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Abstract 

Ascertaining proper operation of digital circuits requires verification not only of the 

correct functional operation but of the correct operation at the desired clock rates as well. 

The classical gate-level fault model has been the stuck-at fault model where the effects of 

physical failures are described by the inputs and outputs of logic gates permanently stuck 

at logic value 0 or 1. We have implemented an algorithm called SIMPLE (Sixteen valued, 

Maximized Propagation Lowered Enumeration approach to test generation) that 

generates test patterns for single stuck-at faults in combinational circuits. 

Failures causing logic circuits to malfunction at desired clock rates or to not meet timing 

specifications are called delay faults. The well-known path delay fault model features the 

advantageous capability of modeling distributed failures in a circuit, which are typically 

caused by statistical variations in the manufacturing process. We have also implemented 

an algorithm (Path Delay Fault Test Generator) for generating robust tests for path 

delay faults which is based on a new 64-valued logic system. 

It is well known that test generation processes for stuck-at faults and path delay faults 

are very time consuming. We have employed the power of parallel processing in this 

project to speed up the performance of test generation for these two classes of faults. The 

experimental results presented in this report clearly show the efficiency of our 

straightforward and yet effective parallelization schemes for both of our algorithms. 

The experiments for the test generation for path delay faults also show an interesting and 

surprising fact that almost all the faults in the fault set of nearly every target 

combinational circuit are not robustly testable and each of these faults can be identified 

within a very short time. This phenomenon suggests that a lot of circuits are not designed 

with features to enhance the robust testability for the path delay fault model. Design 

methodologies that increase the robust testability of at least the timing-critical functional 

paths must be applied for the automatic test generators to be applicable to the problem of 

testing the robust path delay faults. 



Table of Contents 

l. 

1. Introduction 1 

2. Stuck-at Fault Test Generation 2 

2.1 SIMPLE 3 
2.1.1 Pre-Processing Phase 5 
2.1.2 Propagation Phase 11 
2.1.3 Forward and Backward Implications 14 
2.1.4 Enumeration Phase 18 

2.2 Parallelization of SIMPLE 20 

2.3 Experimental Results for SIMPLE 21 

3. Delay Fault Test Generation 21 

3.1 Hardware Model and Robust Tests for Path Delay Faults 23 

3.2 Logic System and Requirements for Robust Tests 25 

3.3 Forward and Backward Implication Procedures 27 

3.4 Derivation of Static Learning Table 29 

3.5 Algorithm Outline and Test Compaction 30 

3.6 Experimental Results for the Sequential PDFTG 32 

3.7 Parallelization of PDFTG 33 

4. Discussion 37 

Reference. 38 



List of Tables 
Stuck-at Fault Test Generation 

Table 1: Forward implication tables for AND and XOR gates 4 

Table 2: Forward implication table for NOT gate 4 

Table 3: Contrapositive implications at net mi 9 

Table 4: (L2, G) combinations that yield useful contrapositive assertions 10 

Table 5: Backward implication table for AND gatei 17 

Table 6: Rules to calculate the controllability in SCOAP 19 

Table 7: Required values at the off-path sensitizing inputs 27 

Table 8: Forward implication tables for AND and XOR gate 28 

Table 9: Forward implication table for NOT gate 28 

Table 10: Backward implication table for AND gate 28 

Table 11: Backward implication table for XOR gate 28 

Table 12: Correspondence of the elements in the basic set and the 3-bit sequence 29 

Table 13:  Contrapositive implications at net Nj 30 

Table 14: Results from Fault List Generation 32 

Table 15: Results from Test Generation with Compaction 33 

Table 16: Results from Test Generation without Compaction» 34 

Table 17: Timing results for parallel version ofPDFTGÜ 35 

in 



List of Figures 

Stuck-at Fault Test Generation 

Figure 1: Contrapositive Implication 7 

Figure 2 Gate decomposition 16 

Figure 3. Timing results for c43 2 21 

Figure 4. Timing results for c6288 21 

Delay Fault Test Generation 

Figure 5. Hardware Model for Delay Fault Testing 24 

Figure 6. Timing results for c432 35 

Figure 7. Timing results for c499 35 

Figure 8. Timing results for c880 36 

Figure 9. Timing results for cl 35 5 36 

Figure 10. Timing results for c1908 36 

Figure 11. Timing results for c2670 36 

Figure 12. Timing results for c3 5 40 36 

Figure 13. Timing results for c5315 36 

Figure 14. Timing results for c6288 36 

Figure 15. Timing results for c7552 36 

IV 



1. Introduction 

The problem of testing circuits is gaining more and more importance as rapid strides are 

being made in VLSI technology. Testing is useful both before and after fabrication of 

circuits. Testing before fabrication ensures that a circuit design meets the intended 

specifications and is free of functional or logic errors. The more crucial goal of testing is to 

detect faulty devices after fabrication. Increasing circuit complexity has an adverse effect 

on testing by increasing testing time (and hence cost), test pattern generation and 

evaluation time and, of course, the sheer amount of data that has to be handled. 

Testing consists of applying a series of input patterns to a circuit and observing its 

response. This is then compared with the expected response of the circuit to verify 

correct operation. If there is a discrepancy, an error is said to have occurred and its 

physical cause is denoted as a fault. Thus test generation is closely related to fault 

modeling - the mapping of physical defects to errors. Faults affecting the logic function of 

combinational circuits are called functional faults. The classical gate-level fault model has 

been the stuck-at fault model, where the effects of faults are described by the inputs and 

outputs of logic gates permanently stuck at 0 or 1. It is well known that much of the 

work in the testing field has been in terms of this model. Faults causing logic circuits to 

malfunction at desired clock rates, or not meeting timing specifications are called delay 

faults. Delay fault testing has been gaining considerable importance with the increased 

susceptibility to manufacturing defects that increase circuit delays. 

We have developed an algorithm called SIMPLE (Sixteen valued, Maximized Propagation 

Lowered Enumeration approach to test generation) for detecting single stuck-at faults in 

combinational circuits [1, 2]. This algorithm is based on a 16-valued logic system and 

introduces some novel approaches to making test pattern generation more efficient. 

We have also developed an algorithm (Path Delay Fault Test Generator) [3] for generating 

robust test for path delay faults which is based on a new 64-valued logic system. This 



logic system is obtained by extending the 16-valued logic system to consider all possible 

stable and hazardous values that can occur at a net in the context of two-pattern testing. 

Inherent in this scheme is a test compaction procedure which exploits the availability of 

choices in the values of certain nets in order to construct a two-pattern test that will 

robustly test other functional paths along with the target path. We have shown that when 

generating a robust test for a path delay fault, we also generate, without any additional 

computation, a test for detecting single stuck-at faults at nets along this path. 

It is well known that test generation processes for stuck-at faults and delay faults are 

very time consuming. We have employed the power of parallel processing in this project 

to speed up the performance of test generation. The communication package that we 

chose for the parallel implementations of the test generation algorithms is PVM [34], the 

Parallel Virtual Machine, which is a software system that permits a network of 

heterogeneous Unix computers to be used as a single large parallel computer. This 

heterogeneous environment provided by PVM permits us to run our parallel versions of 

the test generation algorithms on machines ranging from SUN workstations to CM5 and 

CRAY machines. 

This report is organized as follows. Section 2 discusses our stuck-at fault test generation 

algorithm, SIMPLE, and the experimental results. Section 3 summarizes the path delay 

fault test generation algorithm, PDFTG, and the experimental results. The conclusion of 

the project is presented in Section 4. 

2. Stuck-at Fault Test Generation 

The generation of test patterns for combinational circuits has been long recognized by 

researchers as a well-defined mathematical problem that belongs to the class of NP- 

complete problems [12, 15]. Several Automatic Test Pattern Generation (ATPG) 

algorithms for detecting stuck-at faults in combinational circuits exist in the literature [9, 



11, 13,16,18,19, 20, 21, 22]. SIMPLE, an ATPG algorithm based on a 16-valued logic 

system, is proposed in [1], This algorithm introduces some novel approaches to making 

test generation more efficient. 

