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ABSTRACT 

.0 
The ability of an adaptive optics system to compensate for turbu- 

lence-induced random wavefront distortion is studied in terms of the 

ensemble-average,   aperture-average squared residual wavefront error. 

It is shown that if the adaptive optics are controlled in terms of the appro- 

priate set of Karhunen-Loeve functions,   the minimum possible number of 

degrees-of-freedom will be required for a given performance.    Results 

are presented for the required number of degrees-of-freedom for any 

level of performance if the adaptive optics control utilizes the Karhunen- 

Loeve functions,   the Zernike-function,  a set of local piston/tilt-only 

functions,   or a set of local piston-only functions.    With the exception 

of the last of these,  which requires almost seven-times the optimum 

number of degrees-of-freedom,  there is no more than a factor of two 

spread in required number of degrees-of-free dorn amongst the other 

possibilities. 

Barber,  barber,   shave a pig 
How many hairs to make a wig? 
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Introduction 

In the design of an adaptive optics system to compensate for wave- 

front distortion produced by atmospheric turbulence,  the primary concern 

must,  of course,   be the achievement of an adequate degree of correction. 

If we can incorporate a sufficient number of degrees-of-freedom into the 

adaption mechanism, we can be assured of achieving any desired level of 

correction.    However,   in most practical cases,  it is desirable to minimize 

the number of degrees-of-freedom utilized.      This might be,  for example, 

to minimize noise effects*!" or more significantly,   because we can not 

afford/support the requirements for data collection and processing to 

control a large number of degrees-of-freedom.    For a multi-dither COAT 

adaptive optics system we might, for example, have difficulty obtaining a 

wide enough range of dither frequencies to control more than a rather 

limited number of degrees-of-freedom. 

Given this limitation in the number of degrees-of-freedom which 

can be utilized,   it is obviously advantageous to design the adaptive optics 

system so that these degrees-of-freedom give,   in a statistical sense,  the 

best possible fit to the turbulent wavefront distortion.    This paper will be 

concerned with an investigation of this subject.    We shall first show that 

the best possible fit is obtained for a finite number of degrees-of-freedom 

if the correction mode corresponding to each degree-of-freedom is chosen 

from the set of Karhunen-Loeve orthonormal functions "matching" the 

wavefront distortion statistics.    We shall then consider in quantitative terms 

the quality of the fit that can be obtained using the Karhunen-Loeve-functions, 

* We should be careful to distinguish between the number of actuators on 
an adaptive optics device and the number of degrees-of-freedom. The 
former can be considerably greater than the latter. If the same set of 
signals combined in (potentially distinct but) only deterministically dif- 
ferent ways are used to control a large number of actuators, the number 
of degrees-of-freedom corresponds to the number of signals and not to 
the number of actuators. .      ' < 

t    An unlimitedly large number of degrees-of-freedom can be utilized with- 
out deleterious noise effects if we utilize a priori information on the 
turbulence statistics to influence the calculated control signals for each 
degree-of-freedom. 
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the Zernike-functions,   and piston and piston/tilt-functions.    We shall 

carry out this evaluation for a circular aperture of diameter    D   .    Results 

will be presented in such a form that we can easily compare the number 

of degrees-of-freedom required to achieve a desired level of fit, using 

each of these mode types. 

Orthonormal Mode Decomposition 

Each degree-of-freedom will control a mode of deformation of the 

adaptive optics system.    Any finite set of these modes can be represented 

in terms of an equal or lesser number of suitably chosen orthonormal modes. 

It is therefore appropriate to couch our considerations in terms of various 

orthonormal modes. 

If we let   W(r)   be a function defining the adaptive optics aperture, 

i» 6» » ,   ,            ,,  i .... ,|,, , i ,,. . i  ,,    i ,, .   , i,.    i   . i i.....  i,   i i  .. 

