
RL-TR-97-174
Final Technical Report
October 1997

AN INDEPENDENT EVALUATION OF THE
ROME LABORATORY FRAMEWORK FOR
CERTIFICATION OF REUSABLE
SOFTWARE COMPONENTS

Underwriters Laboratories, Inc.

Charlotte O. Scheper, Janet S. Flynt, Sharon E. Smith,
Cleo J. Jones, and Jeffrey A. Torres

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

19980310 146
B5TC QE-ÄUyy

Rome Laboratory
Air Force Materiel Command

Rome, New York

This report has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RL-TR-97-174 has been reviewed and is approved for publication.

(J. [JJJ/M
APPROVED: *-~^-"

DEBORAH A. CER1NO
Project Engineer

FOR THE DIRECTOR:
WARREN H. DEB ANY, JR., Technical Advisor
Command, Control & Communications Directorate

If your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization, please
notify RL/C3CB, 525 Brooks Rd, Rome, NY 13441-4505. This will assist us in
maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the dala needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to tho Office of Management and Budget. Paperwork Reduction Project (0704-0188), Washington. DC 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

Oct97
3. REPORT TYPE AND DATES COVERED

 Final Jun 95 - May 97
4. TITLE AND SUBTITLE
AN INDEPENDENT EVALUATION OF THE ROME LABORATORY
FRAMEWORK FOR CERTIFICATION OF REUSABLE SOFTWARE
COMPONENTS
6. AUTHOR(S)

Charlotte O. Scheper, Janet S. Flynt, Sharon E. Smith, Cleo J. Jones and
Jeffrey A. Torres

5. FUNDING NUMBERS

C - F30602-95-C-0128
PE - 63728F
PR -2527
TA -02
WU-37

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Underwriters Laboratories, Inc.
12 Laboratory Drive
PO Box 13995
Research Triangle Park. NC 27709-3995

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Rome Laboratory/C3CB
525 Brooks Rd
Rome, NY 13441-4505

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

RL-TR-97-174

11. SUPPLEMENTARY NOTES

Rome Laboratory Project Engineer: Deborah A. Cerino, C3CB, 315-330-2054

12a. DISTRIBUTION AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

N/A

13. ABSTRACT (Maximum 200 words)
In this effort, Underwriters Laboratories (UL) conducted an independent review of the Rome Laboratory framework for
certification of reusable software components from the perspective of its potential application by a third party test
laboratory. The review consisted of two parts: a desk review and a trial application. The desk review considered the
goals and objectives of the framework, its costs and benefits, its standardization potential, and technology transfer issues.
In the trial application, an asset was selected and the default certification process was applied. A scenario for the
development and use of the asset was created to provide the context from which certification concerns, criteria, and
requirements were identified. Benchmark components, including instrumented code, models and fault sets, were created
for the asset to provide expected results to access the results of the procedures specified by the default process. UL
determined the framework is built upon clear and sound research. UL found that the framework's effort to associate
techniques with defect types is a necessary approach, however, they recommended more detailed analysis of the
relationships between techniques and defects before techniques can be recommended with confidence. UL plans to pursue
this research in an experimental lab being established at UL. They plan to, over time, broaden the framework's
certification model and position components of the framework for incorporation into certification standards.

14. SUBJECT TERMS

Software Certification, Software Assessment, and Evaluation

15. NUMBER OF PAGES

72
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

Table of Contents

Executive Summary 1

1 Introduction 4
1.1 Objective 4
1.2 Background 4
1.3 Documents Reviewed 5

2 Evaluation of the Framework 7
2.1 Goals and Objectives of the Certification Framework 7
2.2 Cost and Benefits 17
2.3 Standardization 18
2.4 Technology Transfer 20

3 Desk Review of Procedures for Applying the Framework 21
3.1 Default Process 21
3.2 Asset Readiness 22
3.3 Static Analysis 22
3.4 Code Inspection 23
3.5 Hybrid Structural-Functional Testing .'23

4 Application of the Framework 25
4.1 Scenario 25
4.2 Certification Requirements 29
4.3 Certification Process 31
4.4 Application Results 33

5 Instantiation of the Framework for a Third Party Certifier 44
5.1 Experimental Certification Lab 46
5.2 Outstanding Issues 51

6 Findings 55

References 59

List of Figures

Figure 2.1: How Market Forces will Influence Software Component Certification 8
Figure 2.2: A Third Party Certifier View of Certification 13
Figure 2.3: The Multi-Level Certification Process 16
Figure 4.1: Top-Level View of System Architecture for Scenario 27
Figure 4.2: WTA/TS Algorithm Structure 28
Figure 4.3: Overview of Default Certification Process 31
Figure 4.4: Heap Sort Paths 41
Figure 5.1: Buyer-Supplier Model 45
Figure 5.2: Web Interface 48

n

List of Tables

Table 1.1: Documents Reviewed During Desk Review 6
Table 2.1: Market Perspectives Impacting Assertions for Success 10
Table 2.2: Comparison of Process Steps 15
Table 2.3: Developing Standards for Software Component Certification 19
Table 4.1: Certification Requirements for the Selected Component 30
Table 4.2: Tools Used in the Application of the Default Certification Process 32
Table 4.3: Testing Team Experience 33
Table 4.4: Summary of Results for Ada Component 36
Table 4.5: Summary of Test Cases for C Component 37
Table 4.6: Summary of Faults Injected in C Component 39
Table 4.7: Summary of Path Coverage for C Component 40
Table 5.1: Mapping of Methods in the Rome Laboratory Framework to UL 1998 Requirements 52

in

NOTICE

This report was prepared as an account of work sponsored by the United States Government.
Neither the United States Government nor Underwriters Laboratories Inc. nor any of their
employees nor their contractors, subcontractors, or their employees makes any warrantee
expressed or implied, or assumes any legal liability or responsibility for damages arising out of or
in connection with the interpretation, application, or use of or ability to use any information,
apparatus, product, or process disclosed, or represents that its use would not infringe on privately
owned rights. This report may not be used in any way to infer or to indicate UL's endorsement of
any product, or to infer or to indicate acceptability for Listing, Classification, Recognition, or
Certificate Service by Underwriters Laboratories Inc. of any product or system.

IV

Executive Summary

The Air Force Rome Laboratory is developing a framework for certification of reusable software
components. In this effort, Underwriters Laboratories (UL) conducted an independent review of
the framework from the standpoint of its potential future application by third party test
laboratories. The review of the framework consisted of two parts: a desk review and a trial
application. The desk review considered the goals and objectives of the framework, its costs and
benefits, its standardization potential, and technology transfer issues.

In the trial application, an asset was selected and the default certification process was applied to
it. A scenario for the development and use of the asset was created to provide the context from
which certification concerns, criteria, and requirements were identified. Benchmark components,
including instrumented code, models, and fault sets, were created for the asset to provide
expected results to assess the results of the procedures specified by the default process.

Although care was taken to construct a framework that is usable and practical and the resulting
Rome Laboratory Certification Framework is built upon clear, decisive, and sound research,
there are market and technical issues that would prevent the direct implementation of the
framework in a third party certification environment. It appears that the application of the
evaluation procedures by a third party certifier to a component designed and produced for the
commercial market may not be an appropriate application for the framework. It may be more
practical for certifiers to use the framework to derive requirements for testing and evaluation of
components that the developers would implement. The certifiers would then verify that the
developers had implemented the specified activities.

In terms of cost and benefit, the benefits of certification could be demonstrated to outweigh its
costs under the current business model, which is targeted towards traditional reuse repositories.
However, a greater cost/benefit could be more immediately evident under other business models,
such as the Third Party Buyer-Supplier Model. In this model, certifiers provide assurance for
buyers to rely on components by developing criteria and processes by which components can be
certified. In the interactions between buyers, suppliers, and certifiers, standards are developed by
consensus, quality is built in during development while its cost is reduced, independence is
maintained, and the cost of certification by accredited third parties is reduced. It appears that the
framework could be used by third party certifiers in a component market dominated by the
buyer-supplier model.

It appears that there are several factors influencing how effective a technique is for finding
defects. These factors include dependencies between conditions in different code segments, how
much the control structure of the code changes with changes either in individual data items or in

1

relationships between different data items, and whether a particular type of defect is more likely
to be activated by particular control structures than others. Thus, it appears that the framework's
effort to associate techniques with defect types is a necessary approach. However, it is also likely
that more detailed analysis of the relationship between techniques and defects will be necessary
before techniques can be recommended with confidence.

It is a significant challenge to a certifier to know under what circumstances a particular tool is
applicable and produces trustworthy results. This requires a detailed understanding of the
underlying technique and an ability to discover the nuances of its implementation in the tool. To
improve confidence in testing results, tools must be validated for the domain and context in
which they are to be used. Based upon experience, the tools are not at a mature state where the
test results they produce have a significant level of confidence.

The need to evaluate the effectiveness of techniques is not a one-time problem for third party
certifiers. They will be evaluating components for different domains and will have to apply
different standards for different applications and domains. This on-going need for evaluation
mechanisms could be addressed by the framework if it were implemented as part of an
experimental lab where certification techniques and processes can be designed and evaluated.
The prototype experimental lab developed by UL demonstrates the feasibility of this concept.

The opportunity exists for the Rome Laboratory Certification Framework to establish
certification procedures and selection criteria for independent third party certifiers to use. In this
role, the framework would continue to further the evolution of certification processes as industry
needs and standards develop and change. The successful realization of this opportunity rests on
the following assumptions:

• That a software parts supplier market can be created and will change how the
software development industry operates,

• That independent certification will provide the confidence necessary for an
application developer to buy a component rather than build or tailor one,

• That the Rome Laboratory Certification Framework can clearly establish the role it
would play in the developing scenario for component certification, and

• That the present framework model can be enhanced to cover a broader view of the
certification process.

Thus, a technical solution may not be as significant as the need for a business/market solution.
Consideration should be given to focusing the framework for a buyer-supplier business model
and to pursuing other modes of distribution than the traditional reuse repositories. An
experimental lab such as that being established at UL would be a recommended approach to
resolving the remaining technical issues. The results of efforts in the lab will over time broaden
the framework's certification model and position components of the framework for incorporation
into certification standards.

1 Introduction

1.1 Objective

The Air Force Rome Laboratory (RL) is developing a framework for certification of reusable
software components under contract number F30602-94-C-0021 entitled Certification of
Reusable Software Components (CRC). This framework is aimed at making software component
certification usable, practical, cost-effective, and measurably beneficial. Under contract number
F30602-95-C-0128, Underwriters Laboratories (UL) Inc. is conducting an independent review of
the practical application of the framework addressing its usability for both the military and
commercial domains from a third party test laboratory perspective.

The review addressed practical issues related to future implementation of the Rome Laboratory
Framework for Certification of Reusable Software at an accredited test laboratory. The issues
addressed included the goals and objectives of the framework, the costs and benefits of
certification, the potential for standardization, and technology transfer.

The review was conducted concurrently with the development of the certification framework.
Thus feedback from the independent review was made available when recommendations for
practical applications could be further considered. As the framework is being refined,
Underwriters Laboratories (UL) and other test laboratories can further address the findings when
developing software component certification programs.

1.2 Background

Visual programming and object-oriented software engineering based on reusable software
components are considered as key technologies that will permit substantial productivity gains in
software engineering. A lack of well-documented, quality components has been described as an
obstacle to cost-effective reuse. It is anticipated that in the future the commercial and military
software markets for reusable software components will overlap. A dual-use certification
solution that contributes to the availability of well-documented, high quality software
components for both military and private sector use will be key to rapid deployment of software
applications in both domains.

