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EXECUTIVE SUMMARY 

This report presents the results of a research effort to examine the feasibility of applying a 

model-based neural network technique to investigate the properties of ionospheric clutter 

observed in the operation of high frequency (HF) propagation systems. The primary objective of 

this initial phase of the supporting contract was to demonstrate the capability to characterize and 

segment ionospheric clutter structures observed during operation of an HF radar system. Clutter 

observed in the operation of systems that use the ionosphere as a refractive medium can be 

intense, adversely affecting system performance. Understanding the spatial and temporal 

dependence of ionospheric clutter could lead to methods to mitigate against the clutter, leading to 

improved system performance. 

The primary analysis tool used in this study was the Maximum Likelihood Adaptive 

Neural System (MLANS), a new and innovative algorithm analysis technique which implements 

a model-based, statistical algorithm approach in a neural-network environment. By 

parameterizing the large number of neural-network weights in terms of the relatively small 

number of model parameters, MLANS utilizes all available information and is fast and efficient 

for complicated real-world problems, such as those associated with the operation of HF systems. 

The data used for this research effort is from the over-the-horizon (OTH) HF radar system 

developed and operated by the United States Air Force in the state of Maine. 

For this initial study phase, a multi-mode Gaussian clutter model was used to fit the 

observed HF radar Doppler spectra. The mathematical formulation for the multi-mode Gaussian 

model is presented and discussed, along with a description of the implementation within 

MLANS. A uniform clutter model is included in the formulation to describe the background 

clutter, which is caused by such phenomena as meteors transiting the ionosphere, magnetic field 

aligned ionospheric irregularities, and lightning events. The essence of MLANS is to perform 

Bayesian inference based on a mixture-density model. The complete probabilistic model is 

described by the prior class probabilities, and by the class-conditional probability density for the 

measurements. The mixture-density formulation is highly flexible and is capable of modeling 
non-Gaussian behavior. 

Key study results are that the MLANS neural network is able to both characterize and 

segment the observed ionospheric clutter using both three- and four-mode Gaussian clutter 

VI 



models in combination with a uniform model. A formulation is also presented for applying the 
MLANS algorithm to enhance the detection and tracking performance of HF radar systems, 

especially in the regions of strong ionospheric clutter. Recommendations are made regarding the 

use of the MLANS neural network to perform a detailed analysis of equatorial ionospheric clutter 
using both a Gaussian model and a power law model formulation and to investigate the 

application of MLANS as a simultaneous detection and tracking signal processing algorithm. 

Vll 



SECTION 1. INTRODUCTION 

This report describes the results of a research effort in applying a novel and innovative 
neural-network algorithmic technique to investigate the properties of ionospheric clutter 
observed in the operation of high frequency (HF) propagation systems. This work is supported 
by Rome Laboratory and in part by the Electronic Systems Center, Surveillance and Control 

Systems Program Office under Contract Number F19628-94-C-0049. The primary objective of 

this initial phase of this contract was to demonstrate the capability to characterize and segment 
ionospheric clutter structures observed during operation of an HF radar system. 

The primary analysis tool used in this study was the Maximum Likelihood Adaptive 

Neural System (MLANS), a new and innovative algorithm analysis technique which implements 
a model-based, statistical algorithm approach in a neural-network environment. By 

parameterizing the large number of neural-network weights in terms of the relatively small 

number of model parameters, MLANS utilizes all available information and is fast and efficient 
for complicated real-world problems, such as those associated with the operation of HF systems. 
The data used for this research effort is from the over-the-horizon backscatter (OTH-B) HF radar 
system developed and operated by the United States Air Force in the state of Maine. This system 
is termed the East Coast Radar System (ECRS). 

The MLANS neural network was developed by NRC under previous Department of 
Defense (DoD) contract sponsorship. It is being evaluated in many DoD application areas such 
as warhead discrimination, sensor fusion, detection and tracking in high clutter, strategic and 

tactical automatic target cueing/recognition, and underwater target detection, tracking, and 
classification. In these applications, MLANS has been applied to many sensor systems, 

including radar, electro-optical, laser, and acoustic. MLANS has been found to be a powerful 
analysis tool, offering a novel solution to many complicated, real-world problems due to its 

capability of estimating parameters of physical and statistical models concurrently with 
separation of signals into modes corresponding to various physical sources. It is envisioned that 

the MLANS neural network will be equally successful and valuable as a research tool for 

investigating the propagation phenomena associated with the operation of OTH radars and other 
HF systems, potentially leading to improving the operational performance of such systems. 



It is important to note that the objective of this initial research effort under the sponsoring 

contract was solely to demonstrate the feasibility of using the MLANS neural network to 

characterize and segment the ionospheric clutter observed in the operation of a HF radar system. 

We were not concerned during this phase of the study with such physical phenomena, for 
example, as investigating the specific propagation mode through the ionosphere for the HF beam, 
for investigating the specific properties of ionospheric clutter, nor for performing a full study of 
MLANS1 simultaneous detecting and tracking capability for HF radar systems. These and other 
topics are potential subjects for further study under the sponsoring contract. 

The next section contains a discussion on the background of MLANS, and presents the 

mathematical formulation of MLANS with a multi-modal Gaussian clutter model plus a uniform 

clutter model. Section 3 then contains the results of the research for both clutter characterization 

and segmentation. Section 4 presents the study conclusions and Section 5 presents our 
recommendations for further study. 



SECTION 2.   MLANS BACKGROUND AND FORMULATION 

2.1      BACKGROUND 

A vast array of neural-network approaches are available for potential application to HF 

systems for such functions as modeling, estimation, tracking, and decision. These approaches 

include back propagation, adaptive resonance theory, the Hopfield net, reduced Coulomb energy, 

the Kohonen net, and others [1]. However each of these approaches has major difficulties, 

including slow learning and the requirement for large training data sets. MLANS combines model- 

based statistical and neural-network approaches. By parameterizing the large number of neural- 

network weights in terms of a small number of model parameters, it utilizes all available 

information and it is fast and efficient for complicated real-world problems. In effect MLANS is a 

"smart" neural network. 

The MLANS neural network has a novel architecture: it does not have hidden layers, still it 

is capable of designing classifiers of arbitrarily complex shapes by utilizing structured maximum 

likelihood (ML) neurons. MLANS weights are a-posteriori probabilities making MLANS well 

suited for classification (i.e., the probability of belonging to a specific class or type), as well as to 

other problems such as data fusion (i.e., probabilities calculated from different data sources are 

readily combined), and tracking (i.e., track assignment, frame-to-frame correlation, and sensor 

correlation with other data sources are functions driven by probabilistic associations). MLANS is a 

model-based parametric neural network. This means that the weights are functions of a relatively 

few parameters. These parameters can be determined quickly resulting in a rapid learning speed. 

MLANS performance has been shown to achieve the Cramer-Rao bound on learning speed [2]. 

MLANS was first introduced by Perlovsky in 1987 [3]. The general architecture of 

MLANS has been previously described in the open literature [2]. A key facet of this neural 

network is the building of an internal model of objects (or of physical processes). These models 

can have statistical, geometric, and dynamic aspects, and they can incorporate elements of self- 

learning of symbolic representations. An overview explanation of MLANS follows. 

The essence of MLANS is to perform Bayesian inference based on a mixture-density 

model. Let {Xj,..., XN} be a set of N measurements, possibly vector-valued. MLANS models 
their joint probability density in the form 



M M 
p(X1?..., XN) =   2   ...     Ip(X1,...,XNIC1,...,CN)-p(C1,...,CN), (1) 

Ci=l     CN=1 

where Cn is the mode membership of the n-th observation, Xn. 

The complete probabilistic model is described by the prior class probabilities and by the 

class-conditional probability density for the measurements. The mixture-density formulation is 
highly flexible and is capable of modeling non-Gaussian behavior. 