Two prototype implementations of SIMPLE were developed in C: one is the sequential 

version and the other the parallel version using the PVM software package. In section 2.1 

we summarize the principles behind SIMPLE. The strategy used in the implementation of 

the parallel version of SIMPLE is described in section 2.2. Section 2.3 summarizes the 

simulation results, which confirm the findings shown in [4]. 

2.1 SIMPLE 

In this section we give a concise description of the SIMPLE [1] algorithm for detecting 

single stuck-at faults in combinational circuits that contain NOT, AND, NAND, OR, 

NOR, XOR, and XNOR gates. 

Testing generation involves considering the value of a net in the good and the faulty 

circuit. This can be done by representing the value of a net as an ordered pair (bg, bf) 

where bg(bf) is the value of the net in the good (faulty) circuit [17]. Thus the value of a 

net is one of the elements of the set U = {(0, 0), (0, 1), (1, 0), (1, 1)}. In the process of 

generating tests, it might not be possible to uniquely specify the value of a net as one of 

the elements of U. However, we may already know that a net cannot assume one or more 

of these values. We incorporate this information by defining the value of a net as one of 

the 16 subsets of U. We denote 16 sets as 0, 0,1, D, D, 0/1, 0/D, 1/D, 0/D, 1/D, D/D, 

0/1/D, 0/1/D, 0/D/D, 1/D/D, and 0/1/D/D where 0 = {(0, 0)}, 1 = {(1, 1)}, D = {(1, 0)}, 

D = {(0,1)}, and "/" denotes set union operations. Note that U = 0/1/D/D. The value 0 

needs to be included to reflect the situation when two or more constraints require disjoint 

values on a net. These 16 values are equivalent to the elements of the logic system 

developed by Akers [5] to provide a tool for test generation. Tables 1 and 2 represent the 



AND, XOR, and NOT functions in our 16-valued system for the values 0,1, D, D. The 

complete table for all the 15 non-0 values can be easily constructed from the given tables 

by using the set union operation. The tables for all the other functions can be obtained 

from the three tables. Note that any logic function with 0 as one of its arguments will 

yield 0 as a result. 

Table 1: Forward implication tables for AND and XOR gates 

AND 0 1 D D XOR 0 1 D D 
0 0 0 0 0 0 0 1 D D 
1 0 1 D D 1 1 0 D D 

D 0 D D 0 D D D 0 1 

D 0 D 0 D D D D 1 0 

Table 2: Forward implication table for NOT gate 

NOT 0 1 D D 
1 0 D D 

Using this notation we define a sensitized net as one whose value is either D, D, or D/D. 

Furthermore, if all the nets along a path in the circuit are sensitized, then the path is said 

to be sensitized. This 16-valued system exploits the linearity of XOR/XNOR gates 

during test generation. It also allows us to characterize all restrictions that are imposed by 

a fault as well as the particular circuit path chosen in order to propagate its effect. There 

are three distinct phases in the SIMPLE algorithm: 

(/) Pre-processing phase: In this phase we construct a set of trees based on the 

interdependence of circuit nets. Among other things, this forest will be used to easily 

identify which circuit nets must be sensitized by any test. The experiments for collecting 

useful contrapositive assertions are also conducted at the fanout stem (FOS) nets of the 

circuit in this phase. The contrapositive assertions can later be applied to determine net 



values that would otherwise not be able to be obtained by only the forward and backward 

implication procedures. 

(if) Propagation phase: In this phase we deliberately sensitize a single path from the 

fault site to a PO and find all the resulting deterministic implications, namely, the 

forward, backward, and contrapositive implications. In this process other paths may also 

be sensitized. Path selection is the only choice made in this phase ~ implications are 

based on all the constraints that must be satisfied in order to sensitize the chosen path. 

This is possible because of the completeness of the 16-valued system and the use of 

deterministic implication rules. 

(Hi) Enumeration phase: In general, the test cube constructed by the propagation 

phase will not yield a test — particularly because no arbitrary choices were made other 

than the selection of the sensitized path. Thus there may be gates whose input net values 

contain combinations capable of desensitizing the chosen path. In this phase we use an 

enumeration procedure to select values for the primary inputs (Pis) so that such 

combinations can never occur. 

2.1.1 Pre-Processing Phase 

Construction of Dominator Forest 

The importance of identifying nets that must be sensitized for a fault to be detected was 

first highlighted by Akers [5] and later by Fujiwara and Shimono [11]. As pointed out in 

TOPS [16], the concept of graph dominators [23] can be used to identify the nets which 

must be sensitized to detect a fault. In the context of test generation, we term the set of 

dominators of a net m as the set of all nets in the circuits which lie on every path from net 

m to any PO. By definition, net m is a dominator of itself; however, for ease of notation 

we define D(m) as the set of all dominators of m except m itself. To account for multiple- 

output circuits, the concept of a dominator tree can be extended to that of a forest. We 

present here a procedure to construct this forest for a given circuit. 



We construct a set of trees such that every signal line of the circuit corresponds to a node 

in one of the trees in the forest. We start by creating as many trees as there are primary 

outputs (POs), such that each PO corresponds to a root of a tree. However, new trees 

may be created during the procedure. Thereafter, each node which has not been marked as 

a leaf is inspected and the tree construction is continued as follows: 

(0 If the node m, being considered corresponds to the output line of a logic gate G, in 

the circuit, then every input line of G, becomes a child of this node mt. If the input line is 

a PI, then it is marked as a PI leaf. If the input line is a FOB, then it is marked as a FOB 

leaf. 

(if) If the node m, being inspected is a FOS, then wait until all the fanout branches 

(FOBs) of this FOS have been marked as FOB leaves. Find the first common ancestor of 

all these FOB leaves by traversing the tree(s) from these leaves to the root(s) of the 

tree(s). The necessary and sufficient condition for these FOB leaves to have a common 

ancestor is that they belong to the same tree. If such an ancestor exists, then mark w, a 

child of this ancestor node. If it does not, then start a new tree with w, as a root. In either 

case, mark m, as an FOS node - if it is also a PI, then it must be marked as a PI leaf also. 

The above procedure is continued until every line of the circuit becomes a node in some 

tree of the forest. 

The root of any tree in the constructed forest is either a PO or a FOS. If any tree has a 

single node, then this node must correspond to a PI which is also a FOS. The set D(m) 

contains all the nodes encountered when traversing the tree (containing node m) from m to 

the root. 



Collecting Contrapositive Logical Assertions 

In this section we give a summary of how using the contrapositive assertions of 

implications performed during the Pre-processing Phase can be used as an effective speed- 

up technique. The use of contrapositive logical identity to reduce the search space was 

first suggested by Schulz, et. al., in SOCRATES [21]. 

The contrapositive of the logic expression P => Q is the equivalent expression ~Q => ~P. 

Referring to the circuit of Fig. 1 we notice thatZj = 0 => Z= 0. Hence the contrapositive 

would yield Z= \=>X3= 1. However, if we require the value 1 at Z given that all other 

nets have the value 0/1, no deterministic change would be implied by the backward 

implication procedure alone. Note that in some cases a backward implication will yield 

the information provided by the contrapositive implication. For example, X3 = 0 => Y4 = 

0 yields Y4 = \=>X3 = 1. However, a backward implication of Y4 = 1 yields a 1 at X3, X4, 

and X5. Hence it is useful to identify the conditions under which a backward implication 

cannot yield the information provided by a contrapositive assertion. In such cases we 

may store this information for possible use later in the test generation process. 

The procedure presented in SOCRATES can only be used to backward imply the value 0 

or 1 because it is assumed in [21, Section 4.3] that the "injected target fault is not located 

in this part of the circuit and the effects of the target fault can not propagate to it as well." 

