
AFRL-HE-BR-TR-1998-0001 

AIR FORCE MATERIEL COMMAND 
AIR FORCE RESEARCH LABORATORY 

REGRESSION TO THE MEAN IN 
HALF-LIFE STUDIES 

Ram C. Tripathi 

Division of Mathematics and Computer Science 
University of Texas at San Antonio 

San Antonio TX 78249 

January 1998 

DTIC QUALITY INSPiSGTBD^ 

19980310 095 

Approved for public release; distribution is unlimited. 

Human Effectiveness Directorate 
Directed Energy Bioeffects Division 
Biomechanisms and Modeling Branch 
8111 18th Street 
Brooks Air Force Base TX 78235-5215 



NOTICES 

When Government drawings, specifications, or other data are used for 
any purpose other than in connection with a definitely Government-related 
procurement, the United States Government incurs no responsibility or any 
obligation whatsoever. The fact that the Government may have formulated or in 
any way supplied the said drawings, specifications, or other data, is not to be 
regarded by implication, or otherwise in any manner construed, as licensing the 
holder, or any other person or corporation; or as conveying any rights or 
permission to manufacture, use, or sell any patented invention that may in any 
way be related thereto. 

The Office of Public Affairs has reviewed this technical report, and it is 
releasable to the National Technical Information Service, where it will be available 
to the general public, including foreign nationals. 

This technical report has been reviewed and is approved for publication. 

C* 

JOEL E. MICHALEK, PhD 
Contract Monitor 

RICHARD L. MILLER, PhD 
Chief, Directed Energy Bioeffects Division 



REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, 
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this 
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson 
Davis Highway, Suite 1204, Arlington. VA 22202-4302. and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20S03. 

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 

 January 1998 

3. REPORT TYPE AND DATES COVERED 

Interim - September 1995 - December 1996 
4. TITLE AND SUBTITLE 

Regression to the Mean in Half-Life Studies 

6. AUTHOR(S) 
Ram C. Tripathi 

5. FUNDING NUMBERS 

C-F41624-96-1-0001 
PR-2767 
TA-00 
WU-F1 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Division of Mathematics and Computer Science 
University of Texas at San Antonio (UTS A) 
San Antonio TX 78285 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
Directed Energy Bioeffects Division (AFRL/HED) 

Biomechanisms and Modeling Branch (AFRL/HEDB) (AL/AOEP) 
2606 Doolittle Road, Bldg 807 
Brooks AFBTX 78235-5250 

10. SPONSORING /MONITORING 
AGENCY REPORT NUMBER 

AFRL-HE-BR-TR-1998-0001 

11. SUPPLEMENTARY NOTES 

12a. DISTRIBUTION /AVAILABILITY STATEMENT 

Approved for public release; distribution is unlimited 

12b. DISTRIBUTION CODE 

13. ABSTRACT (Maximum 200 words) 

Half-life studies of environmental contaminants in humans are restricted to only a few measurements per subject taken after 
the initial exposure, the initial dose is usually unknown, and subjects are included in the study only if their body burden is 
above a threshold c. The assumption of a one compartment first order decay model leads to a repeated measures linear 
model relating the logarithm of the biomarker with time, with the negative of the coefficient of time being the decay rate. 
The usual least-squares estimate of the decay rate is biased due to regression to the mean. In this report, based on the 
repeated measure linear model, unbiased estimates of the decay rate have been developed by the method of least-squares. 
This has been done for the two cases:  (i) when there is no covariate (Report I) and (ii) when there is a categorical covariate 
(Report II). The maximum likelihood estimator of the decay rate is developed (Report ITT) under the assumption that the 
logarithm of the concentration of the contaminant for the k time points of each subject has a truncated multivariate normal 
distribution with AR (1). 

14. SUBJECT TERMS 

dioxin, decay rate, estimation 
Environmental contaminants 

15. NUMBER OF PAGES 
48 

16. PRICE CODE 

17.   SECURITY CLASSIFICATION 
OF REPORT 

Unclassified 

18.   SECURITY CLASSIFICATION 
OF THIS PAGE 

Unclassified 

19.   SECURITY CLASSIFICATION 
OF ABSTRACT 

Unclassified 

20. LIMITATION OF ABSTRACT 

UL 

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) 
Prescribed by ANSI Std. Z39-18 
298-102 



CONTENTS 

Page 
Introduction 1 

Unbiased Estimation of Regression Parameters Adjusted for Bias Due to Left Truncation 3 

The Half-Life of Dioxin in Humans Adjusted for a Categorical Covariate 17 

Maximum Likelihood Estimation for Longitudinal Data with Truncated Observations 26 

References 37 

Appendix 39 

in 



1    Introduction 

Half-üfe studies of environmental contaminants in humans are generally restricted to only 

a few measurements taken after the initial exposure. The initial dose is usually unknown 

because the exposure occurred before the environment was known to be contaminated. We 
assume that a one compartment first order decay model with decay rate A holds for subjects 

with body burden above the background level determined by a threshold c. Subjects 

are included in the study only if their body burden is greater than c. The threshold is 

defined to be a high quantile, such as the 99th percentile, of the biomarker distribution in a 

control population. We assume that the concentration of the contaminant is log-normally 

distributed which, together with the first order decay model, implies a repeated measures 

linear model relating the logarithm of the concentration and time, with slope -A. 

Based on this first order decay model and data for 36 Ranch Hand veterans whose 

1982 and 1987 2,3,7,8-tetrachlorodibenzo-p-dioxin (dioxin) measurements were above 10 

parts per trillion (ppt), Pirkle et al. (1989) obtained a median dioxin half life of 7.1 years 

with a 95% confidence interval of 5.8 to 9.6 years. Michalek et al. (1992) used a repeated 

measures linear model to investigate the effect of the percentage of body fat (PBF) on the 

decay rate of dioxin. Using weighted least-squares (WLS) estimates, they found a border- 

line significant association between the decay rate and PBF, with the decay rate of lean 

subjects being greater than the decay rate of obese subjects. Utilizing the same repeated 
measures linear model and data collected in 1982, 1987 and 1992, in veterans with more 

than 10 ppt body burden, Michalek et al. (1996a) obtained an estimate of the decay rate 

using SAS PROC MIXED and used it to obtain an estimate of the half-life which was 

corrected for bias. In fact, they obtained the expression for the bias in the estimate of the 

decay rate utilizing the conditional normal moments from Tallis (1961). They showed that 

when the data are truncated above a line with a slope -A, the WLS estimate of the decay 

rate becomes unbiased. Their investigation has been carried out under AR(1) and Toeplitz 

assumptions for the within subject covariance matrices. However, their procedure did not 

account for covariates such as PBF or age. Thus, it would be of interest to develop an es- 

timate of the decay rate adjusted for covariates. It would also be of interest to develop an 

estimate of the decay rate using a repeated measures linear model based on truncated data. 



In this report we 

• develop a WLS estimate of the decay rate based on a repeated measures linear model 

and correct it for bias assuming a general k, where k represents the number of repeated 

measures per subject. 

• develop a WLS estimate of the decay rate in the above setting in the presence of a 

categorical covariate. 

• develop a maximum likelihood (ML) estimate of the decay rate in the presence of 

truncation. 

In Report I, we present the repeated measures linear model and derive a closed form 

expression for the WLS estimate of the decay rate. As is well known, WLS estimates are 

biased if the subjects are selected based on a high or low value of the response variable. 

We show that by properly adjusting the data, the estimate of A can be made unbiased. In 

addition we obtain expressions for other parameter estimates to facilitate a study of their 

statistical properties. 

In Report II, we present the repeated measures linear model which contains a cat- 

egorical covariate and its interaction with time and derive closed form expressions for the 

WLS estimates of the associated parameters. Some special cases of the covariance structure 

are considered. We obtain expressions for the bias in the estimates of the regression param- 

eters under the condition that the body burden of dioxin in the subjects included in the 

study is greater than a threshold c. The estimates are then made unbiased. The resulting 

estimates of the half-life are computed using Air Force Health Study (AFHS) data. 

