first advocated by Donaldson and Rosenbaum [16] in 1968 as 

a necessity if Reynolds-stress models were ever to be extended to more complex flows, particularly 

to flows involving curvilinear coordinates. To insure frame invariance, the Reynolds-stress transport 

equation and all modeled terms must be cast in tensor form. 

There have been numerous attempts to improve upon the LRR model and an excellent review 

of many of these models is found in A Review of Near-Wall Reynolds Closures by So et al. [85]. Of 

the models examined by So et al., they state that only the Shima [83], Launder and Shima [43], and 

Lai and So [38] give reasonable predictions of the turbulence statistics in a fully-developed channel 

flow. The models of Shima, and Lai and So are summarized below along with two models that are 

proposed improvements to the models discussed in So et al. [85]. 

4.3.2.2   Shima RSTM Closure 

Noting several deficiencies in the near-wall term of the LRR model, Shima [83] modified the 

return-to isotropy term and the near-wall correction term to improve near-wall behavior. Shima 

retained LRR's pressure redistribution term, <^ ■ 2, but replaced 0^-^with [83] 

<PijA = -CTp^ (TZJ - \Kö^ (91) 
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where 

C* = d 1     Ci ) fWl 
(92) 

Jwi  — GXp 
0M5x2VK 

v 
(93) 

Citing that the term K^/ex2 in Eq. 83 vanishes at the wall and 4>fj has little effect in the immediate 

vicinity of the wall, Shima replaced <j>fj with [83] 

uij — JWi_ fu a (Pij - -PkkSij ) +ß(Dij- -PkkSij ) + iKSij (94) 

In an attempt to prevent excessive non-physical coupling between the turbulent kinetic energy 

and the dissipation-rate brought about by the coincidence of de/dt and d {ud2K/dxidxi) jdt at 

the wall, Shima made two modifications to the dissipation-rate transport equation. First, following 

Hanjalic and Launder [26], Shima replaced De as defined in Eq. 79 with 

De = C€2p^ (95) 

where 

e = e - 2v 
'dVT 

dxi 
(96) 

and introduced the additional near-wall term 

£  =  Pfw! 

where 

7-C   -2^-^-' 
9°£2 K     IK 

e = e — v- 
d2K 
dx2 

Second, Shima grouped the turbulent production and extra production terms together to form 

Pe + $ = Cei(l + afWl)^P 

(97) 

(98) 

(99) 

The closure constants, damping functions and wall boundary conditions used by Shima are given in 

Appendix B. 
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4.3.2.3  Lai and So RSTM Closure 

Using an asymptotic analysis of the near-wall behavior, Lai and So [38] sought to balance 

the modeled terms of the Reynolds-stress and dissipation-rate transport equations to the lowest 

order. Specifically, they sought to develop an asymptotically correct velocity-pressure-gradient 

correlation (not just the pressure strain-rate correlation tensor) and dissipation-rate tensor models, 

and a dissipation-rate transport equation that ensured correct behavior in the near-wall region. Upon 

performing asymptotic expansions of the terms in the Reynolds-stress equation, Lai and So found 

that the dissipation-rate tensor and the viscous diffusion terms exhibit O (y2) behavior near the 

wall while the convection, production and turbulent diffusion terms exhibit O (y3) behavior near 

the wall. Consequently, the velocity-pressure-gradient correlation tensor must balance the difference 

of the dissipation-rate tensor and the viscous diffusion terms, or 

dDu 

n« = £«~itef (100) 

of which the difference is O (y2). 

For high Reynolds number flows, the viscous diffusion is often neglected since it is frequently 

overshadowed by turbulent diffusion effects [56]. However, Lai and So's asymptotic analysis [38] 

showed for near-wall flows, the opposite is true and the viscous diffusion dominates the turbulent 

diffusion. Thus, using the gradient transport hypothesis, the viscous diffusion was modeled as 

Recall that the general expression for the velocity-pressure-gradient correlation tensor is 

^■ = ^•,1 + ^,2 + ^ (102) 

Lai and So proposed to use the expressions developed by Rotta [69] and LRR [40] to model §iiX and 

(f)ij2. However, according to Lai and So [38], ^ should "compensate" for the incorrect asymptotic 
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behavior of </)iJtl while providing additional terms to balance f e^ - D£). "Furthermore, according 

to Shima (1988) and Launder etal. (1975), <f>fj should also provide additional terms to account for 

wall reflection effects in the not-too-near-wall region. [38]" Thus, Lai and So modeled 4>fj as 

H>ii — JWi 
C\pj^ {jij - \K8ij) - pj? {Tiknknj + Tjknkni 

i „.* ( r> 1 D. . S.. \ (103) 
-a* (Pij - \Pkk8ij) 

where a* = 0.45.  According to Lai and So [38], this model for the velocity-pressure-gradient 

correlation tensor, Yiij, is asymptotically correct to at least O (y2) for all components. 

Based on the suggestions of Hanjalic and Launder [26], Launder and Reynolds [41] and 

Launder and Tselepidakis [45]; Lai and So proposed a model for the dissipation-rate tensor that 

provides O (y2) near-wall behavior and asymptotes to Kolmogorov's [36] model far away from the 

wall. Thus, the proposed dissipation-rate tensor model is given as 

2 

where 

fV. — f 

eij ~~  o Pe"ij   i   eij 

2 _ e (TJJ + Tiknkrij + Tjknknj + njnjTkinkni) 
--^peOij + p— ^ + 3 Tklnkn, \ 

(104) 

(105) gr—j    ■   r K 

In their model for the dissipation-rate transport equation, Lai and So retained Shima's form for 

* + P€ (see Eq. 99), but put forth a functional form for a. Based on data of Kim et al. [34] and 

Mansour et al. [48], Lai and So proposed 

a = 1.0 — O.Qexp 
Re 

1Ö1 
(106) 

Citing convenience and numerically stability, Lai and So expressed £ as 

r*2 1 

f = Pf^i 
7c 2]-- — 

K     2K 
(107) 

where 

€ = e - 2D 
8X2 

(108) 
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and 

vK 
e - -^ (109) 

x2 

Lai and So claim that their expression for e* is more robust that Shima's expression for e. 

The closure constants, damping functions and wall boundary conditions proposed by Lai and 

So are listed in Appendix B. 

4.3.2.4  Lai, So, Zhang, and Speziale (LSZS) RSTM Closure 

In A Review of Second-Order Near-Wall Closures by So et al. [85] it was observed that none of 

the models evaluated could reproduce the distributions of en and e correctly beyond y+ « 20. Lai 

and So [38] claim that the inability to predict these near-wall distributions "... lies in the incorrect 

modeling of the near-wall production and dissipation terms proposed for the e equation as well as 

the velocity-pressure-gradient correlation [tensor] [85]." 

Since modeling in the e transport equation is rather ad hoc anyway, Lai and So suggested that 

attempts to improve this equation should be given priority. To this end, So et al. [86] proposed an 

alternative £ function based on the studies of Shima [83] and Mansour et al. [48] The altered form 

of £ is given as 

c*2n 

Z = pf w2 ~2K+32K 
(110) 

where e, and e* are defined by Eqs. 108 and 109 in Section 4.3.2.3. In this updated model, So et 

al. [85] has retained most of the model constant values specified by Lai and So, but found they had 

better agreement with the experimental data by defining a as 

Re 
(111) a = 1.0 — l.bexp 

In conjunction with the velocity-pressure-gradient correlation tensor model given by Lai and 

So [38], So et al. [85] applied this modified form of the e transport equation (henceforth referred 
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to as LSZS) to the flow conditions given by Mansour et al. [48]. Comparison of the distributions 

of the turbulent flow quantities show that LSZS gives better predictions of the overall profiles of 

all quantities, including the near-wall behavior of e and en (see So et al. [85] for plots of the data). 

However, there are still deficiencies in the near-wall predictions for rxy, eu, e22, £33 and the mean 

velocity values in the buffer region. 

As with previous models, the closure constants, damping functions and wall boundary 

conditions proposed by So et al. are listed in Appendix B. 

4.3.2.5  Zhang, So, Gatski, and Speziale (ZSGS) RSTM Closure 

So et al. [85] attributed the inability of previous second-order models to correctly predict 

the mean velocity values in the buffer region and the dissipation-rate profile at the wall to poor 

modeling of the velocity-pressure-gradient correlation tensor in the near-wall region, specifically 

the pressure diffusion term. Zhang et al. [115] expanded on this line of thought and went on to 

point out that in previous models the effects of pressure diffusion had been lumped together with 

the near-wall correction term <p^ [115]. To correct this deficiency, Zhang et al. [115] proposed a 

pressure diffusion model be added to Lai and So's [38] velocity-pressure-gradient correlation tensor 

model and modifications made to the LSZS [85] dissipation-rate transport equation to account for 

the reflection of the pressure in the near-wall region brought about by pressure diffusion. Thus, 

Zhang et al. proposed the velocity-pressure-gradient correlation tensor be written as 

^■ = ^,1 + ^,2 + ^ + ^ (112) 

where <fiijtl and <^)2 are as given by LRR in Section 4.3.2.1 and </>£■ is taken from Eq. 103 in Section 

4.3.2.3. The pressure reflection, <^, is given by Zhang et al. [113] as 

where 

I &ij —  „'Jfcfct'ij  I 
ex2 

b§ = 2CwpK ( Sij - ^SkkSij ) ^ (113) 
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Cw = (Cw)in - (5.8 x 10"4) Moo   for   M^ > 2.5 m4) 
Cw = (Cw)in for   Mo« < 2.5 

In the expression above, Moo is the freestream Mach number. Since (Cw)in is dependent on the 

momentum thickness Reynolds number, Reg, appropriate expressions for (Cw)in must be specified. 

These are found in Zhang et al. [113] and given as 

{Cw)in = 4.14 x 10"3 + 3 x 1(T3 {log Reg)   for   Ree < 5.500 5 

(Cw)in = 0.0153 for   Ree> 5.500 

The ZSGS model uses the LSZS model for the dissipation-rate tensor. 

Near-wall modifications by Zhang et al. [113] to the dissipation-rate transport equation consist 

of a new form for £. The new form is given as 

£ = UP (-2§ + 1.5-§) (116) 

where 

--» ft?)' 
e = e-2V^ (118) 

fw2 = exp 
Ret

x2' (119) 
40 

Any additional closure constants and damping functions as well as the wall boundary 

conditions proposed by Zhang et al. are listed in Appendix B. 

4.3.2.6  Turbulent Diffusion, Viscous Diffusion and Mass Flux Variations 

Many different models have been proposed to compute the triple velocity correlation found in 

the turbulent diffusion term, Eq. 68. Some of these models are the isotropic model of Shir [84] and 

the gradient diffusion models of Daly and Harlow [15] and Hanjalic and Launder [25]. These models 

and several others were evaluated in a comparative study by Amano and Goel [2] and the results of 
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their study indicated that the gradient diffusion model of Hanjalic and Launder [25] produced the 

best results of the models evaluated. The Hanjalic and Launder model is given as 

WW - -pC~ (^1 + ^ + ^-) (120) pUiUjUk -    pus £  ^dxk+ dx. "t- dx.J 

where Cs = 0.18. Thus 

A model for the viscous diffusion, Eq. 69, is obtained from an asymptotic near wall analysis 

and by neglecting fluctuations in the viscosity as well as some higher-order correlations, particularly 

those involving dilatational effects [94]. These assumptions are possible because in a high-Reynolds 

number flow, the viscous diffusion effects would only be significant extremely close to the wall 

where the turbulence Mach number is small and Morkovin's hypothesis may be invoked [94]. Thus, 

the viscous diffusion is modeled as 

''ÖTij     dTjk     drik D^HS+^f+^J <122) 

If Morkovin's hypothesis is invoked, the mass flux variation, M*,, may be assumed negligible 

[54]. For the situations where this is not true, standard gradient transport hypotheses are generally 

used to model this term [113]. 

4.4 Navier-Stokes Equations in a Second-Order Model 

Since there are several higher-order correlations to be modeled in the Favre-averaged total 

energy equation, Eq. 22 it is shown here for convenience: 

d(pE\      dfpüjH)      d(-püjTij+üiö-ij + K§^- + pE"u'j+u-aijj 

dt dxj dxj 

where .. 
E = e + -üiüi + K 

H = h + -üiüi + K 
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pE»v!j = uj(/l3 - \pv!S< - CP~P
U

"
T

" 

The energy flux is given by standard gradient transport hypotheses as 

^Tfil^ _CfJßK_^_ (123) 
i Prt    e  dxj 

where Prt is the turbulent Prandtl number, which is assumed to be 0.9 for air [94]. 

Contractions of Eqs. 120 and 122 are also used in the total energy equation. Specifically Eq. 

122 contracts to 

and Eq. 120 contracts to 

where Cs is model dependent. The dTij/dxi terms in the two contracted equations above are often 

ignored [57] and Cs is optimized to account for these missing terms. 
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Chapter 5 - Algorithm Formulation 

5.1 Introduction 

The algorithm used to solve the governing equations is described in this chapter. ISAAC 

uses an integral formulation of the governing equations and these equations are discretized over 

a structured grid of finite-volume cells. This algorithm uses implicit time differencing for added 

robustness and uses time linearization, approximate factorization and matrix diagonalization for 

computational efficiency. Second-order accurate upwinding is employed to evaluate the implicit 

terms in the discretized governing equations and second-order accurate Roe flux differencing is 

used to evaluate the fluxes in the residual. Greater detail on each of these topics is provided in this 

chapter. In this chapter, the only subscripts which imply partial differentiation are x, y, z, £, rj and q. 

5.2 Governing Equation Formulation 

5.2.1   Integral Formulation 

ISAAC is based on the integral formulation of the governing equations for flow of a single- 

species, perfect gas. If one considers a volume, Vol, inclosed by a surface, S, these equations can 

be written as [30] 

d_ 
dt 

I   f QdVol J + / (F - FV) • ndS =   f SdVol 
Vol I        S Vol 

(126) 

where 

<z> ndS - = 0 
J 
s 

1 dVol = Vol 

Vol 

F = fi + gj + hk 

(127) 

(128) 

(129) 
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F„ = f„i + g„j + h„k (130) 

and Q is the solution vector; f, g and h; and f„, g„ and hv are respectively; the inviscid and viscous 

flux vectors in the x, y and z coordinate direction and S is the vector of source terms. 

In this formulation, the Favre-averaged Navier-Stokes equations presented in Chapter 3 are 

used to describe the mean flow behavior of the fluid and the Favre-averaged Reynolds stress and 

dissipation-rate equations detailed in Chapter 4 are used to describe the turbulent behavior of the 

fluid. Therefore, Q is given as 

iT 

Q p, pü, pv, pw, pE, pm, pr22, PT33, pri2, prn, pT2z,pt (131) 

and the individual components of the flux vectors are 

pu 
pü2 + p 

püv 
püw 
püH 
pÜTu 

pÜT22 

pÜT33 

pÜT\2 

pÜTl3 

pÜT23 

püe 

g 

pv pw 
puv puw 

pv2 +p pvw 
pvw pw2 +p 
pvH pwH 

pVT ll 

pVT22 
h = 

pWTll 

pWT22 

PVT33 pWT33 

PVT12 PWT12 

pVTl3 pWTx3 

pVT23 pWT23 

pve pwe 

(132) 

0 
TU 

fl2 

T13 

h 
Tll 

D 
22 
D 

'33 
r12 
T13 
r23 

0 
T\2 

T22 

T23 

h 
Tll 
T22 
T33 
T12 
T13 
TD 
'23 
e2 

Tl3 

T23 

T33 

h 
Tll 
r22 
rD r33 
r12 
r13 
r23 

(133) 
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and the components of the source vector are 

where 

Pu + pen 
P22 + P^22 
-P33 + JÖ633 

0 
0 
0 
0 
0 
+ nn + M11 
+ n22 + M22 

II33 + M33 
P12 + pei2 + II12 + M12 
P13 + pen + ni3 + M13 
^23 + /^23 + Ü23 + M23 

Pe-De + V + Z 

Tik = Ö~ik - PTik 

(134) 

(135) 

D j-\t \r)V 

e^Dt + D» 

(136) 

(137) 

bk = üifik -qk+ u-aik + pE"ul (138) 

The expressions for Pik, eik, Hik, Mik, D\jt D
v

tj, D\, Dv
€, u- and E"u% are model dependent. The 

expressions for these terms from the RSTM's discussed in Chapter 4 are given in Appendix B. 

5.2.2   Finite-Volume Formulation 

Discretization of the domain into a structured grid of finite-volume cells with constant fluid 

properties over the cell volume, permits application of Eq.   126 to the individual cells.   Upon 

performing the volume integration for an individual cell, Eq. 126 is expressed as: 

Ö 

dt 
(QVol)iJtk] + j>   (F - F.) • ndS = (SVol)itjtk (139) 

'»iji*> 

where the i, j, and k subscripts are coordinate indices for the cell centers. Since a structured grid 

approach is used for this formulation, the indices range from 1 to the maximum cell index; Imax, 

Jmax or Kmax, in each coordinate direction. 
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Applying the geometric constraints given by Eqs. 127 - 128 to individual cells results in 

S>  ndS = 0 (140) 

si. ,j,fc 

dVol = VolitJtk (141) 

where 
Imax Jmax Kmax 

J2 E E Voli>j>k = Vd (142) 

i=i   i=i   fc=i 

Equations 140 and 141 require the volume of any cell identified by its ij,k index, be finite and 

have a closed surface area. Additionally, Eq. 142 requires the sum of the individual cell volumes 

given by Eq. 141, equal the volume of the domain given by Eq. 128. These conditions are easily 

satisfied in finite-volume discretization schemes when the surface area and cell volume calculation 

methods described in Vinokur [106], and Kordulla and Vinokur [37] are used. These methods allow 

a great deal of flexibility in cell dimensions since they do not require planar cell faces. 

Consider a six-sided cell with eight arbitrary corners as shown in Figure 6a, for which the 

surface area vectors and cell volume must be evaluated. This figure represents the transformation 

of a cell in physical space into a cell in computational space. The cell centroid is located at node 

i,j, k with vertices at points 1,2, 3, 4, 5, 6,7 and 8. The sides of the cell are not necessarily planar 

and they represent a potential source of geometric error in the following analysis. However, this 

error need not be incurred, since Kordulla and Vinokur [37] have devised a method for which a cell 

with non-planar sides is easily and accurately evaluated by dividing each cell face into two planar 

triangles and the volume into six tetrahedra. 

Expressions for the cell surface area and cell volume are derived in Appendix C [37]; however, 

some key results of the derivation are provided here. Let the surface area vectors in the positive £, ry 

and C directions be denoted by S^-, Sv and Sc respectively and define the Jacobian of transformation 
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as J, where the cell volume is J'1 = 1/J [3]. The components of these vectors are projections of 

the surface area of the side of a cell in the positive £, r\ and ( coordinate directions. The surface area 

vectors and the cell volume are given as [106]: 

Vol. 

o^ = 01234 = -yi + -yj + ~jk 

o ' = oi265 = -y i + -yj + -y K 

i,j,k = J~* = Ö (^71) • f #1265 + #1584 + -Sl234j 

(143) 

(144) 

(145) 

(146) 

where £,x, £y, £z, r]x, r\y, rjz, (X, (y and Qz are transformation metrics and r7i is the vector defining 

the diagonal distance between vertices 7 and 1 (see Figure 6). The numeric subscripts on S indicate 

the vertices in Figure 6 which describe the cell side represented by the surface area vector. 

Utilizing the relationships given in Eqs.  143 - 146, the surface integral in Eq.  139 can be 

placed in the following form 

d_ 
dt (Qi,j,k)    = 

( 

j,k 

G-CÜ -(G-GÜ 
't,3+hk        V '\3-\fr 

(Ö - H„)        I - (H - EÜ        i 

(147) 

~t~ &i,j,k 

where """ denotes division by J and the 1/2 on the indices denotes evaluation of the flux terms at 

a cell interface. The inviscid flux vectors in the £, r\ and ( directions are given as 
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f    pu    ] r     pv 
puU + £xp puV + fjxp 

PVU   +   iyP PVV    +   fjyP 

pwU + £zp pwV + f]zp 

pUH pVH 

|V*| 
J 

pUjw 

PÜT22 

f,      |V»/| pVTll 

pVr22 

PUT33 PVT33 

PÜT12 pVri2 

pUriz pVri3 

pUT23 pVr23 

pUe L     pvz 

r     pw 
puW + (xp 

PVW + (yP 

pwW + CzP 
pWH 

H      ™ H-    J 
pWr\\ 

pWT22 
pWT33 

pWri2 

pWr\3 

pWr23 
[       pWe       J 

where the contravariant velocities Ü, V and W are defined as 

Ü = £xü + lyV + lzw 

V = fjxU + f]yV + 7jzW 

W = lxU + CyV + lzW 

and the direction cosines are given as 

mi = 
mi 

Vral 

where m = £, r\ or ( and i = x, y or z; and 

Vm = mx\ + m^j + mzk 

The viscous flux vectors in the £, ?y and ( directions are given as 

(148) 

(149) 

(150) 

(151) 

(152) 

(153) 

54 



M„ = 
|Vm| 

J 

mx f n + 
mxfi2 + 
mxfi3 + 

rhxbi + 
rhxT?! + 

mxT~33 + 

ra^rß + 
mxT2?> ~^~ 
mxef + 

0 
"^7-12 + rnzfi3 
m^f 22 + mzf 23 
?%f 23 + mzf 33 
?%&2 + "?z&3 
™j/rn + ^Tn 
myT22 + mzT22 
myT33 + m^r33 
"lyT-ß + "^rß 
myrß + m^ß 
myT23 + 7nzr23 

(154) 

where M„ = F„, G„ or H^. 

The semi-discrete form of the governing equations given in Eq. 147 is not efficiently solved 

which numerical methods in its current form. However, if a 8 operator, defined as 

■) = (Oi+i - (•)« (155) 

is applied to Eq. 147, a compact discrete form emerges which can be further manipulated into 

a format which is efficiently solved with numerical methods. This 8 operator is a second-order 

accurate spatial representation of d (•) /dm at the cell centroid when Am = 1. After application to 

Eq. 147, the compact discrete form of the governing equations is 

dQ 
dt 

+ 6S(F- FW) +8V(G- GW) + 8C (H - H„) - S = 0 (156) 

5.2.3   Implicit Time-Difference Formulation 

Numerous sources have demonstrated that implicit time-difference formulations are 

significantly more robust than explicit formulations for a much wider range of flow situations [46, 

47,63,98,99]. This is especially true for steady-state situations where some schemes allow CFL 

numbers as large as 1 billion [47]. 

Using a backward-difference form that is first-order accurate in time, the unsteady term in Eq. 

156 is expressed as 
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-±*_ + af (F - F„J       +6V(G-GV)       +6C{H-HV)       - Sn+1 = 0        (157) 

where 

AQn = Qn+1 - Qn (158) 

and the superscript "n" denotes the current time level. The introduction of this backward-difference 

formulation reduces the time accuracy of the ISAAC algorithm to first-order at best. 

5.3 Discretization 

The information presented in this section is a review of the algorithm development as 

described by Morrison [55-58] with additional details taken from works of Beam and Warming 

[8], Pulliam and Steger [63], Coakley [13], Hoffman and Chiang [31], Walters and Thomas [107] 

and \enkatakrishnan [104]. 

5.3.1   Linearization 

In order to solve Eq. 157 for AQn, the flux vectors must be linearized in time, i.e. express 

Eq. 157 in terms of the original unknown AQre. Linearization is accomplished by expanding the 

fluxes with a Taylor series centered about time level n. For example, the inviscid flux vector in the 

£ direction is linearized as follows: 

dFr' 

~dt 
pn+i =pn + 1L_A£ + o (At2) (159) 

r+^r+^^Ai + OfA«2) (160) 
<9Q dt v      > 

<9Q At v      ' 

where the flux Jacobian, A, is defined as |£. An identical process is used to linearize the remaining 
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flux vectors: 

F£+1 = F™ + A£AQn + O {At2) (163) 

Gra+1 = G" + BnAQra + O (At2) (164) 

G£+1 = G™ + B£AQn + O (At2) (165) 

Hn+1 = Hn + CnAQn + O (A*2) (166) 

H£+1 = H™ + C£AQn + O (At2) (167) 

gn+l = §n + BnAQn + Q ^2) (168) 

The remaining inviscid flux Jacobians are defined as 

B = ^ C = S (169) 
ÖQ ÖQ 

and the viscous flux Jacobians are defined as 

A, = ^ B„ = ^ Cv = ^ (170) 
ÖQ ÖQ ÖQ 

Finally 

D= ^| (171) 

is the flux Jacobian for the source terms. Expressions for the inviscid and viscous flux Jacobians 

are available in Knight [35]. The flux Jacobian for the source terms is model dependent and must 

be derived on an individual basis. After substitution of the linearized expressions into Eq. 157 and 

after some rearrangement, the governing equations are given as 

[I + At fa (An - A£) + Sv (B
n - BJJ) + 6C (C

n - C?) - Dn)] AQ™ = -Rn (172) 

where I is the identity matrix. The residual, R", of the solution is defined as 

Rn = { [^ (Pn - F?) + 8n (G
n - G") + 6C (fi" - H?) + Sn] } At (173) 
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The residual will vanish once a steady-state solution is achieved and AQra will equal zero. 

The methods used for spatial discretization of the flux Jacobians and the evaluation of the flux 

terms in the residual are presented in Sections 5.3.4 and 5.3.5. 

5.3.2 Factorization 

The storage requirements needed to solve Eq. 172 for a large three-dimensional problem are 

prohibitive. However, by using the approximate-factorization methods of Beam and Warming [8], 

Morrison significantly reduced the bandwidth and rank of the matrices. The reduction is realized, 

because storage of an approximate solution for only one coordinate direction is required at any point 

in the solution process. The approximately factored form of Eq. 172 is given by Morrison as [56]: 

[I - AiD] [I + A%A-At<^A„] [I + At^B-At^B,,] (174) 

[I + At6cC-At6cCv] AQn = -R 

This equation is now split into four relatively easy to solve matrix problems. The superscript n is 

dropped on all terms except AQ and it should be understood that all terms are evaluated at time 

level n. 

5.3.3 Diagonalization 

Pulliam and Steger have shown that for steady state applications, the diagonalization of 

approximately factored equations dramatically decreases the computational work required to solve 

such equations [63]. However, diagonalization of the implicit side of Eq. 174 further reduces the 

time accuracy of the algorithm [63]. 

Diagonalization of the inviscid flux Jacobians is possible because each Jacobian has real 

eigenvalues. Through similarity transformations, the inviscid flux Jacobians can be written as 

follows: 

A = TCACT^ B^T^A^T"1 C = TCACT^ (175) 
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and the subscripts £, r\ and ( indicate the coordinate direction the transformation matrices are 

associated with. The components of the similarity matrices; T^, T^ and Tc and the inverse of 

the similarity matrices; T^"1, T"1 and T^1 are given in Appendix D. 

The diagonal eigenvalue matrix is denoted by A and the elements of this matrix are the 

eigenvalues A;, are given by Morrison [56] as 

Ai = A2 = A3 = A6 = A7 = A8 = A9 = A10 = An = \l2 = Ü | Vm| (176) 
and 

A4 = (Ü + aj IVm| A5 =   (ü - a\ |Vm| (177) 

In viscous calculations the diagonalization algorithm cannot be rigorously applied. However, 

Coakley [13] has shown that the viscous flux Jacobians can be approximated by replacing them 

with the matrix uyiI6m, where VM. is the largest eigenvalue of the viscous Jacobian Mv, 6m is the 

difference operator and m is the coordinate direction of the difference. 

Substitution of the above expressions into Eq. 174 results in the following diagonalized, 

approximately factored system of equations 

[I - AtD] T^ [I + At6s(At - vAJ6s)} Tf XT„ [I + Atf„(A, - uBvI6v)}      (178) 

T-JTC [I + At8((Ac - vcJSs)] T^1 AQ" = -R 

This system of equations can be solved with a series of four sweeps of the domain as follows: 

[I - AtD] AQ' = -R (179) 

[I + A%(A? - I/A„I^)] AQ" = T^AQ' (180) 

[I + Atf„(A„ - uB,I6v)} AQ'" = T-^^AQ" (181) 

[I + Atöc(Ac - ucJSc)] AQiv = T^T^AQ"' (182) 

AQ" = TCAQ™ (183) 

qn+i = Qn + AQn (184) 

The source terms can be treated in a point implicit manner; thus, the first sweep of the 
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domain requires only a block inversion at each point in the flowfield. Morrison justified his 

implicit treatment of the source terms with a recent work by Shih and Chyu [82]. Shih and Chyu 

recommend including the source terms in the spatial factors rather than as a separate inversion to 

reduce factorization error. Evaluation of the right-hand-side of Eqs. 180 - 183 is a simple matter 

of matrix-vector multiplication, since analytic expressions for the transformation matrices and their 

inverses are available. 

5.3.4   Spatial Discretization 

Spatial discretization of the implicit side of Eq. 178 and of the residual term is performed 

differently. Spatial discretization of the implicit side is performed by replacing the delta operator 

given in Eq. 155 with a first-order accurate upwind difference operator where the upwind direction 

is dependent on the sign of the eigenvalue. Based upon the methods outlined in Hirsch [30], the 

new implicit operator is 

1 
Sm (■)=: (185) 

2Am 

where m is the coordinate direction of interest, / is the index of the cell centroid in the m direction 

and ATO is the largest eigenvalue of the inviscid flux Jacobian in the m direction. This operator 

automatically upwinds in the proper direction regardless of the sign of the eigenvalue and results in 

a block tri-diagonal system. 

Discretization of the residual term is performed with the second-order-accurate central- 

difference operator defined in Eq. 155. To use this operator, the fluxes at the cell interfaces must 

be evaluated. The fluxes are evaluated with the Roe flux-differencing method which is presented 

in the next section. 

5.3.5   Roe Flux-Differencing 

Second-order accurate Roe flux-differencing is used to evaluate the fluxes at each cell 
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interface. This method treats the interface in each of the three coordinate directions as a locally 

one-dimensional Riemann problem normal to the cell interface such that the governing equation is 

reduced to: 

§ + f = 0 086, 
ot      urn 

with initial conditions of the left, L, and right, R, states given as 

Q=(^    m<l (187) 
I QR    m > 0 

where m is the coordinate normal to the cell interface (£, rj or Q; "^" denotes a Roe-averaged 

variable (to be defined later); F is either F, G or H; and U is either U, V or W depending on the 

coordinate direction of m. The form of the flux vectors and contravariant velocities was previously 

defined in Eqs. 148- 151. 

The exact solution of the Riemann problem is nonlinear, requiring an iterative process for 

computation. A more computationally effective procedure developed by Roe [68] was to construct 

the solution to the approximate, linearized problem as 

^ + A^ = 0 (188) 
ot am 

where A is the Roe averaged flux Jacobian M- and is evaluated at an averaged state about the cell 

interface which satisfies the jump condition 

Fß - FL = A (QR - QL) (189) 

at the cell interface. Here, FR and F^ are the fluxes at a cell interface when the interface is 

approached from the left or the right. These fluxes are evaluated with variable extrapolation methods 

described in Section 5.3.6. 

Walters and Thomas [107] have shown that the interface flux can be written as the average of 

the interface fluxes calculated from the left state crossing negative running waves and the right state 
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crossing positive running waves, as 

F^ = 2 
Fß + FL Qä-QL 

This may be written in a more computationally efficient manner as 

1 
F,- FR + FL-Y, ÄF 

where Ä (•) = (•)# - (-)L- 
Tne flux differences, ÄF, are written as [56] 

(190) 

(191) 

AF u J *>-$ 

u 
v 
w 

$ + k 
Til 

T22 

T33 

T12 

T"13 

"T23 

e 

+? 

0 
AM — mxAU 
Av — rhyAU 
Aw — rhzAU 

üAü + vAv + wAw 

-ÜAÜ + ÄK 
Am 
AT22 

ÄT33 

ÄT 12 
ÄT 13 

ÄT23 
Äe /J 

(192) 

AF U±a 

Aü±a 

J 

Äp ± päAU 
2ä2 

1 
u± raxa 
-y ± m^a 
w; ± rhza 
H±Üa 

Til 

T22 

T33 

T12 

T13 

T23 

e 

(193) 

The Roe averaged variables that satisfy Eq. 189 and used in Eqs. 192 and 193 are given in 

Walters and Thomas [107] and Morrison [56] as 
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H = 

u = 

v = 

w 

TU = 

T22 

T33 = 

T12 = 

Tl3 = 

T23 

e = 

P = VPLPR 

y/p£HL + \/PRHR 

VPI + VPR 

VPLüL + VPRÜR 

V>7+^ /PR 

VPTVL + \[PRPR 

VPI + ^ JPR 

VPL,WL + < /PRÜR 

VPI + sfpR 

VPTTIIL + VPRTIU 

VPE + VPR 

VPL1~22L + \/pRT22R 

VK + VPR 

VPLT33L + VPR
T

33R 

VPE + VPR 

VPLT12L + VPR
T

12R 

VPI + VPR 

VPL
T
^L + VPR

T
13R 

VP7 + VPR 

VpLT23tj + VPRr23R 

VPI + VPR 

VPL^L + VPRCR 

/PL + VPR 

(194) 

(195) 

(196) 

(197) 

(198) 

(199) 

(200) 

(201) 

(202) 

(203) 

(204) 

(205) 

q2 = u2 + v2 + w2 (206) 
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d2 = (7-l)(#-y-#) (207) 

Ü = rhxu + myv + ihzw (208) 

where the subscripts L and R denote interface values of variables extrapolated from the left and 

right of the interface. 

5.3.6 Variable Extrapolation 

Morrison used Venkatakrishnan's [104] flux limiter for variable extrapolation and oscillation 

suppression at discontinuities. This limiter is based on the K = 1/3 scheme which results in a third 

order-accurate, upwind biased scheme, \enkatakrishnan states this limiter is differentiable and does 

not react to very small oscillations in smooth regions [104]. Rather, this limiter has a limiting effect 

only in non-smooth regions which give it the added advantage of not clipping smooth extrema in 

the solution. 

For any variable B, the \fenkatakrishnan limiter is given as 

BLt+1/a=Bi + l/261/3 (209) 

(2a*+ e*)b+(* + *?) a 
6l/3 ~      2a2-ab + 2b2 + 3e* (210) 

where 

a = Bi+1-Bi b = Bi-B^i (211) 

and e2 is a small value used to prevent division by zero and is set to lxlO""8 in this algorithm. For 

BR   , ,„ the forms of a and b are reversed such that 
-* *■ i — 1 / 2 

a = Bi- Bi-x b = Bi+1 - Bt (212) 

5.3.7 Gradient Theorem 

The viscous flux terms and the source terms each contain spatial derivatives which must be 
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evaluated at the cell interfaces. These derivative can be approximated with the gradient theorem by 

integrating around an auxiliary cell centered at the computational cell interfaces [62]. If <p represents 

a scalar field, then a vector relationship is given by the gradient theorem as [4] 

<f<pdS= iv^pdVol (213) 

S Vol 

where S = (si + S% + s£) i + (4 + S% + Slfj j + (sf + Sv
z + fi£) k, and V is the gradient 

operator. Thus for a closed volume element, this equation can be written as 

gi + ^] + ^k= (214) 
d£       or]       os 

s=l 

where the summation indicates summation over the six sides, s, of the cell.  Setting the vector 

components equal to each other results in 

6 

d£      Vol 2-< 
av- ht,v{s-+s'+s-) (215) 

i = ^X>(^+^) C21« 

dtp 
Ö?      Vol 

6 

= Vol^{Sl + S^S^) (217) 

Flow variable values required at these interfaces are obtained from arithmetic averages of 

neighboring cell averages. 

5.4 Non-Dimensionalization 

Non-dimensional quantities are used throughout the remainder of this document.   Unless 

otherwise stated, the following non-dimensionalizations are used: 

u = ±-        v = ^        w = ^- 
C^oo ^oo ^oo 
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^    E 

E = — 
«So 

K   = 
«lo 

~ Tii± 
3 ~ a2 uoo 

Poo 
P   = 

Pd_ 

Poo T -i-oo 

11       Xd 

x/l = T y/f  = 
yd 
l 

11        Zd 
Z/I = j 

A'oo 
e - 

e<2 
fi — 

Poo^oo 

(218) 

where a is speed of sound, oo denotes a freestream quantity, the subscript d denotes a dimensional 

quantity and I is the reference length. Note, the energy and turbulence quantities are specific, 

meaning the density is not included in the quantity. 

66 



Chapter 6 - TWo-Dimensional Analysis and Results 

6.1  Introduction 

In this chapter, a two part process for the validation of the ZSGS RSTM in two-dimensions is 

presented. The first part of the investigation attempts to validate the ZSGS RSTM for a flowfield 

with sonic injection into a supersonic inflow. This is accomplished by comparing numerical results 

from three turbulence models; the ZSGS RSTM, the ZSGS K - e model and the Jones-Launder 

K - e model [65]; to experimental data from the slot injection experiments of Spaid and Zukoski 

[88] and Aso et al. [6]. The second part of this investigation validates the ZSGS RSTM for the 

supersonic injection configuration used by Tucker [100]. This is accomplished by numerically 

simulating Tucker's configuration with the ZSGS RSTM and ZSGS K-e model and then comparing 

the numerical predictions from the two turbulence models to each other and to experimental data. 

6.1.1   General Flowfield Description 

A typical two-dimensional flowfield generated by sonic injection is characterized in Figure 

7. As discussed in Section 1.1, when an underexpanded fluid is injected normal to the freestream 

inflow, the injectant penetrates the turbulent boundary-layer and causes a system of shock/boundary- 

layer interactions and recirculation regions to form fore and aft of the nozzle. In the inviscid region 

upstream of the nozzle, a jet induced shock forms due to blockage of the flow and the subsequent 

adverse pressure gradient causes boundary-layer separation. In the region immediately upstream 

of the nozzle, a recirculation region consisting of counter-rotating primary and secondary upstream 

vortices (PUV and SUV respectively) are present. For some cases examined, a tertiary upstream 

vortex (TUV) is predicted between the surface of the plate and the PUV Slightly upstream of the 

boundary-lay er separation point, the boundary-layer displacement of the vortices causes a separation 

shock to form. Between the PUV and the separation shock is a sonic surface which has flow 

displacement characteristics similar to a compression ramp in a supersonic flow [88]. Upon exiting 
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the nozzle, expansion of the jet is followed by a rapid decrease in the local pressure. This results 

in a normal shock within the plume, and thus a sonic surface and a Mach disk forms around the jet 

plume. Downstream of the jet, the flow is turned parallel to the inflow resulting in a recompression 

shock and a corresponding separated, recirculation region behind the nozzle. This region consists 

of counter-rotating primary and secondary downstream vortices (PDV and SDV respectively). 

The effects the primary and secondary vortices upstream and downstream of the jet have on the 

surface pressure distribution are shown in Figure 8. The pressure profile shown in this figure was 

computed with the ZSGS RSTM for the Spaid and Zukoski configuration with pinj/Poo = 63.50. 

The details of how these results were obtained are discussed in Section 6.2.2. Depicted in this figure 

are five distinct regions within the surface static-pressure profile. Spaid and Zukoski [88] report a 

steep rise in pressure (region 1) as a result of the boundary-layer separation and the separation 

shock formation. This pressure rise is followed by a reduction in the pressure gradient upstream 

of the jet (region 2). The behavior of the pressure in region 2 is a result of the relatively constant 

flow conditions on the lower side of the PUV The reduction of the pressure gradient is followed by 

a pressure spike (region 3) which is associated with the SUY Immediately downstream of the jet is 

a large pressure well (region 4) with two subregions contained therein. These subregions are not 

identified by Spaid and Zukoski, but are present in the results of the numerical simulations. The 

first subregion is a slight pressure rise associated with the leading edge of the PDV The second 

subregion is a pressure drop associated with the SDV The pressure well is followed by a pressure 

hump (region 5) associated with the trailing edge of the PDV where boundary-layer reattachment 

occurs. 

The two-dimensional flowfield described above has many similarities to flow past a forward 

facing step and to flow over a compression ramp. Data presented by Sterrett and Holloway [96] 

indicate that if the step height and jet penetration distance is adjusted so that the separation lengths 
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of the two flowfields are approximately the same, the flowfield produced by a forward-facing step 

is the same as the upstream f lowfield produced by a jet. Spaid and Zukoski [88] reported that shock 

boundary-layer structures seen upstream of the jet induced separation region are similar to those seen 

in compression ramps. Furthermore, for the cases they examined, they found that the inclination 

angle of the sonic surface is approximately 13° and that the pressure rise near the separation point 

was approximately equivalent to the pressure rise obtained by turning an inviscid flow through the 

same angle. Thus, the sonic surface is analogous to the surface of a compression ramp. 

