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I. INTRODUCTION 

The research performed on this contract covers a broad range of topics related to 
coherent radiation sources. In general, the research can be divided into two broad 
categories: theoretical research into innovative concepts in the physics of ubitrons (or free- 
electron lasers) and helix traveling wave tubes, and in the application of this theory to the 
support of the experimental ubitron program in the Vacuum Electronics Branch of the 
Electronics Science and Technology Division at the Naval Research Laboratory (NRL). 
The work on this program was conducted by the Principal Investigator, Dr. H.P. Freund'at 
a level of effort of 1 Manyear per calendar year during the contract period. 

The general theory research covers a wide range of topics of interest. In regard to 
ubitron/free-electron laser research, work has covered a wide variety of topics. Nonlinear 
analyses and simulation codes have been developed (1) for short wavelength free-electron 
lasers driven by planar wigglers using a superposition of Gauss-Hermite optical modes, (2) 
for the CHI wiggler ubitron using the modes of a coaxial waveguide, and (3) for a 
corrugated waveguide in conjunctino with a helical wiggler. Thus, the ubitron work has 
spanned vitually the entire range of wiggler geometries either in use at the prtesent time or 
under development. The helix traveling wave tube work has includsed both linear analyses 
and nonlinear simulations for sheath helix geometry. 

The theory support for the ubitron program in Code 6840 covers two distinct 
experiments. The first experiment is that of a fundamental harmonic ubitron using a helical 
wiggler and an axial guide field. Extensive theoretical capability to analyze this 
configuration has been developed over the course of this and preceding contacts with Code 
6840 at NRL, and the simulation codes developed were employed to analyze the results of 
this experiment. Gratifyingly, good agreement has been found between the experiment and 
the theory. The second experiment employs a planar wiggler and operated at higher 
harmonics of the resonance frequency. Once again, good agreement has been found 
between simulation and the experiment. 

The organization of this final report is as follows. A description of the general 
theory developed under the contract is given in Section. II. A discussion of the theoretical 
support provided for the ubitron experiments is given in Section III. A summary is given in 
Section IV. The text of the report will not be very detailed in that figures and drawings 
illustrating the results of the work will not be given in the body of the report. These are 
shown instead in the papers published during the contract period, and copies of all papers 
published in refereed journals for this research is given in Appendices following the text of 
the report. 

II. GENERAL THEORY 

The general theory developed under the contract can be classified into two parts 
corresponding to ubitrons/free-electron lasers and helix traveling wave tubes (TWTs). Each 
of these categories will be discussed separately. 

The ubitron/FEL work principally includes slow-time-scale nonlinear formulations 
and simulation codes of (1) short wavelength devices using planar wigglers where the 
electromagnetic mode structure is represented as a superposition of Gauss-Hermite modes, 
(2) helical wiggler/axial guide field configurations describing either smooth-bore or 
corrugated cylindrical waveguides, and (3) the Coaxial Hybrid Iron (CHI) wiggler design 
which uses a coaxial mode structure as well. Additional work has been done on electron 
trajectories in a self-consistent wiggler model as a means of studying the effects of wiggler 



errors, and on the compilation of an annual status report on long wavelength 
ubitrons/FELs. 

The work on short wavelength FELs was motivated by the potential interest in 
infrared FELs. In this regard a simulation code (named MEDUSA) was developed which 
treats planar wiggler geometry and uses a superposition of the Gauss-Hermite modes for 
the electromagnetic fields. This work was published in two stages in the Physical Review 
and in Nuclear Instruments and Methods in Physics Research, and are reproduced in 
Appenndices I and II. The code MEDUSA has generated interest outside the Naval 
Research Laboratory, and has been released (with approval of NRL) to a number of 
researchers outsaide NRL. 

A nonlinear formulation and simulation code has been developed for the CHI 
wiggler model which makes use of the modes in a coaxial waveguide. The basic theory for 
this model has been published in Nuclear Instruments and Methods in Physics Research, 
and is reproduced in Appendix III. This model has been used in the design of an 
experiment being performed in Code 6840 at NRL, which will be discussed in Sec. III. 
However, it has also been used in design studies for a far-infrared CHI-wiggler FEL, 
which has been published in Nuclear Instruments and Methods in Physics Research and is 
reproduced in Appendix IV. In addition, the model has also been used to generate adesign 
study of a CHI-wiggler based free-electron maser for use in cyclotron heating of 
magnetically confined thermonuclear fusion reactors. This work has been published in the 
Physics of Plasmas and in Nuclear Instuments and Methods in Physics Research, and is 
reproduced in Appendices V and VI. 

Due to ongoing interest in reducing the voltage requirements in ubitrons, a theory 
was developed for treating corrugated waveguide geometries. The motivation here was to 
employ the slow-wave structure as a method of dispersion control to reduce the electron 
energies requires for high frequency resonance in free-electron masers. To this end, a 
nonlinear slow-time-scale formulation and simulation code was developed to treat a helical 
wiggler/axial guide field configuration in conjunction with a corrugated cylindrical 
waveguide.This research was published in Nuclear Instruments and Methods in Physics 
Research, and is reproduced in Appendix VII. 

An earlier simulation code (ARACHNE) which treats a helical wiggler/axial guide 
field geometry for the modes in a smooth-bore cylindrical waveguide has also been used to 
study the usefulness of an annular electron beam. Impressively high growth rates and 
efficiencies were found, which suggests that this configuration his potentially interesting 
for future applications. The work has been published in Nuclear Instruments and Methods 
in Physics Research, and is reproduced in Appendix VIE. 

Another ubitron/FEL research project was performed in collaboration with L.H. Yu 
at Brookhaven National Laboratory. This study dealt with electron trajectories in a self- 
consistent wiggler model into which random errors can be introduced. The orbits in such a 
wiggler with imperfections was compared with the orbits for a sinusiodal wiggler model 
with corresponding amplitude errors, and good agreement was found. The discrepancies 
between the two wiggler models were attributed to the inclusion of phase as well as 
amplitude fluctuations in the seelf-consistent wiggler model. This work was published in 
Nuclear Instruments and Methods in Physics Research, and is reproduced in Appendix IX. 

An effort was also undertaken to compile annual status reports of long wavelength 
FEL experiments. These were published in Nuclear Instruments and Methods in Physics 
Research, and are reproduced in Appendices X-XII. 



Tunring now to the helix TWT work, we note that there were five publications in 
this subject area during the contract period. The principal activity was directed toward the 
development of a 2-1/2 dimensional time domain simulation code for a sheath helix TWT 
(named GATOR); however, some work was also devoted to the derivation of a linear 
stability theory of the sheath helix with dielectric loading. 

GATOR is a time-domain simulation of the interaction in a sheath helix which treats 
tapered helices with both dielectric and vane loading, and is capable of dealing with 
multiple frequencies and backward waves. Here, the electromagnetic fields are treated by a 
superposition of the modes in a vacuum sheath helix in which the amplitudes and phases of 
the modes are assumed to vary in z and t. The equations governing the evolution of the 
amplitudes and pahses are obtained by a method analogous to the derivation of Poynting's 
equation. The partial differential equations which result are solved on a grid in z for each 
time step in terms of the microscopic source currents. These equations are solved in 
conjunction wit the Lorentz force equations for an ensemble of electrons using a leap-frog 
method, and the source currents are obtained at each time step by mapping teh individual 
electron contributions to the nearest neighbor grid points. Both AC and DC space-charge 
forces are also included in the formalism. The publications describing the development of 
GATOR are reproduced in Appendices XHI-XV. 

Finally, the linear theory was primarily performed in order to develop the mode 
structure for GATOR as well as to have a theory against which to check the predictions of 
GATOR in the exponentially growing regime. This theory dealt with a solid or annular 
electron beam prpagating through a sheath helix with a dielectric load. The work was 
published in the IEEE Transactions on Plasma Devices, and is reproduced in Appendix 
XVI. Note that another linear anlaysis describing both helix TWTs and FELs was 
published in Nuclear Instruments and Methods in Physics Research. This comaprison was 
intended to study the predicted scaling of the growth rates to confirm whether the well- 
known scaling laws from the Pierce Theory in the ballistic and space-charge dominated 
regime were valid. It was found that the Pierce analysis is primarily valid only when the 
interaction was relatively narrow band, and the scaling laws could differ significantly for 
sufficiently broad bandwidth interactions. This work was published in Nuclear Instruments 
and Methods in Physics Research, and is reproduced in Appendix XVII. 

Theoretical analyses have also been conducted to study (1) the effect of nonlinear 
dielectric elements in helix traveling wave tubes, and (2) shot noise in gyroklystrons. These 
studies have not yet appeared in the refereed literature, but preprints of submitted papers are 
provided in Appendices XVm and XK. 

III. THEORETICAL SUPPORT 

Theoretical support was provided during the contract period for the Ku-Band 
ubitron and the Ka-Band CHI wiggler ubitron amplifier programs in Code 6840 at NRL. 

The Ku-Band amplifier program employed a conventional helical wiggler/axial 
guide magnetic field configuration, and achieved an average power of 36 W with peak 
powers reaching 4 MW. The nonlinear theory was performed with the ARACHNE code, 
which was in substantial agreement with the experiment in regard to both output powers 
and beam transmission. The latter point is significant for this experiment as substantial 
amounts of current was lost to the waveguide walls during the course of the interaction. 
This work was published in Nuclear Instruments and Methods in Physics Research, and is 
reproduced in Appendix XX. 



The support for the Ka-Band CHI wiggler amplifier program is ongoing since the 
experiment has not yet become operational. Hence, the primary support thus far is in the 
design of the experiment. In this regard, two papers have been published in Nuclear 
Instruments and Methods in Physics Research (see Appendices XXI and XXII) dealing 
with performance calculations and wiggler characterization respectively. 

Theoretical support has also been provided for helix TWTs using the CHRISTINE 
simulation code, which is a one-dimensional parametric model of a sheath helix TWT. A 
paper has been written in collaboration with the staff at Nortthrop-Grumman Corp. and 
submitted for publication to the IEEE Transaction on Plasma Science (see Appendix 
XXIII). 

IV. SUMMARY AND DISCUSSION 

The preceding contents of the final report represent the technical work performed 
under this contract, and the 20 Appendices include the refereed papers published during the 
contract term. However, this does not include a list of contributed papers presented at 
conferences (which may be published in such non-archival formats as conference 
proceedings). In this regard, more than 60 contributed papers were presented at a variety of 
professional conferences. In addition, Dr Freund has seen publication of both the first and 
second editions of his book "Principles of Free-electron Lasers" coauthored with T.M. 
Antonsen, Jr., and is a coholder of a patent on the CHI wiggler design. 
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Nonlinear theory of short-wavelength free-electron lasers 

H. P. Freund 
Science Applications International Corporation, McLean, Virginia 22102 

(Received 11 May 1995) 

The nonlinear evolution of free-electron laser (FED amplifiers is studied for infrared and shorter 
wavelengths. The configuration of interest consists in the propagation of an energetic electron beam 
through a drift tube in the presence of a periodic wiggler magnetic field with planar symmetry. A three- 
dimensional formulation is derived in which the electromagnetic field is represented as an expansion of 
Gaussian optical modes.  Since the wiggler model is characterized by planar symmetry, the Gauss- 
Hermite modes are used for this purpose. A set of nonlinear differential equations is derived for the evo- 
lution of the amplitude and phaseof each mode, and they are solved simultaneously in conjunction with 
the three-dimensional Lorentz force equations for an ensemble of electrons in the presence of the 
magneto-static wiggler, self-electric and self-magnetic fields due to the charge and current distributions 
of the beam, and the electromagnetic fields. It is important to note that no wiggler average is used in the 

- integration of the electron trajectories. This permits the self-consistent modeling of effects associated 
with (1) the injection of the beam into the wiggler, (2) emittance growth due to inhomogeneities in the 
wiggler and radiation fields as well as due to the self-fields, (3) the effect of wiggler imperfections, and (4) 
betatron oscillations. The optical guiding of the radiation field is implicitly included in the formulation. 
This approach has important practical advantages in analyzing FELs, since it is necessary only to 
characterize the beam upon injection into the wiggler, and the subsequent evolution is treated self- 
consistently. Numerical simulations are performed for two examples corresponding to an infrared FEL 
at wavelengths near 3.5 fim, and an x-ray FEL operating in the neighborhood of 1.4 A wavelengths cor- 
responding to the proposed linear coherent light source (LCLS) at the Stanford Linear Accelerator 
Center. Results for both cases indicate that the more severe limiting factor on the performance of the 
FEL is the beam emittance. For the infrared example, the transition to the thermal regime occurs for an 
axial energy spread of Ay, /y0«0.19%, and optimal performance is obtained for Ayr /y0 < 0.1 % and y 
is the relativistic factor. This restriction is more severe for the LCLS parameters, for which the thermal 
transition is found for Ayt/y0to0.05% and optimal performance requires Ayx/y0<0.0\%. Wiggler 
imperfections are found to be a much less important constraint on FEL design. Simulations indicate 
that there is no coherent "walkoff" of the beam from the symmetry axis due to wiggler imperfections, 
and that the radiation field is sufficiently guided by the interaction that no severe degradation is found in 
the extraction efficiency or growth rate for moderate levels of wiggler fluctuations. 

PACS number(s): 41.60.Cr, 41.60.—m, 41.50.+ h, 52.75.Ms 

I. INTRODUCTION 

The free-electron laser (FEL) has been demonstrated to 
operate at spectral ranges from the microwave through 
the ultraviolet [1-16] using a wide variety of accelera- 
tors, including modulators, pulse line accelerators, elec- 
trostatic accelerators, induction and rf linacs, and storage 
rings. The fundamental physics of the interaction relies 
upon stimulated scattering due to the ponderomotive po- 
tential created of the beating of a periodic magnetostatic 
wiggler and the radiation field in the presence of an ener- 
getic electron beam [17]. Wiggler magnets have been 
built with helical, planar, and azimuthal symmetry and 
FELs have been configured as master oscillator power 
amplifiers (MOPAs), oscillators, and super-radiant 
amplifiers. The term super-radiant amplifier was original- 
ly used to denote a device in which the radiation grows 
from noise in a single pass through the wiggler; however, 
the term self-amplified spontaneous emission (SASE) has 
recently become more widely used for this class of device. 

MOPAs and SASE devices have typically been em- 

ployed longer (millimeter and submillimeter) wavelengths 
using high-current but relatively low-energy electron 
beams. In this parameter regime, the FEL grain is 
sufficiently high to drive the signal to saturation in a sin- 
gle pass. In contrast, short-wavelength FELs (defined 
herein as near-infrared wavelengths and below) have re- 
quired higher-energy beams. Since the currents available 
from most accelerators capable of producing the neces- 
sary energies were not high enough to yield single-pass 
gains suitable for amplifier operation, these FELs have 
typically been configured as oscillators. However, recent- 
ly rf linac designs have been proposed in which the peak 
currents are high enough to make amplifier operation 
possible. The purpose of this paper is to address a range 
of important issues relevant to short-wavelength FEL 
amplifiers. 

In this paper, a three-dimensional nonlinear formula- 
tion of the interaction in short-wavelength FELs is de- 
scribed and applied to the study of several devices of 
current interest in the infrared and x-ray spectra. The 
technique employed is similar to a formulation developed 
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previously [18-20] that was applied to long-waveguide 
FELs. The fundamental technique is based upon a repre- 
sentation of the electromagnetic field as a superposition 
of vacuum modes. The long-wavelength formulation was 
tailored  to  treat  the  modes  in both cylindrical and 
rectangular waveguides.  For the present case of short- 
wavelength FELs, Gaussian optical modes will be used. 
Nonlinear equations governing the evolution of the am- 
plitude and phase of each mode are derived by taking an 
average of Maxwell's equations over the wave period. 
This eliminates the fast time- and space-scale variation 
from the equations, which greatly reduces the computa- 
tional   requirements.    These   equations  are  integrated 
simultaneously with the three-dimensional Lorentz force 
equations for an ensemble of electrons subject to the total 
aggregate of static and fluctuating fields.  This includes 
the magnetostatic wiggler, the electromagnetic radiation 
fields, and the static self-electric and self-magnetic fields 
produced by the bulk charge and current densities of the 
beam [21]. However, collective Raman effects associated 
with  the fluctuating fields of the beam space-charge 
waves are neglected in the analysis because the frequen- 
cies of interest are much higher than the beam plasma 
frequency. 

It is important to emphasize that no average is per- 
formed over the Lorentz force equations. This permits 
the simulation of the entire wealth of three-dimensional 
phenomena in the FEL including, but not limited to, em- 
ittance growth in the injection of the beam into the 
wiggler and during the course of the interaction, the 
effect of transverse inhomogeneities in the fields which 
manifests as an effective energy spread leading to reso- 
nance broadening and betatron oscillations, optical guid- 
ing of the radiation field by the beam, and the self- 
consistent modeling of wiggler imperfections. 