The mixture-density model can be used in several different ways. One application is to 

assign the measurements to their class membership. An application of Bayes1 rule gives the joint 

a-posteriori class-membership probability, 

p(Xj, ..., XN I Cj, ..., Cj^-pCCj, ..., cN) 
p(Clf ..., CN IXj, ..., XN)= pCXj,..., XN) '    (2) 

which represents the most complete information about the class-membership that can be inferred 

from the measurements and models of targets and clutter. Generally the maximum a-posteriori 
(MAP) class assignments are of greatest interest, obtained by choosing the class memberships 
jointly to maximize the a-posteriori likelihood. 

One approach to target detection is to use a likelihood ratio test between target and clutter 
over some set of measurements: 

target 

p(Xj,..., XN I target) + p(Xj,..., XN I clutter)   <      T|, (3) 
clutter 

where the target- and clutter-dependent probability densities are mixture densities and t| is a 

threshold chosen to give the desired detection and false-alarm probabilities. 

The MLANS structure can handle a variety of models for the class-conditional probability 

densities of the measurements and for the prior class probabilities. Gaussian, uniform, Raleigh, 

log-normal, and Rician class-conditional probability densities have been used in previous work. It 



is also feasible (and sometimes necessary) to represent the class-conditional probability densities 

themselves as mixture densities. 

For many applications of MLANS it is reasonable to model the class-memberships as 

statistically independent, 

p(C1,...,CN) = p(C1)-...-p(CN), (4) 

and the measurements as conditionally statistically independent, 

p(Xl5..., XN I Cj, ..., CN) = pCXj I Cp-.-.-pCXj^ I CN). (5) 

As a result the measurements are unconditionally statistically independent, and the class- 
memberships are conditionally statistically independent Note that the measurements themselves 
may be vectors, and statistical dependencies between the components of the measurement vector 
are still modeled by the class-conditional probability density. 

Deterministic dependencies between measurements are incorporated by using appropriate 

models. For example, target and clutter movement is modeled by tracking models, which relate the 
center frequency positions of the corresponding modes in time, range, angle, and Doppler. These 
models can be simple models of linear motion, and can include acceleration terms or more 
complicated diurnal variation models. 

The parameters that characterize the mixture density model generally have to be estimated 
from a set of data. In non-adaptive applications of MLANS, the parameters are estimated from 
training data. Alternatively, the parameters can be estimated adaptively from the data set about 
which Bayesian inferences are to be made. For either non-adaptive or adaptive parameter 
estimation, MLANS uses ML estimation: the parameters characterizing the mixture density are 
chosen to maximize the joint likelihood of the observed data. For mixture densities, a direct 
maximization is not feasible, i.e., setting derivatives of the log-likelihood to zero results in an 
intractable set of coupled nonlinear equations. For that reason, MLANS uses the EM (expectation- 
maximization) algorithm of Dempster et al [4], an iterative algorithm. The EM algorithm is "safe" 
in the sense that the likelihood at each iteration is guaranteed to increase. Various types of prior 



and auxiliary information can be incorporated within the EM algorithm. For example, both 

deterministic and probabilistic information concerning class-memberships of some or all of the 

measurements can be handled by means of "teacher" probabilities. 

MLANS is thus a very powerful, general tool for modeling and for statistical inference. 

The main objective of this research effort is to demonstrate that MLANS can be used as a research 

tool to help segment ionospheric clutter observed in the operation of HF systems. Through this 

process, specific properties of the ionospheric clutter model parameters can be identified and thus 

investigated. The next section describes a very specific and focused application of MLANS to the 

problem of finding a parametric representation of a measured HF radar Doppler spectrum as 

applied herein for this research study. 

2.2      MLANS PARAMETRIC REPRESENTATION OF HF RADAR DOPPLER SPECTRA 

Given a measured Doppler spectrum at N discrete frequencies, {S(co ), IsnsN}, the object 
A 

is to find a parsimonious representation for the spectrum, S(co ), such that 

S(con) * S(con), IsnsN . (6) 

In terms of a set of M basis functions or models, 

S(co)=  2A   F(co|m). (7) 
1   m 

m=l 

The idea is to choose the amplitudes, A , and parameters of models F(co|m) so that the overall m 

spectrum model, i.e., the right-hand side of Equation (6), best matches the measured spectrum, 

i.e., the left-hand side of Equation (6), according to the ML principle. The basis functions used in 

the spectral model are non negative-valued, and generally overlapping in frequency (so, non- 

orthogonal) which makes the problem of directly finding the best-fit parameters a difficult one, 

since the parameters for the different basis functions cannot be adjusted independently. MLANS 

circumvents this difficulty by using a clever iterative scheme which, at each iteration, involves 

independently fitting each of the basis functions to a weighted set of measurements. 



The MLANS algorithm can estimate models comprising any combination of different types 

of basis functions. The current research emphasizes two types of basis functions: uniform and 

Gaussian: 

Uniform m=l, F(C0|m) = ^,    -y<CO<y (8) 

Gaussian m=2,...M,      F(co|m) = 
2K AGO 

exp{-0.5(co-com)2/Ac/} 
m 

(9) 

The basis functions are normalized to have unit area. The parameters characterizing the Gaussian 

basis functions are the mean or central frequency, com, and the variance, Acom. The uniform model 

parameter, W, is taken to be the overall width of the Doppler frequency spectrum. The Gaussian 

model for HF radar clutter is asserted to be due to phase screen modulation as described by Franchi 

and Tichovolsky [5]. 

The ML estimation equations are derived utilizing Einstein's concept of a spectrum being a 

probability distribution function (pdf) for the photon distribution of likelihood L, 

L = n pdf(p) = n s(cop), 
p p 

(10) 

where here p is a photon number, and cop is the photon frequency.   This can be written by 

combining terms for photons of identical frequencies. The number of photons with frequency co is 

NP(co) =  S(co)/co/i, (11) 

so that Equation (10) can be written as 

or 

L = n n s(co) = n [s(«) 
co   p|co to 

S(co)/coft 

LL -  InL =  2 — S(w)Z«S(co) « 77^-7-2 S(ü))/nS(co) 
to ah (oHF/z; 

(12) 

(13) 



The last approximation accounts for co = COHF + OOD •* «HF- Here COHF is the angular frequency of 

the HF system under observation, COD is the observed Doppler frequency and In is the natural 

logarithm. 

Standard procedures of statistical physics for obtaining equilibrium distributions are 

equivalent in our case to maximizing the log-likelihood (LL) subject to a constraint on the overall 

number of photons, which is approximately equivalent in our case to energy constraint because co 

«CORF: 

fmax LL 

I S(co) =  2 S(co)   • (14) 

co to 

It is interesting to note that the solution to this problem is mathematically equivalent to 

another, currently popular, deterministic problem of curve fitting using the Kullback-Leibler 

distance [6]. For this approach, according to the deterministic interpretation, MLANS chooses the 

spectral model parameters to minimize the Kullback-Leibler distance 

Min 
| 2 S(con)-/n[S(con)/S(con)] + [ / S (co)dco - J S(a>n)] J , (15) 

n=l co n=l 

with the model spectrum given according to Equation (7) and j3m are the parameters of F(co|m). 

This goodness-of-fit criterion is a measure of the closeness of the model spectrum to the measured 

spectrum, and it is also known as the cross-entropy. It can be shown that the minimum possible 

cross-entropy distance is zero, which occurs for the case where the model spectrum is exactly 

equal to the measured spectrum. It should be noted that the popular reference to Kullback-Leibler 

distance as a cross-entropy is based on historical analogies rather than on physical definition of 

entropy. According to the basic principles of statistical physics, the entropy of photons is 

maximized subject to physical constraints, leading to the maximum likelihood estimation. 

Eliminating the redundant terms in Equation (15), and multiplying by minus-one converts 

the minimization problem into an equivalent maximization problem, 



{Amßm
a;Xl<m<M} \ S S(0)n)-//I§(COn) -   J £(G))dG) J (16) 

n=l oa 

Substituting Equation (7) into Equation (6), and utilizing the following identity, recalling that the 

basis functions are normalized to have unit-area, 

M 
Js\©)dco= EAm, (17) 

Co m=l 

gives the complete maximization problem, 

Max J* rM 0    1     M        X 
m  m n=l m=l m=l 

Here we have used the notation Fm(o) lß^) = F(conlm). 