Furthermore, as mentioned in the learning procedure of [21, Fig. 5], the 0 and 1 

implications are performed for all the nets of the circuits. SIMPLE employs an improved 

learning procedure that performs the 0 and 1 implications for only the FOS nets of the 



circuits, and thus the number of implications performed and the number of assertions 

stored for future use are fewer than those of SOCRATES. The information obtained by 

our procedure is sufficient to generate the information that can be obtained by performing 

the 0 and 1 implications for the remaining nets because of the deterministic nature of our 

backward implication procedure. Furthermore, these stored 0 and 1 implications from 

FOS nets are sufficient to generate the useful contrapositive assertions for all 16 values of 

our logic system and for all nets of the circuit as long as the logical behavior of the 

corresponding portion of the faulty circuit is identical to that of the good one. Thus our 

use of contrapositive assertions will not be limited, as SOCRATES is, only to nets that 

are unaffected by the fault. 

In our 16-valued system, assume that the forward implication of a value Lj at net mi 

with 0/1/D/D at all other nets yields the value L2 at net m2. Thus when we require a value 

L '2 c (0/1/D/D - L2) at net m2, then the value of net mi cannot contain any element of 

Lj. To obtain the implication for all possible values of L] we need only to perform 

implications for each individual element of 0/1/D/D. Thus the procedure to obtain the 

implications for the 16-valued system, henceforth referred to as 16-VP, would be to set 

the value of net mj to each of the values 0,1, D and D, one at a time and with 0/1/D/D at 

all other nets, and observe the implied value at net m2. Each such implication is referred to 

as a 16-VP "experiment." We will show that the information yielded by 16-VP can be 

obtained from a simpler procedure that utilizes a 3-valued (0,1, 0/1) logic system. In this 

procedure, which we denote as 3-VP "experiment," we set the value of an FOS net mj to 

each of the values 0 and 1 one at a time and with 0/1 at all other nets, and observe the 

implied value at net m2. 

We now illustrate by an example that the results obtained from the 16-VP experiments 

on a FOS net mj can be deduced from those of the corresponding 3-VP experiments on the 

same FOS net. Consider the situation where a 0 and a 1 at net mj yields a 0 and 0/1, 

respectively, at net m2, the direct implication yielded from this experiment and the 

contrapositive of this implication are shown below. 



(1) mi = 0 -> m2  = 0  

m2 = 1 -» my =1 (2), contrapositive of direct implication (1) from 3-VP experiment 

Now if we are required to set net m2 to D = (1, 0) during test generation, by the 

application of contrapositive assertion (2) to each value of net m2 under the good and 

faulty circuit, we know that net m1 must be set to either (1, 0) or (1, 1), which is 

equivalent to the set 1/D in our 16-valued logic system. As another example, if the 

required value at net m2 is D = (0,1) during test generation, then net mi can only contain 

elements in the set 1/D, or equivalently {(1, 1), (0, 1)}. The following table summarizes 

the implied valued at net rrij for each different direct implication from the 3-VP 

experiments and each singleton value as a requirement at net m2. 

Table 3: Contrapositive implications at net mt 

Basic value 
at net m2 

mi = 0 -> m2 = 0 mi = 0 -> m2 = 1 mi = 1 -> m2 = 0 mi = 1 -> m2 - 1 

0 0/1/D/D 1 0/1/D/D 0 

1 1 0/1/D/D 0 0/1/D/D 
D 1/D l/D o/D 0/D 

D I/O 1/D 0/D 0/D 

The above table is derived under the assumption that the results of the 3-VP experiments 

conducted for the faulty circuit are the same as those of the good one. Therefore, we 

should avoid applying the contrapositive rules that are derived from 3-VP experiments 

whose results will be affected by the presence of the current target stuck-at fault. 

We now discuss the condition under which the information yielded by a contrapositive 

assertion cannot be obtained by a deterministic backward implication alone and hence 

should be stored for future use. Consider the situation where a singleton value Lj at net 

mi yields, using 3-VP, a singleton value L2 at the output net m2 of a gate G. The 

corresponding contrapositive assertion should be stored if and only if the value L2 can be 

obtained at the output of G by setting all its input to non-controlling values. 

Consequently, Table 4 shows the L2 and G combinations for which this implication 



should be stored for future use. In general, for the cases that satisfy the (L2, G) 

combinations given in Table 4, we will not be able to drop Z; from the set of all possible 

values at net m} when we require a value L '2 c (0/1/D/D - L2) at net m2 by using only 

the forward and backward implication procedures. 

Table 4: (L2, G) combinations that yield useful contrapositive assertions 

u Gate type 

0 OR NAND XOR XNOR 
1 NOR AND XOR XNOR 

Selection of pdcf 

The selection of the primitive D-cube of failure (pdcf) in DALG [19] may involve 

arbitrary choices which can result in mistaken decisions causing costly backtracking. We 

avoid this problem by introducing a fictitious gate G^at the site of the fault. If the fault is 

at net n, then we connect net «/to all signal lines which were previously connected to net 

n. If the fault site is a FOB which is identified by net n and net nh then the Gj is inserted 

in this FOB only. Accordingly, the unique pdcf depends only on the kind of stuck-at 

fault. 

nf 
fault site s-a-0      1        D 
fault site s-a-1      0        D 

Token Assignment 

The goal of this step is to identify which circuit nets cannot be affected by the fault. In 

order to convey this information, we associate with every net a Boolean token. This 

token is TRUE if and only if there exists a path from nfXo any PO which passes through 

this net. These tokens can be computed by a single forward pass through the circuit. 

10 



2.1.2 Propagation Phase 

In this phase we sensitize a single path from net «/to a PO, however, other paths may 

also get sensitized. In a manner analogous to DALG [19] we use test cubes whose entries 

reflect the current values of all nets during any stage of test generation. The entries of any 

test cube, tck, are elements of our 16-valued system. 

We initialize this phase by constructing tcj in the following manner: 

1. set nets n and «/to the values specified by thepcdf. 

2. Assign D/D to all nets belonging to the set D(«). 

3. Set all nets with FALSE token, except net n, to 0/1. 

4. Assign 0/1/D/D to all unassigned nets of the test cube. 

For each test cube tck generated at any stage of our algorithm, we find its corresponding 

deterministic test cube, d(tc0. We define a d(tc0 as one in which no entry can be changed 

without making an arbitrary choice for one or more net values. That is, all unique 

implications of the net values must be considered. The derivation of dftc/) thus involves 

the application of the forward, backward, and contrapositive implications to the current 

state, represented by tck, of the circuit under test generation. Rules for the contrapositive 

implication are summarized in the previous section for the Pre-Processing Phase. Rules 

for forward and backward implication procedures are given in the following section after 

we present the overall procedure for this phase. 

lfd(tcj) cannot be constructed because contradictions were encountered, then there exists 

no test for the fault. Otherwise we have a sensitized path from rif to all the FOB nets of 

the first FOS node (which could be n itself!) encountered in traversing the appropriate 

tree of the dominator forest from n to the root. If there is no FOS encountered, then we 

have a sensitized path from n to the PO corresponding to the root of the tree. 

11 



At this point we have to select one of the FOB nets, say the FOB net from net W/ to net 

m2 (denoted as m; -» m2), to extend the sensitized path. In this implementation of 

SIMPLE, the selection of FOB nets is guided by the observability measure introduced in 

COP [6], which is summarized in the following subsection. To obtain tc2 we should 

sensitize all nets belonging to the set D(w/ -> m2) - D(ri) by intersecting their values in 

d(tcj) with D/D. If any empty intersection results, then the sensitized path cannot be 

extended through net m2 and alternative paths should be investigated. Note that this step 

implicitly performs the equivalence of the X-path check [13] while setting up the gate 

outputs that should be sensitized. As stated earlier, we should then construct d(tc^. If 

contradictions occur while constructing dftcj, then an alternate path must be selected. 

Otherwise we have a sensitized path from nfat least to the FOB nets corresponding to 

the next FOS net or some PO. The process of extending the sensitized path by selecting a 

FOB net, constructing a tck and its corresponding d(tCi) continues until the algorithm 

establishes a sensitized path/?; from the fault site to any PO in a deterministic test cube 

d(tc). This test cube, d(tcß, is denoted as T/pj). If contradictions occur during this path 

extending process, then alternate paths should be investigated. If all possible paths result 

in contradictions, then no test exists. Note that all possible single paths need not be 

explicitly investigated to arrive at this conclusion. 