Two wiggler models are used, both of which have pla- 
nar symmetry. The reason for this is that most of the 
short-wavelength FELs, as well as the undulators used in 
synchrotron light sources, are planar designs. In view of 
this wiggler symmetry, the preferred choice for the opti- 
cal modes are the Gauss-Hermite modes. It should be 
observed in this regard that the drift tube in which the 
electron beam propagates also constitutes a waveguide, 
and that Gaussian modes do not rigorously satisfy the 
boundary condition on the drift tube wall. As a result, it 
is implicitly assumed that the spot size of the Gaussian 
radiation beam is much less than the radius of the drift 
tube.  Furthermore, since the radiation is guided by the 

beam, it is also assumed that the beam radius is much 
smaller than the drift tube radius. 

The organization of the paper is as follows. The gen- 
eral mathematical formulation is described in Sec. II. 
This includes the wiggler geometry, the Gauss-Hermite 
modes, the dynamical equations for the amplitudes and 
phases of the Gaussian modes, and the electron dynam- 
ics. Two numerical examples are discussed in Sec. III. 
The first is an infrared FEL operating at a wavelength of 
about 3.5 /xm. The second is relevant to an x-ray FEL 
design which is under consideration at the Stanford 
Linear Accelerator Center (SLAC) [22] which is referred 
to as the Linear Coherent Light Source (LCLS) utilizing 
the SLAC linac. This is a 15-GeV design which is intend- 
ed to operate at wavelengths ranging from 1 to 4 A. In 
both cases, issues relating to the extraction efficiency, the 
sensitivity to beam emittance, the mode spectrum, and 
the effect of wiggler imperfection are examined. A sum- 
mary and discussion is given in Sec. IV. 

II. MATHEMATICAL FORMULATION 

The physical configuration of interest is one in which 
an energetic electron beam propagates through a circular 
drift tube in the presence of a planar wiggler magnetic 
field. Since we are interested in radiation in the infrared 
spectrum and still shorter wavelengths, the electromag- 
netic field is expressed in terms of Gaussian optical 
modes. Furthermore, because the wiggler has a planar 
symmetry, it is most convenient to employ a superposi- 
tion of Gauss-Hermite modes. The electron dynamics are 
treated using the full three-dimensional Lorentz force 
equations with these magnetostatic and electromagnetic 
fields. In addition, collective effects arising from the bulk 
self-electric and self-magnetic fields due to the charge and 
current distribution of the beam are included as well un- 
der the assumption of a circular pencil beam geometry. 
However, since the wavelength of interest is less than or 
of the order of several micrometers, the collective Raman 
effects due to the beam space-charge waves are neglected. 

A. Wiggler geometry 

Two different models of the wiggler field are used. One 
model is based upon a planar wiggler generated by a mag- 
net stack with parabolically shaped pole faces [1], and 
has the form 

BJx)=BJz) \coskwz er sinh 
kwx 

Vi 

— v/2er sinkwz cosh 

sinh 

K...X 

Vi 

Vl 

sinh 

+cy cosh 

Ky 
Vi 

kwx 

Vi cosh 
Ky 
vi 

(i) 

where Bw denotes the wiggler amplitude and kw =2ir/kw 

denotes the wiggler wave number corresponding to the 
wiggler period kw. This type of wiggler provides 
enhanced focusing of the electron beam in the plane 

transverse to the direction of bulk electron flow. The 
other wiggler model is one in which focusing in the direc- 
tion of the wiggler-induced transverse oscillation is de- 
scribed by a polynomial increase in wiggler amplitude. 
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This is the x direction for the present choice of wiggler 
geometry, and the components of the field are represent- 
ed as 

BwAx)= 
. coskwz d 

smkwz ■ — 
k,„     dz 

BJz) 

sinhfc^ • 
Y(kwy)   d2 

Ikl     dx2 k,„ dx 

(2) 

BWt,U)= s\nk,„z ■ 
coskwz d 

BJz) 

X coshkwy 

kw     dz 

*    kwysinhkwy  d2 

BWtZU)=BJz)coskwz sinh/^ v - 

2k*        dx2 

Yikwy) 

X(x) ,     (3) 

X 1 + 1    d2 

kl dx2 dx' 
X(x) , 

where Y{kwy)=kwy coshA^v —sinhfc^v, and 
f 12m 

XU) = l + -^ 
ar 

(4) 

(5) 

describes the enhanced focusing in terms of two free pa- 
rameters: the order of the polynomial m and the scale 
length ax. Observe that in the limit in which the wiggler 
amplitude is constant and X{x)—»-1 (i.e., when ax—► <» ), 
then this wiggler reduces to the well-known three- 
dimensional form of a flat pole face wiggler 
BU)(x)—>Bw[ey sinfc^z coshfc^ +ez coskwz sinhkwy ]. 

The wiggler amplitudes in each case are permitted to 
vary with axial position in order to model such effects as 
(1) the adiabatic injection of the beam into the wiggler, (2) 
efficiency enhancement using a tapered wiggler ampli- 
tude, and (3) the inclusion of imperfections in the wiggler. 
As such, we can write the amplitude as a superposition of 
systematic and random components 

BJz)=B^(z)+ABJz) , (6) 

where the systematic B^ describes the adiabatic entry 
taper as well as the uniform amplitude and systematic 
taper for efficiency enhancement, and the random com- 
ponent A.BW can either be chosen using a random number 
generator or the measured imperfections from an actual 
wiggler magnet. 

We choose a systematic amplitude variation of the 
form 

(7) 

Bw sin2 
kwz 

,   0<z<Nwkw 4NW 

B{
w
s)(z) = Bw,   Nwkw<z<z0 

Bjl+l cwzwiz -z0)],   ZQ<Z > 

where Bw denotes the uniform wiggler amplitude, Nw is 
the length of the adiabatic entry taper in wiggler periods, 
z0 is the start of the downstream amplitude taper for 
efficiency enhancement, and ew represents the slope of 
the taper. 

The random component of the amplitude is determined 
by specifying the magnitude of the amplitude variations 
at periodic intervals of a wiggler period Az =kw /N , and 
then mapping the amplitude between these points in a 
continuous fashion. Thus we choose a sequence of 
wiggler imperfections, ABn=ABw{nAz) either from a 
random number generator or from the measured varia- 
tions in a specific wiggler magnet. The only restriction 
placed on this sequence is that A.Bw=0 over the entry 
taper region in order to ensure a positive definite ampli- 
tude. The variation in AJ510(z) between these points [i.e., 
«Az <z<(n + l)Az] is given by 

ABW (n Az+Sz)=LBn + [ LBn +, - LBn ]sin2 IT   Sz 
2 Az 

(8) 

where 0 < 8z < Az. This method for the treatment of 
wiggler imperfections has been previously applied to 
long-wavelength FELs in which the electromagnetic 
fields are confined in a waveguide [23,24]. 

Free-electron lasers have been constructed using both 
wiggler types. The first design using parabolic pole faces 
was constructed by Phillips [1], and the second wiggler 
type has been used in a harmonic FEL experiment at the 
Naval Research Laboratory [25]. Both field types pro- 
vide enhanced focusing which is necessary for the propa- 
gation of intense beams. It is important to note, however, 
that while the parabolic pole face model in Eq. (1) is curl- 
and divergence-free in the case of a uniform amplitude, 
the curl and divergence do not vanish identically when 
the amplitude is allowed to vary in z. This simply means 
that the fringing fields associated with variations in the 
amplitude are not included in the model. Since it is im- 
portant to ensure that the wiggler model be self- 
consistent in order for the theory to be valid, and since 
the curl and divergence are proportional to the slope of 
the amplitude, we must restrict the use of this model to 
cases where the amplitude changes slowly with axial posi- 
tion. In contrast, both the divergence and the z com- 
ponent of the curl of the second wiggler model can be 
shown to be divergence-free for any smooth variation in 
the amplitude. In addition, while the transverse com- 
ponents of the curl do not vanish identically, they are 
small for most cases of interest. 

B. Electromagnetic fields 

The electromagnetic fields are represented in terms of 
the Gauss-Hermite optical modes. This constitutes a 
complete basis set which is consistent with the planar 
symmetry imposed by the wiggler geometry. It should be 
noted, however, that Gaussian optical modes must be 
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used with some caution because the drift tube in which 
the electron beam ' propagates also constitutes a 
waveguide, and the Gaussian modes do not rigorously 
satisfy the boundary conditions on the drift tube wall. As 
a result, the analysis must be restricted to cases where the 
radiation spot size is much smaller than the radius of the      be expressed as [26] 

drift tube. Since the radiation will be guided by the in- 
teraction  with  the  electron  beam,  this  condition  is 
equivalent to the requirement that the electron beam ra- 
dius be much less than the drift tube radius. 

The vector potential of the Gauss-Hermite modes can 
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where H„ denotes the Hermite polynomials, wQ denotes 
the spot size at the radiation waist, and for frequency and 
wave number {co,kt n) the phase is given by 

n„= rdz'kltn(z
i)+ 

1R 

-(/+n+ l)tan-1 -at (10) 

In addition, k0=co/c is the free-space wavelength, 
w2=wl(l+z2/zl), R{z)=z(\+z\/z2), and 
zQ=k0w\/l is the Rayleigh length. Observe that the 
amplitude and wave number of each mode is allowed to 
vary slowly in z to describe the growth of the wave as 
well as the dielectric effect of the beam on the dispersion. 
The Poynting flux for each mode can be written as 

-»'♦"/In!   ,       2_.2 
P/» = - /.« 16 

(11) 

It should be remarked that this representation is 
correct to first order in (klnw)~x^X/w, where A. denotes 
the wavelength; hence, this representation is valid only as 
long as the spot size is much greater than the wavelength. 
Observe as well that these modes approximate TEM 
modes only as long as k « w. For all cases of interest in 
this paper, this inequality is satisfied, and it will prove 
convenient to use the TEM approximation for the field. 

C. Dynamical equations 

The dynamical equations which govern the evolution 
of the amplitude and wave number of each mode are 
found by substitution of the mode representation (9) into 
Maxwell's equations after averaging the equations over a 
wave period and orthogonalization in the transverse 
mode structure. The procedure is formally equivalent to 
that described for long-wavelength FELs [18-20], and re- 
sults in equations of the form 

and 

dz2 ■ + 2       Kl." 

4fi)i 1 W0 I   Vx 
oa,.=—:;—rr (-.—rexp( —r'/w 

'•"      c2   2,+ttl\n\   w \\v.\    F 
2)H, 

Vlx 
w Hn 

Vly 
w 

*&&&** >- -p'F^r-f irr" -/W)H' 
Vlx 

w Hn 
Vly 

w 

smq>i '.") > 

cosq>i 
■)•' 

(12) 

(13) 

where Saln=e8Ai„/mec
2, cob is the beam plasma fre- 

quency, v is the instantaneous electron velocity, e and me 

are the electronic charge and rest mass, and c is the speed 
of light in vacuo. 

The averaging operator in Eqs. (12) and (13) is defined 
over an ensemble of electrons injected into the wiggler 
within one wave period. The initial momentum space 
distribution is chosen to be monoenergetic but with a 
pitch-angle spread.  This can be thought of as having a 

zero energy spread but a nonzero emittance. The specific 
form of the distribution is 

F0(R0)=^ exp[-(/7z0-^0)
2/A/),2] 

XZ[Po-plo-P?o]H(pl0) , (14) 

where the subscript 0 denotes initial quantities (i.e., upon 
entry to the wiggler at z=0), p0 and Apz denote the ini- 
tial bulk momentum and momentum spread, respectively, 
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H is the Heaviside function, and the normalization con- 
stant is 

•Po A = rL dp*°exp[ ~(P*~Po )2/A^Z
2
] 

-1 

Ayz 

To 
l+2(r

2-l) 
Po 

1-1/2 

(16) 

(15) 

Note that while this distribution is monoenergetic, there      where y0=(l+pl/m^c2)1/2.   The averaging  operator 
is an axial energy spread which is given by takes the form 

<( " ' ^ = ^„,2/n '
d*oL °<iPzoßzO<xp[-(Pzo-Po)1/&P?]ffdx0dy0(ri(x0,y0)f" di/>0a{\(if>0)(. •■■) , (17) 

where /4A denotes the initial cross sectional area of the 
beam, <l>Q=tan~l(py0/px0), ßz0=vz0/c, ^0 ( = ~atQ, 
where 10 is the injection time) is the initial ponderomotive 
phase, and a^0) and (7L{x0,y0) describe the initial beam 
distributions in phase and cross section. 

D. Electron dynamics 

These equations for the amplitude and phase of each of 
the Gauss-Hermite modes [(12) and (13)] are integrated 
simultaneously with the three-dimensional Lorentz force 
equations for an ensemble of electrons. As such, the pro- 
cedure is capable of treating the self-consistent injection 
of the beam into the wiggler, emittance growth due to the 
inhomogeneities in the wiggler and radiation fields, beta- 
tron oscillations, and optical guiding of the radiation to 
list a few of the three-dimensional effects inherent in the 
interaction. Since this is an amplifier model, the Lorentz 
force equations are integrated in z and are of the form 

fz-^-p=-e(E(j)+SE)--vX(Bu, + BU)+8B), (18) 

where B,,, is the wiggler field, 8E and SB are the elec- 
tromagnetic fields associated with the total vector poten- 
tial (9), 

SE= 1iSA 
c at (19) 

and 

SB=VX8A. (20) 

In addition, E(l) and BU) represent the self-electric and 
self-magnetic fields associated with the bulk charge and 
current distribution of the beam. 

The technique used in the treatment of the self-electric 
and -magnetic fields has been described previously [21] 
and has been shown to give good agreement with a collec- 
tive FEL experiment [27]. Under the assumption of a 
flat-top density profile the self-fields can be expressed as 

EM=—^<°l[(x-(x)Kx+(y-(y)#y] (21) 

and 

m. 
BM=—£*>KßzH(y (y)lcx-U-<x)fty],      (22) 

where (x > and {y } specify the beam centroid, the (ßz) 
is the average axial beam velocity. In order to make use 
of this approach, these average beam quantities must be 
determined at each point in the integration prior to the 
calculation of the self-fields. In addition, the beam ini- 
tialization must include the space-charge depression in 
electron energy across the beam profile. This energy vari- 
ation takes the form 

4c2' 
7(r)=Yo+^(r1-Rl) (23) 

for an initial beam radius Rb, and results in an energy 
spread which may be expressed as 

Ay; self 

Yo 
«5.88X10 -5. k 

Vrl-i 
(24) 

where the beam current Ib is in A. It should be noted 
that this represents a coherent energy spread across the 
beam and is not the same as a thermal energy spread. 

It should be remarked here that, in contrast to 
Maxwell's equations, there is no necessity to average the 
orbit equations. Recall that the amplifier model used is 
based upon the propagation of a single frequency wave, 
and that the interaction is resonant at the frequency 
where the bulk velocity of the electron beam is in synch- 
ronism with the phase velocity of the ponderomotive 
wave, i.e., u6«aAk +kw). Since the electromagnetic 
field in the Lorentz force equations is evaluated along the 
electron trajectory, the bulk phase (apart from the com- 
ponents which describe diffraction) varies as cp=kz—at. 
Substitution of z=z0+at Ak+kw) in this expression for 
the phase yields q>^kz0—ckwt under the assumption that 
k&co/c »kw. As a result, the contributions due to the 
electromagnetic fields in the Lorentz force equations vary 
on the scale length of the wiggler period, and the integra- 
tion step need only be small enough to resolve this spatial 
scale. 

III. NUMERICAL ANALYSIS 

The set of coupled nonlinear differential equations for 
the amplitudes and phases of the Gauss-Hermite modes 
(12) and (13) are solved numerically in conjunction with 
the Lorentz force equations (18) for an ensemble of elec- 
trons. In general, Eqs. (13) and (14) are second order in 
the amplitude and phase, but it will prove numerically 
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convenient in many cases to neglect the second deriva- 
tives of the amplitude and phase, and to integrate the re- 
sulting first-order equations. The error associated with 
this approximation is, typically, small while the numeri- 
cal stability is much improved. The algorithm employed 
for this purpose is a fourth-order Runge-Kutta-Gill tech- 
nique, and the particle averages are carried out using a 
Gaussian quadrature technique in each of the degrees of 
freedom (x0,y0,ip0,<f>Qrpz0). For cases discussed in this pa- 
per, a choice of 1000 particles was found to be adequate 
when Ayz=0, which is increased to 9600 particles other- 
wise. The number of Gauss-Hermite modes necessary to 
describe the evolution of the electromagnetic field de- 
pends upon the detailed parameters of each particular ex- 
ample. Diffraction over the Rayleigh length is countered 
by optical guiding due to the beam, and the detailed bal- 
ance depends upon the Rayleigh length, the growth rate, 
and the evolution of the beam envelope in the wiggler. 
As a result, the specific number of modes used in each 
case is determined by an empirical procedure in which 
successive simulation runs are made with increasing num- 
ber of modes until convergence of the saturation power 
and saturation length are achieved. 

The initial conditions are chosen to model the injection 
of a solid axisymmetric and monoenergetic electron beam 
with a uniform cross section. As mentioned previously, 
there is a coherent variation in the kinetic energy across 
the beam which is countered by a similar variation in the 
potential energy due to the self-electric field. The Gauss- 
Hermite modes are initially assumed to be at the free- 
space wavelength and it is assumed that the radiation 
waist is located at z=0 with a spot size equal to the beam 
radius, although this can be altered to model the injection 
of power in a given mode with a different spot size. The 
initial power levels in each mode can be arbitrarily select- 
ed to describe the injection of a specific pulse or of noise. 
For each case discussed in this paper, however, it is as- 
sumed that the total initial power is in the lowest-order 
mode, and all higher-order modes grow from zero power 
due to the interaction with the electron beam. 

