
RL-TR-97-230
Final Technical Report
October 1997

DELAY FAULT AND STUCK-AT FAULT
TEST GENERATION USING
MULTIPROCESSING

Syracuse University

Chien-Hsing Wu and Carlos R.P. Hartmann

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

Rome Laboratory
Air Force Materiel Command

Rome, New York

This report has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RL-TR-97-230 has been reviewed and is approved for publication.

APPROVED:
WARREN H. DEBANY, JR.
Project Engineer

ßc*/\)\>
FOR THE DIRECTOR:

JOHN J. BART, Chief Scientist
Electromagnetics & Reliability Directorate

y^

If your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization, please
notify RL/ERDA, 525 Brooks Road, Rome, NY 13441-4505. This will assist us in
maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing
the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-01881, Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank/ 2. REPORT DATE

October 1997
3. REPORT TYPE AND DATES COVERED

Final Aug 94 - Dec 96
4. TITLE AND SUBTITLE

DELAY FAULT AND STUCK-AT FAULT TEST GENERATION USING
MULTIPROCESSING
6. AUTHOR(S)

Chien-Hsing Wu and Carlos R.P. Hartmann

5. FUNDING NUMBERS

C - F30602-94-1-0005
PE -62702F
PR -4600
TA -AO
WU-A4

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Syracuse University
School of Computer Information Science
Suite 2-120/CST
Syracuse NY 13244-4100

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Rome Laboratory/ERDA
525 Brooks Road
Rome NY 13441-4505

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

RL-TR-97-230

11. SUPPLEMENTARY NOTES

Rome Laboratory Project Engineer: Warren H. Debany, Jr./ERDA/(315) 330-2922

12a. DISTRIBUTION AVAILABILITY STATEMENT

Approved for Public Release; Distribution Unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT /Maximum 200 words!

Digital logic circuits must be tested to assure their correct behavior at the desired clock rate. This report describes an
algorithm for generating tests for path delay faults; these faults are models of the faulty switching behavior of digital
circuits. The path delay fault test generation system developed here is based on an extension to the Sixteen valued
Maximized Propagation Lowered Enumeration (SIMPLE) algorithm, which was originally developed for stuck-at fault
test generation. The extension of SIMPLE resulted in a powerful path delay fault test generator with the ability to
identify nearly every nonrobustly-detectable fault in a circuit without resorting to the enumeration phase. A parallel
implementation of the test generator was developed using the Parallel Virtual Machine (PVM) communication
package.

14. SUBJECT TERMS

parallel processing, multiprocessing, delay faults, fault detection, test generation, digital
logic circuits

15. NUMBER OF PAGES

64
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHS/DIOR, Oct 94

Abstract

Ascertaining proper operation of digital circuits requires verification not only of the

correct functional operation but of the correct operation at the desired clock rates as well.

The classical gate-level fault model has been the stuck-at fault model where the effects of

physical failures are described by the inputs and outputs of logic gates permanently stuck

at logic value 0 or 1. We have implemented an algorithm called SIMPLE (Sixteen valued,

Maximized Propagation Lowered Enumeration approach to test generation) that

generates test patterns for single stuck-at faults in combinational circuits.

Failures causing logic circuits to malfunction at desired clock rates or to not meet timing

specifications are called delay faults. The well-known path delay fault model features the

advantageous capability of modeling distributed failures in a circuit, which are typically

caused by statistical variations in the manufacturing process. We have also implemented

an algorithm (Path Delay Fault Test Generator) for generating robust tests for path

delay faults which is based on a new 64-valued logic system.

It is well known that test generation processes for stuck-at faults and path delay faults

are very time consuming. We have employed the power of parallel processing in this

project to speed up the performance of test generation for these two classes of faults. The

experimental results presented in this report clearly show the efficiency of our

straightforward and yet effective parallelization schemes for both of our algorithms.

The experiments for the test generation for path delay faults also show an interesting and

surprising fact that almost all the faults in the fault set of nearly every target

combinational circuit are not robustly testable and each of these faults can be identified

within a very short time. This phenomenon suggests that a lot of circuits are not designed

with features to enhance the robust testability for the path delay fault model. Design

methodologies that increase the robust testability of at least the timing-critical functional

paths must be applied for the automatic test generators to be applicable to the problem of

testing the robust path delay faults.

Table of Contents

l.

1. Introduction 1

2. Stuck-at Fault Test Generation 2

2.1 SIMPLE 3
2.1.1 Pre-Processing Phase 5
2.1.2 Propagation Phase 11
2.1.3 Forward and Backward Implications 14
2.1.4 Enumeration Phase 18

2.2 Parallelization of SIMPLE 20

2.3 Experimental Results for SIMPLE 21

3. Delay Fault Test Generation 21

3.1 Hardware Model and Robust Tests for Path Delay Faults 23

3.2 Logic System and Requirements for Robust Tests 25

3.3 Forward and Backward Implication Procedures 27

3.4 Derivation of Static Learning Table 29

3.5 Algorithm Outline and Test Compaction 30

3.6 Experimental Results for the Sequential PDFTG 32

3.7 Parallelization of PDFTG 33

4. Discussion 37

Reference. 38

List of Tables
Stuck-at Fault Test Generation

Table 1: Forward implication tables for AND and XOR gates 4

Table 2: Forward implication table for NOT gate 4

Table 3: Contrapositive implications at net mi 9

Table 4: (L2, G) combinations that yield useful contrapositive assertions 10

Table 5: Backward implication table for AND gatei 17

Table 6: Rules to calculate the controllability in SCOAP 19

Table 7: Required values at the off-path sensitizing inputs 27

Table 8: Forward implication tables for AND and XOR gate 28

Table 9: Forward implication table for NOT gate 28

Table 10: Backward implication table for AND gate 28

Table 11: Backward implication table for XOR gate 28

Table 12: Correspondence of the elements in the basic set and the 3-bit sequence 29

Table 13: Contrapositive implications at net Nj 30

Table 14: Results from Fault List Generation 32

Table 15: Results from Test Generation with Compaction 33

Table 16: Results from Test Generation without Compaction» 34

Table 17: Timing results for parallel version ofPDFTGÜ 35

in

List of Figures

Stuck-at Fault Test Generation

Figure 1: Contrapositive Implication 7

Figure 2 Gate decomposition 16

Figure 3. Timing results for c43 2 21

Figure 4. Timing results for c6288 21

Delay Fault Test Generation

Figure 5. Hardware Model for Delay Fault Testing 24

Figure 6. Timing results for c432 35

Figure 7. Timing results for c499 35

Figure 8. Timing results for c880 36

Figure 9. Timing results for cl 35 5 36

Figure 10. Timing results for c1908 36

Figure 11. Timing results for c2670 36

Figure 12. Timing results for c3 5 40 36

Figure 13. Timing results for c5315 36

Figure 14. Timing results for c6288 36

Figure 15. Timing results for c7552 36

IV

1. Introduction

The problem of testing circuits is gaining more and more importance as rapid strides are

being made in VLSI technology. Testing is useful both before and after fabrication of

circuits. Testing before fabrication ensures that a circuit design meets the intended

specifications and is free of functional or logic errors. The more crucial goal of testing is to

detect faulty devices after fabrication. Increasing circuit complexity has an adverse effect

on testing by increasing testing time (and hence cost), test pattern generation and

evaluation time and, of course, the sheer amount of data that has to be handled.

Testing consists of applying a series of input patterns to a circuit and observing its

response. This is then compared with the expected response of the circuit to verify

correct operation. If there is a discrepancy, an error is said to have occurred and its

physical cause is denoted as a fault. Thus test generation is closely related to fault

modeling - the mapping of physical defects to errors. Faults affecting the logic function of

combinational circuits are called functional faults. The classical gate-level fault model has

been the stuck-at fault model, where the effects of faults are described by the inputs and

outputs of logic gates permanently stuck at 0 or 1. It is well known that much of the

work in the testing field has been in terms of this model. Faults causing logic circuits to

malfunction at desired clock rates, or not meeting timing specifications are called delay

faults. Delay fault testing has been gaining considerable importance with the increased

susceptibility to manufacturing defects that increase circuit delays.

We have developed an algorithm called SIMPLE (Sixteen valued, Maximized Propagation

Lowered Enumeration approach to test generation) for detecting single stuck-at faults in

combinational circuits [1, 2]. This algorithm is based on a 16-valued logic system and

introduces some novel approaches to making test pattern generation more efficient.

We have also developed an algorithm (Path Delay Fault Test Generator) [3] for generating

robust test for path delay faults which is based on a new 64-valued logic system. This

logic system is obtained by extending the 16-valued logic system to consider all possible

stable and hazardous values that can occur at a net in the context of two-pattern testing.

Inherent in this scheme is a test compaction procedure which exploits the availability of

choices in the values of certain nets in order to construct a two-pattern test that will

robustly test other functional paths along with the target path. We have shown that when

generating a robust test for a path delay fault, we also generate, without any additional

computation, a test for detecting single stuck-at faults at nets along this path.

It is well known that test generation processes for stuck-at faults and delay faults are

very time consuming. We have employed the power of parallel processing in this project

to speed up the performance of test generation. The communication package that we

chose for the parallel implementations of the test generation algorithms is PVM [34], the

Parallel Virtual Machine, which is a software system that permits a network of

heterogeneous Unix computers to be used as a single large parallel computer. This

heterogeneous environment provided by PVM permits us to run our parallel versions of

the test generation algorithms on machines ranging from SUN workstations to CM5 and

CRAY machines.

