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ABSTRACT 

In today's electronic age, the Department of Defense is relying more heavily on 
the transfer of information to maintain battlespace awareness and command and control 
efficiency. Current military satellite communication systems are unable to keep pace with 
the growing requirements for electronic transfer of voice, data, and video information. 
Additionally, these systems are expected to begin failing in the 2003 to 2007 timeframe 
with no identified replacement. Naval Forces consist of highly mobile units that often 
operate in harsh environments. New communication systems must be designed that can 
satisfy the needs of these mobile forces that cannot rely on secure landlines for the timely 
transfer of information. 

This thesis first examines the process for developing requirements and how they 
relate to the military acquisition and system engineering processes. Established methods 
for documenting satellite communications requirements are also reviewed. Next, 
potential technological drivers for a system to satisfy the low data rate needs of 
tomorrow's Naval Forces are presented. Current systems and plans are examined to 
provide information on current capabilities. Following that, a set of future architecture 
options and tradeoffs are presented to satisfy these mobile communications needs. 
Finally, conclusions and recommendations about the organizations and groups tasked 
with guiding the military and its use of space are provided. 



VI 



TABLE OF CONTENTS 

I. INTRODUCTION AND DEFINITIONS 1 

A. PURPOSE i 

B. DEFINITIONS 2 

E REQUIREMENTS ANALYSIS 5 

A. REQUIREMENTS BACKGROUND 5 

B. DEPARTMENT OF DEFENSE ACQUISITION PROCESS 6 

C. SYSTEM ENGINEERING PRINCIPLES 10 

D. MILSATCOM MISSION NEEDS STATEMENT 12 

E. MOP 37 13 

F. THE EMERGING REQUIREMENTS DATABASE 13 

G. THE CAPSTONE REQUIREMENTS DOCUMENT AND THE 
FUNCTIONAL REQUIREMENTS DOCUMENT 15 

H. MOBILE USERS STUDY 18 

m. COMMUNICATION SATELLITE TECHNICAL COSIDERATIONS 25 

A. FREQUENCY SPECTRUM 25 

B.HARDWARE 28 

C. ORBITOLOGY ISSUES 32 

D.LINK BUDGET 37 

E. SATELLITE ISSUES 39 

IV. SPACE COMMUNICATIONS SYSTEMS 2000 41 

A. UHF FOLLOW-ON (UFO) 41 

B. DEFENSE SATELLITE COMMUNICATION SYSTEM (DSCS) 44 

vii 



C. MILITARY STRATEGIC SATELLITE RELAY (MILSTAR) 45 

D. INTERNATIONAL MARITIME SATELLITE (INMARSAT) 47 

E. CURRENT MILSATCOM LIFETIME 47 

V. SPACE COMMUNICATION TERMINALS 2000 51 

A. TERMINAL LAYDOWN 51 

B. DEFENSE INFORMATION SYSTEMS NETWORK 54 

C. JMCOMS/ADNS 56 

VI. ARCHITECTURE 2010 57 

A. REQUIREMENTS REVIEW 57 

B. OFFICE OF THE SPACE ARCHITECT 58 

C. COMMERCIAL COMSAT 60 

D. ARCHITECTURE COMPONENTS 62 

E. OBJECTIVE ARCHITECTURE PROPOSAL AND TRADES 64 

F.GAPFDJLER 66 

G. VERIFICATION 66 

VO. CONCLUSION 69 

APPENDIX A - ERDB LOW DATA RATE REQUIREMENTS 73 

APPENDDC B - MUS REQUIREMENT DEFINITIONS 81 

APPENDIX C - SATCOM TERMINAL LAYDOWN 83 

UST OF REFERENCES 91 

INITIAL DISTRIBUTION LIST 95 

Vlll 



LIST OF FIGURES 

Figure 1 - The DoD Systems Engineering Process 11 

Figure 2 - The OODA Loop 17 

Figure 3 - MUS Requirements WIPT Process and Products 21 

Figure 4 - RF Frequency Bands 25 

Figure 5 - UFO Constellation Coverage Area 42 

Figure 6 - Projected MILSATCOM Constellation Mean Lifetimes 48 

Figure 7 - Key Elements of the DISN Architectuire 55 

Figure 8 - OSA Architecture Options 59 

IX 





LIST OF TABLES 

Table 1 - DoD Acquisition Categories 8 

Table 2 - Acquisition Process Phases 9 

Table 3 -MUS Requirements Matrix 22 

Table 4 - Satellite Frequency Band Designations and Characteristics 26 

Table 5 - Portable Terminal Typical Battery Comparison Chart 30 

Table 6 - Typical Ship-to-Shore Link Budget via INMARSAT 38 

Table 7 - UFO Communication Channel Characteristics 43 

Table 8 - Characteristics of Common UHF SATCOM Terminals 52 

Table 9 - General Fleet Communication Circuit Requirements 76 

Table 10 - Nominal Carrier Battle Group Communication Circuit Requirements 77 

Table 11 - Nominal Amphibious Readiness Group Communication Circuit Requirements 
 78 

Table 12 - Marine Corps Communication Circuit Requirements 79 

Table 13 - UHF SATCOM Terminal Laydown 84 

Table 14 - UHF SATCOM Terminal Laydown 85 

Table 15 - SHF SATCOM Terminal Laydown 86 

Table 16 - SHF SATCOM Terminal Laydown 87 

Table 17 - EHF SATCOM Terminal Laydown 88 

Table 18 - EHF SATCOM Terminal Laydown 89 

Table 19 - Commercial SATCOM Terminal Laydown 90 

XI 



Xll 



LIST OF ACRONYMS 

ACAT Acquisition Category 

ADNS Automated digital Network system 

ARG Amphibious Readiness Group 

ATM Asynchronous Transfer Mode 

CAE Component Acquisition Executive 

COTS Cost-Off-the-Shelf 

CRD Capstone Requirements Document 

DAB Defense Acquisition Board 

DAMA Demand Assigned Multiple Access 

DISA Defense Information Systems Agency 

DISN Defense Information Systems Network 

DoD Department of Defense 

DSCS Defense Satellite Communication System 

DUSD Deputy Under Secretary of Defense 

ERDB Emerging Requirements Database 

FRD Functional Requirements Document 

GEO Geosynchronous Orbit 

HEO Highly Elliptical Orbit 

ICDB Integrated Communications Database 

INMARSAT   International Maritime Satellite 

IPT Integrated Product Team 

ISDB Integrated Satellite Communications Database 

ITU International Telecommunications Union 

JMCOMS       Joint Maritime Communications Strategy 

JROC Joint Requirements Oversight Council 
LDR Low Data Rate 

LEO Low Earth Orbit 

LPI Low Probability of Intercept 

MDR Medium Data Rate 

MEO Medium Earth Orbit 

MNS Mission Need Statement 

Xlll 



MSS Mobile Satellite System 
MUS Mobile Users Study 
ORD Operational requirements document 
PCS Personal Communication System 
PM Program Manager 

PSTN Public Switched Telephone Network 
OS A Office of the Space Architect 
UAV Unmanned Aerial Vehicle 
UFO UHF Follow-On Satellite Constellation 

USD (A&T)   Under Secretary of Defense for Acquisition and Technology 

xiv 



ACKNOWLEDGEMENTS 

The author would like to acknowledge the financial support of Naval Space 

Command Code N52 for travel to support research for this thesis, and all members of the 
Mobile User Study who patiently answered questions and provided much-needed 
information. 

xv 



XVI 



I. INTRODUCTION AND DEFINITIONS 

A. PURPOSE 

Today, the military forces of the United States must operate in an increasingly 
joint environment in order to extend combat effectiveness. According to Joint Pub 1 

[Ref. 1], "The joint campaign plan achieves sequenced and synchronized employment of 
all available land, sea, air, special operations and space forces - orchestrating the 
employment of these forces in ways that capitalize on the synergistic effect of joint 
forces." Furthermore, Chairman of the Joint Chiefs of Staff General John M. 
Shalikashvili has stated that "command, control, communications and computer (C4) 
networks and systems provide the means to synchronize joint forces." [Ref. 2] In order to 
carry out this role, "C4 systems must provide the rapid, reliable, and secure flow and 
processing of data to ensure continuous information exchange throughout the force," 
according to Joint Pub 6-0 [Ref. 3]. In today's electronic world, this means that open 
communication channels must be maintained in order to facilitate this information flow. 

Many military units are able to maintain communications through the use of high 
bandwidth fiber optic cable and large satellite receivers, capable of utilizing landbased 
communications infrastructure and geosynchronous orbiting satellite communications 
constellations. Other units must rely upon lower bandwidth antennas and radios for 
processing terrestrial based line-of-sight communications. This puts the user at a 
disadvantage from the perspectives of both sending and receiving battlespace awareness 
information. 

United States Naval operational forces are comprised largely of highly mobile 
units. These units include ships at sea, aircraft, wheeled units such as Armored Personnel 
Carriers, and ground units such as infantry platoons and Special Operations Forces. In 
order to participate in the joint campaign envisioned in today's Joint Pub doctrine, these 
forces require an effective communications network that will allow them to participate in 
the two-way flow of information. 

This thesis will examine the need for, and the technical limitations on a military 
operated system capable of satisfying the low data rate mobile communications 
requirements of Naval Forces for the 2010 timeframe, and present architecture options for 
consideration. Because current military owned satellite communications systems are due 



to reach the end of their planned life-cycle in the 2003-2007 timeframe, now is the time to 
begin investing in the next generation of capabilities. [Ref. 4] 

Discussion will begin with the requirements generation process and how it applies 

to this problem. Next, current capabilities will be examined in terms of both current 
military satellite communication (MILSATCOM) systems, and satellite communication 
terminals in the military inventory. This will be followed by an examination of the 
vulnerabilities and limitations of current generation satellite communication systems. 
Finally, various architecture proposals will be offered as potential solutions to the mobile 
communication problem. 

B. DEFINITIONS 

Different services, and even different agencies within the same service, often 
work with a variety of definitions for the same terms. To avoid confusion, this section 
will provide background discussion on specific terms relevant to this thesis. This is not 
to say that other definitions are incorrect, but rather to provide a clear understanding to 
the reader of the context under which this research was conducted. 

1. Mobile 

Webster's New World Dictionary defines a military usage definition for the word 
mobile as "capable of being moved quickly and easily." [Ref. 5] Many defense satellite 
communications systems fit this description. They range in size from small hand-held 
parabolic dish antennas to large satellite dishes that can be towed by truck. However, 
they must be set up at a stationary location in order to establish the pointing accuracy 
necessary to provide a communication link. This may be acceptable for some land-based 
forces, but remains insufficient for shipboard and aircraft applications. 

The term mobile for this document will instead be used to denote a 
"communication on the move" capability. This will include ships, aircraft, wheeled 
vehicles and any other application that will allow personnel to communicate without 
having to stop and setup antennas or other hardware. Instead, these units will be able to 
communicate while travelling at speeds from a slow walk, to multi-mach aircraft. 



2. Low Data Rate 

Data rate refers to the speed at which bits are transferred across a channel in a 
digital communication system. This thesis will be concerned primarily with voice, and 
some data applications that do not need the large volume of information required for uses 
such as video transfer. This is an effort to satisfy requirements for the most 

disadvantaged user, the hand-held, or man pack terminal that is limited in size, weight 

and processing capability due to mobility requirements and ruggedness of construction. 

The human voice channel is generally described as operating in the range of 300 
Hz to 4 kHz, based on both frequencies transmitted and frequency response of the human 
ear. According to the Nyquist sampling theorem: 

If a band-limited signal is sampled at regular intervals of time, and 
at a rate equal to or higher than twice the highest significant signal 
frequency, then the sample contains all of the information of the original 
signal. [Ref. 6] 

Applying the Nyquist sampling theorem to a voice channel with a highest 
significant signal frequency of 4 kHz, yields a sampling rate of 8 kHz, or one sample 
every 125 |is. Each sample must now be quantized and coded into a binary representation 
for transmission. 

Many practical digital pulse code modulation (PCM) systems today use a 7 or 8 
bit binary code. The latter case provides 28, or 256 discrete steps to quantize, or 
represent, the amplitude of each voice sample. These quantized levels generally provide 
a non-linear representation of each sample in order to provide higher resolution in the 
frequency ranges where most voice information is contained, while still providing 
representation of frequency ranges that occur less often. This non-linear representation is 
known as companding. [Ref. 6] 

An 8 bit representation of a signal sampled at 8 kHz produces a data rate of 64 
kbps for full voice band capability. This represents the upper limit of the low data rate 
definition for this document. By taking advantage of redundancy and predictability in 
speech sounds, encoding devices can be used to compress a voice channel down to 9.6 
kbps, while maintaining signal quality. Most military satellite voice communications 
today accept quality degradation by operating at 2.4 kbps or 4.8 kbps. These lower data 



rates provide adequate information exchange, but limit such features as voice and 
inflection recognition. Some modern MILSATCOM systems consider 4.8-64 kbps 
medium data rate, but in this document they will be considered low data rate. 



II. REQUIREMENTS ANALYSIS 

The first step in any system development is to determine the requirements that the 
system must satisfy. This is the least understood activity in the development process, yet 
can have the largest impact on the final product. Requirements are the user's way of 
communicating needs to the designer. They define what the problem is, not how to solve 

it. They include such parameters as the environment in which the system must perform, 
objectives the system must satisfy, and any desired constraints. [Ref. 7] 

A. REQUIREMENTS BACKGROUND 

Requirements come in three basic types, with increasing resolution. Functional 
requirements define the necessary tasks that a system must perform in general terms. 
Performance requirements express quantifiable descriptions of how the system must 
satisfy its required tasks. They are commonly expressed in such common terms as speed, 
weight, timing, size, or area coverage. The final type, design requirements, delineates 
"build-to" requirements that define manufacturing processes, or specific hardware and 
software descriptions. [Ref. 8] 

Regardless of type, a well designed requirement will posses meaningful attributes. 
Most importantly, a requirement must be verifiable in order to substantiate compliance. 
This means that ambiguous terms such as excessive, sufficient, or resistant must be 
avoided. Instead, specific quantitative language must be used to express characteristics 
that can be measured and tested. Additionally, each requirement must take into account 
all intended mission profiles, operations and maintenance concepts, operational 
environments, and outside constraints. Finally, each requirement must be consistent with 
all other requirements, and present an appropriate level of resolution commensurate with 
its level in the system hierarchy. [Ref. 7] 

Defining system requirements is not a one-time event, but an iterative process that 
must continue throughout a product's life-cycle. In fact, user needs arc seldom clearly 
defined. Instead, the user must work closely with all disciplines that are impacted a 
system during its life-cycle to continually validate and refine all requirements. A failure 
to aggressively attack the requirements definition problem early results in an incomplete 
understanding of requirements, and leads to the problem of building the wrong system, 
one that does not satisfy the user's needs when fielded. 



Inadequate requirements analysis early in a program can lead to one of two 

situations. The first is cost overrun. This occurs when requirements are poorly defined, 

presenting a lack of clear direction to the developing command or agency. Results are 

often a system that fails to adequately meet the user's needs, or is not operationally 

effective or suitable for the intended operating environment. This leads to frequent 

redesign, schedule slips, poor performance, and higher program costs. 

Another result of insufficient requirements analysis is cost growth. This occurs 

when new requirements are added late in the development process. Growth differs from 

overrun in that the new requirements often necessitate contract renegotiations to reflect 

changes leading to major system redesign, in effect creating a new system. In some cases, 

the new requirements may invalidate a large and expensive portion of any development 

already undertaken. 

This does not mean that requirements analysis should be completed early, and 

decisions locked in for the life of the program. It does no good to field a system 

following a long development process if that product is no longer of any operational 

significance. Instead, requirements must be responsive to changing circumstances such 

as technology and threat assessments, while taking into account the trade-offs between 

cost and need, as well as performance and effectiveness. 

B. DEPARTMENT OF DEFENSE ACQUISITION PROCESS 

The Department of Defense is charged with the procurement and life-cycle care of 

many complex systems. Costs for these systems range into the billions of dollars and are 

a significant drain on the Department's budget. With available dollars declining and 

systems complexity and expenses growing, the Department has been forced to impose 

controls on its acquisition efforts in order to contain costs and minimize waste. 

Prior to 1990, the United States existed in a world dominated by Cold War 

politics. The Department of Defense (DoD) benefited from this situation in the form of 

increasing budgets and seemingly limitless weapons programs when compared to today's 

standards. Additionally, the various military services operated nearly autonomously with 

little capability to conduct coordinated warfare. This situation led to the procurement of 

stovepipe systems that were developed independently, often duplicated functions, and 

were unable to operate in a common environment. New legislation attempted to end this 

predicament in 1986 with passage of the Goldwater-Nichols Act. 