It should be remarked that no attempt is made to 
"match" the beam upon entry to the wiggler in the sense 
that the beam emittance and radius are selected in order 
to ensure that the beam envelope remains constant. In 
the opinion of the author, this is a pointless and counter- 
productive procedure both from an experimental and 
theoretical standpoint. Radiation growth in a FEL is a 
microscopic process in which resonant electrons interact 
with the radiation field, and give rise to both 
amplification and refractive guiding of the wave. The in- 
teraction is extremely sensitive to the axial energy spread 
(or emittance) of the beam, and even a small axial energy 
spread can result in a substantial reduction in the peak 
extraction efficiency. In contrast, efforts to "match" the 
beam are motivated by the desire to achieve a uniform 
beam envelope in the hope that this will yield an im- 
proved overlap between the electron beam and the radia- 
tion field or, in other words, to maximize the filling-factor 
and the growth rate. However, the overlap between the 
beam and the radiation is a macroscopic process depend- 
ing upon the growth and refractive guiding determined 

by the microscopic interaction. Hence, it is more impor- 
tant to minimize the emittance in a FEL than it is to 
match the electron beam to achieve a uniform envelope. 
Variations in the beam centroid due to the wiggler 
motion and the beam envelope due to betatron oscilla- 
tions will merely result in guiding of the signal, while an 
enhanced emittance which may be necessary to match 
the beam will certainly result in a degradation in the ex- 
tracted power. The most important consideration in the 
design of a FEL, therefore, is to minimize the emittance. 

Two cases will be examined in this paper. The first is 
an infrared FEL operating at wavelengths in the neigh- 
borhood of 3.5 /xm, and the second is an x-ray FEL 
operating at wavelengths near 1.4 A. It will be assumed 
in both cases that the injected signal is at a power level of 
10 kW. While this may be unrealistic if actual devices in 
these spectral ranges are operated in SASE mode, the 
analysis will still serve to determine essential characteris- 
tics of the interaction such as the extraction efficiency, 
sensitivity to emittance, mode character, and the effects 
of wiggler imperfections. 

For convenience, the simulation will be referred to as 
MEDUSA. 

A. Infrared FEL 

In treating the infrared FEL, it is assumed that a 30- 
MeV/100-A electron beam with an initial radius of 
0.0525 cm propagates through the drift tube in the pres- 
ence of a planar wiggler with an amplitude of 5.2 kG, a 
period of 1.8 cm, and an entry taper region which is 10 
wiggler periods in length. The specific radius of the drift 
tube is not important as long as it is much greater than 
the beam radius. In this case, the second wiggler model 
[(2)-(5)] is used with a choice of m =2 and ax =0.2 cm, 
and it should be noted that the detailed results will vary 
somewhat with these parameters. The initial spot size is 
assumed to be equal to the beam radius (wQ=0.0525 cm) 
and that an initial power of 10 kW is injected into the 
TEMQO mode. Note that while the Gauss-Hermite modes 
are only approximately TEM modes in the limit in which 
X «w0 and Rb, it is convenient to refer to them with this 
notation. 

The first issue to be addressed is the growth of the sig- 
nal for an ideal beam in which Ay2=0 and the mode 
spectrum which results therefrom. The results from 
MEDUSA for the choice of A.=3.505 jum are shown in 
Fig. 1, illustrating the evolution of the power versus axial 
position for the total signal and for the TEMQQ mode. It 
is clear from the figure that the total signal grows in an 
approximately exponential fashion until saturation is 
reached at a power level of approximately 8.9 MW at 
z/kw~ 199. This represents an efficiency of approxi- 
mately 0.27% and an average growth rate for all modes 
of |lmfc|/A:U)»2.69X10_3. It is also clear from the 
figure that while the TEMQQ mode was the dominant 
mode upon injection of the signal, higher-order modes 
grow rapidly. At saturation, the TEMQQ mode power is 
1.69 MW, which accounts for only 19% of the total 
power. 
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FIG. 1. Evolution of the power versus axial distance for an 
ideal beam. 

The growth of higher-order modes depends upon 
specific details of the beam radius, wiggler amplitude 
(and, hence, the beam displacement for the midplane), 
and the radiation spot size and Rayleigh length. It is 
found that for the fundamental resonance represented by 
this case that the only TEM;„ modes which grow are 
those for which both / and n are even, and the ones which 
grow most rapidly are those where either / or n are zero. 
While the TEMQQ mode represents less than half the total 
power at saturation, it is still the dominant mode. The 
TEM02 and TEM20 modes are the next highest at power 
levels approximately 45% that of the TEMQQ mode. The 
power decreases rapidly for higher-order modes; howev- 
er, some 48 modes must be retained in order for the mode 
superposition to converge to within better than 1% accu- 
racy. This is illustrated in Fig. 2, in which the relative 
mode amplitudes (normalized to the power in the TEMQQ 

mode) are shown at saturation. As shown in the figure, 
the bulk of the power is contained within five modes (the 
TEMQQ, TEM02, TEM20) and TEM^, and TEM^), but 

substantial amounts of power are found in the tail of the 
superposition. 

The even modes are seen to interact preferentially at 
the fundamental resonance; however, this does not mean 
that odd modes do not interact. It is expected that the 
even modes will also be preferentially amplified by in- 
teractions at odd harmonics, the odd modes will yield 
amplification at even harmonics by a periodic position in- 
teraction. This has been demonstrated at microwave fre- 
quencies in both theory and experiment at the Naval 
Research Laboratory [28], and in theory at infrared 
wavelengths at Los Alamos National Laboratory [29]. 
Harmonic interactions, however, will be discussed in a 
future paper. 

The broad mode spectrum is not an artifact of the ini- 
tial "top-hat" radial density profile. A parabolic density 
profile has also been used and, for a fixed total current, 
yielded a result which differed from the top-hat distribu- 
tion by only a few percent. The principal reason for this 
is that the radial distribution describes only the initial 
state of the beam. The subsequent beam evolution is 
governed by the three-dimensional wiggler, radiation, 
and self-fields and the radial profile of the beam is quickly 
distorted from the initial state. 

The importance of self-fields on the interaction can be 
illustrated by examining the resonant spectrum. The 
efficiency is plotted as a function of wavelength in Fig. 3 
for an ideal beam subject to both the inclusion and 
neglect of the self-fields. The resonant interaction is seen 
to extend from a wavelength of approximately 3.47 jim 
through 3.52 /xm with the peak efficiency found at the 
longer wavelengths. The effect of the self-fields for this 
case is to uniformly reduce the efficiency. At 3.5 ^m, the 
efficiency drops from 0.30% without the self-fields to 
0.27% with the self-fields which represents a 10% drop in 
efficiency. A similar decrease due to the self-fields is also 
found in the average growth rate as shown in Fig. 4. 
Here, the average growth rate at 3.505 fim decreases 
from \lmk\/kw^2.S2X\0~3 without the self-fields to 
2.69X10-3 with the inclusion of the self-fields. Note 
that this 10% drop in the efficiency is associated with a 
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FIG. 3.   Plot of the efficiency versus wavelength both with 
and without the self-fields. 
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FIG. 4. Plot of the average growth rate versus wavelength 
with and without the self-fields. 

coherent energy drop across the beam of only 
^yxl(/y0^0.0\%. It should also be noted that one- 
dimensional phase trapping estimates of the efficiency 
[17] yield a value of 0.42% for the maximum efficiency, 
which is close to that shown in the figure. 

The effect of the axial energy spread on the interaction 
is severe. In view of the FEL resonance condition, the 
transition to the thermal regime occurs for Avz/v0 

«|lmfc|/[Re/:+&J«5.24X10-7 since \lmk\/kw 

»0.002 69 at a wavelength of 3.505 /zm. This corre- 
sponds to an axial energy spread (16) of Ayz/y0«0.19%. 
The variation in the efficiency and average growth rate 
with increases in the axial energy spread (Ayz/y0) is 
shown in Fig. 5 at a wavelength of 3.505 fim and subject 
to the inclusion of the self-fields over the range of axial 
energy spreads up to the thermal transition. It is clear 
from the figure that the interaction strength decreases 
rapidly with increases in the axial energy spread. The 
efficiency decreases by more than half as the energy 
spread increases to 0.2%, and the average growth rate 
also drops a significant amount from 2.69X10-3 to 
1.86X 10~3. It is clear, therefore, that an experiment in 
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this regime will require the axial energy spread to be held 
to less than 0.1% to realize optimal performance. 

The effect of wiggler imperfections has been studied by 
this non-orbit-averaged approach for long-wavelength in- 
teractions in which the transverse mode pattern of the ra- 
diation is governed by the waveguide [23,24].   In such 
cases, the effect of wiggler imperfections was found to be 
small. Typically, root mean square (rms) wiggler imper- 
fection levels of as much as a few percent were found to 
have negligible impact on the extraction efficiency and 
growth rate in a long-wavelength FEL. However, it has 
been suggested that this might not be the case for short- 
wavelength FELs.  The speculation is that in the short- 
wavelength regime wiggler imperfections might cause the 
electron beam to walk off from the radiation spot thus re- 
sulting in a degradation in the efficiency and growth rate. 

In order to address this speculation, we now consider 
the effect of the random contribution to the wiggler am- 
plitude defined in Eqs. (6) and (8) and generate a sequence 
of random periodic fluctuations in the wiggler amplitude 
[AB„} with a period of kw/2 (i.e., Np=2 in the notation 
described in Sec. II).  The effect of these wiggler imper- 
fection distributions is studied statistically for ensembles 
of random sequences at fixed rms values. Typically, it is 
found that, at a given rms level, the ensemble averages re- 
quire consideration of 35 different random sequences for 
the average efficiency to converge to within 1%. In order 
to isolate the effect of the wiggler imperfections, all such 
simulations are performed under the assumption of an 
ideal beam (i.e., Lyt =0). 

MEDUSA indicates that, as in the case of the long- 
wavelength FELs studied previously [23,24], the effects of 
wiggler imperfections are also small for this infrared 
wavelength example. The variation in the ensemble- 
averaged efficiency with increases in (ABW/Bw)ms is 
shown in Fig. 6 for parameters consistent with the case 
shown in Fig. 1. The error bars in the figure denote the 
standard deviations. It is clear from the figure that the 
average efficiency is remarkably insensitive to the wiggler 
imperfections even for rms fluctuation levels as high as 
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10%. Over this range of fluctuations, the efficiency drops 
by slightly less than half from 0.27% to 0.14%. More 
significantly, the ensemble-averaged efficiency actually in- 
creases slightly as {ABW/Bw)ms increases up to 2%, and 
drops only to 0.26% for (ABW/Bw)rms = 5%. The reason 
for the small increase in the efficiency at low values of 
(LBW /Bw )rms is that the only constraint placed upon the 
random sequence is that of the rms fluctuation level. The 
average value of the wiggler fluctuation (Bw ) is not con- 
strained. Hence, what has happened is that the average 
value of the wiggler amplitude has increased slightly over 
the 5.2 kG of the uniform Bw, and this has resulted in a 
slight increase in the efficiency. However, this does not 
alter the conclusion that the interaction is relatively in- 
sensitive to imperfections in the wiggler field. 

In order to explain why the effect is so small, we turn 
to a detailed consideration of the orbit dynamics due to 
the wiggler imperfections. Figure 7 shows the motion of 
the beam center {x) versus axial position for an ideal 
wiggler [i.e., (ABw/Bw)ms=0] during the interaction 
shown in Fig. 1. The figure shows the spinning up of the 
beam in the entry taper region and the bulk wiggler- 
induced oscillation. The figure also shows that the beam 
motion is not regular but is substantially perturbed. In 
order to explain this, note that the beam centroid de- 
scribes an average over the entire beam cross section. 
Electrons injected near the axis of symmetry execute an 
extremely regular trajectory showing largely the effects of 
the bulk wiggler oscillation. However, the off-axis elec- 
trons undergo substantial betatron motion under the ac- 
tion of both the wiggler and the radiation field. Note also 
that the initial beam radius Rbs;0.03\w is substantially 
larger than the magnitude of the perturbations of the 
beam centroid; hence, these perturbations are relatively 
small in comparison with the scalloping of the beam en- 
velope. 

The motion of the beam center shown for the ideal 
wiggler is now compared with that found for the case of 
(ABW/BW )ms = 5%. The specific random sequence exam- 
ined is one which gave an efficiency close to the ensemble 
average, and is shown in Fig. 8. A comparison of the 
amplification of the radiation for the ideal wiggler and for 
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FIG. 7. Motion of the beam center versus axial position in in 
ideal wiggler. 
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this choice of wiggler imperfections is shown in Fig. 9. It 
is evident that the total extracted power drops from 8.9 
MW for the ideal wiggler to approximately 8.7 MW for 
this choice of wiggler imperfections. The motion of the 
beam center in the wiggler-plane corresponding to the in- 
teraction in this particular choice of wiggler imperfec- 
tions is shown in Fig. 10. It is clear from the figure that 
while the specific motion of the beam center has changed 
from that shown in Fig. 7 for an ideal wiggler, the quali- 
tative character of the motion has not. The electron 
beam is kicked off-axis many times during the course of 
the interaction as in the case of the ideal wiggler. In this 
case, these perturbations are due both to the large ampli- 
tude radiation field and the wiggler imperfections. 
Indeed, the combined effects of the large amplitude radia- 
tion field and the wiggler imperfections in this case has 
led to a much smaller maximum displacement from the 
symmetry plane than was found in Fig. 7 for the ideal 
wiggler. However, there is still no coherent walk off of 
the beam, and while the beam may be displaced in one 
direction from the symmetry plane at one point in the in- 
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FIG. 10.   Motion of the beam center versus axial position 
subject to wiggler imperfections. 

teraction, it is displaced in the opposite direction at 
another point. The net result is that the beam center has 
returned to a point near the symmetry plane at the end of 
the interaction region. 

The conclusions to be drawn from these results are 
twofold. In the first place, it does not appear that there is 
any serious walk off of the beam. The beam displacement 
from the symmetry plane can be relatively large even in 
the absence of wiggler imperfections when the radiation 
amplitude becomes large, but the effect of wiggler imper- 
fections does not magnify this effect and can even counter 
it. Thus, MEDUSA does not predict any cumulative 
walkoff of the beam due to the wiggler imperfections. In 
the second place, the speculation that wiggler imperfec- 
tions might result in a severe degradation in the gain and 
efficiency are exaggerated. The radiation is guided by the 
interaction. Displacements of the beam from the symme- 
try plane can result in the presence of a large component 
of higher-order modes which might negatively impact the 
ultimate use of the FEL; however, as attested by the fact 
that the maximum efficiency found from one-dimensional 
phase trapping arguments is close to that found by 
MEDUSA, the ultimate extracted power is not seriously 
affected. In general, therefore, the effect of wiggler im- 
perfections is not severe, and is much less important a 
constraint on FEL design than the emittance of the elec- 
tron beam. 

B. X-ray FEL 

The x-ray FEL parameters under study here corre- 
spond to the proposed LCLS at SLAC. Due to the lack 
of sources to drive a MOPA in this spectral band, the de- 
vice would operate in the SASE mode using the SLAC 
linac at an energy of 15 GeV. The beam pulses would be 
compressed in the axial direction to achieve a peak 
current of 5 kA, and would have a radial extent of only 
16 fim. The proposed wiggler would achieve a 16-kG 
amplitude at a period of 2.7 cm, and it is assumed for this 
study that the entry taper region is 10 wiggler periods in 
length. This implies a resonant wavelength in the neigh- 
borhood of 1.4 A.  As in the infrared example discussed 

previously, it shall also be assumed that the initial power 
is 10 kW in the TEMQQ mode, and that the initial spot 
size matches the beam radius at 16 /im. The parabolic 
pole face wiggler (1) is used to study the interaction for 
an ideal wiggler, and the second wiggler (2) is to examine 
the effect of wiggler imperfections. 

The issue of quantum mechanical effects should be dis- 
cussed for this configuration if only for the purpose of 
dismissing them. Quantum mechanical effects can be 
neglected if the spreading of the electron wave packet 
over the length of the wiggler is less than the radiation 
wavelength. This can be formulated as [17,30] 

X.L 
Az = —— «A., 

YoYw 
(25) 

where Az denotes the spreading of the electron wave 
packet, A.c =h/mec is the Compton wavelength, and L is 
the length of the wiggler. For the parameters of interest 
to the LCLS, the spreading of the wave packet over a 
wiggler length of 30 m is Az«9.2X 10~4 A, which is ap- 
proximately three orders of magnitude less than the 1.4- 
A wavelength. At this length of wiggler, therefore, quan- 
tum mechanical effects can be neglected from the treat- 
ment. However, this is the closest that any operational 
or proposed FEL has approached to the regime where 
quantum mechanical effects are important, and if a 
wiggler of 100 m or more in length were required, then 
quantum mechanical effects might become important. 
Finally, another requirement for the neglect of quantum 
mechanical effects is that the electron recoil on emission 
of a photon is small. This can be formulated by the re- 
quirement that the frequency downshift in the emitted 
photon due to the electron recoil is less than the gain 
linewidth, and results in a criterion identical to (25). 