/ 

W(r)   =    { 

1,   ;   if . r   is inside,the aperture 

0        if   r   is outside the aperture, (1) 

.   . .     . |,   . .      ..,,,.'. ... 
then a set of functions    {Gj(r)]    are orthonormal over the aperture if 

Jdr W(?)G1(?)G1,(r)= 6l>1- . (2) 
.,i 

The well-known Zernike functions are orthonormal over an unobstructed 

circular aperture.    If the aperture is divided up into a set of non-overlapping 

subapertures (of any shape) and a set of orthonormal functions are defined 

in each subaperture,   then the sum of all of these functions forms an ortho- 

normal set covering the full aperture.    Since the so-called piston and tilt 

mode's are samples from a set of orthonormal functions on the subaperture, 

*   If the subaperture is circular,  the piston and tilt modes are just the 
first three of the Zernike-functions for that circular region. 

- 2 



the combination of all the piston functions or all the piston and tilt func- 

tions for each subaperture of a full aperture are part of a more extensive 

set of orthonormal functions covering the full aperture. 

To see how well a finite set of modes from an orthonormal set of 

functions can compensate for wavefront distortion, we consider the random 

function   f(r)   corresponding to the turbulence distorted wavefront at the 

aperture plane.    The adaptive optics would seek to match this random func- 

tion in a way that minimized the discrepancy-squared integrated over the 

aperture.    With an unlimited set of orthonormal modes available,  the 

fitting function would be 

i=i 

where 

g,   =   | dr W(r) f(r) Cfi) . (4) 

It can be shown that this minimizes the quantity 

AG   =  .J <f? W(?) [f(?) -fa(r)]a .       • (5) 

"With only control of the first-N orthonormal modes available as degrees- 

of-freedorn,  the adaptive optics would fit the function 

N 

fG(N;r)= J  gt €},(?) . (6) 
t i 

1=1 

It can be shown that this minimizes the quantity 

Ae(N) =   JdrW(r)[f(r).f8(N;r)]ä . (7) 
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In a statistical sense, what we are interested in is the ensemble 

average value of   AG(N)   .    The smaller this is for a given value of   N   (or 

the smaller we can make   N  for a desired value of the ensemble average), 

the better we would judge the orthonormal series to be for matching the 

wavefront distortion.    If we take the ensemble average value of Eq.   (7), 

and substitute Eq.  (6), we get 

N 

<MN)>  =< J dr W(r) [f(?) -   £ gj  G^)]^) 
1=1 

N 

= (Jd?W(?){[f(?)]ä-2f(?)^   gl  cfi) 
i= l 

■+[Zg* ^Xl.gi'^Jh  • (8) 

i=i       i'=i 

Making the product of sums into a double sum,   interchanging the order of 

integration and summation,  and then recognizing that only   f(r)   and   gt 

(and   g , ) are random quantities,  and accordingly manipulating the ensemble 

average brackets, we get from Eq.   (8) 

<A0(N)> =< J*dr W(r)[f(?)]a> 

N . 

~ 2..£ <Si  [J* d? W& f^) Gi^>] > 
1=1 

N . 

+    ^<glgl')   [J*   d" W^)   Gl^)   Gl'^)] • M 
1,1'= 1 

If we substitute Eq. *s (2) and (4) into Eq.   (9), we obtain 

N N   ft 

<AG(N)> = ? - z£ <g|[g|]> +^.<g1g1.) 6t>l, 
1 = 1 i,i'=i 

=   Sf - «*(N) , (10) 
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where 

Sf = < J dr W(?) [f(?)]3 > , (11) 

and 

*(N) =  ■[ <(gl)
8> . (12) 

i = i 

We identify   y   with the "magnitude" of the wavefront distortion to 

be corrected by the adaptive optics system,   and   ^(N)   with the "magnitude" 

of the useful effort of the system to achieve the correction.    It is obvious 

from Eq.   (7) that   AG(N)S and thus   <AG(N)>   are positive quantities.    In view 

of this,   it follows from Eq.   (10) that   <#(N)   will never be greater than   gr   . 