A direct attempt to perform the indicated maximization in Equation (18) by setting partial 

derivatives equal to zero results in an intractable set of coupled nonlinear equations to solve. 

Instead, as previously discussed, MLANS utilizes an iterative procedure with the EM algorithm to 
perform the maximization. At the beginning of the k-th iteration, we have the model parameters 
from the previous iteration, {A_~  , jr"  , l<m<M}. The updated model parameters are found by 

performing the following maximization: 

{A(k) o(k) J^UJ^MJ 
m "m m=1     n=1 

■]}• ■Aj?J   f (19) 

where 

(   \*t„\ A(k:-l)n(k-l)\   _    Am    •^(^n'ßm   ) )(jnlS(a>n);Am \$m ') = ^ , l<n<N, l<m<M. (20) 

I Af 1}-F (cojßf1}) 
j=l 



It is convenient to refer to the above quantity shown by Equation (20) as a "fuzzy probabilistic 
association weight." It can be regarded as a measure of the degree of association of the m-th basis 

function with the n-th measurement. Note that for any fixed n, the sum of the fuzzy weights over 

m is equal to one. 

The maximization task of Equation (19) is considerably easier than the maximization task in 

Equation (18) because the problem decouples over the different basis functions, i.e., the parameter 

updates can be found independently for each basis function. Setting the derivative of Equation 
fk) (19) with respect to A^ equal to zero gives the updated amplitude, 

N 
A*)=Xs((ön)-p(mlS(con);A*-1),^-1)),   l<m<M. (21) 

n=l 

The updated shape parameters are found by maximizing Equation (19) with respect to each of the 

e 
Asx.  f N \ 
i»   I I S(a^)-p(mlS(Q^)^*-1)£*-10^[Fm(%lßS?)] J .    l^^M. (22) 

Max 

n=l 

For the Gaussian basis function given by Equation (9), the optimization can be carried out exactly; 
(k) (k) substituting Equation (9) into Equation (22), setting derivatives with respect to co^ and Aco^ 

equal to zero, and utilizing Equation (21) gives 

N 

X S^-pCmlS^A^^K 
<> = ** -^ . l^m<M, (23) 

Am 

is^-pCmlSK);^»^-»).^»«)2 

Aco0^  I   ^ TT    I      ,     l<m<M. (24) m       | jte) ■ 

10 



The expectation-maximization (EM) algorithm is summarized in pictorial form in Figure 1 

as follows: 

(1) provide initial values for the parameters, {A^, J3^; IsmsM}; 

(2) for kal, perform the k-th iteration as follows: 

(a) begin with {A^, ^\ IsmsM}; 

(b) update the fuzzy probabilistic association weights according to Equation (20); 

(c) update the basis function amplitudes according to Equation (21); 

(d) update the basis function shape parameters by performing the maximizations 

in Equation (22) (For the uniform basis functions there are no shape 

parameters; for the Gaussian basis functions, the closed-form analytical 

formulas Equation (23) and Equation (24) are used.); 

(e) end with {A^, ß^; Um<M}; 

(3) continue the iterations until convergence occurs. 

The EM algorithm is not an intuitively obvious algorithm, and it is certainly not obvious 

that the iterative maximization in Equation (19) solves the maximization problem in Equation (18). 
(V) However it can be proved in general that the sequence of parameter values provided by EM, {Ay
m

J, 

§?*; IsmsM}, converges to at least a local maximum of the goodness-of-fit criterion in Equation 

(18).  See Appendix A for a detailed discussion and proof of convergence.  In short, the EM 

algorithm is a "safe" iterative scheme. 
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SECTION 3. RESULTS AND DISCUSSION 

3.1       REPRESENTATIVE HF RADAR DATA 

A sample HF radar return spectra set used in this study is shown in Figure 2. This figure 

shows a sequence of radar Doppler return spectra displayed as a function of Doppler cell number, 

spectrum number, and intensity on the color-coded, vertical axis. The image sequence in Figure 

2 is from the ECRS OTH-B radar located in the state of Maine. It was recorded on 2 January 

1992 as a part of the normal operational application of the ECRS, as were all radar data used in 

this study. The notation B34 refers to the radar beam directed to radar Segment 3, Sector 4, 

which corresponds to an azimuth of 162.75 degrees from the radar site in Maine [7,8]. The 
notation RB 1 refers to the first range bin (RB), which for this B34 data set has a start range of 

1542 nautical miles (nm) from the radar site for the parameters for which the radar was being 
operated. Under normal operation, the total 

range extent or foot print of the radar is 

nominally 500 nm. With the Doppler spectra 

averaged into 16 range bins, a single range bin 
for the OTH-B radar system is thus 
approximately 32 nm in extent. Each receive 
beam is 2.5 degrees wide in azimuth. 

The spectrum number is a sequential 
number which uniquely identifies a specific 
spectrum in the image sequence. There is a 
direct relationship, although nonlinear, between 

the spectrum number and the time a specific 
spectrum was recorded. For example, in 
Figure 2 the time changes from 21:07:44.37 
UT for spectrum number 1 to 23:04:57.94 UT 

for spectrum number 149. The time associated 
with each spectrum is provided with individual 

spectra shown and discussed herein, along with 
the specific radar operating parameters. 

21:07:44.37 UT 

32.0 16.0        0.0        -16.0     -32.0 

Doppler  Cell Number 

-180.0 -150.0 -1 20.0 

dB 

-90.0 -60.0 

Figure 2.   Sample HF Radar Doppler Spectra Data Set 
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The relationship between the Doppler cell number and the Doppler speed in meters per 

second (m/s) is given by 

Doppler speed = c(Doppler Cell Number) / 2 f(CIT), (25) 

where c is the speed of light in m/s, f is the radar frequency in Hertz, and CIT is the coherent 

integration time in seconds. For radar targets such as aircraft, this is the observed radial speed, 

with negative values for outbound aircraft and positive values for inbound aircraft. For all the 

ECRS displays, negative Doppler is on the right, not the left. The Doppler speed for a clutter 

event is its apparent Doppler speed, which depends upon the spatial motion of the clutter event 

within the ionosphere. For convenience, all data analyses for this study were performed with the 

Doppler cell number scale. Each individual radar return spectrum can easily be converted to 

actual Doppler speed with the above equation, and this conversion is included in the radar image 

sequences and Doppler spectra contained herein. 

The radar image sequence in Figure 2 is typical for the OTH-B radar when directed in a 

southerly direction. Observed in all OTH-B spectra, independent of the azimuth direction, is the 

extremely high intensity ground clutter return at near zero Doppler. Of particular interest for this 

study is the clutter event of lower intensity, starting in Figure 2 at low negative Doppler cell 

number and shifting to higher negative Doppler values as time progresses. This type of clutter 

structure is termed an "equatorial clutter event". The term "equatorial" implies that these types 

of clutter events are observed when the radar beam is directed in a southerly direction. For 

example, as mentioned above, the azimuth direction for this image sequence is 162.75 degrees. 

The physical cause of this type of clutter event is not being examined in the Phase 1 portion of 

this research effort. The ability to characterize and segment this clutter structure utilizing the 

MLANS neural network with a multi-modal Gaussian model for the clutter structure is the focus 

of this Phase 1 research effort. 

We use the term "characterize" to denote the ability of employing a multi-mode Gaussian 

clutter model within MLANS to fit or describe the clutter structure contained in the Doppler 

spectra. The verb "segment" is used to denote the ability of the MLANS neural network to 

separate the equatorial structure from other clutter events, such as the ground clutter return and 

the background clutter. The ability of using the MLANS model-based neural network to 

accomplish clutter characterization and segmentation is important for operational applications 
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such as target detection and tracking in the presence of such clutter events (i.e., for low signal-to- 

clutter conditions). Also, it is important to be able to characterize and segment the clutter in 

order to study the specific properties of the clutter events. 