T/pj) represents all the constraints that must be imposed to sensitize path pt. Since the 

backward implication rule does not make any arbitrary choices, there may be gates where 

the output value is a proper subset of the value implied by the input values, i.e., the input 

values include combination(s) that will desensitize path pt. We define the output nets of 

such gates as variant nets. If a net is not a variant it is defined to be invariant. If there are 

no variant nets in T/pi), then we have already obtained a test for the fault. Otherwise the 

enumeration phase must be invoked to determine a test by converting all the variant nets 

in T/pj) to invariant ones. 
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Observability 

To define the observability measure introduced in COP [6], we first need to define the 

controllability measure that it is based on. Both measures are based on a probabilistic 

approach that uses the simplifying assumption that logic signal probabilities are 

statistically independent. 

For every PI, we set C°(PI) = C](PI) = 0.5. Also, for any net m, C°(m) = 1 -Cl(m). Let G 

be a gate with input nets /;, i2,..., i„, and the output net m. To express C°(m) in terms of 

C°(ij) and C'fij), forj e {1,2, ..., n}, we first define N° as the set of logic patterns that, 

when applied to the inputs of G, set net m to the logic value 0. For a = (oci, (X2, ..., a„) e 

N° define/?,-, 1 <j < n as follows: 

{C(/J),if«J=0 
»-[euM-i —<3) 

C°(m) can now be defined in terms ofph p2, ...,p„ as follows: 

C°(m)=yZflpJ (4) 

If net mi is a fanout branch whose corresponding stem is net m, then C°(mi) = C°(m) and 

C'tmO = C'fm). 

Now we are in the position of defining OB(m), the observability measure of net m. For 

every PO we define OB(PO) = 1. Now consider gate G. Let Sj be the set of logic patterns 

that, when applied to the input ih i2, ...,/,-.;, /}+/, ..., /„, sensitize the net mtoa change in 

the input z}. Then 

OB(ij) = OB(m)xJ,flPl (5) 
B<=Sj /=1 

Finally, if net mu m2,..., mr are fanout branches of a fanout stem m, then 

r 

OB(m) = 1 - n (1 - OB(m,))    (6) 
/=i 
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For any two nets m; and m2, if OB(m}) > OBfm^, then net m, is "easier" to observe then 

net m2. Thus, this measure of observability tends to increase with the ease of observing a 

net. 

2.1.3 Forward and Backward Implications 

In a d(tc0 all deterministic implications (i.e. making no arbitrary choices) of all entries of 

the test cube tck are fully considered. 

To construct d(tcj) from tcj we perform, in addition to contrapositive implications, 

backward and forward implications of all nets whose values in tcj are different from 0/1 

and 0/1/D/D and all other nets whose values change during this implication process. In the 

general case, when we are constructing d(tc0 from tck, we start by considering the forward 

and backward implications of the nets whose values in tck are different from those in the 

last successfully constructed deterministic test cube. During the construction of d(tc0 

from tck, if a backward or forward implication request results in a new value L ) for any 

net irij of the circuit, then we should update the corresponding net entry Lj by setting it to 

Lj n L ). If this intersection yields the empty set, then d(tC/,) cannot be constructed. 

In order to obtain d(tci) the process of forward and backward implications continues until 

no more changes occur in the values associated with any net. Note that this process is 

guaranteed to terminate in a finite number of steps because we are performing set 

intersections on finite sets. 

The rules for constructing deterministic test cubes must include the provision for 

appropriately handling the values of nets associated with fanout points. We now present 

the rules for forward and backward implication. 

Forward Implication 

The process of forward implication of the values associated with every net is done with 

the help of Tables 1 and 2. These tables are generalizations of the truth tables of the 

14 



respective gates. Note that these tables are sufficient because OR, NOR, NAND, and 

XNOR functions can be derived by appropriately using these tables. For gates with more 

than two inputs, the method adopted in SIMPLE is similar to that used by Akers [5]. We 

view every gate as being constructed out of two-input gates and use the existing values of 

a gate to generate a new value for the output. An n-input (n > 2) gate is decomposed into 

a cascade of n-1 two-input gates, as shown in Fig. 2. If the n-input gate is a NAND 

(NOR) gates, then Gi, G2, ..., Gn.2 are AND (OR) gates and Gn.i (which sources the 

output) is a NAND (NOR) gate. This decomposition is performed only for the 

propagation of logic values; faults are considered only on the n+1 signal lines with the 

original n-input gate. 

Suppose we are performing forward implications due to changes(s) in input(s) of a gate G 

whose output is net m. Let L0 be the "old" set of values associated with net m in the test 

cube prior to forward implication being performed. Let LN be the "new" value obtained at 

net m by using the new values of the inputs of G. Net m is then set to L0 n LN unless L0 

nLff-0, which would imply a contradiction. Four other situations are possible: 

1. L0 = LN. No further action is needed for this forward implication. 

2. L0<=LN (proper subset). We now have to consider the forward implication of the 

value of LN at net m on all gates driven by G. 

3. Lo => LN. We now have to perform a backward implication of the value Lo at net 

m. This may result in further changes in the inputs of gate G. 

4. Otherwise. Both forward and backward implications of the value L0 n LN at net m 

should be performed. 
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Backward Implication 

The process of backward implication involves determining the changes required at the 

inputs of a gate to satisfy a requested change at the output. A change in the value of a net 

means that one or more of the possible values associated with the net has been deleted. 

Consequently, an input change can be made only if the deleted value can never be used 

with the existing values at the other inputs to generate any of the requested output 

value(s). 

A general set of backward implication rules can be derived in terms of the input values 

and the requested output value. However, in a manner similar to that presented in [5] we 

consider each multiple-input gate as a cascade to two-input gates. The backward 

implication rules for a two-input AND gate is shown in Table 5. 
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Table 5: Backward implication table for AND gate0 

AND 0 1 D D 
0 0/1/D/D 0 0 0 

1 0 1 D D 
D o/D 0 1/D 0 

D 0/D 0 0 l/D 
U row header: existing value at one input, column header: requested value at the output 

Note that the element 0 has been included in this table to detect an unsatisfiable 

backward implication request. The complete table for all 15 non-0 values is obtained by 

the set union operation. The resulting table is equivalent to that proposed by Akers [5]. 

To perform backward implication for a two-input AND gate, we reference the table using 

the requested value at the output and the existing value at one input to generate the value 

of the other input. Since the XOR gate is linear, its forward implication table in Table 1 

can be used for backward implication also. Regardless of the type of gate in question, the 

value generated by the appropriate table must be intersected with the existing value of the 

input. Analogously, the new value of the input and the requested value of the output 

must now be used to generate the new value of the other input. For example, consider a 

two-input gate whose input values are Z; and L2. If the requested value of the output of 

the gate is LG, then we use LG and Lj to determine the new value L '2 of the second input 

and then L '2 and LQ to determine the new value L'; of the first input. 

As stated before, any gate with more than two inputs is represented as a cascade of two- 

input gates. Consider an n-input gate G represented as a cascade of n-1 two-input gates 

Gi, G2,..., Gn.2 and Gn_i, with net numbers as shown in Fig. 2. Assume that the values at 

nets 1, 2, ..., n are Xh X2, ..., Xn respectively. We first use forward implication of these 

values to compute Yl5 Y2,..., Yn.2, the values of nets n+1, n+2, ..., n+(n-2) respectively. 

Then using the value Z, which is the required value at the output of gate G, we apply the 

backward implication rules for gate Gn.i to obtain Zn_2 and X'n, the new values of nets 

n+(n-2) and n respectively. Having done that, we proceed backwards and apply the 

backward implication rules for all the gates, one at a time, ending with gate Gi. Since the 
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binary operation represented by any non-inverting logic gate is associative, the order in 

which the input X; are cascaded is irrelevant. 

It is shown in [1] that the above procedure will stabilize in a single pass, unlike the 

approach followed in [5] which may require several passes. 