First consider the interaction for the TEMQQ mode 
alone. The spectrum is shown in Fig. 11 in which we plot 
the extraction efficiency versus wavelength for an ideal 
beam and both with and without the self-fields. As 
shown in the figure, the efficiency subject to the inclusion 
of the self-fields peaks at 0.97% at a wavelength of ap- 
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proximately 1.4323 A. The effect of the self-fields is 
small, but results in a decrease in the peak efficiency of 
approximately 7.5%. In contrast to the results for the in- 
frared example, the effect of self-fields can result Jin slight 
enhancements in the efficiency in narrow parts of the 
spectrum. 

In this example, it is found that adequate convergence 
of the mode superposition is achieved using 38 modes. A 
plot of the power as a function of axial position is shown 
in Fig. 12 for an ideal beam at a wavelength of 1.4323 A. 
The interaction saturates at a power of approximately 98 
GW for an efficiency of 0.13% over an interaction length 
of 30 m. This contrasts with a saturated power level of 
about 73 GW over a saturation length of 52 m, which is 
found using the TEMQQ mode alone. As a consequence, 
as in the infrared example, while the TEMQQ mode is 
dominant, it constitutes only about 27% of the total 
power at saturation. The relative mode amplitudes at 
saturation are shown in Fig. 13 and are normalized to the 
power in the TEMQQ mode. It is clear that, as in the in- 
frared example, the dominant modes are the TEMQQ, 

TEM02, TEM20, TEMQ4, and TEM^, but substantial 
amounts of power are contained in the higher-order 
modes. 

As might be expected, the interaction for the x-ray 
FEL is more sensitive to the axial energy spread than the 
infrared case. The average growth rate associated with 
the interaction in Fig. 12 is |lmfc|A„«1.15X10"3, 
which implies that the transition to the thermal regime is 
found for Ay2/y0«0.05%. A plot of the variation in the 
extraction efficiency and the saturation length at a wave- 
length of 1.4323 A spanning the thermal transition re- 
gime is shown in Fig. 14. As shown in the figure, the ex- 
traction efficiency drops by more than half as the axial 
energy spread increases to 0.1%, and by 39% at the 
thermal transition. The growth rate also decreases, and 
the saturation length increases from about 30 m for an 
ideal beam to 39 m at the high end of this range. As 
such, it is necessary to keep the beam emittance as small 
as possible to remain far below the thermal transition for 
optimal performance, and the achievement of near-peak 
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ized to the power in the TEMQO mode. 

efficiencies requires that Lyz/yQ<0.015%. 
The effect of wiggler imperfections on the LCLS design 

is studied using the second wiggler model (2). The identi- 
cal beam (Vb = 15 GeV, Ib =5 kA, Rb = 16 /im), wiggler 
(BW = 16 kG, Xu,=2.7 cm, ^ = 10), and radiation 
(P,„ = 10 kW, X= 1.4323 A, iu0 = 16 fim, 38 modes) pa- 
rameters are used for this purpose as were used previous- 
ly with the parabolic pole face wiggler model, except that 
we also assume that m =2 and ax =0.1 cm for the second 
wiggler model. The evolution of the power with axial po- 
sition for an ideal wiggler is shown in Fig. 15 for pur- 
poses of comparison. As is evident in the figure, the 
power saturates at approximately 97 GW over a length of 
30 m for an overall extraction efficiency of about 0.13%. 
This is very close to the results found for the parabolic 
pole face wiggler (97 MW over a saturation length of 30 
m). 

The motion of the beam center in the x direction (the 
direction of the principal wiggler-induced transverse ve- 
locity) is shown in Fig. 16 for the ideal wiggler case corre- 
sponding to that shown in Fig. 15. In contrast to the re- 
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suits found for the 30-MeV beam and 3.5-^m radiation 
(see Fig. 7), the wiggler motion for the LCLS parameters 
in the absence of wiggler imperfections is extremely uni- 
form. There is very little wandering of the beam center 
due to the high-amplitude radiation field, and the beam 
exhibits the bulk wiggler motion as well as the expected 
betatron oscillations. This is due to the increased 
"stiffness" of the 15-GeV beam, and accounts for the 
fewer number of modes needed relative to the infrared ex- 
ample. 

The effect of wiggler imperfections for LCLS parame- 
ters is greater than for the infrared example, but still not 
severe. In studying the effect of wiggler imperfections, it 
is assumed, as in the preceding example, that the random 
wiggler amplitude variations occur every half wiggler 
period (i.e., Np=2). The variation in the efficiency with 
increasing values of (ABW /BJ^ is shown in Fig. 17. 
As in the preceding example, the dots in the figure 
represent the ensemble average over 35 randomly chosen 
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FIG. 16. Motion of the beam center versus axial position ir 
an ideal wiggler for the LCLS parameters. 

amplitude fluctuation distributions, and the "error bars" 
denote the standard deviations. It is clear from the figure 
that the efficiency remains relatively unaffected by the 
wiggler imperfections for (ABW/Bw)ms<\%, and de- 
creases rapidly thereafter. The efficiency for the ideal 
wiggler in this case is 0.13%, which decreases to 0.12% 
for (ABW/BW)ms = \%. This represents a negligible de- 
gradation in the interaction efficiency, and it is reasonable 
to conclude that the LCLS will operate up to nearly op- 
timum efficiencies as long as the rms wiggler imperfec- 
tions are kept to within this limit. 

However, the LCLS parameters do exhibit a greater 
sensitivity to wiggler imperfections than was found for 
the preceding infrared wavelength FEL example. This is 
expected due to the narrower radius of the 15-GeV beam. 
In general, the smaller the beam radius, the more difficult 
it is for the interaction to guide the radiation. However, 
this is offset in the present case by the greater stiffness of 
the 15-GeV beam, which requires a relatively large level 
of wiggler imperfections to cause any appreciable beam 
deflection. 

In order to illustrate the effect of the wiggler imperfec- 
tions, we turn to a more detailed consideration of the or- 
bit dynamics for a specific choice of wiggler imperfec- 
tions.  For this purpose, we compare the motion of the 
beam center for an ideal wiggler shown in Fig. 16 with 
the corresponding motion for (ABw/BJms = l% and 
the  specific  random  sequence  which  resulted   in   an 
efficiency of 0.12% (i.e., which was chosen to the ensem- 
ble average). The variation in the wiggler parameter aw 

for this case is shown in Fig. 18, and the motion of the 
beam center for this choice is shown in Fig.   19.  It is 
clear from Fig. 19 that the variation in the beam center is 
relatively slow for this case, and that there is no coherent 
walkoffofthebeam. 

In this example, the beam is able to guide the radia- 
tion, and although the maximum displacement of the 
beam center relative to that found for an ideal wiggler is 
approximately 50% that of the maximum bulk wiggler- 
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sequence. 

induced oscillation (at zAw«150), there is little degra- 
dation in the interaction efficiency. In order to illustrate 
the effect of the optical guiding, consider the relative 
mode amplitudes at saturation. The relative mode spec- 
trum for this case as shown in Fig. 20. A comparison of 
the mode amplitudes shown in Fig. 20 with those shown 
in Fig. 13 for the ideal wiggler indicates a somewhat 
larger amount of power in the higher-order modes. This 
reflects the fact that the beam sweeps out a greater cross 
sectional area for this case than for the ideal wiggler, 
which implies that the radiation has been guided during 
the course of the interaction. 

The overall conclusion from this study of the effects of 
beam energy spread and wiggler imperfections for the 
LCLS parameters is that optimal performance requires 
that the axial energy spread be kept small enough that 
Ayz/y0 50.01% and that the rms wiggler tolerances be 
kept to (&BW/Bw)rms < 1%. In general, the conclusion 
formed on the basis of both the infrared and x-ray exam- 
ples studied here is that the electron beam quality im- 
poses a more severe constraint on the interaction than 
does the wiggler quality. 
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FIG. 19.   Motion of the beam center versus axial position 
subject to wiggler imperfections. 
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IV. SUMMARY AND DISCUSSION 

In this paper, a three-dimensional nonlinear formula- 
tion of the interaction in short-wavelength FELs is 
presented and used to evaluate the performance of several 
tentative experimental designs. For this purpose, the 
analysis is based upon a representation of the electromag- 
netic field as a superposition of the Gauss-Hermite opti- 
cal modes which is appropriate for the planar wiggler 
configuration which is also assumed. Note that the 
Gauss-Laguerre modes would form the appropriate basis 
for a helical wiggler configuration. A set of coupled non- 
linear differential equations is derived for the evolution of 
the amplitude and phase of each mode which is then in- 
tegrated in conjunction with the three-dimensional 
Lorentz force equations for an ensemble of electrons. 

It is important to emphasize that no wiggler average is 
performed on the Lorentz force equations, and that the 
orbits are integrated in the complete field structure in- 
cluding the magnetostatic wiggler, the electromagnetic 
fields, and the self-electric and self-magnetic fields formed 
by the bulk charge and current densities of the beam. As 
a result, it is necessary only to specify the characteristics 
of the beam upon entry to the wiggler and the emittance 
growth and evolution of the electron beam due to such 
effects as (1) the injection of the beam into the wiggler, (2) 
transverse inhomogeneities of the wiggler field (including 
betatron oscillations), (3) the interaction with the elec- 
tromagnetic field, (4) the self-electric and self-magnetic 
fields of the beam, and (5) wiggler imperfections are im- 
plicitly included in the treatment. 

It should be remarked in regard to the modeling of 
wiggler imperfections that all that is necessary is to speci- 
fy the variation in the wiggler field amplitude as a func- 
tion of axial position, and the simulation will self- 
consistently describe the response of the electron beam. 
Because of this, it is possible to model the imperfections 
of any specific wiggler magnet, although this was not at- 
tempted in the present work. 
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No attempt has been made to match the beam into the 
wiggler in the sense that the beam emittance and radius 
are selected to ensure that the beam envelope remains 
constant. In the opinion of the author, this is a pointless 
and counterproductive procedure both from an experi- 
mental and theoretical standpoint. Radiation growth is a 
microscopic process in which resonant electrons interact 
with the radiation field, and give rise to both 
amplification and refractive guiding of the wave. The in- 
teraction is extremely sensitive to the emittance of the 
beam, and even a small axial energy spread can result in a 
substantial reduction in the peak extraction efficiency. 
Efforts to match the beam are motivated by the desire to 
achieve a uniform beam envelope in the hope that this 
will yield an improved overlap between the electron beam 
and the radiation field or, in other words, to maximize 
the filling factor and the growth rate. However, the over- 
lap between the beam and the radiation is a macroscopic 
process depending upon the growth and refractive guid- 
ing determined by the microscopic interaction. Hence, it 
is more important to minimize the emittance in a FEL 
than it is to match the electron beam to achieve a uni- 
form envelope. Variations in the beam centroid due to 
the wiggler motion and the beam envelope due to beta- 
tron oscillations will merely result in guiding of the sig- 
nal, while an enhanced emittance which may be necessary 
to match the beam will certainly result in a degradation 
in the extracted power. The most important considera- 

tion in the design of a FEL, therefore, is to minimize the 
emittance. 

In general, the conclusion formed on the basis of both 
the infrared and x-ray examples studied here is that the 
electron beam quality must be kept small enough that the 
interaction is far from the transition to the regime where 
thermal effects become important. However, the interac- 
tion was found to be relatively insensitive to wiggler im- 
perfections. In this regard, it should be emphasized that 
no coherent walkoff of the beam has been detected in 
simulation, and that the optical guiding of the radiation 
field is able to counter much of the jitter of the beam. 
Hence, it is found that electron beam quality imposes a 
much more severe constraint on the interaction than does 
the wiggler quality. 
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Abstract 
Short wavelength free-electron lasers are studied using a 3D nonlinear simulation using a superposition ot Gauss-Hermite 

modes. The differential equations governing each mode are solved along with the 3D Lorentz force equations (no wiggler 
average is used) for an ensemble of electrons. This permits the self-consistent modeling of (1) beam injection, (2) emittance 

growth, (3) wiggler imperfections and (4) beatatron oscillations. Simulations are performed for a 1.4 A FEL. Results indicate 
that beam emittance is the crucial limiting factor requiring Ay2/%s:0.01%. The radiation is sufficiently guided that no 

severe degradation is found in the efficiency for moderate levels of wiggler fluctuations. 

1. Introduction 

The free-electron laser (FEL) has operated from the 
microwave through the ultraviolet spectra, and relies upon 

stimulated scattering due to the ponderomotive potential 
created of the beating of the wiggler and the radiation 
fields [1]. FELs have been configured as master oscillator 

power amplifiers, oscillators, and super-radiant amplifiers. 
The term super-radiant amplifier was originally used for a 

device in which the radiation grows from noise in a single 
pass through the wiggler; however, the term Self-Am- 
plified Spontaneous Emission (SASE) has come into wide 

use. 
In this paper, a 3D slow-time-scale nonlinear formula- 

tion of the interaction based on the Gauss-Hermite modes 
for short wavelength (near infrared wavelengths and 
below) FELs is described and applied to study an X-ray 
FEL. The differential equations governing each mode are 
integrated simultaneously with the 3D Lorentz force 
equations for an ensemble of electrons subject to the 

wiggler, electromagnetic, and static self-fields of the beam 
[2,3]. Collective Raman effects due to the beam space- 
charge waves are neglected. 

It is important to emphasize that there is no average of 
the Lorentz force equations. This permits the simulation of 
the entire wealth of 3D phenomena including emittance 
growth in the injection of the beam into the wiggler and 
during the course of the interaction, the effect of transverse 
inhomogeneities in the fields which manifests as an 
.rffective energy spread leading to resonance broadening 

' Permanent address: Science Applications International Corp., 
McLean, VA 22102. 

and betatron oscillations, optical guiding of the radiation 
field by the beam, and the self-consistent modeling of 

wiggler imperfections. 

2. The mathematical formulation 

The configuration of interest is that of a planar wiggler, 

and the electromagnetic field is expressed in terms of the 
Gauss-Hermite modes. The planar wiggler model used is 

sin kr - ■ 
cos*wz d 

sinhfcwy- 

sin k„z 

Y{Ky) d2 

dt 

*.    dz)5-W] 
ifcwysinhfcwy d2 "1 

Y(kwy) 

Ikl 

2kl   dx 

cosfc„z d 

2k2. 

X(x),       (1) 

xw, (2) 

i 
*»>) = [( 

X   cosh kwy - 

8W>) = BJz) cos kA sinh kwy - 

*(,+i£)#M- 
where Bw is the wiggler amplitude, kw=2-n/\w is the 
wavenumber for period Aw, y(fcwy) = fc„y cosh*w>>- 
sinh kwy, and XQc) = 1 + (x/ax)

2m/2 for order m and scale 
length a,. This field satisfies VBW = (Fx Bw): = 0, 

while (VXBW)X is small. 
The wiggler amplitude models adiabatic beam injection 

(3) 

I68-9002/96/SI5.00 Copyright © 1996 Elsevier Science B.V. All rights reserved 
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and wiggler imperfections, and we write 5w(z) = B(*\z) + 
ASw(z), where ß'J' describes the entry taper and the 
uniform region, and the random component ABW can either 
be chosen using a random number generator or the 
measured imperfections from an actual wiggler. We choose 

B?(z) = 
s»sin2Gw~): °-z-/VwAw (4) 

;   ALAw<z 

where Bw is the uniform amplitude, and Nw defines the 
entry taper length. The random component ABW is de- 
termined at regular intervals Az = \m/Np, and continuously 
mapped between these points. A sequence AB„ = 
ASw(n Az) is chosen subject to the restriction that ABW = 0 
for z^NwXw to ensure a positive definite amplitude. The 
variation in Aßw(z) between these points [i.e., nAz^z^ 
(«+I)Az]is[4] 

ABJn Az + 8z) = Aß„ + [AB„+, - ABJ sin2(y |j) , 

(5) 

where 0 £ 8z ^ Az. 
The electromagnetic field is represented by the Gauss- 

Hermite modes. These can be represented as TEM modes 
when the wavelength is much less than the spot size. 
Under this assumption, the vector potential is [5] 

M(x,r)= £ 8A,„(z)^fexp(-r2/»v2)//„(-^) 

X "(-£)'. sm <p,, (6) 

where Hn denote the Hermite polynomials, wB is the spot 
size at the waist, and for frequency and wavenumber 
(to, kln) the phase is 

_PJM  , „ . V 
«-"Jo    -    -     - - 

Xtan 

dz'kln(z') + j^-(l + n + l) 

Ott. (7) 

In addition, k0 = wlc, w2 = w2(l + z
2/z2

0), R(z) = z(l + z\l 
z2), and z0 = k0w

2
all is the Rayleigh length. The dy- 

namical equations which govern the evolution of each 
mode are [6] 

X (^exp(-r^)/,,(^),,„(^) sin fl-) , 

c2   2'+"/!/t!  w 

(8) 

and 

1/2    d Aw2       1 
2*;;--^ (*;;'&»,.>= _, „,+„ 

c'   2'"/!/»!  w 

(9) 

where 8a, „ =e 8A,„/mec
2, w,, is the plasma frequency, v 

is the velocity, e and m. are the electronic charge and rest 
mass, and c is »he speed of light. The average is defined for 
a monoenergetic initial electron distribution with a pitch 
angle spread, and is 

<("•)>- 
4TT W0 JO 

rd<A,rv, 
Jo Jo Ao 

exp[-(pj0-/?0)
2/Ap2] 

Xj^ Jdx0dy0«rl(x0>y0)J_^d^o-|(^)(---).      (10) 

where p0 and Apz denote the initial momentum and 
momentum spread, Ab is the initial beam area, cp0 = 
tan~'(AV>//'.ro)' ßzo — viJc< to 's tne initial ponderomo- 
tive phase, <7j($,) and ff-±(x0, >0) describe the initial 
distributions in phase and cross section, and 

^[^jJVoexp[-(p2o-p0)
2/A/72]J     . (11) 

While this describes a monoenergetic beam, there is an 
axial energy spread given by 

—-l-|_l+2(ro-l)—J        , (12) 

where y0^(l+p2/m2c2)"2. 
The Lorentz force equations are integrated in z and are 

of the form 

»tfcP = ~e(E    + 8E) - -1> X (Bw + BM + SB),   (13) 

where Bw is the wiggler, SE and SB are the electro- 
magnetic fields, and £<s) and B(s> are the self-electric and 
-magnetic fields of the beam which are expressed as [3] 

and 

B
<S)

 = -§■ oj\(ßt){(y - {y)X. - C* - <*»*,], 

(14) 

(15) 

where (x) and (y) specify the beam centroid, and (ßt) is 
the average axial velocity. Beam initialization includes the 
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space-charge  depression  of y{r) = yn +ob(r -/?„)/4c 

for an initial radius Rb. 