The Goldwater-Nichols Defense Reorganization Act of 1986 is a legal attempt to 
tear down the walls between the military services. It mandated a new structure within the 
Department of Defense that now places greater authority with the Chairman of the Joint 
Chiefs of Staff, as well as with the Unified and Specified Commanders. This Act also 
mandated changes in the Department of Defense's acquisition process by forcing major 
acquisition programs to compete and perform in a joint environment. Today, instead of 

operating independently of each other, the services must work and fight together, as well 
as develop warfare systems that are interoperable. To meet this end, the acquisition 
process has been formalized under the guidance of the Under Secretary of Defense 
(Acquisition and Technology) (USD(A&T)) with military support led by the Vice 
Chairman of Joint Chiefs of Staff (VCJCS). [Ref. 9] 

The USD(A&T) is responsible for all major acquisition programs from each of the 
services. He performs his duties by issuing directives and regulations, and through his 
role as head of the Defense Acquisition Board. The primary directives are contained in 
the Department of Defense 5000 series instructions. These documents have been in 
existence for many years, but recently revised to reflect major reforms of acquisition 
policy in order to streamline the process. [Ref. 8] 

The Defense Acquisition Board (DAB) is the body responsible for advising the 
USD(A&T) in his capacity as authority for oversight and approval of major DoD 
programs. Under recent reforms, every acquisition program for which the DAB is 
responsible is assigned an Integrated Product Team (JPT) comprised of OSD level 
personnel, DAB members, and service or Program Office representation. This 
interdisciplinary panel works with the Program Manager (PM) to guide the program 
through its development and production phases, while ensuring that cost, schedule and 
performance objectives are met. Decisions that cannot be reached by the IPT are brought 
to the attention of the full DAB for resolution. [Ref. 8] 

The VJCS position was created by the Goldwater-Nichols Act [Ref. 9]. Among 
the primary duties of this office are Vice-Chairmanship of the DAB, and Chairmanship of 
the Joint Requirements Oversight Council (JROC). Under his leadership, the JROC, 
comprised of the Vice-Chiefs of the military services, is tasked with validation of 
warfighting requirements proposed by the services and assessing joint potential of any 
possible acquisition program. [Ref. 9] 

Requirements are submitted to the JROC in the form of a Mission Need Statement 
(MNS).   This document is a brief declaration of a new mission area or identified 



capability deficiency produced in response to a validated threat to the United States or its 

military forces. Attempts must first be made to satisfy this need through non-material 

solutions such as changes in tactics or doctrine. If this type of solution is not feasible, 

then the component command must assess the potential scope of any material solution. 

Only those MNS's expected to lead to a procurement program exceeding certain spending 

limits, or expected to generate significant political interest are presented to the JROC. 

Others are handled by individual services. If the MNS is approved by the JROC, it is 

then submitted to the DAB to be considered for program establishment and funding. 

[Ref. 10] 

Department of Defense Directive 5000.1 (DoD Directive 5000.1), "Defense 

Acquisition," and Department of Defense Regulation 5000.2-R (DoD 5000.2-R), 

"Mandatory Procedures for Major Defense Acquisition Programs (MDAPs) and Major 

Automated Information System (MAIS) Acquisition Programs," exist as the written 

authority from the Secretary of Defense for all DoD acquisition programs. In accordance 

with these documents, all DoD acquisition programs are assigned an acquisition category 

(ACAT) designation as outlined in Table 1. Those programs expected to meet ACAT I 

criteria are reviewed by the DAB, other programs are sent to their respective services for 

consideration. Once the DAB receives a MNS from the JROC that is expected to require 

an ACAT I designation, a Milestone 0 decision must be made. [Ref. 8,11] 

Calesorv 

ACAT I 

Description 
Major Defense Acquisition Programs (MDAPs) estimated by the USD(A&T) to require 
expenditure for research, development, test and evaluation of more than $355 million, or 
procurement of more than $2.135 billion (in FY 1996 constant dollars). Other programs 
can be designated as ACAT I at the discretion of the USD(A&T).  

ACAT ID        ACAT I programs for which milestone decision authority rests the USD(A&T). 

ACAT IC 
ACAT I programs for which milestone decision authority rests the service Component 
Acquisition Executive (CAE).   

ACAT IA Programs for Major Automated Information System (MAIS) acquisition. 

Major systems that do not meet the criteria for ACAT I and are managed by the cognizant 
ACAT D CAE. These systems are estimated to cost more than $300 million in FY 1980 constant 
 dollars, or are designated by the CAE as ACAT II programs. 

These are programs that do not meet the requirements to be designated as ACAT I or 
ACAT HI         ACAT II. The milestone decision authority my be delegated to the lowest possible level 

by the CAE.  

Table 1 - DoD Acquisition Categories 



Milestone 0 is the first step in the life of an acquisition program. It marks entry 

into Phase 0 of the acquisition process, also known as Concept Exploration. This can be 

considered a transition from the initial requirements generation process, to acquisition 

management. At this point a Program Office, headed by a Program Manager (PM) is 

generally established to manage all phases of the acquisition process as outlined in Table 
2 [Ref. 8]. 

PHASE NAME 

0 Concept Exploration (CE) 

Program Definition and Risk 

Reduction (PDRR)  

II Engineering and Manufacturing 

Development (EMD) 

DI Production, Fielding/ 

Deployment and Operational 

Support (PF/DOS) 

DESCRIPTION 

Evaluate feasibility of alternative concepts 

Determine most promising concepts or solutions 

Design the system 

Demonstrate critical processes and technologies 

Mature and finalize selected design 

Validate manufacturing and production processes 

Test and Evaluate the system  

Produce and field/deploy the system 

Monitor system performance 

Support fielded system 

Modify or upgrade the system as required 

Table 2 • Acquisition Process Phases 

Entry into each phase is preceded by a milestone decision, made by the cognizant 

Milestone Decision Authority. These decisions are made to monitor progress in the areas 

of cost, schedule and performance, and to set criteria to be met for completion of the next 

phase. In the case of ACAT ID programs, this decision is made by the USD(A&T), and 

for ACAT IC programs, the decision is made by the CAE. [Ref. 8] 

A major product of the Concept Exploration phase is an initial Operational 

Requirements Document (ORD). Developed primarily by the user of the system under 

development, it is initially a broad statement of operational performance parameters to be 

satisfied by the system. The ORD is used to define objective performance as well as 

minimum acceptable thresholds. This is the guiding document for system development 

and continues to evolve along with the system. As potential trade-offs are examined, and 

the system proceeds through its lifecycle, the ORD is continually refined to reflect the 

status of threats, technology, budgets and other factors that play into the acquisition 



process. It is in this process of creating and refining the ORD that arriving at a thorough 
understanding of system requirements is critical. [Ref. 10] 

C. SYSTEM ENGINEERING PRINCIPLES 

Today's military systems are increasingly complex interactions between hardware 
and software components. Because of this, greater emphasis has been placed on the 
discipline of system engineering to aid in the design and production of new systems. The 
Defense Department's publication MIL-STD-499A defines systems engineering as: 

...the application of scientific and engineering efforts to (a) transform an 
operational need into a description of system performance parameters and 
a system configuration through the use of an iterative process of definition, 
synthesis, analysis, design, test, and evaluation; (b) integrate related 
technical parameters and ensure compatibility of all physical, functional, 
and program interfaces in a manner that optimizes the total system 
definition and design; (c) integrate reliability, maintainability, safety, 
survivability, human engineering, and other such factors into the total 
engineering effort to meet cost, schedule, supportability, and technical 
performance objectives. [Ref. 12] 

Systems Engineering can also be described as the process of applying an 
organized approach to solving a complex design problem. Although varied in 
application, the goal is the same, to produce an efficient system that satisfies a need, 
within the constraints of cost, schedule and performance. 

Systems Engineering is a process that is continually applied throughout a system's 
life-cycle, from requirements definition to disposal. It gathers together people from all 
disciplines that have a hand in any life-cycle phase in an attempt to uncover the hidden 
requirements that enable creation of an elegant system that will satisfy all needs and 
constraints. 

While still concerned with the details of a system, Systems Engineering is 
primarily concerned with the macro level of the system. The Systems Engineering 
process is aimed at managing the "forest" and letting more specialized teams build the 

"trees," although each level in the design has its own "forest" to which the principles of 
Systems Engineering must be applied. 

10 



The people primarily responsible for conduct of the Systems Engineering process 

are the Systems Engineers. They work throughout a system life-cycle to provide the best 

possible product to solve a given problem. Systems Engineers do this by taking an 

outside look at their area of responsibility, or subsystem, and seeing how this part of the 

problem must interact with all other parts of the problem, and designing to maximize 

performance of the entire system over this subsystem. 

All participants in a project bear the responsibilities of Systems Engineering. 

Each person will have their own area of expertise, and must use that knowledge to design 

the interfaces and attributes that will allow their part to be a piece of an efficient whole. 

This requires cooperation as opposed to competition among all people involved. 

In order to perform this job more effectively, formal processes have been 

established. The DoD's formal systems engineering process is detailed in Figure 1 

[Ref. 13]. This process is depicted as an iterative loop in which four procedures are 

performed on inputs to produce an output. The inputs to this process are the user's 

requirements, and the output is a system that will satisfy these requirements. 

Process Input i 

Analysis 

Design Loop 

Synthesis/ 
Design 

Process Output 

Figure 1 • The DoD Systems Engineering Process fRef.13] 

User requirements are generally presented as a set of broadly defined top-level 

performance parameters. They need to present the problem to the system engineer 

without unnecessarily restricting the solution. The system engineer must then work with 

the user, designer, manufacturer, logistician, and any other discipline that will be a part of 
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the system life-cycle to further refine these requirements and develop architecture options 

and trade-offs. 

D. MILSATCOM MISSION NEEDS STATEMENT 

The Commander in Chief of United States Space Command is the specified 

commander responsible for U. S. military support from the space environment. In this 

capacity he published the Mission Needs Statement For Follow-On Military Satellite 

Communications in 1995. This MNS documents a requirement to maintain a satellite 

communication system to support mission areas detailed in the Defense Planning 

Guidance. [Ref. 14] 

The eight page report uses broadly worded language to describe a satellite 

communication system for the future. It calls for a "system of systems" to satisfy wide 

ranging operational scenarios. This is an effort to force the interoperability of a disparate 

set of systems by building them to a shared standard, allowing users to access a range of 

systems using a common transceiver terminal. Accomplishing this would aid in 

minimizing system life-cycle costs, as well as reducing the user's maintenance and 

equipment load. 

The MNS also recognizes the importance of commercial industry in providing 

communications services. Today's MILSATCOM systems do not posses the capacity to 

support demand. [Ref. 15] Commercially available services can be used without the long 

term costs of developing, designing, building, and maintaining a military owned system. 

It also notes that commercial services are seldom available globally, and do not 

necessarily provide features, such as netted communications and nuclear hardening, that 

military may need. Although, it does suggest that future military systems be designed to 

make use of commercial capacity when it is available. 

Finally, it is prudent to note that in the author's opinion, this mission needs 

statement appears to have overstepped its bounds. This document violates the definition 

of a requirement presented earlier in this chapter by providing solutions to an operational 

need. This document specifies the use of satellites to solve the communication needs of 

the military rather than just describing the need, indicating that the decision makers have 

already decided how they wish to go about building a solution. This may be the result of 

carelessness in writing the MNS, but may also be that the United States Space Command 

is focused only on space based solutions, and ignoring other options. 
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E. MOP 37 

In 1992, the Chairman of the Joint Chiefs of Staff released Memorandum of 
Policy No. 37 (MOP 37), titled Military Satellite Communications Systems. This 
document establishes policy, guidance, and responsibility for all phases of 
MILSATCOM, from requirements generation through system operation. MOP 37 
recognizes the utility of SATCOM capacity, as well as the need to regulate and prioritize 
the use of this limited resource. [Ref. 16] 

The stated objective of MOP 37 is "to ensure essential MILSATCOM support for 
mission accomplishment." A primary component of the document is a comprehensive 

listing of SATCOM related roles and responsibilities within the DoD. Key portions of 
these listings are those offices responsible for requirements. They include the Chairman 
of the Joint Chiefs of Staff (CJCS), the Commanders-in-Chief (CinCs) of the Unified and 
Specified commands, the Joint Staff, and the Director of the Defense Information 
Systems Agency (DISA). 

CJCS has outlined his responsibilities as those of defining the process by which 
SATCOM requirements are documented, as well as approving those requirements. The 
CinCs are responsible for submitting consolidated and prioritized lists of requirements 
based upon subordinate command requirement submissions as well as periodic OPLAN 
reviews. The Joint Staff is tasked with managing the MILSATCOM requirements 
process as outlined by the CJCS. DISA is charged with maintaining an Integrated 
SATCOM Database (ISDB) which documents all approved SATCOM requirements. 
[Ref. 16] 

Much like the MNS, MOP 37 appears to dictate specific material solution to a 
communication need. While this may be at least partially true, MOP 37 does recognize 
the existence of alternative solutions. In fact, DISA is further tasked with assessing the 
feasibility of satisfying requirements by MILSATCOM. 

F. THE EMERGING REQUIREMENTS DATABASE 

As previously discussed, DISA is tasked with maintaining an Integrated 
SATCOM Database which documents all approved SATCOM requirements. This is 
currently accomplished through the use of two separate databases, the Integrated 
Communications Database and the Emerging Requirements Database. 
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The Integrated Communications Database, or ICDB, contains near term 

requirements for MILSATCOM. The database information is classified Secret. Online 

access to the ICDB is provided by DISA via computer modem and PC based software. 

Access is limited to approved units that are authorized to provide direct inputs to the 

database. The software package allows these users to access the information contained in 

the database, submit new requirements, and communicate directly with DISA. 

It was recognized that the ICDB, although necessary, was insufficient. Due to 

long satellite development and deployment lead times, as well as the explosive growth in 

technology capability, a method to capture requirements for farther into the future was 

needed. The Emerging Requirements Database (ERDB) was created in 1995 to satisfy 

this need. 

The ERDB is a much less formal document. Its inputs are an attempt to capture 

predictions for ten years into the future based on what is known today. Unlike a more 

formal ORD, the purpose of this undertaking is to provide direction for long range 

planning guidelines to the agencies and personnel developing future SATCOM systems. 

There is currently no document defining the ERDB's structure or process. Naval inputs 

are provided by contacting the N52 branch of Naval Space Command, and furnishing 

them with a best guess of future needs. This information is cataloged, and periodically 

reviewed for consistency. As of this writing, Version Three is being prepared for release. 

ERDB Version 2 is used as the basis of stating future Naval communications for 

this thesis. Appendix A contains an extract of the ERDB tables listing only low data rate 

requirements for Navy and Marine Corps Forces. Naval requirements are broken down 

by functional user needs into fleet command requirements, carrier battlegroup (CVBG) 

requirements, amphibious readiness group (ARG) requirements, and Marine Corps 

(USMC) requirements. [Ref. 17] 

Within each ERDB table, every line item details an individual circuit requirement. 

Data rate, type of operation, availability, connectivity, level of protection, information 

type, and expected duty cycle are listed. Perhaps the most important attribute is listed 

last, requirement multiplier, or number of this circuit type required. This is primarily 

noticeable of the Fleet requirements list where 2000 point-to-point mobile satellite 

service circuits are required at 2.4 kbps! 

The summary on each chart lists the total number of line item circuits, as well as 

their combined throughput. It does not, however, account for the requirements multiplier 

value assigned to each. On the CVBG requirements table, this drives the total number of 
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circuits from 23 to 46, and the combined data rate from 416 kbps to 1127.2 kbps, more 

than double the total throughput. These numbers can be somewhat tempered, however, 

by the fact that must duty cycles are significantly less than 100%. This means that many 

of these circuits are only active a small portion of the time, opening a the possibility of 

increasing the number of circuits allowed without out changing total capacity by sharing 

channels. 

In the author's opinion, the ERDB is an excellent planning tool, but cannot be 

used as a standalone document. It is not reasonable to expect that a single carrier 

battlegroup or amphibious readiness group will be utilizing SATCOM assets at a point in 

time. Instead, operational tempo, deployment schedules, doctrine, and training needs 

must become part of the equation. Additionally, many smaller or independently operating 

units may be operating with SATCOM requirements. 

Current thinking envisions a continuum running from peacetime operating 

scenarios, through humanitarian and peacekeeping missions, to two simultaneous major 

regional conflicts (MRC), each with greatly increasing communications needs. Also, the 

fact that the other services and national interests will have their own requirements for low 

data rate SATCOM must be included. A new system must be capable of satisfying these 

competing priorities under the worst case scenario of two MRCs. 

G. THE CAPSTONE REQUIREMENTS DOCUMENT AND THE FUNCTIONAL 
REQUIREMENTS DOCUMENT 

The ERDB is a good tool for grasping the actual numbers of circuits and volume 

of data requiring transfer via SATCOM or other mobile communications channel. It does 

not, however, address many of the larger issues that are of concern to military forces. 

These issues include operational concepts, and architectural concerns. To fill this gap, 

United States Space Command has compiled the Capstone Requirements Document, 
known as the CRD. 

This document is designed to provide high level requirements and rationale for the 

entire MILSATCOM gamut. These include wide band and narrow band requirements. 

The CRD provides a checklist of characteristics which can be used to describe individual 

circuit requirements in more refined documents such as the ERDB. [Ref. 18] 

To complement the CRD, Naval Space Command, the Navy's operational space 

command, has produced the Navy Functional Requirements Document (FRD). The FRD 
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complements the CRD by using elements of the latter document and applying them to 
Naval specific communication requirements. It is the high level document used to 
provide descriptive characteristics to Naval Force's ERDB inputs. 