2.1.4 Enumeration Phase 

The goal of this phase is to obtain a test by specifying the unassigned Pis in T/pJ such 

that all nets are invariant and have values that are subset of their corresponding values in 

We choose an unassigned PI J; in T/pi) and assign a logic value (0 or 1) to it, thereby 

creating a new test cube which we denote by tc/ph 1). Now we find its corresponding 

deterministic test cube d(tcj(pi, 1)) and update its list of variant nets (note that new 

variant nets may be created). However, if d(tc/ph 1)) cannot be obtained due to some 

contradiction, then we complement the entry for /; in tc/pb 1) and construct its 

corresponding d(tc/pi, 1)). If this also leads to a contradiction, then there exists no test 

corresponding to T/pJ. If we are successful in constructing d(tc/pif 1)), we now assign a 

logic value to some other unassigned PI I2, thereby creating tc/pj, 2). As before, we must 

construct d(tc/ph 2)) and update its list of variant nets. This procedure is continued and 

we traverse the decision tree, in a manner analogous to PODEM [13], until one of the 

following two conditions occur: 

• The list of variant nets corresponding to some d(tc/phj)) becomes empty. This 

indicates the values of the Pis in d(tc/phj)) represent test(s) for the fault. 

• The decision tree is exhausted, i.e., no test exist. 

In this implementation of SIMPLE, the selection of Pis is performed by a backtrace 

procedure that is guided based on the controllability measure proposed in SCOAP [14]. A 
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short description of how to calculate this measure is given in the following subsection. 

The description of the backtrace procedure is taken from [10]. During the backtrace 

procedure, objectives are successfully transferred from gate outputs to gate inputs until a 

PI is reached. This transfer of objectives is performed using the "easy/hard" heuristic 

described as follows. When the current objective is to set the output of a gate to a logic 

value that can be achieved by setting one of its inputs to a controlling value (0 for 

OR/NOR, 1 for AND/NAND), an input which is identified as the "easiest" to control 

(according to the measure being used) is chosen. On the contrary, if such objective can 

only be achieved by setting all the inputs of the gate to a non-controlling value (0 for 

OR/NOR, 1 for AND/NAND), then an input which is identified as the "hardest" to 

control is chosen. This is done so that an early determination of the inability to satisfy an 

objective will save the time that would be wasted in attempting to set the remaining 

inputs of the gate. If the current objective is the output of an XOR/XNOR gate, an input 

which is "easiest" to control is selected. 

Controllability 

SCOAP associates with every net m two integers denoted by C°(m) (O-controllability) 

and C'(m) (1-controllability). For every PI, we set C°(PI) = C](PI) = 1. Now let G be a 

gate with n input nets ilt i2, ..., i„, and the output net m. Table 6 shows how to calculate 

C°(m) and C^m) as a function of the O-controllabilities and 1-controllabilities of these n 

inputs. 

Table 6: Rules to calculate the controllability in SCOAP 

Gate type CM C'M 
AND l+.Mtf     {C\ij)} i+Xc*(/7) 

7=1 

OR 
i+£c°(iy) 

7=1 

1+ MIN     {C'O',)} 
je{l,2r-n)                   J 

XOR« 1 + MIN{C(i,) + C"(i2), C'(i,) + 
C(i2)\ 

1 + MIN{C"(i,) + C'(i2), C'(ii) + 
C°02)} 

U Only for 2-input XOR gate 
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Finally, if net mj is a fanout branch whose corresponding stem is net m, then C°(mi) = 

C°(m) and Cl(md = C](m). 

For any two nets mj and m2, if C°(mj) < C°(m^) {Cl(mi) < Cl(m£), then we say that W; 

is "easier" to control then net m2 with respect to logic value 0(1). Thus, this measure of 

controllability increases with the difficulty of controlling a net. 

2.2 Parallelization of SIMPLE 

In this section we describe the approach used to parallelize our sequential implementation 

of SIMPLE. 

Simulation results indicated that more than 95% of the running time of our sequential 

implementation of SIMPLE was spent in the enumeration phase. Thus we parallelized 

only the enumeration phase of our algorithm. 

Assume that there are n = 2k processors available in the computing environment during 

the execution of the parallel version of SIMPLE. As described in Section 2.1.4 the 

enumeration procedure searches the input pattern space by assigning logic values to the 

undetermined Pis one at a time. We can parallelize this search procedure by partitioning 

the input pattern space into 2k subspaces with equal number of patterns and assigning 

each subspace to a processor. The partitioning can be done by selecting k undetermined 

Pis, and each subspace is identified by a unique input combination on these k Pis. After 

partitioning the pattern space, all the 2k processors can simultaneously search their 

assigned subspaces using the enumeration procedure in Section 2.1.4. The selection of the 

k Pis is guided by the controllability measure described in the section for the enumeration 

phase. 
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2.3 Experimental Results for SIMPLE 

In this section we present some representative experimental results for our parallel 

implementation of SIMPLE on the ISCAS '85 benchmark circuits [7]. The experiments 

were conducted on a network of Sun workstations. Below shows the timing performance 

of our parallel program using C432 and C6288 as the target circuits for test generation. 

Fault collapsing techniques [8] were employed to reduce the size of the stuck-at fault sets 

for the benchmark circuits. To measure the speedup performance, the simulation run for 

each of the circuits was repeated with different number of processors involved; i.e., 1, 2, 

4, 8, 16, and 32 processors. The performance of this parallel implementation was 

measured in process time, which, in addition to the theoretical efficiency of the 

parallelization scheme, is also affected by practical considerations such as the different 

CPU speeds of the involved machines and process assignment policy in PVM. However, 

the results clearly show again the effectiveness of this parallel implementation reported in 

[4]- 

Fig. 3: Timing Results for c432 

SEC 
160 
140. 
120. 
100. 
80. 
60. 
40. 
20 . 

I    I   I   I   I    I    I   I   I T ° 
2 4 6  8 101214161820222426283032 

Number of Processors 

Fig. 4: Timing Results for C6288 
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3. Delay Fault Test Generation 

Ascertaining proper operation of digital   circuits requires verification not only of the 

correct functional operation but of the correct operation at the desired clock rates as well. 
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Failures causing logic circuit to malfunction at desired clock rates or to not meet timing 

specifications are called delay faults. Delay fault testing is gaining considerable importance 

with the increased susceptibility to manufacturing defects that increase circuit delays. 

Moreover, logic designs optimized for gate count, area, or power tend to have too many 

gates on critical paths, thus making them susceptible to delay faults. Two different delay 

fault models, the gate delay fault model and the path delay fault model, have been 

proposed in the literature. The gate delay fault model has been introduced to model those 

defects that cause an actual propagation delay through a distinct gate to exceed its worst- 

case specification [24]. Formerly, it was also referred to as the transition fault model, 

which merely allows a qualitative consideration of gate delay faults of large size [25]. 

Since being restricted to large-sized delay faults is neither sufficient nor satisfactory, 

manifold research activities have recently been undertaken in order to explicitly consider 

the actual size of gate delay faults during test generation and fault simulation [26]. 

In contrast, in order to overcome the main deficiency associated with the gate delay fault 

model, the path delay fault model features the advantageous capability of modeling 

distributed failures, which are typically caused by statistical variations in the 

manufacturing process [27]. In addition, it is extremely useful for circuit designs based on 

statistical timing, since those circuits are known to have non-zero probability for the 

occurrence of delay faults, even when all gate delays are within their specified worst case 

ranges. The path delay fault model therefore is a more realistic and useful model for delay 

faults. 

For the discussion in the following sections, we now define a few terms related to path 

delay fault test generation. A path delay fault can be specified by a functional path which 

indicates the structural path from a PI to a PO in the circuit and the desired transitions 

along that path. We call an input of a gate on a path delay fault an off-path sensitizing 

input if it is not on the structural path that constitutes that fault. The fault universe for 

the path delay fault model, which comprises all the functional paths in the circuit under 

test, may grow exponentially with the circuit depth; therefore, delay testing based on 
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path delay fault model must focus on a tractable subset of the fault universe. The most 

popular approach to this problem suggests concentrating on the longest paths in the 

circuit under test in terms of normal delays. 