Also observed in Figure 2 are radar "drop-out periods," for example, between spectrum 

numbers 57 to 66 and approximately 115 to 150. These are times when the OTH-B radar 

operators were adjusting the operational parameters, i.e., the waveform repetition frequency of 

the radar, in order to eliminate the multi-hop clutter and facilitate target detection and tracking. 

Large equatorial clutter events such as in Figure 2 can mask the smaller target returns, greatly 
reducing the radar's probability of detection and complicating the track initiation and track 
maintenance tasks. The long range objective of this research effort is to use the MLANS model- 
based neural network to identify and adaptively segment such clutter structures, thereby 
increasing the probability of detection and track of targets observed in the vicinity of these strong 
clutter events. The radar drop-out periods are of no direct interest to this Phase 1 portion of this 
research effort, except to be cognizant that the radar operating parameters are being changed 
during such time periods. Changed radar parameters may result in a change in the Doppler speed 

scale since the Doppler speed depends upon the Doppler cell number. 

The specific Doppler spectrum in Figure 2 for spectrum number 25 is shown in Figure 3. 
This Doppler spectrum was recorded on 2 January 1992 at 21:23:49.88 UT, with the radar 
operating at 25.680 MHz, a CJT of 1.7778 seconds, and waveform repetition frequency (WRF) 
of 36.0 Hz. One sees the very large ground return peak at zero Doppler with the equatorial 
clutter structure centered at Doppler cell numbers approximately 6 to 12. The remainder of this 
spectrum is typical in that the background clutter is orders of magnitude below both the ground 
return and the equatorial structure. Background clutter is caused by such phenomena as meteors 
transiting the ionosphere, magnetic field-aligned ionospheric irregularities, and lightning events. 

No target returns are observed in this spectrum. 

The following sections contain the results of the application of the MLANS model-based 
neural network to the OTH-B radar spectra similar to that shown in Figure 3 for clutter 

characterization and segmentation. 

15 



pa 

-60-, 

-90- 

-120 

-150- 

-180 

B34    2-JAN-1992   21:23:49.88 
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Figure 3.   Representative Radar Doppler Spectrum 

3.2.     CLUTTER SEGMENTATION RESULTS 

The MLANS neural network with the multi-modal Gaussian formulation plus uniform 

clutter model as described in Section 2 was applied to the individual radar Doppler spectra. 

Three- and four-mode Gaussian models were fitted to the data. A three-mode formulation was 

selected based on results of initial fits which showed that two modes were necessary to fit the 

ground return portion of the spectrum, leaving the third mode to describe the equatorial clutter 

structure. Four-mode fits were then obtained in order to provide an additional mode for further 

description of the clutter. The results of these analyses are shown and discussed below. 

The analysis for this study was performed in the linear amplitude space rather than in a 

logarithmic space (dB). All spectra were first converted from dB to linear radar intensity, with 

the MLANS iterative fits being performed in this space, followed by conversion back to dB for 

plotting and display purposes. It is best to plot the Doppler spectra in dB due to the enormous 

differences in magnitude between the ground return peak and other observed events such as 

clutter structures and target returns. 
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3.2.1    3-Mode Gaussian Clutter Model 

Representative results of the MLANS fits to the radar Doppler return spectra for various 
spectrum numbers for the B34, RB 1 data set in Figure 2 are shown in Figures 4 and 5. As 

sample spectra fits, we have shown representative fits for low spectrum numbers in Figure 4, 
while Figure 5 contains representative fits for a later time frame when this equatorial clutter 

event has further evolved. Range bin 1 has a start range of 1542 nm, and this data is for a radar 

beam direction of 162.75 degrees. This corresponds to ground surveillance of an area near 
Puerto Rico in the Caribbean. The red line in each plot is the sum of the three separate Gaussian 
modes plus a uniform background mode. As mentioned previously, this MLANS analysis and 
summation of the individual modes is performed in linear amplitude space, with the results being 
converted back to dB for plotting purposes. 

The ground return clutter peak near zero Doppler cell number is seen to be well described 

by two Gaussian modes. This is conjectured to be due to the combination of the single-hop 
return (labeled as 'Primary Gaussian Center Mode') with an adjacent lower intensity, two-hop 
return (labeled as 'Secondary Gaussian Center Mode'), which can be a typical operational mode 
for OTH radar systems. This ground return structure could also be composed of additional hop 

returns of deceased intensity. An artist's sketch of the radar beam propagation illustrating 
multiple hops is contained in Figure 6. 

With the ground return taking two of the three modes available, this leaves a single 
Gaussian mode (labeled as 'Remaining Gaussian Mode') to fit the equatorial clutter structure. 
This single-mode Gaussian fit to the equatorial clutter is seen to accurately describe the general 
nature of the clutter in terms of Doppler speed, magnitude and width. This single-mode model 
does not follow the fine structure of the clutter, nor would it be expected to do so. Also, it is not 
important that the clutter model describe this fine structure. These fine structure variations in the 
shape of the equatorial clutter are expected to be transient in nature, caused by the same 

phenomena that produces the background clutter as mentioned above. If target returns are 
associated with the equatorial clutter structure, then they will be persistent as a function of time, 
displaying the expected spatial variations of an aircraft target. Such persistent structure 

associated with the equatorial clutter can be detected and tracked utilizing the MLANS 
simultaneous detecting and tracking feature. 
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Figure 4.  Three-Mode Gaussian Model Fits for Spectrum Numbers 6-9, B34, RBI Data Set. 
A Single Uniform Model is Also Included. 
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Figure 5.  Three-Mode Gaussian Model Fits for Spectrum Numbers 91-94, B34, RBI Data Set. 
A Single Uniform Model is Also Included. 
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Figure 6.   Artist's Sketch of the Radar Beam Propagation with Multiple Hops 

The uniform model used to describe the background clutter is seen also to be adequate 

to fit the fine structure variations observed in the background. Similar to the discussion above, 

it is not important to the objectives of this research project that an exact fit to the background 

clutter be obtained. Any aircraft target returns will persist in time and display the spatial 

variations expected. Also, it is important to recognize that the background clutter is many 

orders of magnitude less than the other spectrum structures, and will also be less in magnitude 

compared to target returns. 

Figure 7 shows a comparison of the raw image data set from Figure 2 with that 

obtained from fits to all Doppler spectra within the image with the 3-mode Gaussian plus 

uniform model. The comparison of the model fit to the raw image is remarkably close 

considering the simplistic from of the Gaussian clutter model. This 3-mode Gaussian model is 

seen to track the overall clutter structure as a function of time for both the ground clutter and 

the equatorial clutter structures. 
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Figure 7.   Consolidated Three-Mode Gaussian Model Fits and Raw Image 
Data for B34, RBI Data Set 

3.2.2   4-Mode Gaussian Clutter Model 

Introduction of a 4-mode Gaussian clutter model provides for one additional Gaussian 

mode for describing the overall clutter structure. Results of the 4-mode fits, similar to those 

shown above for the 3-mode model, are contained in Figures 8 and 9. The fourth mode does in 

general provide for an additional Gaussian mode for describing the equatorial clutter structure. 