Much effort is currently being devoted to the development of class libraries and the population of
software repositories with reusable software components. Many libraries currently contain
software assets which are not being reused [Clo94]. The usability of these library assets must be
addressed for the libraries to provide a meaningful service and for long term benefits in

productivity through component reuse and rework avoidance to be achieved.

Barriers to reuse of a library component by a software application developer result from a lack of
information about a component and a skepticism that the component provides the function stated.
The developer most likely will gauge the usability of the component based on the answers to the
following questions:

1. Can I rapidly understand what it is supposed to do?
2. Does it do what it is supposed to do consistently?
3. Can I use it without having to rework or modify it?
4. Can I quickly link it in without glitches?
5. Is it portable?

Applying certification to reusable software components results in both verification of
functionality and documentation that can be reviewed during the selection of a component. It has
been offered as an approach to increasing the usability of reuse library assets.

1.3 Documents Reviewed

The documents developed under contract number F30602-94-C-0024 as of September 27,1995
were baselined as the review versions for this contract. This was done to have a consistent
starting point for the evaluation and to start the review process at a point in the framework
development where it would not be either too late or too early to have an impact on the shape of
the framework. Input too early in the process could be based on a lack of substantive
information. Input too late might not be able to be assimilated into the framework and could be
left for later revisions or a competing or complementary framework. Coordination of the
scheduled work for both contracts played a key part in getting input from the review of work
already done into the development process. The documents, their status and the date of the
version that were included in the desk review documented in this interim report are listed in
Table 1.1. The information provided in the documents was supplemented by material presented
at the CRC Quarterly Project Reviews and working meetings, which UL staff attended.

Documents Reviewed

Draft Cost Benefit Plan for the Automated Certification
Environment (ACE)

September 1994

Draft Operational Concept Document for the Automated
Certification Environment (ACE)

January 20, 1995

Draft A Software Code Defect Model for Certification May 15,1995

Draft Certification Tool Evaluations and Selections May 30,1995

Draft Field Trial Procedures and Data Collection Guide August 8,1995

Table 1.1: Documents Reviewed During Desk Review

2 Evaluation of the Framework

The Certification Framework concept and approach were reviewed from a third party test
laboratory perspective. Issues considered include the goals and objectives of the Certification
Framework, its costs and benefits, its standardization potential, and technology transfer issues as
they relate to the framework's potential for future implementation at an accredited test
laboratory. These issues were addressed within the context of two questions: is the framework
usable in both the government and commercial sectors and what are the benefits of and need for
reusable software component certification.

2.1 Goals and Objectives of the Certification Framework

Whether the framework can meet its goals and objectives was considered in terms of the market
forces that are driving the need for certification; the certification focus of the framework, in
terms of users, standards, and assessment concerns; and the technical issues of the framework,
such as its underlying assumptions and models.

Market Forces. The Rome Certification Framework was developed to address a perceived need
to enhance the quality of reusable components in DOD reuse repositories. However, it appears
that continuing problems with establishing and supporting these repositories will diminish their
need for certification. The question then becomes whether there are any current market forces
that will cause a need for software certification to develop. The first phase of a multi-phased
market analysis by UL [UL95] to project growth in software areas that would impact the market
for software certification has accumulated data on projected market growth that provides a basis
for a limited assessment of the current market. The use of visual programming environments and
construction from parts is considered to be the next revolution in computing technology. Over
the next few years, it will stimulate the development of a component-based economy for
software development with the potential for increasing the growth of the U.S. software industry
by a factor of 10. Other expected benefits include an order of magnitude gain in the productivity
of software applications developers, reducing time to market by a factor of 2, and increasing the
usability and safety of delivered software. Standardization and certification are seen as critical to
the success of this economy as it will provide the trust necessary to permit buy vs. build
decisions. The assessment also indicates that there is a need for independent third party
certification. Within the government sector, the Department of Commerce under the NIST
Advanced Technology Program (ATP) and the Defense Department under the Advanced
Research Projects Agency (ARPA) Technology Reinvestment Program (TRP) have initiated
focused programs related to the development of this technology. All of these activities
underscore the stimulation of market forces in the direction of a component-based software
economy. As a result, the opportunity exists to influence the direction of this economy in support

7

of software certification activities.

UL's consideration of its role as an independent third party certifier in responding to these
market forces to address the development of software certification activities is illustrated in
Figure 2.1. According to this view, the end users, the verifiers, the developers, and the certifiers
all play important parts in developing certification. Two essential ingredients for certification are
the creation of a realization of the need for certification and standards and guidelines that can be
used as the basis for certification.

Software reuse repositories are separate from but associated with the software parts or
component development thrust. These repositories are generally collection facilities typically
intended for "recycling" software from existing legacy systems and for "sharing" software
among different development sites and projects within an organization or defense agency. The
repositories contain not only parts but also other software assets such as documentation and test
cases. On the surface, repositories are a good idea as they represent leveraging previous corporate
investments. However, success of these repositories has not occurred and data
indicates that although these repositories are consulted, actual reuse is not occurring very
frequently. Stated barriers to success include the browsing problem (finding what you need) and
the trust problem (how do I know this works for my application domain). There are some efforts

UL addresses need for
certification of
components

End users pressure for
high integrity components
that work

ISVs look to vendors
for standards and
guidance

UL works with vendors to
develop the certification
program

Figure 2.1: How Market Forces will Influence Software Component Certification

INDEPENDENT EVALUATION OF THE ROME LABORATORY FRAMEWORK FOR CERTIFICATION OF REUSABLE SOFTWARE COMPONENTS

to oversee self-certification of the reusable asset before it is used to populate the repositories, but
most of the current efforts are directed at populating repositories.

Independent third party certification could play a role in certifying existing repository
components. Certification would contribute to defining the "domain of application that one can
trust" which would also contribute to alleviating the browsing problem. It would also probably
eliminate a lot of what is already in these repositories, forcing the software development industry
to accept the fact of sunk costs. However, it is not clear that these contributions alone will make
these repositories successful. Instead, it seems that the reuse repositories "placed the cart before
the horse". It appears from the preliminary market data that the success of reuse repositories is
linked with the growth of the component software market. The growth and stabilization of a
component software market would provide the raw material for populating these repositories
with independently certified components. Thus, catalysts for the effective use of repositories
would include the following:

* being selective as to what is in the repository,

* packaging and certifying both new and legacy components, and

* providing management and financial incentives for reuse.

The opportunity for the Rome Certification Framework is to establish the selection criteria and
procedures for independent third party certifiers to use to certify components. The success of the
Certification Framework from UL's perspective rests then on three primary assertions:

1. That a software parts supplier market can be created and will change how the
software development industry operates,

2. That independent certification will provide the confidence necessary for an
application developer to buy a part rather than build or tailor one, and

3. That the Certification Framework can clearly establish the role it would play in the
developing scenario for component certification.

Table 2.1 summarizes some of the market perspectives UL has identified that impact these
assertions. If this market grows as expected, the heightened interest in certification would create
a need that a well-positioned framework could immediately satisfy.

Market Resistors

Job security and-high wages in the software industry
are tied to the current hand-crafted nature of the
business. In-grained in this culture is a lack of trust
for someone else's code. Indeed, many software
engineers' first jobs are to maintain someone else's
code when that individual has left the company and
there is no documentation. Jobs where an engineer
can write new code and design new systems are well
sought after. Formal software testing and
documentation actually may be viewed as a hassle
without significant benefits.

It will take a while for the appropriate scoping of
behavior of a component to be established such that
the component will be reused and there will not be a
need for modification. Specifically, the parallel to the
development of electronic components such as
transistors and diodes may not occur because
software is so easily changeable. Thus, whatever the
scope of a component, the software engineer may
want to and need to change it.

Corporations will probably build their own
components rather than buy components. These
components will reside in internal corporate reuse
repositories. Intellectual property concerns will
restrict the use of externally available components in
applications that are developed for resale.

Market Supporters

To remain competitive in the market place,
application developers will need to produce
applications at a faster rate and at a lower cost than
they currently do. "More features faster" is a typical
requirement to maintain the competitive edge.

Through the appropriate management direction and
incentives, software engineers can be motivated to
use purchased components. To some extent they are
already doing this by using file management utilities
and mathematical and statistical routines. In certain
applications, it may be preferable to purchase a single
component than to buy an entire application.

Costs of software maintenance are astronomical with
data showing them to be about 60-80% of software
life cycle costs. Software engineering process
technologies focus on reducing these costs by getting
the requirements and the design right up front.
However, a portion of these costs are associated with
changing business needs - the use of certified
components provides for rapid changeability while
maintaining usability.

A lot of information technology software is
developed that is not for resale. Intellectual property
concerns are more manageable in this scenario.

Table 2.1: Market Perspectives Impacting Assertions for Success

10

Certification Focus. According to Webster's, to certify is to "declare formally to be competent,
valid, true, etc.". The IEEE Standard 610.1.2-1990 defines certification as either a written
guarantee, a formal demonstration or the process of confirming "that a system or component
complies with its specified requirements and is acceptable for operational use". The two
definitions need to be mapped or merged together in order to get a clearer understanding of what
software certification is. In the software world, this means defining "complies with its specified
requirements" and "acceptable for operational use". Without definitions, these requirements for
certification can be very subjective. In order to have a viable certification process these two
elements have to be objective. They need to be defined so that a certification effort can achieve
specified objectives that will either prove or disprove that software conforms to these two key
statements. Some means of verifying that requirements are met in a concise, consistent manner
must be defined in order for certification to take place.

The first problem is how to define the specified requirements. It is often assumed that the
Software Requirements Specification (SRS) contains all the information necessary to determine
if the specified requirements have been met. Though the SRS will define what the system or
component should do, the possibility is high that there are additional requirements neither
referenced, implied or even mentioned in the SRS. For example, the SRS might not specify that
the code be written within the ANSI standard for the selected language or whether non-ANSI
language extensions can be employed in the system. If extensions to the language are used, the
code may not be portable to another platform that does not support them. Were guidelines or
standards for reusable software followed? Were domain specific standards, such as the
requirements for electronic exchange in health care environments, adhered to? The list for
standards and requirements that may be extraneous to those specified in the SRS is lengthy and
will continue to grow as pressures on the software industry to reduce development time forces it
to focus on quality, interoperability and sharing resources.

Since operational requirements will be different from one environment to the next, reusable
software may not be portable software. To ensure acceptability for operational use, reusable
software may have to exist in different versions for different environments. In that case, each
version will have to be certified to the requirements for its environment.

While covering a broad spectrum, software certification has to be objective to be of value to the
user of the certified software. Certification needs to be repeatable and consistent: any two
certifying agencies should achieve the same results when applying the same certification
standard to the same software component.

A certification framework can define how to selectively apply requirements to each software
asset. A synergistic relationship between the framework and software certification standards is

11

necessary to accomplish this goal. In specifying its requirements, the framework needs to
reference existing standards that have been developed for different concerns, applications, and
domains. Thus, the requirements for a particular asset would be tied to standards that apply to it.
If there are key areas of the framework for which standards have not yet been defined, then the
framework can identify where further research is needed and can establish requirements that
would essentially be default standards. These default standards would be the starting point for
new standards and the framework would be updated and revised as consensus emerged on the
new standards.