This report is organized as follows. Section 2 discusses our stuck-at fault test generation

algorithm, SIMPLE, and the experimental results. Section 3 summarizes the path delay

fault test generation algorithm, PDFTG, and the experimental results. The conclusion of

the project is presented in Section 4.

2. Stuck-at Fault Test Generation

The generation of test patterns for combinational circuits has been long recognized by

researchers as a well-defined mathematical problem that belongs to the class of NP-

complete problems [12, 15]. Several Automatic Test Pattern Generation (ATPG)

algorithms for detecting stuck-at faults in combinational circuits exist in the literature [9,

11, 13,16,18,19, 20, 21, 22]. SIMPLE, an ATPG algorithm based on a 16-valued logic

system, is proposed in [1], This algorithm introduces some novel approaches to making

test generation more efficient.

Two prototype implementations of SIMPLE were developed in C: one is the sequential

version and the other the parallel version using the PVM software package. In section 2.1

we summarize the principles behind SIMPLE. The strategy used in the implementation of

the parallel version of SIMPLE is described in section 2.2. Section 2.3 summarizes the

simulation results, which confirm the findings shown in [4].

2.1 SIMPLE

In this section we give a concise description of the SIMPLE [1] algorithm for detecting

single stuck-at faults in combinational circuits that contain NOT, AND, NAND, OR,

NOR, XOR, and XNOR gates.

Testing generation involves considering the value of a net in the good and the faulty

circuit. This can be done by representing the value of a net as an ordered pair (bg, bf)

where bg(bf) is the value of the net in the good (faulty) circuit [17]. Thus the value of a

net is one of the elements of the set U = {(0, 0), (0, 1), (1, 0), (1, 1)}. In the process of

generating tests, it might not be possible to uniquely specify the value of a net as one of

the elements of U. However, we may already know that a net cannot assume one or more

of these values. We incorporate this information by defining the value of a net as one of

the 16 subsets of U. We denote 16 sets as 0, 0,1, D, D, 0/1, 0/D, 1/D, 0/D, 1/D, D/D,

0/1/D, 0/1/D, 0/D/D, 1/D/D, and 0/1/D/D where 0 = {(0, 0)}, 1 = {(1, 1)}, D = {(1, 0)},

D = {(0,1)}, and "/" denotes set union operations. Note that U = 0/1/D/D. The value 0

needs to be included to reflect the situation when two or more constraints require disjoint

values on a net. These 16 values are equivalent to the elements of the logic system

developed by Akers [5] to provide a tool for test generation. Tables 1 and 2 represent the

AND, XOR, and NOT functions in our 16-valued system for the values 0,1, D, D. The

complete table for all the 15 non-0 values can be easily constructed from the given tables

by using the set union operation. The tables for all the other functions can be obtained

from the three tables. Note that any logic function with 0 as one of its arguments will

yield 0 as a result.

Table 1: Forward implication tables for AND and XOR gates

AND 0 1 D D XOR 0 1 D D
0 0 0 0 0 0 0 1 D D
1 0 1 D D 1 1 0 D D

D 0 D D 0 D D D 0 1

D 0 D 0 D D D D 1 0

Table 2: Forward implication table for NOT gate

NOT 0 1 D D
1 0 D D

Using this notation we define a sensitized net as one whose value is either D, D, or D/D.

Furthermore, if all the nets along a path in the circuit are sensitized, then the path is said

to be sensitized. This 16-valued system exploits the linearity of XOR/XNOR gates

during test generation. It also allows us to characterize all restrictions that are imposed by

a fault as well as the particular circuit path chosen in order to propagate its effect. There

are three distinct phases in the SIMPLE algorithm:

(/) Pre-processing phase: In this phase we construct a set of trees based on the

interdependence of circuit nets. Among other things, this forest will be used to easily

identify which circuit nets must be sensitized by any test. The experiments for collecting

useful contrapositive assertions are also conducted at the fanout stem (FOS) nets of the

circuit in this phase. The contrapositive assertions can later be applied to determine net

values that would otherwise not be able to be obtained by only the forward and backward

implication procedures.

(if) Propagation phase: In this phase we deliberately sensitize a single path from the

fault site to a PO and find all the resulting deterministic implications, namely, the

forward, backward, and contrapositive implications. In this process other paths may also

be sensitized. Path selection is the only choice made in this phase ~ implications are

based on all the constraints that must be satisfied in order to sensitize the chosen path.

This is possible because of the completeness of the 16-valued system and the use of

deterministic implication rules.

(Hi) Enumeration phase: In general, the test cube constructed by the propagation

phase will not yield a test — particularly because no arbitrary choices were made other

than the selection of the sensitized path. Thus there may be gates whose input net values

contain combinations capable of desensitizing the chosen path. In this phase we use an

enumeration procedure to select values for the primary inputs (Pis) so that such

combinations can never occur.

2.1.1 Pre-Processing Phase

Construction of Dominator Forest

The importance of identifying nets that must be sensitized for a fault to be detected was

first highlighted by Akers [5] and later by Fujiwara and Shimono [11]. As pointed out in

TOPS [16], the concept of graph dominators [23] can be used to identify the nets which

must be sensitized to detect a fault. In the context of test generation, we term the set of

dominators of a net m as the set of all nets in the circuits which lie on every path from net

m to any PO. By definition, net m is a dominator of itself; however, for ease of notation

we define D(m) as the set of all dominators of m except m itself. To account for multiple-

output circuits, the concept of a dominator tree can be extended to that of a forest. We

present here a procedure to construct this forest for a given circuit.

We construct a set of trees such that every signal line of the circuit corresponds to a node

in one of the trees in the forest. We start by creating as many trees as there are primary

outputs (POs), such that each PO corresponds to a root of a tree. However, new trees

may be created during the procedure. Thereafter, each node which has not been marked as

a leaf is inspected and the tree construction is continued as follows:

(0 If the node m, being considered corresponds to the output line of a logic gate G, in

the circuit, then every input line of G, becomes a child of this node mt. If the input line is

a PI, then it is marked as a PI leaf. If the input line is a FOB, then it is marked as a FOB

leaf.

(if) If the node m, being inspected is a FOS, then wait until all the fanout branches

(FOBs) of this FOS have been marked as FOB leaves. Find the first common ancestor of

all these FOB leaves by traversing the tree(s) from these leaves to the root(s) of the

tree(s). The necessary and sufficient condition for these FOB leaves to have a common

ancestor is that they belong to the same tree. If such an ancestor exists, then mark w, a

child of this ancestor node. If it does not, then start a new tree with w, as a root. In either

case, mark m, as an FOS node - if it is also a PI, then it must be marked as a PI leaf also.

The above procedure is continued until every line of the circuit becomes a node in some

tree of the forest.

The root of any tree in the constructed forest is either a PO or a FOS. If any tree has a

single node, then this node must correspond to a PI which is also a FOS. The set D(m)

contains all the nodes encountered when traversing the tree (containing node m) from m to

the root.

Collecting Contrapositive Logical Assertions

In this section we give a summary of how using the contrapositive assertions of

implications performed during the Pre-processing Phase can be used as an effective speed-

up technique. The use of contrapositive logical identity to reduce the search space was

first suggested by Schulz, et. al., in SOCRATES [21].

The contrapositive of the logic expression P => Q is the equivalent expression ~Q => ~P.

Referring to the circuit of Fig. 1 we notice thatZj = 0 => Z= 0. Hence the contrapositive

would yield Z= \=>X3= 1. However, if we require the value 1 at Z given that all other

nets have the value 0/1, no deterministic change would be implied by the backward

implication procedure alone. Note that in some cases a backward implication will yield

the information provided by the contrapositive implication. For example, X3 = 0 => Y4 =

0 yields Y4 = \=>X3 = 1. However, a backward implication of Y4 = 1 yields a 1 at X3, X4,

and X5. Hence it is useful to identify the conditions under which a backward implication

cannot yield the information provided by a contrapositive assertion. In such cases we

may store this information for possible use later in the test generation process.

The procedure presented in SOCRATES can only be used to backward imply the value 0

or 1 because it is assumed in [21, Section 4.3] that the "injected target fault is not located

in this part of the circuit and the effects of the target fault can not propagate to it as well."

Furthermore, as mentioned in the learning procedure of [21, Fig. 5], the 0 and 1

implications are performed for all the nets of the circuits. SIMPLE employs an improved

learning procedure that performs the 0 and 1 implications for only the FOS nets of the

circuits, and thus the number of implications performed and the number of assertions

stored for future use are fewer than those of SOCRATES. The information obtained by

our procedure is sufficient to generate the information that can be obtained by performing

the 0 and 1 implications for the remaining nets because of the deterministic nature of our

backward implication procedure. Furthermore, these stored 0 and 1 implications from

FOS nets are sufficient to generate the useful contrapositive assertions for all 16 values of

our logic system and for all nets of the circuit as long as the logical behavior of the

corresponding portion of the faulty circuit is identical to that of the good one. Thus our

use of contrapositive assertions will not be limited, as SOCRATES is, only to nets that

are unaffected by the fault.