6.1.2   Overexpansion, Underexpansion and the Concept of Effective Back Pressure 

The effects of overexpansion and underexpansion on the structure of the plume are discussed 

extensively in this chapter. Overexpansion and underexpansion are best defined with respect to 

the supersonic exhaust of a nozzle and a surrounding flowfield of stagnant air. The pressure of the 

surrounding air is defined as the back pressure, pb [4]. When the pressure of the exhaust, pex, and pb 

are equal, neither shocks nor expansion waves form in the plume and streamlines of the exhaust are 

normal to the exit plane of the nozzle, thus, the plume is said to be structureless [76]. When pb < pex, 

the jet is underexpanded and expansion waves form at the jet exit. Streamlines of the underexpanded 

exhaust move away from the centerline of the nozzle, but further downstream, they turn back in 

towards the centerline as the expansion waves reflect off the jet boundary forming compression 

waves. These compression waves may converge to form a shock in the exhaust plume [28]. When 

Pb > Pex, the jet is overexpanded and a pressure adjustment in the plume is made through a series of 

oblique shocks, expansion waves and compression waves. This series of compression and expansion 

of the exhaust forms a distinctive diamond pattern in the plume. Streamlines of the overexpanded 

exhaust move in towards the nozzle centerline until they are turned back out by the expansion waves 

[28]. 

In TJISF applications, the total pressure loss of the injectant and the surrounding flow is 
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determined by the severity of the shocks caused by pressure equalization of the injectant [76]. 

Thus, the structureless plume associated with "matched" exhaust and back pressures is the optimum 

condition. However, matching pex to pb is not possible in TJISF, since pb upstream of the jet is 

different than pb downstream of the jet. Schetz and Billig [76] state that there is some combination 

of the two pressures, or an effective back pressure, pbeff, such that the structure in the plume is a 

minimum. An analysis of the effects different inject-to-inf low pressure ratios have on the plume 

structure is conducted in Section 6.3.2. 

6.2 Sonic Injection Configurations 

A schematic of Spaid and Zukoski's [88] experimental apparatus is shown in Figure 9. The 

apparatus consisted of a flat-plate with a sharp leading edge located a distance I = 22.86cm 

upstream of the center line of the nozzle. This plate was placed in a wind tunnel test section 51cm 

long and 45cm wide. A sonic jet of gas was injected, normal to the inflow through the throat of a 

converging nozzle 0.02667cm wide and 15.24cm long in the transverse direction. A 14.6cm gap 

was left between the edges of the slot and the tunnel wall. End plates with glass inserts were mounted 

on either side of the slot to insure two-dimensionality of the flowfield. The experiments were 

conducted with a test section Mach number of 3.50. Measured quantities consisted of test-section 

mean flow parameters, jet-reservoir mean flow parameters, and static-pressure distributions at the 

surface of the plate around the jet. Shadow graphs and surface static-pressure profiles indicated the 

flow was fully turbulent upstream of the jet and free of shocks between the plate leading edge and 

the separation shock. Spaid and Zukoski also reported that without the plates at the edges of the slot 

(see Figure 9) there were measurable three-dimensional effects. The three-dimensional relaxation of 

the flow resulted in reduced maximum values of the surface static-pressure and caused the upstream 

separation point to move closer to the slot. 

This data set is useful for turbulence model validation as Spaid and Zukoski [88] reported very 
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smooth and consistent pressure profile data and used a sufficient number of pressure taps to capture 

the pressure spike upstream of the jet and the pressure well downstream of the jet. Furthermore, 

two-dimensionality of the flow was enhanced by the addition of end plates on both sides of the jet 

slot. 

Aso et al. [6] used a similar experimental configuration to conduct their experiments. Their 

configuration, shown in Figure 10, consisted of a flat-plate with a sharp leading edge located 

I = 33.0cm upstream of the centerline of the slot in a 15 x 15cm test section operating at Mach 3.75. 

They also injected a sonic jet of gas normal to the external flow through the surface of the model. A 

converging nozzle with a throat measuring 1.0mm with a transverse length of 13.0cm was used in 

this configuration. This transverse length left a gap of 1.0cm between the edges of the slot and the 

test section wall. Measured quantities consisted of test-section mean flow parameters, jet-reservoir 

mean flow parameters, static-pressure distributions at the surface of the plate around the jet, jet 

penetration height, h, and boundary-layer separation distance from the jet, xsep (see Figure 7). 

The Aso et al. configuration was simulated numerically by Rizzetta [65] with the Jones- 

Launder K - e model [33]. In this simulation, Rizzetta used the Sarkar et al. [74] compressibility 

correction [72] to model the compressible turbulent dissipation rate in the kinetic energy equation, 

but did not include K in the total energy equation. Rizzetta reported relatively good agreement with 

the experimental surface pressure in regions 1 and 2, but the Jones-Launder model consistently over 

predicted the peak pressure in region 3. 

Observations about the quality of simulations conducted with the Jones-Launder K — e model 

may be misleading since there are a number of deficiencies in the data reported by Aso et al. [6]. 

These deficiencies are evident from the choppy nature of the static-pressure distributions upstream 

of the separation point and suggests that the flow leading up to the jet is unstable or that there 

are shock/boundary-layer interactions elsewhere on the plate. Furthermore, the number of pressure 
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taps used to collect the data was insufficient to capture the pressure spike upstream of the jet or 

the pressure well downstream of the jet. These deficiencies combined with the lack of end plates 

to ensure two-dimensionality of the flow renders this data set less than ideal for turbulence model 

validation. 

6.2.1   Boundary Conditions and Computational Grid 

The dimensions of the computational grid used for both of these configurations was determined 

through a grid resolution study. The results of this study and a schematic of the grid are found in 

Section F.2.1. 

Although the grid used from this study is two-dimensional, the formulation of the finite-volume 

algorithm requires that every grid have a finite width as well as a length and height. Thus, side wall 

boundary conditions must also be specified. 

All of the numerical simulation results discussed in Section 6.2 are based on the boundary 

conditions listed in Table 1. The methods used to implement each of these boundary conditions are 

presented in Section E.3.1. Table 2 is a summary of the mean flow parameters and slot widths used 

during this study. 

Table 1. Two-dimensional sonic injection boundary conditions 

Plane Boundary Condition 
Inflow Listed in Table 2 

Outflow Extrapolation 
Left side Extrapolation 

Right side Extrapolation 
Top Tangency 

Bottom Viscous wall 
Jet Two-dimensional jet, 3 cells 
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Table 2. Two-dimensional sonic injection mean flow parameters 

Aso et al. Spaid and Zukoski 
Moo 3.75 3.5 

Pico 12xl05Pa 2.4xl05Pa 

Poo 11090 Pa 3145 Pa 
-'oo 78.43 K 86.5 K 

floo 177.5 m/s 186.4 m/s 
Re/m 62.73 x 106 13.4 x 106 

Minj 1.0 1.0 
Pinj /Poo 4.86,10.29, 8.74,17.12, 

17.72,25.15 42.79,63.50 
J-inj 249 K 298 K 
Uinj 0 m/s Om/s 

Vinj 316.3 m/s 346.0 m/s 
Winj 0 m/s 0 m/s 

Slot width 1.0mm 0.2667mm 

6.2.2   Pressure Profile Data 

In this section the experimentally measured values of the surface static pressure for Aso et al.'s 

configuration is compared to numerical predictions from the two ZSGS models and to predictions 

reported by Rizzetta [65] for the Jones-Launder K — e model. 

It was noted in Section 6.2, that the number of pressure taps used by Aso et al. was insufficient 

to capture all of the characteristics of the surface pressure profile. The experimental pressure data 

shown in Figures 11 - 14, reveal that only the measurements made at the largest static pressure ratio 

(Figure 14) captured the pressure rise just upstream of the jet. Also, the pressure measurements for 

the smallest static pressure ratio did not capture the pressure well downstream of the jet (Figure 11). 

Furthermore, the surface static pressure ratio (pwaii/Poo) upstream of the separation point is greater 

than unity for all of the pressure ratios investigated. This suggests that the shock off of the tip of the 

plate increased the downstream static pressure and was not counted for in the scaling of the data. 

Despite the shortcomings of this data set, flowfield simulations of the four static pressure 

ratios listed in Table 2 were computed using the ZSGS RSTM and ZSGS K - e models. Resultant 
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surface static pressure distributions for these simulations were compared to experimental data and 

to Rizzetta's [65] computations with the Jones-Launder K — e model in Figures 11-14. The Jones- 

Launder model had good agreement with the pressure profiles in region 1 at the two higher pressure 

ratios, while simulations with the two ZSGS models had good agreement with the pressure profiles 

in region 1 at the two lower pressure ratios. All of the models over predicted the maximum pressure 

in region 2 and the peak pressure in region 3. However, the ZSGS RSTM model predicted pressure 

values much closer to the experimental data than either of the K — e models. None of the predicted 

values from the models were in good agreement with the experimental data in regions 4 and 5. 

However, in this region, the predicted values of the Jones-Launder K — e model were in better 

agreement with experimental values than the results of either ZSGS model. 

The predictions of the ZSGS models for xsep and h were in better agreement with the 

experimental data at the lower pressure ratios than they were at the higher pressure ratios, however, 

the opposite trend was seen for the Jones-Launder K — e model. The trends exhibited by the 

models are summarized in Figure 15 and in this figure the trends indicate that the ZSGS models 

predictions were more accurate than those of the Jones-Launder K—e model at lower pressure ratios. 

Furthermore, it was seen that the Jones-Launder K — e model predictions were more accurate than 

either of the ZSGS models at the higher pressure ratios. In Figure 15, the boundary-layer separation 

distance from the jet, xsep, was plotted against Pinj/p<x>- Consistent with the methodology used by 

Aso et al., the location of xsep was approximated by the intersection of a line drawn tangent to the 

data defining region 1 with the line pwaii/poo = 1- At the two lower pressure ratios, the ZSGS 

models accurately predicted the experimentally observed separation point: within 5% for the ZSGS 

RSTM and within 10% for the ZSGS K — e model. The predictions by the Jones-Launder K — e 

model at these two pressure ratios had differences from the experimental data of 18% or more. At 

the two higher pressure ratios, the results of both ZSGS models became progressively poorer, while 
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the results of the Jones-Launder model improved. 

The jet plume height, h, with respect to Pinj/Poo is of vital interest to designers of SCRAMjet 

combustors and it has a direct impact on mixing efficiency [60]. Thus, a comparison of h and 

VinjIVoo was also included in Figure 15. The Jones-Launder model results were nearly identical to 

the experimental data, while the differences from the experimental results for the two ZSGS model 

ranged from a low of 21 % at the highest pressure ratio to a high of 83% at the lowest pressure ratio. 

The large discrepancies of the ZSGS models may be a result of the ambiguity of how the plume 

height was measured. Although not explicitly stated, Aso et al. [6] implied, through their Figure 

5, that h was defined as the point where the sonic surface upstream of the jet intersected the Mach 

disk. On the other hand, the data Rizzetta reported, implied he measured the height from a flat point 

on the sonic disk. 

The RSTM predictions shown in Figure 16 show that the maximum height of the Mach disk 

was not necessarily a well defined point, contrary to the implications of References [5,6,65,88]. 

There are at least three possible places in the plume which can be taken as the maximum plume 

height. The height denoted by h\ in Figure 16 is the height apparently used by Rizzetta and this 

height provided the best match of the ZSGS simulation results to the experimental data reported 

by Aso et al. The contour plots show this point corresponds to a flat point in the Mach disk for 

Pinj/Poo = 4.86 and to the lower limit of the Mach disk for pinj/Pco = 25.15. Another point where 

the plume height can be measured from is the height defined by hi. This height is measured from the 

upper most flat part of the Mach disk. The third location where the plume height may be measured 

from is defined by h^. This is the point that Aso et al. indicated they used in their measurements. 

Using this point as a reference creates problems at higher pressure ratios, since the Mach disk does 

not necessarily completely cross the top of the plume. Thus, the point where the barrel shock and 

Mach disk intersect is not defined. All of these definitions for the plume height can argued as the 
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right one. However, h\ is used in this study because its values have the agreement with the data 

reported by Aso et al. 

For the most part, all three models had poor agreement with the experimental data and much of 

the disagreement is attributed to deficiencies in the experimental configuration, which likely led to 

three-dimensional effects in the flowfield and strong leading edge shocks. The supposition of three- 

dimensional effects is consistent with the results shown by Spaid and Zukoski [88], when the end 

plates were removed. Specifically, the boundary-layer separation point moves closer to the nozzle 

and peak pressure in region 3 decreases. 

Spaid and Zukoski's data provided a better representation of the surface conditions than the data 

reported by Aso et al. By using 92 pressure taps, Spaid and Zukoski captured the pressure spike in 

region 3 for all but the lowest pressure ratio (8.743) and captured the pressure-well in region 4 at all 

four pressure ratios. As evidenced by the smooth transition from the undisturbed freestream flow to 

the boundary-layer separation point, the upstream flowfield appeared to be fully turbulent and free 

of shock/boundary-layer interactions. 

Numerical simulations with the mean flow conditions listed in Table 2 for Spaid and Zukoski's 

[88] configuration were performed with both ZSGS turbulence model and numerical results of the 

surface static pressure distributions and experimental data are compared in Figures 17-20. 

The computational results of the two ZSGS models compare very well to the experimental 

data at the three lower pressure ratios. At pressure ratios of 8.743 and 17.117 (Figures 17 and 18 

respectively) the RSTM results are nearly identical to experimental results while the K - e results 

are within 10% of experimental data at any given location on the pressure curve. However, as with 

Aso et al.'s configuration, differences between the numerical results and experimental data increase 

as the pressure ratio increases. At a pressure ratio of 42.79 (Figure 19), both models begin to over 

predict the pressure in regions 2 and 3. At the pressure peak, computed results are in excess of 

76 



experimental data by 9% for RSTM and 18% for K - e. However, both models continue to have 

good agreement with experimental data in regions 4 and 5. At a pressure ratio of 63.5 (Figure 20), the 

accuracy of the predicted location for xsep begins to deteriorate and both models significantly over 

predict the pressure in regions 2 and 3. Furthermore, the numerical predictions downstream of the 

jet (regions 4 and 5) begin to differ from the experimental results. As with the lower pressure ratios, 

the RSTM predictions are in better agreement upstream of the jet with experimental values than the 

K — e predictions. However, in the flowfield regions downstream of the jet, K — e predictions are 

in better agreement with experimental values than are the RSTM predictions for both of the higher 

pressure ratios. 

As with the Aso et al. configuration, the ZSGS models predictions for xsep and h are in better 

agreement with the experimental data at the lower pressure ratios than they are at the higher pressure 

ratios and the trends exhibited by the models are summarized in Figure 21. At the three lower 

pressure ratios, the predicted and experimentally measured values for xsep are in good agreement, 

within 15% for both models. However, at the pressure ratio of 63.5, computed values of xsep are 

relatively poor; differences are within 24% for RSTM and 28% for K - e. Also reported in Figure 21 

are the plume heights predicted by the two models. The predictions are nearly identical; however, 

these results cannot be compared with experimental data, since Spaid and Zukoski do not report 

values for this parameter. 

Over the course of their experiments, Spaid and Zukoski [88] made the observation that 

boundary separation point occurs about four plume heights upstream of the slot. This phenomenon 

is also predicted by both ZSGS models for both the Spaid and Zukoski, and the Aso et al. 

configurations (Figure 22). Figure 22 is a plot of xsep versus h for the two ZSGS models for both 

configurations examined. Also shown in this figure are linear fits of the computational data at each 

of the four pressure ratios. Table 3 summarizes the slopes of these linear fits and shows that the 
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computational results are consistent with Spaid and Zukoski's observation. These results show that 

regardless of the configuration, the slopes predicted by RSTM were closer to four than the slopes 

predicted by the K — e model. 

Table 3. Slope of xsep/h linear fit 

Model Spaid and Zukoski    Aso et al. 
ZSGS RSTM 413 3.73 
ZSGS K-e 4.41 3.55 

6.2.3   Turbulence Data 

It is seen above that K-e models are generally satisfactory for the computation of surface 

pressure values. However, turbulent quantities are also of significant interest since they directly 

affect heat transfer rates and shear forces. Therefore, predicted values of selected flow variables and 

derived quantities from the ZSGS K - e model are now compared to those predicted by the ZSGS 

RSTM. Of the simulations discussed in the previous section, the best agreement with experimental 

data is obtained for the Spaid and Zukoski configuration with pinj/Voo = 17.117; therefore, this 

configuration is used as a basis for comparison between the ZSGS K — e model and the ZSGS 

RSTM. 

The analysis of the turbulence quantities begins with an evaluation of the law-of-the-wall 

predictions from the two models. In this analysis, predicted values of u+ and y+ are compared 

to theoretical values for the law-of-the-wall. This is followed by a discussion of cross-sectional 

Reynolds stress profiles in terms of characteristic flowfield structures. The streamwise stations 

shown in Figure 23 encompass flat-plate turbulent flow conditions upstream of the jet, vortex and 

shock/boundary-layer interactions upstream of the slot, and vortex/jet wake interactions downstream 

of the slot. Finally, a global characterization of the flowfield surrounding the slot is presented with 
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contour plots of the Reynolds stresses, z component of vorticity, uiz, and the ratio of K to E. 

6.2.3.1   Flat-Plate Validation 

All turbulence models simulating wall bounded flows must adhere to the law-of-the-wall 

when modeling a fully turbulent flow past a flat-plate [109]. The law-of-the-wall requires 

the nondimensional inner variables -u+and y+ equal each other in the linear sublayer. These 

nondimensional inner variables terms are defined in White [108] as 

v* V        vw \pw dy 

1/2 
(219) 

Between the laminar sublayer and the turbulent boundary-layer is the overlap region where transition 

between the inner and outer regions occurs. For low speed flows, the overlap region is modeled as 

u+ = -lny+ + B (220) 
K 

where K and B are near-universal constants for turbulent flow past smooth, impermeable walls. The 

currently accepted values for these terms are K = 0.41 and B = 5.0 [108]. 

Compressibility effects in the overlap region are accounted for with one of two methods. 

The first method, is the van Driest II coordinate transformation [101]. This transformation 

maps compressible flow data to the incompressible domain. The second method is White's 

compressibility correction formula [108]. This method performs the opposite transformation of 

van Driest II, i.e., it modifies the incompressible relations for compressibility effects. 

Law-of-the-wall validation of the ZSGS models are extensively documented by Zhang et 

al. [113] and Zhang, So, Speziale and Lai [114]. Additional validations of the ZSGS models, as 

implemented in the ISAAC algorithm, are reported by Morrison [55,56] and Morrison et al. [59]. 

Morrison performed his validations by comparing predicted values of u+ and y+ to theoretical 

values using van Driest II coordinate transformations. 

Morrison's findings are confirmed in this study by comparing the predicted values of u+ and 
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y+ to theoretical values using Spalding's buffer layer formula [89] and White's compressibility 

correction formula [108] for values of K = 0.41 and B - 5.0. In this comparison, data at a station 

upstream of the slot and prior to boundary-layer separation (x/l = 0.9000) are used. Predictions 

from both ZSGS models are within 6% of theory, thus both ZSGS models are considered valid for 

the limited range of flow conditions that correspond to flat-plate flowfields. 

6.2.3.2  Reynolds Stress Profiles 

Profiles of the two-dimensional Favre-averaged Reynolds stresses are presented in this section. 

These profiles show that the RSTM is generally more responsive than the K - e model to the rapid 

changes in velocity and pressure that occur at the interfaces of various flow structures. 

The first set of profile data examined is taken from station x/l = 0.9000. The flowfield at this 

station is fully turbulent flow past a flat-plate and the predicted values of rxy, shown in Figure 24, 

are nearly identical for both of the turbulence models. This is not surprising, since most turbulence 

models are designed to match rxy data in the flat-plate region of a flowfield. However, predicted 

values for TXX (Figure 25) and ryy (Figure 26) from the two models differ by more than 100% near 

the wall. In particular, the maximum predicted by RSTM for rxx has a greater magnitude than the 

maximum predicted by the K — e model, while the opposite is true of ryy at this station. While 

there is no particular significance as to which of the axial stresses is larger, it is significant to note 

that the values of rxx and ryy predicted by the RSTM differ by an order of magnitude from each 

other, where as the values predicted by K — e are nearly identical. It is easily shown with Eq. 53 

that the reason the axial Reynolds stresses computed with the K — e model are nearly identical is 

because the equations for each component differs only by du/dx and dv/dy,and in the flat-plate 

region, these derivatives are negligible. Contrary to the K - e model, the axial Reynolds stresses 

in the RSTM are based on the flow physics and not on any predefined relationships. The predicted 

values of the Reynolds stresses from the RSTM seen here are consistent with the results reported 
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by Morrison [56] and Morrison et al. [59] for flat-plate flows. 

The Reynolds stress profiles examined at x/l = 0.9700 differ significantly from those seen at 

the previous station. The profiles at this station are associated with the PUV (Figures 27 - 29) and 

the peaks in these stress profiles correspond to the interface between the PUV and the freestream 

flow. At this interface there is a sonic surface where the flow changes from supersonic to subsonic 

conditions as the wall is approached. While the Reynolds stress profiles predicted by the two 

models are qualitatively similar, there are significant quantitative differences within the vortices. 

The maximum predicted by RSTM for TXX is 18% greater than that predicted by the K - e model 

(Figure 28), while the maxima of rxy (Figure 27) and ryy (Figure 29) from If - e are 62% and 83% 

greater in magnitude, respectively, than those predicted by the RSTM. 

Additional complexities in the structure of the flowfield at station x/l = 0.9950 result in 

further changes in the stress profiles. The multiple extrema in the Reynolds stress profiles reported in 

Figures 30 - 32 are caused by changes in the velocity and pressure fields associated with the different 

flow structures. For example, the local maximum predicted by RSTM for rxy at y/l = 0.008 

(Figure 30) occurs at the interface of the SUV and the upper edge of the PUV (see Figure 7), while 

the minimum at y/l = 0.014 corresponds to the interface between the vortices and the freestream 

flow. The K — e model predicted minimal changes in the magnitude of the Reynolds stresses at 

the interface of the two vortices, while the RSTM predicted small, but noticeable, differences in 

Txy and Tyy (Figure 32) at this interface. As with the K - e model, the RSTM predicted only 

minimal changes in TXX (Figure 31) at the vortex interface and across the sonic surface interface, 

the Reynolds stress profiles exhibited behavior similar to that seen at the sonic surface at station 

x/l = 0.9700. 

The final set of profile data examined, x/l = 1.0125, shows there are significant differences 

between the behavior of the Reynolds stresses in the upstream vortices and the downstream vortices. 



At this station the data sample crosses three flow structure interfaces. These interfaces are between 

the upper portion of the jet wake and the freestream flow at y/l = 0.018, between the PDV the lower 

portion of the jet wake (downstream sonic surface) at y/l = 0.01 and between the PDV and SDV 

at y/l = 0.002. Data at the interface of the upper portion of the jet wake and the freestream flow is 

similar to the data seen in the previous figures of the stress profiles. That is, the stresses smoothly 

asymptote to zero. However, at the interface of the PDV and the lower portion of the jet wake, 

differences between the models are significant. There is a large extrema in the RSTM predictions 

for Txy (Figure 33) and TXX (Figure 34) near y/l = 0.01, while the K - e prediction for rxy is 

negligible and the K - e prediction for rxx is nearly 600% smaller than the RSTM prediction. Both 

models predict similar magnitudes for the extrema of ryy (Figure 35) near y/l = 0.01. However, the 

vertical distance over which the changes take place are significantly different. The magnitude of the 

RSTM prediction for ryy, quickly increases from approximately 0.02 to 0.16 between y/l station 

0.07 to 0.10 and then returns to 0.02 by y/l = 0.13. On the other hand, the K - e predictions 

start with ryy = 0.10 at y/l = 0.06 and increase to ryy = 0.13 at y/l = 0.10. This is only a 

116% increase over a distance of 0.04, as compared to the 700% increase in ryy in the RSTM over a 

distance of 0.3. All of the differences start to occur past the interface between the PDV and SDV at 

y/l = 0.002. Prior to crossing this location the predictions from both models are nearly identical. 

The cause of the large defences between the two models for the Reynolds stresses at the 

interface of the jet and the PDV is illustrated with Figure 36. The contour plot in this figure 

is the wall damping function, fWl. This damping function is used to determine when the 

anisotropic dissipation-rate model at the wall, Eq. 432, and the anisotropic velocity-pressure- 

gradient correlation model at the wall, Eq. 103, is active in the RSTM. When fW] is greater than 

zero, the models are active and the closer fWlis to unity, the stronger the effect of the models. In 

the current version of ISAAC, fWj is forced to zero when y+ > 250. This accounts for the choppy 
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edges of the contours as the freestream is approached. Also shown in this figure are streamtraces 

which roughly define the interfaces and a vertical line indicating the location of station 1.0125. 

The implications that anisotropic wall effects cause the large differences in magnitude of the 

Reynolds stresses and the response rate to flow changes should be clear. At the interface between 

the jet and the freestream, /„, is near zero and the stress profiles for both models should be, and 

are, similar to the profiles seen at previous stations when the freestream is entered. However, at 

every other point at this station, fWl > 0.5. Therefore, the anisotropic wall models are active in the 

RSTM model. These anisotropic models, along with the fact that the Reynolds stresses do not any 

predefined relationships to each other, are the most likely cause of the differences in the predictions 

from the two models. 

It is emphasized again that the velocity-pressure-gradient correlation, Uij, is not modeled at 

all in the K - e formulation and that isotropic turbulence dissipation rates are assumed in the K - e 

model. As a result, the turbulence dissipation-rate tensor is modeled as e^- = §e<5jy in the K — e 

formulation. These two limitations cause the K — e model to respond slowly or not at all to flow 

conditions that excite the velocity pressure-gradient correlation tensor and the anisotropic behavior 

Of €{j. 

Based on the data provided in the turbulence profiles several observations can be made. First, 

outside the recirculation zones and in regions of the flow where the velocity and pressure gradients 

are small, the two models predict similar values for the Reynolds stresses. However, in regions 

where the velocity and pressure gradients are not small, i.e., across shocks and wake/freestream 

interfaces, the models predict significantly different values for the Reynolds stresses. The large 

disparities in peak values of the Reynolds stresses at y/l = 0.010 at station 1.0125 are attributed to 

isotropic turbulence assumptions and the lack of the second-order term ITy in the turbulent kinetic 

energy equation of the K — e model. 
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6.2.3.3  Flowfield Contours 

The profiles presented in the previous section reflect many important details of injection 

flowfields, but they are only localized descriptions of isolated points. The contour plots seen in 

Figures 37 - 40 provide a global characterization of how the Reynolds stresses are effected by 

flowfield changes around the slot. These contour plots encompass a region around the slot extending 

upstream to a station near the boundary-layer separation point and downstream to a station near the 

boundary-layer reattachment point. In these contour plots the slot is centered about x/l = 1.0 and 

particle streamtraces are superimposed on the contour plots and provide visual references for the 

location of the recirculation zones and the injectant plume. 

Immediately seen in the results for rxy (Figure 37) are the different magnitudes in the two 

model's predictions for the Reynolds stress downstream of the slot and the discontinuous distribution 

in the K - e model predictions at x/l = 0.994 for the Reynolds stress. 

The differences in the magnitudes are readily attributed to the anisotropic behavior of TUj and 

€ij. In the previous section, it was seen in Figure 36 that the anisotropic models were active over 

most of the flowfield immediately behind the slot. Furthermore, comparison of the contours of fWl in 

Figure 36 to the RSTM contours for rxy, show the changes in Reynolds stress follow the changes 

in fWl. Whereas, the Reynolds stresses in the K — e results are computed from the Boussinesq 

approximation and does not account for anisotropic behavior. 

The discontinuity in the Reynolds stresses is a non-physical phenomena and is caused by the 

eddy viscosity model used in the Boussinesq approximation. The discontinuity can be traced through 

the Boussinesq approximation to the wall damping function, /^ (Eq. 54), which is part of Eq. 37 

and is used to compute the turbulent eddy viscosity, fit. For wall-bounded flows, fß is required 

to maintain asymptotic consistency of the K and e equations as the solid surface is approached. 

For flat-plate, attached boundary-layer flows, fß is formulated such that it approaches unity as 
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y —> 6, where 6 is the boundary-layer thickness. The rate at which fß —» 1 is largely governed 

by the magnitude of the viscous shear stress at the wall which is defined as, TW = Jl dü/dy\y=0. 

The nondimensional form of TW is normally somewhat larger than unity at the plate surface and 

generally, the larger dü/dy\y=0 is, the faster fß —> las y —>• 6. However, for recirculating flows and 

stagnation fields, there are points on the plate surface where du/dy\y=0 « 0. In the neighborhood 

of these points, du/dy\y=0 < 1, implying locally that T„,«1 and causing fß to approach unity 

much slower than it would for a flat-plate boundary-layer. Thus, the damping needed to preserve 

asymptotic consistency of the K and e equations, adversely affects computations far away from the 

wall. The effect is felt away from the wall because the value computed for TW at any axial station 

is used to compute /^ at every node normal to the axial station. In this flowfield, the result is a 

discontinuous distribution of the Reynolds stress at x/l = 0.994 in the K — e model. 

The severity of the discontinuous behavior is determined by the proximity of the separation 

and stagnation point to a grid node and the size of the region where dü/dy\y=0 « 0. As an example, 

consider the differences shown in Figure 38 for grid spacing near x/l = 0.915 and x/l = 0.994 

and the size of the region where dü/dy\y=0 « 0. At both of these axial stations du/dy\y=0 « 0. 

However, the likelihood of the zero condition being coincident with one or more of the nodes is 

much greater at x/l = 0.994 than it is at x/l = 0.915. This is because the spacing is finer at 

x/l = 0.994 than it is at x/l = 0.915 and the region were dü/dy\y=0 ~ 0 is larger at x/l = 0.994 

than it is at x/l = 0.915 

Similar stagnation conditions are present in the flowfield predicted by the RSTM, however, 

the discontinuity in the rxy is not seen since the RSTM does not use the eddy viscosity model to 

compute the Reynolds stress. In the RSTM the Reynolds stresses are treated as conserved variables 

and their predicted values are arrived at just like any other mean flow variable. 

The same discontinuity seen in the K — e results for rxy is also present in the contour plots for 
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Tyy and TXX (Figures 39 and 40 respectively). However, in the plots of ryy and TXX, the discontinuity 

it is not as prominent a feature. The reason for the difference in the severity is clear when the 

expanded forms of Eq. 53 are examined. For TXX, ryy and rxy, the expanded forms are 

rxy = -^ + ¥) (221) 

1 XX         r,1V 

3 p 

Tyy - gA       p 

p  \dy     dxt 

Fiii       F)in\ 
(222) 

du     2 f du     dv     dw 
dx     3 I dx     dy      dz 

ndv     2 f du     dv     dw 
2 1 1  

dy     3 \dx     dy      dz 
(223) 

It was seen in Section 4.2.1 that K is of O (y2), whereas (/it//>) (dui/dxi) is of O (y3). Thus, the 

K — e predictions for ryy and TXX are dominated by K and \xt has only a higher order influence 

on the results. Of course, none of this has any bearing on the RSTM predictions for ryy and rxx 

since, these terms are also modeled as conserved variables and are not subject to the Boussinesq 

approximation. 

The effects of anisotropic behavior are also seen in the contour plots for ryy and TXX. In 

Figure 40, the RSTM predictions for the stress behind the jet is significantly larger than the K — e 

predictions. Again comparison to Figure 36 shows that this region of increased Reynolds stress 

coincides with changes in the contours of fWl. 

6.2.3.4   Vorticity 

It is reasonable to expect the discontinuity seen in the Reynolds stress contours to have an 

influence on other flow variables since the turbulence model equations and the mean flow equations 

are strongly coupled through the equation-of-state. This conjecture is verified in Figure 41, which 

shows a contour plot of uz, where uz = du/dy — dv/dx. From this plot, it is clear that the 

eddy viscosity model degrades the smoothness of the mean flow variables as well as the Reynolds 

stresses. Although not shown here, the vortical anomaly at x/l = 0.994 is also found for each of 
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the conserved mean flow variables computed with the K — e model. 

6.2.3.5   Total Energy 

Often when a laminar Navier-Stokes solver is modified to include a turbulence model, the 

contribution of K to the total energy term, E, is neglected. Huang and Coakley [32] did a 

comparative study with a hypersonic cylinder flare to determine the effects of neglecting K in 

the expression for E. Their results showed a decrease of 9% in peak surface pressure when K is 

accounted for in the total energy term. 

Results from the current study of a TJISF are similar to Huang and Coakley's. Rizzetta's 

numerical simulation of Aso et al.'s configuration with the Jones-Launder K — e model, was 

performed without K contributing to E [65], whereas the current simulation with the ZSGS K - e 

model accounts for K's contribution. Returning to the pressure profiles reported in Figures 11-14, 

it is seen that the ZSGS K — e model predicts a lower peak surface pressure than that predicted with 

the Jones-Launder K — e model. Some insight as to why the peak surface pressure is different for 

the two sets of computational results is provided by Figure 42. This figure shows that in the regions 

just upstream and downstream of the jet, K accounts for as much as 12% of E. 

6.2.4   Summary of Sonic Injection Results 

A comparative study was completed in order to evaluate the relative performance of the 

ZSGS second-order RSTM, the ZSGS K - e model and the Jones-Launder K - e models for 

shock/boundary-layer interactions resulting from TJISF at the surface of a flat-plate. A mesh step- 

size study summarized in Appendix F indicated the adequacy of numerical resolution for the present 

application. Eight cases were examined, comprising two different experimental configurations and 

four different pressure ratios for each configuration. 

Surface static pressure distributions computed with the ZSGS RSTM and the ZSGS K — e 

model for the Spaid and Zukoski [88] configuration compared very well for the three lowest pressure 
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ratios examined. Furthermore, good agreement was observed between the computed separation 

length and the experimentally obtained values. Only at the largest pressure ratio did the ZSGS 

models predict results significantly different from the experimental data. 

This disparity may have been caused by poor modeling of the turbulent properties at the slot 

exit or as a result of turbulence model limitations for the overall flowfield at higher pressure ratios. 

Furthermore, the simple boundary conditions presented in Section E.3.1 may remain physically 

realistic only when conditions at the slot exit impact a small domain in the immediate vicinity of 

the nozzle. For sufficiently large pressure ratios, this situation does not exist. 

Taken as a whole, the surface static pressure distributions computed with all three of the 

turbulence models for the Aso et al. [6] configuration were of marginal quality. In light of the 

excellent agreement seen with the Spaid and Zukoski configuration, the poor agreement with the 

Aso et al. data, was likely due to three-dimensional effects and leading-edge bluntness, devaluing 

this data set for turbulence model validation. 

Additional evaluation of the turbulence profiles computed for the Spaid and Zukoski 

configuration indicated that both ZSGS models satisfied the law-of-the-wall for flat-plate flows. 

Furthermore, it was seen that away from flow structure interfaces the two models predicted similar 

values for the Reynolds stresses. However, the models predicted significantly different values for the 

Reynolds stresses in the vicinity of shocks and flow structure interfaces, particularly at interfaces 

where there were rapid changes in pressure and flow direction. The latter disparity was a result 

of the K - e formulation not modeling the second-order pressure-velocity-gradient term and the 

restriction to isotropic turbulence dissipation rates. 

The non-physical behavior seen in the contour plots of nj and uz highlight the deficiencies of 

the eddy viscosity model used in the K - e formulation. This non-physical behavior in the presence 

of recirculating flows and at stagnation zones discredits this model's validity for TJISF simulation. 



On the other hand, the continuous physically consistent results of the RSTM warrant continued 

research to determine the validity of the ZSGS RSTM. 

Finally, it was shown that K accounts for as much as 12% of E in regions with significant 

shock/boundary-layer interaction. 

6.3 Supersonic Injection Configuration 

The second part of the two-dimensional investigation validates the ZSGS RSTM for the 

supersonic TJISF configuration used by Tucker [100]. This is accomplished by simulating 

numerically Tucker's experiments with the ZSGS RSTM and ZSGS K - e models and then 

comparing the numerically predicted values to experimental data. As an ongoing part of the 

validation, analyses of the effects the boundary layer thickness, 8, has on xsep and the effect 8 

has on the 4:1 ratio of xsep h are performed. An analysis of the shock structure within the plume 

with respect to the effective back pressure, pbeff, is also presented in Section 6.3.3. Comparisons of 

numerical predictions of rxy for heated and cooled injection to experimental data are discussed in 

Section 6.3.4 along with an analysis of the numerical predictions for the near-field Reynolds stress 

and K from both turbulence models. 

Tucker experimentally investigated the mean flow and turbulent flow structure associated with 

normal injection of a supersonic fluid into a supersonic core flow. The mean flow conditions of the 

tunnel and injector are listed in Tables 5 and 6. In the cooled injection experiments, Tucker used an 

adiabatic wall and in the heated injection experiments, the wall temperature, Tw, was held constant 

at 328 K. 

Tucker's experiments were conducted in the AFIT Mach 3.0 wind tunnel, which consists of 

a rectangular, 33cm long test section with cross sectional dimensions of 6.35 x 6.35cm (see Figure 

43). A schematic of the converging-diverging injection nozzle used by Tucker is shown in Figure 

45 [100]. The nozzle had a slot length of 4.45cm; a throat width, A*, of 0.159cm and an exit width, 
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AE, of 0.198cm. The ratio of exit area to throat area, AE/A*, was 1.25 and resulted in injection 

at Mach 1.6. This nozzle was centered in the upper surface of the test section creating a gap of 

0.95cm on either side of the nozzle between it and the wall. Tucker verified the two dimensionality 

of the flowfield by examining Mach contours for the cooled injectant case at locations 5.09cm and 

13.04cm downstream of the nozzle [100] (all distances are measured from the centerline of the slot, 

see Figure 44). 

Experimental data was collected at x/l = 11.4 (I = lcm) with multiple overheat cross-film 

anemometry for the turbulence variables and Pitot static probes for the mean flow variables. Shadow 

graph and schlieren photography was also used to visualize the two-dimensional shock structure of 

the flowfield. 

6.3.1   Boundary Conditions and Computational Grid 

All simulation results discussed in this section satisfy the boundary conditions listed in Table 4. 

A velocity profile with 6 = 0.5cm was used for the inflow plane. The 8 used for this simulation was 

the 8 on the wind tunnel wall opposite the nozzle (see Figure 43). The inflow profile was generated 

by performing a flat-plate simulation with the inflow conditions given in Table 5. Mean flow and 

turbulent data at the outflow plane of the simulation at the station where 6 = 0.5cm was used as 

the inflow profile for the injection simulations. The parameters listed in Table 6 were used as the 

inflow conditions for the injectant. The implementation method of the other boundary conditions 

are presented in Section E.3.1. 

The computational grid used in this part of the two-dimensional analysis, its dimensions and the 

grid resolution study performed to arrive at the current grid configuration, are presented in Section 

F.2.2 . The grid used in this simulation has the cells swept back to provide better definition of the 

jet induced shocks. 
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Table 4. Two-dimensional supersonic injection boundary conditions 

Plane Condition 
Inflow Inflow profile 

Outflow Extrapolation 
Left side Extrapolation 

Right side Extrapolation 
Top Tangency 

Bottom Wall 
Jet Two-dimensional jet, 3 cells 

Table 5. Two-dimensional supersonic injection freestream mean flow conditions [100] 

Parameter Cooled injection Heated injection 
M 2.9 ± 0.03 2.9 ± 0.03 

Ptoo 203.9 ± 2.8 kPa 201.8 ± 2.8 kPa 
Ttx 295.0 ± 0.25 K 293.0 ± 0.25 K 

ft=o 
2.41 ± 0.03 kg/m3 2.40 ± 0.03 kg/m3 

Poo 6.45 ± 0.09 kPa 6.39 ± 0.09 kPa 
J-oo 110.3 ± 0.08 K 109.3 ± 0.08 K 

Poo 0.204 ± 0.003 kg/m3 0.204 ± 0.003 kg/m3 

Uoo 610 ±5.0 m/s 608 ± 5.0 m/s 

^oo 210 m/s 209 m/s 
Re/m 16.2 x 106 16.2 x 106 

J-w adiabatic 328 K 

Table 6. Two-dimensional supersonic injector mean flow conditions [100] 

Parameter Cooled injection Heated injection 
M 1.6 1.6 

Pt   • 61±0.7kPa 64.9±1.38 kPa 
rp 273±0.5 K 329±2.0 K 

Ptinj 0.78±0.01 kg/m3 0.69±0.019 kg/m3 

Pinj 14.4±0.11kPa 15.3±0.29 kPa 
J-inj 18Ü0.25K 217Ü.9K 

0 m/s 
161 m/s 

0 m/s 
176 m/s 

Pinj 

0 m/s 
0.277±0.002 kg/m3 

0 m/s 
0.245±0.007 kg/m3 
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6.3.2   Shock Structure and Mean Flow Analysis 

The experimentally measured shock structure of Tucker's supersonic TJISF for heated injection 

is shown in Figure 46 [100]. In this figure, Tucker reports the angles of the separation and 

recompression shocks, and the location of the hot-film data collection region relative to the slot. By 

extending the lines of the separation and recompression shocks, Tucker also identified the location 

of the boundary-layer separation point as 2.0cm upstream of the slot and the reattachment point 

as 0.7cm downstream of the slot. Visualizations of the numerically predicted shock structure from 

the K - e model and the RSTM are seen in Figure 47. In these contour plots the separation and 

recompression shock locations are identified and the angle of the shocks given. 