However, this is not always the case. For certain spectra, the fourth mode describes other 

structures in the spectra, which are usually transient. A good example is observed for the fit to 

spectrum number 6 shown in Figure 8. Here, the fourth mode (right-hand side 'Remaining 

Gaussian Mode') picked up the background transient event at Doppler cell number 21. However, 

in spectrum numbers 7, 8 and 9 this mode appears in Doppler cells 7,7 and 10 respectively. This 

capability of MLANS to adapt to changing structures and events in the Doppler spectra will be 

important to operational application of MLANS for the detection and tracking function. But, for 

equatorial clutter structure characterization it is irrelevant. 
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Figure 8.  Four-Mode Gaussian Model Fits for Spectrum Numbers 6-9, B34, RBI Data Set. 
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Figure 9.   Four-Mode Gaussian Model Fits for Spectrum Numbers 91-94, B34, RBI Data Set. 
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A consolidated comparison of the 4-mode model fit with the raw data image is shown in 

Figure 10. (Here the vertical axis is shown in gray scale, as are the remaining Doppler spectra 

data sets contained within this report.) As for the 3-mode case, the comparison is very good. 
However, the 4-mode model does not obviously provide a better fit than the 3-mode model. The 
results of these analyses thus do not indicate whether the four-mode model is better than the 
three-mode model. However, if persistent in time, small differences between the clutter and the 
data may be important for the detection and tracking function, which may make the higher mode 

model of MLANS more important for operational applications. A detailed study of the detection 

and tracking capability of MLANS is planned for the next phase of this research project. 
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Figure 10. Consolidated Four-Mode Gaussian Model Fits and Raw Image 
Data for B34, RBI Data Set 

3.2.3.  Model Parameter Functionality 

The model parameters for the Gaussian model are the center Doppler frequency for each 
mode, the mode amplitude, and the mode variance or width. The center Doppler frequency and 
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mode width are expressed herein in units of Doppler cell number which can be simply converted 

to units of Hertz. The mode amplitude is expressed here in dB, but can simply be transformed to 

absolute magnitude. 

The mode center frequencies for the 3- 

mode model are shown for the B34, RB 1 data set 

in Figure 11. As expected from the individual 

spectrum results shown and discussed above in 

Section 3.2.1, the mode center frequencies 

accurately describe and track the raw data as a 

function of time for the ground return clutter 

structure and for the observed equatorial clutter 

event. Two center frequencies near zero Doppler 

track the ground clutter return while a single 

mode tracks the equatorial clutter. 

Similar results are obtained for the 4-mode 

model case as shown in Figure 12. Again, two 

modes track the ground return while the other two 

modes track the equatorial clutter. 
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Figure 11. Plot of the Center Frequencies for the Three- 
Mode Gaussian Model as Compared to the 
Raw Image Data for B34, RBI Data Set 

Plots of the mode amplitudes as a function 

of spectrum number are shown in Figure 13 for 

both the 3-mode and 4-mode clutter models for 

the B34, RB 1 data set. This plot as a function of spectrum number is equivalent to plotting as a 

function of time since the spectrum number is directly related to time. The third mode of the 3- 

mode model, which describes the amplitude of the equatorial clutter event, is seen to be 

decreasing in time, from approximately -100 dB at the start of the event to about -120 dB at 

spectrum number 115 (the operating parameters of the radar were continuously being changed 

from spectrum number 115 to spectrum number 150), while the mode amplitude for the two 

modes tracking the ground return remain fairly constant at about -85 dB. The same conclusions 

are reached upon examining the mode amplitude variations for the 4-mode model fits. 
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Figure 12. Plot of the Center Frequencies for the Four- 
Mode Gaussian Model as Compared to the 
Raw Image Data for B34, RBI Data Set 

An interesting aspect of the 

adaptability of the MLANS neural network 

is seen in Figure 13. The radar operational 

parameters were also being adjusted from 
about spectrum number 57 to 66, which 

resulted in the radar beam refracting at a 
different location within the ionosphere. A 

new operating regime for the radar was 

being sought during this time frame by the 

radar operators in order to reduce the 

magnitude of the equatorial clutter. The 
MLANS neural network was able to 

adaptively track this change in magnitude of 
the equatorial clutter structure while 
measuring a nearly constant amplitude for 
the ground clutter structure. In addition, it 
was able to adapt to the change in center 
frequency location over this time frame as 

observed in Figures 11 and 12 for spectrum 

numbers 57 to 66. This adaptive nature of 
MLANS will be important for detection and 
tracking applications. 

Plots of the mode variance (width) as a function of spectrum number (as above, related to 
time) are shown in Figure 14 for both the 3-mode and 4-mode models for the B34, RB 1 data set. 
Both plots show that the variance for the two modes describing the ground return remain 

relatively small over the duration of the event while the variance for the mode (3-mode case) or 
modes (4-mode case) that describe the equatorial event start off small, but increase in magnitude 
as the clutter event evolves. This implies that the equatorial clutter structure is expanding 

spatially on a temporal basis. 

26 



B34, RB1 
Gaussian Mode Amplitudes 

3 MODE FIT 4 MODE FIT 

Spectrum Number Spectrum Number 

Figure 13. Plot of the Gaussian Mode Amplitudes for B34, RBI Data Set 
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Figure 14. Plot of the Gaussian Mode Variances for B34, RBI Data Set. 
Black Bands at Top Indicate Periods of Operator Intervention. 

Additional analyses at different ranges and azimuths were performed for the 3-mode 

clutter model for this same clutter event. For example. Figure 15 shows the comparison of the 3- 
mode model fit to the data for the B34, RB 9 data set. One sees again that the modeled image on 

the right side of Figure 15 very accurately describes the actual Doppler image data shown on the 
left side, until the clutter event was eliminated at spectrum number 115 by the radar operators by 

changing the operating parameters of the radar system.  The mode center frequencies are also 
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plotted on the left side with the Doppler image. The mode functionalities for the mode 

amplitudes and variances for this image fit are similar to those described above for the B34, RB 1 

data set. 
B34,  RB9 

Raw ImacB Data 
3 Mo* Doppter tenter FreoBnciee 
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3-ModeGaiBSian Model Fit 

E 3 
Z 

E 
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Doppler Cell Number 

32.0       16.0 0.0       -16.0     -32.0 
Doppler Cell Nurrber 

m 
-180.0 -120.0 

cB 

Figure 15. Consolidated Three-Mode Gaussian Model Fit and Raw Image 
Data for B34, RB9 Data Set. Also Shown Superimposed on the 
Raw Image Plot are the Center Frequencies for the Three-Mode 
Gaussian Model. 

The results of a fit to a data set at a different azimuth are shown in Figure 16. These 
results are for the B36, RB 1 data set which corresponds to an azimuth of 177.75 degrees. The 
time evolution of the equatorial clutter is markedly different than for the B34, RB 1 data set 
previously discussed. As seen by the model fit on the right side and by the location of the mode 

center frequencies plotted with the image data on the left side of the figure, MLANS is able to 

describe the clutter structure as a function of time. 

From these results, one sees that the MLANS neural network with a multi-modal 
Gaussian clutter model is able to characterize the clutter contained within the HF radar Doppler 

spectra. In addition, it is able to segment the equatorial and the ground return clutter structures. 
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Figure 16. Consolidated Three-Mode Gaussian Model Fit and Raw Image 
Data for B36, RBI Data Set. Also Shown Superimposed on the 
Raw Image Plot are the Center Frequencies for the Three-Mode 
Gaussian Model. 

The 4-mode model, which uses two Gaussian modes to fit the equatorial clutter structure, was 
not determined to be superior to the 3-mode model which uses a single mode to fit the equatorial 

clutter. Determining the optimum number of modes to use to segment the clutter will have to 
await further investigations concerning the MLANS detection and tracking capability planned for 

the next phase of this research study., 

3.2.4   Fits to Averaged Data 

In order to investigate the effect that averaging the data has on the Gaussian model 
results, we averaged the spectra as a function of time and again fitted the averaged spectra with 
the MLANS multi-modal Gaussian model formulation. Although not expected to be useful for 
operational applications of MLANS to HF radar systems for enhanced detection and tracking, 

29 



averaging of the spectra should smooth out the short-term transient variations in the Doppler 

spectra, allowing for a better fit of the multi-mode Gaussian model to the clutter structures. 