The FRD begins by describing current and planned MILSATCOM systems, 

covering space, control, and terminal segments, as well as services provided. An 
important part of this is the depiction of a fixed, limited bandwidth capability, in the face 
of exponentially growing demand for services. Systems already approved and developed 
for the DoD were designed prior to the Persian Gulf War, and the information explosion 
that followed, and they are due to reach the ends of their lifetimes within the next decade. 
As of this writing, no replacement has yet been identified. 

Required characteristics are presented with broad definitions. These 

characteristics include protection, capacity, access, and flexibility. Protection refers to 
the ability to prevent the user from perceiving any service or security degradation due to 

the effects of physical destruction, nuclear detonation, jamming, or Information Warfare 
attacks. Capacity is the ability to provide the necessary information transfer when 
needed, to a wide range of users at increasingly lower echelons. Access is the ability to 
use the communication services when they are needed, with network control 
responsibilities delegated to the lowest appropriate level. Flexibility includes the 
capability of accessing SATCOM channels from any operational area where services are 
required, as well as the ability to trade protection features for capacity in a 
communication system that is path independent. These features combine to provide the 
set of high level requirements. [Ref. 19] They are not verifiable requirements by 
themselves, but must be used to aid in defining attributes for lower level requirements. In 
fact, many of these descriptors are used to define ERDB line items in Appendix A. 

Narrowband SATCOM is assigned a set of broadly defined attributes. First is the 
ability to provide service to mobile platforms. This includes users that fit within the 
definition provided in the first chapter of this thesis. Next is the fact that any narrowband 
system needs to be optimized for voice and LDR data. This provision is to stress the need 
for tactical command and control via voice circuits, as well as provide battlespace 
awareness via tactical data nets and broadcasts. Finally, flexibility must be built in as 
defined above, in order to provide the ability to tailor services to the operating 
environment. 
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The FRD presents a list of broadly stated emerging information requirements 
divided into functional categories. The ERDB refines these requirements into individual 
circuits. These categories are based on the principle of shrinking the OODA loop. 

The OODA loop is an acronym for observe, orient, decide, and act. It represents a 
formalized model to represent a decision process as depicted in Figure 2. Shrinking the 
time to complete the loop, without losing quality in decision making, requires the timely 
and accurate flow of information. This will allow the strike planning process to be 

reduced from days to hours, and provide total battlespace awareness to all participants. 
[Ref. 19] 

^D OBSERVE 

ACT ORIENT 

]  DECIDE 
Figure 2 - The OODA Loop [Ref. 19] 

In order to accomplish this, the FRD has defined seven emerging information 
requirements areas to be satisfied. Although each area can be satisfied using 
MILSATCOM networks, not all of them are best solved via LDR SATCOM. They all, 
however, must be accessible to mobile units in order to satisfy Naval requirements. The 
requirements are listed below. 

■ Full knowledge of the battlespace prior to engagement; optimize effectiveness 
of the attack; strategy, tactics, execution. 

■ Over-the-horizon control and feedback from advanced weapons. 
■ Over-the-horizon targeting links. 

•   Command and control of dispersed Marine units engaged in over-the-horizon 
amphibious operations. 

■ Improved computer-to-computer data links. 
■ Range extension of remote sensors. 

■ Extension of digital telephony services to more and smaller platforms. 
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In order to meet all of these articulated requirements, the FRD presents a space 
segment vision consisting of a multi-layered system of systems. The complete picture 
encompasses both military and commercially operated SATCOM assets working 
together. LDR assets would operate from low altitude, crosslinked satellites, to provide 
narrowband connectivity between mobile units, smart weaponry, remote sensors, and 
fixed sites to allow entry to the terrestrial communications grid. Assets at higher altitudes 
would provide higher capacity with increased protection. This configuration is 

envisioned as providing a high data throughput capability to small terminals. It would be 

designed to afford all of the protection and flexibility requirements laid out in this 

document. 

Although the FRD does not provide the circuit resolution of the ERDB, it does 
provide much of the qualitative description of SATCOM requirements. These documents 
must be used together in order to get a more complete picture of future needs. The 
missing piece of the puzzle is still an operational loading assessment to determine total 
numbers of circuits and bandwidth needed to satisfy these requirements in the envisioned 
two MRC scenario. It must also be noted that like the previously discussed requirement 
sources, the FRD steps outside its bounds and presents an architectural solution. Those 
responsible for developing requirements must be careful not to unnecessarily restrain the 

set of possible solutions by presenting unrealistic or overly restrictive requirements. Give 
the developing agencies as much room as possible to work with. 

H. MOBILE USERS STUDY 

In 1996, the communications branch of Naval Space Command commissioned 
Booz, Allen & Hamilton, Inc. to conduct a MILSATCOM operational loading study. The 
study was set up to load ERDB requirements against MILSATCOM assets in a variety of 
operational scenarios, ranging from peacetime operations to conduct of one MRC and 
several lesser regional conflicts. Using Version One of the ERDB, the study revealed that 
63% of UHF LDR MILSATCOM assets would be used, but nearly 100 communication 
network requirements would remain unsatisfied. Remaining capacity would not satisfy 
these requirements due to data rate incompatibility (remaining 4.8 kbps requirements are 
incompatible with current DAMA access scheme). Some of this could be solved by 
migrating requirements to EHF frequencies, but many mobile users are currently 
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incapable of using this portion of the spectrum. Furthermore, this only accounts for 
Naval requirements, and assumes that Naval Forces have access to 100% of the 
MILSATCOM capacity. In a more realistic scenario, other forces, CinCs, and national 
agencies would have a share in the spectrum division. This points to an extreme crisis in 
ability to satisfy requirements set forth in the previously discussed documents. [Ref. 15] 

Prior to the Persian Gulf War, multimedia satellite communications did not exist 
in the Navy. In fact, UHF SATCOM terminals were only available onboard a handful of 

platforms. At the same time, EHF terminals existed only on an experimental basis. This 
lack of over-the-horizon communication capability forced many commanders to spend 
operational funds to obtain an INMARSAT commercial maritime satellite 
communication capability. [Ref. 20] Commanders began to realize the value of satellite 
communication to modern joint warfare. As a result, the CNO began a push to install a 
mix of SHF, EHF, and upgraded UHF terminals, along with an increased commercial 
capability, to almost every Navy vessel. This rapid influx, however, was accomplished 
without an overall strategic plan. [Ref. 20] 

In recognition of the increased technological capabilities of SATCOM, several 
attempts to define a coherent architecture were attempted from 1992 through 1996. Each 
effort reached an independent set of conclusions, but never a DoD wide consensus of 
opinion. At the time, the UFO and Milstar constellations had yet to be launched, and 
funding for the services was under fire from Congress. Scheduled decision points were 
allowed to slip, shortening the development time for a replacement system. 

These study efforts have produced many paper reports, and much political fighting 
among the services, but no approved SATCOM road map for the future. Two major 
hurdles have prevented a coherent solution from being reached, the enormous complexity 
of the SATCOM problem, and the fact that costs associated with fielding a new system 
are expected to exceed $50 billion. [Ref. 4] 

The latest effort, dubbed the "Transition Planning Effort," was begun in 1996. 
Led by the Deputy Undersecretary of Defense for Space (DUSD (Space)), this effort is 
working to refine a very broad architecture trade space defined by the DoD Office of the 
Space Architect (OSA). The goal is to provide a road map by December 1997 for 
building the MILSATCOM system of tomorrow. To make the task more manageable, the 
effort has been divided into smaller sections, with the Navy being assigned to lead the 
low data rate effort named the "Mobile Users Study" or MUS. [Ref. 20] 
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Led by the Assistant Secretary of the Navy for Research, Development, and 
Acquisition (ASN (RDA)), the Navy has established an Integrated Product Team (IPT) to 
oversee the MUS effort. Three Working Integrated Product Teams (WIPTs) have been 
given individual tasking by the MUS IPT. They are the Requirements WIPT, Systems 
Engineering WIPT, and Acquisition Planning WIPT. 

The Requirements WIPT is a joint effort headed by Naval Space Command. 
Representatives from the four services, the Joint Staff, and the Defense Information 
Services Agency vote on all decisions, with each agency having an equal vote in a 

majority rule forum. Additional support is provided by a large array of contractors, the 

National Reconnaissance Office (NRO), the National Security Agency (NSA), and 

various government agencies with a stake in the SATCOM planning process. [Ref. 21] 

The goal of the Requirements WIPT is to reach a consensus on the requirements 
for low data rate mobile SATCOM. The group used a top-down approach to 
requirements definition, basing their decisions on guidance provide by the Joint Chiefs of 
Staff publication Joint Vision 2010, and service specific vision documents such as the 
Navy's Forward From the Sea. These general requirements then translate to specific 
network requirements, as expressed in the ERDB. This approach enables a direct tie 
between the granular detail of individual network needs and the warfighting impact of 
that network if lost. [Ref. 20] 

The outcome of the Requirements WIPT process includes three products, a 
requirements matrix, appropriate requirement definitions, and an assessment of the 
impact of unsatisfied requirements on warfighting capabilities based upon a computer 
analysis using the software tool MAST. The process and products are depicted in Figure 
3. These products are then fed to the Systems Engineering and Acquisition Planning 
WIPTs as inputs to their decision cycles. The goal of this entire process is to provide a 
comprehensive transition and implementation plan for providing mobile LDR service 
enroute to an objective architecture. 

After examining all of the requirement documentation, the Requirements WIPT 
narrowed their high level requirements down to eight issues. Each voting member then 
ranked items on the list in accordance with their individual service desires, however, no 
relative weighting criteria was applied. This means that each requirement carries equal 
weight in an ordinal ranking. There was no way to delineate if a particular requirement 
was significantly more or less important than its neighbor. Results are listed in Table 3. 
[Ref. 21] Definitions for each requirement are tied to terms defined in the CRD. Each 
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definition is provided with amplification to meet the needs of the MUS. These 

definitions are included as Appendix B. This data was then presented to the Systems 

Engineering WIPT to be used for decision making in architectural trades, and for further 

refinement. 

Obtain ERDB, 
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Figure 3 - MUS Requirements WIPT Process and Products [Ref. 21] 

The Systems Engineering WIPT has produced version 1.0 of a document 

expanding upon the requirements presented by the Requirements WIPT. Their intent is to 

provide industry with a list of more specific design requirements that reflect needs stated 

in MOP 37 and the ERDB. [Ref. 22] While the Requirements WIPT is comprised of 

system users, the Systems Engineering WIPT is a gathering of communications engineers 

from DoD agencies and support contractors. This group has a better understanding of the 

requirement design process, and is taking an iterative approach to refining the eight stated 

requirements into verifiable functional and performance requirement statements. 

This group recognizes that under the DoD's push to reduce costs by purchasing 

commercially developed products, many contractors may already have designed systems 

with the potential to meet the military's needs. Because of this, many items on their 

expanded requirements list are phrased in terms of questions regarding what type of 
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service a candidate system can provide. This indicates that many aspects of a future 
SATCOM system not well understood, or are open to a wide range of performance 
parameters. This can be seen as an attempt to poll industry on the direction technology is 

taking, or effort not to constrain the solution the space. 

Required Capabilities Voting Members 

USA USN USAF USMC JCS DISA Avg Rank 

Assured Access 1 1 1 2 1 1 1.17 1 

Netted Comms 2 2 2 1 2 2 1.83 2 

Comm on the Move 3 3 6 3 3 4 3.67 3 

Joint Interoperability 4 4 7 5 4 6 5.00 4 

World Wide Coverage 5 5 5 7 6 3 5.17 5 

Point-to-Point Comms 8 6 3 4 5 5 5.17 6 

Broadcast 6 8 4 6 7 8 6.50 7 

Polar 7 7 8 8 8 7 7.50 8 

Table 3 - MUS Requirements Matrix. From Ref. 21 

The entire MUS effort is moving forward under a schedule deadline. On-orbit 

MELSATCOM systems have become coveted resources, but can be very fragile. Once a 
satellite is in orbit, servicing and repair are not possible using current technology. Present 
reliability analysis predicts the demise of all current and planned MILSATCOM 
constellations in the middle of the next decade. In order to provide replacements, 
programs and funding must begin now. The MUS DPT is working to win JROC approval 
for their architecture transition plan to include a gapfiller component, an objective 
architecture, and a plan for next generation terminal population. This must occur in late 
1997 in order to enter the future years budgeting process in time to replenish or replace 
current systems. [Ref. 20] 

The MUS effort must be seen as a short fused effort. The deadlines have been 
known for some time, but the responsible parties have been unable to work together to 
reach a consensus. This is apparent from the previous studies that had been undertaken, 
and then allowed to languish. The MUS participants have worked hard to provide a 
reasonable amount of detail in a short period of time to make up for several years of 
political and budget battles. Their products represent a reasonable approach to stating an 
enormous set of requirements in a useable format. However, greater care must be taken 
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in this requirements generation process to avoid stating requirements in terms of what can 
be done today. Instead, as much room as possible must be left to industry for developing 
innovative solutions to a problem that depend on rapidly evolving technology. 
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III. COMMUNICATION SATELLITE TECHNICAL COSIDERATIONS 

Before discussing potential solutions that will satisfy the requirements laid out for 

a mobile LDR MILSATCOM system, some of the major technical issues need to be 
addressed. The issues discussed in this chapter are intended to provide a background for 

understanding potential tradeoffs in designing an objective system. Technological 

advances in hardware and software will always affect design trades, but the physical 
principles under which they operate remain constant. 

A. FREQUENCY SPECTRUM 

One of the most basic decisions to be made when designing a communication 
system is what channel the information will be sent through. For satellite 
communications, that channel is the electromagnetic spectrum travelling through the 
Earth's atmosphere, and through space. 

The electromagnetic spectrum can be thought of as energy travelling at the speed 
of light. This energy oscillates at a continuum of frequencies ranging from a frequency of 
close to 0 Hz to higher than the terrahertz (1012) range. Terrestrial radio and satellite 
communication systems mostly use the radio frequency range of this spectrum from 3 
MHz to 300 GHz, although some applications are being developed at higher frequencies 
using laser applications to communicate. Within this range, the ITU has developed 
standard nomenclature bands on a logarithmic scale, so that each successive band 
contains ten times the bandwidth of its predecessor. [Ref. 23] The most widely used 
frequency bands for SATCOM are the UHF (300 MHz - 3 GHz), SHF (3 GHz - 30 
GHz), and EHF (30 GHz - 300 GHz), are depicted in Figure 4 by their relative bandwidth 
size. Frequencies below UHF exhibit an increasing tendency to be trapped within the 
earth's ionosphere and are used for terrestrial long distance, beyond line-of-sight, 
communications purposes. 

300 MHz 
3 GHz     30 GHz 300 GHz 

I    SHF   | EHF 

UHF 

Figure 4 - RF Frequency Bands 
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All three of these bands are limited to line-of-sight communications, but interact 
differently with atmospheric phenomena and physical obstacles. Because of this, their 
applications vary. Also, within each band, sub-bands have been identified for satellite 
communications purposes, and given unique letter designators. These bands have been 
reserved for general applications by international agreement. It is extremely unlikely that 
the military will be able to obtain any new frequency assignments for MTLSATCOM 

purposes. Table 4 depicts currently assigned bands and their characteristics. [Ref. 24] 

Letter 

Designator 

ITU 

Band 

Frequency 

Range (GHz) 

Bandwidth 

(MHz) USE 

L UHF 0.39-1.6 50 Commercial, Military 

S UHF/SHF 1.65-5.2 90 Tracking, Telemetry, and Control 

C SHF 3.9-6.2 500 Commercial 

X SHF 5.2-10.9 500 Military 

Ku SHF 10.9-17.25 500 Commercial 

Ka SHF 17.5-30 2500 

1000 

Commercial 

Military 

o EHF 36-46 2500 Military 

V EHF 46-56 

W EHF 56-100   

Table 4 - Satellite Frequency Band Designations and Characteristics. From Ref. 24 

In addition to their line-of-sight propagation, these bands have a few other 
common characteristics. First of all, as previously stated, all electromagnetic waves 
travel at the speed of light. This means that information using a radio channel will travel 
from transmitter to receiver at the same speed regardless of frequency. Longer distances 
mean longer delay. In terrestrial line-of-sight networks the delay will be insignificant, but 
when geosynchronous satellite communications systems are used, the round trip will take 

approximately one quarter second plus any processing time involved. This can be a 
significant delay for voice applications. Although information data rate requirements are 
fundamentally independent of transmission channel frequency, it is important to 
recognize that operations such as error detection and correction, addressing, supervision, 
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synchronization, and spectrum spreading increase the required channel bandwidth, which 

is a scarce commodity in the lower frequency bands. 

Despite certain similarities, each radio frequency (RF) band possesses distinctive 

features that determine suitability for different applications. Understanding these 

differences is the key to recognizing the potential tradeoffs among the different bands for 

satellite use. 