3. The numerical analysis 

The dynamical equations are solved numerically, and 
the number of modes is found empirically by successive 
simulations with increasing numbers of modes until con- 
vergence is achieved. The Gauss-Hermite modes are 
initially at the free-space wavelength and the radiation 
waist is located at z = 0 with a spot size equal to the beam 
radius. All power is assumed to start in the lowest order 
mode, and higher order modes grow from zero. 

No attempt is made to "match" the beam into the 
wiggler by selecting the emittance and radius so that the 
beam envelope remains constant. In the opinion of the 
author, this is counterproductive. The interaction is micro- 
scopic and gives rise to both amplification and guiding, 
and even a small emittance causes a substantial reduction 
in the peak efficiency. Efforts to "match" the beam are 
motivated by a desire to improve the overlap between the 
beam and the radiation to maximize the filling-factor and 
the growth rate. However, this overlap describes a macro- 
scopic process depending upon growth and guiding by the 
microscopic interaction, and it is more important to 
minimize the emittance than it is to achieve a uniform 
envelope. Variations in the beam centroid and the beam 
envelope merely result in guiding of the signal, while an 
enhanced emittance which may be necessary to "match" 
the beam will certainly result in a degradation in the 
extracted power. 

An X-ray PEL example is considered corresponding to 
the proposed linear coherent light source at SLAC [7]. This 
operates in the SASE mode at a 15 GeV energy, a 5 kA 
peak current, and a 16 u.m beam radius. The wiggler has a 
16 kG amplitude, a period of 2.7 cm, and it is assumed that 
Afw = 10, m = 2 and a, = 0.1 cm. The resonant wavelength 
is"l.4323 A, and an initial power of 10 kW in the TEM00 

mode is assumed. Convergence, is found including the 
lowest order 38 TEM,„ modes (for / and n even). The odd 
modes do not interact at the fundamental resonance. 

The evolution of the power versus z is shown in Fig. 1 
for an ideal beam (zero emittance) and wiggler. The 
saturated power is «97 GW after 30 m for an efficiency of 
about 0.13%. The effect of emittance is shown in Fig. 2 
where the efficiency is plotted versus the initial axial 
energy spread. Optimum performance requires that A-y2/ 

%<0.01%. . 
In studying the effect of wiggler imperfections, it is 

assumed that Np = 2. The variation in the efficiency versus 
(Aßw/ßw)rms is shown in Fig. 3. The dots represent the 
ensemble average over 35 randomly chosen sequences, and 
the "error bars" denote the standard deviations. 

Now consider the orbit dynamics for the orbit for (ABW/ 
Bw)rm, = 1% and the specific random sequence which 

in Phys. Res. A 375 (1996) 284-287 
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Fig. 1. Evolution of the power versus axial position for an ideal 
wiggler. 

P   = 10kW;X= 1.4323 A; w = 16 um 
in u 

0.14 

0.12 

t, 
f   0.10 
c u 

S    0.08 
w 

0.06   - 

-i [—r— , 1 1 , .—1 1 1 1—r-   |      I      '      ' 

Vb=15GeV 
•\ I =5kA          L 
• Rb=16mm 
. B   =16kG 

W                                   — 

■ 
Xw = 2.7 cm 

\   .              N  = 10 

: 

. 
38 Modes 

l       ,. i   i   i   .   i   I   ■   i   ■ " !              '       ' 
°"040.00        0.02        0.04        0.06        0.08        0.10 

Axial Energy Spread (%) 

Fig. 2. Variation in the efficiency as a function of axial energy 
spread. 

resulted in an efficiency of 0.12% (i.e., «the ensemble 
average). The variation in the wiggler parameter a„ for this 
case is shown in Fig. 4, and the motion of the beam center 

10 kW; X = 1.4323 A; wQ = 16 urn 
i ' ' ' ■ i 
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0.04 r 
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w     w rms 

Fig. 3. Variation in the ensemble-averaged efficiency for Np - 2. 
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Z/X 

w 

Fig. 4. Plot of the wiggler parameter for a specific random 
sequence. 

is shown in Fig. 5. Note that the variation in the beam 
center is relatively slow, and there is no coherent walk-off 
of the beam. 

4. Summary and discussion 

In this paper, a 3D nonlinear formulation of the inter- 
action in short wavelength FELs is presented based upon a 

0.00004 

■M 0.00002   Mill 

(AB /B )    = 1% 

0       200     400     600     800     1000    1200    1400 
Z/X 

w 

Fig. 5. Motion of the beam center versus axial position subject to 
wiggler imperfections. 

representation of the electromagnetic field as a superposi- 
tion of the Gauss-Hermite optical modes. A set of coupled 
nonlinear differential equations is derived for the evolution 
of each mode which is integrated in conjunction with the 
3D Lorentz force equations for an ensemble of electrons. It 
is important to emphasize that no wiggler-average is 
performed on the Lorentz force equations. As a result, 
emittance growth and evolution of the electron beam due 
to (1) beam injection, (2) transverse wiggler inhomo- 
geneities, (3) the interaction with the electromagnetic field, 
(4) the self-electric and -magnetic fields of the beam, and 
(5) wiggler imperfections are implicitly included. 

The overall conclusion from this study of the effects of 
beam energy spread and wiggler imperfections for the 
LCLS parameters is that the electron beam quality imposes 
a more severe constraint on the interaction than does the 
wiggler quality. 
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Abstract 
A 3D nonlinear FEL formulation based upon a Coaxial Hybrid Iron (CHI) wiggler is described. The CHI wiggler is 

created by insertion of a central rod and an outer ring (composed of alternating ferrite and nonferrite spacers) along the axis 
of a solenoidal. Relatively high field strengths can be achieved with the CHI wiggler at shorter wiggler periods than is 
possible in many other conventional wiggler designs. The formulation is a slow-time-scale analysis of the interaction of an 
annular electron beam with the CHI wiggler in a coaxial waveguide. Simulations are presented for W-band operation. The 
results indicate that operation over a wide bandwidth is practical, and that the uniform- and tapered-wiggler bandwidths are 
comparable. 

1. Introduction 

The FEL wavelength depends upon the beam energy 
and the wiggler parameters as A ~ (1 + aJr)Aw/2yo» 
where Aw is the wiggler period, y0 is the bulk relativistic 
factor, and aw ~ 0.09345w Aw for an rms wiggler ampli- 
tude 5W in kG and Aw in cm. In the exponential Compton 
regime, both the gain and efficiency scale as alf3/y0. 
Hence, the wavelength, gain, and efficiency of the interac- 
tion all decrease as the beam energy increases for fixed 
wiggler parameters. A great deal of effort has been de- 
voted to the design of short period wigglers to operate at 
short wavelengths with low beam energies. However, this 
is a self-defeating process since reductions in Aw often 
result in reductions in Bw as well with a deleterious 
impact on the efficiency and gain. 

We analyze an FEL based upon a Coaxial Hybrid Iron 
(CHI) wiggler [1] which is a configuration where a central 
rod and a coaxial ring of alternating ferrite and nonferrite 
spacers -re inserted into a solenoid. The ferrite (nonferrite) 
spacers on the central rod are aligned opposite to the 
nonferrite (ferrite) spacers on the outer ring (see Fig. 1). 

This produces an azimuthally symmetric field where the 
amplitude can be increased by increasing the strength of 
the solenoid. Since the radial component of the field has a 
minimum at the center of the gap, the field focuses the 
beam against self-field induced spreading. In addition, the 
CHI wiggler results in an azimuthal bulk transverse veloc- 
ity; hence, the interaction is strongest for waves with an 
azimuthal component. 

The ease of construction of this design permits the 
development of wigglers with extremely short periods by 
the simple expedient of using thin spacers. In most wiggler 
designs this is offset by the fact that shorter periods 
typically result in lower amplitudes and increased field 
gradients. This is not necessarily the case for the CHI 
wiggler since high amplitudes can be achieved by using a 
stronger solenoid. Note also that the gyroresonance be- 
tween the periodic and axial components can enhance the 
FEL interaction as well [2]. 

2. The general formulation 

" Corresponding author. Tel. +1 703 734 5840, fax +1 703 
821 1134, e-mail: freund@mmace.nrl.navy.mil. 

Permanent address: Science Applications International Corp., 
McLean, VA 22102, USA 

2 Permanent address: Mission Research Corp., Newington, VA 
22122, USA. 

3 Permanent address: University of Maryland, College Park, 
MD 20742, USA. 

In a source-free region the divergence and curl of the 
magnetic field vanish, and the field of the CHI wiggler is 
found by solution of Laplace's equation V2B(r, z) = 0 for 
appropriate boundary conditions. We assume that the fer- 
rite spacers result in a step function in the axial field at 
r = Rin and Äout such that Bz(Rin, z) = Bin and 
Bz(R0Ut, z) = Bout along the surface of the dielectric and 
zero along the surface of the ferrite. Each wiggler period 
corresponds to the combined length of two spacers, and we 

0168-9002/95/$09.50 © 1995 Elsevier Science B.V. All rights reserved 
550/0168-9002(94)01473-6 IV. LONG WAVELENGTH 



140 H.P. Freundet al./Hucl. Instr. andMeth. in Phys. Res. A 358 (1995) 139-142 

Solenoid 

Fig. 1. Schematic illustration of the CHI wiggler configuration. 

assume that the length of each spacer is  Aw/2. The 
solution which results is [3] 

Bz(r, z)=S0+ßw E cos(n*wz) 

[SM"kwr)-T„K0(nkwr)] 

G(nkwRout, nk^R^) 

and 

Br(r, z)=Bw E sin(nfcwz) 
fl-1 

i.[SA(nkwr) + TmKl(nkwr)] 

G(nkvRom, nk„Rin) 

where 5W = 2B0, G(f, £)*»/0(f)K0(p-I0(OK0UX 

(3) 

and 

T-= I— ) sin(^)[/0(/iiwi?in)+/o(/iA„i?ovll)]. 

(4) 

This is in agreement with the results of the Poisson/Su- 
perfish family of magnetics codes [4]. 

Now consider the dynamical equations which govern 
the electromagnetic fields and the electron beam. Consider 
propagation in a coaxial waveguide with inner and outer 
radii a and b. The neglect of space-charge effects is valid 
as long as wb/ckw< yz

3ul/8y0c
2, where <ub is the 

ambient plasma frequency, uw is the bulk transverse wig- 
gler velocity, and yz = (1 - v2/c2)~1/2 for a bulk stream- 

ing velocity v,,. Space-charge effects can also be neglected 
if (1) the wavelength is less than the Debye length and the 
space-charge waves are subject to strong Landau damping, 
or (2) the bandwidth of the interaction is greater than the 
plasma frequency [5]. 

The boundary conditions at the walls of the coaxial 
waveguide are satisfied by a superposition of the TE, TM, 
and TEM modes of the waveguide. We limit the discussion 
here to the TE modes As such, the vector potential can be 
expressed as 

8A(*,0-  E8A,m(z) 
i-o 
m-l 

 2i{«lmr)er sin aln 
Kim* 

(5) +Z',(K,mr)ee cos a,m 

where for angular frequency <o and wavenumber klm 

alm = fdZ'klm(z')+ie-a>t, (6) 
Jo 

and w2 = c2kfm + c2K.}m for a given cutoff Klm. The cut- 
offs are given by solution of the dispersion equation 
J',Ulma)Y;Ulmb)=J'lUlmb)Y;(Klmal where J, and Y, 
denote the regular Bessel and Neumann functions of order 
/. The radial polarization functions are Z,(K,mr) = 
Jii«imr)+ AlmYt{Klmr), where Alm = -J',(Klmb) 
/Y!Ulmb). 

The dynamical equations have been described in detail 
[2] and the results for the TE modes are 

~T~i +   ~ZT ~ */«    K'<" dzz 

= -^THlm 

5a Im 

"J   «lmr 
Z;(K/mr)sin alm 

+ 1—iZ',(Klmr) cos alm), V) 

2*L/2T-(*L/26a,M) dz 

»2, 
-~Him c I "z I  «Im? 

Z,(Klmr) cos alm 

- y^Z',(Klmr) sin alm), (8) 

where halm = ehAlm/mec
2 is the normalized amplitude 

of the modes, and 

tfi_- 

2x2
m(b

2-a2) 

(Kfmb
2 - l2)Z2{Klmb) - (K2

ma
2 - l2)Zf(Klma) 

(9) 
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The electron beam is assumed to be monoenergetic with an 

axial energy spread determined by an initial (i.e., at 2 = 0) 

pitch angle spread, and the averaging operator is 

<(---)>srV/2,Td<*°rd^° Ao 4-KA^JO JO 

Xexp[-(p20-p0)
2/Ap2] 

xj j dx0dy0 crx(x0, yQ) 
A% 

*/*   d^o^oK-"). (10) 

where Ag = ir(b2 - a2) is the area of the waveguide, 
ßl0 = vz0/c  for the  initial  axial  velocity   vz0,   d>0 = 

tan_1(py0/Pxo)» (Pxo> PyO' Pz0> denote the initial beam 

momenta, p0 and Lpz denote the initial total momentum 
of the beam and axial momentum spread respectively, if/Q 

(= — <uf0, where t0 is the time at which the particle 
crosses the z = 0 plane) is the initial ponderomotive phase, 
cr± and <r» are the initial distributions of the beam in 

cross-section and phase, and 

A = T/
P0

 dPzo exp[-(pz0-p0)
2/Ap2

2] I (11) 

is a constant. This results in an axial energy spread 

To 
= 1- l + 2(y0

2-l) 
Ap* 

Po 

-1/2 

(12) 

The equations for the fields are solved simultaneously 

with the orbit equations for an ensemble of electrons. We 
integrate the complete 3D Lorentz force equations 

d 
■Vx(BM + hB), (13) v,—p = —e§E - 

for each electron, where Bcxt is the magnetostatic field due 
to the CHI wiggler, and bE and 82? denote the aggregate 
electromagnetic fields for all the wave modes. By specify- 
ing the initial beam conditions and integrating the Lorentz 
force equations, we model the injection of the beam into 
the wiggler by means of a tapered wiggler amplitude. This 
describes any increase in the effective beam emittance in a 
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Fig. 3. Evolution of the power with axial position at 80 GHz. 

self-consistent way. In addition, we also consider ampli- 

tude tapering for the purpose of efficiency enhancement. In 
order to describe these effects, we assume that the overall 
coefficient of the periodic component of the field varies as 

£«,-< 

kwz 
z^NwXw, 

250; ^VwAw<2^z0, 

2B0[l + *wew(z-z0)];    z>z0, 

(14) 

where Nw denotes the number of wiggler periods in the 

entry taper region, and ew is the normalized slope of the 
taper for purposes of efficiency enhancement. 

3. Numerical analysis 

The dynamical equations are solved for an amplifier 
configuration in which several modes may propagate at a 
fixed frequency m. The initial conditions on the fields are 
chosen to model the injection of an arbitrary power level 
for each mode. The initial wavenumbers are chosen by the 
vacuum state, and the growth rates are initially zero since 
the amplitude of the periodic component of the CHI 
wiggler is also initially zero. The initial state of the beam 
models the injection of a continuous, axisymmetric beam 
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Fig. 4. Evolution of the power with axial distance for an opti- 
mized taper at 85 GHz. 
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with a uniform density and annular cross-section. For 
convenience, we choose RiB = a and ROM = b. While we 
shall be concerned with the fundamental resonance in this 
paper, both the first and third spatial harmonics of the CHI 
wiggler are included. 