In our 16-valued system, assume that the forward implication of a value Lj at net mi

with 0/1/D/D at all other nets yields the value L2 at net m2. Thus when we require a value

L '2 c (0/1/D/D - L2) at net m2, then the value of net mi cannot contain any element of

Lj. To obtain the implication for all possible values of L] we need only to perform

implications for each individual element of 0/1/D/D. Thus the procedure to obtain the

implications for the 16-valued system, henceforth referred to as 16-VP, would be to set

the value of net mj to each of the values 0,1, D and D, one at a time and with 0/1/D/D at

all other nets, and observe the implied value at net m2. Each such implication is referred to

as a 16-VP "experiment." We will show that the information yielded by 16-VP can be

obtained from a simpler procedure that utilizes a 3-valued (0,1, 0/1) logic system. In this

procedure, which we denote as 3-VP "experiment," we set the value of an FOS net mj to

each of the values 0 and 1 one at a time and with 0/1 at all other nets, and observe the

implied value at net m2.

We now illustrate by an example that the results obtained from the 16-VP experiments

on a FOS net mj can be deduced from those of the corresponding 3-VP experiments on the

same FOS net. Consider the situation where a 0 and a 1 at net mj yields a 0 and 0/1,

respectively, at net m2, the direct implication yielded from this experiment and the

contrapositive of this implication are shown below.

(1) mi = 0 -> m2 = 0

m2 = 1 -» my =1 (2), contrapositive of direct implication (1) from 3-VP experiment

Now if we are required to set net m2 to D = (1, 0) during test generation, by the

application of contrapositive assertion (2) to each value of net m2 under the good and

faulty circuit, we know that net m1 must be set to either (1, 0) or (1, 1), which is

equivalent to the set 1/D in our 16-valued logic system. As another example, if the

required value at net m2 is D = (0,1) during test generation, then net mi can only contain

elements in the set 1/D, or equivalently {(1, 1), (0, 1)}. The following table summarizes

the implied valued at net rrij for each different direct implication from the 3-VP

experiments and each singleton value as a requirement at net m2.

Table 3: Contrapositive implications at net mt

Basic value
at net m2

mi = 0 -> m2 = 0 mi = 0 -> m2 = 1 mi = 1 -> m2 = 0 mi = 1 -> m2 - 1

0 0/1/D/D 1 0/1/D/D 0

1 1 0/1/D/D 0 0/1/D/D
D 1/D l/D o/D 0/D

D I/O 1/D 0/D 0/D

The above table is derived under the assumption that the results of the 3-VP experiments

conducted for the faulty circuit are the same as those of the good one. Therefore, we

should avoid applying the contrapositive rules that are derived from 3-VP experiments

whose results will be affected by the presence of the current target stuck-at fault.

We now discuss the condition under which the information yielded by a contrapositive

assertion cannot be obtained by a deterministic backward implication alone and hence

should be stored for future use. Consider the situation where a singleton value Lj at net

mi yields, using 3-VP, a singleton value L2 at the output net m2 of a gate G. The

corresponding contrapositive assertion should be stored if and only if the value L2 can be

obtained at the output of G by setting all its input to non-controlling values.

Consequently, Table 4 shows the L2 and G combinations for which this implication

should be stored for future use. In general, for the cases that satisfy the (L2, G)

combinations given in Table 4, we will not be able to drop Z; from the set of all possible

values at net m} when we require a value L '2 c (0/1/D/D - L2) at net m2 by using only

the forward and backward implication procedures.

Table 4: (L2, G) combinations that yield useful contrapositive assertions

u Gate type

0 OR NAND XOR XNOR
1 NOR AND XOR XNOR

Selection of pdcf

The selection of the primitive D-cube of failure (pdcf) in DALG [19] may involve

arbitrary choices which can result in mistaken decisions causing costly backtracking. We

avoid this problem by introducing a fictitious gate G^at the site of the fault. If the fault is

at net n, then we connect net «/to all signal lines which were previously connected to net

n. If the fault site is a FOB which is identified by net n and net nh then the Gj is inserted

in this FOB only. Accordingly, the unique pdcf depends only on the kind of stuck-at

fault.

nf
fault site s-a-0 1 D
fault site s-a-1 0 D

Token Assignment

The goal of this step is to identify which circuit nets cannot be affected by the fault. In

order to convey this information, we associate with every net a Boolean token. This

token is TRUE if and only if there exists a path from nfXo any PO which passes through

this net. These tokens can be computed by a single forward pass through the circuit.

10

2.1.2 Propagation Phase

In this phase we sensitize a single path from net «/to a PO, however, other paths may

also get sensitized. In a manner analogous to DALG [19] we use test cubes whose entries

reflect the current values of all nets during any stage of test generation. The entries of any

test cube, tck, are elements of our 16-valued system.

We initialize this phase by constructing tcj in the following manner:

1. set nets n and «/to the values specified by thepcdf.

2. Assign D/D to all nets belonging to the set D(«).

3. Set all nets with FALSE token, except net n, to 0/1.

4. Assign 0/1/D/D to all unassigned nets of the test cube.

For each test cube tck generated at any stage of our algorithm, we find its corresponding

deterministic test cube, d(tc0. We define a d(tc0 as one in which no entry can be changed

without making an arbitrary choice for one or more net values. That is, all unique

implications of the net values must be considered. The derivation of dftc/) thus involves

the application of the forward, backward, and contrapositive implications to the current

state, represented by tck, of the circuit under test generation. Rules for the contrapositive

implication are summarized in the previous section for the Pre-Processing Phase. Rules

for forward and backward implication procedures are given in the following section after

we present the overall procedure for this phase.

lfd(tcj) cannot be constructed because contradictions were encountered, then there exists

no test for the fault. Otherwise we have a sensitized path from rif to all the FOB nets of

the first FOS node (which could be n itself!) encountered in traversing the appropriate

tree of the dominator forest from n to the root. If there is no FOS encountered, then we

have a sensitized path from n to the PO corresponding to the root of the tree.

11

At this point we have to select one of the FOB nets, say the FOB net from net W/ to net

m2 (denoted as m; -» m2), to extend the sensitized path. In this implementation of

SIMPLE, the selection of FOB nets is guided by the observability measure introduced in

COP [6], which is summarized in the following subsection. To obtain tc2 we should

sensitize all nets belonging to the set D(w/ -> m2) - D(ri) by intersecting their values in

d(tcj) with D/D. If any empty intersection results, then the sensitized path cannot be

extended through net m2 and alternative paths should be investigated. Note that this step

implicitly performs the equivalence of the X-path check [13] while setting up the gate

outputs that should be sensitized. As stated earlier, we should then construct d(tc^. If

contradictions occur while constructing dftcj, then an alternate path must be selected.

Otherwise we have a sensitized path from nfat least to the FOB nets corresponding to

the next FOS net or some PO. The process of extending the sensitized path by selecting a

FOB net, constructing a tck and its corresponding d(tCi) continues until the algorithm

establishes a sensitized path/?; from the fault site to any PO in a deterministic test cube

d(tc). This test cube, d(tcß, is denoted as T/pj). If contradictions occur during this path

extending process, then alternate paths should be investigated. If all possible paths result

in contradictions, then no test exists. Note that all possible single paths need not be

explicitly investigated to arrive at this conclusion.

T/pj) represents all the constraints that must be imposed to sensitize path pt. Since the

backward implication rule does not make any arbitrary choices, there may be gates where

the output value is a proper subset of the value implied by the input values, i.e., the input

values include combination(s) that will desensitize path pt. We define the output nets of

such gates as variant nets. If a net is not a variant it is defined to be invariant. If there are

no variant nets in T/pi), then we have already obtained a test for the fault. Otherwise the

enumeration phase must be invoked to determine a test by converting all the variant nets

in T/pj) to invariant ones.

12

Observability

To define the observability measure introduced in COP [6], we first need to define the

controllability measure that it is based on. Both measures are based on a probabilistic

approach that uses the simplifying assumption that logic signal probabilities are

statistically independent.

For every PI, we set C°(PI) = C](PI) = 0.5. Also, for any net m, C°(m) = 1 -Cl(m). Let G

be a gate with input nets /;, i2,..., i„, and the output net m. To express C°(m) in terms of

C°(ij) and C'fij), forj e {1,2, ..., n}, we first define N° as the set of logic patterns that,

when applied to the inputs of G, set net m to the logic value 0. For a = (oci, (X2, ..., a„) e

N° define/?,-, 1 <j < n as follows:

{C(/J),if«J=0
»-[euM-i —<3)

C°(m) can now be defined in terms ofph p2, ...,p„ as follows:

C°(m)=yZflpJ (4)

If net mi is a fanout branch whose corresponding stem is net m, then C°(mi) = C°(m) and

C'tmO = C'fm).

Now we are in the position of defining OB(m), the observability measure of net m. For

every PO we define OB(PO) = 1. Now consider gate G. Let Sj be the set of logic patterns

that, when applied to the input ih i2, ...,/,-.;, /}+/, ..., /„, sensitize the net mtoa change in

the input z}. Then

OB(ij) = OB(m)xJ,flPl (5)
B<=Sj /=1

Finally, if net mu m2,..., mr are fanout branches of a fanout stem m, then

r

OB(m) = 1 - n (1 - OB(m,)) (6)
/=i

13

For any two nets m; and m2, if OB(m}) > OBfm^, then net m, is "easier" to observe then

net m2. Thus, this measure of observability tends to increase with the ease of observing a

net.

2.1.3 Forward and Backward Implications

In a d(tc0 all deterministic implications (i.e. making no arbitrary choices) of all entries of

the test cube tck are fully considered.