According to the ITU definition, the UHF band ranges from 300 - 3000 MHz 

[Ref.24], although military definitions refer to frequencies as low as 225 MHz. It is 

primarily a line-of-sight signal used by the military for air-to-air and air-to-ground 

communications. These systems are good for hand-held applications due to a relatively 

low power requirement and the ability to use dipole, or whip antennas, which are nearly 

omni-directional and require very little pointing accuracy. This band can easily operate at 

data rates of 2.4 kbps and higher, but is susceptible to jamming and interception due to its 

widespread usage and nearly omni-directional antenna pattern. 

The SHF band covers the spectrum from 3-30 GHz. It is widely used for 

terrestrial based line-of-sight, high data rate, microwave links. [Ref. 24] Current 

MILSATCOM use of this band is for high data rate applications due to the relatively large 

bandwidth availability compared to UHF. For the same size antenna, wave characteristics 

in this region allow more directional transmission than the UHF band. This results in a 

narrower beamwidth, reducing the probability of both jamming and signal interception. 

Spread spectrum techniques can be used to reduce this possibility even further. Modern 

systems use antennas that are too large for most mobile applications, other than ships. 

Most are transportable rather than mobile, and are towed by trucks to an installation 

location where they are set up for stationary use. 

EHF use is still very new to the military. Utilizing spectrum from 30 - 300 GHz, 

this band possesses a wealth of untapped capacity. Due to its short wavelength, EHF can 

be used with very small aperture dish antennas and very narrow beamwidths. The low 

probability of intercept (LPI) and jamming are very favorable. The problem with EHF is 

high attenuation due to rain and atmospheric attenuation and scattering. High humidity 

can cause signal losses of several dB, while heavy rain can cause over 30 dB of signal 

loss to EHF frequencies. [Ref. 25] Large platforms such as ships and ground stations 

may be able to produce enough transmitted power to overcome this, but few small 

platforms will be able to do so. Additionally, satellite transmitters are limited in power 

production and output, so terrestrial receivers require sufficient gain margin in their 
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equipment to overcome this obstacle in order to satisfy availability criteria. Shadowing, 

or signal loss due to obstacles, increases with frequency. Little work has been done to 

test these high frequencies in constrained environments such as urban and jungle locales. 

It is believed at this time that EHF frequencies would require a direct, or nearly direct, 

line-of-sight between transmitter and receiver. [Ref. 25] 

The amount of bandwidth required for a transmission channel depends upon 

processing requirements and modulation scheme. A digital signal contains two basic 

types of information, intelligence bits and overhead bits. Intelligence is the user's data, 

voice, or video information being transmitted to the receiver. Overhead includes bits 

added to the signal for purposes of error detection and correction, routing and addressing, 

encryption, and any direct sequence spread spectrum encoding. Often, only a small 

percentage of signal bandwidth is used for intelligence bits. 

It is important to once again note that frequency spectrum is assigned by 

international agreement. The International Telecommunications Union (ITU), an arm of 

the United Nations, is responsible for setting international communications policy and 

standards. Their decisions are enforceable under international law. Just because the 

United States military has a block of frequencies available for use within its borders, does 

not mean that those same frequencies will be available in foreign lands or international 

waters. Planning is needed to deconflict frequency assignments when operating in these 

areas, or any communications system could be rendered completely ineffective either by 

law or through interference and nuisance jamming. 

Spectrum availability is also under attack from within the United States as well. 

Elements of both the Legislative and Executive branches have made repeated proposals to 

sell military spectrum allocation to the commercial market in an attempt to raise money. 

In the author's opinion, this is a shortsighted effort to profit at the expense of the 

military's most flexible spectrum allocation that could prove to be very costly in the end. 

The government may be forced to spend large amounts of money to lease back frequency 

rights from commercial entities, as well as the equipment needed to operate with them. 

So far these efforts have not succeeded, but have not gone away. 

B. HARDWARE 

In the past it has been customary to design terminals around a satellite's 

capabilities. This has led to terminals that were cumbersome to use, could not be fielded 
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in a timely manner, and provided little added value to many mission areas. It has been 

shown that the radio segment of a MILSATCOM system is responsible for most of the 

system lifecycle cost. Additionally, due to the relatively short life spans of satellite 

constellations, the terminals are not completely fielded until the constellation has aged 

beyond a significant portion of its useful life. [Ref. 26] 

Next generation SATCOM constellation designers must learn the lessons of the 

past. The current pace of technology growth will not allow the same plan to be followed. 

Instead, satellite constellations must be designed to work with particular terminal 

characteristics. The entire system needs to be viewed from the perspective of the 

disadvantaged user. Terminal capability limitations will determine the level of service to 

be provided by the space based assets. 

Mobile manpack or handheld terminals are largely constrained by size and weight. 

The two physical components having the largest effect on these parameters are the power 

source and the antenna. These two items must be designed to provide optimum 

capabilities within the size and weight requirements defined by the user. These 

considerations also affect other mobile platforms, but to a lesser extent. If a system can be 

designed to meet the needs of the more restrictive terminals, it can be adapted for the less 

constrained case, and ideally provide greater service. 

1. Terminal Power Sources 

Electrical power for man portable terminal operation comes from a storage device 

or battery. Batteries come in a wide variety of sizes and shapes due to their power 

requirements and chemical composition. Terminal output must meet Occupational Safety 

and Health Standards for exposure set by the United States Government. Within these 

limits, batteries are designed to meet characteristics such as discharge time, recharge 

cycles, human and environmental safety, and energy density (watt-hours/kilogram). 
[Ref.27] 

A comparison of commonly available battery types is provided in Table 5. This 

table demonstrates the types of trades that must be considered when designing small 

handheld or manpack terminals. [Ref. 25] Power output is paramount, but this must be 

balanced by considerations such as cycle life, weight, and life-cycle cost. There is seldom 

an obvious solution, but the design must be compatible with operational concepts in order 

to be of value to the user. 

29 



Energy Density (W/kg) 30-60 

NiMH 

60-80 

Solid Reusable 
Li-Polvmer      Alkaline 

25-30 100-130 70-200 80 

Cycle Life 
(capacity decrease to 80%) 

500-1500 500-800 200-500 500-1000 100-150 10 

Fast Charge Time (hrs) 1.5 2-4 8-16 3-4 8-15 2-3 

Overcharge Tolerance moderate low high very low N/A moderate 

Self-discharge per Month 10-20% 30% 6% 10% 5-20% 0.3% 

Operating Temp (°C) -40 to +60      -20 to +60      -20 to +60 -20 to +60 N/A 0 to +65 

Maintenance Requirement          30 days 
(for max service life)  

90 days       3-6 months N/A N/A N/A 

Typical Battery Cost 

Cycle Cost 

$50 (7.5V)     $70 (7.5V)       $25 (6V)       $100 (7.2V)      $90 (8.1V)        $5 (9V) 

$0.04 $0.14 $0.10 $0.10-$0.20 $0.60 $0.50 

In Commercial Use Since 1950 1990 1970 1991 N/A 1992 

Table 5 - Portable Terminal Typical Battery Comparison Chart. After Ref. 25 

Larger terminals such as those on aircraft and ships can generally rely upon their 
platform's power generation capacity, but space based assets are unique. They must 
provide power via a combination of solar cells and storage devices. Solar cells must be 
arranged to receive a maximum amount of solar energy. Because of their relative motion 

with the Sun and the Earth, satellites will experience periods of blackout. Additionally, 
these components will degrade over the life of the satellite and provide less power. 
Because of this, satellites are also constrained in the amount of power they can produce, 

but are not limited by the same electromagnetic radiation exposure restrictions that many 
terminal transmitters are. Designers must balance the capabilities and constraints of each 
node of the system in order to take advantage of the characteristics of each. 

2. Antennas 

Antennas are large drivers of system weight and size. The ideal antenna radiates 
equal power in all directions, but this is a theoretical limit. Commonly used dipole or 

whip antennas are normally considered omni-directional, but actual radiation patterns 
depend upon nearby ground structures, ground plane, and bandwidth. Many design 
variations have been used to overcome this limit in order to reduce blind spots in the 
pattern, but true omni-directional radiation is difficult to achieve. 
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Energy radiated from an ideal isotropic antenna spreads in a spherical pattern 
away from its source. Because of this, the amount of energy arriving at a receiving 
antenna is reduced in proportion to the square of the distance from the transmitter. Each 
antenna has a gain associated with it. Gain is a function of antenna efficiency, effective 

aperture area, and transmitted or received frequency. It is usually expressed in decibels, 
and is a measure of an antenna's ability to concentrate its radiated energy. Equation 1 is 
the equation for antenna maximum directive gain. [Ref. 27] 

n       (*df t 
\  c   J 

Equation 1 - Antenna Gain 

Antenna efficiency, T|, is the reduction in radiated or received power due to factors 
such as feed loss. Typical efficiencies range from 50 - 70 % [Ref. 27]. A higher 
efficiency equates to higher radiated power. Effective area in this equation is based on 
the diameter, d, of a parabolic dish. Gain increases with the square of the antenna 

aperture diameter, and the square of the signal frequency, f. The factor c is a constant 
representing the speed of light. 

As Equation 1 shows, there is room for significant tradeoffs in antenna design. 
Exposure limits will continue to constrain emissions, but how those emissions are used 
can be subject to much creativity. Most satellite communication systems use a familiar 
parabolic dish antenna to concentrate radiated energy into a usable quantity. However, 
dish size is dependent upon wavelength, and frequencies in the UHF band would require 
huge dish sizes to maintain a consistent beam pattern. Because of this, UHF systems, 
especially for mobile applications, require the use of some form of dipole antenna. EHF 
systems on the other hand are able to make use of small dish antennas. In fact, EHF 
antennas developed for submarine applications are only a few inches in diameter. 

Another issue with parabolic dish antennas is pointing accuracy. The narrower 
the transmitted beam is, the more accurately it must be pointed it the intended recipient. 
This introduces further complexity into the system, as well as increased weight and size. 
Ships at sea have been able to overcome this problem, usually with the use of multiple 
antennas to prevent superstructure masking, and gimbaled mounts to remove ship motion. 
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More mobile platforms such as aircraft, motor vehicles, and foot soldiers generally lack 

the ability to add dish antennas with automatic tracking devices, so lower frequency 
omni-directional antennas are preferred. 

A potential solution to the pointing problem at higher frequencies is the use of 
phased array antennas. These consist of a set of small fixed elements that work to 
electronically steer a signal by applying differential transmission characteristics to 
individual transmission elements. Since beam steering is accomplished without moving a 
large dish, tracking can be done much faster, and without a large gimbaled dish. [Ref. 28] 

Phased arrays are not in widespread use because they have been traditionally expensive 
and very bulky, but technology is changing. 

Several companies have developed small and inexpensive phased array elements 

that are still being tested. Their target market is the home satellite reception market, with 
the goal of bringing production costs down from thousands of dollars per element, to 
fewer than twenty dollars. Tests have already been run in conjunction with the Air Force 
by using conformal phased arrays on an aircraft fuselage to provide satellite 
communications. Further tests are currently being run with the Army to employ a flat 
plate antenna with approximately a dozen dime sized phased array elements, to 
communicate in the SHF band with orbiting Unmanned Aerial Vehicles (UAVs). Their 
prototype is man portable with a 1 millisecond scanning beam to maintain pointing 
accuracy with a receiver. [Ref. 28] Additionally, the Navy is working to develop 
conformal phased array antennas for shipboard use, where antenna space is at a premium. 

Although the communications applications of phased arrays can still be 
considered developmental, they should be given serious attention. As costs and size 
come down they become more attractive and affordable for a wide variety of applications. 
They may be able to overcome many of the limitations of dish antennas while allowing 
access to the capabilities available in higher frequency bands. 

C. ORBITOLOGY ISSUES 

Much of a satellite constellation's capability is determined by its orbit. All Earth 
orbiting satellites are contained in a plane passing through the center of the Earth. 

Different orbits are distinguished by their altitude and inclination (as determined by the 
angle between the orbit plane and the Earth's equator). These factors affect parameters 
important to communication satellites such as period, access area, and coverage area. 
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A satellite's period is the amount of time required to complete a single orbit of the 
Earth. Basically, the higher the orbit the longer the period. The shortest period occurring 
at the lowest orbital altitude is about ninety minutes. 

Access area is a description of the area of the Earth that is visible to a satellite. It 
is independent of satellite hardware capabilities, and proportional to altitude above the 
Earth. Even at an infinite distance from the Earth, access area cannot exceed half of the 
Earth's surface. 

Coverage area is a subset of access area. It is that portion of the access area that a 
satellite's sensor can actually see. Most satellites are unable to cover their entire access 
area at a single instant in time. For a communications satellite, coverage is based on the 
antenna gain pattern, and the amount of area it can service at one instant. 

Most communication satellite orbits are circular or nearly circular in order to 

maintain steady gain patterns. Once a satellite is placed in orbit, the cost to change that 
orbit, in terms of both fuel and operational flexibility, is very high. To change an orbit 
inclination by as little as 10° requires an expenditure between 18% and 35% of the 
spacecraft's total weight in fuel, depending upon fuel type and orbit altitude. Launch 
vehicle size and lift capacity limit the amount of fuel that a satellite can carry. More fuel 
means a reduced weight allowance for mission hardware. Once a plane change is made, 
it is unlikely that the fuel capacity will exist for another. Additionally, less fuel will be 
available for routine stationkeeping purposes that will reduce useful satellite mission life. 

Most orbits can be divided into general descriptive categories based upon their 
altitude and orbit eccentricity. These categories are detailed below. 

1. Low Earth Orbits 

Low Earth orbits (LEO) start as low as 300 km above the Earth's surface. 
Although this is generally considered to be above the atmosphere, its effects are still felt 
in the form of aerodynamic drag on the satellite, and frequent station keeping maneuvers 
must be executed to prevent atmospheric capture. These maneuvers are performed by 
thrusters burning a portion of the spacecraft's fuel supply that will eventually be 
exhausted. LEO orbits are generally defined to include altitudes up to 1000 km. The 
upper boundary altitude is determined primarily by the need to remain below the harmful 
radiation effects of the Van Allen belts. LEO orbital periods range from 90 to about 100 
minutes. [Ref.27] 
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Due to their close proximity to the surface of the Earth, satellites in LEO orbits 
have relatively small access and coverage areas. This means that to provide continuous 
coverage of the Earth, many satellites are needed in highly inclined orbits in order to 
reach the extreme latitudes. The result will be increased costs and complexity due to the 
high numbers of satellites required both to populate the constellation, as well as replenish 
it. Commercial LEO satellite constellations planned for the near future are designed to 
contain anywhere from a few spacecraft to several hundred. 

Additionally, a high relative motion is created between the satellite and the ground 

based transceiver on the order of 7.5 km/s [Ref. 27]. This leads to a much higher doppler 

shift than most currently fielded radios are equipped to handle, and represents a design 

challenge. Also, due to its low altitude and fast motion, a communication satellite will 

likely disappear below the radio horizon before communications are complete, 
necessitating overlapping coverage areas and effective signal handoff mechanisms 
between satellites within a constellation. Finally, if system antennas require strict 
pointing accuracies in order to maintain the communications link, the high relative 
motion will make this task difficult. 

In their favor, LEO communication constellations require much less received 
signal power to operate. This works to the benefit of the disadvantaged user who must 
operate with small manpack or hand-held, battery operated, terminals. Antenna pointing 
accuracy requirements are reduced due to their relative proximity, and small omni- 
directional antennas may be used. 

Another benefit is wider frequency reuse. Due to smaller coverage areas, or 
footprints, the same frequency can be utilized by a variety of users in different 
geographical regions without interference. This requires proactive constellation 
management to divide the total coverage area into many cells using non-overlapping 
frequencies, but may prove valuable in an age of shrinking military spectrum assignments 
and increased communication requirements. 

2. Medium Earth Orbits 

Medium Earth orbits (MEO) start above 1000 km and extend out to 
geosynchronous altitudes. Because of their higher altitudes, access areas, coverage areas, 
and periods are generally larger than LEO orbits. In fact, periods range from 100 minutes 
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up to almost 24 hours. Most MEO based satellites reside in a 12-hour orbit period at 

about 20,000 km above the Earth's surface. 

At these altitudes, MEO satellites are subjected to the intense radiation fields of 

the Van Allen Belts. These solar particles trapped in the Earth's gravitational and 

magnetic fields have detrimental effects on spacecraft longevity. In particular, they 

accelerate solar panel degradation, upset electronic logic sequences, and cause premature 

electrical component burnout. Satellites built to exist in this environment must be 

hardened to withstand these effects at significantly increased costs. [Ref. 27] 

At higher altitudes, a communication satellite constellation would require fewer 

spacecraft to populate. This means fewer to build, fewer launches, and fewer spares. 

This can be a large cost reduction factor. The current Navstar/GPS constellation operates 

with 24 satellites in 12-hour orbits [Ref. 29]. This number guarantees that at least four 

are in view at all times. Communication constellations may not require these numbers to 

assure coverage. 

As MEO satellites move farther from the Earth, required transmitter power 

increases as previously discussed. This increases the burden on the Earth-based terminal 

to provide a higher power output. Another advantage is reduced doppler shift as well as 

reduced pointing accuracy problems, due to the slower relative motion between terminal 

and satellite when compared to LEO orbits. 

Finally, as the MEO satellite's coverage area grows, frequency reuse capability 

diminishes. This reduces some of the constellation management requirements, but also 

reduces spectrum available to the user. 