The predictions from both turbulence models for the location of the recompression shock and 

its angle are nearly identical to Tucker's measurements. Furthermore, predictions from both models 

for the separation shock angle are similar (31.2° for RSTM, 30.7° for K - e), each of which are 

within 16% of Tucker's value of 27.5°. However, the prediction for xsep is significantly different 

from that seen in the experimental data. Predictions for xsep from both models occur at x/l = —3.2, 

or 60% further upstream of x/l = -2.0 as reported by Tucker. The discrepancy in xsep is caused by 

improper inflow boundary-layer matching. Subsequent simulations of this configuration without 

an initial 8, predicts xsep at x/l = —1.7, which is 15% further downstream of the experimentally 

measured value. Clearly, implying the cause and effect inflow 8 profiles have on xsep. 

This discrepancy indicates that using the 8 from the lower wall is not a proper method for inflow 

boundary-layer modeling if a half-angle nozzle (Figure 43) is used to accelerate the inflow air. The 

asymmetric surface curvature of the half-angle nozzle has a more favorable pressure gradient on the 

upper surface than on the lower surface [4]. This results in a thinner 8 on the upper surface than the 

lower surface [75]. 

The discrepancy in xsep and 8 does not have an impact on h for this configuration. Tucker 
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reported h = 0Ä for his heated injection case; the predicted value of h from the models is 0.42 for 

K - e and 0.45 for RSTM (Figure 48). However, the 8 discrepancy does impact the 4:1 correlation 

between xsep and h reported by Spaid and Zukoski [88] and corroborated in Section 6.3. Based on 

the values of xsep and h reported from the models, the ratio is 7.6 for K - e and 7.1 for RSTM. The 

ratio of the experimentally measured values of xsep and h, is 5.0 This is only a 25% larger than the 

expected 4:1 ratio as compared to 90% for K - e and 77.5% for RSTM. 

Based on the numerical and experimental data discussed above, it is concluded that the inflow 

8 only has a significant impact on the recirculation zone upstream of the jet. It does not affect 

the value for h or the shocks and reattachment points downstream of the slot. Furthermore, it is 

concluded that Spaid and Zukoski's 4:1 correlation for xsep and h is not valid for an arbitrary S. 

6.3.3   Plume Structure 

An analysis of the plume shock structure for Tucker's heated injection configuration and the 

effects the shocks have on total pressure, pt, loss for three different pressure ratios are discussed in 

this section. Minimal pt losses are associated with efficient combustion and thrust development in 

SCRAMjet engines [60] and as noted in Section 6.1.2, a structureless plume minimizes pt losses. 

However, a structureless plume in a TJISF is not possible, since the back pressure, pb, on either side 

of the plume is different. Therefore, the best that can be achieved is a plume with minimal shock 

structure [76]. 

The pressure contours in the plume for Tucker's heated injection configuration (Figure 49) 

clearly show the distinctive diamond shock pattern associated with an overexpanded jet [28]. The 

diamond shock pattern is also easily seen in the Mach contours (Figure 48) and corroborates 

the observation from the pressure contours that the jet is overexpanded. Further evidence of 

overexpansion is found in the schlieren photograph shown in Figure 50 [100]. Close examination 

of the injectant plume in the schlieren also reveals the diamond shock pattern in the experimental 
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results. Further examination of the shock pattern surrounding the plume in Figure 50, indicates the 

absence of a Mach disk at the end of the plume. This observation is also seen in the numerical results 

in Figure 48. Although the Mach disk does not form, there is a concentration of the Mach contours 

near the top of the plume in Figure 48. This structure is henceforth denoted as the shock disk. 

In the absence of a Mach disk, the pt loss of the injectant should be small. For the pressure 

ratio, Pinj/poo = 2.25, pt within the plume, just prior to the shock disk, is 58kPa and pt across the 

shock disk is 53kPa (an 8% loss in pt). 

It should be clear from the Mach contours in Figure 16, which was discussed in Section 

6.2.2, that the larger the pressure ratio, the larger the Mach disk and the deeper the penetration 

of the injectant into the core flow. Thus, it should be expected that a trade off between injectant 

penetration and pt losses is required with larger pressure ratios. This supposition is verified by 

numerical simulation with the RSTM fatpmj/poo = 5 mdpinj/poo = 10 and the results of these 

computations are shown in Figure 51. The results for Pinj/Poo = 5 are shown in upper set of 

contours and pinj/Poo = 10 are seen in the lower set. In these contours, subsonic flow is masked 

to emphasize the region where the Mach disk forms. 

An underexpanded jet results when pinj/Poo = 5 and all other inflow properties are held 

constant. Underexpansion is indicated by an absence of the diamond shock pattern in the plume and 

the upstream turning of the injectant leaving the upstream side of the nozzle. Although the jet is 

underexpanded, this pressure ratio is not sufficiently large to form a Mach disk. Deeper penetration 

of the fluid into the core does result from the higher initial pressure of the jet, 0.7cm as compared 

to 0.4cm for pinj/poo = 2.25 (a 75% increase in fluid penetration into the core flow). However, 

the larger pressure ratio results in much larger pt losses. Total pressure within the plume prior to the 

shock is 134kPa, but pt across the shock is 40kPa (a 70% loss in pt). 

Even deeper injectant penetration is realized when pinj/poo = 10.  Jet penetration at this 
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pressure ratio is 1.2cm as compared to 0.4cm for Pinj/poo = 2.25 (a 200% increase in injectant 

penetration). A Mach disk does form at this pressure ratio and pt losses are even larger. Prior to the 

shock, the total pressure within the plume is 268kPa but across the shock, pt has decrease to 27kPa 

(a 90% loss in pt). 

Clearly in terms ofpt loss, an underexpanded jet is undesirable and one that is underexpanded 

so much that a Mach disk forms is even less desirable. However, the increase in mixing and 

combustion efficiency gained by the deeper penetration of the injectant into the inflow may outweigh 

the pt losses. 

6.3.4   Turbulence Data 

In Section 6.2.3 the lack of experimental turbulence data limited the analysis of the Reynolds 

stresses to a comparison of numerical results from the two models. However, validation with 

experimental data, as well as a qualitative and quantitative analysis is possible for Tucker's 

configuration, because rxy data was collected for cooled and heated injection at x/l = 11.4. 

A comparison of rxy profiles from the numerical results to the experimental data at x/l = 11.4 

is the first part of the overall analysis of the turbulence predictions. The profile analysis is 

followed by an evaluation of the Reynolds stress contours in the recirculation zones surrounding 

the slot injector. The analysis of two-dimensional injection is concluded with an evaluation of the 

contribution K has to E in Tucker's configuration. 

The data presented in Sections 6.3.2 and 6.3.3 have the y/l axis inverted to allow easy visual 

comparisons with Tucker's experimental data and schlieren photographs. However, the conventional 

plotting of the y/l axis is resumed in this section to facilitate contrast and comparison with the 

contours from Section 6.2.3. 

6.3.4.1   Reynolds Stress Profiles 

Profiles from both models for rxy are qualitatively similar in shape to the experimentally 
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measured data for both of the injection configurations. These comparisons are shown in Figures 

52 and 53 along with a ninth-order polynomial fit of the experimental data. The numerical data in 

each of these figures is shifted by 1.3mm in the y direction and 2.5mm in the x direction to account 

for the positioning error of the probe as detailed by Tucker [100]. 

The similarity of the RSTM and K - e model profiles to each other is consistent with 

observations made in Section 6.2.3. In that section it was seen that predictions from both models 

were similar in flow regions where velocity and pressure gradients were small. A similar flow 

situation is seen at x/l = 11.4 in the Mach contours shown in Figure 47. At x/l = 11.4 , the 

change in the velocity proceeds through a smooth transition from the turbulent boundary-layer to 

local freestream conditions. 

The similarity of the numerical results to the experimental data for cooled injection is easily 

seen in the plots. Quantitative evaluation of the data, between y/l = 0.4 and y/l = 0.6 in Figure 

52, show that the RSTM correctly predicted the experimentally measured values of rxy to within 

1% of the experimental data, while predictions from K - e are in error by at least 19% in this region. 

Predictions from both models are significantly less accurate in the range between y/l = 0.6 and 

y/l = 1.2. Over this part of the boundary-layer, predictions from RSTM are in error from 16% 

to 36% of the experimentally measured values, while predictions from K - e have errors between 

25% to 38% of the experimentally measured values. Beyond y/l = 1.2, predictions from both 

models asymptote to zero. In general, the RSTM predictions for cooled injection are closer to the 

experimental data than the K - e prediction. 

While not as obvious as it is for cooled injection, the similarity of the numerical results and the 

experimental data is present in the simulations for y/l > 0.6. Above y/l = 0.6, the general shape 

of the experimental data and numerical results compare well but, the magnitudes are significantly 

less accurate than they are for cooled injection. Between y/l = 0.4 and y/l = 1.0, the error in 
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the predictions for the RSTM ranged from 36% to 68%, while predictions from K - e have errors 

ranging from 71% to 85%. As with the cooled injection case, predictions from both models beyond 

y/l = 1.0 asymptote to zero. 

The cause of the poor comparison below y/l = 0.6 is not readily apparent, however, it is 

likely that any one or combinations of the following factors account for the poor agreement with the 

data: 1) inflow conditions were at the extremes of the mean values reported in Tables 5 and 6; 2) 

inaccurate modeling of inflow 6; 3) three-dimensional effects unaccounted for in the simulations; 

4) inaccurate initial conditions for the turbulence variables over the slot exit; or 5) the model is not 

valid for a non-adiabatic wall. 

6.3.4.2  Flowfield Contours 

As in Section 6.2.3.3, a global characterization of the behavior of the Reynolds stresses around 

the nozzle is presented here. The contour plots of the Reynolds stresses discussed in this section 

encompass most of the recirculation region around the slot for Tucker's cooled injection case. The 

cooled injection results are used for this analysis because the turbulence models had better agreement 

with the data for this configuration. Particle streamtraces defining the upper and lower limits of 

the injectant penetration are superimposed over the contour plots. A particle path of the injectant 

leaving from the center of the slot is also shown. As with the contours seen in Section 6.2.3.3, there 

are two significant differences between the model results of this simulation. First is the non-physical 

discontinuities in the K - e predictions for rxy. Second is the difference in magnitude between the 

two models for TXX and ryy. 

The discontinuities seen in Figure 54 are more frequent in the current simulation than they 

are in the sonic injection simulations. Also, in the current simulation, the discontinuities are swept 

back, downstream of their initial location at the test section surface. Both of these differences are 

tied more directly to differences in the grid spacing rather than differences in the flowfield structure. 
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A comparison of the grids used for the sonic simulations and the supersonic simulations is shown 

in Figure 56. Shown in these figures is a 2.0cm length of the grid around the slot. Both grids are 

scaled so that the dimensional distances shown are identical. The cells in the grid used for the sonic 

injection simulations are at right angles to each other. In contrast, the cells of grid used for the 

supersonic simulations are not at right angles, but they are orthogonal to each other. Furthermore, 

the spacing of the cells behind the slot is finer in the grid used for the supersonic simulations than 

the spacing in the grid used for the sonic simulations. 

The increased frequency of the discontinuities in the current simulation is a result of the finer 

spacing behind the slot. It was seen in Section 6.2.3.3 that the discontinuous behavior of the 

Reynolds stresses in the K - e model predictions were a result of the Boussinesq approximation and 

the eddy viscosity, fit. It was also shown that the discontinuities occurred when du/dy\y=0 « 0, 

thus y+ pa 0 in the neighborhood of more than one cell. 

The increased number of locations where spikes in y+ occur is seen in Figure 55. Here again, 

both models exhibit these spikes, however, the non-physical behavior in rxy is only seen in the K—e 

model results. This is because the Reynolds stresses are modeled as conservative variables in the 

RSTM and does not rely upon the Boussinesq approximation and eddy viscosity formulations. 

The swept back appearance of the discontinuities and the spikes in y+ are caused by the method 

used to evaluate y+ away from the surface. The definition of y+ is given in Eq. 56 as 

y+ = 1 Jjjl (224) 
vy Pw 

and every value of y+ evaluated at a given location of y should be computed with the rw evaluated 

at the surface normal to y. Thus, the spikes in y+seen in Figure 55 should be vertical, not swept 

back. However, in ISAAC, y+ is evaluated along lines of constant indices. In other words, what 

ever value of Tw/pw computed at a streamwise index, is the value used along the line of constant 

index, regardless of how its streamwise coordinate changes. Thus, a value computed for rw/pw at 



x/l = 0.20 might be used to compute y+ for a y/l location which is not normal to x/l = 0.20. 

In addition to the discontinuities, the turbulence models predicted different magnitudes for 

Tyy and TXX in the recirculation region downstream of the slot and upstream of the slot where 

the jet plume is turned by the inflow. The predicted differences in magnitude of ryy (Figure 57) 

downstream of the slot is consistent with the predictions from the underexpanded sonic injection 

simulation (Figure 39). That is K — e predicted larger magnitudes for ryy than RSTM. However, 

there is an absence of ryy in the RSTM predictions just downstream of the slot which is inconsistent 

with the underexpanded sonic injection predictions. Further discussion of this inconsistency is 

presented later in this section. 

Upstream of the slot, where the plume is turning downstream, the RSTM predictions for 

Tyy in the current overexpanded simulation are reversed from those seen in Figure 39 for the 

underexpanded injection. In Figure 57 the RSTM predictions are larger than the K — e predictions. 

The reversal in magnitude is likely a result of the models responding differently to overexpanded 

and underexpanded f lowfields. The underexpanded flowfield requires more turning of the upstream 

side of the plume than the overexpanded jet in the current simulation. The added turning results in 

larger values of K, thus larger values of ryy in the K — e predictions (see Eq. 53). 

As with Tyy, TXX predictions from the models are consistent with the sonic simulations in part 

of the flowfield and inconsistent in other parts. Consistent predictions are observed between the 

two models and the configurations where the inflow turns the jet plume (Figures 40 and 58). In 

both configurations, the predictions from RSTM are larger than the K — e predictions. Downstream 

of the slot, the predictions from the K — e model are also consistent with the predictions from the 

underexpanded simulation. However, the RSTM predictions are not consistent with the predictions 

from the underexpanded simulation. 

A significant difference between the RSTM predictions for TXX is seen in the figures for the two 
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configurations. In Figure 58, the RSTM predicted values for TXX are negligible immediately behind 

the jet. In Figure 40,TXX is at a maximum in the region behind the jet. Although underexpanded 

injection does not cause as much initial turning of the plume on the downstream side of the jet, there 

is significant turning at the top of the plume. This downstream turning should result in a marked 

increased of turbulent stress in one of the axial Reynolds stresses, but both rxx and Tyy are near 

zero at these locations. 

Inspection of contours for the anisotropic wall damping function, fWl, reveals the cause of the 

inconsistency and once again, it is y+ and the sweep of the grid. In the ISAAC algorithm, fWl for 

the ZSGS RSTM is implemented as shown here 

,    _ J   exp 
JWi   — (fö)    */ 2>+<25° (225) 

0 if   y+ > 250 

where 0 
K Ret = — 
ue 

The computed values of fWl as it is currently implemented are shown in the upper set of contours 

in Figure 59. The lower set of contours show the values of fWl without y+ clipping. Clearly, a 

significant part of the recirculation region where fWl is non-zero is truncated by the step function 

in Eq. 225. The inappropriate truncation of fWl is caused by evaluating y+ with TW values which 
i 

are not at the streamwise location normal to the current y/l location. 

There are several methods by which the current discrepancy caused by the truncation can be 

corrected. The first is to use a grid with cells at right angles to each other. While this is not difficult 

to implement in this application, more complex geometries may not lend themselves to this luxury. 

A second method is to raise the threshold where truncation occurs. This also limits the flexibility of 

the algorithm and the model. For this particular simulation, y+ > 1000 would have sufficed to limit 

truncation to most of the flow outside of the recirculation zone, but this value may be inappropriate 
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for other applications or other parts of this f lowfield. Also, increasing the threshold will not correct 

the problem at locations normal to the nozzle exit. Over the exit, y+ is infinite because there is not 

a solid surface where rw can be computed. Thus, all of the flowfield above the slot is treated as 

isotropic regardless of the flow conditions in the flowfield. It is clearly seen in the farfield data of 

the lower set of contours that some form of truncation is needed. In the farfield, /„, asymptotes to 

unity, thus, clipping can not be turned off altogether. The best solution is development of a damping 

function which does not depend upon y+ and asymptotes to zero outside the boundary-layer. Until 

such a function is developed, the ISAAC algorithm should be modified so that y+ is evaluated 

correctly. 

6.3.4.3   Total Energy 

The fraction of E comprised by K is also evaluated for the current underexpanded 

configuration. As with the overexpanded injection cases, the largest ratios of K/E are in the 

recirculation zone behind the slot and upstream of the slot where the plume is turning (Figure 60). In 

these regions, K accounts for as much as 8% of E. In both models, the largest fraction is coincident 

with the recompression shock behind the jet and the lambda shock formed above the jet plume where 

the boundary-layer separation and jet induced shocks intersect. 

6.3.5   Summary of Supersonic Injection Results 

A comparative study was conducted in order to evaluate the relative performance of the 

ZSGS second-order Reynolds stress and the ZSGS K - e turbulence models for shock/boundary- 

layer interactions resulting from supersonic TJISF through the surface of a flat-plate. A mesh 

sensitivity study summarized in Appendix F indicated the adequacy of grid resolution for the 

present application. Two different injectant temperatures were simulated numerically and compared 

to experimental data collected by Tucker [100]. Two additional pressure ratios for the heated 

injection configuration were also examined to asses the effects different values of pinj/Poo had 
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on the formation of the Mach disk and pt losses in the jet plume. 

Mach contours and shock structure predictions from both turbulence models were generally 

found to compare well with experimental results. The only significant discrepancy was the predicted 

location of xsep. This discrepancy was shown to be the result of incorrect modeling of the inflow 

boundary-layer thickness. 

It was found through variation of the injectant pressure that a Mach disk formed at a pressure 

ratio between pinj/poo = 5 andjHnj/poo = 10. Corresponding to the increase of injectant pressure, 

the shock structure of the plume became more defined and when pinj/poo = 10, the total pressure 

loss across the shock was 90% of pt prior to crossing the shock. This was a significant increase in pt 

losses from the 8% loss seen when pinj/Poo = 2.25 and the plume had a less defined shock structure. 

While pressure losses were large forpinj/poo = 10, at this pressure ratio injectant penetration into 

the inflow was 200% deeper that the penetration was for pinj/Poo = 2.25. Clearly, in terms of 

pt losses, the higher pressure ratio was less desirable than the lower pressure ratio. However, the 

increase in mixing and combustion efficiency gained by the deeper penetration of the injectant into 

the inflow may outweigh the total pressure losses. 

Profiles of rxy predicted by the two turbulence models compared well to the experimental 

data available. The general shape of the computed profiles for rxy agreed with the experimental 

data for both injectant temperature configurations. Errors in magnitude were noted for both models, 

however the predictions of the RSTM were significantly better than those predicted by the K - e 

model. 

Non-physical predictions by the K - e model and some inconsistencies in the RSTM were 

identified in the comparisons of contour plots for the Reynolds stress, y+and fWl. It was shown 

that the K - e model predicted non-physical discontinuities in the Reynolds stresses when TW was 

approximately zero over more than one cell. This caused y+ to remain inappropriately small outside 
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the boundary-layer. The inconsistencies seen in the RSTM were caused by incorrect computation of 

y+. The current computational method for y+ in the ISAAC algorithm did not insure the value used 

for TW was at the streamwise location normal to the vertical location of y for which y+ was being 

computed. This oversight resulted in incorrect values for of the anisotropic wall damping function, 

fWl, which caused incorrect application of the anisotropic dissipation rate and pressure-velocity- 

gradient correlation models in the recirculation region behind the slot. 

Finally, it was shown that K accounts for as much as 8% of E in regions with significant 

shock/boundary-layer interaction. 
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Chapter 7 - Three-Dimensional Results and Analysis 

7.1  Introduction 

The primary objective of the second phase of research is validation of the second-order ZSGS 

RSTM for three-dimensional supersonic injection at a 25° angle. Once the model is validated, 

numerical simulations with the RSTM are used to investigate aspects of the f lowfield not readily 

visible with conventional data collection methods. 

This chapter is divided into four sections in which the results of this investigation are presented. 

Section 7.2 provides an overview of the McCann and Bowersox experimental configuration and 

associated test conditions (see Figure 3) [52]. In Section 7.3 arguments are presented attesting to 

the suitability of the RSTM and K - e models for simulating the aforementioned f lowfield. The 

discussion is based on results from three analyses. The first is a comparison of experimental data 

and computational results from the two turbulence models at a station approximately 20 effective 

nozzle diameters, d, downstream of the nozzle (d = 0.3861cm). At this station, experimental data 

and computational results are compared for correctness of magnitude and flowfield distribution. 

The second analysis is a comparison of computational results of mean flow and turbulent variables 

from the two turbulence models for which experimental data is not available. The model predictions 

are evaluated for differences in magnitude, flowfield distribution and non-physical behavior. The 

final analysis presented in Section 7.3 is for the boundary-layer predictions from the two models. 

The main conclusion of these analyses is that the K - e formulation is unacceptable for modeling 

transverse jet injection into a supersonic flow (TJISF) because of non-physical behavior of the 

computed Reynolds stresses arising from the Boussinesq approximation. The analyses also show 

that the RSTM is a physically consistent formulation, however, the RSTM should be evaluated 

further for flowfield validity. 

The topic of Section 7.4 is validation of the computational procedure for implementation of 

104 



the RSTM. Section 7.4 begins with a discussion of flowfield symmetry and how it can be used 

to reduce the number of grid points required to simulate the flowfield at downstream locations 

beyond station 20. Numerical simulations from two different computational grids at station 20 

(x/d = 19.81) are used to asses the suitability of a symmetry boundary condition at the test section 

centerline. These simulations are preformed with the RSTM. The full-plane grid modeled both 

sides of a symmetric flowfield, while the half-plane grid only modeled half of the flowfield and 

used a symmetry boundary condition at the test section centerline. An analysis of the results shows 

that the computed flowfield solutions are essentially the same. The second part of this section is 

a comparison of the computational results from the RSTM and the experimental data collected at 

station 40 (x/d = 39.65). As at station 20, the experimental data available and the computational 

results are compared for correctness of magnitude and flowfield structure, leading to the conclusion 

that the RSTM is a reasonably valid model for simulation of oblique TJISF. 

Finally, Section 7.5 presents a detailed description of the evolution of the flowfield simulated 

with the RSTM from a streamwise station 1.5d upstream of the nozzle center, to a station 20d 

downstream of the nozzle center. This description is preformed with visualizations of Mach 

contours, ux contours and velocity vectors. The flowfield description identifies many flow features 

not readily visible with conventional LDV or hot-wire techniques. Of particular interest are the 

mechanisms that induce the rotation of the heretofore unidentified recompression-shock-induced 

vortices and the locations where the jet induced vortices develop in the flowfield and where they 

dissipate from the flowfield. 

7.1.1   Generalized Three-Dimensional Flowfield Description and Terminology 

Prior to beginning the analysis of the flowfield and the turbulence models, a brief description 

of some differences and similarities between normal injection flowfields and the oblique injection 

flowfield under investigation is given.   During this discussion, much of the terminology used 
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throughout the rest of this chapter is introduced. 

Many of the flow structures found in the oblique TJISF generated by McCann and Bowersox's 

experiments are similar to the features identified by Santiago and Dutton [70] in Figure 61 for 

normal TJISF. Some of the flow structures common to both types of injection and some previously 

unidentified structures are shown in Figure 62. Each of these features are discussed in greater detail 

in Section 7.5. This figure is a visualization of the RSTM predictions for ux at the surface of the 

test section and at selected cross sectional planes. Like the normal TJISF, the obstruction caused by 

oblique TJISF, results in jet induced and boundary-layer separation shocks upstream of the nozzle, 

these shocks are collectively referred to as the bow shock. The surface location of the bow shock and 

boundary-layer separation line is visible near the leading edge of the test section surface in Figure 

62. Also common to both types of injection is the horseshoe vortex which forms just upstream of 

the nozzle orifice. However, the lower injection angle of this configuration results in a weaker, less 

defined horseshoe vortex than those seen in normal TJISF [5,70]. 

In Figure 61, Santiago and Dutton [70] depict the crossflow vortices as continuous structures 

forming at the nozzle orifice with a barrel shock and Mach disk imbedded within the vortex structure. 

The analysis presented in Section 7.5 indicates that this depiction is incorrect for oblique injection 

at a 25° angle. In Section 7.5, it is shown that vortical fluid rotation begins at the sides of the nozzle 

orifice and is outside of the injectant plume, not within it. This rotation is induced by the interaction 

of the expanding injectant and the inflow air which has moved up and over the horseshoe vortex. 

These jet induced (JI) vortices then follow along the sides of the plume until they are consolidated 

with the vortices inside the expanding plume near x/d = 8.0. 

The analysis in Section 7.5 also shows that the crossflow vortices identified by Santiago and 

Dutton in Figure 61 are actually recompression shock induced (RSI) vortices. The RSI vortices 

form near x/d = 6.5 and are caused by the combined effects of the upwash and the mirrored shock 

106 



structure of the oblique barrel (OB) shock. Shortly after the RSI vortices appear in the flowfield, 

the mechanisms which sustain the rotation of the JI vortices are disrupted and the rotating fluid in 

the JI vortices is incorporated into the RSI vortices near x/d = 8.0. It is shown that the RSI vortices 

are not simply a translation of the JI vortices to another location within the flowfield since both of 

these vortices are present between x/d = 6.5 and x/d = 7.5. 

A fourth vortex pair forms in the wake of the plume near the test section surface. These wake 

vortices, shown in Figure 62, trail behind the plume on either side of the line defined by z/d = 0.0. 

Throughout this chapter the terms core flow and inflow air are used interchangeably and they 

both refer to the supersonic inflow air which originates upstream of the bow shock. The terms jet 

and plume are also used interchangeably to refer to the mass of fluid entering the flowfield through 

the nozzle orifice. 

7.2 Supersonic Oblique Injection: McCann and Bowersox Configuration 

McCann and Bowersox experimentally investigated the mean flow and turbulence structure 

associated with oblique TJISF for the tunnel and injector mean flow conditions listed in Tables 7 

and 8. The experiments were conducted in the AFIT Mach 3.0 wind tunnel, which consists of a 

rectangular test section, 33cm long with cross sectional dimensions of 6.35 x 6.35cm (see Figure 

3). A conical nozzle was designed to inject pressurized air at a 25° angle downstream into the inflow 

air and was set in the center of the test section. The nozzle throat and exit diameters were 3.264mm 

and 3.861mm respectively. The exit of the conical nozzle at the surface of the test section floor 

was an ellipse. The elliptical exit had major and minor axes measuring 9.5mm and 4mm. The 

exit diameter of the conical nozzle, d = 3.861mm, is used as the reference length throughout 

this chapter. At x/d = 20, McCann and Bowersox reported experimental data obtained with single 

overheat hot-wire probes for mean flow variables U and V, and turbulence data for rxy and K. Data 

was also collected at x/d = 40 for mean flow variables U, V and W, and turbulence variables rxy, 
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TXZ and K. Schlieren photography was also used to visualize streamwise shocks in the flowfield 

and oil smears were used to describe surface flow conditions [52]. 

McCann and Bowersox's data collection grid consisted of 13 streamwise planes between 

z/d = -3 and z/d = 3 at half diameter intervals and 85 vertical stations between y/d = 0.4 and 

y/d = 10.0 at 0.11429d intervals. A stepper-motor drive assembly was used to move the probes 

through the grid points normal to the test section surface at each z/d station. Lateral translation 

between the streamwise planes was performed manually by a mechanical screw/slide assembly 

which held the stepper motor. 

Numerical uncertainty estimates provided by McCann and Bowersox [52] are summarized 

in Table 9. According to McCann and Bowersox, these uncertainty estimates account for the 

propagation of Pitot and cone static probe transducer calibration, probe location, and tunnel 

condition repeatability [52]. 

McCann and Bowersox's data collection grid is superimposed over the contour plots of all 

quantities in this chapter for which experimental data is available. This was done to facilitate 

comparison of the numerical results and the experimental data. 

Table 7. Freestream mean flow conditions for McCann and Bowersox configuration [52] 

Parameter Tunnel Conditions 
Moo 2.9 

Ptoo 204 kPa 
Ttec 294 K 

Pt 2.41 kg/m3 

Poo 6.45 kPa 
-Loo 110.0 K 

Poo 0.204 kg/m3 

^oo 610 m/s 
Q>oo 210 m/s 

Re/m 16.2xl06 
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Table 8. Injector mean flow conditions for McCann and Bowersox configuration [52] 

Parameter Injector Conditions 

M*nj 1.8 
391.1 kPa 

Ttinj 294.0 K 

Pt   ■ 4.64 kg/m3 

Pinj 

J-inj 

Pinj 
^inj 

Vinj 

67.34 kPa 
178.4 K 

132 kg/m3 

436 m/s 
203 m/s 

lüinj 
Re/m 

Om/s 
52.6xl06 

Table 9. Uncertainty analysis results [52] 

Measurement       Error,% 

Wil O)oo 6-° 
Reynolds stresses      20.0 

7.2.1   Boundary Conditions and Grid Configurations 

All numerical simulation results for the full-plane and half-plane grids discussed in this chapter 

use the boundary conditions listed in Tables 10 and 11. The implementation of these boundary 

conditions for turbulence and mean flow variables is presented in Section E.3.2. The mean flow 

parameters listed in Tables 7 and 8 are used as inflow and jet boundary conditions for all numerical 

simulation results discussed in this chapter. 

An inflow boundary layer was not simulated for these computations since reliable boundary- 

layer data upstream of the jet was unavailable at the time the simulations were performed. 

The full-plane grid used in Sections 7.3 and 7.5 had ij, k dimensions of 275 x 101 x 105 

and physical dimensions of x/d = -5 to x/d = 21, y/d = 0 to y/d = 5.2 and z/d = -3.25 
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to z/d = 3.25. The domain of this grid was not required to extend to the upper and side walls 

of the test section because the reflected shocks from these wall did not interact with the injection 

flowfield prior to station 20. The dimensions of this grid encompass all relevant flow structures 

needed to model the flowfield at x/d = 20. The half-plane grid used to obtain the simulation 

results presented in Section 7.4 had i,j, k dimensions of 339 x 121 x 61 and a physical domain 

ranging from x/d = -7.0 to x/d = 41.5, y/d = 0 to y/d = 16.4 and z/d = 0 to z/d = 8.22. 

Modeling of the upper and side walls was needed to properly simulate the flowfield past station 20, 

because the reflected shocks from these walls interacted with the injection flowfield prior to station 

40. 

The grid sensitivity studies conducted to arrive at these two grid configurations are presented 

in Section F.2.3. The coordinate system originates at the center of the nozzle orifice for both grids 

and is shown in Figure 63. 

Comparison and contrasts of the y-z domains of the two computational grids and the McCann 

and Bowersox data collection grid are shown in Figure 64. As seen in Figure 64, the full-plane grid 

extends beyond the z/d domain of the experimental data collection grid, but covers only half of the 

y/d domain. In contrast to the full-plane grid, the half-plane grid extends beyond the y/d domain, 

up to the upper wall of the test section, but covers only half of the z/d domain. However, on one 

side of the test section, the half-plane grid extends beyond the z/d domain and out to the side wall 

of the test section. Complete schematics of these grids and their associated cell spacings are given 

in Figures 193 and 192 in Section F.2.3. 
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Table 10. Three-dimensional supersonic oblique injection boundary conditions for the full-plane 
grid 

Plane Condition 
Inflow Tunnel conditions listed in 7 

Outflow Extrapolation 
Left side Extrapolation 

Right side Extrapolation 
Top Extrapolation 

Bottom Wall 
Jet Jet conditions listed in 8 

Nozzle dimensions semimajor axis=0.475 
semiminor axis=0.200 

Table 11. Three-dimensional supersonic oblique injection boundary conditions for the half-plane 
grid 

Plane Condition 
Inflow Tunnel conditions listed in 7 

Outflow Extrapolation 
Left side Tangency 

Right side Tangency 
Top Tangency 

Bottom Wall 
Jet Jet conditions listed in 8 

Nozzle dimensions semimajor axis=0.475 
semiminor axis=0.200 

7.2.2   Non-Dimensionalization 

Contour plots of the numerical results and experimental data are all non-dimensionalized 

as specified in Section 5.4 with the exception of vorticity. The contour plots of the vorticity 

components have dimensional units of rads/s. Vorticity is reported in dimensional units to allow 

direct comparison to the experimental data. Also, unless otherwise stated, all turbulence terms are 

scaled by U2. This scaling retains consistency with the traditional reporting methods of experimental 

turbulence data. For example, Txy/U2 = (rxyja2^) (a^/v2) = TxyJu2, where Txy<l and ü are 
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both dimensional quantities. 

7.3 Evaluation of Results at Station 20 

In this section, numerical predictions of the U and V components of velocity, the turbulent 

shear stress rxy and the turbulent kinetic energy K are compared to experimental data obtained 

at station 20 (Subsection 7.3.1). Also evaluated are the numerical predictions of the thermo- 

mechanical and Reynolds stress variables for which experimental data is unavailable (Subsection 

7.3.2). Finally, a boundary-layer analysis of the two turbulence model predictions is presented 

(Subsection 7.3.3). 

7.3.1   Comparison of Experimental Data to Computational Results at Station 20 

In this subsection, an analysis of the experimental data and the corresponding numerical results 

from station 20 is presented. The contour intervals used to plot the experimental data are also used 

to plot the numerical results. While these contour intervals may mask some of the finer flowfield 

details of the computational results, especially in the boundary layer, it allows direct comparison 

of the computational results to the experimental data. The limits of the contour intervals for the 

computational results are rescaled for boundary-layer analysis in Section 7.3.3. 

Two distinct flow regions are identified in the contour plots of the experimental data for the 

mean flow and turbulence variables. In the middle part of each contour plot is the injectant plume 

and in the lower part of the plot is the boundary layer. The separation of the plume and boundary- 

layer is clearly seen in the experimental data for the U component of velocity (Figure 65). In this 

figure, there is a distinct region where the velocity of the plume is markedly different from the 

surrounding flowfield. At this station the axial velocity in the plume has increased from the initial 

streamwise velocity of 2.2 at the nozzle exit to about 2.6. This is still lower than the surrounding 

flowfield's streamwise velocity of 2.8. The lateral extent of the jet plume has increased from the 

initial value of 1.036rf at the nozzle exit to approximately 3.75d and exhibits some minor asymmetric 
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behavior about z/d = 0.0. The "bottle" neck of the contours on the lower side of the plume rising 

further above the boundary layer as it moves farther downstream of the nozzle. The indentations 

along the bottom of the plot at z/d = 0.0 and z/d = 2.0 represent the upper limits of the boundary 

layer. 

Only minor differences are seen in the predictions from the two turbulence models for the U 

component of velocity (Figure 66). The only appreciable differences occur near the centerline in 

the boundary layer, as discussed later in Section 7.3.3. The height of the plume at the centerline is 

measured with the predictions of the U component of velocity and predictions from both models 

agree well with the experimental data. The predicted height of 4.0d from the RSTM is only 1% 

less than the experimentally measured value of 4.03d, while the value of 4.2d from the K — e 

model is only 4% greater than the experimental value. The numerical predictions for the vertical 

extent of the plume is 2.6d from RSTM and 2.7d from K — e. Both of these predictions are in 

good agreement with the experimentally measured value of 2.62d (1.5% for RSTM and 3% for 

K — e). The numerical predictions for the lateral extent of the plume are in poorer agreement with 

the experimentally measured value of 3.7d Both models predicted lateral extents of 2.90d, or a 

21% difference. Generally, the predicted magnitude of U from both models is slightly larger than 

the experimentally measured magnitudes over most of the domain. 

Contours of the experimental data for the V component of velocity are shown in Figure 67. 

These data exhibit an asymmetric behavior about z/d = 0.0 that is somewhat stronger than that 

seen in U. The maximum upwash velocity at this station has decreased from the initial upwash 

velocity of 0.97 at the nozzle exit, to a maximum of about 0.8 at z/d = 0.0. The maximum 

downwash velocities near z/d = —1.5 and z/d = 2.0 correspond to the outer edges of the RSI 

vortices discussed in Section 7.5. The downwash is helpful in identifying the lateral extent of the 

vortices at this station. 
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Only minor differences for the V component of velocity (Figure 68) are seen in the predictions 

of the two turbulence models. Predictions from both models for the magnitude and location 

of maximum upwash are nearly identical to the experimentally measured values. However, at 

z/d = -1.5 the predictions from both models for the magnitude of the maximum downwash are 0.3 

less than the experimentally measured value. In contrast to, the predicted values from both models 

for the downwash are in complete agreement with the measured values at z/d = 1.5. 

The experimental data seen in Figure 69 for the rxy component of the Reynolds stress tensor 

shows a central core of positive shear stress slightly offset to the right of the centerline. However, the 

extent of positive shear stress is symmetric about the centerline. This central core is surrounded by 

a horseshoe shaped region of negative shear stress which is basically centered about the centerline. 

However, the shear stress is more negative to the left of the centerline. 

The predicted structure of rxy is not consistent between the two turbulence models. The 

horseshoe shaped region and the central core identified in Figure 69 is predicted by both turbulence 

models. However, as seen in Figure 70, only the RSTM correctly predicted the relative location of 

the horseshoe structure with respect to the central core. The K - e model incorrectly predicted the 

location of the horseshoe structure, placing it well above the central core of positive stress. 

In general, the RSTM predictions for rxy are consistent with the experimental data in that they 

smoothly progress from the large positive values in the central core to the negative values away 

from the centerline. In contrast to this, the K - e predictions simply reflect a change in the flow 

direction: positive shear stress when the flow turns in towards the center of the test section and a 

negative shear stress when it turns away from the center. 

A physical phenomenon can be attached to these regions of positive and negative stresses 

through an evaluation of the Mach contours and shear stresses as shown in Figures 71 and 72. 

The analysis in Section 7.5 and the work of Hartfield and Bayley [27] and Williams and Hartfield 

114 



[110] show that in the plume, much of the fluid between z/d = -0.25 and z/d = 0.25 is inflow 

air. Furthermore, the analysis shows that the injectant is concentrated in the regions between 

z/d = -1.25 and z/d = -0.75 and between z/d = 0.75 and z/d = 1.25. The majority of 

the mixing occurs in the transition zone between the regions of inflow concentration and injectant 

concentration. These regions are identified in the Mach contours shown in Figure 71. The interfaces 

between the zones are defined by sharp gradients in the Mach contour levels and are also marked 

in Figure 71. In Figure 72, the Mach lines are superimposed over a magnified area of rxy. The rxy 

contours from the K — e model respond to steep Mach gradients in the vertical direction. On the 

other hand, the rxy contours from the RSTM respond to Mach gradients in all directions and for all 

magnitudes of the gradient. 

The sign of the rxy results from the K - e model are characterized by the direction of the Mach 

gradient with respect to origin of the Cartesian coordinate system superimposed over the contours 

in Figure 72. In the K - e model, rxy is computed from Eq. 53 and is of the form 

jjit I'du     dvs 

T cr.n   — + ^ (226) xy p \dy  '  dx / 

It should be clear from the results shown in Figures 66 and 68 that in the plume, dü/dy is dominate 

over dv/dx. Thus, in quadrants I and II, rxy is negative because dü/dy is positive and in quadrants 

III and iy Txy is positive because dü/dy is negative. The gradients of ü with respect to z are not 

accounted for in Eq. 226; thus values of rxy at the sides of the interfaces have either the wrong sign 

or the predicted value is negligible. 

In the contours for the RSTM, the sign of rxy correspond to radial changes in the Mach 

gradients. As a radial line from the plume origin passes through negative Mach gradients, rxy 

becomes more positive and when positive gradients are encountered, rxy becomes more negative. 

Despite this analysis, the validity of one model over the other is determined by the experimental data 

in Figure 69 and the experimental data clearly shows that only the RSTM predictions are physically 
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consistent. 

Predictions for the vertical and lateral extent of the stresses are also inconsistent between the 

two models. The RSTM correctly predicts the range of the vertical extent of the positive shear stress, 

placing it between y/d = 2.4 and 3.3, while the K - e model incorrectly places the range between 

y/d = 2.3 and 2.7. The experimentally determined range is between y/d = 2.2 and 3.4. The 

RSTM prediction for the lateral extent of the shear stresses is also more accurate than those of the 

K - e model. The RSTM placed the range of the lateral extent (3.08d wide) between z/d = -1.54 

and 1.54, while the extent predicted by the K - e model is between z/d = -0.74 and 0.74 (1.48d 

wide). The experimental data showed the lateral extent of the plume is actually located between 

z/d = -1.99 and 2.0 (3.99d wide). Thus, the range predicted by the RSTM is 22% smaller than 

the experimental range, while the range predicted by the K - e is 63% smaller than the experimental 

range. 

The higher resolution of the computational grid used for the RSTM predictions reveal details 

about the structure of rxy distribution not visible in the experimental data (K — e predictions are not 

discussed here since they are physically inconsistent). A definite partitioning of the central core and 

the horseshoe structure is seen in the RSTM predictions (Figure 70). Furthermore, these partitioned 

structures are symmetric about the test section centerline. The predictions for the positive central 

core show it is comprised of five subregions. There are the two prominent positive stress structures 

on either side of z/d = 0.0. There is also a very thin region of positive stress running vertically up 

the z/d = 0.0 line. This region is approximately 0.06d wide. Between the pockets of positive stress 

is a band of negative stress which connects the upper and lower sections of the horseshoe structure. 