To construct d(tcj) from tcj we perform, in addition to contrapositive implications,

backward and forward implications of all nets whose values in tcj are different from 0/1

and 0/1/D/D and all other nets whose values change during this implication process. In the

general case, when we are constructing d(tc0 from tck, we start by considering the forward

and backward implications of the nets whose values in tck are different from those in the

last successfully constructed deterministic test cube. During the construction of d(tc0

from tck, if a backward or forward implication request results in a new value L) for any

net irij of the circuit, then we should update the corresponding net entry Lj by setting it to

Lj n L). If this intersection yields the empty set, then d(tC/,) cannot be constructed.

In order to obtain d(tci) the process of forward and backward implications continues until

no more changes occur in the values associated with any net. Note that this process is

guaranteed to terminate in a finite number of steps because we are performing set

intersections on finite sets.

The rules for constructing deterministic test cubes must include the provision for

appropriately handling the values of nets associated with fanout points. We now present

the rules for forward and backward implication.

Forward Implication

The process of forward implication of the values associated with every net is done with

the help of Tables 1 and 2. These tables are generalizations of the truth tables of the

14

respective gates. Note that these tables are sufficient because OR, NOR, NAND, and

XNOR functions can be derived by appropriately using these tables. For gates with more

than two inputs, the method adopted in SIMPLE is similar to that used by Akers [5]. We

view every gate as being constructed out of two-input gates and use the existing values of

a gate to generate a new value for the output. An n-input (n > 2) gate is decomposed into

a cascade of n-1 two-input gates, as shown in Fig. 2. If the n-input gate is a NAND

(NOR) gates, then Gi, G2, ..., Gn.2 are AND (OR) gates and Gn.i (which sources the

output) is a NAND (NOR) gate. This decomposition is performed only for the

propagation of logic values; faults are considered only on the n+1 signal lines with the

original n-input gate.

Suppose we are performing forward implications due to changes(s) in input(s) of a gate G

whose output is net m. Let L0 be the "old" set of values associated with net m in the test

cube prior to forward implication being performed. Let LN be the "new" value obtained at

net m by using the new values of the inputs of G. Net m is then set to L0 n LN unless L0

nLff-0, which would imply a contradiction. Four other situations are possible:

1. L0 = LN. No further action is needed for this forward implication.

2. L0<=LN (proper subset). We now have to consider the forward implication of the

value of LN at net m on all gates driven by G.

3. Lo => LN. We now have to perform a backward implication of the value Lo at net

m. This may result in further changes in the inputs of gate G.

4. Otherwise. Both forward and backward implications of the value L0 n LN at net m

should be performed.

15

1

2

Figure 2 Gate decomposition

n+(n-l)

1 —
1

G, n+ 1

T
G2

•

n+2

 1 n+(n-2)

n+(n-l)

Backward Implication

The process of backward implication involves determining the changes required at the

inputs of a gate to satisfy a requested change at the output. A change in the value of a net

means that one or more of the possible values associated with the net has been deleted.

Consequently, an input change can be made only if the deleted value can never be used

with the existing values at the other inputs to generate any of the requested output

value(s).

A general set of backward implication rules can be derived in terms of the input values

and the requested output value. However, in a manner similar to that presented in [5] we

consider each multiple-input gate as a cascade to two-input gates. The backward

implication rules for a two-input AND gate is shown in Table 5.

16

Table 5: Backward implication table for AND gate0

AND 0 1 D D
0 0/1/D/D 0 0 0

1 0 1 D D
D o/D 0 1/D 0

D 0/D 0 0 l/D
U row header: existing value at one input, column header: requested value at the output

Note that the element 0 has been included in this table to detect an unsatisfiable

backward implication request. The complete table for all 15 non-0 values is obtained by

the set union operation. The resulting table is equivalent to that proposed by Akers [5].

To perform backward implication for a two-input AND gate, we reference the table using

the requested value at the output and the existing value at one input to generate the value

of the other input. Since the XOR gate is linear, its forward implication table in Table 1

can be used for backward implication also. Regardless of the type of gate in question, the

value generated by the appropriate table must be intersected with the existing value of the

input. Analogously, the new value of the input and the requested value of the output

must now be used to generate the new value of the other input. For example, consider a

two-input gate whose input values are Z; and L2. If the requested value of the output of

the gate is LG, then we use LG and Lj to determine the new value L '2 of the second input

and then L '2 and LQ to determine the new value L'; of the first input.

As stated before, any gate with more than two inputs is represented as a cascade of two-

input gates. Consider an n-input gate G represented as a cascade of n-1 two-input gates

Gi, G2,..., Gn.2 and Gn_i, with net numbers as shown in Fig. 2. Assume that the values at

nets 1, 2, ..., n are Xh X2, ..., Xn respectively. We first use forward implication of these

values to compute Yl5 Y2,..., Yn.2, the values of nets n+1, n+2, ..., n+(n-2) respectively.

Then using the value Z, which is the required value at the output of gate G, we apply the

backward implication rules for gate Gn.i to obtain Zn_2 and X'n, the new values of nets

n+(n-2) and n respectively. Having done that, we proceed backwards and apply the

backward implication rules for all the gates, one at a time, ending with gate Gi. Since the

17

binary operation represented by any non-inverting logic gate is associative, the order in

which the input X; are cascaded is irrelevant.

It is shown in [1] that the above procedure will stabilize in a single pass, unlike the

approach followed in [5] which may require several passes.

2.1.4 Enumeration Phase

The goal of this phase is to obtain a test by specifying the unassigned Pis in T/pJ such

that all nets are invariant and have values that are subset of their corresponding values in

We choose an unassigned PI J; in T/pi) and assign a logic value (0 or 1) to it, thereby

creating a new test cube which we denote by tc/ph 1). Now we find its corresponding

deterministic test cube d(tcj(pi, 1)) and update its list of variant nets (note that new

variant nets may be created). However, if d(tc/ph 1)) cannot be obtained due to some

contradiction, then we complement the entry for /; in tc/pb 1) and construct its

corresponding d(tc/pi, 1)). If this also leads to a contradiction, then there exists no test

corresponding to T/pJ. If we are successful in constructing d(tc/pif 1)), we now assign a

logic value to some other unassigned PI I2, thereby creating tc/pj, 2). As before, we must

construct d(tc/ph 2)) and update its list of variant nets. This procedure is continued and

we traverse the decision tree, in a manner analogous to PODEM [13], until one of the

following two conditions occur:

• The list of variant nets corresponding to some d(tc/phj)) becomes empty. This

indicates the values of the Pis in d(tc/phj)) represent test(s) for the fault.

• The decision tree is exhausted, i.e., no test exist.

In this implementation of SIMPLE, the selection of Pis is performed by a backtrace

procedure that is guided based on the controllability measure proposed in SCOAP [14]. A

18

short description of how to calculate this measure is given in the following subsection.

The description of the backtrace procedure is taken from [10]. During the backtrace

procedure, objectives are successfully transferred from gate outputs to gate inputs until a

PI is reached. This transfer of objectives is performed using the "easy/hard" heuristic

described as follows. When the current objective is to set the output of a gate to a logic

value that can be achieved by setting one of its inputs to a controlling value (0 for

OR/NOR, 1 for AND/NAND), an input which is identified as the "easiest" to control

(according to the measure being used) is chosen. On the contrary, if such objective can

only be achieved by setting all the inputs of the gate to a non-controlling value (0 for

OR/NOR, 1 for AND/NAND), then an input which is identified as the "hardest" to

control is chosen. This is done so that an early determination of the inability to satisfy an

objective will save the time that would be wasted in attempting to set the remaining

inputs of the gate. If the current objective is the output of an XOR/XNOR gate, an input

which is "easiest" to control is selected.

Controllability

SCOAP associates with every net m two integers denoted by C°(m) (O-controllability)

and C'(m) (1-controllability). For every PI, we set C°(PI) = C](PI) = 1. Now let G be a

gate with n input nets ilt i2, ..., i„, and the output net m. Table 6 shows how to calculate

C°(m) and C^m) as a function of the O-controllabilities and 1-controllabilities of these n

inputs.

Table 6: Rules to calculate the controllability in SCOAP

Gate type CM C'M
AND l+.Mtf {C\ij)} i+Xc*(/7)

7=1

OR
i+£c°(iy)

7=1

1+ MIN {C'O',)}
je{l,2r-n) J

XOR« 1 + MIN{C(i,) + C"(i2), C'(i,) +
C(i2)\

1 + MIN{C"(i,) + C'(i2), C'(ii) +
C°02)}

U Only for 2-input XOR gate

19

Finally, if net mj is a fanout branch whose corresponding stem is net m, then C°(mi) =

C°(m) and Cl(md = C](m).

For any two nets mj and m2, if C°(mj) < C°(m^) {Cl(mi) < Cl(m£), then we say that W;

is "easier" to control then net m2 with respect to logic value 0(1). Thus, this measure of

controllability increases with the difficulty of controlling a net.

2.2 Parallelization of SIMPLE

In this section we describe the approach used to parallelize our sequential implementation

of SIMPLE.

Simulation results indicated that more than 95% of the running time of our sequential

implementation of SIMPLE was spent in the enumeration phase. Thus we parallelized

only the enumeration phase of our algorithm.