Our approach is independent of any specific delays in the circuit, except in the selection 

of the target fault set (i.e., the "longest" paths). In this report, we employ the Unit Gate 

Delay Model in our calculations. In this model, every gate and every PI contributes a unit 

delay (in the normal circuit) to a signal transition that propagate through it. Arbitrarily, 

we consider "unit delay" to be 1 ns. In this way, our results are independent of any 

particular cell library or circuit layout. Of course, for any case where the actual rising and 

falling delay values are known, these values can be incorporated into our delay 

calculations. 

The remaining sections the PDFTG algorithm are organized as follows. Section 3.1 

illustrates the hardware model for delay fault testing and categorizes the test patterns for 

path delay faults. Sections 3.2 to 3.4 describe the major components of our PDFTG 

algorithm. An algorithm outline and a brief discussion of the compaction procedure are 

presented in section 3.5. The experimental results for the sequential and parallel 

implementation of the PDFTG algorithm are shown in section 3.6 and 3.7 respectively. 

3.1 Hardware Model and Robust Tests for Path Delay Faults 

It is well know that, except when dealing with dynamic logic, testing delay faults requires 

two patterns rather than a single one as in the case of stuck-at fault testing. Taking the 

generally accepted hardware model [29, 30] illustrated in Fig. 5 as the basis for further 

discussion, we assume that the initialization vector Vi is loaded into the input latches at 

time T0. Subsequently, after all signals of the circuit under test have been allowed to 

stabilize under Vi, the propagation vector V2 is applied to the Pis of the circuit at time Ti 

by pulsing clock Ci, Finally, the logic values at the POs are sampled into the output 

latches at time T2 = Ti + Tc by activating clock C2, where Tc represents the system clock 
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interval at the desired functional clock rate. We assume that the input latches are 

glitchless, namely, there are no static hazards, and the combinational circuit under test 

generation is represented by a circuit network with the basic gates AND, NAND, OR, 

NOR, XOR, XNOR, and NOT as the components. 

Figure 5. Hardware model for delay fault testing 
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The test patterns for the delay faults can be categorized into three classes: hazard-free, 

robust [29] and non-robust [30] test patterns. A hazard is created at an output of a gate 

when two or more inputs change their values simultaneously, and the change in one input 

has reverse polarity in comparison with another input. A hazard-free test of a path 

introduces no transitions on the off-path sensitizing inputs. Hence, a circuit fails a 

hazard-free test if and only if it contains the delay fault. The problem with this class is 

that it is rarely the case that there exists a hazard-free test for a delay fault. Robust testing 

relaxes the hazard-free restriction on the off-path sensitizing inputs while still maintaining 

the property that the faults detected by them are not invalidated by delays along other 

paths. In other words, if a circuit contains a path delay fault then that circuit will fail the 
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application of a robust test pattern for that fault. Finally, a test pattern of a delay fault is 

called a non-robust test if it provokes the desired transitions on that path and all off-path 

sensitizing inputs assume non-controlling final values. Such a test can be invalidated by 

delays along other paths. 

Based on the hardware model and the path delay fault model discussed above, we 

concentrated our efforts on the task of devising and implementing an algorithm that, given 

a subset P of the path delay fault universe of a circuit under test, finds a robust two- 

pattern test <Vi, V2> for every robustly testable fault in P. The test generation problem 

for a specific functional path can now be viewed as a search problem in the two-pattern 

space, defined by the Pis, for a pattern so that the requirements of robustness and 

propagation of the transitions specified by the functional path are satisfied. 

3.2 Logic System and Requirements for Robust Tests 

Delay fault testing involves considering the values of a net provoked by the input pattern 

pair V! and V2 which comprise the two-pattern test. This can be done by representing the 

value of a net as an ordered pair (bi, b2) where bi and b2 are the values of the net in 

response to the input pattern Vi and V2 respectively. Using this representation the value 

of a net can be one of the elements of the set {(0, 0), (0, 1), (1, 0), (1, 1)}. Note that 

element (0, 1) indicates a rising transition and (1,0) a falling transition at a net in the 

circuit. The distinction between transitional and non-transitional values is essential for the 

dynamic test compaction procedure mentioned at the beginning of this report. The 

presence of hazards, in the context of delay fault testing, requires that we make the 

distinction between stable and hazardous values. Consequently, instead of the four basic 

elements of the above set we will now have six basic values of a net. These are the 

elements in the basic set B = {(0, 0)s, (0, 0)h, (0,1), (1, 0), (1, l)s, (1, l)h}, the subscripts 

s and h indicate whether a value is stable or hazardous respectively. We use the following 

notation to represent the basic set B = {0S, 0h, D, D, ls, lh}, where D, D represent (0, 1) 
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and (1,0) respectively. In the process of generating test patterns for a circuit, it might not 

be possible to uniquely specify the value of a net as one of the elements in the basic set. 

However, we may have already known that a net cannot assume one or more of the values 

in the basic set. We incorporate this information by defining the value of a net as a subset 

of B, thus, there are 64 possible values a net can assume in our logic system, which are 

elements in the power set of the basic set P(B). The basic set itself hence represents the 

totally unknown value in our logic system. 

The robust property for a test for a path delay fault indicates that the presence of the 

target fault will be detected by an application of the test pattern even in the presence of 

the effects of other gate transition delays in the circuits. The value of the off-path 

sensitizing inputs to the gates on the target path should be restricted during test 

generation so that the above robustness property can be satisfied. Take an AND gate 

with inputs A and B, and output C as an example. Suppose a falling transition (D) at 

input A is required on the functional path under test generation, and there is another 

falling transition at the off-path sensitizing input B. If the transition at input B occurs 

before that at input A, the falling transition at output C will be triggered by the one at 

input B, rather than at input A. Thus, in this case the off-path sensitizing input B needs 

to be set to ls. On the other hand, if we are trying to propagate a rising transition (D) 

through an AND gate, then since the D at the output is triggered by the slowest rising 

transition at the inputs, we could allow the off-path sensitizing inputs to have any 

elements in WD. Similar results for OR gate can be derived from the principle of 

duality. However, analysis of propagation of both rising and falling transition from an 

input of XOR gate to the output shows that the off-path sensitizing inputs must have 

either ls or 0S, depending on the required transition at the output. Table 7 summarizes the 

required values at the off-path sensitizing inputs for the robust test. 
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Table 7: Required values at the off-path sensitizing inputs 

Input transition on the 
runctionpath 

AND 
NAND 

OR 
NOR 

XOR 
XNOR 

D Is Os/Oh/D Os/ls 

D yih/D (V0h Os/ls 

3.3 Forward and Backward Implication Procedures 

As mentioned above, test generation for a path delay fault of a circuit involves a search in 

the pattern space defined by the Pis. Our PDFTG algorithm directs the search for a 

robust test by using deterministic as well as heuristic techniques based on those for 

SIMPLE. To guide the search deterministically, local forward and backward implication 

are executed whenever possible. As emphasized and substantiated by the work in [10, 

11], the efficiency of any deterministic ATPG for stuck-at faults, as well as for path 

delay faults, depends strongly upon the power of its implication procedures, whose basic 

task consists of the immediate assignment of uniquely determined values to the 

corresponding nets. As shown in [31, 32], the local implication procedures owe their 

power to the logic system employed in the algorithm. The authors of [31, 32] introduced 

a criterion called completeness, which, for a given basic set of logic values B, allows an 

efficient determination of a minimal subset of the power set of the basic set P(B) as a 

logic system for test generation while maximizing the implication power. The 

completeness criterion essentially defines the ability to express all possible results of all 

the basic logic functions, for the purpose of test generation, using exactly the elements in 

a given logic value set. This criterion thus does not take into account the possible values 

generated from backward implication of all the basic logic functions. The proposed 64- 

valued logic system is complete in terms of both the forward and backward implications 

since it is exactly the power set of the basic set. 

Below are the tables for the forward and backward implication used in the PDFTG 

algorithm, with input values from the basic set {0S, 0h, D, D, ls, lh}. We call implications 
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resulted from the applications  of forward  and backward implication tables direct 

implications. 

The implication procedure is identical to the one for SIMPLE, except the tables used. 