We consider W-band (80-100 GHz) operation and 
assume the beam has an energy of 500 keV, a current of 
50 A, and inner and outer radii of 0.4 cm and 0.5 cm. The 
CHI wiggler has B0 = 6.0 kG with a period of 0.9 cm and 
N„ = 5 and inner and outer radii of 0.311 cm and 0.622 cm 
respectively. The mode of interest is the TE01 mode with a 
drive power of 1 kW. Amplification is found over a 
frequency band from = 70 to 115 GHz although the peak 
efficiencies are found from 80 to 100 GHz. This is illus- 
trated in Fig. 2 in which we plot the saturation efficiency 
versus frequency for an ideal beam with Ay2 = 0. As is 
evident, the maximum efficiency is approximately 10.3% 
at 85 GHz for an output power of almost 2.6 MW. 
However, the efficiency varies relatively little over the 
entire W-band and the interaction bandwidth is about 33%. 

The evolution of the power is shown in Fig. 3 for the 
case of the peak efficiency at 85 GHz, and exponential 
growth is evident from the end of the entry taper region to 
the saturation point at z/Aw = 56 for an interaction length 
of 50 cm. The decline in efficiency with increases in the 
initial axial energy spread is relatively benign, and de- 
creases by less than a factor of two as the energy spread 
increases to somewhat beyond Ay^/y,, = 1.25%. Thus, 
good operational efficiencies are expected for axial energy 
spreads less than 0.5%. 

The performance of a tapered wiggler amplifier is 
sensitive to both the start-taper point and the slope of the 
taper. Optimization of the efficiency for operation at 80 
GHz indicates that peak efficiency is found for a start-taper 
point at z0/Aw = 52 and a slope of ew= -0.003. The 
evolution of the power versus distance for this case is 
shown in Fig. 4. It is evident that the output power peaks 
at approximately 4.2 MW over a total length of 88 wiggler 
periods. This translates into a total wiggler length of only 
79 cm including the entry taper region. 

The variation in the power versus frequency over the 
W-band is shown in Fig. 5 for parameters that optimize the 
device for operation at 80 GHz (i.e., z0/Aw = 52, ew = 
— 0.003, and a total length of 88 wiggler periods). As 
shown, the curve of the efficiency versus frequency is 
double-peaked. The larger peak is, as might be expected, 
at 85 GHz and the secondary peak is at the upper end of 
the W-band at 95 GHz representing an output power of 
about 3.5 MW. Hence, we conclude that it is possible to 
design a W-band MW amplifier using the CHI wiggler. 

4. Summary and discussion 

We have presented an analytical description of an FEL 
based upon the CHI wiggler. The nonlinear simulation is a 
slow-time-scale model for the self-consistent evolution of 
the modes of a coaxial waveguide with the trajectories of 
an ensemble of electrons [2]. We emphasize that no wig- 
gler-period-average is applied to smooth the orbital dy- 
namics. Hence, we treat the full particle dynamics and 
model the injection of the beam into the wiggler. 

Specific examples have been discussed for W-band 
operation with uniform and tapered wigglers. Operation 
over a wide bandwidth is found to be practical for CHI 
wiggler-based FELs for both the uniform and tapered-wig- 
gler examples. It is of interest that the bandwidth of the 
interaction for a tapered wiggler is found to be large. This 
contrasts with the commonly accepted belief that tapered- 
wiggler interaction results in a narrow bandwidth. Note 
that this conclusion is not confined to the CHI wiggler [5]. 

Our overall conclusion is that the CHI wiggler repre- 
sents a design in which the limitations of conventional 
wigglers to reach high field strengths at short wiggler 
periods are overcome to some degree. The CHI wiggler, 
therefore, permits the construction of high frequency FELs 
at relatively low beam voltages. 
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Abstract 
The preliminary design of a voltage tunable far-infrared free-electron laser with a Coaxial Hybrid Iron (CHI) wiggler is 

presented. The CHI wiggler consists of a central rod and an outer ring of alternating ferromagnetic and non-ferromagnetic 
spacers. A period wiggler field is produced when the CHI structure is immersed in an axial magnetic field. The design under 
investigation makes use of a 1 MV/1 A annular electron beam interacting with the TE01 coaxial waveguide mode at 
approximately 1 THz (A = 300 u,m). The nominal wiggler period is 0.5 cm and the inner and outer waveguide radii are 0.4 
and 0.8 cm respectively. An axial guide field of 5-10 kG is used. The device performance is modeled with a slow-time-scale 
nonlinear code, and self-fields and axial velocity spread are included in the model. Simulation results show output powers 
above 2kW at frequencies from 850 GHz to 1040 GHz can be achieved for voltages ranging from 0.93 to 1.07 MV. 

1. Introduction 

The free-electron laser (FEL) has demonstrated opera- 
tion over virtually the entire electromagnetic spectrum. In 
the exponential Compton regime, both the gain and 
saturation efficiency scale as al,'%/y0 where aw« 
0.09345WAW for an rms wiggler amplitude Bw in kG and a 

Fig. 1. Schematic representation of the CHI wiggler. 
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wiggler period in cm. Hence, the gain and efficiency both 
decrease as the energy increases. A great deal of effort has 
been devoted, therefore, to the design of short period 
wigglers to operate at short wavelengths with low energies. 
However, this is often self-defeating since reductions in Aw 

often result in corresponding reductions in Bw and a 
deleterious impact on the efficiency and gain. 

In this paper, we analyze the performance of a far- 
infrared FEL amplifier based upon the coaxial hybrid iron 
(CHI) wiggler [1-3] using a 3-D nonlinear slow-time-scale 
simulation. As shown schematically In Fig. 1, this wiggler 
design is based upon a configuration in which a central rod 
and a coaxial ring of alternating ferrite and dielectric 
spacers is inserted into a solenoidal magnetic field. Further, 
in this design the ferromagnetic (non-ferromagnetic) spac- 
ers on the central rod are aligned opposite to the non- 
ferromagnetic (ferromagnetic) spacers on the outer ring 
(i.e. a one half-period shift.) This produces an azimuthally 
symmetric period in which the amplitude can be increased 
by the relatively simple expedient of increasing the 
solenoidal field. The radial component of the field has a 
minimum at the center of the gap which provides enhanced 
beam focusing. This configuration permits the design of a 
relatively high amplitude but short period wiggler field. 

2. The general formalism 

The physical configuration is that of an annular electron 
beam propagating through a coaxial system which includes 
both coaxial waveguides, and coaxial wiggler structures. 

1168-9002/96/$ 15.00 Copyright © 1996 Published by Elsevier Science B.V. All rights reserved 
'// S0168-9002(96)00140-4 
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An analytic solution for the CHI wiggler field can be 
shown to be [1-3] 

Bz(r,z) = B0„,+B0 

„V      ,y   AV0(flkS)-TKK0(fikwr)} 
+5».?,cos(n*»z)   <Wou,.«W    • 

(1) 

and 

B,(r, z) = Bw 2J sm(nkwz) _, .   „  ,   „  . , „-I G{nkwRou,,nkwKin) 

The dynamical equations for the modes in coaxial 
waveguides have been described in detail elsewhere (2], 
and the results for the TE modes are 

=—H> -\U7 T~7 z'(*i«.r>sin a>-< 
C MÜJ    Ktmr 

V> \ +liTiz'('c""r)C0Sat""/' (8) 

(2) 

where ÄW-2Ä0>G(£ «-/„(flA^)-WWf). 2C|(C^J = ^^ 

Sm -(£) sin(jf )[K0(nk^J + K0<r*Ml •      (3) X(|^| TJZ<(*<"r)C0S "«" " |ÜJ Z'M *" """) ' (9) 

and 

T- "(™) ™(T)v°(nk"R*)+IoinKR°°')] ■     (4) 

Here B0 and B0 ext both relate to the external solenoidal 
field. The former value B0 denotes the solenoidal field 
strength up to the saturation value of the ferromagnetic 
spacers. In contrast, ß0exI denotes the remainder of the 
field in excess of the saturation level. Thus, B0 ex, = 0 if 
the ferromagnetic spacers are not driven to saturation. This 
solution is in substantial agreement with the numerical 
results for the field obtained with the Poisson/Superfish 
family of magnetics codes. 

A detailed discussion of the mathematical formulation 
and the simulation is given in Ref. [2] and we give only a 
brief description here. The radiation field is written as a 
superposition of the transverse electric (TE), transverse 
magnetic (TM), and transverse electric and magnetic 
(TEM) modes of the waveguide. We limit the discussion 
here to the TE modes. As such, the vector potential can be 
expressed as [2] 

8A(r,0=2 8A/#n(z) 
(-0 

X I — Z,(Klmr)er sin alm + Z\(Klmf)eB cos alm J ,     (5) 

where the phase for angular frequency to and wavenumber 
k,_ is 

Jo 
dz'k.Jz') + W-ut, (7) 

where to2 = c2k2
m + c2K2

m for a given cutoff Klm. The 
cutoffs are given by solution of the dispersion equation 

J'.iK.-WMimV = J'iiKimWfa,,*). where A and Y> de- 
note  the  regular Bessel  and Neumann  functions,  and 
Z,(K,„r) = J,(Klmr) + b.lmY,{Klmr), where A,„ - -J\{KJ>)I 

where halm = e8A/m//nec
2 is the normalized amplitude of 

the modes, and 

«_■■ 
2^Jb2-a2) 

(K
2
J- -i2)z]{K,mb)-(<„« -nz,(xlma) 

(10) 

The beam is assumed to be monoenergetic with an axial 
energy spread determined by an initial (i.e., z = 0) pitch 
angle spread, and the averaging operator is defined over 
the initial beam parameters 

«■••)>- 4wA ft. ■       d^0       dp,, 
j Jo Jo 

^p[-(pt0-p0f/Ap2
z] 

XJ J dx0dy0tr±(?0,y0) 

"£ dA<r.(^X'"). (ID 

where A is the cross-sectional area of the waveguide, 
ßz0-vz0/c for an initial axial velocity vzQ,(px0, py0, p.0) 
denote the initial beam momenta, <f>0 = Hm~\py0lpx0), pt 

and hpz denote the initial total momentum of the beam and 
the initial axial momentum spread respectively, ^0(= - 
a>t0, where t0 is the time at which the particle crosses the 
z = 0 plane) is the initial ponderomotive phase, cr± and oj 
are the initial distributions of the beam in cross-section and 
phase, and 

.-[*//<*«. exp[-(p20-/>o)2/Ap a]" (12) 

is a normalization constant. 
The field equations are integrated simultaneously wi* 
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the orbit equations for an ensemble of electrons. We 
integrate the complete 3D Lorentz force equations for each 
electron in the aggregate fields of the CHI wiggler and the 
electromagnetic fields for all the wave modes. In addition, 
we include the DC self-electric and magnetic fields due to 
the bulk charge and current densities of the beam. No orbit 
average is imposed, and we treat the injection of the beam 
into the wiggler. For this purpose, we model the adiabatic 
injection region by means of a tapered wiggler amplitude. 
In addition, we also consider amplitude tapering for the 
purpose of efficiency enhancement. In order to describe 
these effects, we assume that the overall coefficient of the 
periodic component of the field varies as 

*.=< 
I 2B0 sin 

2Bn ;NwA.<z: (13) 

i.2B0U+kwsJz-z0)]   ;z>z0, 

where Nw denotes the number of wiggler periods in the 
entry taper region, and ew is the normalized slope of the 
taper. 

950 
Frequency (GHz) 

1000 1050 

Fig. 2. Theoretical predictions of output power versus frequency 
for voltage tuning from 930-1070 MV. 

device performance with increasing energy spread. At an 
axial energy spread Ax/yz = 0.2% the output power has 
decreased to approximately 1 kW, less than half of the 
value at zero spread. Thus, energy spread must be kept a 
minimum. 

3. Simulation results 

The non-linear code was used to simulate the per- 
formance of a voltage tunable far-infrared FEL. The 
nominal device parameters under consideration are shown 
in Table 1. The electron beam was positioned at the center 
of the gap, where there is a minimum in radial magnetic 
field. 

The theoretical prediction of output power versus fre- 
quency for an ideal beam (energy spread Ayz = 0) interact- 
ing with the TE0I coaxial waveguide mode is plotted in 
Fig. 2. The simulation shows that by varying the beam 
voltage from 0.93 to 1.07 MV it is possible to achieve 
greater than 20% tunable bandwidth (850-1040 GHz) at 
output power levels above 2 kW. In Fig. 2, the point at 
850 GHz corresponds to 0.93 MV. Each following point 
represents an increase in voltage of 0.1 MVup to the point 
at 1040 GHz, which corresponds to 1.07 MV. 

The dependence of output power on axial energy spread 
is plotted in Fig. 3. The figure shows a rapid decrease in 

4. Summary 

Non-linear simulations show that the CHI wiggler can 
be effectively used in a tunable far-infrared FEL. Theoret- 
ical studies indicate that output powers greater than 2 kW 
can be produced with a 1 MV/1 A annular electron beam 
interacting with the TE0I coaxial waveguide mode in the 
presence of a CHI wiggler and an axial guide field. In 
addition, simulations show that greater than 20% voltage 
tuning is possible. The output power decreases rapidly 
with increasing axial energy spread so a high quality 
electron beam is essential for efficient operation. It may 
prove possible to increase the gain and efficiency by 
tapering the wiggler field, which is especially simple in the 

Table 1 
o a. 

Nominal design parameters for the FIR CHI wiggler FEL 
3 a. 

Beam voltage 1MV 
O 

Beam current 1 A 
Inner waveguide radius 0.4 cm 
Outer waveguide radius 0.8 cm 
Wiggler period 0.5 cm 
Axial guide field amplitude 9kG 
Coaxial mode TE0I 

Frequency 950 GHz F 

e 
Fig.  3. Theoretical  predictions of output power versus axial 
energy spread at 950 GHz. 
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A G-band free-electron laser designed for plasma heating is described using a coaxial hybrid iron 
(CHI) wiggler formed by insertion into a solenoid of a central rod and an outer ring of alternating 
ferrite and nonferrite spacers positioned so that the central ferrite (nonferrite) spacers are opposite 
the outer nonferrite (ferrite) spacers. The CHI wiggler provides for enhanced beam focusing and the 
ability to handle intense beams and high-power continuous wave radiation. Simulations indicate that 
a power/efficiency of 3.5 MW/13% are possible using a 690 kV/40 A beam. No beam loss was 
found in simulation. © 1995 American Institute of Physics. 

I. INTRODUCTION 

Sources of plasma heating for thermonuclear fusion re- 
actors employ both ion and electron cyclotron schemes. 
Electron cyclotron heating requires approximately 20 MW of 
continuous wave (CW) power at frequencies of 140-280 
GHz depending upon whether the fundamental or second 
harmonic resonance is utilized.1 No source currently under 
consideration, or even anticipated, is expected to produce the 
full power requirement in a single module, and a system 
composed of several sources is envisioned. In this paper, we 
describe the design of a G-band (140-150 GHz) free- 
electron laser (FEL) amplifier based upon a coaxial hybrid 
iron (CHI) wiggler2,3 which can meet these requirements. 

The CHI wiggler is produced by insertion into a solenoid 
of a central rod and an outer ring composed of alternating 
ferromagnetic and nonferromagnetic (or dielectric) spacers. 
A schematic representation of the structure is shown in Fig. 
1. The position of the spacers is such that the ferrite (nonfer- 
rite) spacers on the central rod are opposite the nonferrite 
(ferrite) spacers on the outer ring. The field is cylindrically 
symmetric and exhibits minima in the center of the gap pro- 
viding for enhanced beam focusing. 

The CHI wiggler has two major advantages for the ap- 
plication of interest. First, even a small amount of beam loss 
in a high-power CW design can result in catastrophic failure. 
For example, the average beam power under discussion is 
«*28 MW, and a beam loss of 1% implies that 28 kW is 
dissipated in the drift tube walls. This poses a difficult design 
problem. Hence, the favorable focusing properties of the 
CHI wiggler are ideally suited to high-power CW applica- 
tions. Indeed, no beam loss was observed in simulation. Sec- 
ond, short wiggler periods are desirable to minimize the re- 
quired beam energy, while high wiggler fields are required 
for high gains. This is difficult to achieve in conventional 
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wiggler designs. However, high fields at short wiggler peri- 
ods can be achieved with the CHI wiggler by using narrow 
spacers and a ferrite with a high saturation level in a strong 
solenoid. Hence, a CHI wiggler-based FEL is capable of pro- 
ducing high power at the required wavelengths with a rela- 
tively low energy beam. 