Obviously,   then,   that choice of the orthonormal set of functions    [Gj(r)} 

which maximizes   <^(N)   represents the best set to use in designing the 

adaptive optics system if only   N   degrees-of-freedom can be utilized 

(and our objective is to achieve the best possible wavefront distortion. ) 

We shall now show that in this sense the best possible set of orthonormal 

functions is the set of so-called Karhunen-Loeve functions.    With this set 

of orthonormal functions,  fewer degrees-of-freedom are required (i.e.,   a 

smaller value of   N   is needed) to make   <#(N)   equal or exceed any parti- 

cular value than with any other possible set of orthonormal functions. 

Karhunen-Loeve Functions 

The so-called Karhunen-Loeve functions are specific to a region and 

to the statistics (in particular the second moment) of a random function.    In 

all of our discussions,  we shall understand the region to be that defined by 

the aperture function,    W(r)   ,  and the random function to be the random 

wavefront distortion function,    f(r)   .   We shall denote the set of Karhunen- 

Loeve functions by the notation   {^(r)}    .    These functions are orthonormal 

over the aperture,  i. e. , 
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J* dr W(r) Kt(?) Kt,(r) = 6l> t, . (13) 

Decomposing the random function   f(r)   in terms of the set of Karhunen- 

JLoeve functions,  we would write 

fK(?)   =  Y  kj   Kf(?) . (14) 
1=1 

where 

k,  = J" dr W(r)f(r) Kt(?) . (15) 

The function   f K(r)   is formed in such a way as to minimize the integral 

over the aperture of the square of the deviation between   f(r)   and   f K(r)   , 

i. e. ,   it minimizes 

AK  = J* dr W(r) [f(?) -fK(r)]* . '  (16) 

Utilizing only the first-N function from the set, we would approximate 

f(r)   by 

f^^l-k,^) , (17) 
i=i ' 

which is such that it minimizes the quantity 

AK(N) *   j dr W(r) [f(r) - f K(N;r)3*      «   . (18) 

The special feature of the set of Karhunen-Loeve functions   which 

distinguishes it from all other sets of orthonormal functions is the fact that 

the random variable,    h{    (corresponding to   gj    for the other sets of ortho- 

normal functions) has the statistical property that 

<kiki*> a«,i,*H, • (19) 



In fact,   a homogeneous (eigenvalue/eigenfunction) integral equation which 

provides the basis for developing the Karhunen-Loeve functions can be 

developed from Eq.   (19) in conjunction with Eq. 's (13) and (15).    [The 

second moment of   f(r)   appears as the kernel in the integral equation — 

the bounds of the integral corresponding to the aperture function,    W(r)   .] 

We shall assume that the set of Karhunen-Loeve functions are so ordered 

that if   i < i*    ,  then   K4 ^Ht,   •   ,,', 

Following exactly the same procedure as was utilized in the pre- 

vious section, we can show that corresponding to Eq. 's (10) and (12), in 

this case we get 

<AK(N)> =y -K(N) , (20) 

where 

1 = 1 

N 

JH, ■ . (21) 
1 = 1 

Now,   to prove that the Karhunen-Loeve functions are the optimum functions 

for our purpose,  we simply have to prove that for all N 

jy(N)   ;>  ^(N) , (to be proved)     . (22) 

r,:     ......   C '■,!-.:- 

o •■:'.'.':■'■■-■■■ ' 
We start by defining the quantity 

alfJ■"'=   Jdr-W(r) G^) ^(r) , (23) 

and noting that since   { K, (r)l    is a complete set of orthonormal functions, 

we can write 
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Gl(?)=  £«,,>,(?) , (24) 
J=i 

while as a consequence of the fact that   {Gt(r)}    is also a complete set of 

orthonormal functions,  we can equally well write 

"M*>- X •„'i'o.ff) .     • (25) 

J = l 

By virtue of the fact that   G4(r)   is a normalized function, we can write 

1 =   J* drW(?) Gt(r) G,(r) . (26) 

If we substitute Eq.   (24) into Eq.   (26) twice (once for each   Gt   ),  and then 

make the product of sums into a double sum and then interchange the order 

of integration and summation, we get 

1=  f. ^./^.^/drW^K^J^C?)       • (27) 