Table 8: Forward implication tables for AND and XOR gate 

AND Os Oh Is lh D D XOR 0. Oh Is lh D D 
os 0S Os 0S Os Os Os Os Os Oh Is lh D D 
oh Os Oh Oh Oh Oh Oh Oh Oh Oh lh lh D D 
Is 0S 0h Is lh D D Is Is lh Os Oh D D 

lh Os Oh lh lh D D lh lh lh Oh Oh D D 

D Os Oh D D D Oh D D D D D Oh lh 

D 0S Oh D D Oh D D D D D D lh Oh 

Table 9: Forward implication table for NOT gate 

NOT Os Oh Is lh D D 
Is lh 05 Oh D D 

Table 10: Backward implication table for AND gate 

AND Os Oh Is lh D D 
0S Os/Oh/D/D/ls/lh 

0 0 0 0 0 

Oh o5 Oh/D/D/Vlh 
0 0 0 0 

Is Os Oh Is lh D D 
lh 0S Oh 0 ls/lh D D 
D 0S Oh/D 0 0 ls/lh/D 0 

D 0S Oh/D 0 0 0 ls/lh/D 

U row header: existing value at one input, column header: requested value at the output 

Table 11: Backward implication table for XOR gate 

XOR Os Oh Is lh D D 
Os Os Oh Is lh D D 
Oh 0 Os/Oh 0 ls/lh D D 
Is Is lh 0S Oh D D 

lh 0 ls/lh 0 Os/Oh D D 

D 0 D 0 0 Os/Oh ls/lh 

D 0 D 0 D ls/lh Os/Oh 

Ü row header: existing value at one input, column header: requested value at the output 
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3.4 Derivation of Static Learning Tabie 

In addition to the local implication procedure discussed above, as in SIMPLE, PDFTG 

also utilized the concept of static learning by the application of the contrapositive logical 

identity introduced in [21] to restrict the search of a test pattern for a functional path. 

From the discussion of the basic value set for our logic system, we know that it is the 

requirement that we make the distinction between the stable and hazardous values that 

leads us to the formation of the basic set of six elements. The basic set is exactly the same 

as that used in the analysis of static hazard [28, 33], which can be represented by 3-bit 

sequences. Following is a table for the correspondence between the 3-bit sequences and 

the elements in our basic set. 

Table 12: Correspondence of the elements in the basic set and the 3-bit sequence 

Value SequenceCs) Meaning 

05 000 Static 0 
oh 010 Static 0-hazard 
ls 111 Static 1 
In 101 Static 1-hazard 
D {100, 110)= 1x0 Falling transition 

D {001,011} =0x1 rising transition 

The first bits in the sequences indicate, in terms of our hardware model, the values at time 

Ti. The second bits are the values between time Ti and T2, and the third bits show the 

values at time T2. Notice that 0h corresponds to the sequence 010, rather than 0x0, since 

in our case 0x0 means the set 0s/0h. The value 1 at the second bit of the sequence for 0h 

actually denotes the possibility of value 1 occurring between Ti and T2. The view of 

elements in the basic set as 3-bit sequences, and the assumption that the circuit under test 

generation is combinational, suggest that we use the results of the 3-VP experiment, as 

defined in the discussion of SIMPLE, to find the contrapositive implications for our 64- 

valued logic system. As an example, suppose that we do a 3-VP experiment with the 

values at net N! set to 0 and the value at net N2 is 0 after the implication. The direct 
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implication obtained from the experiment and the contrapositive of this implication are 

shown below. 

N, = 0 -> N2 = 0 (7) 

N2 = 1 -> Ni = 1 (8), contrapositive of direct implication (7) from 3-VP experiment 

Now if we are required to set net N2 to ls during test generation, by the application of 

contrapositive implication (8) to each bit in the corresponding bit sequence 111 for the 

value ls, we know that net Ni must also be set to ls. As another example, if the required 

value at net N2 is D = 1x0 during test generation, then N2 can only contain elements in lxx 

= ls/lh/D, where lxx is obtained from the application of rule (8) to 1x0. The following 

table summarizes the implied value at net Nj for each direct implication from the 3-VP 

experiments and each element in the basic set as a requirement at net N2. 

Table 13: Contrapositive implications at net Ni 

Basic value 
atnetN2 

Ni = 0->N2 = 0 '■.Ni-'0-»N2=l Ni = 1 -> N2 = 0 N, = 1 -> N2 = 1 

0S (VOh/D/D/Vlh Is Os/Oh/D/D/n/ih 0s 

oh Oh/D/D/ls/lh ls/lh ojD/Dnjih 
Os/Oh 

Is Is 0s/0h/D/EJ/ls/lh 0s (VC/D/D/IA 
lh ls/lh Oh/D/D/yih Os/Oh 0s/0h/D/D/lh 

D D/i,/ih D/is/ih Os/Oh/D 0s/0h/D 

D D/is/ih D/Vlh 0s/0h/D Os/Oh/Ü 

3.5 Algorithm Outline and Test Compaction 

We now present the outline of our algorithm for generating a robust test pattern for a 

functional path and discuss the way test compaction is incorporated during test 

generation. 

30 



1. Initialization - Initialize the nets on the functional path to the required transitions and 

the off-path sensitizing inputs to the values required to robustly propagate the 

transitions. Set all the other nets to the unknown value. 

2. Implication - Use forward and backward implications, along with the contrapositive 

implications we found in the static learning procedure, to determine the values of 

other nets in the circuit. If an inconsistency occurs, then the fault is not robustly 

testable. 

3. Enumeration - Justify any variant nets in the circuit by invoking the enumeration 

procedure that is identical to that for SIMPLE. 

4. If we exhaust the test pattern space defined by those Pis after step 2, then the fault is 

not robustly testable. If there are no variant nets left, then the pattern at the Pis 

constitutes a robust test pattern for the current path delay fault. 

When the algorithm succeeds in finding a test pattern for the current target fault, often 

there still remain unassigned Pis. We further process the other faults with the constraints 

found for the current target fault remaining at the Pis. The algorithm attempts to include 

as many additional faults as possible until it exhausts the set of unprocessed faults. As 

noted in the discussion for the path delay fault model, the fault universe is often very 

large. The situation remains even if we only take a subset of the fault universe as the fault 

set for test generation. In order to effectively cope with the typically huge number of 

paths in the fault set, we have adopted a path tree structure [32] to store and examine the 

fault set efficiently. The basic idea for this stems from the fact that a path delay fault can 

be specified in two parts, one for the structural path in the circuit it is on, the other for 

the required transitions on the structural path. Thus parts of paths that are common to 

many paths from a specific PI can be compactly stored as a tree structure rooted at that 

PI. 
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3.6 Experimental Results for the Sequential PDFTG 

With the incorporation of test compaction in the algorithm, the test generation process 

does not need to rely on a fault simulator to identify additional testable path delay faults 

after creating a test pattern for the current target fault. To assess the efficiency aspects of 

the algorithm, we have performed robust test generation for the ISCAS '85 standard 

benchmark circuits on a Sun "Ultra 1" workstation with one Sparc CPU using the 

sequential version of the algorithm. The subset of the path delay fault universe for each 

benchmark circuit was constructed by selecting all the functional paths whose lengths, in 

terms of unit delay, are greater than or equal to a threshold value. The table below depicts 

the characteristics of the fault sets of the benchmark circuits selected for the test 

generation experiments. 