In Report III, we derive ML estimates of the parameters under the assumption 

that the logarithms of dioxin measurements at the k time points for each subject have 

a truncated multivariate normal distribution. The estimates are obtained by an iterative 

process similar to the estimation-maximization (EM) algorithm. The WLS estimates serve 

as initial estimates in the truncated case. An estimate of the asymptotic covariance matrix 

of the resulting estimators is also derived, which can be used to construct the asymptotic 

confidence intervals for the parameters. 



REPORT I 

Unbiased Estimation of Regression Parameters 
Adjusted for Bias Due to Left Truncation1 

iThis research was carried out in collaboration with Dr.  Kishan G. Mehrotra, Syracuse University, 

under the University Resident Research Program of the Air Force Office of Scientific Research. 



Abstract 

Least-squares estimates of regression parameters are, in general, unbiased. However, if the 

observations on the response variable are truncated then these estimates become biased 

due to truncation. For example, half-life studies of environmental contaminants are based 

on only a few measurements per subject taken after the initial exposure. The subjects 

are included in the study only if their body burden is above a threshold c. It is assumed 

that the first order decay model with one compartment holds which leads to a repeated 

measures linear model relating the logarithm of the contaminant concentration with time 

and other covariates. The negative of the coefficient of time represents the decay rate (A), 

with the half-life of the contaminant given by t1/2 = ln(2)/A. The usual WLS estimate of 

A is biased due to regression to the mean. We show that the regression parameter can be 

made unbiased by properly selecting the subjects under study. This selection results in a 

small loss in the sample size but generally improves the mean-squared error of the estimate. 



1    Introduction 

Half-life studies of environmental contaminants in humans are generally restricted to only 

a few measurements taken after the initial exposure. The initial dose is usually unknown 

because the exposure occurred before the environment was known to be contaminated. 

We assume that a one compartment first order decay model with decay rate A holds for 

subjects with body burden above a background level determined by a threshold c. Subjects 

are included in the study only if their body burden is greater than c. The threshold is 

defined to be a high quantile, such as the 99th percentile, of the distribution of the body 

burden of the contaminant in a control population. We assume that the concentrations 

are log-normally distributed which, together with the first order decay model, implies a 

repeated measures linear model relating the logarithm of the concentration and time, with 

slope -A. It is well known that the WLS estimate of A is biased due to regression to the 

mean because of the way the subjects were included in the study. It has been shown that 

(see Michalek et al. (1996a)) if the data are properly conditioned, the WLS estimate of 

A can be made unbiased. This process is appealing because unbiased estimates can be 

obtained through the commercially available packages such as SAS. However, their results 

were restricted to special cases of the underlying covariance structures and small values of 

k. In particular, they have shown that if the covariance matrix is AR(1) and k = 3, then 

the samples can be adjusted such that estimate of A is unbiased. This can be achieved by 

using SAS without investing in any special purpose computer program. 

In this paper we generalize the result of Michalek et al (1996a) for any dimension 

and show that the samples can be adjusted such that the WLS estimate of A is unbiased. 

In addition we obtain expressions for other parameter estimates to facilitate study of their 

statistical properties. 

In section 2, we present the repeated measures linear model and derive closed form 

expressions for the WLS estimates. Some special cases are considered in section 3. In 

section 4 we obtain an expression for the bias in the estimate of the regression parameter 

under the condition that the body burden in the subjects included in the study is greater 

than a threshold c. The estimates are then made unbiased. 



2    Model and Analysis 

We assume that k observations were taken per subject for each of n subjects. These subjects 

were exposed to a contaminant that produced an elevation in the body burden greater than 

a background level. Suppose that CQ denotes the initial (unknown) concentration and Ct 

denotes the concentration t years after the exposure. Then a first-order kinetic model 

Ct = C0e-* (1) 

holds in the subjects with body burdens above a threshold c and A denotes the (unknown) 

constant decay rate. Based on equation (1), the population half-life is given by 

*l/2 =  ~- V   ' 

By taking the natural logarithm of equation (1), we obtain 

ln(Ci) = ln(Co) - ^. (3) 

Equation (3) can be regarded as a motivation for a linear regression model with repeated 

measurements incorporating subject effects. 

Let yi denote the column vector of k observations on the ith subject taken at times 

(til, ti2, • • •, Uk). The regression model, accounting for the subject effects, is given by 

yij=ßo + ßiUj+Ti + eij, (4) 

for i = 1,..., n and j = 1,..., k, where E?=i n = 0. Here Vij denotes the natural logarithm 

of the jth measurement on the ith subject, -A is denoted by ßlt and ey denotes normal 

error with mean 0. Our goal is to obtain WLS estimates of ß0, ßx and the Tj's. 

The inclusion of subjects in the study who have ytj > log(c) causes left truncation 

and WLS estimates of the parameters are not necessarily unbiased. WLS estimates of 

the parameters and the associated bias can be obtained in the vector representation. But, 

because we want to explore the possibilities of correcting for bias in one or more parameters, 

it is necessary to obtain their explicit forms. In the following discussion these estimates 

are obtained and it is shown that the WLS estimate of ft can be made unbiased by 

appropriately selecting the subjects under study. 

It is convenient to analyze the problem in terms of vectors of observations for sub- 

jects. To that end, we use the following notations. 



Notations: For i = 1,2,..., n, 

• y{ denotes the fc-dimensional vector of observations for the ith subject, y\ = (t/a, yi2, • • •, Vik), 

• e denotes the n/c-dimensional vector of errors, 

• ti denotes the k-dimensional vector of times for the ith subject, t\ = {tn,ti2, • • •, tik), 

• $ denotes the covariance matrix of yt, 

• Y denotes the column vector of all nk y-observations, Y* = [y\,y2, ■ • • >3/nJ> 

• ß denotes the column vector of all (n + 1) parameters, ßt = [ß0,A,T*], with T* = 

[ri,r2,...,rn_i], 

• a = 1*$-11, where 1 denotes the fc-dimensional column vector with all elements 

equal to 1, 

• y\ = l^-1^, 

• i = n-1Y*=iU, 

• sa = iEti(«i-*)t*-1(*«-*). 

• CM = t**-1*. 

Thus, the model described in equation (4) can be rewritten as 

Y = Xß + e, 

where the design matrix X is 

X = 

1   ti   :     1 

1   t2   :     0 

0 

1 

0 

0 

X1 

x2 

1   tn   :   -1   -1    ••■    -1 

The WLS estimate ß of ß is the solution of the system of equations 

(X'V-'X) ß = X*V-lY, 

(5) 

(6) 



where 

V = 

$   0   •••   0 

o   $ ... 0 

0   0    •••   $ 

Since XV-XX = £?=1 X^Xi, and X'V^Y = £?=1 X\^Vi, it follows from (6) that 

the WLS estimate of ß satisfies 

jr(xt
i$-1Xi)ß = itxl$-lyi 

»=i i=l 

or 

3= E-tf*-1*«    E*!*-1», 
s.i=l t=l 

Straightforward multiplication gives 

E*«*-1*« 
i=l 

na nt* : 0 0 

• • 

0 (*1 - t*n) 

0 (*2 - tn) 

0 fo-1 - *n) 

2a 

a 

a 

2a 

a a 

A 

Bl 

B 

D 

and 

E*'*-1^ 
t=i 

Er=i *i*_12/i 

yl-y*n 

Vn-l ~ Vn 

(7) 

o 

a 

a 

2a 



The inverse of £?=1 Xl^Xi can be obtained by using its block representation and ex- 

pressions for the WLS estimate are found by simplifying the set of linear equations. Let 

P Q (E***-1**) X= Q  R 

Then (see problem 2.8 in Rao (1973)), 

P = A'1 + FE-'F*, Q = -FE~\ R = E~\ 

where 

E = (D- BtA^B), and F = A~lB. 