The Certification Framework is beginning to provide means to measure the two components of
certification. It currently focuses on the "complies with its specified requirements" portion,
placing an emphasis on an implied requirement of "correctness". According to the Field Trial
Procedures, "Correctness is the degree that the software is free of defects in its original context."
This element of the certification framework is based on an underlying code defect model, which
specifies techniques to use to find specific types of defects. The Code Defect Model, combined
with the Tool Evaluations and Selections guidelines, provides a means of finding code defects.
If software code is subjected to the specified procedures for using the techniques without a defect
being detected, then defects ofthat type are, most likely, not present in the code and the code is
therefore "correct" with respect to those defect types. This makes determining if software is
correct an objective task.

It is not quite clear how the various aspects of the Certification Framework map to the potential
set of users; in other words, who should perform which activities and at what point in the
development/certification/reuse cycle. The framework includes techniques that are usually
employed during the verification and validation (V&V) phases of development. While V&V is
concerned with conducting activities that are effective at verifying that software meets its
requirements and that its requirements are valid for its intended application, certification is more
usually concerned with imposing standards on development processes, the asset itself, and the
information provided to the certifier. Thus, certification would specify standards for
activities that would be conducted during V&V. Repeating those activities during certification
appears unnecessary. The government reuse libraries' attempts to retest assets have proven to be
time consuming. The majority of code assets are only certified to a level indicating that they exist
and can be successfully compiled. According to the Operational Concept Document, "A formal
assessment of reusability or other quality concerns is not part of most of the repositories' asset
acquisition or evaluation processes". It was found that formal assessment uses time and resources
that the libraries can not afford while keeping up with the incoming flow of assets. As a result, a
conclusion of the Operational Concept Document is that "There was no indication at all that
more rigorous analysis or testing activities would be adopted; in fact, some repositories are
planning to do less evaluation than is currently performed". Thus, it is important that guidelines

12

be developed to specify under what conditions a certifier would either perform the V&V
activities defined in the framework or confirm that they were performed by the developer.

The framework also assumes that a user will consider code to be reusable even if it requires
rework to be reused in a different application or domain from that for which it was originally
developed. However, reusable assets in the commercial sector are not reworked. Attributes, such
as color, size and font, are definable by the current user (application) but the inner workings are
not presented for modification. Thus, the Certification Framework's selection of techniques
based on rework avoidance is not applicable to a commercial asset. This discrepancy between the
two views of reuse can be a major obstacle to applying the framework to certify commercial
assets. If the framework defines minimum criteria for reusable assets, any asset that cannot meet
those criteria would be discarded or certified under a process for single use software. In
summary, the UL view of certification, illustrated in Figure 2.2, has a broader contextual focus

Test Strategy
for

Correctness

Interoperability

Functional
Performance

Admitted
to the
Library

A

Standardized
Tests for

Certification

Unit
Tests/Bug
Detection

Recommended
Practices

Adherence

Language
Specs

Rejected
from the
Library

Figure 2.2: A Third Party Certifier View of Certification

but a more narrowly-defined scope than the Rome Certification Framework. The Certification
Framework contains a Test Strategy for Correctness that addresses Unit Tests/Bug Detection and

13

parts of Functional Performance, but does not address Interoperability, Recommended Practice
Adherence, and Language Specifications. Further, the scope of the "tests for certification" in the
Rome framework is broader in that it provides the possibility for the certifying agency to perform
all of the testing.

Technical Issues. A framework is a formal model that abstracts the central features of a family
of applications which can be adapted or extended to fit the needs of particular projects [Gar]. In
the case of a certification framework, it would be a model which lays out a basis for certification
that can be applied to many types of repository assets. The basic model would be the same for
each asset type, but there would be different selections to be made for different asset types. This
is the approach taken by the Certification Framework. The underlying model on which the
framework is based is that an asset is subject to defects that affect its suitability for reuse, that the
defects can be categorized into classes with certain distributions and densities, and that the
effectiveness of specific techniques for detecting those classes of defects can be determined. The
model for software code assets is called the Software Code Defect Model, and is developed down
to the level of default certification procedures by the framework. This model helps to identify
where problem areas are likely to be in a code asset and, therefore, where the certification effort
should focus. The framework also defines a cost/benefit model which attempts to balance
certification effectiveness against cost in accordance with the notion of rework avoidance. That
is, the cost of conducting certification to a particular level of defect detection is balanced against
the expected cost of fixing any defects not detected in certification but that show up in the new
application in which the asset is reused. Thus, a certifying agency can use the cost/benefit model
to determine to what extent to carry out the certification effort. A certifier can make the stopping
criteria the cost of the certification effort or the benefit of assuring a higher quality asset.

The Code Defect Model developed for the certification framework was derived from previous
research in software defects and detection methods. The model was also used during the
evaluation and selection of tools to be used in an automated certification environment. This
model, using other sources of data, could be applied to other types of assets and tools associated
with evaluating those assets, and could be extended to include concerns other than correctness.
Additional research may be needed to correlate technique effectiveness with these concerns, but
the basic foundation is there. The Code Defect Model could also be expanded to address the
impact of language differences and other sources of variation in defect type distribution such as
differences in developers, application function, development testers, and variations in methods of
computing lines of code.

The concepts of the Certification Framework were incorporated into a prototype tool (the Insight
Tool) that used the default data set developed in the Code Defect Model as a starting point for a
certifying body. Over time, the certifying agency would collect their own data and tailor the

14

certification process to better meet their needs. However, the default process defined in the
"Field Trial Procedures and Data Collection Guide" does not match the process defined by the
default data set. As can be seen from the comparison of the process steps in the prototype, which
were derived from the default data set, with those in the default process in Table 2.2, techniques
have been reordered and combined in the procedures.

Insight Tool Prototype Default Process Procedures

Code Review Asset Readiness

Error Anomaly Static Analysis

Structure Analysis Code Inspection

Functional Testing Structural-Functional Testing

Structural Testing

Table 2.2: Comparison of Process Steps

There is no documentation as to why the changes were made, whether for example to make the
process easier to understand or more consistent with typical tool usage, but the data supporting
these changes does not exist or was not reported. It is therefore likely that the default process is
not as effective as the framework defect model predicts since the process is not consistent with
the model.

Also, it was not clear, particularly in light of the differences between the process derived from
the model and that documented for the Field Trial Procedures, just what the algorithm is for
selecting and ordering techniques and how it computes the effectiveness of combined techniques.
One difficulty in computing the effectiveness of combined techniques is that reliance on a
predicted maximum effectiveness is susceptible to error due to overlap in the error finding
abilities of the combined techniques. There should also be more explicit information on how to
link or disconnect between types of defects and how methods are selected. A certifying agency
will encounter difficulties in building a defect profile because the certifier will be dealing with
assets from many developers and may not have sufficient knowledge about defect type
distributions and/or the sources of variation in the distributions. Standard profiles by component
type and data on processes would need to be submitted.

While the Certification Framework is rooted in sound technical research, it is recommended that
the program revisit the initial multi-level certification process [RTI93], illustrated in Figure 2.3.

15

Library Structures and Database

Map
Asset
To
Domain

f Candida!« u
^ Aaaat J

Library
Domains

■"■"■»

1 °""";
j Oomabi 1 1

Domain

Library Tools and Mechanisms

Attributo-RLOC Tabla

Cartlfl
To Po

cation
llcy Mi

Laval
pplng

==Z \
—

Certification Framework

Quality
Evaluation

Tachnlquos
and Too la

Functional
Evaluation
Tochnlqua

• and
Tool«

Bahavlorai
Evaluation

Tochnlquaa
and Tools

Select Cert Level

Primary
Cert
Level

Secondary
Cert
Level

Enact
Ceritification
Procedures

Certification Process

Figure 2.3: The Multi-Level Certification Process

In this initial process, a set of requirements is identified for the domain of applicability for which
an asset is being developed and the asset is certified against those requirements. It is important
that the domain of applicability be carefully chosen for each of the assets since the differences in
requirements for different applications may result in different certification requirements.
However, it is recommended that the mechanism proposed in the initial process for selecting an
appropriate certification level be amended to incorporate the use of applicable standards.
Standards would address process qualification, domain considerations, and criticality by product
type and/or software functionality. The determination of applicable standards would make the
selection mechanism objective and readily apparent. Another important aspect of the initial

16

process was the domain model that provided an information model of characteristic systems in a
domain. This model thus specifies what the library (or certifying agency) will address for that
domain. Finally, the initial process also incorporated the Rome Laboratory quality metric
framework, the Software Quality Framework (SQF). This makes possible the granting of
"certification credits" for the use of elements of the SQF during development or the use of
elements of the SQF as requirements for certification or acceptance into the reuse library.

Finally, information requirements for software component verification are a needed component
for the Certification Framework. While the equivalent of a DID needs to be developed that
specifies what information needs to be provided with a component, some important pieces of
information are listed below:

• part information
- run-time image/files associated with the part
- part category information
- functional description or OOA/OOD attribute specification (if available)
- behavioral specification (desirable)

e.g. memory requirements, finite state machine descriptions, pre- and post-
conditions

instructions for use
specification of key uses, pervasive use, and restrictions on use

- interface specifications

• run-time environment information
- classes/class libraries
- parts/applications
- usage specification

• development process information
- design approach used
- vendor test activities and summary of vendor test results

2.2 Cost and Benefits

Ultimately, the cost and benefits of the Certification Framework will be determined by the
business model in which it is implemented. The framework currently appears to be addressing a
business model that is based on the traditional defense IV&V model and supports extensive re-
engineering. Thus, heavy certification costs are presumed to be balanced by reduced
development and re-engineering costs downstream. While the benefits of certification can

17

perhaps be demonstrated to outweigh its costs under the current model, a greater cost/benefit
could be more immediately evident under other models, such as buyer-supplier models. The
distinguishing characteristics of the Third Party Buyer-Supplier Model are

• Standards are developed by consensus

• Quality is built in during development and costs are reduced

• Independence is maintained

• Cost of third party certification is reduced

• Third parties are accredited.

The traditional defense IV&V model will be increasingly replaced in the future by Buyer-
Supplier models. Currently, DOD is moving to using external standards in procurement and ISO
9000 compliance is becoming more important. In the Buyer-Supplier model, software products
are developed to meet consensus standards. The certifier in this model performs the role of
acceptance testing, confirming that the requisite process capability is present and that standards
for design and testing have been met. Although this certification may include running the product
through a test suite, it is not intended to replace or repeat development testing.

While some technical research topics in certification still exist, it is not primarily a technical
solution that is called for, but a business/market solution. Therefore, it is recommended that
consideration be given to refocusing the framework for a buyer-supplier business model and that
it target other modes of component distribution than the traditional reuse repositories.

2.3 Standardization

Standardization is a key market development activity. Table 2.3 describes some currently
developing certification standards for software components. Some areas that the standards are
addressing are how a part or component fits into an application environment, how a part or
component talks to other components that may be local or remote, and how components talk to
other components across a network. The Certification Framework has the potential to drive
standardization. However, to do this there has to be consistency in application (both within a
laboratory and across laboratories) of test processes determined by the framework. Here,
flexibility will need to be balanced by consistency; but without consistency, certification is not
possible. There is also a need for requirements on what can be used to populate a library. In
driving toward standardization, the framework needs to migrate to a scheme where the developer

18

of the reusable component does the testing, not the library (or certifying agency). The librarian or
certifier should be doing something equivalent to final acceptance testing and verifying
adherence to standards. Other standardization issues include automated data collection to support
refinement of the decision support element of the framework, automated test report generation,
assignment of unique identifiers to reusable components, and minimizing the recertification
policy when the software component has changed.