The horseshoe structure is also partitioned at z/d = 0.0 by a band of lower magnitude negative 

stresses. Also seen in the predictions by the RSTM is a region out beyond the horseshoe structure 

where positive stresses reappear. 
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As with Txy, the experimental data for K has a central core of turbulent kinetic energy 

concentrated about the centerline (Figure 73). The structure of the contours suggest there are two 

separate maxima for K, one on either side of the centerline. Along the bottom of Figure 73 are two 

distinct regions of increased activity centered about z/d = -1 and z/d = 1 which are representative 

of the upper extent of the boundary layer. 

The partitioning of the K distribution is clearly seen in the numerical predictions of K (Figure 

74). The RSTM captures the general upside-down cardioid shape of the experimentally measured 

cross-sectional area, whereas the K - e model does not. The cross-sectional area of the plume 

is implied by the vertical and lateral extent of K [9]. Both models predict cross-sectional areas 

for K that are significantly smaller than the experimentally measured area (Figure 73). A lateral 

extent of 2.74d and a vertical extent of 3.0d is predicted by the RSTM, whereas the predictions by 

K - e have dimensions of 1.75<i and 2.6d respectively. Thus, the RSTM predicts a significantly 

larger area than the K — e model, but the RSTM prediction is still smaller than the experimentally 

measured dimensions of 3.8d and 4.05<i. Both turbulence models give similar predictions for the 

vertical extent of the maximum turbulence. Using only the contour with the greatest magnitude, the 

RSTM and K — e predictions are 1.8d and 1.6d respectively, which are significantly larger than the 

experimentally measured length of approximately 0.6rf. 

Based on this analysis, several general observations about the accuracy of the turbulence 

models and the resolution of the experimental data are appropriate. The choice of turbulence model 

does not have a significant effect on the predicted values of the U and V velocity components outside 

of the boundary layer. To within 7%, both turbulence models correctly predict the values of U and 

V at station 20. In contrast to the velocity components, model selection has a significant effect on 

the distribution and magnitude of rxy, and to a lesser degree on K. Generally, correct predictions 

of the shape and magnitude of rxy contours by the RSTM contribute to the validation of this model 
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for TJISF. The incorrect prediction of the distribution of rxy with the K - e formulation indicates 

that this model is not appropriate for accurate simulation of TJISF. 

The adequacy of the lateral resolution of the experimental data is questionable and could 

contribute to some of the discrepancies already noted. Of the variables examined thus far, contour 

plots of the numerical results indicate that maxima and minima of quantities being measured do 

not consistently correspond to the experimental data collection grid points. The small width of 

the negative turbulent shear stress between the positive turbulent shear stresses in Figure 70 could 

have been missed during experimental data collection. This lack of resolution could also have 

exaggerated the apparent asymmetry of the experimental flowfield, especially if a maximum or 

minimum is captured on one side of the centerline, but not on the other. Considering that the 

computed gradients of the turbulence variables are very large and that the probes were repositioned 

by hand, the asymmetry observed in the experimental data could have been exaggerated by poor 

grid resolution and systemic errors in probe positioning. Additional data supporting this conjecture 

is provided in subsequent sections. 

It should be noted that the initial condition for the W component of velocity exiting the 

nozzle was assumed to be zero. Subsequent evaluation of the injector-nozzle used by McCann 

and Bowersox revealed that this device had a divergence angle of 0.83°. This increase to outward 

velocity of the injectant could account for some of the error seen in the numerical results for the 

width of the plume. 

Correct modeling of the flowfield physics is crucial to supersonic combustion simulations [9, 

24]. Of the two models evaluated, only the RSTM correctly predicted the distribution of rxy seen 

in the experimental data. The Reynolds stresses at the interface of the injectant and inflow air are 

critical to mixing. These terms influence the rate of convection and diffusion of the two fluids 

through the momentum and energy equations, Eqs. 21 and 22 respectively [9]. If the stresses at 
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the interfaces are physically incorrect representations of the flowfield, the mixing rates will also 

be incorrect. Gruber has stated that injectors which create large magnitudes of Reynolds stresses, 

generally have better mixing characteristics than those with smaller magnitudes of the Reynolds 

stresses [24]. 

7.3.2 Evaluation of Computational Results for Variables Without Experimental Data at Sta- 
tion 20 

One of the most significant advantages CFD has over other forms of analysis is the ability to 

examine aspects of the flowfield that cannot be measured experimentally, or if they can, there is 

an unacceptable degree of error in the measurements. This advantage is used here to further assess 

the suitability of the turbulence models by examination of the predicted behavior of the five other 

Reynolds stresses, the three components of vorticity, the W component of velocity and the mean 

flow temperature. 

The individual axial Reynolds stresses are often not reported in experimental data. Frequently, 

these terms are lumped together and collectively reported as K. The following discussion presents 

an analysis of the effects the individual axial stresses have on the structure of K and their 

contribution to vorticity. Also addressed are the inconsistencies between the two models for 

enforcement of the realizability constraint placed on the axial stresses and K. 

In Section 7.3.1 the contour intervals for K are scaled to maximize visualization of the 

experimental data. However, this masked many of the details present in the numerical results. 

Therefore, the contour intervals for K are rescaled in Figure 75 to maximize visualization of the 

structure of K outside of the boundary layer. The contour intervals are rescaled again to maximize 

visualization of the boundary layer in Section 7.3.3. 

The axial Reynolds stresses and K are related through the expression 

K = Txx + Tyy + Tzz (227) 
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Easy evaluation of each axial stress component's contribution to K is possible if the limits of the 

contour intervals of the stresses are based on the above relationship. If each axial stress component is 

assumed to contribute equally to the total magnitude of K (this is the assumption made in the K - e 

model to 0(y2) [29]), then the appropriate maximum contour level for the axial stresses should 

be 2/3 maximum contour level of K. The minimum contour level is determined by Schumann's 

realizability constraint (see Section 4.3.2.1) [78]. Realizability requires K and the axial Reynolds 

stresses be greater than zero at all locations in the flowfield. 

Despite the realizability constraint, predictions for the axial Reynolds stresses with the K - e 

model often result in non-physical values. The colorless regions shown in the K - e contours for ryy 

and TZZ (Figures 77 and 78), are areas where negative values are predicted. Negative axial Reynolds 

stresses are a violation of Schumann's requirement of realizability [78] and imply negative turbulent 

energy. In the K — e model, realizability is only applied to the conserved variable K and not on the 

axial Reynolds stresses which are derived variables in the K - e model and are computed with the 

constituent relationship given by Eq. 53. The axial stress form of Eq. 53 is 

T.. = 1K-—(—--^\ (228) 
3 p   \dxi     SdxiJ 

and relates the axial stresses to K and to the axial velocity gradients through the Boussinesq 

approximation. It is easily seen that if K is negligible and the velocity gradients are sufficiently 

large, a negative value for r„ will result. 

In contrast to the K - e model, in the RSTM realizability is enforced on each of the individual 

axial Reynolds stresses and because they are the conserved variables in this model, K is the derived 

term [56]. This not only assures a physically consistent solution for the axial Reynolds stresses, but 

since K is computed from Eq. 227, it has a physically consistent solution as well. As seen in the 

RSTM results shown in Figures 76 - 78, all of the axial Reynolds stress predictions are greater than 

zero. 
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The contour plots of K in Figure 75 graphically illustrate the dependence on K of the axial 

Reynolds stresses in the K - e model. Comparison of the contours in Figure 75 to the contours 

of the Reynolds stresses in Figures 76 - 78 for the K - e model show that each of the components 

are nearly identical. In contrast to this, the axial Reynolds stresses and K from the RSTM have the 

same general shape, but the magnitudes of the individual components are significantly different. 

The root cause of the patterns seen in these figures is again found in the method used to arrive 

at the individual shear stresses. In Section 4.2 it is shown that in Eq. 228, K is O (y2) and that 

ißt/p) (düi/dxi) is at most O (y3). Thus, the magnitude of the axial stresses, computed in the 

K-e model, are dominated by K and the velocity gradients only have a lower order contribution. 

Since axial Reynolds stresses are conserved variables in the RSTM, they are determined by the flow 

physics. 

Computing the axial Reynolds stresses with Eq. 228 also has a homogenizing effect on these 

terms and removes the anisotropic turbulent behavior from the flowfield solution. Anisotropie 

turbulence is defined in Hinze [29] as turbulent flow where the axial Reynolds stresses are not 

equal. The homogenization of the axial stresses is seen in Figure 79. Shown in this figure are 

contours of TZZ - ryy. These contour clearly show that outside of the boundary layer the predicted 

difference of these terms computed with the K - e model is an order of magnitude less than the 

predictions from the RSTM. It is easily shown with Eq. 228 that the difference between the K - e 

predictions for TZZ and ryy is simply dw/dz - dv/dy. 

Homogenization of the axial stresses also has an impact on secondary flow development and 

vorticity generation. It was shown in Section 4.2.2, for the special case of incompressible, fully 

developed turbulent flow in a rectangular duct, that secondary flows only occur when TZZ - ryy ^ 0 

[90,91]. While secondary flow development in an injection flowfield is not solely dependent on 

Tzz - Tyy ^ 0, this term's contribution to ux is seen mathematically in Eq. 58 and graphically in 
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Figure 80. In Figure 79 the difference between rzz and Tyy outside the boundary layer is as much 

as an order of magnitude larger for RSTM than it is for K - e. This implies that predictions from 

the RSTM for cox should be larger than the prediction from K - e. As seen in Figure 80, this is 

exactly what occurs. In this figure the maximum magnitude of vorticity outside of the boundary 

layer is approximately 10, 000rad/s (12.5%) greater in the RSTM predictions than it is in the K - e 

model and the RSTM prediction for vorticity strength in the boundary layer is almost an order of 

magnitude larger than the vorticity predicted by the K - e model. The boundary-layer vorticity is 

discussed further in Section 7.3.3. 

It is noted here, that aside from the differences in magnitude, the distribution of ux (Figure 80) 

is nearly identical for both models. The relevance of this observation will be made clear later in this 

section. 

The vorticity component, tox, is a measure of the rate of rotation of a fluid particle. Thus, 

the vorticity should be largest at points in the flow where the highest rates of rotation occur. 

This observation is illustrated in Figure 80, where the RSI vortex centers of rotation are seen at 

y/d = 2.88 and z/d = ±0.64. Accordingly, the largest magnitudes of vorticity are seen near these 

points in Figure 80. 

The relative velocity vectors in Figure 80 show why the largest magnitudes do not coincide 

with the centers of rotation. The x component of vorticity was defined in Eq. 60 as 

_ dw     dv 
x ~ dy      dz 

Thus, maximum values of cox occur where velocity gradient differences are largest. As seen in the 

relative velocity vectors, the maximum velocity gradient for dv/dz occurs normal to z/d = 0 as 

the centers of rotation are approached and dw/dy is relatively small compared to dv/dz over most 

of the flowfield outside of the boundary layer. 

The sign of ux indicates the direction of rotation. In Figure 80, positive ux corresponds to 
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clockwise rotation and negative LOX to counter-clockwise rotation. This is also verified with the 

relative velocity vectors in Figure 80. 

The vertical extent of the RSI and wake vortices can be estimated with the contours of the W 

component of velocity (Figure 81). It is reasonable to expect maxima of W to correspond to upper 

and lower extrema of a vortex. The extrema of the vortices are labeled in Figure 81. Extrema 1 and 

2 correspond to the upper and lower bounds of the RSI vortices, while Extrema 3 and 4 to the wake 

vortices. 

The local rate of rotation and the frequency of contact between the interfaces of the injectant 

and the inflow can be inferred from the magnitude of W at the extrema. The larger W is, the faster 

the local rate of rotation, thus the more frequent the contact. Northam and Anderson have shown 

that mixing rates increase as the frequency of contact between the injectant and inflow increases 

[60]. In the RSTM predictions, the magnitude of W at the bottom of the RSI vortices and at the 

top of the wake vortices are approximately equal to each other. However, in the K - e contours, 

the magnitudes of W at these same extrema differ by approximately 15%. Thus the frequency of 

contact between these to interfaces is less frequent in the K - e model than it is in the RSTM. 

Accurate temperature predictions are critical to combustion precesses and thrust production in 

SCRAM jets [49,60] and proper predictions of the magnitude of the axial Reynolds stresses impact 

the temperature at every location in the flowfield. The temperature in the flowfield is computed 

from the nondimensional form of the total energy expression (Eq. 2) 

E = e + \ + K (229) 

and the perfect gas relation T = c,E, where cv is the specific heat at constant volume. Thus the 

axial Reynolds stresses influence flowfield temperature through K and algorithms which omit K 

from the computation of E may have an adverse effect on temperature predictions. 

Outside of the boundary layer, the choice of turbulence model has its most significant effects 
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on temperature in the transition zone of the plume (Figure 82). It is seen in this figure that the RSTM 

predictions for temperature in the transition zone is slightly higher than the predictions of the K — e 

model. The reason for the differences are seen in Figure 83. Clearly, K comprises a larger fraction 

of E in the transition zone of the RSTM predictions than it does in the K - e model predictions. 

Comparison of Figures 82 and 83 show the region where K/E is larger in the RSTM corresponds 

to the same location where the temperature is higher in Figure 82. As discussed earlier, the reason 

for the difference in the magnitude of K is found in how K and the axial Reynolds stresses are 

computed. 

The predictions for TXZ from the RSTM are significantly more complex than the predictions 

from the K - e model (Figure 84). The RSTM predicts several small flow features not obtained 

with the latter model. The K - e model predicted a weaker band of shear stress, near the centerline 

and surrounding the larger turbulent structure than the RSTM. Furthermore, the K - e model did not 

predict the crescent shaped bands of turbulence seen in the RSTM results which bracket the outer 

limits of the larger turbulent structures. 

In the absence of experimental data, the correctness of one set of results over the other can not 

be asserted with absolute certainty. However, if the analysis applied to the rxy contours is applied 

here for rxz, the Mach gradients indicate the RSTM results are the correct representation of TXZ. 

The contours of the RSTM results reflect changes in the shear stress at all of the Mach gradient 

interfaces. However, the K — e results only reflect gradient changes in the z coordinate direction. 

The reason for this is obvious from the equation below 

T~ = -*(£ + ¥) (230) 
p  \oz      ox j 

In this region of the flow field, values of TXZ are dominated by du/dz is changes in w with respect 

to x are negligible. 

The sign of TXZ in the RSTM predictions reflects a dependence on Mach number gradient with 
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respect to the radial distance from the apparent center of the plume similar to that seen for rxy with 

one exception. The sign of rxz reverses when z/d = 0 is crossed. Thus, for z/d > 0, TXZ is 

positive if the Mach gradient is negative and negative if the Mach gradient is positive. Conversely 

when z/d < 0, rxz is negative if the Mach gradient is negative and positive if the Mach gradient is 

positive. 

Outside the boundary layer, differences in the predictions of ryz by the two models are visible 

in Figure 85, but they are relatively small. The differences are small because ryz is modeled by 

gradients of Fand W and at this station the velocity gradients for these terms are small. However, 

the cause of the differences is apparent from the following equation which is used in the K - e 

model to compute ryz 

_ _\H fdv  ,9w\ z-23!-) 
yz        p \dz     dy) 

It is seen in this equation that only changes in one coordinate direction is considered for each velocity 

component. However, velocity gradients are not unidirectional in rotating flowflelds. This is the 

primary reason models based on the Boussinesq approximation fail to predict physically consistent 

distributions for the shear stresses in a rotating flowfield. The RSTM predictions are physically 

consistent because they are not constrained to unidirectional changes in the velocity gradients. 

It may be possible to modify the K - e formulation to consistently predict shear stresses in 

a rotating fluid. It was noted earlier in this section that the only significant difference between the 

predictions from the two model for u)x is the magnitude of the vorticity. Outside of the boundary 

layer, this same observation is true for coy (Figure 86) and LOZ (Figure 87). A remarkable similarity 

is now observed between the distribution of the ryz contours from RSTM (Figure 85) and the 

distribution of the LOX contours from K - e (Figure 80). Aside from a difference in magnitude, 

outside of the boundary layer the distribution of these two sets of contours are nearly identical. This 

observation (with an additional change in sign) is also true of the rxz contours from the RSTM 
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(Figure 84) and the cjy contours from K - e (Figure 86). These two observations suggest that a 

more correct relationship of the shear stresses and the velocity gradients in a rotating flowfield, 

may be through the components of vorticity rather than the mean strain rate. The only limitation to 

this observation selection of the appropriate constant of proportionality and a suitable relationship 

for rxy. Comparison of the RSTM predictions for rxy in Figure 70 and the K - e predictions for 

LUZ do not exhibit the similarities seen with the other two pairs of contours. 

Now consider the specific expressions for the turbulent shear stresses given by Eq. 53 and the 

definition of the components of vorticity [3]. The equations are given below as: 

lit (dv     dw\ _      nt (du     dw\ _ _/^ (du     dv 
Tyz-'^{d~z + ~^)   Txz  ~  ~j{dz + dx)  Txy-    p\dy + dx 

fdv     dw\ (du     dw\ (du     dv\ 
U* = -{dz--dy-)      Uy   =    "Afe-toJ      Ut = -\^i~di) (     } 

Note the similarity in the form of these equations. The paired equations differ only by a 

proportionality constant and the sign of the second term. Thus, it is suggested that if an appropriate 

proportionality constant is developed, the expressions for the components of vorticity may provide 

better predictions for TXZ and ryz than the traditional definition used in the standard K — e 

model. Therefore, a more correct form for the Boussinesq approximation for vortical flows may be 

nj oc SijkLOk, where e^ is the alternating tensor, rather than T*/ OC Stj. 

Based on the observations made in this section, the suitability of the K - e model for 

modeling this flowfield is questionable. The K -e model predicts non-physical solutions for the 

axial Reynolds stresses because the realizability constraint is enforced on K rather than the axial 

Reynolds stresses. This is caused by the improper relation of the axial Reynolds stresses to K and 

results in incorrect magnitudes for the axial Reynolds stresses and weaker vorticity and lower mean 

flow temperature predictions. It is also seen the Reynolds shear stresses are incorrectly modeled 

by the K - e formulation because the Boussinesq approximation does not properly account for 

multidirectional velocity gradients of the same velocity component. These incorrect predictions can 
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have a detrimental effect on mixing efficiency, combustion and, ultimately, thrust. To account for 

the multidirectional velocity gradients, it is proposed that a form for the Boussinesq approximation 

more consistent with vortical flow physics maybe r^ oc e^t-Ok rather than traditional form of 

7.3.3   Boundary-layer Analysis 

Thermodynamic limitations of the hot wire probes used by McCann and Bowersox restricted 

their data collection grid to 0.4d (1.6mm) above the surface of the test section [51]. However, the 

versatility of numerical simulations permits visualization of the boundary-layer and in this section, 

further assessment of the differences observed in the predictions from the turbulence models are 

examined. Through a boundary layer analysis, a qualitative comparison of the mean flow thermo- 

mechanical variables and the turbulence variables discussed in the previous sections is presented. 

To illustrate the lower bound of McCann and Bowersox's grid, the grid is superimposed over 

the numerical results in Figure 88. This plot, depicting the contours for K (Figure 88), shows the 

large region of the flowfield not captured by the intrusive methods used by McCann and Bowersox. 

It is clear that the indentations seen in previous contours of the experimental data are boundary- 

layer data. Note that in this figure and in all subsequent boundary-layer figures, the aspect ratio of 

the axes has been changed from 1 to 0.6. This was done to magnify the boundary-layer and still 

permit visualization of the entire z/d range shown in previous sections, however, this change may 

result in some boundary-layer phenomena being exaggerated. Also, in these figures, the turbulent 

quantities are no longer scaled by U2 but by a2^. This allows visual order of magnitude comparisons 

of the velocity components and the turbulence quantities without preforming any conversions to the 

numerical results and it avoids division by zero at the test section surface. 

The differences seen in the turbulence variables outside the boundary-layer, are just as 

pronounced inside the boundary-layer. This is especially true at the test section centerline. At the 
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centerline, the RSTM predictions for K (Figure 88) have their greatest magnitude. In contrast, the 

K - e predictions for K are almost constant across the surface. It is counter-intuitive for K to be 

nearly constant across the entire lower surface since the turbulent flow structure in the boundary 

layer must be affected by the wake vortices located on either side of the centerline. 

Since the axial Reynolds stresses in the K - e model are essentially 2/3K, it is reasonable 

to expect their contours to look just like the contours for K and this is exactly what is seen in the 

K - e model predictions shown in Figures 89-91. However, in RSTM, K is 1/2 the sum of the 

axial Reynolds stresses. Therefore, contours of the axial Reynolds stresses from the RSTM should 

look similar to K, but there is no reason for any two components to have the same values. As seen 

in Figures 89-91 the magnitudes predicted by the RSTM for the three components do vary greatly. 

The RSTM predictions indicate that the relative magnitudes of the three axial Reynolds stresses 

to each other have changed from what they were outside the boundary-layer. Now TXX has the largest 

magnitude of the three, followed by rzz and then by ryy. The reversal in the magnitudes of TZZ 

and Tyy in the boundary-layer implies that the direction of rotation of the wake vortices should be 

opposite that of the RSI vortices. This is verified by the vorticity contours seen in Figure 92. 

The vorticity transport equation (Eq. 58) in Section 4.2.2, shows that vorticity strength is 

influenced by the magnitude of the difference between TZZ and ryy [91]. This is seen by comparing 

the magnitude of TZZ — ryy from the two models to the magnitude of LOX. At nearly every location 

below y/d = 0.4 in Figure 93, the RSTM values for TZZ - ryy are almost an order of magnitude 

larger than those from the K — e model. Comparison of the two models predictions for cox shows 

that the RSTM values are also close to an order of magnitude larger than the K - e values for the 

vorticity in the wake vortex. In general, the RSTM values for rzz - ryy and cox are larger throughout 

the boundary-layer. Thus, the opening statement about Eq. 58 holds true in the boundary-layer. 

Since K has its greatest magnitude in the boundary-layer, it might be expected that the fraction 
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of E comprised by K would be more significant than it is outside the boundary-layer. The ratio of 

K/E is plotted in Figure 94, where it is seen that nowhere in the K - e model predictions does K 

comprise more than 1.4% of E or more that 1.9% in the RSTM predictions. The significance of 

these ratios on the flowfield are seen in the boundary-layer temperature contours (Figure 95). As 

seen in this figure, the K — e model predicts a constant temperature at all surface locations of station 

20. In contrast, RSTM predicts a higher temperature than the K - e model over most of the surface, 

but in the region where K/E is a maximum, the temperature at the surface is a minimum. Clearly, 

the increased contribution of K to E at the centerline is insufficient to compensate for other factors 

which reduce E, and thus the temperature. 

In addition to a higher temperature over most of the surface, the RSTM predicted a thicker 

thermal boundary-layer. This is seen as a thicker zone of higher temperatures at the surface. 

The thermal boundary-layer thickness and surface temperature are critical to accurate heat-transfer 

rate predictions and to the selection of materials used to construct combustors and other surfaces 

requiring heat resistent or heat conducting properties [87]. 

The contours of the turbulent shear stress predictions seen in Figures 96 - 98 show significant 

differences between model predictions for all three for these terms. These terms influence 

aerodynamic heating through the skin friction and drag and although the turbulent shear stresses 

go to zero at the wall, their magnitudes near the wall impact the laminar sublayer through the 

momentum and energy equations. 

Using a two-dimensional flow analysis, it was shown in Sections 6.2.3 and 6.3.4 that because 

the K - e formulation does not model the second-order pressure-velocity-gradient tensor and is 

restricted to isotropic turbulence dissipation rates, the models predict significantly different values 

for the shear stresses in the vicinity of shocks and secondary flow structures. Figure 99 shows 

where anisotropic turbulence dissipation rates are modeled by the RSTM. The function fWlis the 
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wall damping function used in Eq. 437 to determine where the anisotropic turbulence dissipation 

rate model is applied. In the RSTM, anisotropic turbulence dissipation rates are accounted for where 

fWl is non-zero. Since the K - e model does not model anisotropic turbulence dissipation rates of 

the shear stresses, its effect are unaccounted for in the predictions. 

The lack of an anisotropic model in the K - e formulation does not account for the large 

differences seen in the shear stress contours in the boundary layer. Figure 99 shows that the 

region influenced by the wall models is small. The cause of the differences is identified in Section 

7.3.2. The Boussinesq approximation in the K - e formulation only models unidirectional velocity 

gradients, and like the flow outside the boundary-layer, the presence of wake vortices clearly makes 

the boundary-layer a rotating flowfield. 

In the previous two sections it is seen that outside of the boundary-layer the differences between 

the turbulence model predictions for the velocity components are not significant. However, within 

the boundary-layer the differences in the V and W components are more pronounced. The change 

in behavior is brought about by an increase in the magnitude of the axial Reynolds stresses in the 

boundary-layer. In the boundary-layer, the axial Reynolds stresses are only an order of magnitude 

less than the V and W components. This is seen in Figures 89 - 91 and Figures 101 and 102). 

In these figures, larger changes in the magnitude of V and W are predicted by the RSTM as the 

centerline is approached along the z/d axis and to a lesser degree, this trend is also seen in Figure 

100 for U. These velocity differences are also a result of the RSTM model formulation which 

allows the Reynolds stresses to be solved as individual conserved variables without any presupposed 

relationships. 

General observations of the numerical results in this section indicate that the K - e model 

provides less physically consistent predictions of the boundary-layer quantities than the RSTM. 

This is particularly true for the turbulent stresses and the surface temperature. The inconsistency in 
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the K - e predictions are linked to the model's inability to correctly account for non-unidirectional 

velocity gradients and anisotropic axial Reynolds stresses. Credibility of the RSTM predictions in 

the boundary-layer is reinforced by its consistency and accuracy outside the boundary-layer. 

7.3.4   Summary of Results at Station 20 

A summary of the findings to this point is presented here. First, the K - e model has several 

inherent deficiencies which make it an inappropriate model for detailed numerical simulations of this 

f lowfield when physically correct turbulent quantities are needed from the simulation. If mean flow 

values of the fhermo-mechanical term are the desired quantities, the K-e model provides reasonably 

satisfactory results. This statement is based upon the following observations: 1) incorrect prediction 

of the distribution and magnitude of rxy in the jet plume; 2) incorrect prediction of the distribution 

and magnitude of K in the jet plume; 3) prediction of non-physical solutions for the axial Reynolds 

stresses outside the boundary-layer; 4) incorrect relationships of the axial Reynolds stresses to K 

over the entire flowfield, and 5) correct prediction of the distribution and magnitude of U and V. 

Second, while not yet concluding that the RSTM is validated by this analysis, it is reasonable to 

conclude that this model is an improved choice for turbulence closure when conducting numerical 

simulations of this flowfield. This statement is based on the following observations made in the 

preceding analyses: 1) correct prediction of the distribution and magnitude of rxy in the jet plume; 2) 

correct prediction of the distribution and magnitude of K in the jet plume; 3) prediction of physically 

possible solutions for the axial Reynolds stresses over the entire flowfield; 4) correct relationships 

of the axial Reynolds stresses to K, and 5) correct prediction of the distribution and magnitude of 

U and V. 

Based on these observations, there is little reason to continue to evaluate flowfield simulation 

results from the K - e model, since a primary objective of this research is validation of the RSTM. 

Thus, further analysis of the flowfield is performed only with numerical results from the RSTM and 
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experimental data. 

Separate regions where inflow air and injectant are concentrated is identified through an 

analysis of Mach contours and velocity gradients and it is shown that the interfaces between these 

regions are coincident with higher magnitudes of the Reynolds stresses. A correlation is noted 

between the sign of rxy and the sign of the Mach number gradient with respect to radial distance 

from an apparent center of the plume. Furthermore, this correlation and numerical results from the 

RSTM and K - e model for TXZ and ryz, is used to establish the unsuitability of the K - e model 

based upon the Boussinesq approximation for simulating Reynolds stresses in rotating flowfields. 

The Boussinesq approximation fails because its formulation assumes unidirectional changes in the 

velocity components used to compute the shear stresses. 

It is also observed that the predicted distribution of vorticity of each component of vorticity 

from both models is nearly identical. It is also observed that the TXZ and ryz predictions from the 

RSTM have distributions of shear stress very similar in shape to the distributions observed in the 

contour plots of UJX and u)y. Thus, it is postulated that more physically correct approximations of 

TXZ and Tyz may be given by nj oc e.jktok rather than traditional assumption that r^ oc Sij. 

Finally, it is suggested that a contributing factor to the asymmetry observed in the experimental 

data is the sparse number of streamwise data collection planes and systematic errors in probe 

positioning. The analysis conducted in Section 7.3.1 called into question the adequacy of the 

number of streamwise planes in which experimental data is reported. It is seen in the contour plots 

of variables for which experimental data is available, that the predicted maxima and minima of the 

variables do not consistently coincide with the data collection grid points. Since the spacing between 

each plane is almost 2mm, a lack of resolution could easily exaggerate the apparent asymmetry 

of the experimental flowfield, especially if a maxima or minima is captured on one side of the 

centerline, but not on the other. The possibility of capturing a maxima or minima on one side of 
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the centerline and not capturing it on the other side is reasonable when one considers the predicted 

gradients of the turbulence variables are very large and that the lateral translation of the probes was 

performed by hand. 

7.4 Evaluation of Results at Station 40 

Two topics of discussion are presented in this section. The first topic is an evaluation of the 

symmetry boundary condition used with the half-plane grid and the second topic addressed in this 

section is the continued validation of the RSTM and its implementation in the ISAAC algorithm. 

The primary experimental data station used by McCann and Bowersox is x/d = 40; thus, the 

computational grid must extend beyond this station. Furthermore, the grid must extend to the upper 

and side walls of the test section so the reflection shocks are accounted for in the f lowfield solution. 

A comparison of the cross-sectional domain of the full-plane grid and the test section (Figure 64) 

shows that a substantial increase in cross-sectional area needs to be modeled in order to capture the 

shocks. 

Modeling the entire test section represents a significant increase in time and computational 

resources required to obtain a converged solution. A single converged solution with the full- 

plane grid requires approximately 250 CPU hours and 256 Megawords when the simulation was 

performed on the Cray J916 located at the Aeronautical Systems Command Major Shared Resource 

Center, Wright-Patterson AFB, OH. Thus, a strategy to reduce total CPU run time and the number 

of computational nodes is required so the test section from x/d = -5 to 41 can be modeled. The 

reduction strategy employed is the symmetry boundary condition at the test section center line. 

Since x/d = 40 is the primary data collection point used by McCann and Bowersox [52], there 

is substantially more experimental data available for validation purposes at this location. At station 

40, numerical predictions are compared to experimental data for the U, V and W components of 

velocity, rxy, TXZ and K. 
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7.4.1   Symmetry Boundary Condition Evaluation 

The symmetry condition reduces the computational resources required to model a symmetric 

flowfield by a factor of two. It is seen in Section 7.3 that the computational results for every 

variable in this flowfield is symmetric. Therefore, a properly implemented symmetry condition 

on the z/d = 0.0 plane should be an acceptable alternative to modeling both sides of the test 

section. By using this boundary condition, the additional resources required to encompass station 

40 are obtained from the redistribution of the resources used to model both sides of the flowfield 

with the full-plane grid. The grid resolution study, see Appendix F, resulted in the half-plane, which 

has ij, k dimensions of 339 x 121 x 61. After accounting for the ghost cells needed to enforce 

boundary conditions, this grid required 2,714,112 computational nodes. This is less than the number 

of nodes used in the full-plane. Approximately 8000 iterations (approximately 225 CPU hours and 

256Megawords) are required to reach a converged solution with the RSTM. A visualization of the 

domain modeled by this grid is seen in Figure 192 and a summary of the cell spacing is also provided 

in Appendix F. 

Validity of the symmetry boundary condition is investigated by comparing RSTM simulation 

results at station 20 from the full-plane grid to those of the half-plane grid. In Figures 103 - 110, 

displayed quantities for z/d > 0.0 correspond to the half-plane grid and those for z/d < 0.0 to the 

full-plane grid. The flow variables in these figures are selected for evaluation because these terms 

are compared to experimental data at station 40 in Section 7.4.2. 

There are some minor differences in the grid spacing which are seen in Figure 103. In this 

figure, the region modeled by both grids is marked by the thick line. 

Evaluation of the numerical data in Figures 104 - 110 indicate that the differences in the 

flowfield solution form the two grids are minor and do not constitute a significant change in the 

flowfield solution.   The most significant changes are seen in the contour plots of the velocity 

134 



components. In each of the plots, the continued propagation of the bow shock is seen in the half- 

plane grid results and its presence contributes to the differences visible in the velocity components. 

These changes are minor and are only seen in the contours closest to zero in plots of the V and W 

components (Figures 104 and 105). The impact on U is also minor as is seen in Figure 106. In 

the full-plane grid, the extrapolated boundary condition predicted that the lower limit of the shock 

is slightly closer to the plume than it is in the half-plane grid. This may account for the slight 

differences between the two solutions in the central part of the plume as well. The changes in the 

velocity components are so small that vorticity is only affected in its contours closest to zero. There 

is a slight upward shift seen in Figure 107 of the location of the maxima. This shift is also seen in 

the contours for U and V". 

The changes in the turbulence quantities are also minor. These differences are seen in Figures 

108 -110 and generally consist of a slight increase in the region where turbulent activity is predicted. 

There is also a slight elevation of the centers of activity in each of terms which is consistent with 

the trend seen in Figures 104-107. 

In both the U and W contours from the full-plane grid predictions, there is a discontinuity in 

the contours at the uppermost plane. This is caused by the extrapolation of interior flowfield data 

to the boundary of the domain. This discontinuity only appears when there is a sudden change in 

flow conditions across the cells used for the extrapolation. This situation is seen at the top of the W 

contours in Figure 105. In Figure 105, there is a spot marked in the half-plane grid where the contour 

levels of W changes from one level to an other. As seen in Figure 103, this change occurs between 

the cells defining the upper boundary in the full-plane grid. A similar phenomena is observed in 

the contours of variables in the half-plane grid along z/d = 0.0. This is because the symmetry 

boundary condition also uses extrapolated data from the interior of the domain to compensate for 

the lack of specific flowfield data at the boundary. 
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Overall, the symmetry and extrapolation boundary conditions give very similar results in the 

regions where they have common domains. The differences seen in the contours are attributed to 

the following deficiencies in the methods used to compute the solution. First, some fidelity of the 

solution is lost in the half-plane analysis at z/d = 0.0 and in the full-plane analysis at the top of 

the domain, because extrapolated values from only the interior of the domain are used to establish 

the solution at these boundary locations. The impact of this limitation can be minimized with small 

grid spacing along these planes. Second, since the half-plane grid extends to the side and top walls 

of the test section, effects from the tangency boundary condition may be influencing the solution at 

the centerline. Third, there are minor differences in the grid spacing between the two grids. 

It is seen in this section that the differences in the flow predictions from the two grids are minor 

and do not constitute a significant change in the flowfield solution. Therefore, it is assumed that the 

half-plane grid, with a symmetry condition at z/d = 0.0, will result in an acceptable discretization 

of the flowfield. 

7.4.2   Comparison of Experimental Results to Computational Results at Station 40 

Station 40 is the primary data collection point used by McCann and Bowersox [52], 

consequently there is substantially more experimental data at this station which can be used to 

further validate the RSTM for this flowfield. At this location, numerical predictions are compared 

to experimental data for the U, V and W components of velocity, rxy, rxz and K. 

Contour plots of the experimental data collected by McCann and Bowersox at station 40 are 

shown in Figures 111 - 118. Visual comparisons of the data to the numerical results are enhanced 

by superimposing the experimental data grid over the contours in all of the figures presented in this 

analysis. For added ease of comparison between the data sets, the computational results from the 

half-plane grid are mirrored across the test section centerline. 

Regions of higher concentrations of injectant and inflow air are identified at this station as 
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they are at station 20. In Figure 111 the inflow air forced up into the injectant plume (additional 

details in Section 7.5) has continued to rise further up into the test section. The region with the 

higher concentration of injectant has continued to rotate around the edges of inflow core and is now 

under it. The transition interface between the injectant and inflow is also shown in this figure. The 

relevance of the radial arrows labeled ri and r2 in the experimental contours is addressed later during 

the discussion of the TXZ contours. 

Good agreement is seen between the experimental data and the numerical results in Figure 111. 

The lower velocity inflow is easily identifiable in the experimental data, however, a concentrated 

zone of injectant can not be identified. This indicates that the injectant may have diffused faster than 

predicted by the RSTM. The remnants of the upwash is also identifiable in both sets of contours 

The experimental data for the Mach number as well as the U component of velocity (Figure 

112) indicates the jet plume is a single structure roughly centered about the test section centerline. 

Within the plume some asymmetric behavior is observed and this is indicated by the lower velocity 

region (U « 2.70) offset from the centerline. There is also some asymmetric behavior in the 

boundary-layer, indicated by the low velocity indentations seen at z/d = —2.0 and 2.0. At 

z/d = 2.0 the velocity is lower than it is at z/d = -2.0. 

Overall, the numerical results for U and the experimental data are in good agreement for the 

range of velocities within the plume and at the upper edges of the boundary-layer. However, the 

RSTM predicted two separate low velocity zones on either side of the centerline, where as the 

experimental data only shows one. In Figure 66, discussed in Section 7.3.1, these regions are 

identified as zones containing a higher concentration of inflow air than injectant. It is also seen 

that the two regions identified as zones containing a higher concentration of injectant than inflow 

air, has rotated down and under the inflow zones. 

Good agreement between the numerical results and data is also seen in the predicted plume 
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height. The experimentally measured height of the center of the plume was approximately 4.25d 

and the height predicted by the RSTM was 4.75d. The experimentally measured width of the plume 

at the center of the plume was approximately 3d and the predicted plume width from the RSTM 

was 2d. The RSTM prediction of a smaller plume width than the experimentally measured width is 

consistence with the trend seen at station 20. 

Excellent agreement between the experimental data and the numerical results for V is seen 

in Figure 113. The only significant differences seen for the upwash is that the peak values of the 

experimental data are offset from the centerline by about 0.25d. The experimentally measured width 

of the upwash is approximately 2.25d, whereas the RSTM prediction is 1.5rf, thus continuing the 

trend of the RSTM predicting narrower structures than experimentally measured. The agreement for 

maximum downwash is not as good as the agreement for the upwash. The experimentally measured 

maximum downwash near z/d = -2.5 is approximately -0.20, however, the RSTM predictions 

for the downwash are only -0.10. Furthermore, the location of maximum downwash differed by 

0.75d between the RSTM results and the data. There is also a significant difference in the measured 

maximum downwash from one side of the test section to the other. The peak downwash is 50% 

larger at z/d = -2.5 than it is at z/d = -2.0. Furthermore, the measured value at z/d = -2.0 is 

much closer to the numerical value. 

The high degree of asymmetry seen in the experimental data for W conflicts strongly with 

the numerical results presented in Figure 114. The experimental data has the appearance of being 

shifted up for z/d > 0 and down for z/d < 0. Also, the magnitudes of the measured sidewash 

are significantly larger for z/d > 0 than the magnitudes for z/d < 0; this is especially true for the 

positive sidewash. Its magnitude for z/d > 0 is 78% larger than it is on the other side. 

Since the RSTM predictions on one side of the test section are a reflection of the other, the 

numerical results can not be used to contradict the asymmetric behavior. However, examination of 
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the location of the extrema do suggest a possible cause for the asymmetry. The distances between 

the extrema seen in the numerical contours and the measured data suggest that the physical f lowfield 

is indeed asymmetric and that there is a preferred state for the W component of velocity on opposite 

sides of the centerline. Labeled in the numerical results shown in Figure 114 are eight extrema for 

W, two for each vortex. In the experimental results there are only four extrema. Certainly, the 

limited range of the data collection grid accounts for the absence of extrema 4 and 8. However, the 

reason for the other two missing extrema is not apparent. 

The vertical distances between the extrema in the numerical and experimental contours suggest 

that extrema 2 and 7 seen in the numerical results are the missing pair in the measured data. In the 

numerical results, the vertical distance between extrema 5 and 6 is 2.2d and the distance between 

extrema 1 and 3 is 3.73d. In the measured data, the vertical distance between extrema labeled 1 and 

3 is 4.05d and the distance between extrema 5 and 6 is 2 Ad. A comparison the separation distances 

between extrema 1 and 3 in the experimental data to the distance between these extrema in the 

numerical results, shows there is only an 8% difference in the separation distances. A comparison of 

the separation distances of extrema 5 and 6, also results in a 8% difference. These results indicate the 

labels assigned to the extrema of the measured data correctly correspond to the labels of the extrema 

in the numerical results. Thus, extrema 2 and 7 are absent from the experimentally measured data. 

Extrema 2, 3, 6 and 7 are small quantities and as seen in the numerical results, 2 and 3, and 6 and 

7 are not directly below each other. Thus, extrema 2 and 7 may have not been detected through the 

combined effect of several factors. First, the small magnitude of the quantities; second, data grid 

resolution; and third, systematic errors in probe positioning. 

The smallness of the quantities also lends support to the theory that the shocks off of the 

side walls may have perturbed to the flowfield enough to cause an asymmetric configuration. The 

perturbation caused by the shocks may not have been sufficient to cause the same reaction in the 
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numerical solution and the highly dissipative nature of the algorithm, coupled with the absence of 

time accuracy may have damped out any asymmetric behavior present in the flowfield. 