J,J'=1 

Now making use of Eq.   (13),  we can perform the integration and then the 

j'-summation, yielding the result that 

l<*Jr 1        ■      . (28) 

It follows in a trivial way from Eq.   (28) that 

N oo 

(29) 

i=i i= i 
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Working in the same way,  but with the roles of   K     and   G,    inter- 

changed,  and using Eq.   (25) in place of Eq.   (24),  we can also develop the 

results that 

00 

£(alfJ)a = 1       , (30) 
1 = 1 

and 

£     £ KJ*2 =N • <31> 
,1=1   1 = 1 

if we define   A   as • 

N «s A=    l l        ^'^ ' (32) 
1=1     J=l 

then it follows from Eq.   (29) that 

N    '      oo 

.£.   £...      (<V.> =N- A .; (33) 
1=1     J = N+1 

and from Eq.   (31),   that 

N oo 

J.      .J.  K,/>3  =N- A . (34) 
J=l        1=N+1 

If we start with Eq.   (12) and substitute Eq.   (4) into that and then 

substitute Eq.   (24) into that result, we get 

N 
r7 

*(N) =2^ < J dr W(r) f(r) Gt(?) J dr' W(r')f(r') G,(r')> 

1=1 

N to 

= .£.<Jd?W(?)f(?)  ^..■.alfJ"''KJCr) 
i=i j= i 
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08 

X   J dr' W(?0f(?') £  aity Kr(r')>     . (35) 

y=i 

At this point,   if we interchange the order of integrations,   summations, 

and ensemble averaging,  and make use of Eq.   (15), we get 

N oo 

*(N)=.£   .£...     a1?J  aI>r < Jdr W(r)f(?) Kj(?) 
i = i j, j>=i 

x j_d?' w(?')f(?1 K4;(?')> 

N oo 

= 1    1:     «t.j"at.i' <ki kv>       • (36) 

1=1 jfj-^i 

Making use of the basic property of the Karhunen-Loeve functions as de- 

fined by Eq.   (19), we can rewrite this result as 

.   N oo .,..■......". 

1=1  J,J-=I 

N oo 

-..£. £-«„,>«, 
1=1 j=i 

N  ■      N .        N eo 

=    l       l «•l.^^'+X-I-- kP^ ' <37> 
1=1 J=l ■1=11= N+l 

If we start with Eq.   (21) and make use of Eq.   (30), we can write 

N 

1=1 

N oo 

=1 ■■J--iauf KI 
1=11=1 
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N oo 

= IlK./-, 
J = l 1=1 

N N N oo 

= 1 I-UUP«* +1 IKP2«/ • <38> 
J=l   1 = 1 J=l       1=N + 1 

Comparing Eq. 's (37) and (38),  we see that the problem of proving Eq.   (22) 

reduces to that of proving that 

N eo - N oo 

■£     .£^1.^ KV *,£      X {ai^ K> ■■'■    (to be proved) . (39) 
J=l     1 = N+1 1=1    i = N + l 

By virtue of the ordering of the Karhunen-Loeve functions in terms of the 

magnitudes of the   H ,'s   , we see that in the sum on the left-hand-side of 

Eq.   (39) all of the   H ,'s   are greater than or equal to   HN    .    Taking advan- 

tage of Eq.  (34),  we can thus write 

I !<*,;,>«; ■■*■'(.& IK»'*» ' 
i= 1     1=N+1 J = l     1= N + l 

,*   (N-A)KN ,       . (40) 

In the sum on the right-hand-side of Eq.   (39),   it follows from the ordering 

of the   K.'S   that all of the   H,'s   are less than or equal to   KN+ x    .    Thus, 

making use of Eq.   (33), we get " 

1= 1    J=N+1 1=1    J=N + 1 

$   (N-A)HN + 1 . (41) 
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Since   HN+1 £ HN     ,   Eq.   (39) follows,  and from that Eq.   (22) follows. 

We can write 

Ö 

K(N)   *   *(N) . (42) 

'i . 