3. Geosynchronous Orbits 

Geosynchronous orbits (GEO) are distinguished by their 24-hour orbital period. 

This places them at an altitude of 35,786 km above the Earth. [Ref. 27] Most GEO 

satellites have a near zero inclination to allow them to stay over a relatively constant 

geographical point along the Earth's equator. Small orbit perturbations prevent them 

from achieving a true geostationary orbit over a single spot at all times. 

Most of today's communications satellites are in GEO orbits. This allows 

receivers at fixed geographical locations to maintain pointing accuracy in a fixed 

direction.   Present mobile receivers are at a disadvantage.   They must use mechanical 
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tracking devices, multiple antennas, or stop and set up a dish antenna to establish a 

temporary communication link. 

The access area from GEO altitude is roughly one third of the earth's surface. 

This means that most of the globe can be accessed with as few as three spacecraft. 

However, because they are located over the equator, polar regions are not covered. In 

fact, some outposts near the polar circles are able to achieve only intermittent 

communication links when slightly inclined GEO satellites reach the limits of their 

inclination. 

RF power requirements are also an issue with GEO constellations. They are 

located 40 to 100 times farther from the Earth's surface than LEO satellites. This means 

that as little as one ten-thousandth of the power that reaches a LEO spacecraft will reach a 

GEO spacecraft. Ground transmitters must produce significantly higher signal strength in 

order to reach a GEO communications satellite with the same gain as a LEO craft. 

Doppler shift considerations, however, are minimized. 

Frequency reuse is most severely restricted at GEO altitudes. When only three or 

four regions of the Earth are covered, the available spectrum must be used very 

efficiently. This can be accomplished through multiplexing schemes and priority 

assignments. 

4. Highly Elliptical Orbits 

Most communication satellite orbits are nearly circular, however, highly elliptical 

orbits (HEO) are sometimes used. Their advantage is a relatively long dwell time during 

most of their orbit period in order to give GEO-like capabilities to areas inaccessible to 

GEO satellites. The most commonly used HEO is called a Molniya orbit. 

The Molniya orbit was developed by the Soviets for their communications 

satellites. Due to their extreme northern latitudes, many of their satellite communication 

users were unable to access satellites in GEO orbits. It is characterized by a 12-hour 

period, an apogee at LEO altitudes, and a perigee past GEO at about 40,000 km. 

Additionally, it has an inclination of 63.4° to keep apogee in the Northern Hemisphere 

and maintain high latitude coverage. [Ref. 27] Two satellites placed out of phase in this 

orbit will provide continuous polar coverage. 

HEO orbit based satellites not only experience relative motion, but it is a 

constantly changing motion.   This presents challenges for both antenna pointing and 
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doppler shift. Power output of a terrestrial based transmitter must be sufficient to reach 

GEO altitudes. Also, due to its limited coverage area, frequency reuse will be difficult to 

achieve. Despite their disadvantages, Molniya orbits are the easiest method for providing 

polar coverage with the fewest spacecraft. 

D.LINK BUDGET 

Much like terrestrial radio links, satellite links depend on a certain minimum 

amount of transmitted signal power reaching the receiver. If that minimum signal 

strength is not achieved at the receiver, then the signal is lost. Once a signal is 

transmitted, it will continually degrade along the path to the receiver. System designers 

must account for each element that causes loss of signal strength, and budget to provide 

the proper balance between transmitter and receiver design characteristics. This balance 

is known as a link budget. 

The link budget is based on the link equation, which relates parameters needed to 

derive the signal to noise ratio of a communication system. A common form of the link 

equation is [Ref. 27]: 

_ P,G,Gr 

Equation 2 - The Link Equation 

In this equation, Pr represents the power at the receiver, P, is the transmitted power, and 

G| and Gr are the respective transmitter and receiver antenna gains. Ls designates "free 

space loss". This represents the fact the transmitted signal spreads spherically from the 

transmitting antenna, so energy loss is proportional to the square of the distance from that 

antenna. This free space loss is also proportional to the square of the frequency, so higher 

frequencies experience higher free space loss. Since each gain term is proportional to the 

square of the frequency, the net result is that received power varies directly with the 

square of the frequency, and inversely with the square of the distance between the 

transmitter and receiver. 

The above link equation is a theoretical expression of received power. Other 

losses occur due to hardware, such as line losses between antennas and amplifiers, as well 

as losses due to atmospheric conditions, especially moisture content [Ref. 6].   These 
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losses can lead to a significant reduction in power available at the receiver, which must be 
accounted for. 

To provide for effective link planning, a link budget is constructed in tabular 
format. Since satellites are used as nodes and not terminals, two links must be taken into 
account, an uplink and a downlink. Table 6 depicts a typical ship-to-shore S ATCOM link 
via the commercial satellite communication system INMARSAT (International Maritime 
Satellite) [Ref. 23]. This link budget contains margins in both uplink and downlink to 
account for atmospheric perturbations and system operation parameter changes. Systems 

operating in a higher frequency would have to include larger margins to account for rain 
or other factors. 

The final term in both the uplink and downlink sections is C/No, or the received 

signal power to noise ratio, also known as the signal to noise ratio (SNR). This figure 

must be large enough to allow the receiver to detect the transmitted signal in the presence 
of competing noise. In the final section, these figures are combined to realize an overall 
Et/No, or the bit energy to noise power density ratio. This ratio is used to predict the bit 
error rate achieved in the system, an overall measure of performance in a digital system. 
Typical bit error rates are on the order of 10"4 or 10"5. The k term is Boltzmann's 
constant, used in the calculation of thermal noise in the receiver. 

UPLINK 

Ship Terminal EIRP 26.0 dBW 

Free Space Loss 188.31 dB 

Margin 5.0 dB 

k -228.6 dBW/K/Hz 

Satellite GR/T -17.0 dB/K 

Satellite Receiver Gain 6.0 dB 

C/N„ 50.29 dBHz 

DOWNLINK 

EIRP 18.0 dBW 

Free Space Loss 196.2 dB 

Margin 5.0 dB 

k -228.6 dBW/K/Hz 

Shore Terminal GR/T 32.0 dB/K 

C/No 77.4 dBHz 

COMBINED 

Total C/No (Up and Down) 50.3 dBHz 

Bandwidth 33.8 dBHz 

Efc/No (achieved) 16.5 dB 

E(/No (required) 9.5 dB 

Additional Margin 7.0 dB 

Table 6 - Typical Ship-to-Shore Link Budget via INMARSAT. After Ref. 23 
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When designing a satellite communication system, close attention must be paid to 

the link budget. All of the technological issues discussed in this chapter affect this 

budget. Tradeoffs in operating frequency and hardware must combine to produce enough 

power at the receiver to meet the link requirements and provide enough margin to account 

for unknowns in the operating environment. This is especially challenging when 

designing to meet the needs of the most disadvantaged user, the small portable or hand 

held terminal operator. 

E. SATELLITE ISSUES 

The satellites themselves present many limitations on the system regardless of 

their mission. Failures, susceptibility to outside influences, and security can all present 

problems. Part of defining a new system must consider the potential outcomes of these 

scenarios when developing the system design and the operational concept. 

Launch success rates are generally high, but failures do occur. These failures 

range from catastrophic failure at the launch site or in flight, to separation problems or 

inability to reach proper orbit in flight. Costs for these failures are not just in terms of 

dollars lost, but also in terms of operational capability sacrificed before another unit can 

be launched in its place. 

Unlike most pieces of hardware, an orbiting satellite can not undergo routine 

maintenance or repair. Each component must be carefully constructed and integrated 

before being thoroughly tested prior to launch. Once it leaves the launch pad there is not 

much that can be done in the event of a satellite failure. Often, software and hardware 

combinations can be used to command configuration changes in flight, but these are 

usually limited. Many systems have built in redundancy in case of a failure, but these add 

weight, cost, and size to the vehicle. 

Once operating in its orbit, a whole host of outside influences can affect satellite 

operation. The natural environment can impose a harsh operating regime on the satellite 

via exposure to damaging radiation particles, as well as rapidly fluctuating temperature 

extremes. Debris, either natural or man-made, can pose significant collision risks. Two 

objects approaching each other head-on at LEO altitudes can have a closure speed 
exceeding 14 km/s! 

Additional threats are possible from ground-based sources. These include anti- 

satellite (ASAT) attacks and jamming attacks from enemy forces. With so many groups 
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having access to nuclear weapons, and launch facilities available on the open market, it 
would be easy for a hostile force to explode a nuclear weapon in space that could 
effectively shut down or destroy satellite communications capability. 

Over-the-air communications travel through open space. This means that signals 
are susceptible to detection and interception. Methods such as signal encoding, spectrum 
spreading, and the application of narrow-beam signals help to reduce this threat, but it 
still exists. 

Finally, one of the weakest nodes to exploit in order to disrupt satellite 
communications is the ground station. The ground station can be responsible for 

monitoring the health and activity of the satellites in a constellation, as well as controlling 

the flow of information over a SATCOM network. Many satellite systems operate from a 

single ground-site location that can be easily accessed by an intruder. Depending on the 
level of security, and the desired effect on the satellite, a hostile force could attempt to 
destroy the ground station antenna or control facility. This can be avoided through the 
implementation of adequate security measures, the dispersal of control nodes, and the 
application of crosslinking capability on the satellite that reduces the need for ground 
station interference. 

No system can be built foolproof, but vulnerabilities need to be recognized and 
planned for. Identified vulnerabilities need to be matched with the probability and the 
consequences of such an event occurring. Safety and security measures can then be built 
around the perceived level of acceptable risk. If risks prove unacceptable, then an 
alternative course of action will be necessary. 
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IV. SPACE COMMUNICATIONS SYSTEMS 2000 

When attempting to satisfy a new set of requirements, strong attention must be 

paid to the potential lifecycle costs of any proposed solutions. One of the most 

inexpensive ways to satisfy new requirements is through the use or modification of an 

existing system. This can also serve to present insight into further design requirements 
where backward compatibility is an issue. 

The military has used satellite communications assets for many years, but only in 
the last few years has widespread use become important. Technology has matured 

enough to allow usable data rate channels to be available world wide, and the 

proliferation of data networks and wireless commercial communications has resulted in a 

marked reduction in cost. Industry is leading the charge to build bigger, better, and faster 
SATCOM systems, and the military is in a position to take advantage of this situation. 
Before setting specifications for future systems, the current inventory and capabilities 
must be understood. 

Today's various MILSATCOM systems were designed and fielded independently 
to meet a variety of validated requirements. A mix of commercial and military operated 
systems are in use, almost exclusively from geosynchronous orbits (Some use is made of 

HEO orbits to provide coverage of the northern latitudes). UHF, SHF, and EHF 

applications are made with a variety of characteristics for protection. The three major 
MILSATCOM constellations that will be in use at the turn of the century are the UHF 

Follow-On (UFO), the Defense Satellite Communication System (DSCS), and the 
Military Strategic Satellite Relay (Milstar). 

A. UHF FOLLOW-ON (UFO) 

The UFO MILSATCOM system is being fielded as a replacement for the Fleet 
Satellite Communication (FLTSATCOM) system and its commercial adjuncts that 
provided UHF service primarily to the Navy and the Air Force for the past decade. When 
fully populated, the UFO constellation will consist of four pairs of satellites plus one 
spare in geosynchronous orbits. Satellites two through seven are currently operational. 
Their coverage areas are depicted in Figure 5. The first launch failed to achieve a proper 
orbit and is not part of the operating constellation. [Ref. 24] 
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The UFO Constellation is designed to provide long haul UHF communications 
capability to deployed forces. Each satellite has a design life of 14 years, and 

incorporates a mix of 25 kHz and 5 kHz bandwidth channels with varying output power. 

Table 7 contains a description of the different UHF channel types and their 

characteristics. SHF is used to provide a narrow beam, jam resistant, uplink for a Fleet 
Broadcast downlink. [Ref. 23] 

-ISO.    -120.    -t0 JO    -60.0    -30JO     0.0      30 JO     60.0     tO JO      120.      ISO.   180. 

Figure 5 - UFO Constellation Coverage Area [Ref. 24] 

Prior to the launch of the first UFO satellites it was recognized that channel and 
data throughput requirements were growing at a much faster rate than constellation 

capacity. To increase efficient use of capacity in an attempt to satisfy as many 

requirements as possible a time sharing scheme called Demand Assigned Multiple Access 

(DAMA) has been implemented. DAMA allows multiple users to utilize the same 
channel for information transmission simultaneously. 

In a channel using DAMA, a data stream is divided into time frames, each frame 
is 1.386 seconds in length on a 25 kHz bandwidth channel. Each frame is further 

subdivided into data time slots and channel control slots. The number of data time slots 

available varies with data rate and electromagnetic interference. Users with a validated 
communication requirement request access to a channel and are assigned a transmission 

time slot based upon their priority, slot availability, data rate, and session duration. Using 
this scheme, a single 25 kHz channel can accommodate up to 25 users at a time 
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transmitting in discrete time slots. The 5 kHz bandwidth channel can accommodate data 
rates up to 2.4 kbps, while the 25 kHz channel time slots can accommodate data rates up 
to 16 kbps. [Ref. 30] 

The DAMA system is still being implemented in many terminals, but so far has 
been very successful. It is in effect much like picking up a telephone. Each user has a 
preassigned address, but each address spends much of its time in a standby mode. Such a 
multiple access scheme reduces idle capacity when other users desire access. It does 

however involve active system administration for requirement validation and priority 
assignment. Once this is done, time slot assignment is an automated process carried out 
by system controllers, and transparent to the user. 

Group                                                      Channel Characteristics 

I         \ ■ Two 25 kHz bandwidth channels 
■ EIRPof28dBW 
■ Jam resistant SHF uplink 
■ Four downlink frequencies per channel: 250.350, 250.250, 250.550, and 250.650 MHz 

II         \ ■ Nine 25 kHz bandwidth channels 
■ EIRP of: 

Four Channels - 28 dBW 
Five Channels - 26 dBW 

■ Four downlink frequencies per channel: 251.400 - 269.950 MHz 
■ Four uplink frequencies per channel: 292.850 - 310.950 MHz 

III        | ■ Eight 25 kHz bandwidth channels 
■ EIRP of 26 dBW 
■ Four downlink frequencies per channel: 260.375 - 263.925 MHz 
1     Four uplink frequencies per channel: 293.975 - 297.525 MHz 

rv      | 
1     Eight 5 kHz bandwidth channels 
• EIRP of 20 dBW 
■     Four downlink frequencies per channel: 243.925 - 244.225 MHz 
• Four uplink frequencies per channel: 317.015 - 317.325 MHz 

V         | 
1     Thirteen 5 kHz bandwidth channels 
•     EIRP of 20 dBW 
'     Four downlink frequencies per channel: 248.845 - 249.355 MHz 
1     Four uplink frequencies per channel: 302.445 - 302.955 MHz 

Table 7 - UFO Communication Channel Characteristics. After Ref. 23 

The UFO constellation contains two other unique features. The first is a Global 
Broadcast System (GBS) which is being added to the final three UFO satellites. This is a 
high data rate theater broadcast system for tactical information. The second is an EHF 
communications package. [Ref. 31] 
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The UFO EHF package (UFO/E) is a follow-on to the military's first EHF package 

launched on the FLTSATCOM constellation. The new system is designed as a precursor 

to the new Milstar EHF SATCOM system. It is designed to receive uplink signals in the 

EHF frequency range, and downlink them in the UHF, SHF, or both bands, a process 

known as crossbanding. The UFO/E functions and frequencies are a subset of Milstar 

capabilities, which will be discussed later. [Ref. 32] 

EHF capability will be present on the final seven UFO satellites. Each satellite 

will have two EHF antennas, a wide-area Earth coverage antenna to cover the entire 

access area, and a spot beam with a 5° aperture. The system will provide LDR data rates 

up to 2400 bps, and a single channel at 4800 or 9600 bps for a High Speed Fleet 

Broadcast UHF downlink. [Ref. 33] 

This portion of the frequency spectrum is used to provide a jam resistant, low 

probability of intercept (LPI) signal. This is accomplished due to its narrow beamwidth 

and use of frequency hopping. By rapidly jumping from frequency to frequency within 

the available bandwidth in a predetermined pseudorandom sequence, the signal can 

statistically avoid attempts to be jammed by a narrow beam, focused energy source. 