Software Component Certification

Certification Standards

Packaging

OLE SOM/DSOM OpenDoc CORBA

Architectural Syntax X X X

Component Access (Dev) X X X

Naming Conventions ? ? X

Messaging/Notification XXX X

Object Versioning X

Functional Performance

Register with Environment X

Performs to Specification

Handles Exceptions X

Communicates with Other
Components

X X X

Shares/Uses Data of Other
Components

X X X

No Functional Degradation
with Other Components

Table 2.3: Developing Standards for Software Component Certification

19

2.4 Technology Transfer

Many methodologies based on research are not in practice today because they are too difficult
and time consuming to use or they do not blend with corporate culture and deadline/cost driven
development. Even when methodologies are promising and practical, inadequate attention to
transferring the research results into practice results in less promising methodologies becoming
the defacto standard.

A key goal of the Certification Framework was to transfer software verification and validation
technology from Rome Laboratory into DOD reuse repositories. The national and international
move to standardization and the commercial software components market provide other
opportunities for transferring this technology. An immediate transfer is the use of the
Certification Framework to provide information which can help UL clients learn about
approaches they can use to meet UL 1998 requirements. A more long-term transfer is the use of
the framework by UL in an experimental certification lab, which is described in Section 5.1.

20

3 Desk Review of Procedures for Applying the Framework

3.1 Default Process

The default certification process outlined in the Field Trial Procedures differs from the process
presented in the Insight Tool prototype, although both processes were supposed to be based on
the same code defect model. The code defect model compiled previous research efforts to
determine the dominant types of errors and the effectiveness of several techniques for finding
each type. A subset of these techniques is supposed to be selected and included in the
certification process based on an algorithm that compares the predicted defect distributions and
the effectiveness and cost of applying the techniques with the predicted cost of rework if the
defects are not corrected before the asset is reused. If the same algorithm and models were
employed in creating the default process as was implemented in the Insight tool, one would
expect the two processes to be identical. However, they are not: techniques have been reordered
and combined in the procedures of the default process. We assume that the default process
outlined in the Field Trial Procedures was modified to take into account the current certification
processes in the reuse libraries and the resources they have available since the resulting process is
not all that different from current reuse library processes.

This modification to the process could indicate that the selection algorithm needs to take into
account additional parameters. As it stands, however, there is an unexplained discrepancy
between the documented process and the process that was expected from reviewing the code
defect model and the cost/benefit model. This discrepancy undermines the credibility of the
process: since it is not rigorously derived from the research results and model, how can the
effectiveness of the process be assured? If this divergence is the result of an attempt to take into
account external factors such as how the in-place process actually works, how difficult it is to get
that process modified and other disruptions in that process, then the reasons for the decisions, the
effects those decisions had on the procedures, and an evaluation of the effect on the overall
effectiveness of the process would require documentation.

The default process is also based on the tool selection research. This research evaluated
automated tools to see which ones supported the various techniques and to what extent. Tool
selection also took into account effectiveness and cost/benefit factors in selecting a default tool
set for certification, but also included some tools because they are currently being used at the
reuse repositories.

Although each step of the process takes an increasingly deeper look at the code, there will
probably be many cases where all of the steps cannot be completed. One reason for this is that
the readiness step does not require that all necessary information and components of the asset be

21

available for the asset to be declared ready for use or certification. Components of the asset are
code modules, specification requirements, functional description, test cases and other items that
would be used in the certification effort. Inputs for code inspection (step 3) require the functional
description: if this wasn't provided with the asset and certification requires that a certifier write a
functional description based on the code as presented, the code and the specification will always
be in sync and the existence of certain types of functional defects will not be recognized.

For the process to add value to the asset, it should work like a sieve. All information and
components that will be needed for all steps should be required with the asset. If they are not
provided, then the asset should not be carried through the certification process and should
probably be discarded from the library. Each successive step will be more selective in the inputs
needed to determine adherence and the number of asset components that filter down to the
succeeding steps will be fewer.

The default process also does not address regression. Correcting defects at every step is
encouraged, but going back to the beginning of the certification process is not: only the current
step is repeated. A fix in the code inspection step may make some code unreachable, for
example, but since unreachable code was checked in the previous step, the new unreachable code
would not be detected. In other words, the defect "fix" may have created one or more new defects
that may not be detectable in the remaining or current steps.

Since the default tool set is used throughout the procedures, the procedures should include step-
by-step instructions for using the tools to accomplish each step. This way the effort data will
reflect the actual effort to complete the step and not include the tool learning curve.

3.2 Asset Readiness

The procedure for asset readiness, in the context presented, is good. However, since the tools to
be used were outlined earlier in the procedures, step-by-step instructions for each bullet item
would be more beneficial to the certifier.

Inputs for this step should require everything needed to complete this step and all subsequent
steps. Exit criteria should include "all inputs have been met", including those not used in this
step.

3.3 Static Analysis

Again, input should include all components necessary for this step and each subsequent step and
any output from previous steps that is to be used here (whether hard or electronic copy).

22

One objective of this step is "Demonstration of the degree of compliance with the SPC style and
quality guidelines". When major and minor defects were defined earlier in the procedures, an
example of a minor defect was defined as "non-conformance to a style guideline would be a
minor defect." The objective of this step is thus to remove major and minor defects; however,
earlier instructions indicated that "Successful completion means no major defects are found ...".
This contradiction must be resolved either by requiring all defects to be fixed as part of the exit
criteria for this step or by redefining a minor defect. The certifier should not be allowed to
continue until all of the objectives of the step have been met.

3.4 Code Inspection

The procedures for this step are very comprehensive, step-by-step. Of course this can be
attributed to code inspection being a purely manual step and therefore requiring more guidance to
achieve the desired outcome. The code checklist is very comprehensive. Because of the
comprehensive nature of the checklist, the best results would be achieved if two or more
inspectors reviewed the code, which is the case for most code reviews. With more than one
inspector, errors that may be detected by one inspector and not the others are caught. Multiple
inspectors also alleviate the problem of an inspector seeing what he wants to see after looking at
code for some length of time. Even a programmer presented with the exact line of code where a
defect exists might overlook the defect because she has spent so much time looking at the code
that the defects have become invisible. Often, even after hours of trying to fix a bug, the error
may still not be apparent. A fresh set of eyes can look at the code, however, and within a few
minutes locate and fix the problem. This is why methodologies that incorporate code reviews and
inspections in the software life cycle use teams of programmers and analysts to review and
inspect code.

The objective of "Completeness - assessment of the adequacy of the functional description"
appears to be a mis-statement of the problem. The functional description of the asset should have
been written before the code and the asset design and the code that implements it should have
been written in accordance with all elements of the functional description. If there is a
discrepancy between the code and the functional description, the problem lies either in the design
of the asset or the code itself. The functional description of the asset should be considered the
blue print for the asset. All other components of the asset must be based upon the functional
description. The assessment should be "of the adequacy of the code to meet the functional
description".

3.5 Hybrid Structural-Functional Testing

Achieving the objectives of this step is the primary means by which this certification process will

23

add value to an asset. The objectives of determining whether an asset "performs its intended
function within the specified requirements" or "is complete with respect to the functional
specification or description" are often left by the development team for the user to determine. It
is frequently the case that by the time software is ready for this type of testing, the budget has
been spent (or overspent) and production is far behind schedule. Thus, this type of testing is
usually done by the user in a production environment. To have this testing completed up front by
an independent certification body would add a great deal of confidence to the user. Of course,
this type of testing is also resource and time prohibitive, and most assets are not certified to this
level. The automated tools help reduce the cost of testing, but the certifier has to come to a
thorough understanding of the functional description and requirements to develop appropriate
test cases, which in itself can be a time consuming process.

24

4 Application of the Framework

The goal of this portion of the project was to evaluate the framework by applying it. To that end,
an asset was selected and the default certification process documented in the Field Trial
Procedures and Data Collection Guide was applied to it. A scenario was developed that
incorporated domain information, application system requirements, and development process
summaries and analyses. This scenario provided the certification context from which certification
concerns and criteria were identified. Based on these concerns and criteria, certification
requirements for the component were established.

A reusable Ada software component was selected from the Air Force DSRS (Defense Software
Reuse System) reuse library that met the functional needs of the scenario. This component is a
heap sort routine that was commercially produced as a reusable component and is part of a set of
reusable components that is available for purchase. Thus, it could be used in many different
domains and for many different types of applications. Benchmark components were created for
the routine, including a functional description of a heap sort, specifications and requirements
(from the scenario), instrumented source code, control & data flow models, path analysis models,
test cases, and fault sets. We also created a C version of the heap sort and its associated
benchmark components.

4.1 Scenario

To represent the extreme end of criticality and complexity that would have to be addressed by the
certification framework, a case study from an earlier Rome Laboratory effort [Sch91] that
focused on design and evaluation methods for highly dependable, complex space applications in
a BMC3 domain was selected. This case study was adapted into a scenario that assumes both a
component-based engineering process where systems are developed by designing architectures,
selecting components in accordance with the requirements of the architectures, and building
"from scratch" only that software that is necessary to integrate the components and a requirement
that all components be certified. In this scenario, the certification process needs to address the
following concerns:

Function What it does

Correctness If it correctly implements its specifications and meets its requirements

Range of Its assumptions about inputs, usage, and domain
Applicability

25

Interoperability The types of components it can work with and the types of
architectures for which it is suited

Standards The standards it meets

Selection Criteria What are the important factors in selecting it for use in a particular
application

The development context for the scenario is an iterative design process broadly divided into three
phases: baseline determination, initial design, and design refinement. The baseline determination
phase determines resource requirements and allocation for the basic architectural and algorithmic
structures of the system. The initial design phase consists of trade-off studies to select from
among the design options being considered the one(s) that meet the system requirements. It also
identifies any common functions that are candidates for implementation using certified
components. The design refinement phase explores the selected design option(s) to discover and
remove any deficiencies in concepts or requirements.

The system in this scenario manages the assignment and use of space-based weapons for multiple
hostile boosters. The top-level view of the system architecture is illustrated in Figure 4.1.

26

U pdate

SD I Force D ata

• SDI force
• Target space
• Scenarios
• Weapon-to-TS

PK
• Weapon-to-TS

engagement
opportunities

SDI Force (2600 Bytes)
Target Space (0.3 MB)
Scenario (1 MB)
Wp-to-TS PK

(22320 Bytes)
Wp-to-TS Eng Opp

(4.6 MB)

SD I Fore«

T argot Space

Vo pportunltiea

E ngagem ent

R eautta

O ption

tor

Execution

A Igorithm 3

(R eal-T im e)

Optlon/W Ithold

Selection &

Execution

C andldato

(potential)

<
W pn-T arget

A t»ignm enti

A Igorithm 2

(Raal-Tim e)

C andldate

W eapon-to-Target

A ssignm ant

Threat D ata

at Tim a t

U pdate

Threat D ata

Sensor

Track File

(7 MB)

A Igorithm 1

(Preplan/R eplan Time)

W aapon-to-Target

Space A .location

C oordlnated

0 ptlons

(19 M B for

Each Scenario)

Figure 4.1: Top-Level View of System Architecture for Scenario [Sch91]

In this scenario it is assumed that during the baseline and initial design phases, a high-level
design of a Weapon to Target Assignment and Target Sequencing (WTA/TS) Algorithm,
Algorithm 2 in Figure 4.1, was created. This algorithm clusters targets and assigns and sequences
weapons to the target clusters. The WTA/TS algorithm was in turn partitioned into four
functional components: target cluster definition (TCD), weapon-to-target cluster allocation
(WTC), weapon-to-target assignment (WA), and target-sequencing (TS). These functions were
decomposed into subfunctions down to the level of identifiable matrix, sorting, linear

27

programming, and integer programming operations utilized by the algorithm.