Then, 

n 
V 

(S2 + CM)   -t* 

-i* a 

where V = n2[a{S2 + CM) - (t*)2) is the determinant of A. After substituting for B,D, 

and A-1, applying problems 2.7 and 2.8 in Rao (1973), and some simplification we get 

1_ 
a 

R = E~1 

c 

P   =   A~l + 

Q = 

I - -li* 
n 

+ n 
a{V - n2s2) 

r-P 

nzs2 

Va{V - n2s2) 

V 

(i*)2   -i*a 

-i*a       a2 

i-i 
0* 

~a[V-n2s2) 

where s2 = J ESUW " **)2 and T* = ((«J - **), (Q - ?), • • •, (£-i ~ **)) • 

Expressions for the elements of ß are obtained by simplifying equation (7). After 

substituting for the inverse of ELi X\^~lXh we obtain 

(8) %   =   -{y*-t%} 
a L J 

Ä   = 
n 

and 

T = 

[V - n2s2) 

n 
[V - n2s2} 

y* - y* 

yl-y* 

y*n-i - f 

. »=i 
n 

«=i 

.*=i 

(9) 

-A 

t*   — t* 

(10) 



where 

a! = afc* - I'Q-Hil* <f>-l = {ai[l},ai[2},...,ai{k}) 

Since afl  =  at^*"1! - l'S"1*^"1!  = 0, it follows that that E^i^bl  = 0 or 

ZjZi Oi\j] =-<k[k]. Hence, 

A = 
n 

[V - n2s2} 

n     k 

££(*[?']-«*[*]) (sto-y*) 
i=l i=l 

Because the jfo's appear in A only as differences, it will be shown that A can be made 

unbiased as long as we can adjust the subjects in the sample. This observation is elaborated 

in Section 4. First, we mention some special cases of interest. 

3    Special Cases 

In this section we consider two special cases of the correlation matrix that are the most 

likely candidates for the repeated measures model. In the first case, we assume that the 

correlation matrix satisfies the AR(1) assumption and in the second case we relax this 
assumption and assume that it is given by the Toeplitz matrix. In each case we consider 

the cases k = 3 and 4. We also consider the case when all subjects are exposed to the 

contaminant at the same time, the rest of the observations are not necessarily at fixed 

intervals, and the correlation matrix has AR(1) structure. 

3.1    AR(1) Correlation Matrix, k = 3 

Suppose k = 3, Ui, *<2, and ti3 are equally spaced, with ti2 = *n + A,ti3 = ti2 + & for all 

values of i for some fixed A, and $ satisfies AR(1) conditions, 

$ 

1    P   P2 

P    1    P 

[p2   P    1 J 

For convenience, let U = tiX for i = 1,... ,n. It can be seen that in this case 

nS2   =   aJ2(U-t)2, 
i=l 

10 



CM at2 + 2at A + 
5-4p + p2

A2 

1 + p2 A2, 

ns2   =   a2 £&-*)2> 

r 
a 

3-P 
1+p' 

and 
aA 

a 
(1 - P2) 

[-1,   0,   1] 

where t = ^Er=i **• Consequently, 

and 

V-n2s2 

A 

2« 2 A 2 
rn

2A2, 

3-pA        " v 

(l-p)2(l+p) f^ 

A> 

(1 " P)2 

n(l - P)2(l + p) 
2(3 - p)n2A2 

—E toi + (l - p)y*+y^ - (*+A)^' 

ri = {(ya + (i - p)&2 + yts) - (yn + (i - P)W2 + y«)} - &<*(*» - *)• 

Michalek et al. (1996a) considered this special case in greater detail. 

3.2    AR(1) Correlation Matrix, A; = 4 

We consider the case that k = 4 and the U's are equally spaced, with ti2 - tiX = tiZ - ti2 = 

tu - ti3 = A. For this reason we denote ta = U and t = n~l YZU **• We assume that the 

covariance structure is given by the AR(1) model 

$ 

1 P P2 P* 

P 1 P P2 

P2 P 1     P 

P3 P2 P     1 . 

11 



It can be seen that 

nS2   =   <*£(*«-*) ' 
i=l 

2(2 - p) 
a   =    -y— ' 

,     m-p)j. 5(l-p2)-6p + 9   2 

ns2   =   a2J2(U-t)2, 
i=\ 

t*   =   ai + A 
3(2 - p) 

1+P  ' 

and 

Thus, 

ahJ2Irf    ,A[-(3-p),    -(1-A    (1-P2),    (3-p)] 

ft = £ [(3 - p)(yi4 - yn) + (1 - P2)(2/i3 - Jte)] • 
(10-5p + p2)(nA)^ 

Finally, #J and f are obtained from the general forms in equations (8), (9) and (10) with 

T defined above and 

Vl --   7— [{yn + ya) + 0--P) (2/i2 + 2/is)] 
1 + p 

V* = Y^-[{yi + yd + ^-p)(y2 + y3)\- 

3.3    Toeplitz Correlation Matrix, k = 3 

As in section 3.1 and 3.2, the U's are equally spaced but now we assume that the correlation 

matrix is Toeplitz of order 3, 

$ 

Straightforward simplifications give, 

a   = 

1    Pi     P2 

P\       1     Pi 

. P2    Pi       1 

3 - 4pi + P2 
l-2p1 + p2' 

12 



n     =   (l-2p1+p2)(l-p2) 
[V-n2s2] 2n{3 - 4Pl + p2) A2  ' 

A(3 - APl + p2) 
-ajl]   =   a* [3] 

ai[2]   =   0. 

Consequently, as in the case of AR(1) model, 

(l-2pi + p2)(l-p2)' 

This estimate is equal to the estimate obtained in section 3.1. Estimates of ß0 and t are 

obtained from the general formulas in (8) and (10). 

3.4    Toeplitz Correlation Matrix, k = 4 

As in the previous case, the £;'s are equally spaced but the correlation matrix has a Toeplitz 

structure, 

$ = 

It can be seen that, 

a   = 

1 Pi P2 Pz 

Pi 1 Pi P2 

p2 Pi 1 Pi 

P3 P2 Pi 1 

2 - pi - 2p2 + P3 

1 + Pi - (Pi - P2)2 + Pi(P2 + Pa)' 
rn Ml     (4pi-P2-3)(-2 + 2p2 + Pi-p3K 

-ai[l] =   ai[4j = -A, 

mi roi     (1 ~ 3pi + 3p2 - p3)(2 - p! - 2p2 + p3) A -a* [2] =   ai[3J = ~ "^, 

n Q 
[V - n2s2] nA2(10 - 15p! + 6p2 - p3)(2 - Pl - 2p2 + p3)' 

where Q denotes the determinant of $. Finally, 

A = ,n   1.   1 * K3 - 4^+p^y* ~ y^ + (1 " 3pl+3f>2 " ^s)(j/*3 ~ ^ • 10 - 15pi + 6p2 - p3 

Other estimates are obtained from the general formulas (8) and (10), and the above estimate 

of A- 

13 



3.5    AR(1) Correlation Matrix, k = 3, tu = h 

In this case all ta are the same, tn = *i, whereas values of ti2 and ti3 satisfy tx < ti2 < ti3 

and are otherwise arbitrary. We assume that the correlation matrix has AR(1) structure. 

Then, 

US2    =    -J—y:[(l + p2)(ti2-i2)2-2p(*i2-i2)(ti3-t3) + (ti3-*3)2], 

CM   =   -l—\tl-2pi1t2 + (l + p2)tl-2pt2t3+tl}, 
1 — /r L 

=   Tl-2 EK1-P) (*o - *2) + (ii3 - *3)]' 
i + rfei 

ns 

l+p 

From case 1, we know that a = (3 - p)/(l - p). The vector a* is 

1 
Oi 

(1 + P)(1-P2) 

Using the fact that <n[l] + Oi[2] + Oi[3] = 0 and 

a[S2 + CM] - (F)2 - s2   = 

2*1 - (1 + P)*i2 ~ (1 - P)*i3 
(l + p)(-*i+2*i2-*i3) 

_ -(l-p)*i-(l + p)*i2 + 2*i3 . 