II. THE THEORETICAL FORMULATION 

An analytic form for the CHI wiggler field can be found 
by solution of Laplace's equation V2B(r,z) = 0 for appropri- 
ate boundary conditions. The solution is cylindrically sym- 
metric and has the form2'3 

Bz(r,z) = BQat+B0+B„y2   cos(nkwz) 
n=l 

.. [SnI0(nkwr) - TnK0(nkwr)] 

and 

5r(r,z)=ßw2   sin(w*H,z) 

G{nkwR0M,nkwRm) 

[SJxink^ + T^iink^)] 

U) 

B=l 
G(nkwR0u, nkwRJ 

where BW=2B0, G{U)=I0tf)K0(D-Io(DK0U), 

S„=(—) sin| ^j [K0(nkwRin)+K0(nkwRoJ], 

and 

(2) 

(3) 

T» = \— Y^l^UoinKRJ + hinKR^l (4) 

Here B0 and BQcxt both relate to the external solenoidal field. 
The former value B0 denotes the solenoidal field strength up 
to the saturation value of the ferromagnetic spacers. In con- 
trast, B0cn denotes the remainder of the field in excess of the 
saturation level. Thus, B0nt=0 if the ferromagnetic spacers 
are not driven to saturation. This solution is in substantial 
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FIG. 1. Schematic illustration of the CHI wiggler configuration. 

agreement with the numerical results for the field obtained 
with the POISSON/SUPERFISH family of magnetics codes.4 

One advantage of the CHI wiggler design is that the field 
amplitude exhibits minima at the center of the coaxial gap.2-3 

This provides for good focusing of the electron beam which 
is important for high average power applications in which 
even small levels of beam loss are unacceptable for CW or 
long pulse operation. 

We consider propagation within a coaxial waveguide 
with inner and outer radii a and b, respectively. Space- 
charge effects are negligible as long as 
«;,/<:/:,,< •y3^2/8y0c

2, where wh denotes the beam plasma 
frequency, vw is the bulk transverse wiggler velocity, y0 is 
the bulk relativistic factor of the beam, and 
72=(1 - fjf/c2)"1/2 for a bulk streaming velocity v\\. Space- 
charge effects can also be neglected if (1) the wavelength is 
less than the Debye length and the space-charge waves are 
subject to strong Landau damping, or (2) the bandwidth of 
the interaction is greater than the plasma frequency. These 
conditions for the neglect of space-charge effects are valid 
even for relatively high-current electron beams.5 

A detailed discussion of the mathematical formulation 
and the simulation is given in Ref. 3. Since we are primarily 
interested in a specific application in this paper, we shall 
merely give a brief description of the formulation here. The 
boundary conditions of the fields at the coaxial waveguide 
walls (inner radius a and outer radius b) are satisfied by a 
superposition of the transverse electric (TE), transverse mag- 
netic (TM), and transverse electric and magnetic (TEM) 
modes of the waveguide which constitute a complete and 
orthogonal set of basis vectors. The interaction strength de- 
pends both upon the wave-particle resonance and upon the 
polarization of the modes. The CHI-wiggler induces an os- 
cillation which is predominantly in the azimuthal direction; 
hence, the modes with the highest gains are those which are 
largely polarized in that direction. For the present case, the 
predominant resonance is with an azimuthally polarized TE0) 

mode. The other modes are farther from resonance and have 
less favorable polarizations. Hence, we limit the discussion 
here to the case of the TE modes. As such, the vector poten- 
tial can be expressed in cylindrical coordinates as3 

SA(x,t)= 2  8A,m{z)\ —— Z,(K,mr)er sin ct,„ 
1 = 0 \*/mr 

m=l 

+ Z',(Klmr)ee cos alm\. (5) 

where the phase for angular frequency co and wave number 
*/m is 

alm=fZdz' klm(z') + l6-cot, 
Jo 

(6) 

where a2=c2k2
m + c2K2

m for a given cutoff xlm. The ampli- 
tudes and wave numbers are assumed to vary slowly in z 
over a wavelength. The cutoffs are given by solution of the 
dispersion equation J'i{Klma)Y'l{Klmb) = J',{Klmb)Y', 
(Ktma), where /, and Y{ denote the regular Bessel and Neu- 
mann functions, and Zl{Klmr)=Jl{Klmr) +LlmYi(.Klmr), 
where A,m^ - J\{Kjb)IY\(Klmb). 

The dynamical equations for the modes in coaxial 
waveguides have been described in detail,3 and the results 
for the TE modes are 

dl       K        2 2 Sa Im 

(7) 

= 7f^ 
Vr       I 

^^m\ki^:Z/(w)sina"' 
Vg + nrrz/'(*w)cos a,m), 

^3:(C*.J-^h^ dz 
Z,(Ktmr)cos alm 

Vg 

where Salm = eSAlmlmec
2 is the normalized amplitude of the 

modes, and 

l"Ub2-a2) 
Hlm— ,.,2  i,2_/2i.72/.„    t\_/„2  „2_;2\-r2/ (Kimb"-P)Zt(Klmb)-(KJma2-l2)Zl(Klma)- 

(9) 

The beam is assumed to be monoenergetic with an axial 
energy spread determined by an initial (i.e., at z = 0) pitch 
angle spread, and the averaging operator is defined over the 
initial beam parameters 
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4TTA, 

:exp 

f2* (Po 
d<f>0\    c 

Jo Jo 
dPzO ß. zO 

(PzO-Po)2 

~^PT~ 

:J^ J dx0 dygor^xo^o) j_ di//0 <rB(<fr0)("-). 

(10) 

where A^  is the cross-sectional area of the waveguide. 
ßz0—vz0^c f°r an initial axial velocity vz0, 
0ü=tan" (Pyo/Pto), (PxO'PyO'Pzo) denote the initial beam 
momenta, p0 and äpz denote the initial total momentum of 
the beam and the initial axial momentum spread, respec- 
tively, tf/0(= - cotQ, where tQ is the time at which the particle 
crosses the z = 0 plane) is the initial ponderomotive phase, 
<rx and oj are the initial distributions of the beam in cross 
section and phase, and 

'"["/„'"' dPzo exp 
(PzQ-PoY 

*P2z 
(ID 

is a normalization constant. 
The field equations must be solved simultaneously with 

the orbit equations for an ensemble of electrons. We integrate 
the complete three-dimensional (3-D) Lorentz force equa- 
tions for each electron in the aggregate fields of the CHI 
wiggler and electromagnetic fields for all the wave modes. 
No orbit average is imposed, and we treat the injection of the 
beam into the wiggler. This describes any increase in the 
effective beam emittance due to the injection mechanism. 
For this purpose, we model the adiabatic injection region by 
means of a tapered wiggler amplitude. In addition, we also 
consider amplitude tapering for the purpose of efficiency en- 
hancement. In order to describe these effects within the CHI 
wiggler model, we assume that the overall coefficient of the 
periodic component of the field varies as 

2ßoSin2|^|;    z 

B = 

*NW\W, 

(12) 2B0;    Nw\w<z*z0, 

2B0[l+kH.ew(z-z0)];    z>z0, 

where Nw denotes the number of wiggler periods in the entry 
taper region, and ew is the normalized slope of the taper for 
purposes of efficiency enhancement. Note that the CHI wig- 
gler field can be tapered in a variety of ways including ta- 
pering the solenoidal field or varying the radial thickness of 
the spacers. 

III. NUMERICAL RESULTS 

The wiggler amplitudes and periods which can be 
achieved are determined using the POISSON codes.4 To this 
end, we specified vanadium permendur spacers and found 
that a 6 kG solenoid saturates the ferrite for spacers with 
inner and outer radii of a = 0.7 and b= 1.5 cm, and a wig- 
gler period of \w= 1.5 cm. We also assume that a and b are 
the inner and outer radii of the waveguide. Using these di- 
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FIG. 2. Efficiency and saturation distance versus frequency at 690 kV. 

mensions, we operate with a 10 kG solenoid which drives the 
ferromagnetic spacers in the CHI wiggler to saturation (i.e., 
B0=4.Q kG and BOext=6.0 kG). Note that a magnetoreso- 
nant enhancement in the gain and efficiency is also present 
when the Larmor period associated with the uniform axial 
field component is close to the wiggler period. We assume 
that N„=5 to preserve the initial beam quality through in- 
jection. 

Since FEL performance is critically dependent upon 
beam quality, we must have an electron gun which produces 
an annular beam with a low energy spread. The design tool 
we used for this is the EGUN code.6 Since operation in 
G-band is desired, we chose an electron beam voltage in the 
neighborhood of 690 kV and a current of 40 A. Assuming 
that the inner and outer radii of the beam at the exit of the 
gun were 1.05 cm and 1.15 cm, respectively, it is possible to 
design a gun which produces an axial energy spread of sub- 
stantially less than 0.1%. The results from the gun calcula- 
tion were used as initial conditions in the FEL simulation. 

We first address the interaction for a uniform wiggler, 
and consider the case of an ideal beam in which the axial 
energy spread Ayz=0. We also deal with the TEQ, mode at 
an injected power of 1 kW. The .efficiency and saturation 
distance versus frequency are plotted in Fig. 2. It is clear that 
the efficiency decreases with frequency over the resonant 
band from 140-150 GHz. Observe that the maximum effi- 
ciency occurs at the minimum resonant frequency and does 
not correspond to the peak gain. This is a common feature of 
the interaction in FEL's,7 and stems from the fact that the 
efficiency varies with the difference between the beam ve- 
locity vb and the phase velocity of the ponderomotive wave 
formed by the beating of the wiggler and radiation fields 
[&v = vb-a>/(k + kw)]. Since the saturation distance is rela- 
tively constant over the range of 142-147 GHz, the peak 
gain of =0.5 dB/cm occurs at =142 GHz for an efficiency of 
=2.2%. As such, we assume a frequency of 142.5 GHz in the 
remainder of the paper. It is possible, however, to retune to 
higher frequencies using higher voltages or shorter wiggler 
periods. 

Before proceeding to the study of the tapered wiggler 
interaction, we turn to the effect of the axial beam energy 
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FIG. 3. Variation in the efficiency and saturation distance versus beam 
thickness. 

spread. The variation in the efficiency as a function of A yl is 
shown in Fig. 3. Observe that the efficiency falls from about 
2.24% to 2.10% as the axial energy spread increases to 
0.10%. This is a relatively modest decrease in efficiency, and 
a beam quality within this range has been demonstrated in 
the gun design code. 

Finally, it is important to note that no beam loss was 
found in the simulation prior to saturation for the uniform 
wiggler cases studied. 

Turning to a tapered wiggler, it should be noted that 
there is an optimum both in the start-taper point and in the 
slope of the taper. Optimizing in both of these parameters, 
we find that for 1 kW input power the optimal start-taper 
point is z0/\w=46 and the optimal slope is ew= -0.001. 
The evolution of the power with axial distance for this 
choice is shown in Fig. 4 for the cases of an ideal beam 
(Ayz=0) and for Ayz/y0 = 0.2%. Note that the interaction 
length is ~200XW which is the length required to taper the 
wiggler amplitude to zero (note that the uniform axial field 
component does not vanish). It is clear that the efficiency 
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FIG. 5. The bandwidth for the tapered wiggler interaction. 

does not change greatly with the decrease in beam quality 
over this range, and rises to over 13% for an output power of 
better than 3.5 MW. 

The bandwidth of the tapered wiggler interaction is quite 
large. Consider the case of the optimum parameters for the 
interaction at 142.5 GHz, including the total length of the 
system. The bandwidth is determined by the response of this 
system at different drive frequencies. In Fig. 5 we plot the 
tapered efficiency versus frequency. It is evident that the ef- 
ficiency remains high over a frequency range of ««142.5-160 
GHz, for a large instantaneous bandwidth. This agrees with 
an earlier study using a simpler FEL model.8 Finally, note 
that despite the extended interaction length for the tapered 
wiggler cases shown, no beam loss was found in simulation 
for any of these parameters. 

IV. SUMMARY AND DISCUSSION 

In conclusion, we feel that a CHI wiggler-based FEL is a 
promising candidate as a driver for cyclotron resonant heat- 
ing of magnetic fusion reactors. The efficiencies were found 
to be fairly high. The tapered wiggler interaction produced 
efficiencies of 13%-14% which represents a single source 
capable of producing 3-4 MW tunable over a large instan- 
taneous bandwidth. These conclusions hold for both an ideal 
beam and for one with the more realistic beam energy spread 
of «SO.2%. It should be remarked that such beams are quite 
reasonable with careful gun design. Furthermore, no beam 
loss was found to occur for either the uniform or tapered 
wiggler runs. This is required for the design of a CW device. 

Alternate source concepts for plasma heating purposes 
include both FEL's and gyrotrons. An alternate FEL design is 
under construction which makes use of an electrostatic ac- 
celerator producing a 2 MeV/12 A electron beam and a pla- 
nar wiggler with an amplitude of 1.8 kG and a period of 2 
cm.9 This device is configured as a CW oscillator, and is 
designed to produce powers of 1 MW at frequencies up to 
260 GHz. This yields an extraction efficiency of approxi- 
mately 4%. The wall plug efficiency is expected to be much 
higher, however, due to the use of an energy recovery sys- 
tem. Indeed, an energy (or at least charge) recovery system is 
necessary in order for the electrostatic accelerator to operate 
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in CW mode. In contrast to this design, the CHI wiggler- 
based FEL requires a lower voltage electron beam and has a 
higher extraction efficiency. In addition, the wall plug effi- 
ciency of the CHI wiggler design can also be increased by 
using a depressed collector for energy recovery. Thus, over- 
all efficiencies much higher than 13%-14% are possible; Us- 
ing an energy recovery system, we expect that overall effi- 
ciencies comparable to gyrotron oscillators are possible, but 
with higher power and broader instantaneous bandwidth than 
is available with gyrotrons. The instantaneous bandwidth 
may prove to be an important advantage if the source is to be 
used for plasma profile modification and control. 

The major source of concern for the present CHI 
wiggler-based design is the length of the interaction. At 200 
wiggler periods in length, the support of the central rod be- 
comes a serious issue. However, we feel that it is not insur- 
mountable, and can be addressed in several ways. First, a 
vertical mount is necessary in which the central rod is sup- 
ported from the top by the collector. Second, it is not neces- 
sary to taper the wiggler to saturation. A shorter tapered wig- 
gler would sacrifice some power but facilitate the support of 
the central rod. Last, this design is for an amplifier configu- 
ration; however, an oscillator can also be constructed which 
would be more compact without the sacrifice of efficiency. 
The only drawback to an oscillator would be a narrower 
bandwidth. Tuning of an oscillator would have to be accom- 
plished by varying the voltage, and whether the bandwidth 
would be sufficiently narrow to impair the device's useful- 
ness depends upon the Q factor of the cavity. This is an area 
of future study. Note, however, that we do not expect the 
bandwidth to be less than that of the current generation of 
gyrotrons which are used for this purpose. It should be em- 
phasized that this study represents an initial design only, and 
higher gains and shorter lengths are likely with proper opti- 
mization of parameters. Preliminary estimates of the effi- 
ciency and interaction length made on the basis of simple 
scaling laws7 indicate that it should be possible to shrink the 
interaction length by =50% with only a minor reduction in 
the efficiency using a somewhat shorter wiggler period and a 

beam with a lower voltage but a higher current. Operation 
closer to the magnetoresonance is also an attractive means of 
achieving this goal. 

Cooling is not expected to be a major problem even for 
long pulse/CW operation since this is a low loss mode. Es- 
timates indicate that loading on the central rod is «=10 
W/cm2 at a power of 5 MW, and that the loading on the outer 
conductor is even less. As a result, cooling would be required 
only near the end of the interaction region using relatively 
narrow water passages in the rod. 

In summary, the CHI wiggler-based FEL is attractive for 
a high-power CW radiation source. It is a robust design in 
which high efficiencies are possible over a wide parameter 
range, and the required beam quality is well within current 
gun technology. Finally, overall system efficiency can be 
substantially increased by incorporation of depressed collec- 
tors for energy recovery. 
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Abstract 
A G-band (140-150 GHz) free-electron laser is described using a coaxial hybrid iron (CHI) wiggler. The CHI wiggler is 

produced by insertion into a solenoid of a central rod and an outer ring composed of alternating ferrite and nonferrite 
spacers. The position of the spacers is such that the ferrite (nonferrite) spacers on the central rod are opposite the nonferrite 
(ferrite) spacers on the outer ring. The field is cylindrically symmetric and exhibits minima in the center of the gap providing 
for enhanced beam focusing. We describe a tapered wiggler amplifier for plasma heating applications. Preliminary design 
studies using a nonlinear simulation indicates that output powers of 3.5 MW are possible using a 690 kV/40 A electron 
beam for a total efficiency of 13%. It is important to note that no beam loss was observed even for realistic values of beam 
energy spread. 

1. Introduction 

Auxiliary sources of plasma heating for currently- 
planned thermonuclear fusion reactors employ both ion 
and electron cyclotron schemes. The electron cyclotron 
heating schemes necessitate approximately 20 MW of CW 
power at frequencies ranging from 140 to 280 GHz de- 
pending upon whether it is desired to use the fundamental 
or second harmonic resonance [1]. At the present time no 
source under consideration, or even anticipated, is ex- 
pected to produce the full power requirement in a single 
module, and a system composed of several similar sources 
is envisioned. In this paper, we describe the design and 
operation of a G-band (140-150 GHz) free-electron laser 
(FEL) amplifier based upon a coaxial hybrid iron (CHI) 
wiggler [2-4] which can meet these requirements. 