Figure 4.2 depicts a model of the WTA/TS algorithm which depicts how the algorithm is
decomposed and where the reusable components are used. The multiple dimensions of this

First Order Functional
Decomposition

Second Order Functional
Decomposition

Third Order Decomposition /
Function«! Library

WTA/TS
Algorithm Target

Cluster
Delta Won

Gradient
LaG range

Update and
Median Measure

Weapon-Target
Cluster
Allocation

Weapon-Target
Assignment

Target
Sequencing

Feasible
Assignment

T
o
o
o

Impact of Communication

Impact of Parallelism

Impact of FauN Tolerance

Figure 4.2: WTA/TS Algorithm Structure [Sch91]

diagram reflect the need to be able to represent different aspects of system behavior, such as
functional decomposition, communication, parallelism, and fault tolerance. In this figure, the
top-level functional components are shown. Three of these components, Target Cluster
Definition (TCD), Weapon-to-Target Cluster Allocation (WTC), and Weapon-to-Target
Assignment (WA), share in their respective subgraphs the three component functions shown in
the next level of functional decomposition. These three components are the Gradient, LaGrange
Update and Median Measure (GLM); the Assignment Formation; and the Feasible Assignment.
The lowest level of functional decomposition consists of the common functions, which are
shared across multiple levels of decomposition. Shown at this level are sort, simplex method, and
integer programming modules. These common subfunctions were selected as potential
candidates for implementation using reusable components.

28

A performance analysis of the algorithm conducted during the original case study determined
that, in terms of workload, TCD is the dominant top-level component. Another performance
analysis determined that an important factor in improving performance was a revision in the
design of the sort function to use an NlogN algorithm rather than an N Squared algorithm. This
makes this common subfunction a high-priority reuse candidate.

Although only the heap sort routine was evaluated in this effort, the scenario presents the
opportunity to investigate the application of the framework to three "levels" of components: an
atomic component (the heap sort routine), a component composed of other components (the
WTA/TS algorithm), and an architecture for building a system using components (the space-
based BMC3 system).

4.2 Certification Requirements

According to the guidelines of the Rome Laboratory framework, specific requirements concerns,
called quality factors, are identified and used to select the appropriate certification scope and
confidence levels. The types of defects associated with these concerns determine the scope and
the "level" of the concern determines the confidence level. As noted in the description of the
scenario, function, correctness, range of applicability, interoperability, standards, and selection
criteria are concerns that need to be addressed. Of the quality factors specified by the framework,
criticality (component and system level), fault tolerance, performance, reliability, and safety are
all applicable and are all applicable at their highest individual levels. For each of these, we
identified the associated requirement(s), the framework certification level that addresses it, and
the step in the default process that would evaluate whether or not the component met that
requirement. The types of concerns and the level of their individual requirements require that the
highest confidence levels of the framework be attained; i.e., that the full range of evaluation
techniques be applied within each scope level. However, the default certification process was
targeted to a less demanding scenario and as a result it does not include the full range of
techniques. Table 4.1 summarizes the concerns, the requirement(s) associated with each concern,
the relevant framework scope level, and the relevant step(s) in the default process. As noted in
the table, the framework does not address the standards and selection criteria factors. Since the
default certification process only addressed that part of the framework concerned with latent
defects, function and correctness are the only scenario concerns that the default process evaluates
the component against.

29

Concern Requirement Framework
Scope Level

Default Process Step

Function Performs Heap Sort Latent: correctness Step 4: Testing

Correctness: Implements
Specifications

No coding defects Latent: correctness
& completeness

Step 1: Readiness
Step 2: Static Analysis
Step 3: Code Inspection
Step 4: Testing

Correctness: Meets
Performance
Requirements

Nlog2N; .05sec/target
for complete WTA/TS

Operational
Robustness

NA

Correctness: Meets
Reliability Requirements

High Operational NA

Range of Applicability Can sort targets,
weapon/target pairs,
clusters

Robustness NA

Interoperability Ada; Real-Time OS Interoperability NA

Standards None NA NA

Selection Criteria Efficiency &
Versatility; Data Types

NA NA

Component Criticality Severe operational
limits

All NA

System Criticality Life-threatening
hazards

All NA

Fault Tolerance Provide service in spite
of faults

All NA

Performance Real-Time, High
Workload

All NA

Reliability io-9 All NA

Safety Unrecoverable
environmental damage;
many people killed

All NA

Table 4.1: Certification Requirements for the Selected Component

30

4.3 Certification Process

The default certification procedures that were followed in this application of the framework are
illustrated in Figure 4.3. The complete default certification process was applied to the Ada
version of the component; the testing portion of the process was applied to the C version.

Code
„Asset

Readiness

Fix Errors

• Pretty Print to standard
format

• Compile, Link, Execute

Static
Analysis

Data flow
Order dependencies
Alias usage
Unreachable code
SPC style guidelines

Fix Errors

Code
Inspection

Single inspector
Code inspection
checklist

.£. Fix Errors

Testing

Errors A

<&
• Functional test cases
• Decision-to-decision

(DD) path coverage
stopping criteria

• DD path test cases

Certified
Code

\1 Asset

Figure 4.3: Overview of Default Certification Process

Tools to implement the techniques specified by the procedures were selected based on the
Certification Tool Evaluations and Selections document. The selected tools are summarized in
Table 4.2.

Benchmark components were created to provide a reference basis for evaluating the techniques
and tools. These components consisted of instrumented code; models of the control flow, data
flow, and path structure of the code; and sets of faults to be injected in the code before applying
the techniques. The execution coverage of the code and any analysis results produced by the
tools were compared to the benchmarks to identify any discrepancies between actual results and

31

expected results.

Tool Process Step

Ada Component

Apex Ada Step 1: Readiness

AdaQuest Step 2: Static Analysis

Ada Wise Step 2: Static Analysis

TestMate Step 4: Testing

C Component

SunC Step 4: Testing

SoftwareTestWorks Step 4: Testing

Table 4.2: Tools Used in the Application of the Default Certification Process

The application was carried out by a team of people representing a wide range of experience. The
testing team leader has more than 10 years experience in software evaluation and testing and was
in charge of coordinating the activities of the other staff in setting up the tools and executing the
procedures. The team leader also participated in the design of test cases and the development of
drivers to execute the test cases. Since the CRC survey of reuse libraries had indicated that a
number of certification activities were performed by people who were not experienced
developers or testers, the testing team included a tester who has no software development or
testing experience but who has more than 10 years experience with computerized processes (the
use of computer-based tools to execute the procedures of a well-defined, structured process).
This tester executed all of the default process procedures for the Ada version of the component,
created test cases and drivers, managed the configuration of the artifacts associated with the
procedures, and collated the results of the tests and analyses. To cover the type of certifier who is
a more experienced tester, a second tester was included on the team who had about 3 years
experience with software development and testing, including a working knowledge of the C
language. This tester developed and executed the test cases for the C version of the component.
The testing team also included two additional people in a support capacity. One support person

32

was in charge of tool installation and integration. Because there was very little experience with
Ada among the other members of the team, a second support person with considerable Ada
experience, both in Ada programming and in the development and evaluation of Ada compilers,
was included as a resource to answer questions and troubleshoot problems. The experience level
of the testing team is summarized in Table 4.3.

Testing Team Staff

Level of Experience by Category

Ada C Software
Development Testing Computerized

Processes
Tool

Support

Testing Team Leader low high high high high low

Ada Tester none none none none high high

C Tester none medium medium medium high none

Lab support person none medium high high high high

Ada resource person high medium high high high none

Table 4.3: Testing Team Experience

4.4 Application Results

Table 4.4 presents a summary of the results of applying the default certification process to the
Ada component. The key finding from this activity is that the application of the procedures by a
third party certifier on a component designed and produced for the commercial market may not
be an appropriate application for the framework. It would be more practical for certifiers to use
the framework to derive requirements for testing and evaluation of components that the
developers would implement. The certifiers would then verify that the developers had
implemented the specified activities.

The activities specified for the testing step were very labor-intensive, and in the case of a well-
developed and verified component, repetitive. The defects that were found by the other steps of
the process were mostly violations of programming style, which could in some cases lead to
other types of defects that affect the functionality of the code. Another difficulty with applying

33

these procedures to components that are particularly designed for reuse is that the generic nature
of the component increases the scope of the testing. For example, the Ada heap sort component
was not defined for any specific data type or sorting order, but would "instantiate" itself
according to the data type of the items to be sorted and the ordering function passed to it. This is
equivalent to testing not only as many programs as there are valid data types that can be
constructed in Ada and functions that can be created to define sort orders, but also that the Ada
structures that make the code "generic" are correctly implemented.

According to the default process, code can not progress to a higher certification level if it is
found to have a major defect. The framework does not sufficiently differentiate between major
and minor defects, leaving too much discretion to the certifier. The intended domain of the code
should be specified in as much detail as possible to ensure more appropriate testing of the
component. Otherwise, the certifier has to have domain information and scenarios in-house to
"create" this information before testing can begin.

The testing of the C component highlighted the need for more detailed documentation of the
design and implementation details of components to prevent their misuse. The developer of this
code had used the first and last elements of the sort array structure as sentinels. This fact was not
known to the tester who assumed the usual C convention of indexing an array of N elements
from 0 to N-l. When only positive numbers were used in the test cases, the result was a correctly
sorted array since all of the input numbers sorted higher than the O's with which the array
structure was initialized. However, when negative numbers were used in the test cases, the result
was a sorted array in which the negative numbers had been replaced by O's. Thus, although there
was not really a defect in the component, the test cases "failed" and significant debugging effort
was expended to identify the problem.

The application of the techniques requires a considerable investment in tools, training, and
qualified staff. Although many of the automated techniques can be applied by inexperienced
staff, the test data is hard to interpret. The analysis of the results to determine the significance of
any detected defects requires at minimum a medium level of software engineering experience.
The development of test cases, particularly in the absence of any development infrastructure, also
requires at least this level of experience. The initial determination of the utility and applicability
of the selected tools requires a high level of experience and a good knowledge of software testing
concepts.

Based upon experience, the tools are not at a mature state where the test results they produce
have a significant level of confidence. The benchmark components were very useful in
evaluating the tools. From these models we knew how many statements, segments, decisions,
paths, and other structural components existed in each of the modules of the component. This

34

provided a yardstick to compare the tool results against. When a discrepancy occurred between
the benchmarks and the Ada coverage metrics computed by the tool we were using, we
discovered that the version of the tool we were using did not correctly handle replicated generics.
An updated version of the tool was installed and successfully used for the remainder of the
testing. It is a significant challenge to a certifier, whether actually using a tool or evaluating its
use by someone else, to know under what circumstances the tool is applicable and produces
trustworthy results. This requires a detailed understanding of the underlying technique and an
ability to discover the nuances of its implementation in the tool. To improve confidence in
testing results, the tools used must be validated for the domain and context in which they are
used.