Experimentally measured values and numerical predictions for uo% are seen in Figure 115. 

Reasonable agreement with the corresponding experimental data for maximum vorticity strength 

and location of the maximum is seen in these predictions. The wake vortex structures are also 

observed in the boundary-layer predictions from the RSTM. 

Figure 116 shows poor agreement between the magnitude and distribution of the experimental 

data and the predicted results for K from the RSTM. The maximum magnitude of K predicted by 

the RSTM is significantly larger than the experimentally measured maximum. The experimental 

maximum is only 0.016, whereas the RSTM maximum is 0.05, (this value is too large to visually 

identify with the range of contours used to plot McCann and Bowersox's data, but it occurs at the 

vortex center of rotation located at z/d = 0.5, y/d = 4.5). The magnitude of K predicted by RSTM 

in the boundary layer is also significantly larger than that reported experimentally. The maximum 

value reported in the experimental data for K in the boundary layer is 0.017, whereas the maximum 

predicted by RSTM in the boundary layer and in the domain of the data collection grid, is 0.6. This 

value is predicted along the line y/d = 0.4 and is also too large for visual identification with the 

range of contours used. Despite the magnitude differences, there is good agreement for the vertical 

location of maximum K outside the boundary-layer. The average location of the two experimentally 

measured maxima is 4.57rf. The RSTM prediction for the location is 4.8d or a difference of only 

0.23d. The average horizontal distance from the centerline of the experimentally measured maxima 

is 0.90d. The RSTM prediction for the distance is 0.50<i. 

The numerical predictions shown in Figure 117 for rxy are in good agreement with the 

experimentally measured magnitudes of the shear stress. The contour shapes from the two sets 

of data also agree well and are similar to the distributions seen in Figures 69 and 70 at station 20. In 
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Figure 117, there is a central core of positive shear stress surrounded by a horseshoe shaped region 

of negative shear stress. Once again, some asymmetry is seen in the locations of rxy extrema, but 

the overall distribution is relatively symmetric and the RSTM correctly predicted the formation of 

the horseshoe shaped region surrounding a core of positive shear stress. Here again, this structure 

corresponds to the interface between the upwash inflow air and the surrounding mixture of injectant 

and air. The vertical length of 3.25d for the horseshoe structure predicted by the RSTM was only 5% 

less than the experimentally measured length of 3.45d. Consistent with predictions of other flow 

structures, the lateral dimensions had poorer agreement with the experimentally measured values 

than it did in the vertical direction. The lateral dimensions of this structure were predicted by the 

RSTM as 2 Ad or 46% less than the experimentally measured value of 4.5d. 

As at station 40, the RSTM predicted two distinct regions of maximum positive shear stress that 

are symmetric about the centerline, whereas the experimental data reflects a single structure slightly 

elongated on one side. This region of shear stress corresponds the transition interface between the 

upwash inflow air and the injectant. The lateral width from the outer edges of these two structures 

is 1.3d. This is only 7% less than the experimental value of lAd. The vertical height of this region 

is l.5d, which also is 7% greater than the experimentally measured value of I Ad for the elongated 

side. The RSTM also predicted a second region of negative shear stress under the region of positive 

shear stress. This region corresponds to the interface between the injectant and mixture of inflow 

air and injectant under the plume. 

The most significant differences between the RSTM predictions and the experimental data are 

for the measured values of TXZ as seen in Figure 118. The experimental data exhibited extreme 

asymmetric behavior in the region near the jet plume and in the boundary-layer. It is also seen in 

the experimental data, that every point in the flowfield has a positive value for the shear stress. The 

severe asymmetric behavior and the lack of negative shear stresses is completely contradicted by 
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the RSTM predictions. 

The absence of negative shear stresses in the experimental data is inconsistent with other 

crossflow variables reported for the secondary flowfield and with the trend established in Section 

7.3.2 for the sign of TXZ. In Section 7.3.2, it is shown that when z/d > 0, TXZ is positive if the 

Mach gradient is negative and negative if the Mach gradient is positive; and when z/d < 0, TXZ is 

negative if the Mach gradient is negative and positive if the Mach gradient is positive. 

A possible explanation for the extreme asymmetry of rxz is given once the correlation for the 

sign of the shear stress and the sign of the Mach number gradient is applied to Figure 111. First, 

consider the line ri shown in Figure 111. This line passes through the positive Mach gradient (PMG) 

as its distance from the apparent center of radius increases. Since z/d < 0 in this region and there 

is a PMG, values of TXZ should be positive, and this is what is seen in Figure 118. Now consider the 

line r2, which is also shown in Figure 111. This line first passes through a negative Mach gradient 

(NMG) as it moves away from the center, and since z/d > 0, values of TXZ should be positive in 

this region. Again, this correlation is consistent with the experimental data as a very small region 

of increased positive shear stress is seen in the experimental data at z/d = 0.5, y/d = 4.9. Next x% 

passes through a PMG, which appears to be as steep as the PMG ri passed through. According to 

the correlation, this should result in negative values for TXZ. However, these negative values are not 

seen in the experimental data shown in Figure 118. 

Consider the values for rxz predicted by the RSTM in the lower set of contours in Figure 118. 

In these contours, rxz has positive and negative values which are consistent with the correlation for 

sign and Mach gradients. However, the width of these structures is very small. The largest structures 

have widths less than 0.3d. This is smaller than the lateral spacing along z/d in the experimental 

data collection grid. Thus, if experimental data collection grid is used to sample the numerical 

results, many of nonzero regions of these structures would be missed. 
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It is now suggested that the combination of an asymmetric f lowf ield with small TXZ structures 

and sparse lateral spacing in the data collection grid exaggerated the asymmetry in the flowfield. 

The trends between the experimental data and the numerical results indicate that the plume is wider 

than that predicted by the RSTM by a factor of 1.5. Thus, the predicted locations of the nonzero 

stresses are most likely to be about 1.5 times farther from the centerline than shown in the RSTM 

contours. If the flowfield is slightly asymmetric (as seen in the other experimental data) then it 

is possible that the large positive shear stress structure coincided with the data grid in one side of 

z/d = 0.0, but none of the negative shear stresses structures were close enough to a grid point to 

be detected, leading to the severe asymmetric behavior observed in the experimental data. 

7.4.3   Summary of Results at Station 40 

In this section it is shown that there are only minor differences in the numerical flowfield 

solutions when a symmetry boundary condition is used at the test section centerline. The subsequent 

reduction in computational resources required to model only half of the test section made feasible 

the numerical simulation of the flowfield past the data collection point at station 20. 

Comparison of numerical simulation results from the RSTM to experimental data at station 40 

indicated that the RSTM is a reasonably valid turbulence model for simulating the oblique TJISF 

generated by the inflow conditions listed in Tables 7 and 8. \ery good agreement is seen between the 

experimental data and the numerical results for U, V and rxy. Less consistency is seen between the 

experimental data and the numerical results for W and TXZ. The results of the numerical predictions 

for these two terms indicate that poor resolution of the data collection grid and systematic data 

collection errors may have exaggerated the asymmetries seen in the data. 

Additional numerical simulations performed with a pressure ratio twice that specified in Table 

8 also resulted in a symmetric solution for the flowfield. Contour plots of the thermo-mechanical 

and turbulence variable predictions at station 10 from the higher pressure simulation are given in 
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Appendix G. 

It is noted in Chapter 5 that the algorithm used for the numerical simulations uses local 

time stepping and a diagonalized approximate factorization scheme with second-order Roe flux 

differencing to solve the governing equations. These features result in a highly dissipative numerical 

algorithm. Furthermore, local time stepping is used, which means it is not time-accurate to any order 

of accuracy [63]. Thus, if the static asymmetric behavior seen in the experimental data is caused 

by the transient growth of an asymmetric mode, it could be filtered out during the computation. 

Therefore, even though it is suggested that the asymmetric behavior is amplified by poor grid 

resolution and systematic errors, inherent flow physics can not be completely discounted. 

7.5 Flowfield Investigation 

It is shown in this section that the principal agent responsible for enhanced vortical motion in 

the flowfield are the RSI vortices. These vortices are generated through the combined effects of the 

upwash behind the plume of the inflow air and the mirrored shock structure of the oblique barrel 

(OB) shock. This vortex pair forms downstream of the OB shock terminus and inside the jet plume. 

Additional analysis of this flowfield shows that the lateral expansion of the plume is impeded by 

the JI vortices. The rotation of the JI vortex pair is sustained by the combined effects of the upwash 

recompression (UR) shock, the inflow sidewash and deflection off of the boundary of the jet plume. 

The JI vortices, which are initially formed at the sides of the nozzle orifice, extend back along the 

sides of the plume following the path of the UR shock as it propagates through the test section. 

The mechanisms which sustain the JI vortices retard plume expansion by directing inflow sidewash 

back towards the center of the test section and into the plume. The mechanisms which generate the 

RSI vortices accelerate plume expansion, and therefore mixing, by forcing the injectant to move out 

away from the center of the test section. It will be seen that once the sustaining mechanism of the 

JI vortices are disrupted, lateral expansion of the plume accelerates. 
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It is put forth that the common near-field representation of the injection flowfield shown in 

Figure 61 is incorrect for oblique TJISF. This figure shows only a single pair of injection-induced 

counter-rotating vortices outside of the boundary layer. Based on the numerical simulations, a more 

correct representation of the near-field flow distinguishes between two pair of vortices: the JI vortex 

pair which forms at the sides of the nozzle and the RSI vortex pair which forms inside the jet plume, 

but downstream of the nozzle orifice. After the far-field consolidation of the RSI and JI vortices, 

the traditional representation of the wake structure depicted in Figure 61 is regained. Experimental 

data from Hartfield and Bayley [27] and [7] corroborates this near-field description and data from 

McCann and Bowersox [52] corroborates the far-field description. 

The flowfield description given above is illustrated with a streamwise, station-by-station 

description of the evolution of the oblique TJISF. The discussion of the flowfield evolution is based 

on the RSTM numerical simulation results with the full-plane grid. The results of this simulation 

at x/d = 20 are the RSTM results presented in Sections 7.3 and 7.4.1. Contour plots of Mach 

number and ux at relevant cross-sectional planes are used to illustrate the flowfield evolution. Also 

included in many of these figures is the location of vortex centers of rotation present in the current 

cross-sectional plane. 

The description of the flowfield begins in Section 7.5.1. In this section Mach contours from 

the plane defined by z/d = 0.0 are used to identify some of the flowfield structures which will be 

discussed in Sections 7.5.2 and 7.5.3. Further identification of flowfield structures is provided with 

near-field and far-field numerical oil smears at the test section surface as well as surface contours 

of ux and representative cross-sectional views of the x - z plane at y/d = 0.91 and y/d = 1.49. In 

Section 7.5.2 the actual streamwise development of the flowfield is presented. This is followed by a 

discussion in Section 7.5.3 of the flowfield from the perspective of the x - z plane. As a final topic 

of discussion, in Section 7.5.4, contours plots of predictions from the RSTM and K - e models for 
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surface temperature and skin friction coefficient are compared. 

7.5.1   Identification of Relevant Flow Features 

The first flow features identified in this discussion are seen in the Mach number contours along 

the centerline of the test section. In the inset of Figure 119, the boundary-layer separation point is 

indicated at x/d = -1.48. Also identified in this figure are the boundary-layer separation and jet 

induced (JI) shocks. These two shocks are collectively referred to as the bow shock, which is shown 

in Figure 119 along with the centerline slip surface. The slip surface is the local, upper limit of the 

inflow upwash which is described in more detail in Section 7.5.2. Excellent agreement is seen in 

the RSTM results and the shadow graphs from McCann and Bowersox for the location of the bow 

shock. At x/d = 3.0, the experimental data shows the bow shock at y/d = 3.4, while the RSTM 

predict it at y/d = 3.7. 

Also shown in Figure 119 are particle trajectories of injectant leaving the leading and trailing 

edges of the nozzle. It is seen from these paths that the injectant at the leading edge of the nozzle 

starts to turn parallel to the inflow air near x/d = 3.0 and that it is almost completely parallel to 

the inflow air by x/d = 6.5. The streamtrace of the injectant leaving at the trailing edge of the 

nozzle closely follows the angle of the slip surface. This streamtrace also shows that the injectant 

at the trailing edge of the nozzle initially moves parallel to the test section surface before reaching 

a downstream separation point. 

The near-field numerical oil smear (Figure 120) also shows several important surface structures 

of the flowfield and their approximate locations. This representation is generated with streamtraces 

of the U and W velocity components for the computational cells adjacent to the test section surface. 

These streamtraces are only two-dimensional representations of the particle paths and the apparent 

continuity of the path for a single particle in this plane is an illusion created by the absence of the V 

component of velocity. Thus, at any point in this flowfield, fluid from a plane above this one may 
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be replacing a fluid particle from this plane that has moved up to a higher elevation in the flowfield. 

At the nozzle exit the high pressure injectant expands outward in all directions. This expansion 

causes boundary-layer separation upstream of the nozzle. The injectant expanding upstream of the 

nozzle forms a recirculation zone between the nozzle and the upstream extrema, x/d = -1.48, of 

the boundary-layer separation line. The experimentally measured extrema of the boundary-layer 

separation line is at x/d = -1.55; thus, there is only a 0.07d difference in the numerical and 

experimental data. Within this recirculating region, the fluid is almost exclusively injectant. At 

the leading edge of the recirculation zone, the inflow deflects the injectant up from the test section 

surface and back downstream. This results in a horseshoe vortex forming behind the line which 

defines the boundary-layer separation points. On the downstream side of this line, there is a thin 

layer of fluid containing injectant and inflow air. This layer is less than O.Old thick and the fluid 

above this layer is almost exclusively inflow air. However, because of the injectant's downstream 

deflection, it is possible for injectant to exist anywhere in the flowfield behind this line. 

The outward expansion of the injectant leaving the nozzle between x/d = -1.23 and 

x/d = 0.0 is held in check by the inflow air which has moved up and over the horseshoe vortices. 

When the inflow air and the expanding injectant near the surface collide, part of the injectant is 

forced down to the surface and back in towards the nozzle. The impact points of the injectant with 

the test section surface is the attachment line seen in Figure 120. The JI vortices, which first appear 

near x/d = -0.25 are a result of the injectant turning back in towards the nozzle. Consequently, 

the fluid in the region between the attachment line and the edge of the nozzle, to about x/d = 0.5, 

is almost exclusively injectant. 

The line on either side of the nozzle between the JI vortices and the edges of the nozzle mark 

the point where the jet plume separates from the test section surface. These two separation lines 

converge as the plume rises above the surface, and near x/d = 2.0, the two lines merge into a single 
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secondary separation line. Between the plume separation lines the fluid is exclusively injectant. 

When the plume begins to rise above the test section surface near x/d = 0.5, inflow air is drawn 

down to the surface and turned back in towards the centerline to fill the void left by the plume. The 

turning of the inflow air causes an expansion fan to form and accelerate the air. As the plume begins 

to separate from the test section surface, the JI vortices are carried along with it and near x/d = 0.5 

they also leave the vicinity of the surface. Near the point where the two plume separation lines 

merge, the inflow air streams from either side of the nozzle collide with each other. The line where 

they collide is the secondary separation line. It will be seen in Section 7.5 that the inflow air not 

only turns back out away from the centerline, but is pushed up into the bottom of the plume. This 

upwash turning causes an upwash recompression (UR) shock in the jet wake and an upwash slip 

(US) surface forms in the impact region between the upwash and the jet plume. 

Not all of the upwash is deflected up into the plume. Some of it is directed back down to the 

test section surface and forms two wake vortices near x/d = 3.0. The lines trailing downstream 

of x/d = 3.0 and away from the centerline can be interpreted as either wake vortex separation 

lines or as a continuation of the secondary separation line. Either way, this line defines the Mach 

angle (approximately 10°) of the UR shock at the test section surface. In the far-field view of the 

numerical oil smear (Figure 121), it is seen that the wake vortex separation lines continue to move 

away from the centerline until about x/d = 16. At this station they are turned back in towards the 

centerline by inflow of core air. Finally, in Figure 120, a wake vortex attachment line is identified 

between the wake vortex separation lines. 

A great deal of insight as to the structure of a f lowf ield is available through proper interpretation 

ofujx. The discussion in Section 7.5.2 relies heavily upon the fact that cox represents turning of the 

fluid and that changes in the sign of cox indicate changes in direction of the turning. As an illustration 

of the utility of LOX, the features identified in Figures 120 and 121 are correlated with the LOX contours 
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shown in Figure 122 and several additional flow phenomena not readily visible in the numerical oil 

smears are identified. 

Flow features identified in Figure 120 and also clearly identifiable in Figure 122 by changes 

in the sign of cvx are the lines defining injectant attachment, jet boundary-layer separation and wake 

vortex separation. Some features which are not readily identifiable in the oil smear are the bow 

shock, the line defining the pivot points of the expansion fan and the UR shock and the leading 

edges of the JI and wake vortices. This figure clearly shows that the bow shock and the boundary- 

layer separation line are not coincident at any location in the flowfield. Even at the extrema of the 

shock and boundary-layer separation line, the bow shock is further upstream of the separation point. 

The line defining the UR shock shows the exact location of the point where the shock begins at the 

surface. Furthermore, these contours show that the initial angle of the shock in the x - z plane 

is approximately 30° and only after the formation of the wake vortices does it shallow to the 10° 

identified in the oil smear. The leading edges of the initial formation of the JI and wake vortices 

are also further upstream than indicated by the oil smear. Certainly, the utility of this parameter for 

identifying relevant flow structures has been demonstrated. 

The OB shock is a highly three-dimensional structure, which has different shock characteristics 

in each of the three coordinate planes. The characteristics of each plane are presented in the 

following discussion, beginning with the x - y plane at z/d = 0.0. 

The pressure ratio of the injectant and inflow air is not sufficient to form a sonic disk at the top 

of the plume or a sonic barrel shock around the plume. However, a shock disk and an OB shock do 

form at the end of the expansion process and are shown in Figure 123. The barrel shock is called 

oblique because outside of the boundary layer it does not cause a sonic condition around the plume. 

Like Figure 119, this figure is a contour plot of the Mach number at the test section centerline, but 

the range of contours has been changed to illustrate the shock and expansion structures in and around 

149 



the plume. As the injectant moves up into the core flow, expansion waves form. These expansion 

waves reflect off the boundary of the jet plume as compression waves and form a shock where they 

converge at the top of the plume [81]. These expansion and compression waves are manifested as 

the shock disk and OB shock and it should be noted that at this x - y plane (z/d = 0.0) the OB 

shock is a slip surface, however in every other z/d plane it is a shock. The x - y reflection line 

roughly represents the vertical location in this plane where the expansion waves are reflected off the 

plume boundary as compression waves. It will be seen in subsequent discussions that the severity 

of the OB shock is delineated by this line. These expansion and compression waves, combined with 

the injection angle and the impact pressure created by the inflow air, give the OB shock a squashed 

over diamond shape in the x — y plane. 

In the y - z plane and downstream of the nozzle at x/d = 2.0 (Figure 124), the OB shock 

has less of a diamond shape. However, the formation of the expansion and compression waves is 

still evident. Again, below the y - z reflection line, the pressure equalization process is primarily 

expansion of the injectant. However, at the boundary of the plume, the expansion waves reflect 

off of the boundary as compression waves and turn the path of the fluid particles, thus, forming 

the lower part of the OB shock. The turning caused by the compression waves is illustrated by the 

streamtrace which exits below the reflection line. Above the reflection line the compression waves 

converge to form the shock disk and the upper part of the OB shock. The turning caused by the 

upper part of the OB shock is illustrated by the streamtrace which exits above the reflection line. 

In Figure 125 the OB shock has the characteristic diamond pattern described by Hill and 

Peterson of an underexpanded fluid [28]. The lower part of the OB shock below the y - z plane 

reflection line is shown in this figure. In this figure, the OB shock is further categorized as leading 

edge (LE) and trailing edge (TE) OB shocks. Region I, which is bounded in this plane by the LE 

OB shock and the x - z plane reflection line, is composed almost exclusively of expansion waves 
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originating from the nozzle upstream of x/d = 0.0 and by compression waves reflected from the 

upstream boundary of the plume. Region II, which is bounded in this plane by the TE OB shock and 

the x - z reflection line, is composed of expansion waves originating from the nozzle downstream 

of x/d = 0.0 and by compression waves reflected from regions of the plume upstream of the x - z 

reflection line. The compression waves in region II are stronger than the compression waves in 

region I because it is downstream of the reflection line. The upper bound of regions I and II is the 

reflection line in Figure 123 and the lower bound is the lower part of the OB shock in Figure 124. 

The other labeled objects in Figure 125 will be discussed after the upper part of the OB shock in the 

x — z plane is discussed. 

The shocks in the upper part of the OB shock are highly curved and form a tear-drop shape. 

This shape is characteristic of free falling fluids in an atmosphere [81] and the pressure of the inflow 

air has a similar effect on the shape of the injectant. The region bound by the LE OB shock and the 

x-z reflection line (region III) is composed of reflected compression waves from the lower parts of 

the plume and to a smaller degree, of expansion waves from the upstream part of the plume. Thus, 

the OB shock in region III should be stronger than the shock in either region I or II. Once again, 

injectant is leaving the plume through this upper surface in the vertical direction and is interacting 

with the inflow air, thus this is a shock and not a slip surface. Region IV is almost exclusively 

composed of reflected compression waves from the other three quadrants of the plume. Thus, the 

shocks bounding this region are the strongest shocks encountered by the injectant as it leaves the 

OB shock/shock disk structure. 

In the preceding discussion, it is seen that the OB shock/shock disk structure surrounding 

the plume can be divided into one of four regions separated by three reflection lines, one in 

each coordinate plane. An expansion/mild-compression region (I), composed mostly of expanding 

injectant with a small degree of reflected compression waves; an expansion/compression region 
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(II), composed of a mixture of expanding injectant from the nozzle and reflected compression 

waves from the upstream regions of the plume; a compression/expansion region (III), composed 

of reflected compression waves from the lower regions of the plume, then reflected downstream as 

expansion waves; and finally, a compression/compression region (IV), composed almost entirely of 

compression waves from the other three regions of the plume. 

Several additional shock structures critical to the downstream description of the flowfield form 

in the wake of the OB shock and are also introduced in Figures 125 and 126. Where the TE OB 

shocks cross in Figure 125, a type I interference shock pattern of the form identified by Edney [17] 

and described by Emanuel [18], is formed. As shown by the minimal turning of the particle stream 

paths crossing them, the mirrored trailing edge (MTE) OB shocks emanating from this region are 

very weak shocks. These are weak shocks because they are mirrors of the expansion/compression 

shocks in region II of the OB shock. 

The UR shock and US surface formed by the upwash from the inflow air collision, is also 

identified in the figure. As seen by the significant turning of the particle stream paths, in this part of 

the flowfield the UR shocks are stronger than the MTE OB shocks. The upstream intersections of the 

UR and MTE OB shocks also form type I interference shock patterns. A fork at the trailing edge of 

the OB shock is formed where the upwash forms the US surface and at the downstream intersections 

of the UR and MTE OB shocks, a lambda shock or a type VI interference shock patterns forms [18]. 

The inflow air expansion fan is seen outside if the various shocks and the nozzle orifice is also 

visible in Figure 125. 

It is seen in Figure 126 that the relative strength of the MTE OB shocks are significantly 

stronger above the y - z plane reflection line than they are below it. Above this reflection line 

the MTE OB shocks are mirrors of the region IV compression/compression shocks identified in the 

OB shock structure. The combined effects of these shocks and the UR shocks result in a dramatic 
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decrease in Mach number from Mach = 6.3 in the plume to Mach = 1.7 immediately downstream 

of the MTE crossover point. It is also seen in Figure 126 that the upstream edges of the UR shocks 

no longer intersect the OB shock in this plane. At the downstream intersection of these two shocks, a 

type VI interference shock pattern is formed and in the expansion region of the interference pattern, 

the upwash forms a slip surface. 

7.5.2   Streamwise Description 

A description of the streamwise evolution of the f lowfield is given in the next series of figures. 

These figures are cross-sectional contour plots of Mach number and LOX in the y - z plane. The 

planes examined begin upstream at the bow shock at x/d = -1.5 and continue downstream to 

x/d = 20.0. The edges of the nozzle are identified in each of the contour plots at x/d locations 

which cross the nozzle. In these figures, centers of rotation corresponding to the JI, RSI and wake 

vortices are indicated by either a circle or an ellipse. Also, two ranges for the axes are used in 

these figures. Contour plots at x/d locations upstream of the nozzle and those over the nozzle are 

displayed with an enlarged area of the near-field flow. Past the nozzle, the displayed area of the 

flowfield is increased so that all of the relevant flow activity is visible. 

The flowfield description begins at x/d = -1.50. This location is at the leading edge of the 

boundary-layer separation shock. The Mach contours in Figure 127 give only the slightest indication 

of a flow disturbance and there is a slight increase in vorticity. 

The correlation between the boundary-layer separation shock in Figure 119 and the shock seen 

in the Mach contours of Figure 128 is unmistakable. The contours shown in Figure 128 are at 

x/d = —1.25, which is just ahead of the nozzle, and as seen from Figures 119 and 120, this station 

is between the maxima of the line defined by the boundary-layer separation points and the trailing 

edge of the horseshoe vortices. The vorticity generated by the recirculation in the horseshoe vortices 

is clearly visible in the vorticity contours of Figure 128. Not all of this vorticity is generated by the 
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horseshoe vortices. The vorticity in the upper part of the contours is caused by the inflow air moving 

down towards the test section surface. 

At x/d = -1.00, the leading edge of the nozzle has been crossed and the contours in Figure 

129 show the injectant moving up into the flowfield. The recirculating fluid in the boundary layer 

is still clearly visible in the Mach contours and the sonic line of the OB shock is also seen. The 

height of the sonic line at this station, 0.2d, is the maximum height attained in the simulation. The 

location of the injectant is clearly visible in the Mach contours under the recirculation region and 

a slight acceleration of the fluid caused by expansion is visible in these contours. The boundary- 

layer separation shock is spreading out and away from the plume and the JI shock is just beginning to 

move above the separation shock. The lambda shock created by the intersection of these two shocks 

is visible in the inset of Figure 119. The arms of vorticity overlapping the edges of the nozzle (lower 

contour plot) are caused by injectant and inflow air turning as the two fluids interact with each other. 

The majority of the vorticity in the arms is injectant expanding up into the inflow and out away from 

the nozzle, but some of the vorticity outside the edges of the nozzle is inflow air deflected off the 

plume boundary and directed up and outward into the test section. The vorticity labeled "up-and- 

over" is inflow air that is turning out, away from the plume, but is past the horseshoe vortices and is 

now moving down towards the test section. The vorticity generated by the separation and JI shocks 

is seen above the up-and-over vorticity. The absence of vorticity in the center of the jet plume 

indicates the core of the jet is an undisturbed fluid mass. 

By x/d = —0.50 (Figure 130), the inflow air has started to check the outward expansion of 

the injectant spilling over the sides of the nozzle. As indicated in Figure 120, at x/d = -0.50, the 

inflow air is forcing the injectant to turn back in on itself and downstream. This is also seen in the 

vorticity contours of Figure 122 near the point labeled "leading edge of jet induced vortices." In the 

Mach contours of Figure 130, the downturn in the sonic line near the nozzle edges is the inflow air 
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forcing the injectant down towards the surface. This turning is also seen in the vorticity contours. In 

these contours, there is a sign change in the vorticity where the injectant stops moving up-and-out 

and turns down-and-in. 

As the fluids move downstream from x/d — -1.0 to the current location at x/d = -0.50 the 

jet plume and the JI shock have continued to propagate further up into the inflow air. At this station 

the JI shock has risen above the separation shock and at the point where they intersect, a lambda 

shock is formed. The vorticity caused by the inflow turning as it passes through these shocks is also 

labeled in Figure 130. 

At x/d = -0.25, the JI vortex pair appears in the flowfield just above the sonic line of the 

OB shock. In the vorticity contours of Figure 131, a change in the sign of the vorticity is visible 

in small regions immediately under the circles, which mark the center of rotation of the JI vortices. 

These vortices are defined as the point in the flow where the head-to-tail connection of the V - W 

velocity vectors form a complete rotation in the y - z plane; see inset of the Mach contours in Figure 

131. The continued increase in plume cross sectional area is shown by the increase in area where 

vorticity is negligible over the nozzle and the increase in area of vorticity surrounding the plume. 

The nozzle orifice reaches its maximum width of 1.036d at x/d = 0.00. Past this point, the 

trailing edge of the plume is attached to the test section surface. In this region the injectant moves 

parallel to the surface until separates from the surface along the plume separation lines shown in 

Figure 120. As the plume begins to separate from the test section surface, the curvature of the 

plume separation line begins to turn back in towards the test section centerline. This first occurs 

near x/d = 0.50 and is coincident with the leading edge of the expansion fan (see Figure 120). The 

expansion fan forms when the inflow air turns in toward the centerline to fill the void left by the 

rising plume. 

The effects of the preceding series of events are seen in Mach number and vorticity contours for 
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x/d = 0.50 (Figure 132). The elevation of the plume and the subsequent turning of the inflow air is 

indicated by a necking in of the vorticity contours near the base of the arms of vorticity. Furthermore, 

it seen that the JI vortex centers of rotation are pulled up along with the plume and pushed up by the 

additional mass forced under the overhanging sides of the plume. 

In this set of Mach contours, the OB shock is becoming more defined and the expansion 

waves and the compression waves defining it, are labeled in Figure 132. These waves form as 

the injectant expands into the lower pressure region of the inflow air. When the pressure of the 

two fluids balance, expansion stops and the expansion waves are reflected back into the plume as 

compression waves [81]. Where the compression waves converge, a shock is formed. Certainly, if 

the injectant is expanding, the inflow air in the vicinity of the expansion must be compressing. The 

inflow compression wave resulting from this interaction with the plume is also labeled in Figure 

132. The plume overhang is also a manifestation of the balancing of the pressure and momentum 

of the two fluids. 

The discontinuous contours in the interior of the arms of vorticity in Figure 132 show that the 

OB shock is not a slip surface and that the injectant is turned as it passes through the shock. At the 

previous station (x/d = -0.25) the interior contours of the arms are relatively smooth. However, 

at this station, the contours have several discontinuous turns. The vorticity at the base of the region 

labeled "flames" is generated by injectant spilling over the sides of the nozzle. However, when 

the fluid encounters the lower portion of the OB shock, the injectant turns such that the velocity 

gradients defining u>x cancel, hence the absence of vorticity in the "pocket" of the flames. After the 

injectant has passed through the OB shock, it is entrained into the surrounding fluid and once again 

develops a dominant velocity gradient and generates vorticity. The vorticity labeled "islands" is 

generated by the injectant passing through the upper part of the OB shock. Note the similarity of the 

islands to the vorticity generated by the bow shock. It is seen during this analysis that these islands 
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of vorticity are characteristic of flow passing through a shock rather than a continuous turning of 

the fluid. 

Downstream at x/d = 1.0 (Figure 134), the flames have extended farther up into the plume 

as additional injectant enters the flowfield and encounters the OB shock after it starts to expand. 

In the pockets, the OB shock have become strong enough to reverse the sign of the vorticity of the 

injectant passing through it. 

The downstream edge of the nozzle ends at x/d =1.23 and by this station the area of flow 

activity has substantially increased. Therefore, starting with Figure 134 {x/d = 1.25), the range 

of the axes is rescaled to include more of the surrounding flowfield. This scale is used for all 

subsequent figures depicting the y — z plane. 

Immediately behind the jet at x/d = 1.25 (Figure 134) the lower edge of the plume is flat, 

indicating it is still attached to the test section surface. As indicated by the constant value of the Mach 

contours at the surface, injectant expansion in this part of the plume is being retarded by the wall. The 

vorticity in the pockets has extended further up along the arms and the islands are beginning to merge 

into a single band of vorticity on either side of the plume. Both of these changes are indications of 

increasing strength and definition of the OB shock structure in regions I and III defined in Section 

7.5.1. The flames are still present at this station, but as less of the injectant is undergoing the rapid 

expansion seen at previous locations, they are becoming less defined. The vorticity at the wall 

where the flames originate, still has the same sign as the arms, a further indication that the plume is 

attached to the wall at this station. 

When the plume first starts to separate from the surface near x/d = 0.5, an expansion fan is 

formed as the inflow air turns inward to fill the void left by the rising plume. As the plume continues 

to rise above the surface, the inflow air in the expansion fan accelerates as it turns to fill the void. 

The acceleration results in higher Mach number contours in the flowfield outside of the plume and 
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increases the vorticity in the boundary-layer. 

The combination of plume separation and inflow acceleration around the plume continues as 

the fluid moves further downstream. At x/d = 1.50 (Figure 135) the injectant core is high enough 

above the test section surface to allow expansion of the injectant on the underside of the plume. 

However, it is still attached to the wall as indicated by its flat lower surface. 

The necking in of the vorticity contours identified at x/d = 0.50 are now becoming prominent 

features in the Mach contours at x/d = 1.50. The necking in has caused the overall shape of the 

flowfield to resemble a mushroom, where the bow shock forms the mushroom's hat, the maximum 

downwash of the JI vortices form the stem, the upwash pivot points (UPP) form the connection 

between the hat and the stem, and the downwash pivot points (DPP) form the brim of the hat. The 

maximum downwash of the JI vortices defines the lateral extent of the JI vortex, i.e. fluid inside 

this point turns toward the plume and fluid outside of this point moves away from the plume. The 

UPP is the location where the fluid influenced by the rotation of the JI vortices and the plume, stops 

moving up and turns down towards the surface. The DPP is the location where this same fluid stops 

moving down and turns up away from the surface. The extent of the UPP and DPP can be seen in 

the vorticity contours of Figure 135 

The rounding of the Mach contours on the underside of the plume at station x/d = 2.00 (Figure 

136) indicates that the plume has completely separated from the test section surface. Complete 

separation is also indicated by the convergence of the lines of vorticity at the wall and under the 

plume. The pockets and islands of vorticity almost form a complete ring within the arms of vorticity. 

This ring defines the boundary of the OB shock, thus, the extent of the still expanding injectant core. 

The initial formation of the shock disk is seen near the top of the ring. Also noted in this figure is that 

the center of rotation of the JI vortices have remained outside of the expanding part of the plume. 

The rotation of the JI vortices is no longer sustained by the plume's upwash. As seen in Figure 
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137 a complex mechanism of inflow air deflection and injectant leaving through the OB shock is 

sustaining the rotation of these vortices. The sidewash of inflow air generated by the expansion fan 

is moving inward and under the plume. When the inflow sidewash reaches the bottom of the plume, 

it is deflected up and out either by the injectant leaving the plume or it simply reflects off of the OB 

shock. Thus, the opposing motion of the incoming sidewash and the outgoing sidewash of injectant 

and inflow air sustains the rotation started at x/d = —0.25. 

It is seen in Figures 120 and 122 that between x/d = 2.00 and x/d = 3.00 the sidewash of 

inflow air on either side of the test section collides at the z/d = 0.0. In the wake of this collision, 

many critical changes in the flow structure occur and its initial effects are seen in Figure 138. When 

the inflow air collides, part of the air is deflected up into the bottom of the plume and creates an 

inflow upwash. The impact between the upwash and the injectant on the lower side of the plume 

results in an upwash slip (US) surface and an upwash recompression (UR) shock. This US surface is 

seen as the rounded indentation at the bottom of the plume and the UR shock is near the test section 

surface. 

An enhanced view of the resultant flowfield created by the collision of the inflow sidewash 

is seen in the velocity vectors overlaid on the Mach contours in Figure 139. Here again, when the 

sidewash near the surface collides at the centerline, some of the fluid is immediately deflected up 

into the plume and forms the US surface, and some of it is deflected down to the test section floor 

creating the wake vortices. As more and more of the sidewash is turned up into the plume and down 

into the wake, a virtual compression ramp is formed, much like the virtual compression ramp formed 

by the sonic surface seen in the two-dimensional analysis in Chapter 6. In Figure 139, subsonic flow 

is masked, thus the virtual ramp is shown in white. The turning caused by this ramp results in the 

UR shock. As more of the sidewash is turned upward, the excess upwash is deflected off the lower 

part of the OB shock and off of the injectant leaving the plume through the lower sides of the OB 
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shock. It is seen in Figure 139 that this deflection/turning mechanism is still sustaining the rotation 

of the JI vortices. However, as the inflow sidewash gets thicker and the amount of deflected upwash 

increases, the JI vortex centers of rotation have begun to move up from the surface and out from the 

centerline. 

Past this location, the OB shock begins to narrow as regions II and IV of the OB shock are 

entered (see Figures 125 and 126). At the current station of x/d = 3.00, the strongest part of the 

OB shock is above the y - z plane reflection line (region IV). As described in Section 7.5.1, the OB 

shock is stronger and generates stronger vorticity in this region because it is comprised of reflected 

compression waves from the other three regions of the plume. Since these waves crossover each 

other inside the plume, the injectant turns more than once before leaving the OB shock. Multiple 

turning results in more than one sign change in the vorticity; thus, two layers of vorticity are seen 

in some parts of the OB shock. One such region is marked in the vorticity contours of Figure 138. 

These multi-shock structures also cause sharp reductions in the Mach number. The result is an 

indentation of the contours in upper half of the injectant core, which is labeled in the Mach contours 

of Figure 138 as "reflected compression waves." 

The figure inset in the vorticity contours (Figure 138), illustrates the crossover of the 

compression waves in the y — z plane and the formation of the shock disk. Two typical injectant 

paths are illustrated in this figure. One path moves through the expansion waves and passes through 

one of the compression waves and then out through the OB shock. The other path takes the injectant 

through the expansion waves and through both of the recompression waves. The extensions of the 

recompression waves above the cross-over point forms the shock disk. 

It is seen in Figure 123 that the shock disk is fully formed at x/d = 4.00. The additional 

vorticity of the multiple shocks encountered during passage through the shock disk and the OB 

shock is clearly visible in the contours displayed in Figure 140. Increased vorticity from the US 
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surface is also seen near the bottom of the arms of vorticity. A diamond shaped object with an 

inverted tip at its bottom is seen in the vorticity contours outlining the OB shock. The relevance 

of this observation is seen in the contours for x/d = 6.00. The US surface has moved farther into 

the plume and the JI vortex centers of rotation have been carried farther up and out by the deflected 

upwash. The upwash indentation in the Mach contours has begun to form the fork at the end of the 

OB shock identified in Figure 125. 

The V-W velocity vectors and the lines defining the UR shock show that the UR shock creates 

a type I interference pattern at its crossover point in the y - z plane. The extension of the shock is 

the mechanism which turns the sidewash up as it approaches the test section center line. The newly 

formed upwash then moves up until it is turned outward by the upwash deflected off of the lower 

side of the OB shock, thus, creating an outflow sidewash. The outflow sidewash is then turned 

down when it encounters the UR shock on the other side of the JI vortex. The resultant downwash 

completes the rotation mechanism of the JI vortices. Thus it is seen that the combination of the 

UR shock, the inflow sidewash and the upwash deflection off of the OB shock is the mechanism 

sustaining the JI vortices at x/d = 4.00. The downward turning of the fluid past the JI vortices 

stops where the UR shock leaves the current y - z plane. It is seen in Figures 138 and 140 that 

the location of the centers of rotation of the JI vortices has moved up from the test section surface 

and out away from the centerline as the UR shock propagates further out into the flowfield. The 

combined effect of the mechanisms which sustain the rotation of the JI vortices has caused a waist 

to form in the Mach contours near y/d = 0.6. 

The trailing edge of the center part of the OB shock and shock disk/compression wave structure 

is encountered at x/d = 4.50. It is seen in Figure 123 that a pointed tip in the OB shock structure 

is formed along the centerline near x/d = 4.50. The part above the reflection line is in region IV 

and the part below it, is in region II. The effects of this tip in the y - z plane are seen in Figure 141 
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and the difference in the severity of the shock in these two regions is seen in the Mach and vorticity 

contours of this figure. The turning caused by the OB shock in region II is seen below the line drawn 

in the figure and the turning from the compression waves in region IV is above the line. This line 

is also drawn in the Mach contours of Figure 141, where it is seen that the compression waves in 

region IV cause the Mach number of the injectant to decrease from Mach 4.45 at x/d = 4.00 to 

Mach 3.28 at x/d = 4.50. 

After completely penetrating the OB shock, the upwash quickly moves further up into the 

plume and by x/d = 5.00 (Figure 142) the US surface has moved from y/d = 1.0 at x/d = 4.50 to 

y/d = 1.75 at x/d = 5.00. This is also the downstream plane where the crossover point of the TE 

and MTE OB shocks occurs (Figure 126). This crossover point is the convergence point of the two 

strong TE OB shocks from region IV The crossover is seen in the Mach contours for this location 

(Figure 142) as the sharp reduction in Mach number at the center of the plume. 

A visualization of the changes incurred by the upwash is seen in these Mach contours. As the 

upwash approaches the crossover point from below, its Mach number is decreasing. At the crossover 

point, there is a shock reduction in the Mach number of the upwash and then an increase in its Mach 

number as it expands to equalize its pressure with the surrounding pressure on the other side of the 

shock. 