- f(i + p) E4 - a + P)E*o*te + E*23 

we obtain 

where 

and 

2n[A(t)-B(t)](-i 

(l+p)(l-p2) 

- ((1 + p)*i*2 + (1 - p)*i*3 - *?)] 

J2 il2t* -11+^ti2 ~ t1 ~ p)t^(2/i3 ~ Vi2) ~ 
[2*1 - (1 + P)*i2 " (1 - P)t*] (#2 ~ Vil)} : 

J4(t) = n-1((l + p)E*?2-(l+p)E*i2*i3 + E*2
3} 

t i=l i=l *=1       > 

B{t) = {(1 + p)*l*2 + (1 - P)*l*3 - *l} • 

Estimates ofjflb and the subject effects are obtained from the general formulas (8) and (10). 

14 



4    Bias and bias correction of ßi 

It is well known that if the model (in its matrix formulation) is given by (5), then ß is an 

unbiased estimate of ß. More precisely, if E(yö) =ßo + ßiUj + n, then E/3 = ß. But, in 

the current setting, only those yö's are included in the sample that satisfy y{j > log(c). 

Due to this truncation constraint, 

E (va | Va > log c)   =   ß0 + ßiUj +n + E {{yij -ßQ- ßikj - Ti) | yij > log c] 

=   ßo + ßitij + ^ + E [Zi:j | Ztj > zi3\, 

where Zi5 is a normal random variable with mean 0 and ztj = log(c) -ß0-ßxUj -Tt. Hence, 

E [va | va > log(c)} = ßx + ßxttj + ^ onlyif % = -°°- Tallis (1961)> and more recently 

McGill (1992), have evaluated conditional expectations and higher conditional moments of 

the vector random variable (Za, Zi2, • • •, Zik) with correlated components. Thus, 

where <fc = E [(ZiX, Zi2,..., Zik)
1 \ Za > zix, Zi2 >zi2,..., Zik > zik] and ßi is a biased es- 

timate of ßx with bias given by n/[V - nV] £?=i a#«. If we are allowed to manipulate 

the samples, then the bias in ßx can be made equal to zero. The basic idea is easy to follow 

in a special case. Consider the case k = 3, equally spaced times, and AR(1) correlation 

structure. In this case 

£ = ^|>3-ya) 

and the bias in ßx reduces to 

bias(A) = 2^E(E(Za | ZiZ > za) - E(Za | ZiX > ziX)). 

This bias can be eliminated provided we can arrange 

E(Zi3 | ZiZ > za) = E(Zn | Zix > zix), 

or, equivalently, if we can arrange zi3 = ziX for all values of i. If the subjects are included 

in the sample when yy > log(c), then zi3 = log(c) -ßo- ßiU - rt and ziX = log(c) -ßo~ 

ßxU - 2A/?i - n and ziZ and ziX are not equal. On the other hand if we are allowed the 

freedom to shift the truncation points of the y^'sto log(c) - 2Aft, for i = 1,... ,n, then 

the new zi3 and ziX will be equal and the bias in ßx will disappear. 
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This approach has two drawbacks. First, the (new) truncation point of ya depends 

on the unknown parameter ft. However, this problem can be resolved by repeatedly substi- 

tuting updated estimates of ft until no further change occurs in the value of the estimate 

of A Second, in this approach subjects are removed from the sample because the new 

points of truncation are increased. In the AFHS, Michalek et al. (1996b) have found that 

the reduction in the sample size is small in comparison with the overall size of the sample 

and the procedure reduces the mean-squared error. 

The bias in ft can be removed in the general case in a similar manner. Letting 

a\l = 0 and ft = n/[£> - nV] £?=1 afa, ßx can be written as 

£ = rö-^1 ^^ MJ) " ai{k)] lViJ " Vik]" 

By arranging the truncation points of the j^-'s such that for all values of i, Zij = za for 

j = 2,..., k, the estimate of ft will be unbiased. But Zy = za can be achieved by shifting 

the truncation points to log(c) + ß^ - tik) for j = 2,..., k, as in Michalek et al. (1996b). 

5    Conclusions 

In this report we have extended the results of Michalek et al. (1996b) to arbitrary values 

of k, the number of the repeated observations on each subject. In addition, we have given 

expressions for the estimates of the other parameters. It remains to be seen if, in the 

general case, the estimate of ßx will continue to behave as observed by Michalek et al. 

(1996a). That is, if the estimate of ft is made unbiased, we need to determine whether its 

mean-squared error be small also, irrespective of the correlation structure. 
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Abstract 

Pharmacokinetic studies of environmental contaminants are based on only a few measure- 

ments per subject taken after the initial exposure. The subjects are included in the study 

only if their body burden is above a threshold (c). It is assumed that a first order decay 

model with one compartment holds, which leads to a repeated measures linear model, relat- 

ing the logarithm of the concentration of the contaminant with time and other covariates. 

The negative of the coefficient of time represents the decay rate (A), with the half-life given 

by t1/2 = ln(2)/A. The usual WLS estimate of the decay rate is biased due to regression 

to the mean. It has recently been shown (see Michalek et al. (1996b)) that this estimate 

can be made unbiased if the data are properly conditioned. Since body fat has been found 

to be an important covariate for predicting the decay rate of dioxin, an unbiased estimate 

of the decay rate is proposed that is adjusted for an indicator of body fat category and its 

interaction with time. 
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1    Introduction 

Pharmacokinetic studies of environmental contaminants in humans are generally restricted 

to only a few measurements taken after the initial exposure. The initial dose is usually 

unknown, because the exposure occurred before the environment was known to be con- 

taminated. We assume that a one compartment first-order decay model with decay rate A 

holds for subjects with body burden above a background level determined by a threshold 

c. Subjects are included in the study only if their body burden is greater than c. The 

threshold is defined to be a high quantile, such as 99th percentile, of the distribution of 

the concentrations of the contaminant in a control population. We assume that the con- 

centrations are log-normally distributed which, together with the first-order decay model, 

implies a repeated measures linear model relating the logarithm of the biomarker and time, 

with slope -A. It is known that the WLS estimate of A is biased due to the regression to 

the mean because of the way the subjects are included in the study. It has been shown 

(see Michalek et al. (1996b)) that if the data are properly conditioned, the WLS estimate 

of A can be made unbiased. This process is appealing, because unbiased estimates can be 

obtained with commercially available software, such as SAS. However, this estimate is not 
adjusted for any covariates. For example, because dioxin is lipophilic, body fat is known to 
be a predictor of the concentration of dioxin. Here we develop a WLS estimate of the decay 
rate, which is adjusted for binary covariate. This estimate is made unbiased and is used to 

produce an estimate of the decay rate adjusted for the binary covariate. These results are 

applied to a pharmacokinetic study of dioxin in veterans of Operation Ranch Hand. 

In Section 2 we present the repeated measures linear model and derive closed form 

expressions for the WLS estimates of the parameters. We also obtain an expression for the 

bias of the coefficient of time under the condition that the body burden of dioxin in the 

subjects included in the study is greater than a threshold c. The estimate is then made 

unbiased. In Section 3, we discuss the estimates in terms of their mean-squared errors. In 

Section 4, we apply the results to AFHS data. 
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2    Model and Analysis 

Let y{ denote the column vector of k observations on the ith subject. We assume that 

these observations are taken at k equally spaced times (thU + A,... ,U + {k - 1)A). Due 
to the binary nature of the covariate, the subjects are partitioned into two groups: g = 1 
and g = -1. Without loss of generality we assume that the first rh observations belong to 

group g = 1 and the remaining n2 belong to g = -1. Then, a model for the nested design, 

with subjects nested in groups, is given by 

VW = ßo + ßiUj + ßrtt + ßz9t x tij + Ti{t) + zm, (x) 

for i = l,...,n, j = l,...,fc, * = 1,2, where riW denotes the effect of the ith subject 

in the £th group.   We assume that E^r^ = 0 for I = 1,2.   It will be convenient to 

analyze the problem in terms of vectors of observations for subjects. To that end, we use 

the following notations. 
Notations: For i = 1,2,..., n, and £ = 1,2, 

• 2/i denotes the /c-dimensional vector of observations for the ith subject, 

• ti denotes the fc-dimensional vector of times for the ith subject adjusted for the mean 

time. In other words, 

where 

/ 

U = 

\ 

[U + {k- 1)A ) 

fi+^-A\ 
i+^A 

[i+k-?AJ 

= (ti -i)l + Ae, 

1 = 
1 

v1/ 

and e = — 
-(k - 3) 

\ (k-1) / 

are A;—dimensional vectors, and t = n    £i=1 U. 