35

Table 4.4: Summary of Results for Ada Component

Default Certification Process Activities

Readiness Static Analysis Code Inspection Testing

Level of Effort
(hours)

4hrs
(including setting up views
and downloading asset)

AdaQuest:l hr

Ada Wise: 1 hr

Preparation: 8 hrs
Inspection: 2 hrs

Steps 1-3: 16 hrs
Steps 4-8:

Number of Defects Found

Computational 2 indeterminate*

Data 4 minor

Interface 2 minor 3 minor

Logic 2 minor 3 indeterminate*

Other 2 minor

Total 4 minor 9 minor 0

Problems in
Applying
Techniques

None None Some of the questions
did not apply or could
not be answered

Too much
"infrastructure" had to
be created by tester

Problems in
Using Tools

-v- Installation
■0- File Structure
♦ Setting parameters,

attributes, etc.
■♦■ Unclear error messages

♦ None with
AdaQuest

■0- Installation:
Ada Wise

♦ Licensing
♦ Installation
♦ Accessing ASIS
■♦■ No test generation
O- Missing features
-v- Inadequate

documentation

Problems with
Process
Guidance

♦ More guidance on tool
usage

♦ Guidelines for
creating test cases
didn't fit generic
case

* indeterminate indicates a checklist question that could not be definitively answered

36

Tables 4.5 - 4.7 summarize the results of testing the C version of the heap sort component. As for
the Ada version, this component consisted of a main function called heapsort and an embedded
function called sift. The sift function is called at two different points by heapsort, once in a FOR
loop and once in a WHILE loop. A driver was constructed to call heapsort and pass it the data for
each of the test cases. The testing consisted of developing and running test cases against the
original code and then injecting faults in the code and running the test cases again. Segment,
decision, and path coverage metrics were computed for both the faulted and the fault-free runs of
the test cases. The test cases are described in Table 4.5 and the faults that were identified by each
test case are indicated.

Test
Case

Description Faults Found

l zero value 2, 4, 5, 7, 9, 10

2 one value 2, 4, 5, 7, 9, 10

3 two values 2,4,5,7,9,10

4 positive integers in sorted order 2,4,5,7,8,9,10

5 positive integers in reverse order 2, 4, 5, 7, 9, 10

6 positive integers in random order 2,4,5,7,8,9, 10

7 positive integers and a zero value 2,4, 5, 7, 8,9, 10

8 negative integers in sorted order 2, 4, 5, 7, 8, 9, 10

9 negative integers in reverse order 2,4,5,7,9,10

10 negative integers in random order 2,4,5,7,9,10

11 negative integers and a zero value 2, 4, 5, 7, 8, 9, 10

12 positive & negative integers in sorted order 2,4,5,7,8,9, 10

13 positive & negative integers in reverse order 2, 4. 5, 7, 9, 10

14 positive & negative integers in random order 2,4,5,7,9,10

15 positive & negative integers and a zero value 2, 4, 5, 7, 9, 10

16 positive & negative integers with duplicates 2,4,5,7,9, 10

17 positive & negative integers with multiple
zeroes

2,4,5,7,9, 10

18 path test two numbers 2, 4, 5, 7, 8, 9, 10

19 path test three numbers reverse order 2, 4, 5, 7, 9, 10

20 path test three numbers sorted order 2,4, 5, 7, 8, 9, 10

21 path test four numbers sorted order 2,4,5,7,8,9, 10

22 path test four numbers reverse order 2,4,5,7,9, 10

Table 4.5: Summary of Test Cases for C component

37

Table 4.6 summarizes the faults that were injected in the code, including the code segment
number where the fault was injected and what effect the fault had on the functionality of the code
component. The faults were injected by making small mutations in data variables, logical and
arithmetical operators, and array subscripts. The Table also identifies the defect type associated
with the fault and indicates which test case(s) detected the fault. There were four data defects,
one of which was not detected by any of the test cases. The remaining three data defects were
detected by all of the test cases. The two logic defects caused the program to abort with a
segmentation fault; in one case, it produced invalid results for all test cases before aborting. The
one computational defect was detected by all of the test cases. There were three interface defects
with three different results: the first was detected by all test cases, the second was detected by
none of the test cases although the program aborted with a segmentation fault, and the third was
detected by slightly less than half of the test cases but resulted in correct results for the others.
Interestingly, all of the test cases in which the input data was already in the prescribed sort order
caused the sort to fail and the fault to be detected. There was one case where two faults were
injected, a data defect and a logic defect. The data defect was the same data defect that was
detected by none of the test cases when inserted singly. In this case, in combination with a logic
fault, all of the test cases produced invalid results.

38

Fault
No.

Segment
No. Description Mutation Type Defect Type Test Case

Found By

1 HI Endpoint passed to Sift rather than
midpoint

Change in data variable Data none

2 HI
SI

Endpoint passed to Sift rather than
midpoint
Sift processed from endpoint rather than
midpoint

Change in data variable
Change in data variable

Data
Logic

all

3 H3 Heapsort processed beyond end of array Change in logical operator Logic crashed

4 S2 Sift miscalculated endpoint Change in arithmetical
operator

Computational all

5 M12 Wrong array size passed to Heapsort Change in data variable Interface all

'6 M12 Heapsort called too many times Change in data variable Interface none/crashed

7 SI Incorrect array element stored by Sift Change in array subscript Data all

8 H2 Incorrect array size passed to Sift Change in data variable Interface 4,6,7,8,11,12,
18,20,21

9 SI Sift processed wrong segment of array Change in logical operator Logic all/crashed

10 S6 Sift swapped wrong elements Change in array subscript Data all

Table 4.6: Summary of Faults Injected in C Component

39

Table 4.7 summarizes the path coverage results from running the test cases on both the non-
faulted code and for each of the fault sets. There are several interesting observations relevant to
the use of path coverage metrics as a measure of testing effectiveness for this component. First,
note that there are 8 paths identified for the heapsort module of the sort component and 5 for the
sift module. It was noted in the documentation for the testing tool that invalid paths were
sometimes identified; that is, paths that are structurally correct but which are logically infeasible.

Code ID
Path

ID
No

Fault

Number of Hits Per Path Per Fault ID

1 2 3 4 5 6 7 8 9 10

heapsort 1 20 20 20 0 20 21 21 20 20 20

2 0 0 0 0 0 0 0 0 0 0

3 0 1 1 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0

7 1 0 0 0 1 1 1 1 1 1

8 1 1 1 0 1 0 1 1 1 1

cov % 37.5 37.5 37.5 0 37.5 25 37.5 37.5 37.5 37.5

Sift 1 0 0 0 09 4 1 18 12 5 1

2 17 17 13 0 13 26 117 6 10 13

3 19 19 71 0 28 30 55 43 23 25

4 48 48 73 0 39 64 180 23 42 45

5 20 73 0 517 29 21 21 20 24 20

cov % 80 80 60 20 100 100 100 100 100 100

Fault
Location

HI HI
SI

H3 S2 M12 M12 SI H2 SI S6

Results / / X Ö X * //Ö X //x X/Ö *

Table 4.7: Summary of Path Coverage for C Component

For example, consider the path diagram in Figure 4.4. In this example, segments 1 through 5 of
the heapsort module are indicated as nodes in a path diagram (note that segments 6 through 7 are

40

not shown). There is a FOR loop in segment 1 and a WHILE loop in segment 3 that cause
branches. The resulting paths are identified as

(1) 1 I ^2^3^4^5^6
(2) 1 I ->2->3^4^5->7
(3) 1 l^2^3^5^6^7
(4) 1 1-2^3^5^7
(5) 1 [^3->4_>5^6^7
(6) 1 l^3^4^5^7
(7) 1 I -+3^5^6^7
(8)] I -> 3 -> 5 ->7

True (N>=2)

for loop 2

while loop

True (N>=2)

for (k=N/2;k>=l; k--)

False (N<2)

3) while (N>1)

False (N<2)

5 printf("sorted:\n");

Figure 4.4: Heap Sort Paths

However, paths 3 and 4 are not logically feasible because if the condition at segment 1 is true,

41

then the condition at segment 3 is true. In other words, the two decision conditions are not
independent, and the branch from segment 1 to segment 2 predetermines the branch from
segment 3 to segment 4. Likewise, paths 5 and 6 are not logically feasible. Although the path
coverage metric computed by the tool is 3 out of 8 (37.5%) for the non-faulted test run, it is
actually 3 out of 3 (100%).

Looking at the entries across the Table for the different faulted runs, we see very little difference
in the coverage metrics; however, the result of applying the set of test cases varies from all test
cases detecting the fault to no test case detecting the fault. Also, looking at the entries for the
coverage metrics for the sift module, we see that none of the test cases detected the data defect
associated with fault 1 although the associated coverage metric is 80%, but all of the test cases
detected the defects associated with fault 2 with a 60% coverage metric. Likewise, faults 6, 7,
and 8 resulted in detection by none, all, and some of the test cases although 100% coverage was
achieved in all three cases for both the heapsort and sift modules of the component.

In the case of fault 1, the data passed to sift when it is initially called by heapsort was mutated so
that the value passed as the index into the array was the endpoint rather than the midpoint. The
result was that heapsort called sift over and over with no activity being initiated by sift until the
loop control had decremented the improperly set index until it became equal to the midpoint of
the array, which was its originally intended value. At that point, the remainder of the sort was
executed as expected and the array was properly sorted. Although the code was defective, the
defect was not material to the functionality of the algorithm; its only effect would be a possible
decrease in performance since it was wasting time. Thus, if there were test cases that tested
whether or not the component met the performance specifications of a heap sort routine, those
test cases might have detected this defect. Although the results of the test cases were as expected,
there are clues in the coverage data that point to a problem with the code. Referring to Table 4.8,
we see that this fault resulted in the heap sort paths 1,3, and 8 being executed. However, as
noted above, path 3 is an invalid path, and something would have had to break the dependence
between the conditions determining the branches at segments 1 and 3 for this path to have been
activated. This "something" is the mutation in the data defining the starting point for building
heaps. Also, we note from Table 4.8 that one of the valid heap sort paths, path 7, was not
executed in this test run and that the number of hits of the entry-exit path (path 5) of the sift
module has increased significantly over the fault-free run, whereas the number of hits of all of
the other sift paths remained the same.

It appears that there are several factors influencing how effective a technique is for finding
defects. These factors include dependencies between conditions in different code segments, how
much the control structure of the code changes with changes either in individual data items or in
relationships between different data items, and whether a particular type of defect is more likely

42

to be activated by particular control structures than others. Thus, it appears that the framework's
effort to associate techniques with defect types is a necessary approach. However, it is also likely
that more detailed analysis of the relationship between techniques and defects will be necessary
before techniques can be recommended with confidence.

43

5 Instantiation of the Framework for a Third Party Certifier

The goal of the application portion of the project was to evaluate the framework by applying it.
To that end, an asset was selected and the default certification process was applied to it.
However, as discussed in Section 2.1 above, there are market and technical issues that would
prevent the direct implementation of the Certification Framework and its algorithm for selecting
and ordering techniques in a certification environment such as UL's. Also, there is an issue of
how to measure individual and combined technique effectiveness given that different
certification requirements exist for different domains and that characteristics of systems in
different domains affect the applicability and effectiveness of defect detection techniques. While
the framework recognizes this and provides for the creation of defect/detection models particular
to a domain or application, the default process is tied to a particular model and particular
assumptions about the reuse context. Thus, while the application of the default procedures
provides some feedback on their use, it does not evaluate the central concept of applying the
framework, which is its instantiation for a particular certification scenario. Therefore, as part of
the application of the framework, we investigated how the framework could be implemented by a
third-party certifier.