Assume that there are n = 2k processors available in the computing environment during

the execution of the parallel version of SIMPLE. As described in Section 2.1.4 the

enumeration procedure searches the input pattern space by assigning logic values to the

undetermined Pis one at a time. We can parallelize this search procedure by partitioning

the input pattern space into 2k subspaces with equal number of patterns and assigning

each subspace to a processor. The partitioning can be done by selecting k undetermined

Pis, and each subspace is identified by a unique input combination on these k Pis. After

partitioning the pattern space, all the 2k processors can simultaneously search their

assigned subspaces using the enumeration procedure in Section 2.1.4. The selection of the

k Pis is guided by the controllability measure described in the section for the enumeration

phase.

20

2.3 Experimental Results for SIMPLE

In this section we present some representative experimental results for our parallel

implementation of SIMPLE on the ISCAS '85 benchmark circuits [7]. The experiments

were conducted on a network of Sun workstations. Below shows the timing performance

of our parallel program using C432 and C6288 as the target circuits for test generation.

Fault collapsing techniques [8] were employed to reduce the size of the stuck-at fault sets

for the benchmark circuits. To measure the speedup performance, the simulation run for

each of the circuits was repeated with different number of processors involved; i.e., 1, 2,

4, 8, 16, and 32 processors. The performance of this parallel implementation was

measured in process time, which, in addition to the theoretical efficiency of the

parallelization scheme, is also affected by practical considerations such as the different

CPU speeds of the involved machines and process assignment policy in PVM. However,

the results clearly show again the effectiveness of this parallel implementation reported in

[4]-

Fig. 3: Timing Results for c432

SEC
160
140.
120.
100.
80.
60.
40.
20 .

I I I I I I I I I T °
2 4 6 8 101214161820222426283032

Number of Processors

Fig. 4: Timing Results for C6288

I I I l I I T l l I l I I I
0 2 4 6 8 10121416182022 2426283032

Number of Processors

-Simulation

-Linear
Speedup

3. Delay Fault Test Generation

Ascertaining proper operation of digital circuits requires verification not only of the

correct functional operation but of the correct operation at the desired clock rates as well.

21

Failures causing logic circuit to malfunction at desired clock rates or to not meet timing

specifications are called delay faults. Delay fault testing is gaining considerable importance

with the increased susceptibility to manufacturing defects that increase circuit delays.

Moreover, logic designs optimized for gate count, area, or power tend to have too many

gates on critical paths, thus making them susceptible to delay faults. Two different delay

fault models, the gate delay fault model and the path delay fault model, have been

proposed in the literature. The gate delay fault model has been introduced to model those

defects that cause an actual propagation delay through a distinct gate to exceed its worst-

case specification [24]. Formerly, it was also referred to as the transition fault model,

which merely allows a qualitative consideration of gate delay faults of large size [25].

Since being restricted to large-sized delay faults is neither sufficient nor satisfactory,

manifold research activities have recently been undertaken in order to explicitly consider

the actual size of gate delay faults during test generation and fault simulation [26].

In contrast, in order to overcome the main deficiency associated with the gate delay fault

model, the path delay fault model features the advantageous capability of modeling

distributed failures, which are typically caused by statistical variations in the

manufacturing process [27]. In addition, it is extremely useful for circuit designs based on

statistical timing, since those circuits are known to have non-zero probability for the

occurrence of delay faults, even when all gate delays are within their specified worst case

ranges. The path delay fault model therefore is a more realistic and useful model for delay

faults.

For the discussion in the following sections, we now define a few terms related to path

delay fault test generation. A path delay fault can be specified by a functional path which

indicates the structural path from a PI to a PO in the circuit and the desired transitions

along that path. We call an input of a gate on a path delay fault an off-path sensitizing

input if it is not on the structural path that constitutes that fault. The fault universe for

the path delay fault model, which comprises all the functional paths in the circuit under

test, may grow exponentially with the circuit depth; therefore, delay testing based on

22

path delay fault model must focus on a tractable subset of the fault universe. The most

popular approach to this problem suggests concentrating on the longest paths in the

circuit under test in terms of normal delays.

Our approach is independent of any specific delays in the circuit, except in the selection

of the target fault set (i.e., the "longest" paths). In this report, we employ the Unit Gate

Delay Model in our calculations. In this model, every gate and every PI contributes a unit

delay (in the normal circuit) to a signal transition that propagate through it. Arbitrarily,

we consider "unit delay" to be 1 ns. In this way, our results are independent of any

particular cell library or circuit layout. Of course, for any case where the actual rising and

falling delay values are known, these values can be incorporated into our delay

calculations.

The remaining sections the PDFTG algorithm are organized as follows. Section 3.1

illustrates the hardware model for delay fault testing and categorizes the test patterns for

path delay faults. Sections 3.2 to 3.4 describe the major components of our PDFTG

algorithm. An algorithm outline and a brief discussion of the compaction procedure are

presented in section 3.5. The experimental results for the sequential and parallel

implementation of the PDFTG algorithm are shown in section 3.6 and 3.7 respectively.

3.1 Hardware Model and Robust Tests for Path Delay Faults

It is well know that, except when dealing with dynamic logic, testing delay faults requires

two patterns rather than a single one as in the case of stuck-at fault testing. Taking the

generally accepted hardware model [29, 30] illustrated in Fig. 5 as the basis for further

discussion, we assume that the initialization vector Vi is loaded into the input latches at

time T0. Subsequently, after all signals of the circuit under test have been allowed to

stabilize under Vi, the propagation vector V2 is applied to the Pis of the circuit at time Ti

by pulsing clock Ci, Finally, the logic values at the POs are sampled into the output

latches at time T2 = Ti + Tc by activating clock C2, where Tc represents the system clock

23

interval at the desired functional clock rate. We assume that the input latches are

glitchless, namely, there are no static hazards, and the combinational circuit under test

generation is represented by a circuit network with the basic gates AND, NAND, OR,

NOR, XOR, XNOR, and NOT as the components.

Figure 5. Hardware model for delay fault testing

I

Combinational

Circuit

Under Test

f

8"

t t
Input clock Ci Output clock C2

Clock C,

Clock C2

-*H

To

The test patterns for the delay faults can be categorized into three classes: hazard-free,

robust [29] and non-robust [30] test patterns. A hazard is created at an output of a gate

when two or more inputs change their values simultaneously, and the change in one input

has reverse polarity in comparison with another input. A hazard-free test of a path

introduces no transitions on the off-path sensitizing inputs. Hence, a circuit fails a

hazard-free test if and only if it contains the delay fault. The problem with this class is

that it is rarely the case that there exists a hazard-free test for a delay fault. Robust testing

relaxes the hazard-free restriction on the off-path sensitizing inputs while still maintaining

the property that the faults detected by them are not invalidated by delays along other

paths. In other words, if a circuit contains a path delay fault then that circuit will fail the

24

application of a robust test pattern for that fault. Finally, a test pattern of a delay fault is

called a non-robust test if it provokes the desired transitions on that path and all off-path

sensitizing inputs assume non-controlling final values. Such a test can be invalidated by

delays along other paths.

Based on the hardware model and the path delay fault model discussed above, we

concentrated our efforts on the task of devising and implementing an algorithm that, given

a subset P of the path delay fault universe of a circuit under test, finds a robust two-

pattern test <Vi, V2> for every robustly testable fault in P. The test generation problem

for a specific functional path can now be viewed as a search problem in the two-pattern

space, defined by the Pis, for a pattern so that the requirements of robustness and

propagation of the transitions specified by the functional path are satisfied.

3.2 Logic System and Requirements for Robust Tests

Delay fault testing involves considering the values of a net provoked by the input pattern

pair V! and V2 which comprise the two-pattern test. This can be done by representing the

value of a net as an ordered pair (bi, b2) where bi and b2 are the values of the net in

response to the input pattern Vi and V2 respectively. Using this representation the value

of a net can be one of the elements of the set {(0, 0), (0, 1), (1, 0), (1, 1)}. Note that

element (0, 1) indicates a rising transition and (1,0) a falling transition at a net in the

circuit. The distinction between transitional and non-transitional values is essential for the

dynamic test compaction procedure mentioned at the beginning of this report. The

presence of hazards, in the context of delay fault testing, requires that we make the

distinction between stable and hazardous values. Consequently, instead of the four basic

elements of the above set we will now have six basic values of a net. These are the

elements in the basic set B = {(0, 0)s, (0, 0)h, (0,1), (1, 0), (1, l)s, (1, l)h}, the subscripts

s and h indicate whether a value is stable or hazardous respectively. We use the following

notation to represent the basic set B = {0S, 0h, D, D, ls, lh}, where D, D represent (0, 1)

25

and (1,0) respectively. In the process of generating test patterns for a circuit, it might not

be possible to uniquely specify the value of a net as one of the elements in the basic set.

However, we may have already known that a net cannot assume one or more of the values

in the basic set. We incorporate this information by defining the value of a net as a subset

of B, thus, there are 64 possible values a net can assume in our logic system, which are

elements in the power set of the basic set P(B). The basic set itself hence represents the

totally unknown value in our logic system.