Sample averaged spectra results for averaging together of three spectrum numbers for the 
B34, RB 1 data set are shown in Figures 17 and 18. Figure 17 is the average of spectrum 
numbers 6, 7, and 8, while Figure 18 is the average of spectrum numbers 92, 93, and 94. As 
expected, these averaged spectra are smoother than the single spectra shown in Figures 4 and 5 

above. The 3-mode Gaussian model fits along with the uniform model are also plotted in Figures 

16 and 17, and are seen to well represent the data. As before, two Gaussian modes are used by 

MLANS to fit the ground clutter return while the remaining mode is used to describe the 

equatorial clutter structure. As expected for the averaged data, the uniform model does track the 

background more closely than for the unaveraged data. 

B34    2-JAN-1992   21:12:27.3« 
F = 25.680 MHz    CIT = 1.7778 sec    WRF = 36.0Hz 

AZ = 16Z750 deg    SR = 154X00 nm 
Spectrum #6-8    averaged   Range Bin #   1 

-60-, 
(See Figure 4 for key) 

8 0-8 
Doppler Cell Number 

105 84 63 42 21 0 -21 -42 -63 -84        -105 
Doppler Velocity (m/sec) 

Figure 17. Three-Mode Gaussian Model Fits for Average of Spectrum Numbers 6,7 and 8, 
B34.RB1 
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B34   2-JAN-1992   22:15:43.62 
F = 22.135 MHz    QT= 2.1333 sec    WRF=30.0Hz 

AZ = 161750 deg    SR = 154Z00 im 
Spectrum # 92-94   averaged   Range Bin #   1 

32 24 16 8 0-8 
Doppler Cell Number 

32 

101 81 60 40 20 0 -20 
Doppler Velocity (m/sec) 

-40 -60 -81 -101 

Figure 18. Three-Mode Gaussian Model Fits for Average of Spectrum Numbers 92,93 and 94, 
B34, RBI 

The consolidated image data for these averaged spectra are shown in Figure 19. The right 

side of this figure shows the 3-mode Gaussian model fit to the image, while the raw, averaged 

data is on the left side. The 3-mode model is seen to very accurately represent the raw data. 

Also plotted on the left side are the center frequencies for the three separate Gaussian modes. As 

for the unaveraged data shown in Figure 11, the 3-mode model tracks the time evolution of the 

data. 
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Figure 19. Consolidated Three-Mode Gaussian Model Fit and Raw Image 
Data for Three Spectrum Average of the B34, RBI Data Set. 
Also Plotted on the Left Side are the Center Frequencies for the 
Three-Mode Gaussian Model. 

The time dependence of the amplitude and variance parameters of the Gaussian modes 
are shown in Figures 20 and 21 for this fit to the averaged data. On examining these two figures, 
one reaches the same conclusions as in Section 3.2.3 concerning the time evolution of the 
equatorial clutter event being described by the third Gaussian mode; namely, that the equatorial 
clutter event decreases in magnitude and spreads out in Doppler frequency space as time evolves. 

Upon examining the Gaussian model fit results for the averaged data as compared to the 

unaveraged data, one concludes that there is no further advantage to fitting averaging data except 

that smoother spectra are obtained with short-term variations washed out. The same conclusions 

were reached, with regard to the ability of the multi-modal Gaussian model to represent the data 
as presented above in Sections 3.2.1 through 3.2.3, as were concluded for the averaged data. 
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SECTION 4. CONCLUSIONS 

The primary objective of this initial phase was to demonstrate the ability of the MLANS 

model-based neural network to segment and characterize clutter structures observed during the 

operation of an HF radar system. This objective was accomplished. 

The study results enables one to draw several conclusions: 

(1) The MLANS model-based neural network is able to characterize the observed 

clutter structures with a multi-modal Gaussian clutter model. In fact, the 

equatorial clutter can be generally characterized by a single-mode Gaussian 

model obtained by applying a 3-mode Gaussian clutter model to the data, with 

two of the modes being used to describe the ground clutter return and the third 

mode being used to describe the equatorial clutter return. 

(2) The MLANS neural network is able to segment the ionospheric clutter structure, 

consistently separating the equatorial clutter structure from the ground clutter 

return. 

(3) Including additional Gaussian modes to describe the equatorial clutter does not 

significantly improve the characterization and segmentation process as was 

shown by the application of a 4-mode clutter model which provided an additional 

mode to further describe the observed clutter structures. 

(4) Results demonstrated herein show the capability to obtain trends in parameters 

for the multi-modal Gaussian clutter model as functions of time, Doppler 

frequency, range, and azimuth. From a more detailed analysis of such trends in 

the clutter model parameters, one could, for example, study specific aspects of 

ionospheric clutter such as its time and spatial evolution. 
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SECTION 5. RECOMMENDATIONS 

The results and conclusions of this study lead to several recommendations. This study 
has shown that the MLANS neural network can be a very powerful analysis tool to investigate 
ionospheric clutter observed in the operation of HF radar systems. Also, with its capability to 
characterize and segment the observed clutter, MLANS demonstrates promise as a signal 
processing algorithm to enhance the detection and tracking capability of such radar systems. The 
study results were obtained using a simple multi-modal Gaussian model for the clutter structure. 

The first recommendation is that the study be continued to provide a more detailed 

analysis of properties of equatorial clutter using HF radar data. We recommend that this be 
accomplished with the multi-modal Gaussian model, analyzing in detail all aspects of the 

equatorial clutter as described by the model. We also recommend this be accomplished in 
parallel with a similar analysis of the clutter by application of a more descriptive clutter model 
such as that provided by a power law formulation. This detailed study of the equatorial clutter 

structure would have the objective of determining the spatial and temporal dependencies of the 
parameters of the clutter models for specific clutter events. 

We recommend that further study be conducted in application of the MLANS neural 
network as a simultaneous detection and tracking signal processing algorithm as described in 
Appendix B. This study should have as an objective an analysis of MLANS to detect and track 
targets in the vicinity of strong equatorial clutter events. Other aspects that could be investigated 

are automatic track initiation and detection and tracking of multiple targets. 
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APPENDIX A.    CONVERGENCE OF MLANS EM 

The expectation-maximization (EM) iterative algorithm employed by MLANS for its 
parametric modeling of the HF Doppler spectrum converges to at least a local maximum of the 
goodness-of-fit criterion. Since it is difficult to find a simple, comprehensive discussion of the 
convergence properties in the literature we include such a discussion in this appendix. 

Again the overall objective is to choose the basis function amplitudes and shape parameters 
to maximize the goodness-of-fit criterion in Equation (18), 

Max f 1 
{Amßm;l<m<M}  I G(SIA. ß) ) , (Al) 

{N r M -i      M \ 

X S«DnW» L £ Am-Fm(0DnlßLm)J -  S Am J . (A2) 
n=l m=l m=l 

The EM algoritlim begins its k-th iteration with the basis function amplitudes and shape parameters 
from the previous iteration, {A^ \ ß^ ^}, and it consists of two conceptually distinct steps: the 

E (expectation) step, and the M (maximization) step. The E-step consists of evaluating the 
expression 

{M       N 
S [ I SC^VpCmlSC^jA*-1^)-'« [Am-Fm(conlßin)] 
m=l    n=l 

-Am|  f,      (A3) 

where the fuzzy association weights are given by Equation (20).   The M-step consists of 
maximizing the E-expression to obtain the updated amplitudes and shape parameters, 

< SL-fl (E<A(k). ß(k)- A*-
1
', ß*-")} ■ <A4> 

We now state and prove two key properties of the EM algorithm. The first property states 
that the maximization step in Equation (A4) always results in an improved goodness-of-fit; in fact 
the property is somewhat stronger: 
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Property 1: 
Within the k-th iteration of EM, for all amplitudes and shape parameters, {A, Q], such that 

E(A, fc A^1), tf^)  >} ECA^-D, ßfr-1); Afr-D, ß(k-D) . (A5) 

Note that {A, Q] do not have to be the global or even a local maximum for the E-expression. The 

corresponding goodness-of-fit is improved over the goodness-of-fit for the amplitudes and shape 

parameters of the previous iteration, such that 

G(SIA, ß) (>} GCSIA^-1), £p-V). (A6) 