It appears that the Rome Certification Framework could be used by third party certifiers in a
component market dominated by the buyer-supplier model. Figure 5.1 illustrates this model. In
this model, the certifiers provide the assurance needed for buyers to rely on components that the
suppliers produce by developing criteria and processes by which components can be certified.
Standards would be developed and used in this process to ensure that the requirements for
certification meet the needs of both the buyers and the suppliers. In other words, the
requirements would result in the specification of processes and techniques that the developers
could clearly see the use and effectiveness of and that the suppliers would trust to produce
quality components that meet their requirements. The Rome framework can support this process
by providing a framework for selecting and evaluating appropriate and effective evaluation
techniques for specific certification concerns.

Since third party certifiers will be evaluating components for different domains and will have to
apply different standards for different applications and domains, the need to evaluate the
effectiveness of techniques is not a one-time problem. Thus, the certifier will need many sets of
tools and techniques as well as software benchmarks by which the tools and techniques can be
evaluated for particular certification scenarios.

44

Figure 5.1: Buyer-Supplier Model

The framework could be implemented by a third-party certifier as one component of an
experimental lab which would be used to evolve processes as industry needs and standards
develop and change. Thus, part of our application of the framework was a proof-of-concept
development of such an experimental lab. In addition to enhancing the evaluation of the
framework, this experimental lab also directly positions the framework for potential use by a
third party certifier.

45

5.1 Experimental Certification Lab

The prototype experimental certification lab demonstrates how the Rome Certification
Framework can be used by third party certifiers to design certification processes and to evaluate
the effectiveness of techniques proposed by the certification framework. The experimental lab
was designed to meet the following requirements:

(1) support multiple languages and platforms,

(2) include automated tools for development and testing,

(3) include bench marking facilities that support the evaluation of the effectiveness of the
techniques specified by the framework,

(4) link and access all of its facilities via an intranet web application, and

(5) interface with the Rome Laboratory Automated Certification Environment (ACE)
prototype.

The existing UL Software Test Laboratory provided the physical components of the experimental
lab. The UL lab supports safety certification at UL by providing support for internal research
relevant to the evaluation of client software. As such, it includes a wide range of strategic
hardware platforms and software tools. Strategic platforms are networked together to allow for
resource sharing as well as information sharing (providing for shared network directories on a
primary server).

The network is connected via a 10-base T Ethernet topology, utilizing a 3com LinkSwitch as a
router and configurable firewall. The primary server is a Compaq Proliant 4500, running
Windows NT 3.51. The machine has 128M of user memory, dual Pentium 133 MHZ processors
and 16 Gigabytes of hard disks (effectively 12 Gigabytes as disk array is configured with RAID
4 hard disk recovery backup system). Disk shares are provided via NFS; exported common
directories for share among various heterogeneous platforms including UNIX Solaris, MAC and
O/S 2; as well as shares with Windows/Windows NT/Windows 95 clients.

The benchmarking facilities of the experimental lab provide descriptive and quantitative
information about a component so that the results of applying specific defect detection
techniques can be compared with an expectation of what those results should have been. Should
there be any discrepancy between expected and actual results, the cause would be investigated
and any deficiencies in the technique with respect to a particular application identified.

46

The objects that comprise a benchmark are constructed within a context defined by a scenario
which provides the system-level requirements from which the component-level requirements and
applicable standards are derived. At the component level, the benchmark consists of the
following objects:

• a functional description
• specifications and requirements
• source code
• instrumented source code
• control & data flow models
• path analysis models
• test cases
• fault sets.

These objects can be integrated by a hierarchical model that connects the objects into views of
the system-level architecture. The model shown in Figure 4.2 for the scenario developed for the
application of the framework is a component of such a model. This model is a collection of
models which describe several architectural perspectives of a subsystem of an application. The
perspective shown in this Figure is the functional decomposition of the subsystem into
individual, reusable components. This model allows the software to be described at the workload
level, which enables performance, communication, and resource utilization issues to be
highlighted and baselined.

The facilities of the experimental lab form an intranet web that can be accessed via a hyperlinked
interface. The key facilities are access to files from individual certification projects; the ability to
reference, create, and enact certification processes; and access to reference information. The
overall structure of the web interface is diagramed in Figure 5.2.

47

Home Page

i

Y
Descriptive
Information

Y
Acess to
Projects

Y
Certification

Activities

Y
References Stan dards

Y
Tools

Lab Description I List of
Documents

UL 1990 Certification
Tools

Lab- Uses Rome CRC Access to Online IEC
Documents

1508 C++ Tools

Background

Sou re« Cod« w 1
Modal* ^L^^

Certincatlon (A)
Requirement» \^__-^

Certification
Process &
Results

V A) l~ rtHlcstlon
ctlvHles

!

V I
Ensct

Procsss Selsct
Process

i

1 Rome CRC

V
Rome CRC Safety |

1
(c)

1 > r *
OnHne

Procedures
Oraphlcsl

Control
Access
Tool« J, ; i

T ▼
Access

Ace
Process

Algorithm
Ace

Menu

<*>

Figure 5.2: Web Interface

48

©
ACE Menu

CRC
Project

BMC1

Domiht ^

QuilRy
Concerns

Non-Conf.
Model A Cert

Levels
^

Techniques

Process

©
SsMy

Design
DbgiM

>■
GsftsrsJ

► CMtfcsflM

Scenario

*l

-^ [KkdH

> MM

Figure 5.2 (Continued): Web Interface

49

The interface software allows the user to navigate through a suggested course of action, invoke
testing tools on remote platforms, collect results to provide analysis on method effectiveness,
etc., and generate reports. The application is well suited for navigation to be performed through
hyperlinked text-based documents. Programs may be invoked from hyperlinked documents
through tools such as Java, VB Script, etc. The application can also provide access to locally
stored information databases on standards and methodologies as well as providing internet access
to outside information sources. In the current prototype, only hyperlinked documents are
implemented.

50

5.2 Outstanding Issues

Currently, the experimental lab provides access to all of the descriptive project files from the
application of the framework and provides two options for creating certification processes in the
form of two subtrees of the web. The first provides access to elements of the Rome framework
and default process, including its defect detection model, certification level schema, and an
online procedures guide. The second subtree provides an alternative means of assembling the
elements of a certification process. It presents a graphical overview of the elements needed to
create a certification process and links to particular instances of the elements, including domain
models for safety applications, certification requirements extracted from safety standards, a
mapping of requirements from a safety standard to the Rome framework scope levels and
associated techniques, and sample defect detection technique models. Table 5.1 describes how
the requirements of UL's software safety standard, UL 1998, map to the Rome framework. Part 1
of the table categorizes the types of defects, or faults, that UL 1998 addresses and shows the
associated class(es) of defects and the range of applicable techniques from the framework. Part 2
of the table lists the types of analyses and procedures that are acceptable for meeting UL 1998
requirements and indicates the corresponding class(es) of techniques form the framework. As can
be seen from this table, the framework does not address all of the elements required by the UL
1998 standard. In particular, hardware failures, analyses required to identify risks and critical
sections of code, tool validation requirements, and certain life-cycle processes are not covered by
the framework defect classes and techniques as currently specified. Some additional
defect/technique models have been incorporated into the lab, but additional work is needed to
identify and develop the models necessary to provide complete coverage of the UL 1998
standard.

Currently, the technique selection and ordering process specified in the framework contains a
cost benefit optimization step that combines techniques based on cost benefit calculations.
Whereas cost is an issue to all developers, it is not the primary concern in safety domains when
decisions are made as to what has to be demonstrated and what are valid techniques to be used.
The overriding factor in approving a technique is how effective it is. Also, techniques are usually
specified by the life-cycle phase for which they are relevant and in which they can be used. The
framework, with a focus on techniques being applied by the certifier, assumes that they are all
applied at the same time; i.e., after the component has been completed and delivered. It is unclear
whether defects that result from design mistakes, for example, can be found by evaluating the
code and not the design. It is also not clear how the overlap in defects detected by different
techniques is affected by applying them all at once rather than in sequence. This overlap, of
course, is crucial to determining the effectiveness of combinations of techniques. Because of
these issues with the selection decision process, we are using the lab to explore different decision
methods and criteria, especially those that are based on the use of standards.

51

Table 5.1: Mapping of Methods in the Rome Laboratory Framework
to UL 1998 Requirements

UL1998 Rome Framework

Part 1: Mapping of Methods

Req No. Faults Defect(s) Techniques

1.5.a requirements conversion
latent inspection, analysis, testing, formal proof

robustness inspection, analysis, simulation, formal proof

1.5.b design

6.1
6.2
6.3
6.4
6.5
6.6
7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
9
9.1
9.2
9.3
9.1

10.2a
10.2b
10.3
10.4
10.5
10.6
10.7

no single-point failure
return to RA state
detect/handle software failures
identify/respond to risky states
risk-based scheduling
prevent/detect/resolve Nterm/NDet/Err sts
partitioning
no memory usage/addressing conflicts
control of sw by supervisory sw
shutdown/fail op for failures of crit sw
min 2 instr seqs to initiate risky functions
initialization to known RA state
controlled access to crit/sup instrs/data
non-use of crit/sup instrs by non-c/s fns
crit/sup sw to reside in non-volatile mem
protect integrity of data used by crit/sup sw
fixed/lmtd chng data stored in non-vol mem
sw outputs to init hw to RA state
sw to transition to RA state if power failure
allocated init functions to be carried out
prod to transition to RA state if sw terminates
perm stop of cpu only if product in RA state
no changes to parms that could affect intnd op
config changes to parms to not affect intdn op
min 2 user responses to init risky operations
improper user input to not affect crit ops
provide user cancel & return to RA state
single input to cancel op
cancellation of proc to leave sw in RA state

operational
operational
operational
operational
operational
latent/robustness
latent/robustness
latent/robustness
operational
operational
operational
latent/robustness
latent/robustness
latent/robustness
latent/robustness
operational
latent/robustness
interoperability
interoperability
interoperability
interoperability
interoperability
interoperability
interoperability
interoperability
interoperability
interoperability
interoperability
interoperability

analysis, testing, simulation, formal proof
analysis, testing, simulation, formal proof
analysis, testing, simulation, formal proof
analysis, testing, simulation, formal proof
analysis, testing, simulation, formal proof
inspection, analysis, siml/tstng, formal proof
inspection, analysis, siml/tstng, formal proof
inspection, analysis, siml/tstng, formal proof
analysis, testing, simulation, formal proof
analysis, testing, simulation, formal proof
analysis, testing, simulation, formal proof
inspection, analysis, siml/tstng, formal proof
inspection, analysis, siml/tstng, formal proof
inspection, analysis, siml/tstng, formal proof
inspection, analysis, siml/tstng, formal proof
analysis, testing, simulation, formal proof
inspection, analysis, siml/tstng, formal proof
inspection, analysis, simulation, formal proof
inspection, analysis, simulation, formal proof
inspection, analysis, simulation, formal proof
inspection, analysis, simulation, formal proof
inspection, analysis, simulation, formal proof
inspection, analysis, simulation, formal proof
inspection, analysis, simulation, formal proof
inspection, analysis, simulation, formal proof
inspection, analysis, simulation, formal proof
inspection, analysis, simulation, formal proof
inspection, analysis, simulation, formal proof
inspection, analysis, simulation, formal proof

1.5.C coding
latent inspection, analysis, testing, formal proof

robustness inspection, analysis, simulation, formal proof

1.5.d timing

latent inspection, analysis, testing, formal proof

robustness inspection, analysis, simulation, formal proof

interoperability inspection, analysis, simulation, formal proof

1.5.e memory interoperability inspection, analysis, simulation, formal proof

52

1.5.f hardware failures operational analysis, testing, simulation, formal proof

8.1
8.2a

8.2b
8.2c
8.2d
8.2e
8.2f

8.2g

8.2h
8.2i

measures for hw failure modes
cpu regs, instr dec&exec, pgm ctr, addr/data paths
interrupt handling and execution
clock
non-vol and vol memory & memory addressing
internal data path & data addressing
external communication - data, addressing, &
timing
I/O devices, such as analog I/O, D/A & A/D
converters, analog multiplexors
monitoring devices and comparators
ASICs, GALs, PLAs, PGAs hardware

1.5.g state-dependent robustness inspection, analysis, simulation, formal proof

1.5.h no function performed operational analysis, testing, simulation, formal proof

Part 2: Analyses/Procedures

3.1 risk identification

3.2 critical section identification.