The robust property for a test for a path delay fault indicates that the presence of the

target fault will be detected by an application of the test pattern even in the presence of

the effects of other gate transition delays in the circuits. The value of the off-path

sensitizing inputs to the gates on the target path should be restricted during test

generation so that the above robustness property can be satisfied. Take an AND gate

with inputs A and B, and output C as an example. Suppose a falling transition (D) at

input A is required on the functional path under test generation, and there is another

falling transition at the off-path sensitizing input B. If the transition at input B occurs

before that at input A, the falling transition at output C will be triggered by the one at

input B, rather than at input A. Thus, in this case the off-path sensitizing input B needs

to be set to ls. On the other hand, if we are trying to propagate a rising transition (D)

through an AND gate, then since the D at the output is triggered by the slowest rising

transition at the inputs, we could allow the off-path sensitizing inputs to have any

elements in WD. Similar results for OR gate can be derived from the principle of

duality. However, analysis of propagation of both rising and falling transition from an

input of XOR gate to the output shows that the off-path sensitizing inputs must have

either ls or 0S, depending on the required transition at the output. Table 7 summarizes the

required values at the off-path sensitizing inputs for the robust test.

26

Table 7: Required values at the off-path sensitizing inputs

Input transition on the
runctionpath

AND
NAND

OR
NOR

XOR
XNOR

D Is Os/Oh/D Os/ls

D yih/D (V0h Os/ls

3.3 Forward and Backward Implication Procedures

As mentioned above, test generation for a path delay fault of a circuit involves a search in

the pattern space defined by the Pis. Our PDFTG algorithm directs the search for a

robust test by using deterministic as well as heuristic techniques based on those for

SIMPLE. To guide the search deterministically, local forward and backward implication

are executed whenever possible. As emphasized and substantiated by the work in [10,

11], the efficiency of any deterministic ATPG for stuck-at faults, as well as for path

delay faults, depends strongly upon the power of its implication procedures, whose basic

task consists of the immediate assignment of uniquely determined values to the

corresponding nets. As shown in [31, 32], the local implication procedures owe their

power to the logic system employed in the algorithm. The authors of [31, 32] introduced

a criterion called completeness, which, for a given basic set of logic values B, allows an

efficient determination of a minimal subset of the power set of the basic set P(B) as a

logic system for test generation while maximizing the implication power. The

completeness criterion essentially defines the ability to express all possible results of all

the basic logic functions, for the purpose of test generation, using exactly the elements in

a given logic value set. This criterion thus does not take into account the possible values

generated from backward implication of all the basic logic functions. The proposed 64-

valued logic system is complete in terms of both the forward and backward implications

since it is exactly the power set of the basic set.

Below are the tables for the forward and backward implication used in the PDFTG

algorithm, with input values from the basic set {0S, 0h, D, D, ls, lh}. We call implications

27

resulted from the applications of forward and backward implication tables direct

implications.

The implication procedure is identical to the one for SIMPLE, except the tables used.

Table 8: Forward implication tables for AND and XOR gate

AND Os Oh Is lh D D XOR 0. Oh Is lh D D
os 0S Os 0S Os Os Os Os Os Oh Is lh D D
oh Os Oh Oh Oh Oh Oh Oh Oh Oh lh lh D D
Is 0S 0h Is lh D D Is Is lh Os Oh D D

lh Os Oh lh lh D D lh lh lh Oh Oh D D

D Os Oh D D D Oh D D D D D Oh lh

D 0S Oh D D Oh D D D D D D lh Oh

Table 9: Forward implication table for NOT gate

NOT Os Oh Is lh D D
Is lh 05 Oh D D

Table 10: Backward implication table for AND gate

AND Os Oh Is lh D D
0S Os/Oh/D/D/ls/lh

0 0 0 0 0

Oh o5 Oh/D/D/Vlh
0 0 0 0

Is Os Oh Is lh D D
lh 0S Oh 0 ls/lh D D
D 0S Oh/D 0 0 ls/lh/D 0

D 0S Oh/D 0 0 0 ls/lh/D

U row header: existing value at one input, column header: requested value at the output

Table 11: Backward implication table for XOR gate

XOR Os Oh Is lh D D
Os Os Oh Is lh D D
Oh 0 Os/Oh 0 ls/lh D D
Is Is lh 0S Oh D D

lh 0 ls/lh 0 Os/Oh D D

D 0 D 0 0 Os/Oh ls/lh

D 0 D 0 D ls/lh Os/Oh

Ü row header: existing value at one input, column header: requested value at the output

28

3.4 Derivation of Static Learning Tabie

In addition to the local implication procedure discussed above, as in SIMPLE, PDFTG

also utilized the concept of static learning by the application of the contrapositive logical

identity introduced in [21] to restrict the search of a test pattern for a functional path.

From the discussion of the basic value set for our logic system, we know that it is the

requirement that we make the distinction between the stable and hazardous values that

leads us to the formation of the basic set of six elements. The basic set is exactly the same

as that used in the analysis of static hazard [28, 33], which can be represented by 3-bit

sequences. Following is a table for the correspondence between the 3-bit sequences and

the elements in our basic set.

Table 12: Correspondence of the elements in the basic set and the 3-bit sequence

Value SequenceCs) Meaning

05 000 Static 0
oh 010 Static 0-hazard
ls 111 Static 1
In 101 Static 1-hazard
D {100, 110)= 1x0 Falling transition

D {001,011} =0x1 rising transition

The first bits in the sequences indicate, in terms of our hardware model, the values at time

Ti. The second bits are the values between time Ti and T2, and the third bits show the

values at time T2. Notice that 0h corresponds to the sequence 010, rather than 0x0, since

in our case 0x0 means the set 0s/0h. The value 1 at the second bit of the sequence for 0h

actually denotes the possibility of value 1 occurring between Ti and T2. The view of

elements in the basic set as 3-bit sequences, and the assumption that the circuit under test

generation is combinational, suggest that we use the results of the 3-VP experiment, as

defined in the discussion of SIMPLE, to find the contrapositive implications for our 64-

valued logic system. As an example, suppose that we do a 3-VP experiment with the

values at net N! set to 0 and the value at net N2 is 0 after the implication. The direct

29

implication obtained from the experiment and the contrapositive of this implication are

shown below.

N, = 0 -> N2 = 0 (7)

N2 = 1 -> Ni = 1 (8), contrapositive of direct implication (7) from 3-VP experiment

Now if we are required to set net N2 to ls during test generation, by the application of

contrapositive implication (8) to each bit in the corresponding bit sequence 111 for the

value ls, we know that net Ni must also be set to ls. As another example, if the required

value at net N2 is D = 1x0 during test generation, then N2 can only contain elements in lxx

= ls/lh/D, where lxx is obtained from the application of rule (8) to 1x0. The following

table summarizes the implied value at net Nj for each direct implication from the 3-VP

experiments and each element in the basic set as a requirement at net N2.

Table 13: Contrapositive implications at net Ni

Basic value
atnetN2

Ni = 0->N2 = 0 '■.Ni-'0-»N2=l Ni = 1 -> N2 = 0 N, = 1 -> N2 = 1

0S (VOh/D/D/Vlh Is Os/Oh/D/D/n/ih 0s

oh Oh/D/D/ls/lh ls/lh ojD/Dnjih
Os/Oh

Is Is 0s/0h/D/EJ/ls/lh 0s (VC/D/D/IA
lh ls/lh Oh/D/D/yih Os/Oh 0s/0h/D/D/lh

D D/i,/ih D/is/ih Os/Oh/D 0s/0h/D

D D/is/ih D/Vlh 0s/0h/D Os/Oh/Ü

3.5 Algorithm Outline and Test Compaction

We now present the outline of our algorithm for generating a robust test pattern for a

functional path and discuss the way test compaction is incorporated during test

generation.

30

1. Initialization - Initialize the nets on the functional path to the required transitions and

the off-path sensitizing inputs to the values required to robustly propagate the

transitions. Set all the other nets to the unknown value.

2. Implication - Use forward and backward implications, along with the contrapositive

implications we found in the static learning procedure, to determine the values of

other nets in the circuit. If an inconsistency occurs, then the fault is not robustly

testable.

3. Enumeration - Justify any variant nets in the circuit by invoking the enumeration

procedure that is identical to that for SIMPLE.

4. If we exhaust the test pattern space defined by those Pis after step 2, then the fault is

not robustly testable. If there are no variant nets left, then the pattern at the Pis

constitutes a robust test pattern for the current path delay fault.

When the algorithm succeeds in finding a test pattern for the current target fault, often

there still remain unassigned Pis. We further process the other faults with the constraints

found for the current target fault remaining at the Pis. The algorithm attempts to include

as many additional faults as possible until it exhausts the set of unprocessed faults. As

noted in the discussion for the path delay fault model, the fault universe is often very

large. The situation remains even if we only take a subset of the fault universe as the fault

set for test generation. In order to effectively cope with the typically huge number of

paths in the fault set, we have adopted a path tree structure [32] to store and examine the

fault set efficiently. The basic idea for this stems from the fact that a path delay fault can

be specified in two parts, one for the structural path in the circuit it is on, the other for

the required transitions on the structural path. Thus parts of paths that are common to

many paths from a specific PI can be compactly stored as a tree structure rooted at that

PI.

31

3.6 Experimental Results for the Sequential PDFTG

With the incorporation of test compaction in the algorithm, the test generation process

does not need to rely on a fault simulator to identify additional testable path delay faults

after creating a test pattern for the current target fault. To assess the efficiency aspects of

the algorithm, we have performed robust test generation for the ISCAS '85 standard

benchmark circuits on a Sun "Ultra 1" workstation with one Sparc CPU using the

sequential version of the algorithm. The subset of the path delay fault universe for each

benchmark circuit was constructed by selecting all the functional paths whose lengths, in

terms of unit delay, are greater than or equal to a threshold value. The table below depicts

the characteristics of the fault sets of the benchmark circuits selected for the test

generation experiments.