The vorticity contours in Figure 142 show three sharp changes in direction as the upwash 

moves through the crossover point. The region of increased turning is enlarged in Figure 143. In 

this figure, the velocity vectors show that the notch near the center of the arms of vorticity is caused 

by the upwash turning outward as it expands around the forks at the end of the OB shock. Above 

the notch, the upwash is turned back inward when it passes through the shock at the crossover point. 

Passage through the shock increases the pressure of the upwash, turning the upwash back outward 

as it expands. This fluid is then entrained into the upwash which went around the TE OB shock and 
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moves further up into the flowfield. 

As the flow moves downstream from x/d = 5.00 to x/d = 6.00 the MTE OB shock begins 

to spread and a diamond shaped pattern with an inverted tip at its bottom the is seen in the Mach 

contours (Figure 144). This diamond pattern is the extension TE OB shock mirrored the across 

the crossover point near x/d = 5.00. The outline of this same pattern is visible upstream of the 

crossover point in the vorticity contours of Figure 140 at x/d = 4.00. It is also seen in Figure 144 

that the UR shock has developed another change in direction. The cause of this change is becomes 

more apparent in Figure 145. 

Between x/d = 6.00 and x/d = 7.00 a new vortex pair develops. These vortices are 

the result of the recompression suffered by the upwash as it passes through the MTE OB shock 

and the subsequent expansion needed to equalize its pressure with the surrounding fluid. This 

recompression shock induced (RSI) vortex pair is identified in Figure 145. 

The shock/expansion mechanism which generates the RSI vortices is illustrated in Figure 146. 

In the upper diagram of this figure, the relative velocity vectors illustrate the location of the plume 

boundary. The boundary is taken to be the location where the inflow and outflow sidewash meet. 

In the Mach number contours, the velocity vectors are also displayed along with the relevant 

flow features. When the sidewash passes through the UR shock, it is turned upward and is entrained 

with the already present upwash. The upwash then passes through the lower end of the MTE OB 

shock, compressing it and turning it out away from the test section centerline. As a result of the 

compression, the upwash expands to equalize its pressure with the surrounding fluid. The expansion 

causes additional turning which results in a localized outflow sidewash. This outflow sidewash then 

encounters the upper extreme of the MTE OB shock. Once again, the flow is turned, but this time 

it is turned down, creating a localized region of downwash. Next, this downwash is reflected off of 

the lower side of the plume boundary and back in towards to the center of the test section. Thus, a 
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rotation mechanism inside of the plume is established. 

Outside of the plume, the rotation of the JI vortices is disrupted by the expansion of the plume 

and by x/d = 8.0, the JI vortices are engulfed by the expanding plume. An illustration of the 

process by which the JI vortices are engulfed is shown in Figures 147 - 151. In the velocity vectors 

for the flowfield at x/d = 6.0 (Figure 147) the outline of the plume is marked and the JI vortex 

centers of rotation are denoted by the circles. At this station the upwash and inflow sidewash from 

the JI vortices are relatively unaffected by the almost nonexistent sidewash of the plume. Currently, 

both the injectant and JI vortex upwash reflect off of the plume's boundary. However, at x/d = 6.5 

(Figure 148) the MTE OB shock has started to turn the plume's upwash out to the sides toward the 

plume boundary, thereby, increasing the momentum of the plume's outflow sidewash. The increased 

outflow sidewash has started to decrease the amount of inflow sidewash deflected up and off of the 

plume's boundary, thereby, decreasing the amount of upwash recirculated by the JI vortices. By 

x/d = 7.0 (Figure 149) the outflow sidewash has almost pushed the plume's boundary out to the JI 

vortex centers of rotation and the head on collisions between the inflow sidewash and the outflow 

sidewash is impeding the continued outward expansion of the plume. At x/d = 7.5 (Figure 150), 

the ongoing expansion of the upwash after passing through the MTE OB shock, has continued to 

push the boundary of the plume out until it is now coincident with the JI vortex centers of rotation. 

At this point very little of the inflow sidewash is colliding head on with the outflow sidewash. 

Almost all of the collisions are glancing blows at oblique angles. Thus, less of the energy gained 

by the outflow during expansion is lost during the collision and the plume can continue to expand 

laterally. Finally, at x/d = 8.0 (Figure 151), the outward expansion of the plume has extended 

beyond the JI vortices and the lateral expansion of the plume continues unimpeded from this point 

on at an accelerated rate. The accelerated rate of expansion is seen downstream of x/d = 8.0 in 

Figure 125. 
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In Figure 125 and in Figure 126, the type VI interference shock pattern occurs near x/d = 8.0 

when the UR and MTE OB shocks intersect. It is also seen in these two figures that the UR shock 

is widening, while the plume is expanding between x/d = 6.0 and x/d = 8.0. Thus, it is seen 

that the sequence of events described in the preceding discussion is a consequence of the shock 

interactions. This observation is also substantiated by the path of the UR shock in the figures for 

locations x/d = 4.0 through x/d = 6.0. In each of these figures, the path of the UR shock intersects 

the JI vortex centers of rotation. Then when the UR shock and the MTE OB shock intersect near 

x/d = 8.0, the mechanism sustaining the rotation of the JI vortices is removed. Furthermore, the 

width of the plume's boundary at y/d = 1.45 between x/d = 6.0 and x/d = 8.0 in Figures 147 

- 151 is identical to width of the UR shock in Figure 126 over the same interval. Thus, the slow 

lateral expansion of the plume is not simply a result of the JI vortices, but of the mechanisms which 

sustain the rotation of these vortices. 

Once the streamwise location of the plume is beyond the confinement of the UR shock, the 

plume rapidly begins to expand and the top of the US surface created by the inflow upwash quickly 

moves up through the remainder of the high Mach number contours, effectively bisecting the plume. 

Furthermore, with the consolidation of RSI and JI vortices, the traditional representation of the 

plume structure shown in Figure 61 is regained. 

In Figure 151 (x/d = 8.0) there is still a substantial difference between the relative velocity 

vectors from the plume and the remaining downwash from the JI vortices. This difference in the 

velocity vectors is seen in Figure 152 (x/d = 8.0) as the extrema in the vorticity contours label 

the "wings." The vorticity labeled the "pockets" is the turning caused by the still present MTE OB 

shock and the large region of vorticity is generated by the RSI vortices and therefore, is labeled "RSI 

vorticity. Although they become smaller, the extrema in the wings are still visible as far downstream 

as x/d = 20.0. It is seen in Figure 115 from Section 7.4, that the extrema and the wing dissipate 
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between x/d = 20.0 and x/d = 40.0. 

The location of the MTE OB shocks at x/d = 8.0 are still visible in the Mach contours as 

the lowest contour level outside of the boundary-layer (Figure 152) and the RSI vortex centers of 

rotation are slightly below these shocks. The mirrored image of the TE OB shock is losing its 

definition as it expands and becomes more rounded. The upper part of the reflection is still a slip 

surface as it will remain through x/d = 20.0. 

The accelerated expansion of the plume is seen in the Mach contours at x/d = 9.5 (Figure 

153). The expansion is identified by the rapid changes in the bell shaped contours at x/d = 8.0 to 

their current shape at x/d = 9.5. It is also seen that the top of the US surface has risen from a height 

of 2d at x/d = 7.00 to 2 Ad at the current location. In addition to the US surface rising, the RSI 

vortex centers of rotation are beginning to rise and spread out from the centerline. This is consistent 

with the propagation of the MTE OB shocks. At the centerline near a height of 0.75d, there is a 

small zone of lower Mach number flow. This spot is seen in Figure 119 as a tail protruding from the 

US Surface. At the current x/d location, this protrusion is the point where the RSI vortices and the 

wake vortices share a common divergence point. Thus, the flow is completely axial at this location. 

This inflection point forms the divergence vorticity in the lower part of the RSI vortex structure. 

This divergence point is also the location where the lower part of the UR shocks crossover. 

At x/d = 10.5, a shed vortex separates from the wake vortex in Figure 154. The shed vortex 

is released from the wake vortex because of the reduced inflow sidewash near the surface of the 

test section. As seen in Figure 121, at this downstream location, the inflow expansion fan is almost 

completely exhausted and is directing very little inflow sidewash towards the middle of the test 

section. Without the inwardly directed momentum from the sidewash, the force of the deflected 

downwash at z/d = 0.0 is not sufficient to sustain the rotation of the entire mass of fluid in the wake 

vortices. Thus, a shed vortex is cast off and it quickly dissipates into the surrounding boundary-layer. 
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The remaining fluid near z/d = 0.0 continues to rotate as the wake vortices. 

The circles representing the RSI centers of rotation are replaced in this figure and at all 

remaining downstream locations with ellipses. The marker is changed to an ellipse because the 

circulation pattern is now more elliptical than circular. 

At x/d = 12.5 and beyond a specific structure which can be specified as the plume is difficult 

to identify. However, for purposes of discussion, the boxed region in Figure 155 is considered the 

plume. A similar region is assumed to be the plume in the remaining y - z plane contours. The 

Mach contours in Figures 155 -158 show an ongoing reduction in Mach number of the fluid outside 

of the plume. This fluid will gradually asymptote to the Mach number of the inflow air far away 

from the plume and this fluid should eventually reach to a value near Mach 2.9. Within the plume 

the lateral spreading of the MTE OB shocks has ceased, but they continue to rise and carry the RSI 

vortex centers of rotation with them. 

Extensive examination of three-dimensional particle stream paths has indicated that the region 

between the RSI vortex centers of rotation labeled "inflow core" is almost exclusively inflow air 

forced up into the plume by the upwash between this station and x/d = 3.0. These same three- 

dimensional stream paths indicate the regions labeled "injectant" is almost exclusively injectant. 

The fluid everywhere else in the flowfield is a mixture of the inflow air and the injectant and the 

majority of the rotating fluid is being recirculated between the plume and the freestream inflow. 

As the mixture in the flowfield proceeds downstream through x/d = 14.5 to x/d = 20.0, the 

inflow core moves up through the injectant and the injectant is seen to rotate around to the sides 

of the RSI vortex centers. At x/d = 20.0, the injectant has moved below the inflow core and is 

beginning to turn in towards the centerline. Figure 111 from Section 7.4.2 shows that the injectant 

has moved under the inflow core at x/d = 40.0 and that the inflow core and the injectant are 

beginning to repeat this exchange of positions. 
\ 
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7.5.3   Further Descriptions with the x - z Plane 

Enhanced visualization of the shock and expansion patterns resulting form the interaction of 

the injectant and the inflow air is gained by viewing the flowfield from the perspective of the x-z 

cross sectional plane. From this vantage point the extent of the horseshoe vortices and the inflow 

expansion fan are visible in the contours of the Mach number and ux. Viewing the numerical results 

in these planes also illustrates the angle of the UR shock as it propagates up into the test section and 

downstream of the nozzle. The vorticity generated at the edges of the OB shock is also visible as 

well as the vorticity generated by the fluid as it passes through the MTE OB shock and the crossover 

point. 

In the following series of figures, the displayed particle streamtraces are computed with two 

of the three velocity components corresponding to the computational cells in the current plane. 

The reader is reminded that these streamtraces are only two-dimensional representations of three- 

dimensional motion and the apparent continuity of the path for a single particle in this plane is an 

illusion created by the absence of the third component of velocity. At any point in this flowfield, 

fluid from an plane may be replacing a fluid particle in the current plane an fluid particles in the 

current plane may be leaving this plane. 

With regard to fluid turning, the region near the test section surface is one of the most active 

regions of the test section. The vorticity contours of the lower region of the boundary-layer are 

displayed in Figure 159 (y/d = 0.022). The vorticity generated by the horseshoe vortex is visible 

at the leading edge of the vorticity contours. Unlike the horseshoe vortices generated by normal 

injection, this vortex pair does not retain its structure downstream in this flowfield much beyond 

x/d = 0.0. In normal injection flowfields, the horseshoe vortices retain their structure much farther 

downstream of the nozzle [7,70] . Also seen in these contours is the vorticity generated by the 

expanding injectant as it leaves the nozzle orifice. In Figures 129 - 133 vorticity is seen both inside 
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and outside the nozzle edges near the test section surface. This same phenomena is seen in Figure 

159. In Figure 159, the vorticity inside of the nozzle outline is caused by injectant expanding into the 

test section and the vorticity outside of the nozzle outline is also caused by expanding inject, but its is 

also the result of inflow air turning around the flowfield obstruction caused by the injectant plume. 

Many of the other flow features visible in the vorticity contours at y/d = 0.022 are common to 

those seen at the test section surface. These are identified in the discussion of Figure 122 in Section 

7.5.1. 

About half of the flow at y/d = 0.022 is subsonic. The regions of subsonic flow appear as 

white zones in the Mach contours. The large amount of subsonic flow is a natural consequence of 

the proximity to the test section surface. However, at y/d = 0.022 there are equally large regions 

of supersonic flow. Regions of supersonic flow are visible over the nozzle orifice and immediately 

behind it. Obviously the flow over the nozzle is the supersonic injectant entering the flowfield 

and the flow behind the nozzle is the expanding injectant identified in Figures 134 and 135 as 

moving parallel to the test section surface. The plume boundary-layer separation line is also seen as 

a subsonic region in Figure 159. The flared out region on either side of the nozzle is the accelerating 

inflow air in the expansion fan moving around the plume. 

Flow features in the upper part of the boundary-layer (y/d = 0.100) are seen in Figure 160. 

In the Mach contours, the extent of the bow shock is clearly visible and its resultant turning of the 

inflow air is seen in the vorticity contours. Region II, identified as the expansion/compression region 

in Section 7.5.1, is visible behind the nozzle orifice. The thin bands of vorticity just downstream 

of the nozzle are generated by the injectant turning as it passes through the OB shock in region 

II. The downstream expansion angle (11°) of the UR shock is clearly visible in the Mach contours 

and the upper part of the virtual compression ramp, identified in Figure 139, is defined by the 

subsonic region. The turning caused by the UR shock and the wake vortices is labeled in the vorticity 
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contours. The vorticity generated by the inflow air turning within the expansion fan is also visible 

in this figure. 

The discussion in Section 7.5.1 of the flowfield shock and expansion structures at y/d = 0.91 

and y/d = 1.49 (Figures 125 and 126) does not address the vorticity generated as a result of fluid 

passing through these structures. Therefore, the vorticity generated by these structures is discussed 

in the following paragraphs. 

Parts of regions I and II of the OB shock intersect the x - z plane at y/d = 0.91. In Figure 

161, region I is upstream of the reflection line and region II is downstream of it. The thin bands 

of vorticity marked in this figure are generated by injectant passing through the OB shock. As 

is explained in Section 7.5.1, region I is comprised primarily of expansion waves with a smaller 

concentration of reflected compression waves. It is also shown in Section 7.5.1 that region II is 

comprised of expansion waves but has a larger concentration of reflected compression waves than 

region I. The larger concentration of compression waves, accounts for the slightly more extensive 

distribution of vorticity in region II. 

A larger region of vorticity surrounds the broken ring of vorticity generated by the OB shock 

in Figure 161. The vorticity in this region upstream of the OB shock is generated by the inflow air 

turning to avoid the flow obstruction caused by the injection plume. The vorticity along the sides of 

the OB shock and downstream of the shock, is generated by inflow air turning in the expansion fan. 

Mixed in with the inflow air is the injectant entrained into the inflow air after it has passed through 

the OB shock. At the rear of this region of vorticity, is an upstream protrusion of vorticity which is 

caused by the upwash at the US slip surface turning downstream with the rest of the inflow air and 

injectant mixture. 

The final regions of vorticity identified in this figure are generated by the UR shock when the 

upwash is deflected back out from the centerline and by the inflow air passing through the bow 
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shock. 

The vorticity generated at y/d = 1.49 (Figure 162) is caused by many different mechanisms. 

As in Figure 161, the vorticity farthest upstream is the inflow air turning after passing through the 

bow shock. Most of the vorticity in the region surrounding the OB shock is from inflow air turning 

around the plume and entrainment of the injectant into the inflow after passing through the OB 

shock. 

The similarities between the previous x - z plane at y/d = 0.91 and the current one at 

y/d =1.49, ends with the beginning of the description of the OB shock vorticity. Parts of regions III 

and IV of the OB shock, intersect the x - z plane at y/d = 1.49 (Figure 162), region III (upstream of 

the reflection line) is comprised of reflected compression waves and to a smaller degree, expansion 

waves (see Section 7.5.1) and region IV is comprised almost exclusively of compression waves. 

Therefore, the OB shock in these two regions are significantly stronger that the shock in regions I 

and II. The vorticity distribution between the two x — z planes is consistent with the shock strength. 

The TE OB shock/MTE OB shock crossover point and the MTE OB shock also intersects this 

plane. The vorticity of the MTE OB shock is labeled in Figure 162 and it is immediately downstream 

of the crossover point. At the crossover point, the vorticity is negligible. Also seen on either side 

of the MTE OB shock vorticity is the deflected upwash vorticity. It is seen in Figures 147 - 151 

in Section 7.5.2 that this vorticity is generated when the upwash is deflected off of the plume's 

boundary. The final region of vorticity seen in Figure 162 is generated by the RSI vortices. 

7.5.4   Surface Temperature and Friction 

Surface temperature and skin friction are critical to the design of combustors and surfaces 

within propulsion systems. Therefore, surface temperature profiles and contour plots are needed 

to identify regions where hot spots resulting from recirculation or stagnation points may form in a 

combustor. The figures presented in this section provide a comparison of the predictions from the 
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RSTM and the K - e models for surface temperature, T, and skin friction coefficient, c/ where [4] 

c, = if (234) 
2"oo 

du 
rw = M 

j/=0 

Experimental data for these two quantities is not reported by McCann and Bowersox [52]. 

The differences between the surface temperature predictions from the two models is not 

significant over most of the test section surface. However, it is seen in Figures 164 and 163 that the 

RSTM generally predicts lower temperatures than the K-e model downstream ofx/d = 9.0. In the 

regions upstream of the nozzle the RSTM and K - e model predict a similar value for the maximum 

temperature (2.87), but the RSTM predicts this higher temperature over a larger area upstream of 

the nozzle. The increased area is primarily the result of different predictions for upstream boundary- 

layer separation and the downstream sweep angle of the bow shock from the two models. The RSTM 

does predict higher temperatures behind the nozzle where the plume is attached to the surface, along 

the secondary separation line and along the wake vortex attachment line (see Figure 120). In the 

region where the expansion fan forms the RSTM predicts lower temperatures than the K - e model. 

The predictions from the two models for c/ are very similar over most of the test section 

surface (Figures 166 and 165). Downstream of x/d = 11.0 the predictions are nearly identical; 

therefore, only the area surrounding the jet and upstream of x/d = 11.0 is presented. The most 

noticeable differences are between x/d = -0.25 (JI vortex formation) and x/d = 0.50 (expansion 

fan formation). It is seen in Figure 120 than the injectant attachment line is coincident with the area 

with dissimilar predictions from the models. In the predictions from the K - e model the contours 

along this line is not as smooth as they are in the RSTM predictions. It is seen in Sections 6.2.3.3 

and 6.3.4.2 that the K - e formulation has poor performance characteristics at separation, stagnation 

and attachment points. 
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Differences in the c/ predictions are also seen in the recirculation region upstream of the 

nozzle. Here again, the differences are mostly a result of different model predictions for the upstream 

boundary-layer separation point. 

The similarity in the two model's predictions for c/ and T is consistent with the surface results 

reported in Chapter 6. In Chapter 6, it is seen that the turbulence predictions from the two models 

are almost identical at the surface. The only notable exception is the boundary-layer separation 

point and without exception, the RSTM predicted boundary-layer separation earlier than the K - e 

model. 

7.5.5   Summary of Flowfield Investigation and Conclusions 

It is shown in this section that the principal agents responsible for enhanced vortical motion 

of the flowfield are the RSI vortices. These vortices are generated through the combined effects of 

the upwash behind the injectant plume and the MTE OB shock. This vortex pair forms downstream 

of the OB shock terminus and inside the jet plume. Furthermore, it is shown that lateral expansion 

of the plume is impeded by the JI vortices. The rotation of the JI vortex pair is sustained by the 

combined effects of the UR shock, the inflow sidewash and the boundary of the injectant plume. 

The JI vortices, which are initially formed at the sides of the nozzle orifice, extend back along the 

sides of the jet plume, following the path of the UR shock as it propagates through the test section. 

The mechanisms which sustain the JI vortices retard plume expansion by directing inflow sidewash 

back towards the center of the test section and into the plume. The mechanisms which generate the 

RSI vortices accelerate plume expansion by creating an outflow sidewash which forces the injectant 

to move out and away from the center of the test section. It is seen that once the MTE OB shock 

and the UR shock intersect with each other, the mechanisms sustaining the JI vortices are disrupted 

and lateral expansion of the plume accelerates. 

It is also shown in this section that the OB shock can be separated into four regions of shock 
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intensity. The regions are labeled in Figures 125 and 126 and each of the region has distinct 

characteristics. Region I is designated an expansion/mild-compression zone because initially, the 

injectant is expanding in all directions and then the expansion waves are reflected off of the 

plume's boundary as compression waves. Region II is designated an expansion/compression zone 

because initially, the injectant is expanding, but the expansion process is slowed by reflected 

compression waves entering this region from other parts of the plume. Region III is designated a 

compression/expansion zone because initially reflected compression waves from other parts of the 

plume enter this zone which are then reflected out of this region as expansion waves. Finally, region 

IV is designated a compression/compression zone because the majority of the reflected compression 

waves from the other parts of the plume, converge in this region. The TE OB shock is formed by 

regions II and IV and these are the shocks which are mirrored across the crossover point. 

It is also shown that the predictions for surface temperature from the RSTM and K-e models 

only have significant differences around the jet and in the region near the initial formation of the 

wake vortices. It is also seen that the skin friction predictions from the two models are nearly 

identical for the entire flowfield. 

Finally, it is proposed here that mixing enhancement can be accomplished if three elements of 

the flowfield can be controlled. These are the location of the crossover point, amplification of the 

upwash deflected up into the plume and the location where the MTE OB shock intersects the UR 

shock and disrupts the sustainment mechanism of the JI vortices. 

The first element to enhanced mixing is to have the crossover point form as close as possible 

to the terminus of the OB shock. This requires the angle of the TE OB shock in the x - z plane be as 

large as possible and OB shock elongation be as short as possible. Control of these two factors may 

be possible by changing the shape of the nozzle orifice and the angle of injection. The elliptic nozzle 

and the 25° injection angle simulated in this study resulted in a TE OB shock angle of approximately 
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20° and a crossover point about 5d downstream of the nozzle center. The shallow injection angle 

certainly contributed to the downstream elongation of the OB shock and the elliptic shape of the 

nozzle may have contributed to the rather shallow angle of the TE OB shock. It seems reasonable 

that a circular nozzle with injection at a steeper angle would result in a crossover point closer to 

the nozzle exit. However, caution must be used in the selection of the injection angle, since steeper 

injection angles may result in greater flow blockage and stronger bow shocks, both of which cause 

higher total pressure losses and, ultimately, thrust reduction [60]. 

The second element for mixing enhancement is upwash amplification. The more fluid passing 

through the MTE OB shock, the more rotation will result. Amplification may be possible by placing 

a device similar to the one shown in Figure 167 along the'centerline behind the nozzle. If properly 

designed, this device will turn the inflow sidewash near the surface of the test section up without 

the reduction in Mach number currently incurred by the collision of the inflow. 

The upwash amplification device may also accomplish the third element to enhancement, 

control of the location where the MTE OB shock intersects the UR shock by increasing the angle 

of the UR shock in the y - z plane. If this intersection point is further upstream, the mechanism 

sustaining the JI vortices will be disrupted quicker. It is seen in Figures 138-145 that the UR shock 

angle is approximately the angle of the virtual compression ramp formed by the wake vortices. Thus 

if this angle is increased by the amplification device, the UR shock angle will also increase. 
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Chapter 8 - Conclusions and Recommendations 

The important conclusions and contributions of this study are summarized in this chapter. Once 

these areas have been addressed, some recommendations for future study are presented. 

8.1  Conclusions and Contributions 

The primary objectives of this research were numerical simulation of the three-dimensional 

flowfield generated by oblique injection into a supersonic flow, validation of a second-order RSTM 

for turbulence closure and investigation of the resulting flowfield. Each of these objectives was 

achieved.. 

The impact of this study on the current state-of-the-art for turbulence modeling and mixing 

enhancement are summarized as follows: 

• The qualitative and quantitative comparison of the second-order ZSGS RSTM and ZSGS K — e 

model to experimental data for two-dimensional and three-dimensional flowfields showed the 

superiority of ZSGS RSTM to the ZSGS K - e model in predicting physically correct behavior of 

the turbulent cross flow shear stresses. The RSTM prediction for the magnitude and distribution 

of Txy and rxz compared favorably with all available experimental data. In contrast, the K - e 

model predicted magnitudes well, but gave poor agreement with the distribution of the shear 

stresses. The improper distribution of the shear stresses was brought about by the unidirectional 

evaluation of the velocity gradients imposed by the Boussinesq approximation. 

• The qualitative comparison of the second-order ZSGS RSTM to the ZSGS K-e model for two- 

dimensional and three-dimensional flowfields demonstrated the superiority of the RSTM to the 

ZSGS K-e model in predicting physically correct behavior of the Reynolds stresses and K. 

The inability to enforce the realizability constraint on the axial stresses in the K - e model and 

the improper relationship of the axial stresses to K and the mean strain-rate tensor, resulted in 

non-physical turbulence intensity in the three-dimensional flowfield. With the two-dimensional 
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flowfield, discontinuities in the Reynolds stresses were also identified above boundary-layer 

separation and stagnation points in regions with recirculating flow. The discontinuities were 

caused by the improper use of TW in the relationship of the Reynolds stress tensor to the mean 

strain-rate tensor. The discontinuous behavior of the shear stresses were propagated to the 

momentum equations and caused discontinuous results in the velocity components as well. 

• The RSTM predictions for the two-dimensional boundary-layer separation point and the 

magnitudes of the maximum static surface pressure were consistently more accurate than the 

K-e predictions. The K - e model consistently over predicted the maximum surface pressure 

and under predicted the distance from the upstream boundary-layer separation point to the center 

of the nozzle. The recirculation region behind the boundary-layer separation point is often 

considered an ideal location for a flame holder in a combusting flow [60]. Thus, the increased 

accuracy of the RSTM predictions increases the accuracy of initial combustor designs, which 

may lead to a reduced number of live fire testing. 

• An examination the flowfield predicted by the RSTM has provided a better physical 

understanding of the behavior of the flowfield immediately surrounding the nozzle orifice 

and the mixing mechanisms of an injection flowfield. It was shown that the principal agent 

responsible for enhanced vortical motion of the flowfield was the recompression shock induced 

(RSI) vortices. These vortices were generated through the combined effects of the inflow air 

upwash behind the plume and the mirrored trailing-edge oblique shock (MTE OB) shock. These 

vortices formed downstream of the cross over point of the OB shock and the MTE OB shock and 

inside the jet plume. Furthermore, it was shown that lateral expansion of the plume was impeded 

by the JI vortices. The combined effects of the upwash recompression (UR) shock, the inflow 

sidewash and the jet plume boundary acted to sustain the jet induced (JI) vortices. The JI vortices, 

which were initially formed at the sides of the nozzle orifice, extended back along the sides 
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of the jet plume, following the path of the UR shock as it propagated through the test section. 

The mechanisms which sustained the JI vortices retarded plume expansion by directing inflow 

sidewash back towards the center of the test section and into the plume. The mechanisms which 

generated the RSI vortices accelerated plume expansion by creating and an outflow sidewash, 

forcing the injectant to move out away from the center of the test section. It was seen that once 

the MTE OB shock and the UR shock intersected with each other, the mechanisms sustaining 

the JI vortices were disrupted and lateral expansion of the plume accelerated. 

The near field examination of the OB shock structure revealed that it could be separated into 

four regions of shock intensity. The regions were labeled in Figures 125 and 126 and each of 

the regions had distinct characteristics. Region I was designated an expansion/mild-compression 

zone because initially, the injectant was expanding in all directions and then the expansion 

waves were reflected off of the boundary of the plume as compression waves. Region II was 

designated an expansion/compression zone because initially, the injectant was expanding out 

from the nozzle, but the expansion process was slowed by reflected compression waves entering 

this region from other parts of the plume. Region III was designated a compression/expansion 

zone because initially this zone only contained reflected compression waves from other parts 

of the plume. These waves were then reflected out of this region as expansion waves. Finally, 

region IV was designated a compression/compression zone because the majority of the reflected 

compression waves from the other parts of the plume, converged in this region. It was seen that 

the TE OB shock was formed by regions II and IV and that this was the shock mirrored across 

the cross over point. 

Predictions for surface temperature from the two classes of turbulence models only had 

significant differences around the jet and in the region near the initial formation of the wake 

vortices. It was also seen that predictions for the skin friction coefficient were nearly identical 
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for the entire flowfield from both turbulence models. Knowing the location and magnitude of 

hot spots in a combustor will allow for more efficient cooling of the combustor surface and 

preheating of the fuel. 

• Enhanced visualizations of the boundary layer, beyond current experimental capabilities showed 

that the K - e model provided less physically consistent predictions of the boundary-layer flow 

structure, Reynolds stresses and surface temperature than the RSTM. The inconsistencies of the 

K—e model were linked to the model's inability to correctly account for the anisotropic effects of 

the pressure-strain-rate tensor, the turbulence dissipation rate brought about by the wake vortices 

in the boundary-layer and the limitation of unidirectional velocity gradients in the Boussinesq 

approximation. Since the RSTM does account for these terms and its predictions outside of the 

boundary-layer were more accurate than the predictions from the K — e model, it is expected 

that the RSTM results were also more accurate in the boundary layer, as well as being physically 

consistent. 

In Chapters 1 and 2 several questions and research issues were posed. In light of the study 

conducted, these questions and issues can be answered as follows: 

• Are the differences in the predictions of the RSTM and K — e models sufficient to warrant the 

added complexity and computational effort needed to implement an RSTM? 

The answer to this question is an unequivocal "yes" for analyses involving rotating fluids. 

For the extra computational effort needed to solve the twelve equations in the RSTM instead 

of the seven equations in the K - e model, the increased accuracy and physical consistency 

is an overriding factor. It should be noted that the computational run time required to reach 

a converged solution with the RSTM is approximately twice the run time required to reach a 

converged solution with the K — e model. 

• How accurate are RSTMs in the modeling of complex secondary flows associated with TJISF? 
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Within the limitations of a single experimental data set available for comparison, the 

answer to this question is "very accurate" for the ZSGS RSTM. Comparison of the ZSGS RSTM 

predictions to experimental data showed very good agreement in secondary-flow regions for the 

U and V components of velocity, tox and rxy. 

•  What is the source of the asymmetries reported by McCann [52]? 

A likely contributing factor to the severity of the asymmetry observed in the experimental 

data is the sparse number of streamwise data collection planes and systematic errors in probe 

positioning. The analysis conducted in Section 7.3.1 called into question the adequacy of the 

number of streamwise planes in which experimental data is reported. It is seen in the contour 

plots of variables for which experimental data is available, that the predicted maxima and 

minima of the variables do not consistently coincide with the data collection grid points. Since 

the location of each plane is almost 1.93mm apart, a lack of resolution could exaggerate any 

asymmetries present in the experimental flowfield, especially if a maximum or minimum is 

captured on one side of the centerline, but not on the other. The possibility of capturing a maxima 

or minima on one side of the centerline and not capturing it on the other side is reasonable when 

one considers the predicted gradients of the turbulence variables are very large and that the lateral 

translation of the probes was performed by hand. It must also be noted that asymmetries have 

been noted in other experimental data for this type of flowfield [27]. However, insufficient 

information about the data collection methods by the investigators of these other configurations 

is available to ascertain the cause of the asymmetries reported. 

It must be noted that there are several limitations of the algorithm and boundary conditions 

used, which may lead to the apparent contradiction between the numerical results and the 

experimental data. First, the algorithm uses local time stepping and a diagonalized approximate 

factorization scheme with second-order Roe flux differencing to solve the governing equations. 
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These features result in a highly dissipative numerical algorithm which is not time accurate 

[63]. Thus, if the static asymmetric behavior seen in the experimental data is caused by the 

transient growth of an asymmetric mode, it could be filtered out in the computation. Second, 

a zero thickness boundary-layer is used as the inflow condition. Third, the true conditions of 

the mean flow and turbulent quantities over the jet are unknown and therefore modeled with 

near constant values. Fourth, the flowfield is initialized as a symmetric flowfield. Finally, the 

turbulence model does not account for anisotropic dissipation rates in the far-wall region of the 

flow. However, there is no reason to believe the dissipation in the plume is isotropic. Therefore, 

even though there is sufficient cause to attribute exaggeration of the asymmetric behavior seen 

experimentally to grid resolution and systematic errors, no further conclusions can be made 

concerning the symmetry of three-dimensional injection flowfields. 

•   What impact does the form of E have on the flowfield solution? 

Contour plots of K/E indicate that the omission of K from E would have a more 

significant impact on two-dimensional injection solution than it would for three-dimensional 

injection. With two-dimensional injection, K comprised as much as 12% of E in the region 

near the injector, whereas for three-dimensional injection, K comprised no more than 4% of 

E anywhere in the flowfield, and was confined to the recirculation region upstream of the 

injector. Since the primary location where omission of K may be significant is in the flame 

holding recirculation zone, its omission is likely to impact the accuracy of combusting flowfield 

solutions. 

8.2 Recommendations For Further Research 

Recommendations for future work are outlined in this section. These recommendations touch 

on ways to improve the algorithm, the turbulence models and the experimental configuration. 
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1. Foremost of the recommendations is further validation of the RSTM with another experimental 

data set. An all encompassing statement about the validity of the ZSGS RSTM cannot be made 

after evaluation of a single data set. The data set used in this study for the three-dimensional 

validation is limited to a single geometric configuration and pressure ratio. Furthermore, 

only the data for rxy is sufficiently resolved to allow comparison to the numerical results. A 

suggested data set for future use is that of Santiago and Dutton [71]. This data set has 4000 data 

points for all six of the Reynolds stress terms. Unfortunately, this data is limited to only one 

side of the test section and only has data at two downstream locations (x/d = 3 and x/d = 5) 

2. Use a time accurate algorithm to model the flowfield. A solution with a time accurate algorithm 

will answer one of the lingering questions about the asymmetry of the experimental data. Do 

the asymmetries result from a growth of modes damped out by the current numerical procedure? 

3. Perform a simulation which models the inflow boundary-layer thickness, and the flow variables 

over the nozzle orifice. The inflow boundary-layer thickness can be correctly modeled with 

the additional boundary layer data recently acquired for the wind tunnel used by McCann and 

Bowersox [52]. A more physically consistent profile of the mean flow and turbulence variables 

over the jet nozzle should also be used in future simulations. Since the shape of the injector and 

its flow properties are known, numerical simulations can be performed to generate an outflow 

profile over the nozzle exit. 

4. Further investigate the effects of the RSI and JI vortices on mixing and plume expansion. This 

can be accomplished by collecting additional data with McCann and Bowersox 's configuration 

to verify that the RSI and JI vortices do coexist between x/d = 6.5 and 7.5. Also perform 

numerical simulations of injection at different angles to see if the RSI and JI vortices are unique 

to this injection angle. 
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5. Perform numerical simulations and collect experimental data to assess the effect of the upwash 

amplification device described in Figure 167 on mixing efficiency and plume expansion. Of 

primary interest here is whether this device will accelerate the disruption of the mechanisms 

which sustain the rotation in the JI vortices. 

6. Perform numerical simulations and collect experimental data to assess the effect different nozzle 

shapes and injection angles has on the location where the cross over point forms. 

7. Preform numerical simulations with dissimilar species for the injectant and inflow. A 

comprehensive visualization of the mixing between the inflow air and the injectant could not 

be predicted from this study since the algorithm only models a single species. This type of 

simulation would also be useful in assessing the effectiveness of the upwash amplification 

device. 

8. Further assessment of the supposition that a more correct form for the Boussinesq 

approximation for vortical flows may be r^ oc eijkuik, rather than the traditional form of 

nj oc Sij. The RSTM is a very computationally intensive model. If a physically consistent 

K — e model is developed, it may be worthwhile to use it instead of the more expansive RSTM. 
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PUV - Primary Upstream Vortex 
SUV - Secondary Upstream Vortex 
PDV - Primary Downstream Vortex 
SDV - Secondary Downstream Vortex 

PUV     SUV    u.        SDV        PDV 

Figure 1. Schematic of a flowfield generated by normal injection of a sonic fluid through a 
two-dimensional slot into a supersonic flow 
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Figure 2. Schematic of a three-dimensional flowfield generated by normal injection of a sonic fluid 
through a circular nozzle into a supersonic flow [70] 
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Figure 3. McCann and Bowersox windtunnel configuration [52] 
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Figure 4. Full-plane grid location with respect to test section 

Figure 5. Half-plane grid location with respect to test section 
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Figure 6. Transformation from Physical Space to Computational Space [37] 
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PUV - Primary Upstream Vortex 
SUV - Secondary Upstream Vortex 
TUV - Tertiary Upstream Vortex 
PDV - Primary Downstream Vortex 
SDV - Secondary Downstream Vortex 

Figure 7. Schematic of slot injection flowfield 
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Figure 8. Schematic of surface static pressure regions 
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Figure 9. Spaid and Zukoski experimental configuration [88] 
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Figure 10. Aso et al. experimental configuration [6] 
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Figure 11. Comparison of surface pressure profiles for Aso et al. configuration for a static pressure 
ratio of 4.86 
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Figure 12. Comparison of surface pressure profiles for Aso et al. configuration for a static pressure 
ratio of 10.29 
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Figure 13. Comparison of surface pressure profiles for Aso et al. configuration for a static pressure 
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Figure 14. Comparison of surface pressure profiles for Aso et al. configuration for a static pressure 
ratio of 25.15 
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Figure 15. Separation length and plume height as a function of static presure ratio for the Aso et al. 
configuration 
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Figure 16. Comparison of Mach disk generated at two different presure ratios and definition of 
Mach disk height (Aso et al. configuration) 
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Figure 17. Comparison of surface pressure profiles for Spaid and Zukoski configuration for a static 
pressure ratio of 8.743 
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Figure 18. Comparison of surface pressure profiles for Spaid and Zukoski configuration for a static 
pressure ratio of 17.117 
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Figure 19. Comparison of surface pressure profiles for Spaid and Zukoski configuration for a static 
pressure ratio of 42.79 
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Figure 20. Comparison of surface pressure profiles for Spaid and Zukoski configuration for a static 
pressure ratio of 63.5 

208 



X 

0.30H 

0.25 

0.20 

<*     0.15 

0.10 

0.05 

• Experimental 
Hi   ZSGSK-e 

-A  ZSGSRSTM 

'''''''I' 
1111 * 

20 40 

Pje/Po 

±±± 

0.06 

0.05 

0.04 

0.03     ^ 

0.02 

60 

0.01 

0.00 

Figure 21. Separation length and plume height as a function of static presure ratio for the Spaid and 
Zukoski configuration 
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Figure 22. Separation length as a function of plume height for the Aso et al. and Spaid and Zukoski 
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configuration 
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Figure 24. Comparison of rxy profiles at x/l = 0.9000 for Spaid and Zukoski configuration 
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Figure 25. Comparison of rxx profiles at x/l = 0.9000 for Spaid and Zukoski configuration 
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Figure 26. Comparison of ryy profiles at x/l = 0.9000 for Spaid and Zukoski configuration 
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Figure 27. Comparison of rxy profiles at x/l = 0.9700 for Spaid and Zukoski configuration 
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Figure 28. Comparison of rxx profiles at x/l = 0.9700 for Spaid and Zukoski configuration 
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Figure 29. Comparison of Tyy profiles at x/l = 0.9700 for Spaid and Zukoski configuration 

217 



0.05 

0.04 

^0.03 

0.02 

0.01 

K-e 
RSTM 

0.001'    i    l '      ' l^i I I I I 1 1—u 
-0.10 0.00 0.10 

xy 

Figure 30. Comparison of rxy profiles at x/l = 0.9950 for Spaid and Zukoski configuration 
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Figure 31. Comparison of rxx profiles at x/l = 0.9950 for Spaid and Zukoski configuration 
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Figure 32. Comparison of ryy profiles at x/l = 0.9950 for Spaid and Zukoski configuration 
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Figure 33. Comparison of rxy profiles at x/l = 1.0125 for Spaid and Zukoski configuration 
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Figure 34. Comparison of TXX profiles at x/l = 1.0125 for Spaid and Zukoski configuration 
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Figure 35. Comparison of ryy profiles at x/l = 1.0125 for Spaid and Zukoski configuration 
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Reynolds stress model 

Figure 36. Contours for anisotropic wall function, fWl, used in the RSTM 
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Figure 37. Comparison of Txy contours for Spaid and Zukoski configuration 
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Figure 38. Range of near zero du/dy at the wall and grids spacing around the jet 

226 



o.oo 
0.96 

0.04 

0.03 

^ 0.02- 

0.01- 

0.00 

K-e model 

0.98 1.00 1.02 
x/l 

Reynolds stress model 

0.96 

1.04 

Figure 39. Comparison of ryy contours for Spaid and Zukoski configuration 
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Figure 40. Comparison of TXX contour for Spaid and Zukoski configuration 
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Figure 41. Comparison of toz contours for Spaid and Zukoski configuration 
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Figure 42. Fraction of E comprised by K for Spaid and Zukoski configuration 
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Figure 43. Tucker's injection model schematic [100] 
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Figure 44. Schematic of slot coordinates used in numerical simulations 
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Figure 45. Tucker's two-dimensional injector nozzle [100] 
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Figure 46. Experimental flowfield sketch for supersonic injection [100] 
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Figure 47. Computational flowfield predictions for supersonic injection 
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Figure 48. Comparison of Mach contours for Tucker's [100] heated injection configuration 
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Figure 49. Comparison of pressure contours for Tucker's [100] heated injection configuration 
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Figure 50. Schlieren of injection flowfield for heated injection [100] 
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Figure 51. Comparison of Mach contours for pressure ratios {jpinj/Voo) of 5 and 10 
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Figure 52. Comparison of rxy profiles for cooled injection at x/l = 11.4 
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Figure 53. Comparison of Txy profiles for heated injection at x/l = 11.4 
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y+ contours for supersonic cooled injection 
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Figure 56. Comparison of computational grids used for sonic and supersonic injection simulations 
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Figure 57. Comparison of ryy contours for supersonic cooled injection 
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Figure 58. Comparison of rxx contours for supersonic cooled injection 
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Figure 59. Comparison of anisotropic wall damping function, fWl, with and without y+ clipping 
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Figure 60. Comparison of fraction of E comprised by K for supersonic cooled injection 
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Figure 61. Schematic of a three-dimensional flowfield generated by normal injection of a sonic 
fluid through a circular nozzle into a supersonic flow [70] 
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Figure 62. RSTM predictions of cux for McCann and Bowersox configuration 
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Figure 64. Comparison ofy — z domains of the computational and experimental data grids 
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Figure 65. Experimental data for the U component of velocity at station 20 [52] 
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Figure 66. Comparison of turbulence model predictions of the U component of velocity at station 
20 
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Figure 67. Experimental data for the V component of velocity at station 20 [52] 
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Figure 69. Experimental data for rxy at station 20 [52] 
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Figure 71. Comparison of turbulence model predictions for Mach number at station 20 
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Figure 78. Comparison of turbulence model predictions of rzz at station 20 
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Figure 144. Mach and u>x contours at x/d = 6.00 

331 



Reynolds stress model 

^     2 

; HUR shock p 

'|JI vortex pair}8 

IRSI vortex pairj 

,1 Wake vortex pairj| 

I   I  | I  I  I  I | I   I   I  I | M  I  I  | I  M  I  | I   I   I  I |  I   I   I   I  |  I   I  I   I | I   I   I  I | M   I   I  |  I  I  I   I  | I   I  I  I | 

3       -2.5       -2       -1.5       -1       -0.5        0        0.5 1 1.5        2        2.5        3 

Reynolds stress model 

4 m 

Figure 145. Mach and UJX contours at x/d = 7.00 

332 



Reynolds stress model 

3   - 

^ 

Reynolds stress model 

3   - 
l    l   M   I   I  I  I   l  II   I   I   I   I   I   I   I   I   I   I  M   I >  I  /   I 

,   , , , i I I Ml 111 I III I f I I / M I I i / 

,  , M M\\ \\\ I II I I K 1 Expansion 

.   ,  , , ,uUU\milllLiiVMf;y 

.  , , ,\\\\\\\\VUl:!;!,l!:(/|j 

. , ,\sw\\\\\\UHIJ,l/l/////////// . 
_   .  ,V\\\\\\\\Y:\Ut]J//////////////  ,/ 
 . ^>N>S^vj^BM|jOutflow sidewashl- 

§ 

Figure 146. RSI vortex 

333 



Reynolds stress model 

* 

.VN\\\\\\\\\\\11I^^ 
A JI vortex       HK^«11/ " " " ' ' J}--'- 

deflected upwash /Mi. 