3.3 risky state identification

4.1 quality management system

5.1 tool validation

11 software analysis and testing

11.1 software code analysis inspection, analysis, simulation, formal proof

11.1.1
11.1.2a
11.1.2b
11.1.2c
11.1.2d

performs only intended fns; no risk introduced
correctness and completeness wrt spec
decision criteria & function involving risk
combs of sw, hw, and other events resulting in risk
shutdown & fail-op procedures

11.2 development and operational test simulation, testing

11.2.1
11.2.2
11.2.3
11.2.4
11.2.5

test plan:parameters, procedures,criteria
conduct tests; document test results
test cases based on risk/code analy, safety ftrs
test cases incl vals for parms where decs made
effects on hw of sw outputs to be evaluated

53

11.3 failure mode and stress testing simulation, testing

11.3.1 testing under abnormal or off-nominal usage:
operator errors
component failures
errs in data from external sensors or sw procs
entry or exec failures of critical sections
negative condition branch
correct response & no risk to single-pt failures

11.3.2 test cases incl vals for parms where decs made

12 documentation

12.1 design
12.2 external interfaces
12.3 operation & safety features wrt intended fh
12.4 user documentation
12.5 sw reference manual
12.6 sw plan
12.7 risk analysis approach & results
12.8 configuration management plan
12.9 system architecture plan
12.10 system & software requirements specification
12.11 system & software design specification
6.7 information for third-party/OTS sw

13 software changes

13.1 no risk created, impacted, or increased lklhd
13.2 procs to maintain control changes

14 identification

14.1 unique identifier in sw
14.2 intended system configurations identified

54

6 Findings

The Certification Framework is built upon clear, decisive and sound research. The Code Defect
Model and Tool Selection can be substantiated by findings in previous research. However, while
some of this research appears in the Field Trial Procedures, these procedures do not appear to be
in accordance with the Code Defect Model. It is recommended that either the procedures be
brought back in line with the framework or that justification be documented for their divergence.
The Code Defect Model could also be expanded to address the impact of language differences
and other sources of variation in defect type distribution such as differences in developers,
application function, development testers, and variations in methods of computing lines of code.

The current framework has lost some of the applicability and flexibility of the initial design,
especially in incorporating domain and application context into certification decisions. This
particularly affects its use in certain areas, such as embedded, real-time applications and safety-
critical applications. It is recommended that the program revisit the initial multi-level
certification framework which enables a process by which a set of requirements is identified for
the domain of applicability for which an asset is being developed and against which the asset is
certified. It is also recommended that the mechanism proposed in the initial process for selecting
an appropriate certification level be amended to incorporate the use of applicable standards.
Standards would address process qualification, domain considerations, and criticality by product
type and/or software functionality. The determination of applicable standards would make the
selection mechanism objective and readily apparent.

It appears that there are several factors influencing how effective a technique is for finding
defects. These factors include dependencies between conditions in different code segments, how
much the control structure of the code changes with changes either in individual data items or in
relationships between different data items, and whether a particular type of defect is more likely
to be activated by particular control structures than others. Thus, it appears that the framework's
effort to associate techniques with defect types is a necessary approach. However, it is also likely
that more detailed analysis of the relationship between techniques and defects will be necessary
before techniques can be recommended with confidence.

The framework, with a focus on techniques being applied by the certifier, assumes that they are
all applied at the same time; i.e., after the component has been completed and delivered. It is
unclear whether defects that result from design mistakes, for example, can be found by
evaluating the code and not the design. It is also not clear how the overlap in defects detected by
different techniques is affected by applying them all at once rather than in sequence. This
overlap, of course, is crucial to determining the effectiveness of combinations of techniques.

55

Care was taken to construct a framework that is usable and practical. With some exceptions, the
framework and the procedures are designed so that they can be used by a staff with minimal
experience. They are practical for DOD repository use because they are very similar to the
certification efforts currently in place. Since the certifier stops when the cost of certification
becomes too high, the process is cost effective. The history of the repositories shows that only
the least labor, time and cost intensive levels of certification will be used. It is not clear that the
process as specified introduces any new or added value to the asset that current certification
processes at the repositories don't. This is because the only way to provide that value and thereby
benefit the user would be to take the asset to the highest level of certification - showing that it is
functionally sound. This is not currently being done and, even though the need for it is
demonstrated by the framework, the specified process does not make it any less costly or time
consuming to accomplish.

Some specific recommendations for improving the default process involve regression testing,
code inspection, and defect classification. The default process does not address regression.
Correcting defects at every step is encouraged, but going back to the beginning of the
certification process is not: only the current step is repeated. A fix in the code inspection step
may make some code unreachable, for example, but since unreachable code was checked in the
previous step, the new unreachable code would not be detected. In other words, the defect "fix"
may have created one or more new defects that may not be detectable in the remaining or current
steps. Because of the comprehensive nature of the checklist used in the code inspection step of
the default process, the best results would be achieved if two or more inspectors reviewed the
code, which is the case for most code reviews. The framework does not sufficiently differentiate
between major and minor defects, leaving too much discretion to the certifier.

It is a significant challenge to a certifier, whether actually using a tool or evaluating its use by
someone else, to know under what circumstances the tool is applicable and produces trustworthy
results. This requires a detailed understanding of the underlying technique and an ability to
discover the nuances of its implementation in the tool. To improve confidence in testing results,
the tools used must be validated for the domain and context in which they are used. Based upon
experience, the tools are not at a mature state where the test results they produce have a
significant level of confidence.

The framework assumes that a user will consider code to be reusable even if it requires rework to
be reused in a different application or domain from that for which it was originally developed.
However, reusable assets in the commercial sector are not reworked. Attributes, such as color,
size and font, are definable by the current user (application) but the inner workings are not
presented for modification. Thus, the Certification Framework's selection of techniques based on
rework avoidance is not applicable to a commercial asset. This discrepancy between the two

56

views of reuse can be a major obstacle to applying the framework to certify commercial assets. If
the framework defines minimum criteria for reusable assets, any asset that cannot meet those
criteria would be discarded or certified under a process for single use software.

While covering a broad spectrum, software certification has to be objective to be of value to the
user of the certified software. Certification needs to be repeatable and consistent: any two
certifying agencies should achieve the same results when applying the same certification
standard to the same software component. Standardization of the results of certification based on
the framework should be carefully considered. Currently, every certifying body would be able to
use their own defect data and cost/benefit model to determine which techniques to use and how
far to go in the process. The same asset, certified by two different agencies with different budgets
and different goals for certification, would not be subjected to the same certification process in
both places. A repository which places a higher emphasis on functional correctness and has no
cost barriers may totally reject an asset that another repository may choose to certify only
through the second level of the default process.

A certification framework can define how to selectively apply requirements to each software
asset. Instead of the current certification level approach, it is recommended that a "meets
standards" approach be utilized. A synergistic relationship between the framework and software
certification standards is necessary to accomplish this goal. In specifying its requirements, the
framework needs to reference existing standards that have been developed for different concerns,
applications, and domains. Thus, the requirements for a particular asset would be tied to
standards that apply to it. If there are key areas of the framework for which standards have not
yet been defined, then the framework can identify where further research is needed and can
establish requirements that would essentially be default standards. These default standards would
be the starting point for new standards and the framework would be updated and revised as
consensus emerged on the new standards.

A key finding from this activity is that the application of the procedures by a third party certifier
on a component designed and produced for the commercial market may not be an appropriate
application for the framework. It may be more practical for certifiers to use the framework to
derive requirements for testing and evaluation of components that the developers would
implement. The certifiers would then verify that the developers had implemented the specified
activities. Thus, it is important that guidelines be developed to specify under what conditions a
certifier would either perform the V&V activities defined in the framework or confirm that they
were performed by the developer.

While the benefits of certification can perhaps be demonstrated to outweigh its costs under the
current reuse library model, a greater cost/benefit could be more immediately evident under other

57

models, such as the Third Party Buyer-Supplier Model. In this model, standards are developed by
consensus, quality is built in during development and costs are reduced, independence is
maintained, cost of third party certification is reduced, and the third parties are accredited.

The opportunity exists for the Rome Laboratory Certification Framework to establish selection
criteria and procedures for independent third party certifiers to use. The successful realization of
this opportunity rests on certain assumptions, such as

• That a software parts supplier market can be created and will change how the
software development industry operates,

• That independent certification will provide the confidence necessary for an
application developer to buy a component rather than build or tailor one,

• That the Certification Framework can clearly establish the role it would play in the
developing scenario for component certification, and

• That the present framework model can be enhanced to cover a broader view of the
certification process.

Thus, a technical solution may not be as significant as the need for a business/market solution.
Therefore, consideration should be given to focusing the framework for a buyer-supplier business
model and to pursuing other modes of distribution than the traditional reuse repositories. An
experimental lab such as that being established at UL would be a recommended approach to
resolving the remaining technical issues, especially those related to technique effectiveness. The
results of efforts in the lab will over time broaden the framework's certification model and
evolve components of the framework so that they can be incorporated into certification
standards.

58

References

[Clo94] John L. Cloninger. What Would You Do If You Built A Library and Nobody Came? 13
April 1994.

[RTI93] Research Triangle Institute. Certification of Reusable Software Components. U.S. Air
Force Rome Laboratory Contract No. F30602-92-C-0158, March 1993.

[Sch91] Scheper, C, R. L. Baker, and H. L. Waters. Integration of Tools for the Design and
Assessment of High-Performance, Highly Reliable Computing Systems (DAHPHRS).
Technical Report RL-TR-91-397, Rome Laboratory, December 1991.

[UL95] Sevio, B. Investigation of the Market Opportunity for Independent Certification of
Object-Oriented Components or Solutions. Internal UL Report, March 1995.

SU.S. GOVERNMENT PRINTING OFFICE: 1998-610-130-61122

59

MISSION
OF

ROME LABORATORY

Mission. The mission of Rome Laboratory is to advance the science and
technologies of command, control, communications and intelligence and to
transition them into systems to meet customer needs. To achieve this,
Rome Lab:

a. Conducts vigorous research, development and test programs in all
applicable technologies;

b. Transitions technology to current and future systems to improve
operational capability, readiness, and supportability;

c. Provides a full range of technical support to Air Force Material
Command product centers and other Air Force organizations;

d. Promotes transfer of technology to the private sector;

e. Maintains leading edge technological expertise in the areas of
surveillance, communications, command and control, intelligence, reliability
science, electro-magnetic technology, photonics, signal processing, and
computational science.

The thrust areas of technical competence include: Surveillance,
Communications, Command and Control, Intelligence, Signal Processing,
Computer Science and Technology, Electromagnetic Technology,
Photonics and Reliability Sciences.