Table 14: Results from Fault List Generation

Circuit Name Number of
Faults

Number of
Selected Faults

Maximum
Path Length

Path Length
Threshold

C432 583652 200000» 18 16
C499 795776 249984« 12 12
C880 17284 16194 25 12

C1355 8346432 150000» 25 25
C1908 14588114 98144 41 36
C2670 1359920 103360 33 30

C3540 57353342 59840 48 45

C5315 2682610 60940 50 45
C6288 overflow 27000» 125 125
C7552 1452988 91664 44 38

Ü The total number of faults whose length are not less than the threshold is greater than the number of selected faults

Table 15 shows the results of this experiment. A few remarks on the meaning of some

columns are followed: column "Redundant Paths" indicates the number of functional

paths that are not robustly testable, column "Compacted Tests" represents the number of

test patterns generated for all the testable paths.

32

Table 15: Results from Test Generation with Compaction

Circuit
Name

Size of
Test Set

Redundant
Paths

Redundancy
Ratio

Testable
Paths

Compacted
Tests

Compaction
Ratio

Time (sec)
ü

C432 200000 199978 99.9% 22 6 27.27% 153.880
C499 249984 229504 91.8% 20480 10240 50% 7079.802
C880 16194 1201 7.42% 14993 1392 9.28% 1077.470

C1355 150000 150000 100% 0 0 NA 34.710
C1908 98144 98048 99.9% 96 94 97.92% 1222.600
C2670 103360 103360 100% 0 0 NA 379.680
C3540 59840 59840 100% 0 0 NA 277.760
C5315 60940 60940 100% 0 0 NA 174.930
C6288 27000 27000 100% 0 0 NA 47.590
C7552 91664 91664 100% 0 0 NA 2870.620

Ü in terms of CPU sec

For all the circuits considered here, the algorithm completed the process of test generation

and compaction in remarkably small amounts of CPU time, in comparison with the time

for stuck-at fault test generation. However, it is noticeable that the redundancy ratio,

which is the ratio of the number of robustly redundant path delay faults to the total

number of processed faults, is very high in almost all of the benchmark circuits; only

C880 has a ratio less than 90%. This phenomenon suggests that these circuits are not

designed with features to enhance robust testability for the path delay fault model.

Nevertheless, the compaction ratio, which is the ratio of the number of generated test

patterns to the number of robustly testable paths, shows that the algorithm generated a

small set of test patterns efficiently for each circuits with low redundancy ratio. It would

be interesting to compare the timing results with those in [31, 32]. However, since the

criteria to select the target faults in our experiment are different from those in [31, 32] we

can not make the comparison.

3.7 Parallelization of PDFTG

Another experiment for the sequential version of PDFTG, without the compaction

procedure on the same sets of path delay faults, was conducted on the same Sun

workstation to analyze the distribution of the test generation time of the selected faults.

33

The results summarized in Table 16 showed that, contrary to the cases of stuck-at fault

test generation, the total execution time for each of the target circuits was not determined

mainly by a very small fraction of the target fault set. Therefore, it might be more efficient

to parallelize PDFTG by partitioning the target fault list instead of the search space as in

the parallelization scheme for SIMPLE. This experiment also shows an interesting and

surprising fact: not only are almost all the faults in the fault set of nearly every ISCAS

'85 circuit not robustly testable, but also each of these faults can be identified within a

very short time. Design methodologies that increase the robust testability of at least the

timing-critical functional paths must be applied for the automatic test generators to be

applicable to the problem of testing the robust path delay faults.

Table 16: Results from Test Generation without Compaction!)

Circuit
Name

Size of
Test Set

Redundant
Paths

Max Tm for
Redundant

Paths

Total
Process
Time

Time for
Redundant

Paths

Timing
Ratio

C432 200000 199978 0.02 154.280 154.230 99.9%
C499 249984 229504 0.02 401.550 347.280 86.5%
C880 16194 1201 0.09 67.860 32.130 47.3%

C1355 150000 150000 0.01 40.510 40.510 100%
C1908 98144 98048 10.61 1221.200 1220.690 99.9%
C2670 103360 103360 0.02 378.940 378.940 100%
C3540 59840 59840 0.02 279.910 279.910 100%
C5315 60940 60940 0.02 172.810 172.810 100%
C6288 27000 27000 0.01 47.179 47.179 100%
C7552 91664 91664 0.08 3052.440 3052.440 100%

Ü in terms of CPU sec

A parallel version of PDFTG based on the scheme of partitioning the target fault lists was

implemented using the PVM communication package. The timing results of the

experiment for this parallel PDFTG on the ISCAS '85 circuits are presented in Table 17,

and the performance of this parallel scheme is illustrated in the speedup graphs from Figs.

6-15. Each row in Table 17 shows the execution time of the parallel PDFTG for the

corresponding circuit using the same fault set as in the experiment for the sequential

program. The performance of this parallel implementation was measured in real time,

34

which can be affected by the intrinsic efficiency of the parallelization scheme as well as

practical considerations such as the communication overhead and the load on each

machine. In the multi-user, heterogeneous computing environment that was available for

this experiment, it was impossible to completely isolate or even average out the effects of

these factors. However, the results clearly show the effectiveness of this parallel

implementation.

Table 17: Timing results for parallel version of PDFTGÜ

..# of processors 1 "..,: 2 4 8 12 16

C432 2432.000 1344.000 640.000 448.000 320.000 256.000
C499 27618.537 4352.000 1920.000 1088.000 896.000 576.000
C880 701.718 341.301 233.539 108.499 78.518 50.368
C1355 850.355 388.251 247.761 223.455 209.913 192.000
C1908 12756.544 5238.482 2192.936 1352.781 910.995 842.949
C2670 3274.054 1410.807 1107.352 569.559 361.558 344.342
C3540 4074.841 1530.686 948.049 403.330 347.612 310.847
C5315 1554.499 1090.279 666.914 346.219 329.274 270.903
C6288 1589.463 746.037 451.827 317.276 299.518 271.827
C7552 18914.391 10838.726 8161.644 3010.675 2513.987 1975.421

Q in terms of sec

Fig. 6: Timing Results for c432 Fig. 7: Timing Results for c499

SEC

2500-

SEC
30000

25000.

20000.

15000.

10000.

5000 .

0 .

\ 2000. x ♦ Simulation

—»—Linear
Speedup

1500.

\ 1000

\^__,
^*>* -♦ Is

16

500
^=*=

0 -f- ■»~~» -t
C

I 1 1 1 1 1—
) 2 4 6 8 10

Number of Processors

-1—
12

-1—
14 16

I 1 r i T i 1
3 2 4 6 8 10 12

Number of Processors
14

35

Fig. 8: Timing Results for c880 Fig. 9: Timing Results for c1355

6 8 10 12 14 ie
Number of Processors

SEC
900
800. .*

-♦

700. .\ A _ 600. ♦ Simulation

—■—Linear
Speedup

500. _.\
400 . ..*. :
300 . —\^..::::.

:::::^?rs^L^ii:!:: »—•■ 200 .
100.

0 . ^"^" -*^
C

i i i i i i
2 4 6 8 10 12
Number of Processors

14
1

16

Fig. 10: Timing Results for C1908 Fig. 11: Timing Results for c2670

SEC

14000

SEC
3500

3000.

2500.

2000-

1500.

1000.

500-

0.
C

12000. jt <l
10000 V V
8000 . :\::::::::: y ♦ Simulation

—■—Linear
Speedup

6000 . .1 ::SEb:::::::::: 4000. %_
2000. ^SiSa-»«™...

^^i -•- ̂ ■^B. H» 0 . " ■
c

i i i i i
2 4 6 8 10

Number of Processors

1
12

1
14 16

i i i i—i—i—i i
2 4 6 8 10 12 14 16
Number of Processors

Fig. 12: Timing Results for C3540

SEC

Fig. 13: Timing Results for C5315

-Simulation

-Linear
Speedup

0 2 4 6 8 10 12 14 16
Number of Processors Number of Processors

Fig. 14: Timing Results for C6288 Fig. 15: Timing Results for C7552

0 2 4 6 8 10 12 14 16
Number of Processors

2 4 6 8 10 12 14 16
Number of Processors

36

4. Discussion

Both stuck-at fault and delay fault testing have been gaining importance due to the ever-

increasing VLSI circuit complexity. It is also well known that the test generation

processes for stuck-at faults and delay faults are very time-consuming. In this report we

have given a concise description of SIMPLE which employ various algorithmic and

heuristic techniques, such as contrapositive implication and testability measures, to

enhance the performance of test generation for stuck-at faults in combinational circuits.

The power of deterministic implication was fully exploited through our 16-valued logic

system. The efficiency of our simple and yet effective parallelization scheme was

demonstrated again from our experimental results. This near-linear speedup can be

attributed to the conclusion of our analysis of the behavior of the sequential

implementation: the enumeration phase is responsible for more than 95% of the execution

time for the faults that are hard to generate tests for. In turn, the test generation process

spends a high percentage of its time for these "hard" faults; most of them are in fact

redundant. In addition, our parallelization scheme incurs no communication overhead

among the processors.