Table 14: Results from Fault List Generation 

Circuit Name Number of 
Faults 

Number of 
Selected Faults 

Maximum 
Path Length 

Path Length 
Threshold 

C432 583652 200000» 18 16 
C499 795776 249984« 12 12 
C880 17284 16194 25 12 

C1355 8346432 150000» 25 25 
C1908 14588114 98144 41 36 
C2670 1359920 103360 33 30 

C3540 57353342 59840 48 45 

C5315 2682610 60940 50 45 
C6288 overflow 27000» 125 125 
C7552 1452988 91664 44 38 

Ü The total number of faults whose length are not less than the threshold is greater than the number of selected faults 

Table 15 shows the results of this experiment. A few remarks on the meaning of some 

columns are followed: column "Redundant Paths" indicates the number of functional 

paths that are not robustly testable, column "Compacted Tests" represents the number of 

test patterns generated for all the testable paths. 
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Table 15: Results from Test Generation with Compaction 

Circuit 
Name 

Size of 
Test Set 

Redundant 
Paths 

Redundancy 
Ratio 

Testable 
Paths 

Compacted 
Tests 

Compaction 
Ratio 

Time (sec) 
ü 

C432 200000 199978 99.9% 22 6 27.27% 153.880 
C499 249984 229504 91.8% 20480 10240 50% 7079.802 
C880 16194 1201 7.42% 14993 1392 9.28% 1077.470 

C1355 150000 150000 100% 0 0 NA 34.710 
C1908 98144 98048 99.9% 96 94 97.92% 1222.600 
C2670 103360 103360 100% 0 0 NA 379.680 
C3540 59840 59840 100% 0 0 NA 277.760 
C5315 60940 60940 100% 0 0 NA 174.930 
C6288 27000 27000 100% 0 0 NA 47.590 
C7552 91664 91664 100% 0 0 NA 2870.620 

Ü in terms of CPU sec 

For all the circuits considered here, the algorithm completed the process of test generation 

and compaction in remarkably small amounts of CPU time, in comparison with the time 

for stuck-at fault test generation. However, it is noticeable that the redundancy ratio, 

which is the ratio of the number of robustly redundant path delay faults to the total 

number of processed faults, is very high in almost all of the benchmark circuits; only 

C880 has a ratio less than 90%. This phenomenon suggests that these circuits are not 

designed with features to enhance robust testability for the path delay fault model. 

Nevertheless, the compaction ratio, which is the ratio of the number of generated test 

patterns to the number of robustly testable paths, shows that the algorithm generated a 

small set of test patterns efficiently for each circuits with low redundancy ratio. It would 

be interesting to compare the timing results with those in [31, 32]. However, since the 

criteria to select the target faults in our experiment are different from those in [31, 32] we 

can not make the comparison. 

3.7 Parallelization of PDFTG 

Another experiment for the sequential version of PDFTG, without the compaction 

procedure on the same sets of path delay faults, was conducted on the same Sun 

workstation to analyze the distribution of the test generation time of the selected faults. 
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The results summarized in Table 16 showed that, contrary to the cases of stuck-at fault 

test generation, the total execution time for each of the target circuits was not determined 

mainly by a very small fraction of the target fault set. Therefore, it might be more efficient 

to parallelize PDFTG by partitioning the target fault list instead of the search space as in 

the parallelization scheme for SIMPLE. This experiment also shows an interesting and 

surprising fact: not only are almost all the faults in the fault set of nearly every ISCAS 

'85 circuit not robustly testable, but also each of these faults can be identified within a 

very short time. Design methodologies that increase the robust testability of at least the 

timing-critical functional paths must be applied for the automatic test generators to be 

applicable to the problem of testing the robust path delay faults. 

Table 16: Results from Test Generation without Compaction!) 

Circuit 
Name 

Size of 
Test Set 

Redundant 
Paths 

Max Tm for 
Redundant 

Paths 

Total 
Process 
Time 

Time for 
Redundant 

Paths 

Timing 
Ratio 

C432 200000 199978 0.02 154.280 154.230 99.9% 
C499 249984 229504 0.02 401.550 347.280 86.5% 
C880 16194 1201 0.09 67.860 32.130 47.3% 

C1355 150000 150000 0.01 40.510 40.510 100% 
C1908 98144 98048 10.61 1221.200 1220.690 99.9% 
C2670 103360 103360 0.02 378.940 378.940 100% 
C3540 59840 59840 0.02 279.910 279.910 100% 
C5315 60940 60940 0.02 172.810 172.810 100% 
C6288 27000 27000 0.01 47.179 47.179 100% 
C7552 91664 91664 0.08 3052.440 3052.440 100% 

Ü in terms of CPU sec 

A parallel version of PDFTG based on the scheme of partitioning the target fault lists was 

implemented using the PVM communication package. The timing results of the 

experiment for this parallel PDFTG on the ISCAS '85 circuits are presented in Table 17, 

and the performance of this parallel scheme is illustrated in the speedup graphs from Figs. 

6-15. Each row in Table 17 shows the execution time of the parallel PDFTG for the 

corresponding circuit using the same fault set as in the experiment for the sequential 

program. The performance of this parallel implementation was measured in real time, 
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which can be affected by the intrinsic efficiency of the parallelization scheme as well as 

practical considerations such as the communication overhead and the load on each 

machine. In the multi-user, heterogeneous computing environment that was available for 

this experiment, it was impossible to completely isolate or even average out the effects of 

these factors. However, the results clearly show the effectiveness of this parallel 

implementation. 

Table 17: Timing results for parallel version of PDFTGÜ 

..# of processors 1 "..,: 2 4 8 12 16 

C432 2432.000 1344.000 640.000 448.000 320.000 256.000 
C499 27618.537 4352.000 1920.000 1088.000 896.000 576.000 
C880 701.718 341.301 233.539 108.499 78.518 50.368 
C1355 850.355 388.251 247.761 223.455 209.913 192.000 
C1908 12756.544 5238.482 2192.936 1352.781 910.995 842.949 
C2670 3274.054 1410.807 1107.352 569.559 361.558 344.342 
C3540 4074.841 1530.686 948.049 403.330 347.612 310.847 
C5315 1554.499 1090.279 666.914 346.219 329.274 270.903 
C6288 1589.463 746.037 451.827 317.276 299.518 271.827 
C7552 18914.391 10838.726 8161.644 3010.675 2513.987 1975.421 

Q in terms of sec 

Fig. 6: Timing Results for c432 Fig. 7: Timing Results for c499 
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Fig. 8: Timing Results for c880 Fig. 9: Timing Results for c1355 
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4. Discussion 

Both stuck-at fault and delay fault testing have been gaining importance due to the ever- 

increasing VLSI circuit complexity. It is also well known that the test generation 

processes for stuck-at faults and delay faults are very time-consuming. In this report we 

have given a concise description of SIMPLE which employ various algorithmic and 

heuristic techniques, such as contrapositive implication and testability measures, to 

enhance the performance of test generation for stuck-at faults in combinational circuits. 

The power of deterministic implication was fully exploited through our 16-valued logic 

system. The efficiency of our simple and yet effective parallelization scheme was 

demonstrated again from our experimental results. This near-linear speedup can be 

attributed to the conclusion of our analysis of the behavior of the sequential 

implementation: the enumeration phase is responsible for more than 95% of the execution 

time for the faults that are hard to generate tests for. In turn, the test generation process 

spends a high percentage of its time for these "hard" faults; most of them are in fact 

redundant. In addition, our parallelization scheme incurs no communication overhead 

among the processors. 

Our algorithm to generate test patterns for path delay faults followed the strategies and 

techniques similar to those used in SIMPLE. Furthermore, the ability of test compaction 

was incorporated into the algorithm to take advantage of the freedom provided by the 

unassigned input after constructing a test for the current target fault. The logic system in 

this algorithm was defined to maximize the inference power of both the forward and 

backward implications. The static learning procedure was revised to take into account the 

properties of our logic system. The performance of this algorithm has been demonstrated 

by the impressive results of the experiments on the ISCAS '85 benchmark circuit. The 

experiments also show an interesting and surprising fact that almost all the faults in the 

fault set of nearly every target combinational circuit are not robustly testable and each of 

these faults can be identified within a very short  time. This phenomenon suggests that a 
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lot of circuits are not designed with features to enhance the robust testability for the path 

delay fault model. Design methodologies that increase the robust testability of at least the 

timing-critical functional paths must be applied for the automatic test generators to be 

applicable to the problem of testing the robust path delay faults. 

The parallelization scheme of partitioning the target fault list, instead of the search space, 

among the processors for the algorithm has showed its effectiveness from the speedup 

figures for the experiments of our parallel implementation of PDFTG on the ISCAS '85 

benchmark circuits. 

These two parallel implementations of our test generation algorithms for stuck-at faults 

and path delay faults, together with the versatile PVM communication package, provide 

us with an efficient prototype of a test generation system that exploits the parallel 

processing power in the common heterogeneous computer network environment. 
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