B. DEFENSE SATELLITE COMMUNICATION SYSTEM (DSCS) 

The Defense Satellite Communications Satellite (DSCS) has been in operation for 

more than 25 years, and is now entering its third generation. DSCS is also a 

geosynchronous constellation with Earth coverage similar to UFO. The first DSCS II 

satellite was launched in 1971, and those still in use are reaching the end of their useful 

life. DSCS ID satellites have been launched as replacements. Current constellation 

composition includes a mix of DSCS II and DSCS m satellites with eight active and three 
in a residual status. [Ref. 31] 

The DSCS constellation is designed to provide wideband SATCOM capability to 

all services using the SHF X-band portion of the frequency spectrum. Due to bandwidth 

availability in this region, DSCS can support data rates from 75 bps to 1.544 Mbps. As 

previously discussed, this frequency range also offers the benefits of reduced 

susceptibility to jamming, as well as LPI protection due to its narrower beamwidth when 

compared to UHF systems. Additionally, SHF offers more reliable propagation through 

environmental phenomena than EHF systems, but generally must rely on larger dish 

antennas at terminal sites. Finally, to enhance its jamming resistance, DSCS ID antennas 
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incorporate a beam forming capability to effectively null reception in directions where 
signal jamming is detected. [Ref. 24] 

DSCS II satellites carried a four channel capability. These channels were split 
between Earth coverage and spot beam antennas. The DSCS III satellites make use of 
eight separate antennas and six transponders. Two of the antennas provide Earth 
coverage, and are connected to two dedicated transponders. A third antenna, known as a 

multibeam receiving antenna (MBA), is capable of controlling the amplitude and phases 

of 61 individual beams to selectively produce a desired gain pattern. Two smaller MB As 
control 19 beam signals, and the final antenna is a gimbaled dish that provides a 3° spot 
beam. [Ref. 23] 

DSCS El's six channels vary in size from 50 to 85 MHz of bandwidth with 10 to 
40 watts of RF power output [Ref. 31]. These channels can be divided further to permit 
more mobile users to communicate simultaneously through the use of a frequency 
division multiplex (FDM) scheme [Ref. 23]. This divides each channel into smaller 
bandwidth allotments that are assigned to separate users. The UFO DAMA scheme 
permitted each user to use the entire channel for a limited time frame, while FDM allows 
each user to make use of part of the channel for the entire time. 

Naval forces make use of full-duplex SHF communication pathways primarily for 
command and control ships as well as larger combatants such as aircraft carriers and 
amphibious ships. The Global Command and Control System (GCCS) and other 
information networks use DSCS for its wideband capability. Spread spectrum modems 
can be used to provide further protection from jamming, but Naval force applications 
emphasize throughput over protection in SHF circuits. [Ref. 32] 

C. MILITARY STRATEGIC SATELLITE RELAY (MILSTAR) 

The Milstar constellation is the military's newest MDLSATCOM system. It is 
designed to provide secure, survivable EHF communications to satisfy DoD and national 
requirements. The Milstar system is designed to work with both fixed site and mobile 
terminals while providing unique capabilities of which other systems are not yet capable. 

When fully operational, Milstar will consist of four geosynchronous satellites 
providing worldwide coverage. A polar adjunct is planned to provide EHF 
communications to the northern polar region. Two Milstar satellites are currently in orbit. 
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with two more to be launched by the end of the decade in order to reach full operational 
capability [Ref. 24]. 

The first two satellites incorporate only a low data rate capability, up to 2.4 kbps. 
The next two, known as Milstar II, will add a medium data rate (MDR) capability of 4.8 
kbps to 1.544 Mbps. Channel capacity is set at 192 LDR channels and 32 MDR channels 
per spacecraft (based on type of service available). This capacity will be provided via an 
array of antennas that provide a mix of earth coverage antennas, agile beams for 
concentrating service in high-use areas, narrow and wide spot beams for specialized 

service, and nulling spot beams for enhanced anti-jam capability in wide-area service 

MDR applications. [Ref. 34] Milstar I and II offer two features absent in the other two 

MILSATCOM systems, signal processing and crosslinking. 

While other systems are transponded (DSCS HI does have a limited onboard 
processing capability to provide anti-jam protection), Milstar signals are fully processed 
onboard the satellite, which allows the satellite to decide where to send the signal in order 
to reach to proper recipient [Ref. 32]. This also acts to remove noise from the system and 
reduce the bit error rate because each signal is read as a bit stream, and regenerated for 
transmission. 

Each satellite is also crosslinked with its two nearest neighbors [Ref. 32]. This 
means that a separate communications channel is capable of sending bit streams to any 
another satellite in the constellation for downlinking back to a terminal. All users can 

now communicate without the use of groundstations to sort and forward signals. This 
reduces the number of nodes in many communications circuits resulting in lower 
propagation delay, and provides a survivable communications path in the event that 
groundstation gateways are incapacitated. 

Milstar is primarily designed to communicate in the EHF band. Channel 
bandwidths can be as large as 2 GHz, allowing frequency hopping capability to reduce 
jamming and provide enhanced LPI capability in a very narrow beam. A limited 
crossbanding capability also exists through the use of an onboard UHF transponder. This 
provides a secure EHF uplink for UHF broadcast dissemination similar to the UFO EHF 
package. [Ref. 23] 
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D. INTERNATIONAL MARITIME SATELLITE (INMARSAT) 

The International Maritime Satellite (INMARSAT) System is a commercial 
SATCOM system designed to service merchant vessels. This system uses eight 
geosynchronous satellites to communicate between over 2000 ship and land based 
terminals. INMARSAT can provide telephone, fax, video, and data to its customers via 
UHF and SHF-based service using L band and C band frequencies. [Ref. 23] 

Individual ships are allowed to subscribe to the service. Several different grades 
of service are offered at data rates of up to 64 kbps. Each connection must pass from the 
transmitter, through a satellite, and then to a land-based station before being routed to the 
appropriate receiver. [Ref. 23] Because of its commercial design and international 
control, it can be used for administrative purposes, but not for passing tactical 
information or command and control data. Table 6, Chapter HI, provides a typical 
INMARSAT link budget. 

At the start of the Persian Gulf War, Navy ships did not have voice circuits 
available for many of the communications purposes that were readily available to land- 
based forces who were able to use fiber-based systems. To remedy this, many ships 
subscribed to INMARSAT independently. Calls were billed in terms of usage time, and 
the funds to pay for the service came directly out of the ship's operating budget. 

Today virtually every ship in the Navy has an INMARSAT account. They are all 
centrally managed by Naval Space Command, but still paid out of each ship's operating 
funds. Tactical applications are still forbidden, and, if so used, can result in the loss of 
access to the system by all United States subscribers. Additionally, costs have grown to 
the point that they consume a large part of ship's funds. Because of this, ships have been 
forced to restrict usage to control spending. No increase in ship's budgets have been 
allowed or planned in order to provide for this service. 

E. CURRENT MILSATCOM LIFETIME 

Unlike many systems purchased by the DoD, satellites have a short life span. 
Additionally, they are expensive to procure and operate. The UFO and Milstar systems 
have been funded to reach full operational capability, but not for future replacements. 
DSCS has been in service for over twenty years, and its third generation of satellites are 
currently being phased in. But it too has not been funded past this point. 
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Current MILSATCOM systems are projected to continue to provide service until 
2010, based on mean satellite lifetimes. Reliability analysis, continually being performed 
on these systems, projects the strong possibility that they will begin to fail sooner than 
2010. Figure 6 depicts the MILSATCOM mean lifetime projected by U. S. Space 

Command [Ref. 19]. Other institutions provide similar projections. The diagram shows 
that all SATCOM assets could fall well below their capacity levels at roughly the same 
time, leading to a command and control crisis for the nation's military, which is 
increasingly dependent upon SATCOM for its timely and accurate flow of information. 

Some critics point to the fact that, historically, many communication satellites far 
outlive their design life, such as FLTSATCOM which lasted several years longer than 

expected. This is an optimistic viewpoint that would produce a best-case scenario. If this 

is not case, the DoD must be ready to provide a replacement, otherwise a system that is 
heavily relied upon in tactical operations will be lost. Some capability will remain for 
several years, but as satellites fail, large areas of coverage will be lost. In the case of 
Milstar, the survivability feature of crosslinking would be greatly diminished with the 
loss of even a single satellite in the constellation. 
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Figure 6 - Projected MILSATCOM Constellation Mean Lifetimes [Ref. 19] 

Designing and fielding a replacement system is expected to take several years, and 
the window of opportunity is  shrinking.     Communications  requirements  already 
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outnumber capacity, and when individual satellites start to fail, the problem will be 
exacerbated. An affordable and technologically achievable solution must be settled on 
now, in order to provide for the needs of tomorrow. 
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V. SPACE COMMUNICATION TERMINALS 2000 

When cellular phone systems are mentioned, most people think about small, hand- 

held, wireless telephones. When space-based communication systems are mentioned, 

most people think of satellites, and not the terminals that are actually used to establish the 

communication link. In fact, the lifecycle cost of acquiring, installing, and maintaining 

terminals often exceeds the cost of the space segment. Additionally, the fielding of these 

terminals is often not accomplished until the satellite system exceeded much of its useful 

life. [Ref. 26] 

Because of the great time and expense that goes into the terminal segment, it must 

be a major consideration in the planning and design phase of any future system. This 

means looking at the current makeup of the terminal population as well as plans for the 

future population and composition already being implemented. Examining the past can 

provide insight into previous mistakes, as well as what was done correctly. 

A. TERMINAL LAYDOWN 

The Naval service maintains a large inventory of SATCOM terminals for a variety 

of applications. At the CNO level, the N63 office maintains an informal database of all 

terminals the Navy and Marine Corps use. This database includes a large list of 

individual terminals as well as upgrade programs. Tables listing terminal designations, 

applications, and planned acquisition through 2014 are included in Appendix C. 

1. UHF Terminals 

SATCOM terminals for UHF applications are by far the most numerous. They 

consist of shore fixed, shore mobile, airborne, shipborne, submarine borne, and manpack 

sets. Many terminal types are being discontinued or replaced in order to comply with JCS 

directives for DAMA compliance. Several of these terminals are receive only. They are 

designed to receive broadcast contact reporting information and for other specialized 

uses. Terminals that can transmit are primarily single channel capable, reflecting a 

capacity limitation on many current systems. Table 8 provides a brief comparison of 
several of the more widely used Naval UHF SATCOM terminals 
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Terminal Satellite Mobility Uplinks Downlinks EIRP G/T EOL 

AN/PSC-5 UFO Manpack 1/DAMA 1/DAMA 18.5 -20.4 2015 

AN/ARC-187 FLTSAT Air 1 1 Varies Varies 2009 

ARC-210(v)l UFO Air 1 1 Varies Varies 2010 

AN/USC-42(v)3 UFO Air 1/DAMA 1/DAMA Varies Varies 2015 

AN/USR-6 UFO Air/ 
Ground Mobile 

N/A 3 N/A Varies 2010 

AN/USC-55 UFO Air/ 
Ground Mobile 

1 3 Varies Varies 2010 

MATT UFO Air/Fixed/ 
Ground Mobile 

N/A 4 N/A -34.15 2008 

AN/SSR-1A UFO Ship N/A 1 N/A Varies 2005 

AN/USC-42(v)l UFO Ship 1/DAMA 1/DAMA Varies Varies 2015 

AN/USC-54 UFO Sub 2 3 Varies Varies 2020 

ANAVSC-3 UFO Ship/Sub 1/Half- 
Duplex 

1/Half- 
Duplex 

Varies Varies 2010 

AN/WSC-3(v)XX UFO Ship/Sub/Fixed Multiple/ 
DAMA 

Multiple/D 
AMA 

TBD TBD TBD 

Table 8 - Characteristics of Common UHF SATCOM Terminals [Ref. 35] 

2. SHF Terminals 

Because DSCS satellites are designed primarily for wideband communications 
purposes, existing terminals do not meet LDR or mobile criteria. Navy owned SHF 
terminals are primarily for fixed shore locations and shipborne applications. The Marine 

Corps primarily uses shore-based transportable terminals and many highly transportable 
STAR-T terminals for use with HMWWVs that do not meet the definition for mobile. 
There are no plans to acquire a mobile SHF terminal due primarily to antenna size and 
pointing accuracy requirements. [Ref. 36] 

It is worth noting that in 1993 the Air Force identified and procured a set of SHF 
terminals as commercial-off-the-shelf (COTS) items. [Ref. 35] As the commercial 
market continues to grow, it is likely that more COTS items with military applications 
will be available at a cheaper cost than developing new military-unique systems. Some of 
these may be built for, or adaptable to the mobile LDR applications that Naval forces 
require. Appendix C contains a complete list of SHF terminals in the Naval inventory. 
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3. EHF Terminals 

Similar to the SHF terminals, EHF terminals are primarily aimed at fixed and 

transportable users. The Navy has also developed and procured a large number of ship 

and submarine-based units. While SHF terminals often require large parabolic antennas, 

EHF systems can operate using significantly smaller antennas. Common ship 

applications using the AN/USC-38(v)2 terminal make use of a 3 foot dish antenna to 

provide data rates from 75 bps to 2.4 kbps in four channels. For submarine applications, 

where space is at a premium, a 6 inch antenna has been designed that is capable of 

providing the same data rates, but to only two channels. [Ref. 35] 

Similar advances are being made for transportable applications. In particular, the 

SMART-T and the SCAMP terminals are being developed by the Army for transportable 

and man-portable applications, and also will be used by the Marine Corps. The SMART- 

T can be HMWWV mounted for transportable applications. The vehicle must though to 

establish a link with the satellite. The SCAMP is a man-portable terminal that can be 

setup in about ten minutes. A Block I upgrade is being pursued that will reduce the 

weight from 37 pounds to about 15 pounds. Both of these terminals operate at the Milstar 

I data rate of up to 2.4 kbps. Upgrades to be compatible with Milstar II's MDR 

waveform have been investigated, but per unit weight would increase as a trade-off. 

[Ref. 35] 

No other future developments that significantly alter the EHF terminal population 

are planned. The Navy will continue to expand its ship and submarine-based EHF 

capability through continued implementation and installation of its Navy EHF Shipboard 

Program (NESP) terminals. Some acquisitions of shore based sites to communicate with 

NESP equipped ships will also occur. As the Army's terminal programs begin 

production, both Navy and Marine Corps will take delivery of a portion of the production 

lot over several years to provide some degree of land-mobile requirement satisfaction. 

[Ref. 36] Specific long-range planning is detailed in Appendix C. 

4. Commercial Terminals 

Finally, there are a large number of commercial SATCOM terminals in the Navy 

inventory. Mobile LDR units are almost exclusively INMARSAT terminals of various 

types. As INMARSAT capabilities change and new services are offered, the terminal 

laydown will change. 
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Several new LEO and MEO-based SATCOM systems are expected begin service 
in the next decade. They will provide a variety of services and coverage options. As 
these services become active, it is expected that the Navy will invest in a large number of 
terminals to satisfy mobile LDR requirements. Because this is an unknown factor, the 
terminal laydown database has them currently listed as PCS/MSS terminals with no 
specific service provider identified. Since these will be commercially produced and 
publicly marketed items, little military development is required, and they are freer to take 
a wait-and-see attitude. 

B. DEFENSE INFORMATION SYSTEMS NETWORK 

The goal for military communications system is to integrate all elements into a 
cohesive structure called the Defense Information Systems Network (DISN). The 
Defense Information Systems Agency (DISA) is responsible for the effort to identify 
elements of a seamless, secure, reliable, and cost effective architecture that will satisfy the 
end-to-end needs of DoD personnel and organizations worldwide. 

Current communications systems are organized under the Defense 
Communications System (DCS). This is a collection of many smaller systems in an 
attempt to link them together to provide interoperability. Many of these systems were 

created independently, operate on different standards, and are therefore incompatible 
without special translation equipment. The result is an inefficient infrastructure that 
needs to be overhauled to provide better service in the future. 

DISA identified a baseline architecture in 1993. The objective system uses the 
standards associated with the Broadband Integrated Services Digital Network (BISDN) 
using modern asynchronous transfer mode (ATM) network implementations. Key 
components have been identified and are displayed in Figure 7. These components range 
from installed infrastructure such as major processing centers, fixed dish antennas, and 
fiber optic cable, to mobile components including handheld terminals, airborne terminals, 
and deployable switching nodes. [Ref. 35] 

SATCOM services will be an important part of this architecture. Commercial and 
military services will be expected to be capable of interfacing with the DISN standards 
for effective communications. DISN will be the key element that will allow worldwide 
interoperability and connectivity among DoD users. To achieve this end, future terminals 
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must be designed to achieve a certain amount of waveform commonality and consistency 

that is absent under current DCS systems. 

Fixed Elements Deployed/Mobile Elements 
User 

Elements 
Local 
Area User Elements 

§ 
PCS IMC 

Integrated Syster is and Network Manaj ;ement and Con 

IMC IMC 

\i/ 

IMC 

Integrated Management center 

Radio 

Video/Data/Imagery 

Fiber Optics 

SATCOM Terrestrial Gateway 

SATCOM Trunk terminal 

SATCOM or Radio Link 

Terrestrial Connectivity (if 
available) 

Figure 7 - Key Elements of the DISN Architecture [Ref. 35] 

In order to plan for the future, DISA led a study to identify key technologies in 

SATCOM necessary for achieving an objective architecture. Technical requirements 

were reduced to five critical issues to be addressed in any future development effort. 
They are: 

Manpower reduction 

Development and production cost reduction 

A "communication on the move" emphasis 

Component downsizing/ease of handling 

Terminal performance 

In response to this list the government's Advanced Research Project Agency 

(ARPA) began a program to develop advanced technology for insertion into the 

MILSATCOM   architecture.   Called   the   IMPACT   program   for   Insertion   into 
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MILSATCOM Products of Advanced Communications Technology, it is addressing the 

hardware issues that need to be resolved in order to meet DISN requirements. ARPA's 

goal is to work with industry to provide support across the spectrum and terminal 

application range. They are investigating applications such as artificial intelligence, 

advanced circuitry, new methods for digital signal processing, and phased array antennas 

for SATCOM use. [Ref. 35] 

C. JMCOMS/ADNS 

As part of a restructuring of its communications network capabilities, the Navy 

has instituted the Joint Maritime Communications Strategy (JMCOMS). JMCOMS is 

both a technical and program strategy which incorporates the latest advances in 

commercial and military communications technology to maximize bandwidth for 

enabling the sharing of information seamlessly, in real-or near real-time, through flexible, 

adaptive, and interoperable systems and services. It is designed to provide both tactical 

improvements to the warfighter and non-tactical quality of life services to sailors at sea 

and ashore. [Ref. 37] 

The Automated Digital Network System (ADNS) is the backbone to JMCOMS. 