Proof: 

Substituting the E-expression in Equation (A3) into both sides of Equation (A5), and subtracting 

the right-hand side from the left-hand side gives 

(>) 0. (A7) 

Since the logarithm is a convex function, any cord must lie below the curve itself. Equivalently if 
{X,,... ,X,M} are a set of nonnegative weights that sum to one, then 

M M 

m=l m=l 

This property is also known as Jensen's inequality. Recalling that the fuzzy association weights 
are non-negative and that their summation over m is equal to one, we apply the inequality in 
Equation (A8) to the m-summation within Equation (A7) as follows, 
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Lm=l "" A*1).Fm(0)nIE*1»)J 

Substituting the expression for the fuzzy association weight in Equation (20) into the right-hand 
side of Equation (A9) and simplifying (Within the brackets, the numerator of the fuzzy weight 
cancels the denominator of the fraction.) gives 

m=l m ^^(CD^V 

*/w [ £ Am-Fm(0)nlßm)] - In [ I Af-1 Wlß*-1*)] . (A10) 
m=l j=l 

Replacing the m-summation within Equation (A7) with a larger quantity, e.g., the right-hand side 
of Equation (A10), results in an expression that still satisfies the inequality, i.e. 

n=l m=l j=l m=l 

(>)0, (All) 

which is equivalent to Equation (A6). 

Property 1 guarantees that the goodness-of-fit increases monotonically with each iteration; 
since it is upper-bounded, the goodness-of-fit must converge. Property 2 implies that the basis 
function amplitudes and shape parameters converge to a local maximum. 
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Property 2: 
If, within the k-th iteration, {A=A(k'1\ JHJ*"1)} is a local maximum of E(A, £ A^'1), J^1)), 

then {A=A(k_1), ß=ß*-1)} is also a local maximum of G(SIA, ß). 

Proof: 
Combining the definitions in Equations (A2) and (A3) gives 

E(A,ß;A(k-1),ß<k-1)) = G(SIA,ß) 

+ I S(con) { 
n=l 

M 

X pCmlSK)^-1^1))-/« [Am.Fm(co] 
m=l 

^-'»[IAJ-F^IBJ)] ) 

N fM 
G(SIA, ß) + X S(con) I £ pCmlSCm^Ag-1^^)- '« 

n=l m=l 

VFm(%>ßm) 
M 
SA^o^) 

(A12) 

Considering the definition for the fuzzy association weight in Equation (20), the square-bracket 

expression in the right-hand side of Equation (A 12) can be identified as 

AAK'ßm) 
M 
X A -F (conlß) 

= p(mlS(con);Am,ßm). (A13) 

By assumption the partial derivatives of the left-hand side of Equation (A 12) with respect to A and 
Q, are equal to zero for {A=A^k"1\ ß=ß.^k"^}; we need to show that the partial derivatives of the 

second term in the right-hand side of Equation (A12) vanish. The argument is as follows: let 
p(mla) be a nonnegative-valued sequence whose sum is equal to one; then 

g W-'V /. p(m,a)} . { Z E^ip(m,a)} 
lm=l J      (k-D     lm=1 J»=n0c-1) a=a" a=av 

M
       A A      M A      M 

■ £ ^^'^l^^l?" °      (A14) 
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As a consequence the partial derivatives of G(SIA, ß) with respect to A and ß are equal to zero for 

{A=A(k"1), ß=ß*"^}, which completes the proof. 

To summarize the implications of the two properties: Property 1 guarantees that the 
goodness-of-fit improves with every iteration of EM. Property 2 implies that when the E-quantity 
can no longer be increased, we have converged to a local maximum of the goodness-of-fit. 

Property 1 has an additional important implication: the M-step within EM does not have to 

be a true maximization, i.e. as long as the E-quantity is increased the goodness-of-fit will improve 

during the iteration. In the case of Gaussian basis functions (and some other basis functions as 

well) the M-step can be carried out exactly in closed form. For some other basis functions it may 
not be possible to perform the M-step analytically. According to Property 1, we can substitute for 
the maximization of the E-quantity a simpler procedure such as a steepest-ascent search. 
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APPENDIX B. APPLICATION TO SIMULTANEOUS DETECTION AND TRACKING 

We now discuss the mathematical formulation of MLANS to the problem of concurrent 

detection and tracking of targets. Consider the problem of concurrently performing detection and 

tracking of multiple targets in the presence of heavy clutter returns. In this case MLANS 

estimates track parameters through a fuzzy association of returns in multiple frames into multiple 

classes of clutter and tracks. This novel approach to tracking results in a dramatic improvement 

of performance: the MLANS tracking exceeds the performance of existing tracking algorithms 

in terms of track initiation for multiple targets at low signal-to-clutter ratios. 

Historically, intrinsic mathematical similarities between tracking and classification 

problems have not been explored. Tracking problems have been characterized by an overwhelm- 

ing amount of data available from radar sensors. This has led to the development of suboptimal 

algorithms amenable to sequential implementation for handling high rate-data streams. Such 

algorithms based on Kaiman filters converge to the optimal ML solution for single-object 

tracking; however, their generalization to multiple-object tracking has been difficult [9]. 

Classification and pattern recognition problems, on the other hand, have been characterized by an 

insufficient amount of data for unambiguous decisions, which has led to the development of 

Bayes classification algorithms, optimally utilizing all the available information. 

Such optimal utilization of information is lacking in existing tracking algorithms. This 

leads to difficulties with tracking multiple objects in heavy clutter. As the number of clutter 

returns increases, it becomes increasingly difficult to initiate and to maintain tracks. A near 

optimal algorithm, Multiple Hypothesis Tracking [10] initiates tracks by considering all possible 

associations between multiple objects and clutter returns on multiple scans. This problem, 

however, is known to be non-polynomially complete [11]; that is, its optimal solution requires a 

combinatorially large amount of computation which is difficult to handle, even for neural 

networks, when the number of clutter returns is large. A partial solution to this problem is 

offered by the Joint Probability Density Association (JPDA) tracking algorithm [12], which 

performs fuzzy associations of objects and tracks, eliminating the combinatorial search. 

However, the JPDA algorithm performs associations only on the last frame using established 

tracks and is, therefore, unsuitable for track initiation. 
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The MLANS neural network explores mathematical similarity between tracking and 

classification problems and applies optimal Bayes methods to the problem of tracking multiple 

objects. By applying fuzzy classification to associating data in multiple scans and the ML esti- 
mation of clutter and track parameters, MLANS combines the advantages of both the MHT and 
the JPDA algorithmic approaches. In MLANS tracking, each track is a class characterized by the 
state parameters and by the track model. For example, tracks are characterized by their initial 
positions, velocities, and a trajectory model relating object coordinates over time to their current 

positions. 

Consider first an initial simplified problem of tracking Doppler clutter characteristics in 

time at a fixed range and azimuth cell. Then the MLANS multimode Gaussian model given by 
Equation (9) in Section 2.2 of the main text must be modified to account for the continuous time 

dependence of the distribution parameters: 

— 1 9 O)m(t) = coOm + colm t + - co2m tz, 

1 9 Acom(t) = AcoOm + Acolm t + - Aco2m r, and (Bl) 

A(t) = A0m + Alm t + | A2m t2 . 

The likelihood must be modified by including the time index t into the sums in Equations (13) 
and (14) of Section 2.2 of the main text. Applying a procedure similar to that described for 

Equations (19) through (22), a set of equations is derived for the parameters 

coOm, colm, co2m; AcoOm, Acolm, Aco2m; Am, Alm, A2m. (B2) 

For the frequency parameters, we obtain the set of equations 

0 = (co)     - 0)0(1) - col(t)    - - ©2/t2) 

0 = (cot)     - coO(t) - col(t2) -| co2(t3) (B3) 

0 = (cot2)   - coO(t2) - col(t3) -I co2(t4) . 