\ \ 

Figure 147. Plume boundary definition at x/d = 6.00 

Reynolds stress model 

t 

. x \ \\\ \ I IIfifflinlflPlume Boundary n1'' 

JI vortex I     , 
''11   I   I 
^///   / 

Figure 148. Plume boundary definition at x/d = 6.50 

334 



Reynolds stress model 

t 

Figure 149. Plume boundary definition at x/d = 7.00 
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Figure 151. Plume boundary definition at x/d = 8.00 

336 



Reynolds stress model 

4 es 

?        2 
 M'.lllll/  

Öiillllllliij^.;. 

... .■.•.•Mill:".       ...... 
 Mimmv. _ 
....     -V ■> ....... 

MTE OB shock] i" 

•IM 

:|RSI vortex pairfts 

IWake vortex pair} 

I i | i i i I | I I i I | i i I I | I I i i | i i i i | I I I I | I i I I | I i I i | i i I I | i i i i | i I I I | 

3       -2.5       -2       -1.5       -1       -0.5        0        0.5        1 1.5        2        2.5        3 
z/d 

Reynolds stress model 

111 | M 11 

-0.5        0        0.5 1 
z/d 

1 i i i i | i i i i | 
2 2.5        3 
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Figure 153. Mach and u>x contours at x/d = 9.50 
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Figure 157. Mach and wx contours at x/d = 16.50 
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Figure 159. Mach and cox contours at y/d = 0.022 
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Figure 160. Mach and u>x contours at y/d = 0.100 
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APPENDIX A - Time-Averaged Navier-Stokes Equations and the 

Favre-Averaged Reynolds-Stress Equation 

This appendix presents a development of the compressible Reynolds-averaged Navier- 

Stokes equations and the Favre-averaged Navier-Stokes equations and some of the characteristics, 

advantages and disadvantages of each. Additionally, the Favre-averaged Reynolds-stress equations 

are developed. 

A.l Navier-Stokes Equations 

The compressible Navier-Stokes equations in conservative, differential form for a rectilinear 

coordinate system are given as: 

dp + djpuj) = 0 (235) 

dt        dxi 

d (pui)     d(pujUj +p6jj) _ dojj _ 
dt dxj dxj 

0 (236) 

where 

d{pE)      d (pujH) _ djujajj-gj) = Q (23?) 

dt dxi dxi 

Gij — 2/u.Sij + XSkkSij (238) 

*H(£ + S' 
and by Stokes hypothesis, the second bulk viscosity constant is given as 

and 

A = -\n (240) 

E = e+\u3u3 (241) 
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H = E + ?- = h + \ujUj (242) 
p 2  J 

dT 
-K%- (243) 

axi 

A.2 Reynolds Averaged Navier-Stokes Equations 

In 1895, Osborne Reynolds wrote On the Dynamical Theory of Incompressible Viscous Fluids 

and the Determination of the Criterion [64], in which he proposed a method of time averaging that 

bears his name. Reynolds-averaging allows the conservation equations to be separated into mean 

flow components and fluctuating components. When the instantaneous value of a characteristic 

flow variable, <^, is Reynolds-averaged, it is decomposed as [109] 

<t>i = 4i + Ü (244> 

where the time averaged or mean flow value of fa is given by 

i rt+T 

fa=\im- fa{x^r)dr (245) 
T^oo 1   Jt 

with the fluctuating component <f>' found to be 

b'i = <t>i (246) 

It is easily seen that when Eq. 246 is time averaged, 4> vanishes [108]. 

Now consider the continuity equation given in Section A.l. After substituting in the mean and 

fluctuating components for all flow variables and expanding, Eq. 235 becomes 

^r1 + -LSWi+M+p'Wi+SO = ° (247) 

After time averaging, the above equation reduces to 

M+a(?B7 + ^)=0 (248, 
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Likewise, when the mean and fluctuating components for the flow variables are substituted 

into the momentum equation and expanded, Eq. 236 becomes 

d (püi + pu'i + p'ül + p'u[ 
■ + 

'-■'  '  M4 
dt 

d (puiüj + püiu'j + pu'iüj + pu'iUj + p'üiüj + üip'u'j + üjp'u'i + p' 

dxj 

d(p+p')     d(äiJ + a'ij) __ 

+   (249) 

dxj dxj 
0 

After time averaging, the above equation reduces to 

d (jm + pX)     d (paw - &H ~ TIj + Pan) _ 
di + dxj ~° 

where the Reynolds stress is given by 

rfj = - (jnfilj + ürftf + üjWi + AH) (25 D 

A similar process is performed on the energy equation and the resultant Reynolds averaged 

form of the energy equation is 

dt dxi dxi 

where the turbulent heat flux is given by 

qf = pu'jH' + üjp'H' + Hp>u'j + pfu^H' (253) 

Some comments about a few of the terms appearing in the Reynolds-averaged Navier-Stokes 

equations are in order. In the Reynolds-averaged Navier-Stokes equations, //«• appears in several 

places and is referred to as the apparent, or compressible mass. The components of the Reynolds 

stress tensor, TJ, given by Eq. 251 is composed of four terms. The first term is referred to as the 

incompressible turbulent shear stress and the other three terms are the compressible turbulent shear 

stresses. The turbulence heat transfer, qf, given by Eq. 253, is also composed of four terms. In this 
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expression the first term is the incompressible turbulent heat transfer rate and the other three terms 

are compressible turbulent heat transfer rates. Also appearing in the Reynolds-averaged energy 

equation is an apparent energy term. All of the compressible or apparent terms are identically equal 

to zero for incompressible flows, i.e. p' — 0. 

Comparison of the compressible Reynolds-averaged Navier-Stokes equations to the 

compressible Navier-Stokes equations reveals that the compressible terms in the compressible 

Reynolds-averaged Navier-Stokes equations do not have analogous terms in the laminar equations. 

These compressible terms make solution of the compressible Reynolds-averaged Navier-Stokes 

equations quite cumbersome and difficult to model, especially the apparent mass and unsteady 

terms. Consequently, models for the compressible Reynolds-averaged Navier-Stokes equations are 

seldom reported. However, when the compressible terms are negligible, e.g., incompressible flow, 

the Reynolds-averaged Navier-Stokes equations are similar in form to the laminar Navier-Stokes 

equations and are relatively easy to numerically solve once appropriate models are applied. 

A.2.1   Reynolds Averaged Navier-Stokes Equation Summary 

Reynolds-averaged continuity equation 

Reynolds-averaged momentum equation 

d (püi + p'u'A      d (püiüj - äij - TJJ + pSij) 

dt dxj 

where 

rjj = - (rpu'-u'j + üip'u'j + üjp'u'i + p'u'iu'jj (256) 

Reynolds-averaged energy equation 

djpE+yw)   d (püjH)   d (%^i + W^3 - g« - £) = 0 

dt dxi dxi 
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where 

qj = pu'jH' + üjp'H' + Hpfu'j + p'u'jH' (258) 

A.3 Favre Averaged Navier-Stokes Equations 

Favre suggested mass averaging the flow variables describing the flow field as another method 

to account for the turbulent fluctuations in the flow field and at the same time reduce the number of 

assumptions needed to model the turbulent quantities appearing in the compressible Navier-Stokes 

equations [19]. In Favre's method, the premise of replacing the flow quantities with a mean value 

plus a fluctuating component does not change, but the method by which the averaging process is 

executed does. Consider again the generic flow variable, <^, and denote the Favre-averaged mean 

value component with a '-' and the Favre-averaged fluctuating component by a "". Thus, we have 

<f>i = ~4>i + # (259) 

In this decomposition the time averaged mean flow variable is defined as 

~,  = Jt+T'pjXjrffajXjrfdT = ^g (260) 

It+Jp(Xj,T)dT P 

It is easily shown that time averaging eliminates the Favre averaged terms involving the product 

of the density and the fluctuating term, i.e. p4>" = 0. This can be seen by multiplying Eq. 259 by 

the density 

ph^ph+ptf (261) 

and then time averaging which results in 

-pJi^ + Wl (262) 

-pJ%=f^+Wl (263) 

When combined with Eq. 260, the result is 
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Ä = P^+^' (264) 
or 

Wl = o (265> 

Unlike the time-averaged Reynolds-averaged fluctuating component, 0', the time-averaged 

Favre-averaged fluctuating component, </>', does not go to zero. This is clearly seen through 

the following exercise. Using the results just seen in Eq. 265 and substituting in the Reynolds 

decomposed form for p results in 

P^ = (p + P')^ = 0 (266) 

Upon performing the indicated multiplication and time averaging, the result is 

ptf + p><% = 0 (267) 
or 

pfl = -Ml (268) 

After dividing by p one arrives at 

4>'( = -^ (269) 
p 

which is not zero unless p' is zero, as is the case of an incompressible flow. 

A relationship between the instantaneous Favre-averaged and Reynolds-averaged fluctuating 

variables can also be derived by setting Eqs. 259 and 244 equal to each other and time averaging as 

follows: 

or 
=&+#=&+$ (270) 

"+W = & (271) 
solving for $ results in 

"i   '   "ri        Ti 

ill , - A " <t>i (272) 
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Now, once again set Eqs. 259 and 244 equal to each other but do not time average. After solving 

for cf)'l the result is 

$ = 4+ (& " &) (273> 

Substitution of Eq. 272 into the right-hand-side of the above equation results in 

Applying the definition of <j>" given in Eq. 269 to the above expression results in 

4 = (t>'i-^f (275) 

Thus, it is seen that if the flow is incompressible, p' = 0, the Favre-averaged and Reynolds-averaged 

fluctuating components are equal to each other. 

Finally, consider a correlation consisting of a Favre-averaged variable, (f>-, and a Reynolds- 

averaged variable, 7-, such that one has ^'7^. Substituting Eq. 275 in for 4>i results in 

H = Mi - -fii = fai ^276> 

Returning to the task at hand, the compressible Navier-Stokes equations are mass averaged 

using a combination of Favre- and Reynolds-averaged flow properties, which are decomposed as 

follows: 

Ui = üi+u" e = e + e" (277) 

pz=p + p' p = p + p' (278) 

(Tij = äij + a'i:j qi=qi + <?• (279) 

h = h + h" (280) 

Once again consider the continuity equation given in Section A.l. After substituting in the mean 

and fluctuating components for the flow variables, expanding the terms and time averaging, Eq. 
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235 becomes 

dp     d fe + K') g + _L^ L=0 (281) 

Now applying the property demonstrated in Eq. 265, the above equation reduces to 

dp + d(pü1l = 0 (2g2) 

dt        dxi 

which is identical in form to the laminar continuity equation. 

Focusing next on the momentum equation, the Favre-averaged form is found by substituting 

the appropriate decomposed components into Eq. 236 and expanding. The result is the following 

expression 

dt dxj 

d{P + p')     d{^ + a'ij) _Q 

dxi dxj 

Applying the rules of time averaging, the above equation reduces to 

d (pui)   |  d (puiuj)   |   dp      d fa - P<^) _ Q (2g4) 

dt dxj dxi dxj 

Finally, the energy equation, Eq. 237, is modified. Once again, the appropriate decomposed 

expressions are substituted into Eq. 237 and expanded. The resulting expression is 

d (pe + pe" + \pujuj + üjpu" + \pu"u"\      d IpuJi + ütph" + hpu" + pu"h") 

dt dxi 

d [\püiüjUj + üiüjpu" + Tjpüiu'-u'j + \üjüjpu'l + puju"u" + \pu"u"u" 

dxi 

d [üjäij + u'jäij + u'ja'ij + ü^ - <& - q[J 
dxi 

After the above equation is time averaged, the following expression is obtained: 
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d (e + I ujuj + ku'ju" d 

d (p<h>> 

dt 
+ ■ 

pu% (h+\ üjüj + 5«X 
dxi 

+ 

+ pUjU'-Uj + ^pu'^WjU^ n.." ^ IT*..»..»..» \      d (üjäij + w^y + «X- - 9T 

cte 3xi 
= 0 

It can be shown that 

and by using Eq. 276 that 

u'jh" « u"e" = Cvu"T> llrpil 

UX   = ^ 

Thus using the above relationship, the Favre-averaged energy equation can be written as 

where 

dt 
+ 

dxi dxi 

K=r'M 

E = e + -üjüj + K 
ZJ 

(286) 

(287) 

(288) 

(289) 

(290) 

H = h + -üjüj + K 
Zi 

(291) 

pE"u'l = Cvpu'lT" + püXtf + lfpu>"u"j (292) 

The advantage of using Favre-averaging over Reynolds-averaging for a compressible flow is 

obvious when the Reynolds stress tensor obtained from each method is examined. Notice that the 

Reynolds stress tensor produced by the Favre-averaging process has three less terms than the tensor 

produced by the Reynolds-averaging process. In fact, the Favre-averaged term looks very much 

like the "incompressible" portion of the Reynolds-averaged term. The following exercise more 

formally shows the relationship between the Favre-averaged and the Reynolds-averaged terms. 
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Multiplying u'-u'j by p and substituting Eq. 275 in for u" and u" results in 

„u,i 

^=^-£ij^-^j (293, 

After performing the indicated multiplication, the result is 

Now, after applying the rules of time averaging, the above equation reduces to 

                du'- P>u'^ 
-pu'<u) = puty + p^f-r2- (295) 

Note that if the second term on the right-hand-side of this equation is negligible, as one may expect 

of a fourth-order fluctuation term, the above relation reduces to 

Thus solving the Favre-averaged form of the governing equations incorporates the effects of p' into 

the solution. Justification for doing so lies in the Morkovin Hypothesis [54], which states that the 

effect of density fluctuations on turbulent flow may be neglected as long as the magnitude of the 

density fluctuations are small when compared to the mean flow density. 

A.3.1   Favre Averaged Naiver-Stokes Equation Summary 

Favre-averaged continuity equation 

dl + dJpu1l = Q (297) 

dt        dxi 

Favre-averaged momentum equation 

dQHk) + d&üiüj) +dl_ ^(^i-K<) = o (298) 

dt dxj dxi dxj 

Favre-averaged energy equation 
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d(pEj      d(püjH)      d(üi(Tij - piHTij -qj+u'l(Xij+ pE"u"Ä 

dt dxn dxj 

where 
K = £« (300) 

E = e + \üiüi + K (301) 

H = h + ^üiüi+K (302) 

1 
pWu] = u.^ - ^«>"< - CPP

U
"
T

" (303) 

A.4 Favre-Averaged Reynolds-Stress Equation 

This section presents a development of the Favre-averaged Reynolds-Stress equations. The 

development of the Favre-averaged Reynolds-Stress equations begins by multiplying the i and j 

momentum equations given in Eq. 298 by Uj and Ui respectively. This results in 

d (put) +     d{puiUk) = dp_ +     do* (304) u ■3 dt J     dxk 
J dxi       J dxk 

Ul^l + Ui^^ = -u^ +uzp± (305) 
dt dxk oxj oxk 

Adding the two equations, employing the product rule and taking advantage of the continuity 

equation, results in 

djpujUj)      d(puiUjuk)_ dp      „dp dajk doik 
dxk dxj dxi dxk dxk 

B c D E F 

Each individual term is Favre-averaged and then time averaged. Starting with the unsteady term, 

term A, the resultant Favre-averaged form is 

A = — (püiüj + püiu'j + pu'-üj + put Uj j (307) 
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Applying the rules of time averaging to the above expression results in 

d A = 07 (püiüj + pTij) (308) 

Next, the convection term, term B, is Favre-averaged. The result is 

d   ( püiüjük + üiükpu'j + üjükpu- + ükpui Uj + üiüjpuk 

^jfc V +püiujuk + üjpu'-uk + pu'-u'ju] 

Applying the rules of time averaging to the above expression results in 

B = — (püiüjük + püku'-Uj + püiUjul + püju'{u'k' + pu'lu'-ukj (310) 

Rearranging the above expression and using the product rule to expand the third and fourth terms results 
in 

B   =     » (püiüjük + püku'lu'j+pu'-u'julj (311) 

düi      _ d {pTjk)  , _     düj d (pTik) 

Next, the velocity-pressure-gradient term, term C is Favre-averaged. The result is 

„     ~  dp     „ dp        ,, dp       „dp ,010, C = Ui-£+Ui-t + Ui~dt+Uidt- (312) 
UJL") UJUn ^^3 ^3 

Applying the rules of time averaging to the above expression results in 

C = ü— + v!r— +«"— (313) 
''' dxj       l dxj       l dxj 

However, using the property illustrated by Eq. 276 and by using the product rule, the third term in 

the above expression may be written as 

<^L=<^L = aJ^l.pp (3,4) 
OXj dxj oxj OXj 

Finally, the velocity-pressure-gradient term is written as 

c = ij|P+^ + ^M_p.|i (3,5) 
OXj OXj OXj OXj 

Likewise, term D is written as 

dp     —dp     d(u'jP')       .du. 
D = Uj -£- + u" -^- + —^—'- -p'jr1 (316) 

OXj       ■> oxi dxi dxi 
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and similarly, terms E and F can be written as 

^däjk   | ^rdäjk   |  
d{u'ia'jk)      u,da'jk 

1 dxk       
i dxk dxk 

% dxk 

(317) 

T-Ü 9&ik  I M^*  |  9 V^ik)     u> da'ik (318) 3 dxk       
j dxk dxk 

j dxk 

Combining the Favre-averaged form of terms A-F results in 

d ,  _ _       _     , d   ( ,_„ -IT—- , _ „  „  „\ 
— (puiUj + pnj)    =   - — [puiUjUk + pukut Uj + pui uj ukj 

düi      _ d(pTjk)     _     düj      „ d(jrrik) 

-~PTikdx-k - Ui^xV - pT*kdx~k ' "1-teT 

.üi£t-<^-^-+P^ 019) 
* dxj     ""% dxj dxj      ' r dxj 

dp     -jrdp      d{u'jP')   |    ,&£ 
3 dxi       J dxi dxi dxi 

-rrdäjk   ,   dfo'jk) ,d<T'j} 
+Uldxk

+Ui dxk
+    dxk        *dxk 

-rrdäik   ,  d(U'j<k)        , da'ih 
3 dxk       

j dxk dxk 
3 dxk 

Now by subtracting the mean mechanical energy from the above equation, the Favre-averaged 

Reynolds-stress equation is obtained. The resultant form is 

d ,_    N d   , „      .     _      düi     _     düj 
m^pTij) = -dx-k

{pUkn3)-pTjkdx-k-
pTikdx-k 

, du\        ,du-        d   f-r-r       , -r-Tj. 
+Pdtj

+p-dx- + dx-k{^
63k+U3PS 

^(^-&)+^(p<-M.) (320) 
dxk      dxj I       J \ axk      dxi 

ik 

% 

d    ,-r-r-     -r-r-\ d 
(«j<4 +«#(fc) ~ g^7 (p<u'ju'k dxk \ *   ik       l  ikJ      dxk 

or 

u,dcr'jk     u,d<r'ik 
% dxk       

3 dxk 

d{g^ + di^ = ^ + ^ + ^ + D% + Dl _ £.. (321) 
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In Eq. 321, the left-hand-side represents the unsteady transport and convection of the turbulent 

stresses. While, the right-hand-side of Eq. 321 represents the turbulent stress transport produced by 

the turbulent production, Pi3■., the velocity-pressure-gradient correlation tensor, 11^, the mass flux 

variation, Mijt turbulent diffusion, D^, and viscous diffusion, Dv
ip and the viscous dissipation rate 

tensor, e^ [22]. where the terms on the right-hand-side of Eq. 321 are given as 

_     düj     _      düi n9_. 
Pi^-pnkd^-pTjkd^ (322> 

~7M        du'A      d(p,u'i6jk+p>u,
j6ik 

w\m+*?k)-     ^ <323) 

»■■=*(%-%)+*>{%-& 

£)*. = V       3    J (325) v dxk 

„      d(°>'j + °>'i jy. =     v         il—L (326) 
tJ dxk 

du',       ,   du', 
e« = er. I 3 

10 ~   ikdxk       ikdxk 
+ <h^P- (327) 
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APPENDIXE - Summary of Reynolds Stress Turbulence Model 

Closures 

A summary of the second-order models presented in Chapter 4 are presented below along with 

the form of the Navier-Stokes equations needed to close the models. 

B.l Navier-Stokes Equations in a Second-Order Model 

The Navier-Stokes equations presented below are simplified to account for Morkovin's 

hypothesis [54]. Thus, the mean flow equations which can be used by all of the second-order 

models are 

dp     d(püi 
dt        dxi 

0 (328) 

where 

9 (püj)     djpüjüj+pSij) _ d {(Tjj + pTjj) = 0 (329) 

dt dxj dxj 

d (pEj      d (püjHj      d (-pibjTij + K§£- + pE"u- + üiäij + u'-äiA 

dt dxj dxj 

E = e + -um + K 

H = h + -üiüi + K 

—    c^u K2 dp 
u, —  
"l      pcTpPrt   e  dx ■j 

——r (dK     dTn\      Cßfa   K2 df     _^K (dK     drtA 

where C^ = 0.096, ap = 0.5, Prt = 0.9 for air, and Cs is model dependent [94]. 

B.2 Second-Order Models 

All of the second-order models use the following form of the Favre-averaged Reynolds-stress 

transport equations 
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—&T+      dxk      " dxk  ~ dxk  " Pt> + Mt>     U> + ^ {     } 

where unless otherwise noted 

_     düj     _      düi 

and by Morkovin's hypothesis My is assumed to be negligible [54]. 

Furthermore, all of the second-order models use the following form of the Favre-averaged 

dissipation-rate transport equation 

d^ + d(^pe1_dDl_dDl==Pe_De + ^ + ^ (334) 
dt dxk dxk      dxk 

where unless otherwise noted 

Dv
€ = ß-p- <335> oxk 

D\ = Cep-Tik^- (336) 
e« dxi 

B.2.1   Launder, Reece, and Rodi Closure Summary 

\felocity-pressure-gradient correlation model 

*Uj ^hjA + hii + Wi (337) 

^ = -CiP^ (rn - \K8^ (338) 

hj,2   =   -aihij-lPkkSi^-ßi^Dij-^PkkSi^ (339) 
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>y 

-2^ipK ( Sij - -Skköij j 

0.125-^ (TU - \K6iA + 0.015{Pij - D, 

dük     _     dük 

13     2 \dxj     dxi 

ex2 

Dissipation rate tensor 

€ij = speSij 

Dissipation-rate transport equation model 

De = Ce2p 
K 

Pe~Cei2KPii 

* = 0 

£ = 0 

Closure constants 

Cfcl 
_C2 + 8 

11 

A = 
_ 8C2 - 2 

11 

30C2 - 2 
7i 55 

d = 3.0       C2 = 0.4       Cs = 0.18 

Ce = 0.11,        C£] = 1.44,        Ce2 = 1.90 

(340) 

(341) 

(342) 

(343) 

(344) 

(345) 

(346) 

(347) 

(348) 

(349) 

(350) 

(351) 

(352) 
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Wall boundary conditions 

Tij = 0 (353) 

e = v 
d2K 

dx\ 
(354) 

B.2.2   Shima Closure Summary 

Xelocity-pressure-gradient correlation model 

ny - <t>ij,i + <f>ij,2 + $j 

<l>ij,i = ~C
^P^K \Tij ~ 3K5ij 

2'j1pK I Sij - -SkkS- v 

yiJ = /, w\ öL \Pij - ^PkkSijj + ß \Dij - ^PkkSij) + iKSij 

(355) 

(356) 

</>ijl2   =   -«i (Pij - \PkkSi3\ ~ ßi Um - \PkkSij] (357) 

(358) 

C{ = & 1 - I 1 - ^- ] fWl (359) 

fWl = exp 
0.015x2VK 

(360) 

_     duk     _      duk 
Dii =-pTikdx~r pTjk'dx- 

(361) 

Dissipation rate tensor 

s-- = - (düi i dü] 
tJ     2 \dxj     dxi 

*j     3 
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-peS v 

(362) 
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Dissipation-rate transport equation model 

Pe + * = C€l(l+<TfWl)—Pii 

De = Ce2p 
ee 
K 

£ = /tf »i 

7C   -2\^-^ 
9   £2 K     2K 

e = es — 2v 
dxi 

(364) 

(365) 

(366) 

(367) 

e = e — v 

Closure constants 

d2K 
dxi 

«1 
_C2 + 8 
~~     11 

/M 
_ 8C2 - 2 

"      11 

30C2 - 2 
55 

a = 0.45,        ß = 0.0,        7 = 0.08 

d = 1.5,        C2 = 0.4       Cs = 0.18 

C£ = 0-11,        C€l = 1.35,        C£2 = 1.8,        a = 1 

Wall boundary conditions 

Tij = 0 

e = v- 
d2K 
dx\ 

(368) 

(369) 

(370) 

(371) 

(372) 

(373) 

(374) 

(375) 

(376) 
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B.2.3   Lai and So Closure Summary 

\felocity-pressure-gradient correlation model 

'13- 

Hü = <t>ijti + </>ij,2 + <f>ij 

1 = -Clp£c {Tij" f **y) 

-2jipK I 5ij - -Skköij J 

<f>ij   =  /«7i 
Cipf (r*i - f-K'fcj) ~ Py (Tiknknj + Tjknkni) 

+a* [Pij - \Pkkkj) 

_        ÖMfc        _        ÖÜfc 

(377) 

(378) 

(379) 

<9a%- &c; 

(380) 

(381) 

S- =- (düi i düj 
13

      2 \ <9a%-      ctej 

Dissipation rate tensor 

2 
eÜ = ~nPe"ij + eij 

tu 
— M 

2     c           e (TJJ + Tiknknj + Tjknkrii + ninjTkinkni) 
ij 3/-V   1   ^                               (i+Sr«) 

/tül = ezp V150J 
> 

i?et 
K2 

ve 

Dissipation-rate transport equation model 

De = Ce.-p 
ee 
K 

(382) 

(383) 

(384) 

(385) 

(386) 

(387) 
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Pe + * = C6l(l+(7/Wa)—Pi 

Closure constants 

Z = pf^ w2 

2K 

7 \ ee      e*2 

-C£2-2j-- — 

a = 1.0 — 0.6exp 
Pe 
lÖ1 

e = e - 2P 

/^ = exp 

e   = e 

0X2 

Ret 

64 

PX 

iCo 

«1 
_C2 + 8 

11 

/M 
_ 8C2 - 2 

11 

30C2 - 2 
55 

a* = 0.45       Ci = 3.0       C2 = 0.4       Cs = 0.18 

Ce = 0.15,        Cei = 1.35,        C£2 = 1.80 

Wall boundary conditions 

Tij  = 0 

e = 2P 
dX2 

(388) 

(389) 

(390) 

(391) 

(392) 

(393) 

(394) 

(395) 

(396) 

(397) 

(398) 

(399) 

(400) 
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B.2.4  Lai, So, Zhang, and Speziale Closure Summary 

\elocity-pressure-gradient correlation model 

n ij = <Pij,l + <Pij,2 + Pij 

<t>ij,2    =    -«1 ( Pii - ^PkkSij J - ßl f Dij - -PkkSij J 

-1l{pK I Sij - -Skk^ij J 

% = fu 
Cipjf (rij - %K6ij) - pj? (TikrikUj + Tjknkni 

+Q* (Pij - IPkkSij) 

dük     _     dük 
Dij = -pTik-TT- - PTjk 

(401) 

(402) 

(403) 

dxi 

(404) 

(405) 

Dissipation rate tensor 

s-- = - (— + ^. tJ     2 \dxj      dxi 

fWl =exp 
(Ret 
^150 

Ret = 
K2 

ve 

€ij —      ptvij + eij 

c™. —   f 

Dissipation-rate transport equation model 

2 _ e (TJJ + TikUkUj + Tjknkni + mnjTkinkni) 

De = Ce2p- 
ee 
K 

(406) 

(407) 

(408) 

(409) 

(410) 

(411) 
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Pe + ^ = Cei{l + crfW2)—Pü (412) 

Closure constants 

£ = äA w2 -27r+3^ 

cr = 1.0 — l.5exp 
Re 

~e = e-2v 
8X2 

Jw2 — exp 64 ) 

vK 
e   = e — ■ 

Xn 

ai : 
_C2 + 8 

11 

01 = 
_ 8C2 - 2 

11 

30C2 - 2 
,i_       55 

a* = 0.45       Ci = 3.0       C2 = 0.4       Cs = 0.18 

Ce = 0.15,        C£l = 1.35,        C£2 = 1.80 

Wall boundary conditions 

Tij = 0 

e = 2v 
ÖX2 

(413) 

(414) 

(415) 

(416) 

(417) 

(418) 

(419) 

(420) 

(421) 

(422) 

(423) 

(424) 
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B.2.5   Zhang, So, Gatski, and Speziale Closure Summary 

\elocity-pressure-gradient correlation model 

iiij * <f>ijA + </>ij>2 + 4>Tj + 
w ' 4g 

Ji3 ;\1 = ~Cl^ (Tii _ 3^« 

-l^xpK f SJJ - -SkkSij 

(425) 

(426) 

^-,2    =   -ai^-^^-Ä^Ai-^Pfc^) (427) 

^ = /, »1 

Cip^ (rij - %K6ij) - pJ7 (Tiknknj + rjknkni 
+a* (Pij - \PkkSij) 

(428) 

<f>§ = 2CwpK I &ij ~~ ~Zdkkbij I 
ex2 

(429) 

duk     _     dük 
Dij = -PTikg^: - PTjk 

dxi 
(430) 

s-=- (— + ^i 
13     2 \dxj      dxi 

(431) 

Jwl  — 6Xp 
Ret\' 
150 ) 

(432) 

K2 

Ret = — 
ue 

(433) 

Cw = (Cw)in - (5.8 x 10"4) Moo   for   Moo > 2.5 
Cw = (Cw)in for   Moo < 2.5 

(434) 

(Cw)in = 4.14 x 10"3 + 3 x 10"3 (log Ree)    for   Ree < 5.500 
(Cw)in = 0.0153 for   Ree> 5.500 

(435) 
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Dissipation rate tensor 

c*7 -pe8 ij T" cij (436) 

fV. — f 
2 _ e (TJJ + riknknj + Tjknknj + ninjTkinkni) 

~3pedzj+pK (1 + 31^) 

Dissipation-rate transport equation model 

D£ = C€2p— 

Pe + y = Cei(l + afw.2)—Pu 

(437) 

(438) 

(439) 

£ = A*P ( -2f + !-4 (440) 

ÖT=1.0 (441) 

e = e-2v 
\  dx2  ) 

(442) 

fw2 = exp 
Ret 

40 
(443) 

e = e — 2^—2 
x2 

(444) 

Closure constants 

«1 
_C2 + 8 

11 

01 = 
_ 8C2 - 2 
~      11 

. 30C2 - 2 
55 

(445) 

(446) 

(447) 

a 0.45       Ci=3.0       C2 = 0.4       Cs = 0.18 (448) 

375 



Ce = 0.1,        Cei = 1-5,        C€2 = 1.83 (449) 

Wall boundary conditions 

m = 0 (450) 
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APPENDIX C - Metric Development 

Discretization of the domain into a structured grid of finite-volume cells with constant fluid 

properties over the cell volume permits application of Eq. 126 to the individual cells. Upon 

performing the volume integration for an individual cell, Eq. 126 is expressed as: 

d_ 
dt 

\QVol)iJtk] + j>   (F - F„) ■ ndS = (SVol)iJtk (452) 

where the i, j, and k subscripts are coordinate indices for the cell centers. Since a structured grid 

approach is used for this formulation, the indices range from 1 to the maximum cell index; Imax, 

Jmax or Kmax, in each coordinate direction. 

Applying the geometric constraints given by Eqs. 127 -141 to individual cells results in 

I ndS = 0 (453) 

f   dVol = Vokj,k (454) 

Voltjlk 

where 

Imax Jmax Kmax 

E E E ™«.* = vd (455) 
i=i j=i fc=i 

Equations 453 and 454 require the volume of any cell identified by its i,j and k index by finite and 

have a closed surface area. Additionally, Eq. 455 requires the sum of the individual cell volumes 

given by Eq. 141, equal the volume of the domain given by Eq. 128. These conditions are easily 

satisfied in finite-volume discretization schemes when the surface area and cell volume calculation 

method described in Vinokur [106], and Kordulla and Vinokur [37] are used. This method allows a 

great deal of flexibility in cell dimensions since planar cell faces are not required when this method 

is used. 

Consider the six-sided cell with eight arbitrary corner points shown in Figure 168a for which 
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the surface area vectors and cell volume must be evaluated. This figure represents the transformation 

of a cell in physical space to computational space. The cell centroid is located at node i,j,k with 

vertices at points 1, 2, 3, 4, 5, 6, 7 and 8. The sides of the cell are not necessarily planar. Non- 

planar cell sides are a potential source of geometric error that need not be incurred. Reference 

[37] provides an excellent discussion of how a cell with non-planar sides is easily and accurately 

evaluated by dividing each cell face into two planar triangles and the volume into six tetrahedra. 

Let the surface area vectors in the positive £, rj and C, and directions be denoted by S^, Sv and 

$ respectively. Additionally, transformation vectors from physical space to computational space 

are defined as follows, where subscripts denote partial differentiation: 

r£ = Xfri + yzj + z^k (456) 

fv = xvi + yvj + zvk (457) 

7% = x^i + yj + z^k (458) 

Using the transformation vectors, Reference [106] expresses the surface area vector in the 

positive direction and the transformation metrics as follows: 

$     =     Ä1234 = 2 [^ X fcl 

V        -  i =    2 Lr42 x r3xJ 

=     (yvZQ - yc,Zr,) i + (x^Zr, - xvzc)} + (x^yt - x^) k 

With the transformation identities found in Reference [3], the surface area vector can be expressed 

as 

& = kl+k] + kk (459) 

or 

& = Sl\ + Sfj + Slk (460) 
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where J is defined as the Jacobian of transformation in Reference [3] where it is shown that the 

cell Vol = j . Furthermore, £x, £y and £2 are transformation metrics, and Sf, Sy and Si are 

the components of the surface area vector in physical space. Thus, the transformation metrics 

are projections of the cell surface area in physical space into computational space, scaled by the 

transformation Jacobian. 

The surface area vectors for the and directions are given as follows [106]: 

thus 

and 

Also 

thus 

and 

&    =    Sl265 = 2 ft X ^1 

V     - i 
=    2 lr61 x r52J 

(yen - vszd i + {H
Z

C - xczdl + (xm - xtV() & 

&  = 

5" = ^i + ^j + ^k 

& = Sfi + S$ + S?k 

#1584 = 2 ft X *%] 

2 [(^8-n) x fä-rg)] 

2 F8i x r45J 

(%^ - VVH) 1 + fcij^ ~ XZZri) J + 0^2/ij - ^rtffc) k 

^ = TI+yj+Tt 

(461) 

(462) 

(463) 

Ö       —   ^X^    ' t/J     *     ^Z 

(464) 

(465) 

In addition to the surface area vectors, the volume of the cell is required to evaluate Eq. 
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452.   Kordulla and Vinokur [37]recommend the following triple scalar product relationship for 

computation of the cell volume: 

Vol = r£-rv xf( (466) 

Vol = xc {ynzc - y^) - y^ {xnzQ - x(zv) + zi (x^ - xcyv) (467) 

Thus, the volume can be expressed as [37] 

Vol  =   r1 

-     l (r        r \    I   ^6 " ^ X ^ ~ ^ + [(f?8 " rl) X ^ ~ f5)]   1 (468) 

or simply as 

3V7      ir\ +[(r4-r2)x(r3-r1)] 

=   Ö (rn) • {Ifei x r52] + [r8i x f45] + [f42 x f31}} 

Vol = J-X = - (f7i) • (^265 + 5l584 + £234) t469) 
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Figure 168. Transformation from Physical Space to Computational Space 
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APPENDIX D - Diagonalization Matrices 

The Jacobian matrices, A, B and C, for the RSTM may be written in a single form, with 

m = (£,77,C)as[56]: 

dF 

do 
= |Vm| 

0 
rnx$- 
my§ 

uU 
VÜ 

mz$ — wU 
Ü$-ÜH 

UTxx 
— UTyy 

-UTZZ 

UTXy 

-ÜTXZ 

-ÜTyZ 

-Üe 

mx my mz 

Ü - mx (7 - 2) ü rhyü - rhx (7 - 1) v rhzü - rhx (7 - 1) w 
rhxv - mj, (7 - 1) ü Ü - rhy (7 - 2) v rhzv - rhy (7 - 1) w 
rhxw - rhz (7 - 1) ü rhyw - rhz (7 - 1) v U - rhz (7 - 2) w 
mxH-(j-l)üÜ ihyH-(rf-l)vÜ mzH-(rf-l)wÜ 
rhxTxx myTxx rhzrxx 

ITLxTyy 

mxTzz 

rtlxTxy 

mxTXz 

mxTyZ 

rhxe 

0 0 
rhx (7 - 1) 

™v (7 - 1)    -"H 

-   (7-1) fTlx     2 
(7-1) 

(7-1) 

(7-l)f 
mz(7-l)    -rhz^ 

0 ü 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 

myTyy 

TTbyTzz 

WlyTxy 

rTlyTxz 

1TlzTyy 

mzTzz 

mzTXy 
mzTXz 
mzT. 
ihze 

yz 

0 0 0 0 0 0 
~   (7-1) mx    2 _ rhx 

(7-1) 
2 0 0 0 0 

-   (7-1) 
TUy      2 — rhy (7-1) 

2 0 0 0 0 

rhz^ - rnz 
(7-1) 

2     . 0 0 0 0 

-(7-l)f — (7 -DS 0 0 0 0 
0 0 0 0 0 0 
U 0 0 0 0 0 
0 u 0 0 0 0 
0 0 u 0 0 0 
0 0 0 u 0 0 
0 
0 

0 
0 

0 
0 

0 
0 

u 0 
0   ü 

(470) 

where 

Ü = rhxü + rhyV + rhzw (471) 

$=2(7-1)9 (472) 

q2 = ü2 + v2 + w2 (473) 

The Jacobian matrix may be written as f£ = TAT  l. The symmetry matrix, T, is given as [56]: 
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1 0 0 1 1 0 0 0 0 0 0 0 

ü l'X h ü + rhxä ü - - rhxä 0 0 0 0 0 0 0 

V iy 3v v + ihyä v - - rhyä 0 0 0 0 0 0 0 

w lz 3z w + rhyä w - - rhyä 0 0 0 0 0 0 0 

Y + K V W H + Uä H -Uä 1/2 1/2 1/2 0 0 0 0 

T~xx 0 Txx Txx 0 1 0 0 0 0 0 0 

Tyy 0 Tyy Tyy 0 0 1 0 ü ü u ü 

Tzz 0 Tzz Tzz 0 ü 0 1 u u u 
TXy 0 TXy TXy 0 0 0 0 1 ü ü ü 

Txz 0 Txz Txz 0 ü ü u u 1 u u 
Tyz 0 Tyz Tyz 0 0 0 0 0 ü 1 0 

e 0 0 e e ü ü 0 u u u 1 

(474) 

where 

V = lxü + Lv + lzw 

W = JxÜ + jyV + jzw 

The inverse of the symmetry matrix, T \ is given as [56]: 

T-x = 

1 - Tg2/2 T« Tv 

-V >-x ly 

-W 3x 3y 
Tq2/4 - Ü/2ä rhx/2ä Tüq2/2 fh y/2ä- Tvq2/2 

yf/A + Ü/2ä -rhx/t lä - - Tüq2/2 fhy/2ä - - Tvq2/2 

Txx 0 0 

~Tyy 0 0 

Tzz 0 0 

—Txy 0 0 

Txz 0 0 

— Tyz 0 0 
—e 0 0 

Tw -T T/2 T/2 T/2 0 0   0 0 

[z 0 0 0 0 0 0   0 0 

jz 0 0 0 0 0 0   0 0 

rhz/2ä - Twq2/2 T/2 T/4 -T/4 -T/4 0 0   0 0 

-mz/2ä-Twq2/2   T/2 T/4 -T/4 -T/4 0 0   0 0 

0 0 1 0 0 0 0   0 0 

0 0 0 1 0 0 0   0 0 

0 0 0 0 1 0 0   0 0 

0 0 0 0 0 1 0   0 0 

0 0 0 0 0 0 1   0 0 

0 0 0 0 0 0 0   1 0 

0 0 0 0 0 0 0   0 1 

(475) 

(476) 

(477) 
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where 

T = (7-l)ä (478) 

The vectors fand j are non-unique, mutually orthogonal to rh, and tangent vectors in the plane 

of the cell interface. 
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APPENDIXE - Boundary Conditions 

The finite-volume method used by ISAAC requires a six-sided computational domain for both 

two- and three-dimensional simulations. A typical six-sided computational domain is shown in 

Figure 169. For the simulations conducted for this research, side one corresponds to the solid surface 

of the flat plate or test section. Side two is the inflow plane, and side three is the outflow plane. 