As we noted before,   this relationship means that the Karhunen-Loeve 

functions are the most efficient functions for representation of random 

wavefront distortion.    This is in the sense that for any given number of 

terms (i.e. ,  number of degrees-of-freedom),   a Karhunen-Loeve approxi- 

mation to the random wavefront distortion will have the least mean    square 

error of any orthonormal series (or any other kind of series) approxima- 

tion to the random wavefront using that number of degrees-of-freedom. . 

Having established that the Karhunen-Loeve functions are the '    - 

most efficient at approximating random wavefront distortion,  we now 

turn our attention to the quantitative aspects of the problem.    How effi- 

cient is the Karhunen-Loeve series approximation,  and how efficient are 

approximations based on other series?    We take this up in the next 

section. • 

Quantitative Results for Various Series Approximations 

As examples of various types of series representations of random 

wavefront distortion, we shall consider,   in addition to our optimum case 

of the Karhunen-Loeve functions,   the following four other cases.    These 

four cases represent the use of   1) local piston-only modes,    2) local 

piston/tilt-only modes,    3) Zernike polynomials,   and   4) a variation of the 

Karhunen-Loeve functions in which tilt is treated separately.    It is con- 

venient to start with the local piston-only modes. 

*   The mean is taken in the sense of both an aperture average and an 
ensemble average. 
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"We consider a circular aperture of diameter    D   ,   and consider it 

subdivided in a covering set of non-overlapping circular regions of dia- 

meter   d   .    (Obviously,  it is impossible to achieve such a decomposition, 

and in practice one may consider each of these regions to be a regular 

hexagon of area   ^ TT d2    ,   arranged in a near circular tile pattern of area 

i TT D2    . )   If each of these subregions is allowed to move up and down, 

i. e. ,  piston motion only to provide phase shift to match (compensate) the 

random wavefront distortion,  then we are considering a representation in 

terms of 

N = (D/d)2   - 1 (piston-only) , (43) 

degrees-of-freedom.    The subtraction of the factor of one takes account of 

the fact that one of the pistons,   or the average of several or all of the pistons 

must be taken as a reference for the amount of vertical displacement of the 

pistons.    This reference is not to be considered as a degree-of-freedom. 

It has been shown1   that for a random wavefront distortion with a 

phase structure function that can be written as 

^(r) = 6.88 (r/r0)^
3 (rad3) , (44) 

the mean square wavefront distortion relative to the average phase,  over a 

circular aperture of diameter   D   is 

°b s=   1.0299 (D/r0F
3 (rad3) . (45) 

Over each of the sub-elements,   the piston motion can follow the average 

phase,  but there will remain higher order wavefront distortion which the 

piston motion is unable to accommodate.    This higher order aberration, 

by virtue of the same considerations as led to Eq.   (45), will have a mean 

square value 

ad
3  =   1.0299 (d/r0f* (rad2) . (46) 
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This expression gives not only the remaining aberration over the sub- 

element after piston motion has done as well as it can to match the local 

wavefront distortion,  but also,   since it is the same on each of the set of 

subapertures covering the full aperture,   represents average residual 

wavefront distortion over the full aperture with local piston-only wave- 

front correction with   N   degrees-of-free dorn. 

It is convenient to consider mean square wavefront distortion in 

terms of   a31PV'r0f?z   .    The limit of   CT
2/(D/TQf^   for no correction, 

i.e. , for   N = 0   degrees-of-freedom, we see from Eq.   (45) is 

a3/(D/r0)B/3 =   1. 0299 , (N = 0) (47) 

In Fig.   1,  we plot the residual error for   N ^ 0   , which we see from 

combining Eq. 's (43) and (46) has the form 

J-,   , 

oS/p/roF3 =    1.0299 (N="l)-e/6   ,    (piston-only)      . (48) 