Here angular brackets 0 are defined for a quantity, q, as weighted sums: 

(q) =  X S(co,t) P(mlco,t) q . (B4) 
co.t 
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Equations (B3) are a linear system of equations for the parameters coOm, colm, co2m and can be 

solved in a straight forward way at every MLANS iteration. 
For the parameters of Aco(t), similar procedures leads to 

0 =  < 
1 

AcoOm + Acolmt + -Aco2mt 
^ 

'm m" 0 2       1 
< (co-com(t)) -> 

2 J v         '  Acom(t) 

0 =  <(AcoOm + Acolmt + |Aco2mt2j t > - < (w-^W)2^ > (B5) 

*  <2  > 0 = <[AcoOm + Acolmt + -Aco2mt2 j t2 > - < (co-com(t))2 

A(Dm(t) 

This is a nonlinear set of equations, which, however can be linearized by taking Aa>m(t) in the 

denominator as the previous iteration values. This leads to a linear update system of equations 

forAcoOm, Acalm, ACD^. 

Similarly, a set of equations for the amplitude parameters is 

1 
0   =   < 

0   =   < 

0   =  < 

> + XY1 
Am(0 t 

(B6) 

This can be linearized by expanding (AmCt))"1 into a Taylor series, such that 

1 1 
Am(t)       AO 

This leads to a linear system for 

Al 
AO 

rA2 _ ( AH2' 
^AO      UoJ J 

(B7) 

_L    AL 
AO ' AO 

A2 
AO AO 

2^ 
(B8) 

An extension of this model to tracking in range R and azimuth 6 requires different models 

for targets and clutter. We define a target model as a Gaussian radar ambiguity function around 

Rm (t), em (t), com (t): 

B-3 



F (co, R, 9 I m) = G (CO I (um (t), Acom) G (RI Rm (t), AR) G (9 I 0m (t), A9). (B9) 

A clutter model has a different shape: clutter exists at all R, 9 with Am, com and Acom 

being function of R, 0, t such that 

COm = Com (R, 9, t), Acom = AcOm (R, 9, t), Am = Am (R, 0, t) (BIO) 

This leads to a clutter model 

F(co, R, 9 I m) = G (co I com (R, 9, t), AcOm (R, 9, t)). (Bll) 

A smooth spatial variability of the clutter model in space and time is parameterized by the 

following set of equations: 

com (R, 9, t) = coOm + I colm Xj + ±£ co2m X{ Xj 
i ZiJ 

Acom (R, 9, t) = AcoOm + £ Acolm X{ + ±£ Aco2m Xj Xj (B12) 
i 2U 

Am (R, 9, t) = A0m + I Alm Xj + l£ A2m X{ Xj 
i Z i J 

For the target model, the position of the target return in Doppler, range and azimuth can 

be modeled as 

1 9 com (t) = coOm + colm t + - co2m tz, and same for Rm (t), 9m (t), Am (t), (B13) 

while Aco, AR, A9 will be taken as constant over time and for different targets, being determined 

by the radar ambiguity function. The equations for these simultaneous detection and tracking 

parameters are derived using a procedure similar to that discussed for Equations (19) through 
(22) in Section 2.2 of the main text. 
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APPENDIX C.   ASSESSMENT OF THE APPLICABILITY OF THE 

HYPERBOLIC FILTER TO HF RADAR TARGET DETECTION 

The Hyperbolic Filter (known in the literature as the fan filter [13]) was originally devised 

to process image sequences for the purpose of enhancing moving targets with respect to clutter or 

noise. A task under the HF Propagation program was to assess the applicability of the Hyperbolic 

Filter to HF radar data. 

Let I(t,x,y) denote an image sequence, where I is the value of the image intensity, t is the 

index of the image (physically corresponding to time), and (x,y) are Cartesian coordinates within 

the image (i.e. pixel indices). The theory behind the Hyperbolic Filter assumes that the image 

sequence is a linear superposition of moving objects - both targets and clutter - in addition to 

uncorrelated noise. A particular moving object has the mathematical model 

I(t,x,y) = a(x-vxt,y-vyt), (Cl) 

and is characterized by a(x,y), its image intensity distribution at the reference time t=0, and by an 

apparent velocity (v ,v ), having units of pixels per frame. Both the image intensity distribution 

and the velocity are assumed constant with respect to time. The Hyperbolic Filter is a linear, shift- 

invariant filter having an impulse response h(t,x,y). When applied to an image sequence I(t,x,y), 

the output of the filter is an image sequence I(t,x,y) that is equivalent to the following 3-D 

convolution 

I(t,x,y) =SZS h(f,x,,y,)-I(t-t,,x-x',y-y')  . (C2) 
f   x"  y' 

In typical problems of clutter-limited target detection, the clutter occupies a continuous range of 

apparent velocity in the image sequence resulting from parallax. The unique property of the 

Hyperbolic Filter is that it rejects all moving objects over this continuous velocity set. Thus the 

operation of the Hyperbolic Filter is analogous to that of the familiar band-reject filter. By 

choosing the velocity cutoff set for the filter to coincide with the possible set of clutter velocities, 

the Hyperbolic Filter greatly increases the signal-to-clutter ratio for all targets having a velocity 

distinct from that of the clutter. 
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In order to apply the Hyperbolic Filter to HF radar data we need to have a signal that 
corresponds to the model (Cl). The Doppler-filtered HF radar data can be denoted by power as a 
function of four variables S(t,fD,R,0), where t denotes time, fD denotes Doppler frequency , R 
denotes range, and 8 denotes azimuth. In general a moving target has two components of velocity: 

a radial component vR and an azimuthal component v0 that manifest themselves as progressive 
motion through range cells and azimuth cells, and as a peak in the Doppler spectrum at fD = -2vA. 
Then a simplified signal model for a moving target, or for clutter, is 

S(t,fD,R,G) = F(fD + 2vrA)-a(R-R0-vRt)-b(e-80-vet), (C3) 

where F(fD) is the shape of the peak in the Doppler spectrum (e.g. a Gaussian curve), a(R) is the 

shape of the compressed radar pulse, b(6) is the beam pattern of the receiver antenna array, and 
(RO,0Q) is the position of the target at reference time t=0. 

Comparing the two signal models given by Equations (Cl) and (C3), it is apparent that the 
only way to apply the Hyperbolic Filter to HF radar data would be to apply the filter to the 
Doppler-filtered data, for a particular value of Doppler frequency, i.e., to fix fD and to treat the data 
as a function of (t, R, 0). However, the Doppler filtering will already have suppressed all targets 

and clutter having a radial velocity significantly different than the radial velocity associated with the 
particular Doppler frequency. 

The principle obstacle to realizing any significant advantages with the Hyperbolic Filter is 
the vastly greater motion sensitivity of Doppler filtering compared with motion through range and 
azimuth cells. Consider some typical radar parameters: radar operating frequency = 25.68 MHz, 
coherent integration time = 2.1333 s, range resolution = 8.1 nm (15 km), azimuth resolution = 2.5 
degrees, range = 1542 nm (2856 km). The corresponding Doppler resolution is 0.469 Hz, which 
is equivalent to a radial velocity resolution at the given operating frequency of 2.74 m/s. In 
contrast, over a twelve-minute (720 s) tracking time (the stipulated mean tracking time with 15 dB 
SNR), the radial velocity resolution due to target motion through range cells is 15000/720 or 20.8 
m/s. At a range of 1542 nm, the 2.5 degree azimuth resolution is equivalent to a cross-range 

resolution of 125 km, so over a twelve-minute tracking time the azimuthal velocity resolution is 

only 173 m/s. In short, unless the target is moving exactly perpendicular to the line-of-sight (in 
which case it is not a threatening target) then motion through azimuth cells is of no help. In turn, if 
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the radial velocities of the target and clutter are sufficiently different so that differential movement 
through range cells can be observed, the same effect will be observed and exploited with much 

greater sensitivity in the Doppler spectrum. In short, there does not seem to be any regime where it 

would be advantageous to use the Hyperbolic Filter. 
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