Depending of the configuration being simulated, sides four, five and six are either the top of the wind 

tunnel and the two side walls or they may be additional planes through which allow flow passage. 

E.l Inflow Boundary Conditions 

The flow upstream of the inflow plane is supersonic for all of the configurations investigated 

during this research. Thus, the leading edge of the flat plate is taken to be the beginning of 

the computational domain and all mean flow variables are assigned freestream values. Inflow 

turbulence quantities for both models are based upon the turbulence intensity of the undisturbed 

flow. Turbulence intensity is defined as TI = ^J2p>Koo/u00 and the value of TI is usually a well 

documented characteristic of a particular wind tunnel test section. For the K — e model, Koo is 

computed directly from the definition of TI such that K^ = f (T/uoo)2. For the RSTM, TXX, ryy 

and TZZ are determined by assuming the freestream turbulence is homogeneous and isotropic. Thus, 

from the definition K = (TXX + ryy + TZZ)/2 one arrives at TXXOO = ryy<x> = rZZoo = 2/3Koo 

and rxy<x> = TXZ<X = TyZoo = 0. The freestream dissipation-rate for both turbulence models is 

commonly found by setting /uioo = fj,^ in Eq. 37 such that eoo = Poo^oo/^oo [23,65]. 

E.2 Wall, Tangency, Symmetry and Extrapolation Boundary Conditions 

At the test section surface, the no-slip condition, u = v = w = 0, is invoked, along with 

dp/dn = 0. For an adiabatic wall, dT/dn = 0, is enforced for temperature, or a specified constant 

temperature for the wall may be used if the wall is heated or cooled. The homogeneous condition 

applies to the Reynolds stresses at the wall such that K = Ty  = 0.  To maintain asymptotic 
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consistency of the dissipation-rate equation at the wall, e = 2v (dy/K/dy) is used as the boundary 

condition for the dissipation-rate equation [56]. 

When all four walls of the test section are included in the computational domain, the viscous 

no-slip boundary condition should be applied at each wall. However, proper modeling of a viscous 

boundary layer requires a substantial number of nodes near each solid surface to accurately capture 

the boundary layer structure. However, if the main reason for modeling a wall is to capture the 

reflected shock structure, a tangency boundary condition is an alternative which will reduce the 

number of cells required at a solid surface. Thus, in the interest of minimizing the number of nodes 

needed to model the test section, the viscous no-slip boundary condition is only enforced on the 

lower wall and the tangency boundary condition is used at all other solid surfaces. 

Abbett's method [1] is used to enforce tangency of the velocity components at solid surfaces in 

ISAAC. Abbett's method requires the dot product of the velocity vector and a unit vector normal to 

the solid surface be zero. The boundary conditions imposed on the other variables when tangency 

is used are as follows: dT/dn = 0 for temperature and zero gradient at the wall for pressure and 

the turbulent variables such that dp/dn = 0, de/dn = 0 and dK/dn = 0 or drij/dn = 0. 

When symmetry across the line z/d = 0.0 is required, the values one cell into the domain 

normal to the x - y plane is used as value of the ghost cell. This procedure is used for each of the 

conserved variables with the exception of w, TXZ, and ryz, For these variables, the additive inverse 

is reflected across the boundary. 

Finally, a first-order extrapolation from the interior is used as the boundary condition at any 

surface considered an outflow plane. 

E.3 Jet Boundary Conditions 

A discontinuity is present between the jet exit and the surrounding flowfield when uniform 

mean flow properties are used for the exit properties of the jet. During the initial phase of this 
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research, this discontinuity often lead to unstable behavior in the algorithm. Therefore, a blending 

algorithm which simulates the boundary layer over the interior of the nozzle is used to smooth 

transition between the injectant mean flow properties and the surrounding flowfield properties for 

both the two- and three-dimensional simulations. 

E.3.1   TVvo-Dimensional Jet 

For the two-dimensional slots and rectangular jets, a laminar Couette flow (see White [108]) 

boundary layer is simulated as the outflow velocity over the jet. The additional constraint of constant 

total enthalpy or constant total temperature is imposed to simulate adiabatic expansion within the 

nozzle. The input data required by ISAAC to model these jet outflow conditions are as follows: 

o T T^rn _ Pinj (419) 

(480) 

(481) 

(482) 

(483) 
Ooo 

NCELLS (484) 

where the subscript inj denotes local jet conditions and oo denotes freestream conditions and 

NCELLS is the number of cells at each edge of the nozzle used to simulate the boundary layer. 

Prior to computing the velocity profile, the total temperature of the injectant, T0inj, and the 

incremental values of the injectant Mach number must be determined. Thus, Toinj is computed 

from the following equation [4] 
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fJCjl   — 
Poo 

TJET = J-inj 

-too 

UJET = 
Uinj 

öoo 

VJET = 
Ooo 

WJRT - 
Winj 



To,„, = Tinj (1 + VM^ ) (485) 
2 

where Tinj and Minj are computed from input values using the following expressions 

Tinj=TOQ*TJET (486) 

_   IUJE7* + VJET*+-WJEiZ 
Mm*-y TJET 

Linear increments for the Mach number at an edge of the nozzle are given by 

E      Aa;j 

where inc denotes an incremental value, Axi is the distance between any two cells and Axinc is the 

distance between the edge of the jet and the current location within the jet. This is simply a linear 

profile for Mach number which assumes the Mach number at the edge of the nozzle is zero. 

Now,  assuming constant total temperature and a linear velocity profile,  the injectant 

temperature at any location between the edge of the nozzle and the nozzle interior is given as 

T        = -^  (489) 

Thus, the individual velocity components over this same interval are computed as 

UJETinc = ^{UfractionMinjintfTinjinc (490) 

VJETinc = ^/(VfractionMinjiJ
2Tinjinc (491) 

WJETt mc 
= y (WfractionMinjiric)   Tinjinc (492) 

where the subscript fraction denotes the fraction of Minj comprised by each velocity component. 

The fraction for each component is given by 

_ y/UJET'/TJET 
U fraction —  77 V+^-V 
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Vfraction —  77 K^y^J 
Minj 

_ y/WJET*/TJET 5 
Wfraction —  77 V*yj> 

Mini 

Theoretically, the pressure across the jet exit plane should be constant [108]. However, enforcing the 

pressure profile as a step function across the edge of the jet and the solid surface of the plate results 

in numerical instability when large pressure ratios are used. This algorithm is particularly sensitive 

to this pressure jump at corners of the rectangular nozzles. Thus, to lessen the sudden discontinuity 

at the interface, a linear progression similar to the one performed for Minj is performed with pwaii 

and PJET to smooth the transition between the two pressure boundary conditions. 

Uniform mean flow boundary conditions specified by PJET, UJET, VJET, WJET and 

TJET are used at all other locations within the outflow plane of the nozzle. 

Since the flowfields evaluated in this study have either sonic or supersonic conditions at the 

exit plane of the nozzle, turbulence levels for K, r^ and e should be specified along this boundary. 

However, this information is generally not available for computational efforts. Therefore, in a 

manner similar to that used by Rizzetta [65], uniform boundary conditions of dK/dn = dr^ /dn = 

de/dn = 0 are used for the turbulence variables at all locations over the outflow plane of the 

nozzle. The acceptability of the numerical results based on these conditions must be evaluated by 

comparison of the numerical results with the experimental data. 

E.3.2   Three-Dimensional Jet 

For three-dimensional elliptic or circular nozzles, a truncated tanh function is used to simulate 

a velocity boundary layer profile for the outflow over the nozzle. Once again, the additional 

constraint of constant total enthalpy or constant total temperature is imposed to simulate adiabatic 

expansion within the nozzle. The input data required by ISAAC to model this jet outflow condition 
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is as follows: 

Pinj 
rjnii = 

Poo 

TJET = J-inj 

UJET = 

VJET = Vinj 

Ooo 

W.TET - 
Winj 

(496) 

(497) 

(498) 

(499) 

(500) 
Ooo 

SEMMJR (501) 

SEMMNR (502) 

DELTARO (503) 

where the subscript inj denotes local jet conditions, oo denotes freestream conditions, SEMMJR 

and SEMMNR are the semimajor and semiminor axes of the nozzle exit and DELTARO is the 

radial width of the region within the nozzle exit used to simulate the boundary layer. 

When the conic jet boundary condition is used, one of three types of boundary conditions are 

applied to cells at the test section surface. The type of boundary condition applied is determined by 

the radial distance of the cell centroid from the center of the nozzle outflow plane. The application 

of a particular type of boundary condition to a cell is given by the following criteria: 

Boundary        ( mean flow nozzle conditions   if   ract — redge < 0 
condition   = <   viscous wall conditions if   ract - redge > DELTARO (504) 
applied simulated boundary layer if   0 < ract — redge < DELTARO 

where, as shown in Figure 170, ract is the distance of the current cell centroid from r0 and redge is 

the distance of the edge of the nozzle from VQ along the same ray as ract. 
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If the current cell requires the simulated boundary condition, the algorithm outlined below is 

applied. Prior to computing the velocity profile, the total temperature of the injectant, T0inj, the 

Mach number of the injectant, Minj, and the fraction of the Mach number comprised of by each 

component of velocity are determined. Thus, T0inj is computed from the following equation [4] 

Toinj = Tin] (l + ^Ml^j (505) 

where Tinj and Minj are computed from input values using the following expressions 

Tinj = Too * TJET (506) 

Minj = \j jTjäf  (507> 

The velocity fractions are computed as 

y/UJET'/TJET 
Ufraction = ~ T7  V0** 

Minj 

y/VJEP/TJET 
Vfraction = ~ JTT  PWJ 

y/WJET'/TJET 
Wfraction = ~ JTT  (MU-> 

The incremental values of the Mach number within the simulated boundary layer are computed 

from 

•^ (fact      fedge) 

DELTARO M^we=tanh       "ZrrZn)^ (511> 

This function varies between 0 and Minj and provides a smooth, continuous transition from the test 

section surface to the interior of the nozzle. Now, assuming constant total temperature, the injectant 

temperature at any location within the simulated boundary layer is given as 

Tin'-= i+$k,  <512) 
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and the individual velocity components over this same interval are computed as 

UJETinc = y (UfractionMinjinJ   Tinjinc (513) 

VJETinc = \/(VfractionMinjinf Tinjilic (514) 

WJETinc = ^(WfractionMinjinf Tinjinc (515) 

As stated in the previous section, the pressure across the jet exit plane should be constant [108]. 

However, enforcing the pressure profile as a step function across the edge of the jet and the solid 

surface of the plate can result in numerical instability when large pressure ratios are used. Thus, to 

lessen the sudden discontinuity at the interface, a similar function to the one performed for Minj is 

performed with pwau and is given as 

Pinj.    =tanhf2^~^e)N| (PJET-1) + 1 (516) ■mJtnc y DELTARO ) v 

This function varies between 1 at the nozzle edges to PJET at the nozzle interior. 

Uniform mean flow boundary conditions specified by PJET, UJET, VJET, WJET and 

TJET are used at all other locations within the outflow plane of the nozzle. 

Since the flowfields evaluated in this study have either sonic or supersonic conditions at the 

exit plane of the nozzle, turbulence levels for K, Tij and e should be specified along this boundary. 

However, this information is generally not available for computational efforts. Therefore, in a 

manner similar to that used by Rizzetta [65], uniform boundary conditions of dK/dn = drij/dn = 

de/dn = 0 are used for the turbulence variables at all locations over the outflow plane of the 

nozzle. The acceptability of the numerical results based on these conditions must be evaluated by 

comparison of the numerical results with the experimental data. 
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Figure 169. Typical computational box 
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Figure 170. Three-dimensional conic jet boundary condition 
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APPENDIX F - Convergence Criteria 

This appendix addresses the criteria used to determine temporal convergence of the simulations 

and presents the data used to evaluate grid convergence. All of the analyses presented in this 

appendix are based on the ZSGS K — e model. 

El  Temporal Convergence Criteria 

Temporal convergence of a simulation is assessed through an evaluation of the residual error 

of a simulation; cyclic minimum in the residual is used as the basis for temporal convergence in this 

study. The residual error and the surface static pressure ratio (pWaii/Poo)hom a simulation of the 

Aso et al. configuration withpinj/poo = 10.29 is shown in Figures 171 and 172 respectively. The 

quantities shown in these two figures are typical of the representations of the residual and pressure 

ration results from the simulations performed in this study. 

The plot of the equation residuals show that convergence to a minimum value is not a smooth 

process with this turbulence model. This is especially true of the dissipation-rate equation, e. The 

stiff nature of the turbulence equations makes convergence of the residuals to machine zero unlikely 

and the best that is likely to occur, is reduction of three to four orders of magnitude and then 

asymptotic convergence to a cyclic minimum [57,66]. A cyclic minimum is observed in Figure 

171 for all of the variables after 10,000 iterations. 

Periodic evaluation of a surface quantity, such as pwaiilPoo, for convergence after a period 

of iterations is suggested by Rizzetta [66] as a possible alternative to residual evaluation. Plots 

of the surface static pressure ratio after various iteration intervals are shown in Figure 172 for 

this simulation. These pressure plots indicate there is little change in the solution beyond 10,000 

iterations. 

Evaluation of a surface quantity with ISAAC is not particularly difficult in a two-dimensional 

simulation.   However, in three-dimensional simulations, it becomes increasingly difficult with 
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ISAAC to evaluate any particular spatial quantity for convergence as the size of the domain 

increases. Fortunately, the cyclic minimum observed in Figure 171 appears to be a satisfactory 

measure of convergence. It is seen in Figures 171 and 172 that the cyclic minimum and the point 

where the solution in Figure 172 became relatively constant, corresponds to the same number of 

iterations. Thus, convergence to a cyclic minimum is used as the temporal convergence criteria in 

this study. 

F.2 Spatial Convergence Studies 

The results of the spatial convergence studies conducted to arrive at the grids used during this 

research are presented in the following sections. 

F.2.1   Aso et aiySpaid and Zukoski Configuration 

The Aso et al. [6] configuration discussed in Section 6.2 served as the basis for the grid 

sensitivity study for the first part of the two-dimensional slot injection analysis and validation phase. 

The convergence analysis used the freestream inflow conditions list in Table 2 with a static pressure 

ratio of pinj/poo = 10.29. This pressure ratio was used for the grid study because it had the most 

complete and theromdynamically consistent data listed by Aso et al. 

A two step method was used to determine the final dimensions (i x j) of the sonic injection grid. 

First, three algebraic, nonuniform, Cartesian meshes with origin at the leading edge of the plate and 

nondimensionalized by the length I were generated using GRIDGEN \ersion 9 [95]. Using these 

grids, the requirement for j was determined by examining the static surface pressure profiles of 

steady state solutions for grid dimensions of 253 x 81, 253 x 121, and 253 x 161. The pressure 

profiles computed with these three grids are seen in Figure 173. It was evident that grid convergence 

in the normal direction was obtained with the two finest meshes; thus, j = 121 was used for the 

remainder of the grid study. Second, three additional grids were generated so the streamwise grid 

requirements could be determined. This was done by examining the static surface pressure profiles 
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for grid dimensions of 253 x 121, 337 x 121, and 439 x 121. The pressure profiles computed with 

these three grids are seen in Figure 174. Here again, it was evident that grid convergence in the 

stream wise direction was obtained on the two finest grids. Thus, i = 337 was specified in the final 

construction of the grid used for the sonic injection simulations discussed in Section 6.2. 

The final computational grid consisted of 337 x 121 nodes in the x and y directions, respectively 

with the nodes representing cell vertices (Figure 175). The minimum of Ax occurred across the 

nozzle, where 44 uniformly spaced nodes were used. Streamwise node spacing was increased away 

from the slot according to the one-dimensional tank stretching function of Vinokur [105]. There 

were 201 nodes upstream of the jet and 94 nodes downstream of the jet. At the leading edge of the 

domain, the mesh step was Ax/I = 0.01 and Ax/1 = 0.00987 at the trailing edge of the domain. In 

the normal direction, tank stretching was used to insure a smooth distribution of the nodes through 

the boundary layer and out into the freestream. Since low-Reynolds number terms in the turbulence 

models were sensitive to grid spacing at solid boundaries, Ay was chosen at the surface such that 

y+ < 1.0 at the first mesh point above the plate for all grid distributions evaluated. It was found 

that Ay/I = 0.00001 satisfied this requirement for all cases examined. 

E2.2   Tucker Configuration 

The grid dimensions used for the supersonic injection simulations discussed in Section 6.3 

were determined with a method similar to that used to arrived at the dimensions of the sonic injection 

grid. Once again a two step method was used to arrive at the final grid dimensions (i x j). First, 

the requirements for j were determined by examining the static pressure profiles of steady state 

solutions at the test section surface for grid dimensions of 341 x 61, 341 x 91, and 341 x 121. The 

pressure profiles computed with these three grids are seen in Figure 176 and it was evident that grid 

convergence in the normal direction was obtained with the two finest meshes; thus, j = 121 was 

used for the remainder of the grid study. Second, streamwise grid requirements were determined by 
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examining the static pressure profiles at the test section surface for grid dimensions of 171 x 121, 

257 x 121, and 341 x 121. The pressure profiles computed with these three grids are seen in Figure 

177 and again, it was evident that grid convergence in the streamwise direction was obtained on the 

two finest grids. Thus, i = 341 was specified in the final construction of the grid used for both 

physical configurations. 

The computational grid used in the numerical simulations in Section 6.3 of Tucker's 

configuration is shown in Figure 178. This grid has the streamwise cells swept back to better capture 

the boundary-layer separation and jet induced shocks, and consists of 341 x 121 nodes in the x and 

y directions respectively. The minimum values of Ax/l is 0.005 (/ = 1cm) and occurs across the 

slot, where 41 uniformly spaced nodes are used. The reference length of one cm was used so that 

the nondimensional grid dimensions would have a one-to-one correspondence to the dimensional 

lengths of the experimental apparatus used by Tucker [100]. Streamwise node spacing is increased 

away from the slot boundaries according to the one-dimensional tank stretching function of Vinokur 

[105]. There are 101 nodes upstream of the slot and 201 nodes downstream of the slot. At the leading 

edge of the domain, the streamwise node spacing is Ax/l = 0.1 and decreases to 0.025 at the trailing 

edge of the domain. In the normal direction, tank stretching is used to insure a smooth distribution 

of the nodes through the boundary layer and up into the freestream. Low-Reynolds number terms 

in the turbulence models, which are sensitive to node spacing at solid boundaries, require y+ < 1.0 

at the first mesh point above the plate; Ay /I = 0.00005 at the surface is used, and satisfies this 

constraint on y+. 

F.2.3   McCann and Bowersox Configuration 

A two-dimensional mesh study and a three-dimensional mesh study was conducted to arrive at 

the three-dimensional grid used in simulations discussed in Chapter 6. This two phase approach was 

used to reduce the resources required to arrive at the final grid configuration. The grid dimensions in 
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the x - y plane were determined with a two-dimensional analysis similar to the analyses preformed 

for the two previous configurations. 

It was assumed that grid dimensions and spacing in the x — y plane of the three-dimensional 

grid could be sufficiently resolved with a mesh study of a two-dimensional flowfield simulation of 

the x - y plane. This assumption is based on the absence of three-dimensional relaxation of the 

shocks and recirculation in two-dimensional flowfields; the strength of the shocks and the size of 

the recirculation regions should be more severe in a two-dimensional flowfield. Once the x - y 

plane grid dimensions and mesh spacing was determined, the y — z dimensions and mesh spacing 

was determined from an analysis of three three-dimensional grids. 

F.2.3.1   Two-Dimensional Grid 

The domain of the two-dimensional grid used for the mesh study had to model the test section 

from x/d = —5.0 to x/d = 41.0 in the streamwise direction and from y/d = 0.0 to y/d = 16.44 in 

the normal direction. This domain was needed so that the flowfield at x/d = 40.0 and the reflected 

shocks off of the upper wall of the test section were captured. 

Coarse, medium and fine grids with i x j dimensions of 181 x 61, 339 x 121 and 508 x 181 

respectively, were evaluated for spatial convergence for the variables p, U, V, p, T and K. Contours 

plots of these variables for each of the simulations are seen in Figures 179 - 184. There were clear 

differences between the results of the coarse grid and the medium grid for each of the variables 

examined. While there were also some differences between the results of the medium grid and 

the fine grid, they were significantly smaller that the results of the previous comparison. It was 

reasonably evident that grid convergence in the x — y plane had been obtained with the two finest 

grids and in light of the limited resources available for the full three-dimensional simulations, the 

dimensions and spacing of the medium grid were used for the x — y plane. 
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F.2.3.2   Three-Dimensional Grid 

The dimensions and spacing of the y - z plane were also determined through a comparison 

of simulation results from coarse, medium and fine grids the variables p, U, V, p, T and K. The 

ixjxk dimensions of the grids were 261 x 121 x 31, 261 x 121 x 61and 261 x 121 x 91 respectively 

for the coarse, medium and fine grids. Each of these grids modeled half of the test section and used 

the boundary conditions and inflow parameters listed in Tables 7, 8 and 11 and the domain of each 

grid was x/d = -7.0 to x/d = 10.0, y/d = 0.0 to yjd = 16.44 and z/d = 0.0 to z/d = 8.22. 

The streamwise domain was limited to x/d = 8.0 to reduce the computational resources and run 

time required to preform the simulations. The streamwise spacing up to x/d = 8.0 uses the spacing 

which was determined to be grid convergent in the previous section. This location (x/d = 8.0) 

was selected as the streamwise limit because experimental data and the two-dimensional simulation 

results implied that the structure of the flowfield did not undergo drastic changes beyond this point. 

Thus, it was assumed that if the solution was grid converged in the y - z plane at this streamwise 

location, extensions of the grid to other downstream locations would also be grid converged in the 

y — z plane. 

The results of the simulations with each of the three grids at x/d = 8.0 are seen in Figures 185 

- 191. As with the two-dimensional simulations, there were clear differences between the results 

of the coarse grid and the medium grid for each of the variables examined. And again, while there 

were also some differences between the results of the medium grid and the fine grid, they were 

significantly smaller that the results of the previous comparison. The only exception to this trend 

was seen in the contours for K. Thus, it was reasonably evident that grid convergence in the y - z 

plane had been obtained with the two finest grids and in light of the limited resources available for 

the full three-dimensional simulations and the run-time requirements of the RSTM, the dimensions 

and spacing of the medium grid were used for the y - z plane. 
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F.2.3.3  Half-Plane Grid 

The half-plane grid shown in Figure 192, has streamwise dimensions and mesh spacing 

as determined in the two-dimensional study and dimensions and spacing in the y - z plane as 

determined in the three-dimensional study. This grid has i x j x k dimensions of 339 x 121 x 61 

and in the streamwise direction, 92 evenly spaced nodes are used to simulate the outflow plane of 

the nozzle and 21 nodes are used to simulate the nozzle outflow in the cross flow direction. The 

flowfield upstream of the nozzle is simulated with 78 nodes and the remaining 170 are used to 

simulate the flow downstream of the nozzle. One dimensional tanh stretching is used in all regions 

which are not evenly spaced and the stretching always starts at a solid surface or from a region of 

evenly spaced nodes. 

Experimental data shows that the primary structures of the flowfield drift away from the 

centerline downstream of x/d = 8.0. Thus, in an effort to more fully capture these structures, 

the concentration of the cell spacing is shifted from the test section centerline to a region Id from 

the line z/d = 0.0. Since this is a structured grid, the dimensions and spacing in the x - z plane 

are determined by the other two planes. The cell spacing of the grid is summarized in Table 12. 

Table 12. Half-plane grid mesh spacing 

Region Spacing {cm) 
Axi 2.00 x 10-* 
Ax2 1.00 x 10"2 

Ax3 2.78 x 10"1 

Aj/i 1.00 x 10"3 

Ay2 4.67 x lO^1 

Az\ 1.00 x 10^2 

Az2 2.78 x lO^1 

Az3 1.00 x 10~2 

AZ4 1.06 x 10"1 

Az5 2.81 x 10"1 
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E2.3.4  Full-Plane Grid 

The full-plane grid shown in Figure 193, has truncated streamwise dimensions and mesh 

spacing as determined in the two-dimensional study and dimensions and truncated spacing in the 

y - z plane as determined in the three-dimensional study. Among the objective of the simulations 

conducted with this grid is to determine the asymmetric properties of the flowfield, thus the 

flowfield on both sides of nozzle must to be modeled. However, the computational resources and 

run-times required to model the entire test section are unreasonable. Thus, a smaller region of the 

flowfield is simulated with a grid which has the following domain x/d — -5 to 21, y/d = 0.0 

to 5.2 and z/d = -3.25 to 3.25. The dimensions and mesh spacing over these intervals are 

determined from the two- and three-dimensional mesh studies for the same intervals. These intervals 

are mirrored across z/d = 0.0 to complete the grid. As with the half-plane grid, an effort is made 

to more fully capture the spreading structures downstream of x/d = 8.0. For this grid the changes 

to the lateral spacing downstream of x/d = 8.0 is simply stretched with the tanh function as the 

distance from z/d = 0.0 increases. The cell spacing of the grid is summarized in Table 13. 

This grid has i x j x k dimensions of 275 x 106 x 102 and in the streamwise direction, 92 

evenly spaced nodes are used to simulate the outflow plane of the nozzle and 43 nodes are used to 

simulate the nozzle outflow in the cross flow direction. The flowfield upstream of the nozzle is 

simulated with 49 nodes and the remaining 135 are used to simulate the flow downstream of the 

nozzle. One dimensional tanh stretching is used in all regions which are not evenly spaced and the 

stretching always starts at a solid surface or from a region of evenly spaced nodes. 
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Table 13. Full-plane grid mesh spacing 

Region Spacing (cm) 
Axx 2.00 x lO-* 
Ax2 1.00 x 10~2 

Ax3 1.40 x 10-1 

Ayi 1.00 x 10"3 

A|/2 1.48 x 10"1 

Azi 1.00 x 10"2 

Az2 1.10 x 10"1 

Az3 1.00 x 10-2 

A24 6.56 x IQ""2 
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Figure 171. Residual results for Aso et al. configuration (pmj/Poo = 10.29) 
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Figure 172. Surface static pressure ratio results for various iteration levels (Aso et al. configuration 
with Pinj/Poo = 10.29) 
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Figure 174. Sonic injection configuration streamwise direction grid refinement results 

404 



^ 

0.50 

0.40: 

0.30- 

0.20- 

0.10- 

0.00- 

0 bo' 'ö.'iö' 'd.«)' 'Ö.3Ö1 'dAb' 'd.feö' 'd.feö' '6.W 'ö.feö' 'ö.feö' W.bö' 'tio' '1.20' 
x/l 
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Figure 176. Supersonic injection configuration normal direction grid refinement results 
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Figure 177. Supsersonic injection configuration streamwise direction grid refinement results 
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Figure 179. Two-dimensional mesh study results for p 
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Figure 180. Two-dimensional mesh study results for the U component of velocity 

409 



20 

Coarse Grid 

10 

5 1 
r.**H 

10 
x/d 

20 

rn^'l 

30 40 

20 

15  % 

10 

Medium Grid 

- "V'f- y<ff;Cr<.    '^'C??-*''" •..  -; •   >:-'•      ••  ■•    P$£-:.      • •   :■'.■'.   ■'■ 

:\'^':;cvf|$r|^>^' ''-#«fclii 
ll^illilMMlP^:i::  ÄSÄSiiltli^^p ' .3*8    iiP^-: 

111                              •^yiM         iät^^Sm 
i                                   i 

" ^Ksy', I 

V 
1.70 
1.41 
1.12 
0.83 
0.54 
0.25 

-0.04 
-0.33 
-0.62 
-0.91 
-1.20 

x/d 
20 30 40 

20 

Fine Grid 

'mt^m 

j.Ä-i 

x/d 
20 30 40 

Figure 181. Two-dimensional mesh study results for the V component of velocity 
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Figure 184. Two-dimensional mesh study results for K 
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Figure 185. Three-dimensional mesh study results for p at x/d = 8.0 
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Figure 186. Three-dimensional mesh study results for the U component of velocity at x/d = 8.0 

415 



Coarse Grid 
4.00 

3.00 i 

2.00 

1.00 

0.00 

Medium Grid 

0.00 1.00 2.00 3.00 4.00 
z/d 

5.00 6.00 7.00 

4.00 
Fine Grid 

0.00 1.00 2.00 3.00 4.00 
z/d 

5.00 6.00 7.00 

Figure 187. Three-dimensional mesh study results for the V component of velocity at x/d = 8.0 
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Figure 188. Three-dimensional mesh study results for the W component of velocity at x/d = 8.0 
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Figure 189. Three-dimensional mesh study results for p at x/d = 8.0 
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Figure 190. Three-dimensional mesh study results for T at x/d = 8.0 
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Figure 191. Three-dimensional mesh study results for K at x/d = 8.0 
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Figure 192. Half-plane grid (339 x 121 x 61) 
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Figure 193. Full-plane grid (275 x 105 x 101) 
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APPENDIX G - Higher Pressure Ratio Simulation Results 

In Chapter 7 the asymmetric behavior of the experimental data for the McCann and Bowersox 

[52] configuration did not appear in the numerical results. In an effort to further determine the cause 

of the asymmetries in the experimental data, an RSTM simulation was performed with the pressure 

of the injectant twice the value used in the experiments. This simulation was performed with the 

full-plane grid and used the inflow conditions and boundary conditions listed in Tables 7, 8 and 10. 

The only exception to these values was pinj. For this simulation, pinj = 134.7 kPa was used, which 

resulted in a pressure ratio of 21.0 rather than 10.5. 

The numerical results of this simulation indicate that the increase in pressure has no effect on 

the symmetry of the computed solution. The results from this simulation with Pinj/Poo = 21.0 are 

shown in Figures 194 - 203. These contour plots in these figures show that these results are just as 

symmetric as the results seen in Chapter 7 when pinj/Poo = 10.5. Thus, the asymmetric behavior 

seen in the experimental data is still not seen in the numerical results, even at this higher pressure 

ratio. 
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Figure 195. Comparison of the U component of velocity at higher pressure ratio (x/d = 10.0) 
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Figure 196. Comparison of the V component of velocity at higher pressure ratio (x/d = 10.0) 
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Figure 197. Comparison of the W component of velocity at higher pressure ratio (x/d = 10.0) 
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Figure 198. Comparison of T at higher pressure ratio (x/d = 10.0) 
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Figure 199. Comparison of K at higher pressure ratio (x/d = 10.0) 
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Figure 200. Comparison of Txy at higher pressure ratio (x/d = 10.0) 
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Figure 201. Comparison of TXZ at higher pressure ratio (x/d = 10.0) 
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Figure 202. Comparison of ryz at higher pressure ratio (x/d = 10.0) 
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Figure 203. Comparison of ux at higher pressure ratio (x/d = 10.0) 

428 



APPENDIX H - Run Time Summary 

This appendix contains a summary of the system performance data for each of the simulations 

presented in this document. Also found in this appendix are the CFL numbers of each simulation. 

All of the two-dimensional simulations were performed with AFIT's DEC Alpha computers. 

These computers were equipped with the EV5 chip set and operated at a clock speed of 250MHz. 

The three-dimensional simulations were performed on the Cray J916 located at the Aeronautical 

Systems Command Major Shared Resource Center, Wright-Patterson AFB, OH. Typical values for 

the CPU time/grid point/iteration of these two computer systems are summarized in Table 14. 

Table 14. System performance data 

Model    DEC Alpha    Cray J916 
K - e         92jis 19/xs 
RSTM        157/js 32/is 

The following tables present a summary of system performance data for each of the simulations 

reported in this document. The experimental configuration of each table corresponds to is given in 

the table heading. The case numbers listed in the tables are the numbers used to identify the data 

files during the research phases of this study. The "restart file" is a data file used to initialize the 

f lowfield of the simulation. For the K — e model simulations, this file is the f lowfield data from a 

solution at a lower pressure ratio and for the RSTM simulations, this file consists of f lowfield data 

from the K — e model simulation at the current pressure ratio. 

The ISAAC algorithm permits initial and final CFL numbers as inputs. The initial CFL number 

is the CFL number the algorithm begins the iteration process with. Over the period of "ramped 

iterations" the CFL number is increased until it reaches the final CFL number. Once the final CFL 

number is reached, that value is used until the iteration process is completed. 
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The ISAAC algorithm also permits grid sequencing to accelerate convergence of the solution. 

A single level of grid sequencing is used with the K - e model during the three-dimensional 

simulations. This solution is interpolated up to the next higher level grid and used as the restart 

file to initialize the K - e and RSTM simulations. 

The run time data provided for the two-dimensional solutions represents a significant learning 

curve in grid management and convergence properties of the ISAAC algorithm.. During the two- 

dimensional simulations, grid sequencing was not used and the algorithm was allowed to run beyond 

the point where the solution had converged. Thus, the run times reported for the two-dimensional 

cases are not necessarily the minimum run time which could have been realized with this algorithm. 

It is certainly possible that reduced run times for the two-dimensional computation with the RSTM 

could have been achieved with proper use of the grid sequencing option. 

The run time data provided for the three-dimensional computations incorporates grid 

sequencing and an initial solution of the f lowfield based on the K — e model. 

Table 15. Aso et al. run time data 

Case                                Restart 
number        Pinj/Poo file 

Grid        Total # of    Run time 
iterations    (s xlO-3)    Model size 

KeGw27-2a 4.86            None 337 x 121 10,000 
KeGw27-3a 10.29 KeGw27-2a 337 x 121 10,000 
KeGw27-4b 17.72 KeGw27-3a 337 x 121 12,000 
KeGw27-5a 25.15 KeGw27-4b 337 x 121 12,000 
RseGw27-2a 4.86 KeGw27-2a 337 x 121 18,000 
RseGw27-3f 10.29 KeGw27-3a 337 x 121 18,000 
RseGw27-4b 17.72 KeGw27-4b 337 x 121 20,000 
RseGw27-5b 25.15 KeGw27-5a 337 x 121 20,000 

194 K-e 
194 K-e 
233 K-e 
233 K-e 
600 RSTM 
600 RSTM 
663 RSTM 
663 RSTM 
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Table 16. Aso et al. CFL data 

Case Initial Final Ramped 
number CFL CFL iterations Model 

KeGw27-2a 1 5 2,000 K-e 
KeGw27-3a 1 5 2,000 K-e 
KeGw27-4a 1 3 4,000 K-e 
KeGw27-5a 1 3 5,000 K-e 
RseGw27-2a 0.1 0.4 6,000 RSTM 
RseGw27-3f 0.1 0.4 6,000 RSTM 
RseGw27-4b 0.1 0.4 6,000 RSTM 
RseGw27-5b 0.1 0.4 6,000 RSTM 

Table 17. Spaid and Zukoski run time data 

Case Restart Grid Total # of Run time 
number Pin j /Poo file size iterations (s xHT3) Model 

KeGw27-13b 8.743 None 337 x 121 17,000 330 K-e 
KeGw27-14a 17.117 KeGw27-13b 337 x 121 12,000 233 K-e 
KeGw27-15a 42.69 KeGw27-14a 337 x 121 17,000 330 K-e 
KeGw27-16a 63.50 KeGw27-15a 337 x 121 20,000 388 K-e 
RseGw27-13b 8.743 KeGw27-13b 337 x 121 20,000 663 RSTM 
RseGw27-14b 17.117 KeGw27-14a 337 x 121 20,000 663 RSTM 
RseGw27-15b 42.69 KeGw27-15a 337 x 121 20,000 663 RSTM 
RseGw27-16b 63.50 KeGw27-16a 337 x 121 20,000 663 RSTM 

Table 18. Spaid and Zukoski CFL data 

Case Initial Final Ramped 
number CFL CFL iterations Model 

KeGw27-13b 1 4 2,000 K-e 
KeGw27-14a 1 4 2,000 K-e 
KeGw27-15a 1 4 2,000 K-e 
KeGw27-16a 1 4 2,000 K-e 
RseGw27-13b 0.1 0.5 4,000 RSTM 
RseGw27-14b 0.1 0.5 4,000 RSTM 
RseGw27-15b 0.1 0.5 4,000 RSTM 
RseGw27-16b 0.1 0.5 4,000 RSTM 
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Table 19. Tucker ran time data 

Case Injection Restart Grid Total # of Run time 
number type file size iterations (s xKT3) Model 

KeTu9-2a Cooled None 343 x 121 20,000 395 K-e 
KeTu9-2heat Heated KeTu9-2a 343 x 121 20,000 395 K-e 
RseTu9-2a Cooled KeTu9-2a 343 x 121 20,000 675 RSTM 

RseTu9-2heat Heated KeTu9-2heat 343 x 121 20,000 675 RSTM 

Table 20. Tucker CFL data 

Case Initial Final Ramped 
number CFL CFL iterations Model 

KeTu9-2a 1 3 2,000 K-e 
KeTu9-2heat 1 3 2,000 K-e 
RseTu9-2a 0.1 0.5 2,000 RSTM 

RseTu9-2heat 0.1 0.5 2,000 RSTM 

Table 21. McCann and Bowersox run time data 

Case Total # of Run time 
number Restart file Grid Grid size iterations (sxlO"3) Model 

KeGMR14-la None Half-plane 169 x 61 x 31 8,000 56 K-e 
KeGMR14-2a KeGMR14-la Half-plane 339 x 121 x 61 8,000 407 K-e 
RseGMR14-2a KeGMR14-la Half-plane 339 x 121 x 61 8,000 684 RSTM 
KeGMR17-la None Full-plane 137 x 53 x 51 8,000 106 K-e 
KeGMR17-2a KeGMR17-la Full-plane 275 x 105 x 101 8,000 470 K-e 
RseGMR17-2a KeGMR17-la Full-plane 275 x 105 x 101 8,000 790 RSTM 

Table 22. McCann and Bowersox CFL data and memory requirements 

Case Initial Final Ramped Memory 
number CFL CFL iterations requirements (MW) Model 

KeGMR14-la 0.01 0.5 8,000 80 K-e 
KeGMR14-2a 0.01 0.5 6,000 170 K-e 
RseGMR14-2a 0.01 0.5 6,000 256 RSTM 
KeGMR17-la 0.01 0.5 6,000 80 K-e 
KeGMR17-2a 0.01 0.5 6,000 170 K-e 
RseGMR17-2a 0.01 0.5 6,000 256 RSTM 
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