Our algorithm to generate test patterns for path delay faults followed the strategies and

techniques similar to those used in SIMPLE. Furthermore, the ability of test compaction

was incorporated into the algorithm to take advantage of the freedom provided by the

unassigned input after constructing a test for the current target fault. The logic system in

this algorithm was defined to maximize the inference power of both the forward and

backward implications. The static learning procedure was revised to take into account the

properties of our logic system. The performance of this algorithm has been demonstrated

by the impressive results of the experiments on the ISCAS '85 benchmark circuit. The

experiments also show an interesting and surprising fact that almost all the faults in the

fault set of nearly every target combinational circuit are not robustly testable and each of

these faults can be identified within a very short time. This phenomenon suggests that a

37

lot of circuits are not designed with features to enhance the robust testability for the path

delay fault model. Design methodologies that increase the robust testability of at least the

timing-critical functional paths must be applied for the automatic test generators to be

applicable to the problem of testing the robust path delay faults.

The parallelization scheme of partitioning the target fault list, instead of the search space,

among the processors for the algorithm has showed its effectiveness from the speedup

figures for the experiments of our parallel implementation of PDFTG on the ISCAS '85

benchmark circuits.

These two parallel implementations of our test generation algorithms for stuck-at faults

and path delay faults, together with the versatile PVM communication package, provide

us with an efficient prototype of a test generation system that exploits the parallel

processing power in the common heterogeneous computer network environment.

Reference

[1] A. M. Ali and C. R. P. Hartmann, "A Sixteen-Valued Algorithm for Test Generation

in Combinational Circuits," Technical Report SU-CIS-91-18, School of Computer

and Information Science, Syracuse University, N.Y. 13244, June 1991.

[2] A. M. Ali , "Use of 16 valued Logic System in Combinational Circuit Testing,"

Ph.D. Dissertation, Department of Electrical and Computer Engineering, Syracuse

University, N.Y. 13244, August 1990.

[3] A. M. Ali and C. R. P. Hartmann, "A Novel Approach to Delay Fault Testing,"

Proceedings of Second Annual Symposium on Communications, Signal Processing,

Expert System and ASIC VLSI Design, Greensboro, North Carolina, March 1991.

[4] C. R. P. Hartmann and Dennis C. Y. Shiau, "Digital Test Generation Using

Multiprocessing," Final Technical Report RL-TR-95-163, US Air Force Rome

Laboratory (RL/ERDA), Griffiss AFB, NY 13441, September 1995.

38

[5] Sheldon B. Akers, "A Logic System for Fault Test Generation," IEEE Transactions

on Computers, vol. c-25, pp. 620-630, June 1976.

[6] F. Brglez, P. Pownall, and R. Hum, "Applications of Testability Analysis: From

ATPG to Critical Path Tracing," IEEE International Test Conference, pp. 705-712,

1984.

[7] Franc Brglez and Hideo Fujiwara, "A Neutral Netlist of 10 Combinational

Benchmark Circuits and a Target Translator in Fortran," Proceedings of the IEEE

International Symposium on Circuits & Systems, pp. 663-698, June 1985.

[8] W. H. Debany, et. at., "Fault coverage Measurement for Digital Microcircuits,"

MIL-STD-883 Test Procedure 5012, US Air Force Rome Laboratory (RL/ERDA),

Griffiss AFB, NY 13441, December 18 1989 (Notice 11) and July 27 1990 (Notice

12).

[9] Charles W. Cha, William E. Donath, and Fusun Ozguner, "9-V Algorithm for Test

Pattern Generation of Combinational Digital Circuits." IEEE Transactions on

Computers, vol. c-27, pp. 193-209, March 1978.

[10] S. J. Chandra and J. H. Patel, "Experimental Evaluation of Testability Measures for

Test Generation," IEEE Transactions on Computer-Aided Design, vol. 8, no. 1, pp.

93-98, January 1989.

[11] H. Fujiwara and T. Shimono, "On the Acceleration of Test Generation Algorithms,"

IEEE Transactions on Computers, vol. c-32, pp. 1137-1144, December 1983.

[12] H. Fujiwara and S. Toida, "The Complexity of Fault Detection: An Approach to

Design for Testability," Proceedings of the 12th International Symposium on Fault

Tolerant Computing, pp. 101-108, June 1982.

[13] Prabhakar Goel, "An Implicit Enumeration Algorithm to Generate Tests for

Combinational Logic Circuits," IEEE Transactions on Computers, vol. c-30, no. 3,

pp. 215-222, March 1981.

39

[14] L. H. Goldstein and E. L. Thigpen, "SCOAP: Sandia Controllability/Observability

Analysis Program," Proceedings of the 17th ACM/IEEE Design Automation

Conference, pp. 190-196, 1980.

[15] O. H. Ibarra and S. K. Sahni, "Polynomially Complete Fault Detection Problems,"

IEEE Transactions on Computers, vol. c-24, pp. 242-259, March 1975.

[16] TomKirkland and M, Ray Mercer, "A Topological Search Algorithm for ATPG,"

Proceedings of the 24th ACM/IEEE Design Automation Conference, pp. 502-508,

1987.

[17] P. Muth, "A Nine-Valued Circuit Model for Test Generation," IEEE Transactions

on Computers, vol. c-25, no. 6, pp. 630-636, June 1976.

[18] Janusz Raj ski and Henry Cox, "A Method of Test Generation and Fault Diagnosis

in Very Large Combinational Circuits," IEEE International Test Conference, pp.

932-943,1987.

[19] J. P. Roth, W. G. Bouricius, and O. R. Schneider, "Programmed Algorithms to

Compute Tests to Detect and Distinguish Between Failures in Logic Circuits," IEEE

Transactions on Computers, vol. c-16, pp. 567-579, October 1967.

[20] Donald M. Schüler, Ernst G. Ulrich, Thomas E. Baker, and Susan P. Bryant,

"Random Test Generation Using Concurrent Logic Simulation," Proceedings of the

12th Design Automation Conference, pp. 261-267,1975.

[21] M. H. Schulz, et. al., "SOCRATES: A Highly Efficient Automatic Test Pattern

Generation System," Proceedings of the International Test Conference, pp. 1016-

1026, September 1987.

[22] Michael H. Schulz and Elisabeth Auth, "Advanced Automatic Test Pattern

Generation and Redundancy Identification Techniques," Proceedings of the 18th

Symposium on Fault-Tolerant Computing, pp. 30-35, 1988.

[23] R. Tarjan, "Finding Dominators in Directed Graphs," SIAM Journal of Computing,

vol. 3, no. 11, pp. 62-89, 1974.

40

[24] Z. Barzilai and B. K. Rosen, "Comparison of AC Self-Testing Procedure,"

Proceedings of the IEEE International Test Conference, pp. 89-91, October 1983.

[25] S. Koeppe, "Modeling and Simulation of Delay Faults in CMOS Logic Circuits,"

Proceedings of the IEEE International Test Conference, pp. 530-536, September

1986.

[26] A. K. Pramanick and S. M. Reddy, "On the Detection of Delay Faults,"

Proceedings of the IEEE International Test Conference, pp. 845-856, September

1988.

[27] J. J. Shedletsky and J. D. Lesser, "An Experimental Delay Test Generator for LSI

Logic," IEEE Transactions on Computers, vol. c-29, pp. 235-248, March 1980.

[28] M. Abramovici, et. al., "Digital Systems Testing and Testable Design," Computer

Science Press.

[29] G. L. Smith, "Model for Delay Faults Based upon Paths," Proceedings of the IEEE

International Test Conference, pp. 342-349, September 1985.

[30] S. M. Reddy, et. al., "On Delay Testing in Logic Circuits," Proceedings of the IEEE

International Conference on Computer Aided Design, pp. 148-151, 1986.

[31] M. H. Schulz, et. al., "Advanced Automatic Test Pattern Generation Techniques for

Path Delay Faults," Proceedings of the IEEE International Conference on Computer

Aided Design, pp. 44-51, 1989.

[32] M. H. Schulz, et. al., "Dynamite: An Efficient Automatic Test Pattern Generation

System for Path Delay Faults," IEEE Transactions on Computer-Aided Design, vol.

10, no. 10, pp. 1323-1335.

[33] J.P. Hayes, "Uncertainty, Energy, and Multiple-Valued Logics," IEEE Transactions

on Computers, vol. c35, no. 2, pp. 107-114, February 1986.

[34] Al Geist, et. al, "PVM: Parallel Virtual Machine - A Users Guide and Tutorial for

Networked Parallel Computing," MIT Press.

«U.S. GOVERNMENT PRINTING OFFICE: 1998-610-130-61118

41

MISSION
OF

ROME LABORATORY

Mission. The mission of Rome Laboratory is to advance the science and
technologies of command, control, communications and intelligence and to
transition them into systems to meet customer needs. To achieve this,
Rome Lab:

a. Conducts vigorous research, development and test programs in all
applicable technologies;

b. Transitions technology to current and future systems to improve
operational capability, readiness, and supportability;

c. Provides a full range of technical support to Air Force Material
Command product centers and other Air Force organizations;

d. Promotes transfer of technology to the private sector;

e. Maintains leading edge technological expertise in the areas of
surveillance, communications, command and control, intelligence,
reliability science, electro-magnetic technology, photonics, signal
processing, and computational science.

The thrust areas of technical competence include: Surveillance,
Communications, Command and Control, Intelligence, Signal Processing,
Computer Science and Technology, Electromagnetic Technology,
Photonics and Reliability Sciences.