If we consider a set of degrees-of-freedom corresponding to 

modes localized to a set of circular subregions of diameter   d   ,   covering 

the full aperture,  but allow the degrees-of-freedom to represent not only 

piston motion but also two components of tilt,  then the number of degrees- 

of-freedom is 

N'= 3 (D/df   - 1 ,      ■    ■    (piston/tilt-only)     , (49) 

where in this case there are three degrees-of-freedom for each subregion, 

except that one of the»piston motions must be taken as a reference for all 

the rest,   and so should not be considered to be a degree-of-freedom.    It 

has been shown1   that for a subaperture of diameter   d   over which there is 

both piston and two axes of tilt adjustable to match the wavefront distortion, 

- 14 - 



the higher order aberrations in the wavefront which can not be accommodated 

by the piston/tilt adjustments will have a mean square value of 

Ö 

ad
8  = 0.13433 (d/r0f/3 (rad3)       . (50) 

Since, this mean square residual wavefront error applies equally well to 

all of the subapertures that cover the full aperture,  Eq.   (50) also defines 

the mean square residual error over the full aperture for pis ton/tilt-only 

corrections.     Combining Eq. *s (49) and (50), we see that for   N   degrees- 

of-freedom with pis ton/tilt-only wavefront correction,  the residual wave- 

front error on a circular aperture of diameter   D  will be such that 

a3/(D/r0F
3 = 0.13433 X   36/6   (N+l)"6/6 

=   0, 33556 (N + l)rB/8 (piston/tilt-only) .'       (51) 

In Fig.   1 we also show this dependence. 

The use of the Zernike polynomials to define a set of functions over 

a circular region of diameter   D   ,   as a basis for representing random 

wavefront distortion, has been studied by Noll.8   He has been able to show 

that for a fit to the random wavefront distortion oyer the full aperture with 

N   degrees-of-freedom in the Zernike function set,  the mean square residual 

wavefront error can be written as 

a2  = Z(N) (D/roP3 , (Zernike-functions) , (52) 

where the function   Z(N)   has the values listed in Table 1.    Here,  although 

a constant value is generally taken as the first of the Zernike -functions, 

following the same argument as before,  we do not consider this to be a 

degree-of-freedom.    In Fig.   1,  we also show the quantity 

<f*l(T>lTQ¥fc =   Z(N)       , (Zernike-functions) . (53) 
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(54) 

Before considering the pure Karhunen-Loeve function's ability to 

match the random wavefront distortion over the circular aperture of 

diameter   D   , we consider a minor variant case in which tilt is treated 

separately.    This allows us to consider a system in which the adaptive 

optics are mounted in gimbals to track a target.    In this case,  aperture 

averaged angle-of-arrival fluctuations will be tracked by the two degrees- 

of-freedom inherent in the two gimbal axes and only the higher order 
* 

aberrations will have to be accommodated by the adaptive optics.       The 

performance of the "tilt-free" Karhunen-Loeve functions in this role has 

been modeled by us,3 and the results quoted there for 

*-T(n)=    (D/*)^   £   % , ,' 
1= i 

for the sum of the variances (eigenvalues) associated with the first   n 

tilt-free Karhunen-Loeve functions (eigenfunctions)   can be used to cal- 

culate the residual wavefront error variance.    Considering that there 

are two more degrees-of-freedom than   n   ,   i. e. ,  if we use an n-term 

tilt-free Karhunen-Loeve series, we are dealing with 

N = n + 2 (55) 

degrees-of-freedom,  and that the tilt-free mean square wavefront dis- 

tortion over an aperture of diameter   D   is 

aT
2 = 0. 13433 (D/rQF

3 > (56) 

we see that the mean-square residual   wavefront distortion over the aperture 

will be such that 

*   In treating the Zernike-functions,   it was not necessary to separately con- 
sider the tilt degrees-of-freedom provided by the two gimbal axes as thes< 
are identical to the degrees-of-freedom provided by the first two. Zernike 
functions.    It therefore made no difference in our results whether we con- 
sidered the adaptive optics per se,  or the gimbals to supply these two 
degrees-of-freedom. 
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a2/(D/r0F
3 = K^N) 

N-3 tilt-free 
=   0.13433-   Y      HTfl ( Karhunen-Loeve) .   (57) 

x functions 

The function   K,.(N)   has the values listed in Table "1.    The corresponding 

residual wavefront aberration values are plotted in Fig.   1. 