We assume that the covariance matrix of y«, denoted by $, satisfies AR(1) structure, 

$ 

\        P        P       ■• 
pip.. 

-fc-l     0*-2     -fc-3    _     j 

jt-i 

,fc-2 
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• The vector of all nk y-observations is denoted by Y, 

Yt=[y\,if2t...lfni,y
tnl+i,---,l£]- 

• The vector of all n + 2 parameters is denoted by ßl = [ßo, ßu #2, ßz-, Ti-> r2]> 

• a = I**"1!., 

• 6 = et^~le, 

• fi = nr1 ESi *i, and *2 = rql E?=„1+i **> wi* n2 = n - nu 

• X denotes the design matrix, and Xt denotes the design matrix associated with the 

zth subject, 

• V denotes the block-diagonal matrix V — diag[$, $,...,$]. 

Thus, the model can be written as 

where X is given by 

Y = Xß + e, 

1 t2 

1 tn, 

1 t m+1 

1 *1 

1 t2 

1 tni 

-1 -t, ni+1 

(2) 

:   1 0 •• 0 : 0 0 •• 0 

:   0 1 •• 0 : 0 0 •• 0 

:  -1 -1 •• • -1 : 0 0  ■ 0 

0 0 •• 0 : 1 0 •• 0 

:   0 0 •• 0 : 0 1 •• 0 

0 0 •• 0 : -1 -1 •• • -1 

~  XX 

x2 

•Am 

= 

-X\l! + 1 

-X'n1+2 

. *» 

1        *ni+2     -1     —*n!+2 

1        tn -1     -t„ 

The WLS estimate ß of ß, derived from (2), satisfies 

(X'V^X) ß = XlV-lY. 

Since X%V~XX = E?=1 X\^lXu and X'V^Y = E£=i X^y^ it follows from (3) that 

ß is given by 

ß = (£xl$-lx)   Exlr^, (4) 

(3) 

Ki=l i=l 
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Next, we write 

A :   Bx i   ^2 

n 

Y,x\*-lXi = B\ :   Eh. :    0 
i=l 

B\ :    0 :   I?2 

Here, 

A = 
Ai   A2 

A2   Ai 

and ^Xj*-1^ 
i=i 

Wo 

Wi 

w2 

for 

Ai = a TLi*t 
0       ELiM«? + fc-3)2 + *A9] 

and 

Ao = a ö-iC-ir1^ E2
=1(-ir^ 

Ef=i(-l)m^   E?=i(-l)m^ [*! + ft - *)2 + *A2] 

Bx = a 

0* 

?? - (£a - *i)l ni 

3? - (^ - 3Ä 

, B2 = a 

0< 

Wo 

Ei=i 2/i + l^i=m+l % 

E&fo - h)yt + Er=n1+i(*i" fe)tf + AE?=i e**-1»« 
Ei=l 2/i — Ei=ni+1 % 

ESi(*i - *otf - Er=ni+i(^ - w+A [Er=i c'*-1^ - n=n1+i c**_1i/<] . 
w? = [(yr-y;1),(iÄ-o.-".K-x-»«i)]' 
w2* = [(y;1+1 - y;), (y;i+2 - ^), • • •»(y«-i - y»)]> 

where 7? = [(^-^), (*S~*x), • ■ •, (^-i-^i)] and *% = IK+i'^ K1+2-%)> • • •» K-i~ 
£*)]. We also define Et = a {h + 1/lJ), where I£ is an identity matrix of size (n/-l) x (n*-l) 

and 1* is a column vector of size (n,£ — 1) of all l's. 
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We find an explicit expression for (E?=I X\$ 1Xi)    . Let 

A~l + oc2Q    :     Dx     :     D2 

^ :     Fi      :     0 

D\ 0 

Then, using problems 2.7, 2.8, and 2.9 in Rao (1973) repeatedly, we note that A     and Q 

satisfy the following 'block-equality' property, 

i-i 

a11 a12 a13 a14 

a12 a22 a23 a24 

,e-J = 
öl 02 

a13 a14 !     a11 a12 . Q2 Gi 

a23 a24 :     a12 a22 

where the aij are elements of A~\ Qi = n^Qi + n2slQ2, and Q2 = rna?Qi - n2si<22. In 

turn, for ^ = 1,2, 

Q* = AnjaA26(asj + A26) 
(i-it?   (i-ii) 
(i-ie) 1 

In a similar manner, 

Di = -a 

where, for t = 1,2, 

Du 
T\  and D2 = — Q. 

D12 

-D12 
%, 

Du = 
1 

2aA2Sn£ 

(i-ie) 
1 

For / = 1,2, let Fe = J [i* - £l/lj] + ^tftf. 

Substitutions for the values of A-1, ß and the other terms in equation (4) and 

simplification gives 
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fßo\ 
ßl 

1a 

0 

o 

nrH«! - *) ffii et$_12/i+«^fä - *) Er=n1+i c**-1»* 
 nr1 E?Ii c'*_1!/i + «2' E?=n1+i et$_12/i 

2A5   n^ih - i) Er=i e^-1^ - n?{h -1) E?=ni+i e'*-1M 

whereas estimates of the subject effects satisfy 

T2 

1 
2A26 

It can be seen that 

n2
l[{i-i2)   1   (i-h)   l\% 

Tl = ä 

and 

r2 a 

yl - y\ 

y*n,-i-yt 

y*n1+l - 2/2 

y*m+2 - yl 

y*n-i - v\ 

nxA6 

n2A8 

W01 + Wo2 

W01 - W02 

h - it 

t2 —t\ 

tni+i ~~ *2 

^Tii+2 — *2 

tn-l — h 

+ 
FxWr 

F2W2 

Special Case 
We specialize the above formula for k = 3. In this case a = (3 - p)/(l + p), 5 = 2/(1 - 

P2),tf = (ita + Ito + (1 " P)lte)/(1 " P) ««I e**-1^ = (fts " tti)/(l ~ P2)- Consequently, 

and 

„      1 
A-3 

A-2 

■f        ni 1            n 

2»*1 A ^ ^2^ i=ni+l 

-1       m 1          n 

2^iA g iw2Ä i=ni+1 

These two estimates are related to the estimates obtained by Michalek et al. (1996b). 

Their estimate of the regression parameter (based on one sample, without a categorical 

covariate) is ^nA)"1 £(y*3 - yn)- Our estimate can be described as 
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First, find the estimate of the regression parameter from the first sample (with 

group value g = 1). Second, find the estimate of the regression parameter from 

the second sample (with group value g = -1). Then, a simple average of these 

two estimates gives an estimate of ft and a simple average of the difference of 

these two estimates gives an estimate of ß$. 

The estimates of ß0,ß2, r(i) and r(2) also simplify in this case. 

3    Unbiasedness and Mean-Squared Errors 

The WLS estimates of ft and ft are biased because the y/s are left truncated (only those 

subjects are included in the study for whom the values of the y^s are greater than log(c)). 