ADNS uses off the shelf protocols, processors and routers to create a robust and flexible 

networking environment. Internet Protocols (IP), ATM, and other products are being 

adopted or adapted from the commercial telecommunications world. Interfaces to all RF 

media provide the throughput and access needed. At the same time, networking 

techniques are designed to make efficient use of all available channels. [Ref. 37] 

The ADNS represents the Navy's contribution to the proposed DISN. The 

network control hardware depicted in the 'deployed' segment of Figure 7 will be based on 

ships in the operating theatre. Users will be able to communicate via direct line-of-sight 

or SATCOM link with the ADNS node, which will allow addressing and routing to the 
proper recipient. 

This system can help offload some communications and processing requirements 

from the satellite constellation, as well as provide SATCOM capability to users not 

equipped with SATCOM terminals. This system will help the Naval service to build 

towards a common waveform, or set of waveforms that can be carried over into a future 
objective architecture. 
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VI. ARCHITECTURE 2010 

Developing an objective communication architecture to satisfy the varied needs 

and uses of all components of the Department of Defense is an enormous undertaking. It 

is important to realize that not all requirements will be satisfied because requirements are 

a prediction of the future and never completely accurate, and the complexity of the 

problem makes complete satisfaction very unlikely. Additionally, the current rate of 

technology growth outpaces the speed of the military systems acquisition and fielding 

process due to long development timelines and budget constraints. With these facts in 

mind, it is important to provide a system that will provide the best service available 

within the budget limits imposed by Congress. 

A. REQUIREMENTS REVIEW 

Prior to developing architecture options to satisfy Naval mobile LDR 

requirements, it is important to review some of the major architecture drivers presented in 

this thesis. These are not "build-to" specifications, but rather descriptors of the types of 

service to be provided, as well as physical, political, and financial constraints that will 

affect the system during its life-cycle. 

The DoD's Mobile User Study has laid out the top level system requirements and 

their order of precedence. This list is designed to meet the needs of all of the services, 

not just those of the Naval Service. The list is reproduced here. 

Assured Access 

Netted Communications 

Communication on the Move 

Joint Interoperability 

World-Wide Coverage 

Point-to-Point Communications 

Broadcast Capability 

Polar Coverage 

It is important to note that this list represents types of service or quality 

expectations. These items are too vague to be verifiable elements of the system. Instead, 

57 



they are used to provide direction and aid in developing more detailed circuit 
requirements. 

The ERDB is the document that provides the necessary circuit level detail. It list 
individual circuits and their varying levels of service requirements. This document can 
be used to determine aggregate throughput requirements and levels of protection. It does 
not however provide a regional breakdown or a global perspective of the SATCOM need. 

Many of the larger issues such as survivability, compatibility with legacy systems, 
wave forms, and encryption methods are addressed in broader documents such as the 
Capstone Requirements Document or the Functional Requirements Document. In short, 

there is no single source for requirements because there is no consensus from the users. 

This leaves a lot of room for architecture trade by developing agencies, but also leads to 

the possibility that no system can be developed to adequately satisfy many user needs. 

The two components of an objective architecture that interest the user are the 
space segment and ground terminals. In the past, terminals were developed to utilize the 
services that a satellite system could perform. This led to a large number of terminal 
programs and a lack of interoperability between them. Today's requirements combined 
with past experience suggest that terminals should be developed first to meet user needs. 
Satellites should then be developed to complement the capabilities of the terminals for 
closing the communication link. This should not be a waterfall process, but an iterative 
loop aimed at capitalizing on the advantages offered by each segment, as depicted in the 
system engineering process. 

B. OFFICE OF THE SPACE ARCHITECT 

In September of 1996, the DoD Office of the Space Architect (OSA) released a 
brief summarizing SATCOM issues and addressing the need for a follow-on architecture. 
The report was the result of months of work aimed at identifying a path to solve this 

problem. Instead of proposing an objective architecture though, the brief outlined four 
possible directions for the DoD to take. These options, along with projected relative costs 
are depicted in Figure 7. [Ref. 38] 

Alternative A is the baseline system, and is based upon the systems that will be in 
place at the turn of the century. The concept is to keep UFO, DSCS, and Milstar in place 
for the long term by funding the purchase and operation of further satellites to extend 
constellation life, as well as progressively upgrade future satellites. This is seen as a low- 
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risk option because the technology has already been developed, and the operators are 
familiar with the equipment. Infrastructure is already in place, so up-front costs would be 
minimized. Projected cost for 20 years of operation is $55 billion. 

Although this alternative is relatively low-cost, it does not address the 
fundamental problems with current systems: capacity, mobility, and interoperability. 
Taking this approach would only serve to prolong and exacerbate these problems. These 
systems were designed to operate in a world of low demand, but the current state of 
rapidly increasing channel and performance requirements have already overcome system 
capabilities. 

Alternative B 
Press Technology 

Design for Info Dominance 
$=X+20% 

. ^ ^     -w *■        Alternative C 
Alternative A .>r _    Xk « * •            i*           «.M-*   tf flv4u m Retain core military capability 

Capitalize on investment 
Modernize current systems 

$=X 

Expand commercial role 
Look at complements (e.g. UAV) 

$=X-20% 

Alternative D 
Own unique military capability 
Commercialize MILSATCOM 

Figure 8 - OSA Architecture Options [Ref. 38] 

Alternative B represents a redesign of MILSATCOM to take advantage of the 
capabilities provided by emerging technology. This means completely redesigning both 
the space segment and the terminal segment to utilize advanced concepts such as phased 
array antennas, laser crosslinks, and full on-board processing to provide greater service. 
This is a riskier option due to the reliance on unproven concepts, but commercial industry 
has been working hard to develop many of these concepts in order to provide commercial 
SATCOM services, so much of the development research has been done. The utility of 
such a system to the DoD services, however, is much higher than any other option. OSA 
predicts a 20-year life-cycle cost of $67 billion. 
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Alternative C is based upon a mixture of MILSATCOM and commercial 

SATCOM services. This alternative envisions a MILSATCOM capability similar to 

current systems, with augmentation from one or more commercial systems, and possibly 

Unmanned Aerial Vehicles (UAVs) to fill gaps in service or coverage. The result is less 

infrastructure for the DoD to manage, and less risk of failure, but an increased reliance on 

the commercial market to meet the military demand, possibly at the expense of satisfying 

commercial customers. Projected costs for twenty years are $51 billion, but that figure is 

highly dependent upon what commercial vendors can provide, as well as the cost of their 

hardware and services. 

The final choice, alternative D, is to rely exclusively upon commercial SATCOM 

services. This includes the possibility of selling military spectrum allocation to 

commercial vendors and then leasing back services. This move is seen as providing cost 

savings in the short term because the military would not have to devote resources to build 

and operate the system. On the other hand, the DoD would be forced to rely on the 

services provided, as opposed to the services it needs. In such a scenario, the DoD may 

be forced to compete with commercial customers for access, and could be forced to spend 

money to buy equipment compatible with one or more systems that may not be 

interoperable. Long-term costs could escalate far beyond some of the other alternatives, 

but current 20-year life-cycle costs are estimated by OS A to be about $61 billion. 

C. COMMERCIAL COMSAT 

The use of commercial COMSAT services appears in two of the four OSA 

alternatives. As of this writing, the commercial sector primarily provides SATCOM 

services to non-mobile users via geosynchronous orbits. However, several LEO and 

MEO constellations designed to provide mobile service are in various stages of planning 

in order to begin providing service during the next decade. 

These emerging Mobile Satellite Systems (MSSs) are aimed at tailoring their 

services to satisfy the needs of the commercial rather than the military market. Their goal 

is to provide regional or worldwide point-to-point telephone coverage, as well as a link to 

the Public Switched Telephone Network (PSTN). Each service operates within its own 

spectrum allocation and uses proprietary hardware. They are not interoperable, but can 
call each other via a PSTN link. 
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In order to secure frequency rights into the many countries in which they wish to 
offer service, MSS providers have agreed to work with local mobile service providers and 
telephone utility companies. In most cases, a satellite will receive a request for service 
from a subscriber, collect billing, location, and authorization information, then attempt to 
route the call through a local terrestrial network. If such a network is unavailable, the call 
can be routed through satellites and ground station gateways to an appropriate entry point 

to the PSTN. A single billing point receives payment and distributes it to all nodes 
entitled to a portion of each call. MSS is designed for point-to-point communications and 
paging, and there are currently no plans to provide netted service. 

MSSs are expected to be capable of satisfying many of the circuit requirements 
listed in the ERDB for point-to-point communications. They can provide telephone type 
access from a single address or phone number to virtually any place on Earth. Using 
them to fulfill administrative communications can aid in relieving congestion on 
MILSATCOM assets and provide a short-term surge capability, but there are many 
features, or lack of features, that make them unsuitable for tactical applications. 

First of all, although some planned constellations will make use of satellite 
crosslinks, many will not, and therefore require the presence ground station gateway 
within the satellite cell footprint for call routing. This means that a battlegroup at sea 
may need to carry a mobile gateway in order to ensure access in areas not covered by land 
based gateways. The DoD would need to maintain several of these mobile gateways to 
guarantee access in all remote locations. 

Because MSSs are for profit, many of them tailor coverage to areas of high 
population. For instance, polar and ocean areas have few possible customers. Some 
systems are designed to slew their receivers away from these sparse regions to higher 
population centers within their access areas. This works to the disadvantage of Naval 
forces that operate in the open ocean, polar regions, and other remote locations. Although 
the capability exists to slew coverage to these areas, it would come at the expense of 
commercial customer service, and therefore carry a premium price. 

In order to ensure accurate billing, proper call routing, and provide incoming call 
service, MSSs must know the location of its users. Most accomplish this by sending a 
locating signal to the constellation from the handset when it is turned on. This flow of 
geolocation information would not be controlled by the U. S. government and would lead 
directly into the host country's gateway system. Clandestine operators such as Special 
Operations Forces would be unable to maintain secrecy and be exposed to enemy forces. 
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Finally, such a fee-for-service approach could potentially drive long-term costs up 

precipitously. Commercial SATCOM services such as the planned Iridium constellation 

expect to charge approximately $3 per minute of use. For a netted circuit operating on 

24 hour basis, this amounts to $4,320 per day for each user. When multiplied by the 

number of worldwide users and nets, the costs can add up quickly. Although not 

developing, launching, and maintaining the space segment would save money in the early 

years, those costs could eventually be more than offset by the cost of operation. 

All of these factors, combined with other problems such as encryption 

compatibility, competition for access with commercial users, and the ease of signal 

interception combine to make commercial MSS a poor choice for military tactical 

applications. They should not, however, be overlooked as an alternative for non-tactical 

applications. Almost any application that can be suitably satisfied by the PSTN is a 

candidate for MSS. Many mobile applications that make use of today's terrestrial based 

cellular networks or INMARSAT are good nominees for migration to a commercial MSS 

in the future to both maintain mobility and relieve MILSATCOM requirements. 

D. ARCHITECTURE COMPONENTS 

Regardless of who operates a communication system, the potential components of 

any architecture chosen are relatively similar. Options for facilitating low data rate 

mobile communications range from terrestrial through airborne, to space based platforms. 

Terrestrial options include currently used direct line-of-sight from user to user, as 

well as fixed or portable repeater stations similar to modern cellular systems. These 

options will still limit range though because of a limited radio horizon due to their low 

altitude, and the high potential for interfering obstacles. There is also the problem of 

establishing repeater stations in denied territory. 

Using airborne assets for communications processing or relay is becoming an 

increasingly attractive option. Using airplanes in this role is a possibility, but could prove 

expensive to provide assets, maintenance, personnel, support, and training. Additionally, 

having communications planes flying over or near a battlefield could provide an easy 

target to enemy forces. A more suitable alternative would be the adaptation of UAVs or 

long endurance balloons in this role. 

Some modern UAV platforms have the capability to loiter at high altitudes up to 

80,000 feet or more, for greater than 24-hour periods without refueling. Also, helium 
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filled balloons powered by solar energy are capable of staying aloft at the same altitudes 

for much greater periods of time [Ref. 39]. Higher altitudes would provide a much 

greater radar horizon and access area to the UAV. This would work to keep the UAV out 

of almost any missile envelope, allow it to provide service to a greater area, and enable it 

to maintain greater lateral separation from the battlefield. 

As a communications link, a UAV could provide two services. First, it could act 

as a direct relay, receiving user data streams and retransmitting them back to ground 

based terminals. Second, it could perform as an intermediate relay between ground and 

space based assets. This could reduce the power required from disadvantaged portable 

terminals, while still allowing them to close a SATCOM link. 

The major drawback for a UAV-supported system is that a launch and control 

platform would need to be located near the operating region in order to provide service. 

This would not be a problem in areas of major military operations, but could prove 

difficult for smaller diplomatic or SOF requirements in denied access territory. 

The final option for locating communication link control devices is space. The 

relative merits and drawbacks of the major orbital regions are discussed in chapter 3. 

Space-based assets are generally accepted as the preferred solution for providing 

communications links. Once in place, these assets provide service that is transparent to 

the user, and can allow users to link to virtually any other communications node in the 

world. They are, however, expensive to purchase, launch, operate, and replenish. 

No matter what environment, or mix of environments, is chosen to support an 

objective SATCOM architecture, terminals are required. These terminals must meet a 

wide range of applications, from handheld, to ship-based, to aircraft-based, and fixed 

land-based. In addition, they must remain interoperable to allow a myriad of users to 

communicate effectively, as well as be backwards compatible with legacy systems to 
support a transition to new systems and wave forms. 

Large costs will be associated with the development, purchase, fielding, and 

support of new terminals. In order to streamline the acquisition, support, and repair 

efforts of a smaller, more efficient military, commonality of standards, parts, and 

operations must be aggressively pursued. Great care must be taken to avoid mistakes of 

the past in developing stove-pipe systems that hinder broad communication applications 
and reduce tactically efficient application. 
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E. OBJECTIVE ARCHITECTURE PROPOSAL AND TRADES 

An objective architecture is one that will satisfy as many requirements as possible 
within the financial, technological, and political constraints imposed upon the system. 

Within the scope of alternatives proposed by the Office of the Space Architect, alternative 
B offers the greatest utility to military forces as an objective, as long as risks are 
aggressively managed. Although the cost may be higher, it is worth the price in order to 
move away from today's stove pipe systems, to a unified, interoperable system that will 
allow all branches of the military to work together to wage coordinated warfare. 

To that end, the objective system for 2010 should be a LEO or MEO constellation 

tied together by satellite crosslinks to provide tactical communications, augmented by 

commercial MSS to provide for administrative services. This would provide a world- 

wide MILSATCOM capability to operational forces, while using commercial assets to 
help offload non-operational traffic to free bandwidth. 

Constellation size would be based upon orbit altitude in order to meet coverage 
and frequency reuse requirements. Each satellite would be capable of handing off signals 
to a neighboring satellite as it approached its radio horizon. The crosslinks would allow 
satellites to act as network routers, passing signals addressed to users located within 
another footprint. Phased array antennas would be used to allow agile beam patterns to 
produce selective coverage in a system with high relative motion. 

Each satellite should be designed with onboard processing to provide signal 
handling without ground station interference. Network controllers would assign user 
priorities and designate which users are allowed access to which communications nets or 
services. Users desiring access would send a handshake signal to a local satellite 
containing an address or user code, and a request for service via a TCP/IP type protocol. 
Onboard logic would determine whether or not the user has the proper priority and 
authority to receive the requested service. If so, the requesting terminal would be 
assigned a channel frequency and bandwidth based upon service requirements and 
terminal capability. 

This type of architecture would rely on crossbanding and bandwidth-on-demand 
to satisfy user requirements. Crossbanding would allow users of differing terminal types 
to communicate in a spectrum band most advantageous to them. The satellite 
constellation would be responsible for translating received signals to the proper frequency 
for the downlink. Bandwidth-on-demand would allow each user access to the maximum 
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bandwidth available based upon their priority, terminal capability, and overall demand for 
service within the same geographic region. Initiation of higher priority circuits could 
force those of a lower priority to be preempted in a band limited region. Implementing 
these types of features would provide a high degree of flexibility in allowing theatre 
commanders control over communication assets available to them. 