The optimum performance in adaptive optics for a limited number 

of degrees-of-freedom is achieved if there is no separate tilt removal 

(using up the first two degrees-of-freedom in a not quite optimal,  though 

generally quite practical manner),   and the Karhunen-Loeve functions are 

used to model all aspects of the wavefront distortion.    In this case, we 

have shown that3 

N 

*(N) =   (D/r0P   ^   Hl » (58) 

1=1 

i.e. ,  the sum of the first   N  variances is such that the residual wavefront 

aberration with   N   degrees-of-freedom has the form 

fnOhoP3 = K(N) 
N 

/ Karhunen- Loeve^ ,   ~-,~^      V /isarhunen-JLoeveN ._._.. 
=   1.0299-  ^.H,       ,   (       functiong       )   ,     (59) 

i=i 

with   K(N)   taking the values listed in Table 1.    In Fig.   1,  we plot these 

values. 

As can be seen, when we consider large numbers of degrees-of - 

freedom,  the tilt-free Karhunen-Loeve functions (which take advantage of 

the two degrees-of-freedom that can be provided by the gimbal axes) 

allow adaptive optics performance that only requires about 4% more degrees- 

of-freedom than the optimum series to achieve a given residual error level. 
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The Zernike-functions require about 29% more degrees-of-freedom to 

deliver the same residual wavefront aberration performance.    The local 

piston/tilt-only functions require about an additional > 75% more degrees- 

of-freedom than the optimum to allow this same level of performance.    The 

local piston-only function requires an additional 583% more degrees-of- 

freedom than the optimum to allow this same level of performance.    Overall, 

we see that the required number of degrees-of-freedom for a given residual 

error,   compared to the optimum (Karhunen-Loeve) case is as indicated in 

Table 2.    Clearly, we generally would wish to avoid use of the local piston- 

only functions for adaptive optics,  but once we advance to the level of 

sophistication involved in local piston/tilt degrees-of-freedom in the design 

of adaptive optics,   consideration of more sophisticated representations of 

the wavefront distortion will never yield more than a modest further reduc- 

tion in the number of degrees-of-freedom required to achieve a desired 

residual aberration performance. 
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Figure 1.    Relationship Between Degrees-of-Freedom and the 
Residual Wavefront Error.    Results are shown for 
the five cases,   in descending order on the graph, 
for    1) local piston-only modes,    2) for local piston/ 
tilt-only modes,    3) for Zernike-functions,    4) for 
tilt-free Karhunen-Loeve functions,  and   5) for 
Karhunen-Loeve functions. 
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Table      1 

Residual Mean-Square Discrepancy for an N-Term Series 

(For   N   greater than about 50,   the    K(N)   results may suffer from 
significant loss of accuracy due to round-off errors. ) 

N Z(N) K,(N) K(N) 

2 1.3433 XI0"1 1.3433 x1a-1. 1.3290X10"1 

3 1.1117 1.1044 1.0901 

4 8.8009X10-a 8.6545X10-3 8.5118xl0-2 

5 6.4849                   • 6.2694 6.1267 

7 5.2497 4.9413 4. 7985 

10 3. 7697 3.3480 3.2925 

15 2.6718 2.3088 2.2533 

20 2.0781 1.7809 1.7296 

25 1.7513 1.4659 1.4145 

30 1. 5029 1.2389 1.1876 

40 1.1811. 9.6327xl0"3 '    9. 1229 X 10~3 

50 9.7908X10-*3 7.9214 7.4114 

70 7.3845 .   5.9526 5.4426 

100 5.4770 4.4086 3.8988 

150 3.8998 3.1476 2.6375 

200 2.4822 1.9722 
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Table   2 

Required Number of Degrees-of-Freedom 

for a Given Mean-Square Error 

(Results here are based on matching the performance of the 

optimum series with 25 degrees-of-freedom. ) 

Type Series Relative Number of 
Degrees-of-Freedom 

Karhunen-Loeve 100:100 

Tilt-Free Karhunen- 
Loeve 104:100 

Zernike 129:100 

Local Piston/Tilt-Only 175:100 

Local Piston-Only 683:100 
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