However, the bias in ßi and ft can be corrected by readjusting the truncation points of the 

y/s, as explained in Michalek et al. (1996b). Note that the exercise of fixing the truncation 

points of the jfc's will be useful only if the mean-squared error of the estimate of ft does 

not increase. Michalek et al. (1996b) have observed that their procedure for correcting the 

bias actually decreases the mean-squared error. 

4    Results for the Air Force Health Study 

For the purposes of measuring the change in the decay rate due to PBF category, we 

divide the data in the AFHS (see Michalek et al. (1996b) and Wolfe et al. (1990)) into 

two groups. Group 1 consists of subjects with PBF less than the median and Group 2 

consists of subjects with PBF greater than the median. The half-life estimates derived 

from unbiased estimates of the decay rates are 

Half-life of dioxin in subjects with PBF less than the median = 7.19 years 

Half-life of dioxin in subjects with PBF greater than the median = 9.72 years 

In contrast, the half-life estimates derived from biased estimates of the decay rate are 

Half-life of dioxin in subjects with PBF less than the median = 7.33 years 

Half-life of dioxin in subjects with PBF greater than the median = 10.23 years 

The change in the decay rate due to PBF category is significant. The biased estimates are 

larger than the unbiased estimates. The change in half-lives due to PBF category is smaller 

for the unbiased estimates than the biased estimates by approximately a half year. 

25 



REPORT III 

Maximum Likelihood Estimation for Longitudinal 
Data with Truncated Observations3 

SThis research was carried out in collaboration with Dr. Kishan G. Mehrotra, Syracuse University, 

under the University Resident Research Program of the Air Force Office of Scientific Research and Dr. 

Pandu Kulkami of the University of South Alabama under a grant from The National Research Council. 

26 



Abstract 

In longitudinal studies, subjects are sometimes included if their measurements at each point 

of time are above a threshold. However, estimates of parameters of a regression model are 

often desired in this setting in the presence of covariates. WLS estimates of the regression 

parameters in the presence of truncation are biased. In this paper, we develop maximum 

likelihood estimates of the regression parameters when the repeated measurements have a 

multivariate normal distribution and the data are restricted to lie above a threshold. In 

addition, the model involves subject effects. The estimates are obtainable by solving a 

system of nonlinear equations. 
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1    Introduction 

In longitudinal studies, complications may arise by a natural truncation introduced through 

the subject selection process. For example, Davis (1976) reported a study in which men 

aged 35 to 39 years were screened for cholesterol levels. Only those men whose cholesterol 

level exceeded 265 mg% were selected to be in the trial and a treatment was administered to 

them. Even though it was reasonable to give treatment to only those with a "problem" this 

selection procedure introduced truncation and the effect of the treatment was confounded 

with the well known regression to the mean effect. This aspect is well recognized and has 

been addressed for Davis's data (see Senn and Brown (1985)) and other similar studies (see 

James (1973)). If a study is well designed then truncation is generally not a problem; for 

example, consider the study reported by Gardner and Heady (1973). A blood sample was 

taken at a screening visit and the cholesterol content was analyzed. Subjects participating 

in the study consisted of the top third of the distribution together with a random half of 

the bottom third. Subjects in the top third were randomly assigned to the treatment or 

to a control group (receiving placebo), while the men from the bottom third were given 

placebo only and formed a second control group. Follow up studies were conducted at 

6-month intervals for 2 years and annually afterwards. In this study, the truncation was 

equally applicable to both the treatment and the placebo groups in the top third group. 

Therefore, comparison between control and treatment in the top third group was not biased 

by regression to the mean, whereas a comparison between the treatment group and the 

bottom third group would have been inappropriate without adjusting for truncation. 

The Air Force is conducting a 20-year prospective study of veterans of Operation 

Ranch Hand, the unit responsible for aerial spraying of Agent Orange and other herbicides 

in Vietnam from 1962 to 1971. Physical examinations were administered in 1982, 1987 and 

1992. Since 1987, exposure has been indexed by a measurement of dioxin in serum. In 1987, 

all willing Ranch Hand veterans and comparison veterans (who served in Southeast Asia 

during the same period but who were not involved with spraying) were asked to contribute 

blood for a dioxin assay; 870 Ranch Hands were assayed and received quantifiable results. 

As part of a pharmacokinetic study of dioxin, all 343 Ranch Hand veterans with dioxin levels 

above 10 parts per trillion (ppt) in 1987 and who had stored serum from 1982 examination 

were selected. Dioxin measurements for these veterans were also made in 1992. In the 

pharmacokinetic study, only those veterans whose levels were greater than 10 ppt at all 

three physical examinations were included, resulting in left truncation. The initial dose of 

a Ranch Hand veteran was unknown because the exposure occurred before the herbicides 

were known to be contaminated. The goals of the pharmacokinetic study were to find an 

28 



estimate of the decay rate of dioxin in these veterans and assess the significance of changes 

in the decay rate with covariates, such as PBF and age. 

The AFHS has four special features: (i) the observations are truncated (ii) each 

subject's observations over the time periods are correlated (iii) a fixed subject effect is 

necessary and therefore introduces large number of parameters and (iv) there are covariates 

which may influence the decay rate. 

The estimation of the decay rate of dioxin has been the subject of several articles 

(see Needham et al. (1994), Pirkle et al. (1989), Michalek et al. (1996a), Michalek et al. 

(1996b)). In all of these studies a one-compartment first order decay model, with decay 

rate A, was assumed to hold. If Qj denotes the concentration for subject i % years after 

exposure and Ci0 is the (unknown) initial concentration, then the first-order kinetics model 

is given by 

C« = Ci0e-'xt«. (1) 

Because not all subjects were exposed at the same time, we have considered tij} the time in 

years from the initial exposure, to be subject-dependent. If we take the natural logarithm 

of (1), we obtain 

ln(Cy) = ln(C«,) - Xtij. (2) 

Equation (2) motivates a repeated measures linear model on the log scale, with ßi = -A, 

yij = ßo + Ti + ß1tij + eij,   i = l,...,n, j = l,...,k. (3) 

A WLS procedure is an obvious choice for estimation, however, WLS estimates will be 

biased if the observations are truncated. 

The magnitude of the bias can be studied by means of a closed form expression for 

the WLS estimate of ßx. Michalek et al. (1996a) have described an ad hoc procedure that 

iteratively results in an approximately unbiased estimator. Michalek et al. (1996b) derived 

a closed form estimate and used it to estimate the bias. But, since their formula for bias 

also contained the parameter they were trying to estimate, it was difficult to assess the 

accuracy of the estimate of the bias. Another approach is to consider a procedure that 

accommodates the truncation and provides estimators that are relatively easy to compute, 

are at least asymptotically unbiased, and are asymptotically normally distributed. In this 

paper, we give an alternative method to provide closed form expressions for the WLS 

estimates of the parameters of a regression model with repeated measures and fixed effects 
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when the observations are truncated. We also obtain ML estimates of the parameters based 

on the truncated observations. The asymptotic properties of the estimators follow from 

standard maximum likelihood theory. We consider two procedures to estimate the variances 

of the ML estimates, one via the bootstrap method and the other via the inversion of the 

information matrix. 

In section 2, we introduce the model in general form and obtain the estimating 

equations for the case of truncated observations. We obtain closed form expressions for the 

WLS estimates for the untruncated case and provide ML estimates for the case of truncated 

observations. Section 3, we derive the variance-covariance matrix of the estimates via 

inversion of the information matrix. We apply the results to AFHS data in Section 4. 

2    Maximum Likelihood Estimation 

We consider estimation of the parameters of the regression model with fixed subject effects 

and with repeated measures in the context of left truncation. A similar development can 

be addressed for right or middle truncation. Consider model (3) in vector notations. Let 

y{ be the random variable representing the A: observations associated with the tth subject. 

Then, model (3) can be written as 

yt^Oi + Ci,   i = 1,..., n, 

where we assume that the errors e* follow a multivariate normal distribution with mean 0 

and covariance matrix Q, and 0* is given by 

0i=ßol + ßiti+Td, (4) 

where t\ = {tiU ta,..., tik) and 1* = (1,..., 1) are ^-dimensional column vectors and the 

Tj's satisfy the restriction rx + r2 + ... + rn = 0. 