A system such as this would allow a wide range of terminals to be used. Highly 
mobile disadvantaged users could make use of dipole antenna equipped handheld 
terminals to communicate with larger parabolic dish equipped terminals operating in the 

SHF or EHF spectrum. This would allow each user to maximize communication 
capability within the relative limits or advantages of their operating capabilities. 
Additionally, advancements in terminal technologies such as smaller phased array 
antennas could allow greater flexibility to be built into smaller terminals. 

This would be an expensive undertaking. New terminals, procedures, and 
logistics capabilities would have to be put in place, and more satellites would have to be 
launched both to populate and replenish the constellation. Advances in technology and 
production methods could offset many of these costs. The commercial SATCOM 
industry is already building towards this type of space-borne network. The military 
acquisition system would be poised to take advantage of technology and components that 
have already undergone development by industry, to include handheld SATCOM 
terminals and assembly line produced satellites. 

If despite the high utility of such a system, the government is unwilling to make 
such a large investment, trade-offs could be made. The most obvious trade would be to 
raise the constellation altitude toward GEO, thereby reducing the number of satellites and 
launches required. Dollars would be saved, but system performance would suffer in 
terms of frequency reuse, propagation delay, coverage, and power or antenna sensitivity 
required to close the communication link. 

Some of these deficiencies may be at least partially overcome by augmenting the 
system. For instance, UAVs could be used as a relay between ground and space base 
nodes. They could also be used in place of satellites to provide an increased capability in 
regions of high density radio traffic. Also, polar adjunct satellites may be added to the 
constellation in HEO or Molniya orbits to satisfy polar requirements. 

Although these trades are available, they are not desirable. The less performance 
that is built into the system, the lower the utility of the system is to the user. Today's 
legacy stovepipe systems, while useful, are far from providing a coherent, interoperable 
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capability to the mobile user. Continuing down that path because it is a cheaper 

alternative will only increase the problem in the future as force structure continues to 
diminish, while communications requirements continue to rise at an increasing rate. 

Relying on commercial capacity for tactical applications would reduce infrastructure and 
fielding costs, but could prove much more expensive due to high usage fees, while 
forcing the military user to compete with commercial subscribers for access. The creation 
of a military unique, technologically advanced SATCOM system may be expensive, but it 
would open the door to a long-term capability that would serve to enhance and optimize 
the warfighting capabilities of the U. S. military services. 

F. GAPFILLER 

No matter what option is chosen to satisfy future SATCOM requirements, a 
smooth transition that does not disrupt tactical applications is necessary in the author's 
opinion. Due to a late development start and the possibility of one or more current 
constellations losing capacity due to failure, an effort must be made to prevent gaps in 
service. To meet this end a gapfiller plan is be necessary. 

Options for providing gapfiller service include funding further launches of current 
systems, leasing bandwidth on commercial systems, and launching an intermediate 
MILSATCOM capability to bridge the difference in services provided by the current and 
objective systems. The chosen route will depend upon the design of the objective 
architecture and its operational timeline compared to failure predictions of current 
systems such as the one depicted in Figure 6. 

G. VERIFICATION 

An important consideration in development of any new system is verification of 
performance. The problem is assuring that a proposed system will meet its intended 
objectives. This is generally accomplished via a rigorous test and evaluation plan. 

To make this work efficiently, the system must be designed with testing in mind. 
This means including personnel from the test community in the early stages of design and 
development. They can provide guidance from requirements generation through design 
and construction in order to make testing run more smoothly, and to provide meaningful 
results on which to base decisions. 
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Most military systems are purchased in large quantities, so tests can be performed 
on production representative articles. Satellites, however, are generally produced in very 
small quantities, so it is difficult and prohibitively expensive to launch an article into 

orbit for testing. This means that maximum use must be made of ground-based tests, 
equipment, and simulation. 

Many tests today are based upon simulation and modeling. Modern computer 
hardware and software are capable of providing very robust simulations of satellite 
communication systems. In fact the military has entire commands devoted to the practice 
of modeling and simulation. These people need to be utilized early in the development 
life cycle so that problems can be discovered and changes made early in the process. 

Additional testing can be done using test bench equipment at the component level. 
These are used to verify component performance on an individual basis. Testing must be 
continued as components are integrated in order to prove compatibility of interfaces. 

Finally, do not forget the system component of greatest interest to the user, the 
terminal set. The user is not interested in how the satellite accomplishes its task, but 
rather the end result. All terminal designs must be able to meet requirements for 
operational effectiveness and suitability in order to satisfy the user's needs. 

Any system or requirement that cannot be tested cannot be shown to meet its 
specifications. Fielding such a system, while not precluded, increases the risk that 
requirements will not be met. With a system expected to cost in excess of $50 billion 
over twenty years, not adequately planning and testing in order to verify performance is 
an unacceptable error, with the potential to compromise the effectiveness of U. S. tactical 
efficiency. 
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VII. CONCLUSION 

The issue of military space-based communications is extremely complex and 
divisive. The technology and user requirements are continuing to grow at a much faster 
rate than the mechanisms to deal with them can handle. Within the Department of 
Defense, many different agencies are attempting to arrive at solutions to the problem of 
providing a continued SATCOM capability to military forces. These agencies are 
competing for limited budgets and authority in order to obtain their own objectives. The 
problem is that few of these agencies are working together to find solutions. This leads to 
duplication of effort, as well as wasted time and money. 

At the Secretary of Defense level, DUSD (Space) is responsible for overseeing 
SATCOM development and planning efforts. This office needs to take the necessary 
steps to streamline and coordinate all SATCOM efforts within the DoD. Although some 
competition among agencies is good in order to provide a constant challenge to produce 
quality work, the current situation needlessly consumes scarce resources. An aggressive 
reorganization is needed in order to provide clear lines of authority and responsibility 
aimed at solving a common problem. 

Because of their different roles, each service has a different set of requirements 
and priorities. This can be seen by re-examining the MUS requirements voting matrix 
listed in Table 3. In this case the Air Force has listed communications on the move and 
joint interoperability considerably lower than the other services. This reflects the 
differences in the operational roles between the Air Force and the other services. They 
will not be willing to spend money for services they do not value highly, at the expense of 
those services they see as more beneficial. 

When systems destined for joint use are acquired and fielded, a lead service is 
designated to spearhead the effort. Often, this service must provide a larger share of the 
system budget than it feels is fair, but in return it often gets greater control of the project. 
In the author's opinion, when a system such as a proposed joint SATCOM system finally 
enters development, no single service will want to take money from other projects to 
support it. The end result can be a fielded system with reduced performance and utility to 
the user, or no system at all. 

To prevent this from happening, acquisition for this type of joint system should be 
managed and funded by an OSD level agency such as DISA.   The project would be 

69 



staffed by appropriate military and civilian personnel trained to work within the military 

acquisition process, but would not be in the direct reporting chain of any of the services. 

While not guaranteeing any impartiality, this would be a step in the right direction. 

While researching this topic it has become apparent that the management of future 

requirements is not very well controlled. The recent creation of the ERDB is a move to 

formalize the process, but it is not complete. Within the Navy and Marine Corps, the 

ERDB is a very informal document managed by a small group of people at Naval Space 

Command. There is no official governing instruction or guideline for operational 

personnel to submit and document requirements for several years into the future. Part of 

the problem may be that most operational commanders are much more concerned about 

near term requirements than those so far in the future. Steps need to be taken to continue 

to formalize or standardize this process not only within Naval forces, but throughout 

DoD, in order to support long range planning of systems that will adequately meet user 

needs. 

Within the MUS process a relatively small group of people is working under a 

greatly compressed timeline to provide a plan for supporting future mobile SATCOM 

needs. The MUS, however, is part of a larger, OSD level study that encompasses 

SATCOM requirements beyond the mobile low data rate problem. Working 

independently, these groups will arrive at discrete solution sets that will satisfy their 

individual pieces of the puzzle. This is a bottom-up process that is likely to produce a set 

of systems that either duplicates functions, or is not interoperable, and will require further 

iterations, time, and money to arrive at a final solution. A better alternative may be to 

provide greater visibility and direction from the top level, much like the Systems 

Engineering process previously discussed. The goal should be to optimize the 

performance of the entire system rather than optimizing the performance of its individual 

components. 

Whatever conclusion is reached through this process, it is important to be sure 

that the user receives the product that will provide the highest utility in the operational 

environment. Cutting corners to realize savings in the short term could prove costly in 

the long run. It is also important to remember to keep an open mind and not 

unnecessarily restrict the set of possible solutions. Satellites are not the only answer. 

Assets such as UAVs and other sub-orbital platforms may be capable of providing service 

with a high utility at considerably lower cost. 
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It is prudent to once again note that the commercial mobile SATCOM industry is 

getting ready to explode. Recent changes in technology have prompted many 

organizations to prepare to field their own LEO and MEO based MSS. Although these 

services are not a panacea for the military operator, they may be able to provide some 

support. Even though their security features, coverage areas, and services offered will be 

unable to fulfill the needs of many military circuit requirements, they may prove to be of 

great use for administrative applications, providing relief for burdened MILSATCOM 

assets. 

An attempt to define an objective architecture that will satisfy MILSATCOM 

requirements for 2010 must keep all of the preceding factors in mind. Although some 

alternatives may be cheaper or more politically acceptable, they must be critically 

examined against some of the tougher alternatives. Today's MILSATCOM architecture 

was built to an older set of standards, in an environment where SATCOM was relatively 

new. A new objective architecture can choose to stay the course already set and evolve 

the current architecture into a more usable format, or it can be a move to revolutionize 

and reinvent the way the Department of Defense operates its communications systems. 

Current systems will eventually need replacement. The coincidental expiration of 

the major space components of the current architecture provides the military with a 

unique opportunity. Now is the time to institute a revolutionary system with the 

provisions for growth and interoperability that today's systems lack. It many be a more 

expensive undertaking, but if properly managed, can provide unprecedented operational 
utility to the warfighter. 

Commercial industry has paved the way for the operation of LEO and MEO-based 

satellite systems that provide global coverage. The space-based components, terminals, 

and operating concepts of these systems are just now coming online. This puts the 

military in the position of being able to take advantage of COTS and non-developmental 

item purchasing, as well as an industrial base on the verge of mass-producing 

communications satellites. The final piece of the puzzle will be the development of 

launch systems capable off placing satellites in orbit at much cheaper costs. If this can be 

achieved, there should be no obstacles remaining to the pursuit of a large LEO or MEO 

constellation as long as the user communities can come to terms with each other and 

provide a comprehensive set of requirements. 

Affordable and reliable space-based communications systems that can satisfy the 

mobile LDR requirements of Naval forces are about to become a reality.   With these 
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types of services available on the open market it would be a mistake to pass up the 
opportunity to usher in a new era in communications capability that could greatly enhance 
the battlefield effectiveness and survivability of U. S. troops. Future foes ranging from 

national armed forces to small terrorist organizations will be able take advantage of these 
services. Will the United States provide its troops with the tools they need to combat 
these forces? 

72 



APPENDIX A - ERDB LOW DATA RATE REQUIREMENTS 

This appendix contains data from version 2 of the Emerging Requirements 

Database. Only low data rate (< 64 kbps) requirements are listed for both Navy and 

Marine Corps Forces. The significance of this information is discussed in chapter II. 

Some ERDB classification definitions are provided below. [Ref. 17] 

■ Type Ops: 

■ Full Duplex Link - Communications link in which information can be 

transmitted both ways simultaneously. 

■ Half-Duplex Link- Communications link in which information can be 

transmitted both ways, one direction at a time. 

■ Simplex Link - Communications link in which information travels one way only. 

One station transmits while another, or several others, receive. 

■ Availability: 

• On Call - A link in which transfer of information is not continuous throughout the 

day. The requirement is activated and released on demand, or could be supported 

by an on-demand, use-and-release type of communication system such as DAMA. 

High priority users will be guaranteed assured access. All other users will be 

serviced based upon priority and channel loading. All users can expect to receive 

adequate service in terms of average queuing delay. 

■ Full Period - A link in which transfer of information is continuous or near 

continuous. Once activated, the link is not released until the end of the request 

period. Satellite capacity must be reserved for the requirement, whether or not 

traffic is flowing. 

■ Connectivity: 

■ Broadcast - A communication topology that allows a single user to communicate 

a common data stream to many users (one to many). 
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■ Netted/Conference - A communication topology that allows multiple users to 
communicate on a common data stream (many to many). 

■ Point-to-Point - A communication topology that allows two users to 
communicate only with each other (one to one). 

Protection requirements: 

■ Anti-Scintillation/Hemp - Protection level where protection is required against 
the scattering effects of nuclear detonations on communications signals. In 

addition, the circuit must be able to survive the effects of a high altitude 
electromagnetic pulse (HEMP). 

■ Anti-Jam Sanctuary - Protection level where protection is required against a 
high power fixed jammer located in an unfriendly country, usually not near the 
friendly terminals that are being jammed. Effective power is equivalent to the 
fixed jammer threat postulated by DIA for the frequency band of interest. 

■ Anti-Jam Tactical - Protection level where protection is required against a 

medium power jammer, usually on a mobile or transportable platform. Effective 
power is equivalent to the maximum shipborne or ground transportable jammer 
threat postulated by DIA for the frequency band of interest. 

■ Anti-Jam Nuisance - Protection level where protection is required against a 
medium or low power deliberate or unintentional jammer whose power level is 
comparable to that of the friendly terminal being jammed. 

Low Probability of Intercept/Low Probability of Detection (LPI/LPD) - Denying 
a hostile collection and monitoring platform form ascertaining the technical 
parameters of a transmitted signal other than its presence or carrier frequency. The 
ability to transmit communications signals within a specified distance of hostile 
monitoring platforms without the signal being detected by the "bad guy". 

US Control - The United States government has the ability and mechanisms needed 
to effectively plan, monitor, operate, manage, and manipulate the available resources. 
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Duty Cycle - The ratio of the amount of time that a communications link is activated 
to the total time period. 

■ <100% - Indicates that the link is activated less than full time. 

■ 100% - Indicates that the link is activated full time. 

Requirement Multiplier - The numbers of this type of circuit needed to satisfy all 
requirements for this unit. 
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APPENDIX B - MUS REQUIREMENT DEFINITIONS 

The following is a paraphrased list of Mobile User Study (MUS) requirements 
definitions. All terms are used based upon general definitions provided in the 
USCINCSPACE MILSATCOM Capstone Requirements Document (CRD), then 
amplified to provide clarification as they relate to the MUS effort. For further 
amplification see the CRD. As of this writing the MUS Prioritized Requirements 
document has not been released for use outside of the MUS participants. Further 
refinement of these requirements is necessary to support test and evaluation of system 
performance. [Ref. 21] 

■ Assured Access: The certainty that the requisite amounts of services are immediately 
available and accessible for use when and where needed in accordance with priorities 
set by the operational commander, and that they can be quickly reconfigured to meet 
the demands of the warfighter's operational environment. It is recognized that not all 
users can be accommodated all of the time. Instead, a prioritized set of users should 
be able to gain access when that access is both allowed and necessary 

■ Netted Communications: A communication topology that allows multiple users to 
communicate on a common data stream. This type of circuit is normally half duplex 
and full period. Manual or automated processes should be established to control 
access and transmission permissions. There shall be no predetermined number of 
users or terminals on a net. 

■ Communications on the Move: This capability shall provide the ability of the 
warfighter to move and talk at the same time. This capability enables the user to have 
voice and data communications in any natural environment to include double canopy 
jungle, urban, rain, and sea environments. 

■ Jointly Interoperable Communications: This is the ability of systems, units, or 
forces to provide information services to, and accept information services from other 
systems, units, or forces. This information must be exchanged to enable them to 
operate more effectively together.   The ability to share information promotes the 
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common interpretation and understanding of the battlespace fundamental to ensuring 
unity of effort and synchronization of action. The goal for the entire military grid is to 
provide warfighters and their systems the ability to exchange and understand 

information unimpeded by differences in connectivity, processing, language, or 
interface characteristics. 

Worldwide Coverage: Encompasses 24 hour per day communications service 
coverage from 65° North to 65° South latitude without gaps in geographical coverage. 

Point to Point Communications: This is a topology that supports communications 

between two single terminals. This type of link is typically full duplex, on call, and 

may support half-duplex and full period communications. Point to point 

communications are required to support voice, data, or video to support VIP, Special 
Operations Forces (SOF), and control of UAV missions. 

Broadcast Communications: This is a full period, simplex link that supports a single 
transmitter providing information to multiple receiving terminals. Broadcast is 
primarily used for transmission of battlespace awareness data and intelligence 
information to users who can join the broadcast at any time. 

Polar Coverage: This includes 24 hour per day communication service for that area 
of the Earth above 65° North and below 65° South latitude. Communications service 
is primarily directed at the northern polar region for reasons of national security, but 
some requirements do exist in the southern polar region. A Polar SATCOM 

Operational Requirements Document provides specific requirements in these regions. 
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APPENDIX C - SATCOM TERMINAL LAYDOWN 

The following pages contain tables listing current and planned SATCOM terminal 
population. Terminals are divided by frequency operating range and purpose. Future 
acquisition for Naval forces are listed by service. Finally, a breakdown of planned 

acquisition and disposal numbers is provided. This information is excerpted from an 
informal Terminal Laydown database maintained by the CNO/N63 office. [Ref. 36] 
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