The ML estimates are derived under the assumption that y* > a for all values 

of i, where a* = {a,a,...,a). Regression models with truncation have been discussed 

extensively in the literature; see Maddala (1983). But to the best of our knowledge, a 

general discussion of the repeated measures model with fixed effects and truncation has 

not received much attention. Let S(a,0<) be the survival function for the tth subject. 

Then, the conditional likelihood function and the corresponding log-likelihood function are 

given by 

L   =   nf(27r)-t ini-JexphiCy!-^)'«-1^-««)]/^,^)], 
i=l L 2 
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= n/(%»*«)/£(*»*«). 
i=l 

and 

ln(L) = f>(L«) = XX/fc/,,**)) - E^M«)). (5) 
t=l i=l i=1 

where r00 

5(0,00= /     f(yi,6i)AVi 
JOb 

Equation (5) has two components, the first represents the 'usual' log-likelihood 

without the truncation effect, whereas the second component is due to truncation. Under 

the assumption of normality, the ML estimates obtained by using the first component are 

the same as the WLS estimates. To simplify the presentation, we first derive the WLS 

estimates. 

2.1    The weighted least-squares estimates 

The WLS estimates of the parameters are obtained by minimizing 

Q = Y,{yi-Oi)tn-\yi-Oi). 

By differentiating Q with respect to ß0, ßi and the rt% using the chain rule and noting 

from (4) that 

^'-l   ^i-t    5?i-i (6) 

and equating the derivatives to zero, we find, using (6), that 

§. = ±i*n-Hyi-ei) = o, 

B. = f:t«n-1(y<-öi)=o> 
9ßi fei 

and, for i = 1,..., n — 1, 

B = itn-1[(yi-Vn)-{Oi-On)] = o. 
OTi 
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Substitution for 0* in terms of ß0, ft and the T«'S and a straightforward simplification gives 

fei i=l
n 

Etjo-1^ = (Ei'n-^Ä + C^-^Ä + D1'""1*«)7-" 
fei i=i <=i i=i 

and, for i = l,...,n— 1, 

l'ß-^y* - 2/n) = i^_1(*i - *«)ft + i'ß"11^ " T«)- 

The key to obtaining a solution for the above system of equations is to first obtain 

an expression for r*, i = 1,. • •, n - 1, in terms of the other parameters, substitute it in 

the first two equations, and solve for ß0 and ft. The WLS estimates of ft, ft and n for 

£ = 1,... ,n — 1 are 

Ei'n-'v« 
i=l ™*fei 

T _  aSLi fli"1*« - £2.1 (^-^(I'Q"1*«) (7) 
A _   aa1tjfi-1t«-E2.1(i

tn-1ti)(itn-1t*) 
l 

Ti     =     - 
a 

ltn-1(yi-y)]-^[ltü-1(ti-t)]ß1, 

where a = 1*0 ll 

Remark 1: In the absence of fixed subject effects, the r^s, these normal equations are 

similar to the "classical" normal equations of linear regression. The main difference is 

that all ft observations associated with the ith subject are represented by a scalar variable 

m = l'fi-1!/;. Similar scalar reductions are obtained for the Vs. Thus repeated measures 

regression can be treated essentially as ordinary simple regression with a change of variables. 

Remark 2: The case that U = t<l + Ae represents successive observations taken at 

equally spaced intervals of length A for each subject. Let e* = (0,1,..., (ft - 1)). In this 

case, (7) simplifies to 

P1 naA{etü~1e - a) ' 

Remark 3:    For ft = 3, if fi has AR(1) structure, then (7) simplifies to 

■7T     E«U(Ste-yi*) 
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This special case was first obtained by Michalek et al.(1996a). Further, they obtained the 

same expression when ft is a Toeplitz matrix of order 3. The expression for ft for larger 

values of k when ft is either an AR(1) or Toeplitz involves elements of ft. 

Remark 4 The WLS estimate of ft is biased because truncated values of y{ are used in 

the estimate. In general, the bias is 

bias(A)- aEn=ittQ-lt._En=i(1tfi-lti)(1ta-it.) > 

where Hi = H^a-Oi) is the multivariate hazard vector denned in McGill [(1992), equation 

(9)]. This bias was obtained by Michalek et al. (1996b) for the special case when k = 3 

and ft has an AR(1) structure. However, the formula for the bias depends on ft. In the 

absence of an unbiased estimate of ft it is difficult to assess the accuracy of the estimate 

of this bias. ML estimation, discussed below, adjusts for truncation through the second 

expression of equation (8). 

2.2    Maximum likelihood estimates 

The WLS estimates were obtained by ignoring the second component of the likelihood 

expression in (5). The ML estimates on the other hand use the entire likelihood, taking 

into account the truncation component as well. It can be verified that 

d\n(Li) = ft_1(2/i ~ Oi) ~ ft_1E(^ - Oi | Vi > a), 
dOi 

where E^ - 0; \ yi > a) denotes the conditional expectation of yt - 0i given yt > a. 

Consequently, the ML estimates of ft, ft and the r^'s are solutions of the system of equations 

ainL 
dß0 

ainL 
°P0 i=l i=l 

»0  - E*?n"1(»«-ö«)-i;*in"lE(%-ö*i»i>o)=0'       (8) 
dßi ~ri i=i 

and, for i = 1,..., n — 1, 

OTi 

-l'Cl^Wiyt -OilvtXi)- E{yn -0n\yn> a)) = 0. 

The second components of (8) introduce non-linearity. A solution is obtained by an 

iterative procedure, described below. 

33 



Step 1.  Use WLS estimates of the parameters as the initial estimates /?0(0), 

ft(0) and fi(0),  i = 1,...,n - 1, and obtain 04(O). 

Step 2. 

(a) Evaluate4 E [^ - 0^(0) | % > o] for each value of i. 

(b) Substitute these expected values in (8) to get a new set of equations 

which are similar to the equations for the WLS estimates with y{ 

replaced by 

2/* = 2/i + E[2/i-07(O)|2/i>a] 

for each value of i. Using y\ in place of y{ in (7) obtain A>(1),A(1) 

andfj(l) for * = l,...,ra-l, and 0^1). 

Step 3.  Repeat Step 2 with 0^(0) replaced by 07(1).  Repeat this procedure 

until the difference between two consecutive estimates is negligible. 

Our ML procedure is similar to the EM algorithm. Navidi (1997) gives a simple 

graphical illustration of the EM algorithm. In the classical EM algorithm, the expectation of 

the unobservable component of the log likelihood function is obtained, whereas we estimate 

the conditional expected value by the most recent estimate of the unknown parameter 0*. 

3    Estimates of Information Matrix and the Variance 

of ML Estimates 

The ML estimates obtained in the previous section fall into the standard maximum like- 

lihood class. Properties of the estimates follow from standard results. The asymptotic 

distribution of ßo and ßl is bivariate normal with covariance given by the inverse of the 
Fisher information matrix. The information matrix is estimated by evaluating the negative 

of the second derivative of the log-likelihood at the ML estimates, denoted by J. For our 

model this matrix is an (n + 1) x (n + 1) matrix. To obtain the elements of this matrix we 

use the chain rule of differentiation and equation (6). To this end, we find that 

_^i|i=fi-^(a,0i)n-1, 
dOJl 

4A method to evaluate these and similar conditional expectations is given in the Appendix. 
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where ty(a, 04) denotes the conditional covariance matrix of ?/* - 9U given yt > a. That is, 

*(o, öi) = E [{Vi - 0,)(v< - Oi)* \Vi>a 

Application of (6) gives 

02lnL 

- E [(!/< - Oi) | y, > a] E [(y4 - 0*)' | V< > a] 

"  0$ 
d2lnL 

dßodßi i=1 

Likewise, for i = 1,..., n - 1, j = 1..., n - 1, 

02lnL 

t=i 

"    07? 
d2lnL 
dTidTj 

a2lnL 

^lnL 

=   ltß-1{*(a,Öi) + *(a,ön)}ß-1l 

= l'ß-1* (a, öi)^"1^ - l'ft-1* (a, en)ü-Hn. 

Expressions containing conditional moments can be evaluated by numerical integration. 

The case that Jfe = 3 and Q has an AR(1) structure has been described in detail in the 

Appendix. Due to the special nature of the information matrix, shown below, its inversion 

can be easily computed. We write I in block form as 

1 = 
ki 

t-21 

£-12 

£-22 

where Jn represents the information expression associated with ßQ and ßu J22 represents 

the information expression associated with n, for i = 1,... ,n- 1, and I12 = 1\\ represents 

the cross-information expressions. Then, 

J22 = diag[£i, . . . , Qn-l] + ßnln-lln-l' 

where ft = l^-^Ca,^)^""1! and l„_i denotes an (n - l)-dimensional vector of all l's. 

Using this special property of J22 and the block inverse approach described in problems 2.7 

and 2.8 in Rao (1973), the asymptotic variances and covariances can be estimated for all 
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parameters. In other words, the numerical inversion of J, whose size is (n + 1) x (n +1), is 

not necessary; an estimate of the asymptotic covariance matrix only requires the inversion 

of a 2 x 2 matrix. 

The Bootstrap Method: 

An alternative to the matrix inversion method of covariance estimation is the boot- 

strap. The matrix inversion method depends second order conditional moments, whereas 

the bootstrap method is computationally intensive. The bootstrap method will be studied 

in a future report. 

4    Discussion 

In order to obtain the variances of the intercept and slope estimators we needed to invert 

the information matrix (which in our case was a 241 x241 matrix). However, we made use of 

the special structures which reduced the inversion problem into inverting a 2 x 2 matrix. A 

comparison of the ML estimate of dioxin half-life and it's standard deviation with the WLS 

estimate and standard deviation indicates that the ML estimate of the half-life is about 1 

year shorter (7.3 years) and the standard deviation of the ML estimate is slightly larger 

than that of the WLS method. Although we have concentrated on a special covariance 

structure, our results are general and can be used for other covariance structures as well. 

The complexity of the problem is essentially in the numerical evaluation of the conditional 

expectation needed in Step (2) of the ML procedure. The regression model can be extended 

to include other covariates. If there is no truncation then standard software will provide 

the WLS or ML estimates and their standard errors. If the observations are truncated, the 

ML method will require special purpose programs. In the context of truncated observations 

the WLS estimates are generally biased and the maximum likelihood provides more reliable 

estimates, at least when the sample size is large. If the sample size is small the ML estimates 

can be unreliable, so one may resort to procedures such as the bootstrap and the jackknife, 

whereas the WLS estimates are unbiased regardless of the sample size. 

Even though the number of equations to be solved is minimal, because of the trun- 

cation, the equations are non-linear in the parameters. Therefore they must be solved 

iteratively. 
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Appendix 

We derive the conditional expected value and variance of yh given that it takes 

values larger than a. We assume that tt has AR(1) structure. In the Mowing development, 

for ease of presentation and without loss in generality, we drop the suffix i from Vi and the 

associated mean 9t. For convenience we consider the case o* = a (1,1,..., 1), the general 

case follows similarly. It is convenient to derive these results in terms of centered random 

variable z = y-0. The condition y > a becomes z> a-0. 
Case 1 k = 3. We assume that the three dimensional random variable z is normally 

distributed with mean 0 and covariance matrix Ü which satisfies the AR(1) assumption. 

Then, the conditional distributions of zx and z3 given z2 are stochastically independent. 

Consequently, the joint distribution of z can be written as a product of three normal 

densities, 

f(z)   =   (2TT)-| I Ü \~i exph-z'fT1 z] 

=   fi{z1\z2)xfs(zz\z2)xf2{z2), (1) 

where 

/l(*ll*2)     = /      ,„ ox 
eXPi 

v/MWÖ        2(1-'2) 

1 z2 

/2(*2)   =   ^exp(—|)=^(Z2), 

with </>(•) representing the density function of the standard normal random variable. This 

allows us to express 
/•oo    roo    /vx) 

S(a,e)   = f(y,0)dy 
Ja     Ja     Ja 

/•oo 
=    /      s^z^ s3(a,z2) 4>(z2) dz2, 

Ja-6i 

where for j = 1,3, a^o,^) = /a°!ej. /;(*; I **) dz, = 1 - *[((<* " *i) ~ P^/Vl^T], 
where $ is the standard normal distribution function. Thus, S(a, 6) can be evaluated as a 

one-dimensional integral in z2. Using (1) we now derive the first two conditional moments. 
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Conditional expectations: We consider E[Zj | z > a - 0], j = 1,2,3. In view of 

equation (1) these quantities are reducible to one-dimensional integrals as shown below. 

The evaluation of E[z2 \z>a-0}is straightforward, 
/•oo       roo       /"oo 

EhlV> —«1 = ^^UUU^*)ä* 
roo 

=   S~l{a,0) /      «iCo.^ssCo,22)22/2(22)^- 
Ja—62 

It is easy to verify that for j = 1,3, 

f°  Zjfizj \ Z2)dzj   =   h/l - P2^i(a, z2) + /«*]«,• (a, 22) 

=   Vi(a.«2)si(a»z2), (2) 

where /, _ 

Consequently, for j = 1,3, 
/*oo 

Efz,- I z > a - 0} = 5"1(a, 0) /      Si(a, z2)sz(a, z2) %(a, z2) /2(22)dz2- 
1 J Ja-02 

Conditional covariances: The conditional covariance of z is 

Cov[z \z>a-0] = E[zz* | z > a - 0) - E[z \ y > a] Ef{z | z > a - 0}. 

The matrix E[zz* \ z > a - 0} has six distinct elements, all of which can be reduced to 

one-dimensional integrals. Clearly, 
/•oo       roo       />oo 

E[zl\z>a-0]   =   S-Ha,0) II      £/{*)** 1  L ' Ja-0i Ja-62 Ja-Oz 
/•oo 

=   5_1(o,ö) /      s1{a,z2)s3{a,Z2)4Hz2)dz2. 
Ja—82 

Using (2) it follows that for j = 1,3, 

E[ZJ z2\z>a-0} = S~\a, 0) J°° sx{a, z2) s3(a, z2) ipj(a, z2)z2f2{z2)dz2, 

and 

Elzxzs | z > a - 0] = S~l{a,0) J°° sx{a,z2) s^z^M^^M^^M2*)^- 

To evaluate E(z? | z > a - 0), we need the following intermediate result. Using integration 

by parts, we obtain 

j00  z]fj(zj\z2)tej   =   tj(a,22h(a,22), 
Ja—Oj 
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where 

tj(a, z2) = (1 - p2) + p2z% + (1 - p2)1/2Ma, *)(a - 0; + Pz2). 

Hence, 

E[z2 I z > a - 0]   =   S'l{a,0) /      si(a,z2) s3(a,z2) t/(a, z2) <f>(z2)dz2. 
3 Ja—62 

Case 2 k = 4.     The joint density of z = y - 0 can be written as 

f{z) = /l.2s(«l I Z2,Z3)/4.23(Z4 | ^2, 23)/23(z2, «s), 

where the /'s denote normal density functions. Consequently the first and second moments 

of the Zi's can be written as two-dimensional integrals. 
Case 3 k > 5.     The approach taken above can be applied in this case also. For example, 

when Ar = 5 it can be verified that the joint density of z = y — 0 satisfies 

f(z) = /l.234(*l I Z2,Z3,Z4)f5.224^5 | Z2, Z3,Z4)f2.s(z2 | Z3)/4.3(24 | Z3)fZ{zZ). 

Thus the survival function and conditional moments can be reduced to three-dimensional 

integrals. 
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