The CHI wiggler is produced by insertion into a solenoid 
of a central rod and an outer ring composed of alternating 
ferrite and nonferrite spacers. A schematic representation 
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of the structure is shown in Fig. 1. The position of the 
spacers is such that the ferrite (nonferrite) spacers on the 
central rod are opposite the nonferrite (ferrite) spacers on 
the outer ring. The field is cylindrically symmetric and 
exhibits minima in the center of the gap providing for 
enhanced beam focusing. Since high fields at short wiggler 
periods can be achieved with this design by the relatively 
simple expedient of using narrow spacers and a ferromag- 
netic material with a high saturation level in a strong 
solenoid, a CHI wiggler-based FEL is capable of produc- 
ing power at the required wavelengths using a relatively 
low energy electron beam. 

The analysis and design of a CHI-wiggler FEL herein 
is based upon a 3-D slow-time-scale nonlinear simulation. 
Interested readers are referred to Refs. [3,4] in which the 
formulation is described in detail. In this formulation a set 
of second order nonlinear differential equations is derived 
for the evolution of the amplitudes and phases of an 
arbitrary ensemble of the TE, TM, and TEM modes of a 
coaxial waveguide. These equations are simultaneously 
integrated with the complete 3-D Lorentz force equations 
for an ensemble of electrons using an analytic model of the 
CHI wiggler [2,3]. The orbit equations are not averaged 
over a wiggler period; hence, we model the adiabatic 
injection of the beam into the wiggler self-consistently, 
and can specify the initial conditions of the beam prior to 
injection. This is advantageous since the design codes for 
electron guns and beam diagnostics generally give infor- 
mation on the beam conditions outside the wiggler. 

0168-9002/95/$09.50 © 1995 Elsevier Science B.V. All rights reserved 
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The wiggler amplitudes and periods which can be 
achieved have been determined using the POISSON/SU- 
PERFISH group of codes [5]. To this end, we have speci- 
fied vanadium permendur spacers and found that a 4 kG 
solenoid would saturate the ferrite for spacers with inner 

and outer radii of Rin = 0.7 and R^ = 1.5 cm, and a 
wiggler period of Aw = 1.5 cm. For convenience, we shall 
also assume that Rin and Rwt are also the inner and outer 
radii of the coaxial waveguide. Using these wiggler dimen- 

sions, we choose to operate with a 10 kG solenoid which 
provides a wiggler amplitude of ~ 2 kG at the center of 

the gap (corresponding to a maximum of the periodic field 
amplitude of ~ 4 kG at the pole faces) and a uniform axial 
field component of = 6 kG to provide for additional 

focusing. Note that a magneto-resonant enhancement in the 

gain and efficiency is also present when the Larmor period 
associated with the uniform axial field component is close 
to the wiggler period. We also assume an entry taper 
region of Nw = 5 wiggler periods in length. This is found 
to be sufficiently long to preserve the initial electron beam 

quality through the injection process. 
Since the performance of an FEL is critically dependent 

upon the electron beam quality, we must design an elec- 
tron gun which produces an annular beam with a low 
energy spread. The design tool we used for this is the 
EGUN code [6]. In designing the electron beam, we first 
need to specify the energy, current, and inner and outer 
radii of the beam. Bearing in mind that the wiggler period 
is 1.5 cm and that operation in G-band is desired, we 
choose an electron beam voltage in the neighborhood of 
690 kV and a current of 40 A. Assuming that the inner and 
outer radii of the beam at the exit of the gun were 1.05 cm 
and 1.15 cm respectively, it was found to be possible to 
design a gun which produced a beam with an axial energy 

spread of substantially less than 0.1%. 

Solenoid 
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2. Efficiency and saturation distance versus frequency at 690 

Fig. 1. Schematic illustration of the CHI wiggler configuration. 

Finally, throughout the paper we shall deal with the 

TE01 mode and an injected power level of 1 kW. 

2. Uniform wiggler case 

We first address the interaction for the case of a 
uniform wiggler, and consider the above-mentioned wig- 
gler, waveguide and beam parameters for the case of an 
ideal beam in which the axial energy spread Ayz = 0. The 
first issue to be addressed is the frequency tuning for these 
parameters. To this end, the efficiency and saturation 
distance is plotted in Fig. 2 versus frequency. It is clear 
from the figure that the efficiency decreases with fre- 
quency over this entire band from 140 to 150 GHz. Since 
the saturation distance is relatively constant over the range 
of 142-147 GHz, this implies that the peak gain is found 
in the vicinity of 142 GHz for an efficiency of « 2.2%. As 
such, we consider the highest gain and efficiency possible 
and assume a frequency of 142.5 GHz in the remainder of 
the paper. Note that this type of tuning is expected to occur 
at all beam voltages and wiggler periods. Thus, it should 
be possible to retune to 150 GHz just as readily if you are 
willing to go to higher beam voltages or shorter wiggler 

periods. 
The interaction is sensitive to the beam position. In the 

first place, we hold the cross-sectional beam area fixed at 
that used in Fig. 2 and vary the mean beam radius R0. The 
results of this study are shown in Fig. 3 in which the 
variation in efficiency and saturation distance is plotted 
versus R0. As seen in the figure, a beam center of 1.10 cm 
(which is that used previously) seems to be the optimum. 
Although the efficiency is somewhat higher at R0 - 1.12 
cm, this is near the edge of a steep decrease in efficiency 

with increasing /?„. Therefore, we use the more conserva- 

tive choice of R0 = 1.10 cm henceforth. 
In the second place, the interaction is sensitive to the 

thickness of the beam. In order to illustrate this, consider 
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Fig. 3. Efficiency and saturation distance versus R0. 
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variation in the efficiency as a function of beam 
kness AR for a mean beam radius fixed at R0 = 1.10 
The efficiency and saturation distance are shown in 
4 as a function of beam thickness. It is clear from the 

je that the gain remains relatively constant for AR <, 
cm and that the efficiency decreases with increasing 
over the entire range surveyed. Since it is difficult to 

is the beam down to an extremely narrow thickness, we 
:e a conservative choice of AR = 0.4 cm which maxi- 
es the gain and still yields a respectively high effi- 
icy. This is the value of the beam thickness which we 
1 use for the remainder of the paper. 
3efore proceeding to the study of the tapered wiggler 
raction, we turn to the effect of the axial beam energy 
ad. The variation in the efficiency as a function of Ay. 
down in Fig. 5. Observe that the efficiency falls from 
at 2.24% to 2.10% as the axial energy spread increases 
).10%. This is a relatively modest decrease in effi- 
cy, and a beam quality within this range has been 
ionstrated with the gun design code. 

Finally, since CW operation is required, the amount of 
beam loss during the course of the interaction is an impor- 
tant consideration. Since the total beam power is in the 
neighborhood of 28 MW, even 1% beam loss could pose 
an insurmountable problem. As a result of the favorable 
focusing properties of the CHI wiggler, however, no beam 
loss was found in the simulation prior to saturation for the 
uniform wiggler cases studied. 

3. Tapered wiggler case 

Turning to the case of a tapered wiggler, it should be 
remarked that there is an optimum both in the start-taper 
point and in the slope of the taper for the efficiency 
enhancement process. We have optimized both of these 
parameters and found that for a 1 kW input power that the 
optimal start-taper point is given by zu/Aw = 46 and the 
optimal slope of the taper is ew = —0.001 (where sw -= 
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V. HIGH POWER 
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k~xd In Bw/dz). The evolution of the power with axial 

distance for this choice is shown in Fig. 6 for the cases of 

an ideal beam with A% = 0 and for Ayz/70 
= 0.2%. Note 

that the interaction is shown over a length of = 200 Aw 

which represents the length required to taper the wiggler 

amplitude to zero for this choice of the taper. It is clear 

from the figure that the efficiency does not change a great 
deal with the decrease in beam quality over this range, and 
that the efficiency rises to a value over 13% for an output 
power of better than 3.5 MW. This represents a substantial 
improvement over the uniform wiggler efficiency, and 
occurs due to the relatively high wiggler field strength. 

We now turn to the bandwidth of the tapered wiggler 
interaction, and find that the bandwidth can be quite large. 
Consider the case in which we start with the optimum 
parameters for the interaction at 142.5 GHz including the 
total length of the system. The bandwidth will then be 
determined by the response of the identical system to 

different drive frequencies. The result of this study is 
shown in Fig. 7 in which the efficiency at the end of the 
interaction region is plotted as a function of frequency. As 
is evident from the figure, the efficiency remains high over 
a frequency range of approximately 142.5 GHz through 
160 GHz, which represents a rather large instantaneous 
bandwidth. This is in accord with an earlier study made 
using a simpler FEL model [7]. 

Finally, it should be noted that despite the extended 
interaction length for the tapered wiggler cases shown, no 
beam loss was found in simulation for any of these param- 
eters. 

4. Summary 

The results of this study of a G-band amplifier based 
upon the CHI wiggler can be summarized rather simply. In 
the first place, no beam loss was found to occur for either 

the uniform or tapered wiggler runs. This is a require 
from the standpoint of designing a CW device. In 
second place, the efficiencies were found to be fairly I 
In the uniform wiggler case, efficiencies are in the n< 
borhood of 2-3% for the chosen parameters, while 
tapered wiggler interaction produced efficiencies of 
14% at 142 GHz. These conclusions hold for both an i 
beam and for one with the more realistic beam en 

spread of less than or of the order of 0.2%. It shoulc 
remarked here that beam qualities of this order are c 
reasonable with careful gun design. We also observe 
given the sensitivity of the interaction to the beam dir 
sions, careful gun design is required. 

The principal source of concern with the above-n 

tioned design is the length of the tapered wiggler inte 
tion. At 200 wiggler periods in length, the support of 
central rod becomes a serious design issue. However, 

feel that it is not insurmountable. Most important!; 
vertical mount would be preferable. Secondly, it is 

necessary to taper the wiggler to saturation. A she 

tapered wiggler would sacrifice some output power 

facilitate the support of the central rod. Lastly, it shoulc 

emphasized that this study represents an initial de; 

only. On the basis of this work, we can now undertaki 
optimize the design for higher gain and shorter interacl 
length. This might include several variations in the par; 
eters. Shorter wiggler periods and lower beam volta 
would help to shorten the overall interaction length, 
addition, operation closer to the magneto-resonance > 
also enhance the gain. Finally, it should be noted that 
kW source at these frequencies might require the design 
a gyrotron oscillator as a source of the drive power. 
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Abstract 
A Ka band ubitron is currently under development at NRL using a corrugated waveguide and a helical wiggler. The 

corrugated waveguide is used for low-voltage operation. A 3-D nonlinear formulation has been derived, and a simulation 
code TARANTULA has been developed. The model treats HE and EH modes in the vacuum waveguide. No wiggler 
average is imposed on the electron dynamics. Preliminary calculations indicate that 20% bandwidth operation in Ka 

band is possible at voltages of about 90 kV with a 7-8 mm period wiggler generating a 500-600 G transverse magnetic 
field. Detailed results of the theory and simulation will be presented. 

1. Introduction 

A K, band ubitron is under development at NRL using 
grazing intersection for wide instantaneous bandwidth 
and a high-quality Pierce gun generating a cylindrical, 
uniform density electron beam for high efficiency. The 
dispersion characteristics of a periodic waveguide can be 
exploited for low-voltage ubitron operation. While the 
phase velocity is 'slower' than the smooth waveguide 
dispersion characteristic, the amplifier still operates as 
a fast-wave device. 

A 3-D nonlinear formulation of this configuration has 
been derived, and a simulation code TARANTULA has 
been developed. No wiggler average is imposed on the 
electron dynamics, and the simulation includes the self- 
consistent injection of the beam into the wiggler, as well 
as the effects of betatron and Larmor motion in the 
wiggler and emittance growth due to the beam-wave 
interaction. Preliminary calculations indicate that 20% 
bandwidth operation in K, band is possible at voltages of 
about 90 kV with a 7-8 mm period wiggler generating 
a 500-600 G transverse magnetic field. 

2. General formulation 
/ 

The external magnetic field used in the analysis can be 
represented as B„,(x) = B0ez + 5w(x), where B0. denotes 

the magnitude of the axial guide field, 

* Correspondence address: Science Applications International 
Corporation, 1710 Goodridge Drive, McLean, VA 22102, USA. 

1 Permanent Address: K.N Research, Silver Spring, MD 20906. 
2 Permanent Address: Mission Research Corp., Newington. 

VA 22122. 

Bw(x) = 2ßw(z) I[(X)ercosx 

<} --I^Xiiesmx + Id^smxl     (1) 

is the wiggler field, and T^ and I[ denote the modified 
Bessel function of the first kind and its derivative, 
/. = fewr, x = 0 — fewz, few is the wiggler wave number 
(= 2JT//.W), and the wiggler amplitude is assumed to vary 
adiabatically as 

, ß„sin2(-^),   0<z<yV„A„ 
(2) 

By. AL-L < z. 

This lets us to model the adiabatic injection of the beam 
over the first N„ wiggler periods. 

The corrugated waveguide is shown schematically in 
Fig. 1, where Rt denotes the inner radius of the wave- 
guide, ÄS| denotes the maximum radius in the slots, s is 
the axial length of the slots, and p is the periodicity of the 
corrugations. The dispersion equation and structure of 
these modes have been discussed in the literature [1]. The 
modes contain spatial harmonics corresponding to the 
period of the structure. The fields in the region outside 
the slots [i.e., r < Rg~] are 

SA(x,t)=      £     5/l,,m,„(z)[R,,m.„(r)e, cos «,.„,„ 
l,m,n= — CD 

+ 0i.m..(r)e$ sin «,,„,„ + Z,.m,il(r)ez sin a,.m.„], 

(3) 

0168-9002/97/$ 17.00 Copyright © 1997 Elsevier Science B.V. All rights reserved 
PlI S0168-9002(97)00498-l 
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Neumann function and its derivative, and where 

S,((<o/c)RslAo}/c)R,) 

305 

L 
-<L 

~> 1 
Fig. 1. Schematic representation of the corrugated waveguide. 

where 

Zi.m.* =     dz'kLm,n(z') + Id- mt (4) 

denotes the phase corresponding to frequency co and 
wave number fc,.m.„ = kUm<0 + nk„, and fcp[=2jt/p] de- 
fines the wave number of the corrugations. The indices 
over / and m refer to the azimuthal and radial mode 
numbers, while the index over n refers to the spatial 
harmonic. In addition, the polarization functions are 
given by 

Rl.m.n = Jl(Kl.m.»R<s)Ji(K,.m.nr) 

I I 
„" Jl(Kl.m,nRg) ■ Ji{.KUm.„r),        (5) 

©I....M ■ 

and 

/ 
Kl.nt,nR n"g 

/ 
Kl.m.nr 

MKi.».*r)J,'(KKm.„Rt), (6) 

K, 
Z,.m.„(r) = T^ Ji'(Ki,„,„Rg)j;(K,,m_„r), (7) 

where KI„,„ == co2/c2 - kl„,n, and J, and J,' denote the 
regular Bessel function and its derivative. 

Within the slots [i.e., i?g < r < R,{], the field is 
assumed to be transverse magnetic and uniform in 
z where S£r = 5£B = 8BZ =0, and 

5£,=   t   E.S.^R^r) 

"    /c -.    /«       co \ 
ößr=   I   — £,S,  -,R5l,-r 

cos {16 -tot), 

cos(W — cot), 

co 
5ß„ = -   £   £,S;  -/?„,- r   sin (16 - cot), 

(9) 

(10) 

(ID 

where    S,(,x, j>) = y,(x)J,(y) -J,(x) Y,(y), S',(x,y) = Y«x) 
Ji(y) - Jt(x) Y,{y),   Y,   and   Y,'   denote   the   regular 

S/4,,m.„=  •£,- 

xsin 

»K,,m.„p     MK,,m,„Rt)j;(K,fm_„Rt) 

(12) 

The dispersion equation can be written in the form 

S;((co/c)Rs„(co/c)Rs) 

S,((co/c)Rsh (co/c)Rt) 

= £   V <ü/CK|,M,„ sin(/ci,„,„5/2) 

/>»=-«> Jl(Kl.m.„Rt)J'l(Ki,„,„Rg)    (/c,,m-„5/2) 

x [/,"(*,..../?,) - £^=-j-1-3 y,2(K,m.nJRg)l. 
O)        K|,m,„A, J 

(13) 

It is found, in practice, that the sum can be truncated to 
-5 <n <5. 

The dispersion equation is solved numerically and two 
modes are found corresponding to the transverse-electric 
(TE) and transverse-magnetic (TM) modes in the limit of 
a smooth-bore waveguide, and are referred to as the EH 
and HE modes. The dispersion equation for the HEn 

mode is plotted in Fig. 2 for Rst =0.82 cm, Rt =0.41 cm, 
p =0.2 cm, and s =0.1 cm. We also show the light-line, 
the TEn mode dispersion curve for a smooth-bore 
waveguide, and the results of an HFSS electromagnetic 
structures simulation code [2] for this structure. It is 
evident that the HEn and TEn modes have similar 
dispersion properties for co/ck„ <2; however, the HEn 
mode dispersion curve is somewhat flatter than the TEn 

mode resulting in lower voltage operation for a given 
bandwidth. It should also be remarked that both the 
dispersion relation and the HFSS codes are in good 

Fig. 2. Dispersion relations for the HE,, mode and the TE,, 
mode in a smooth bore waveguide. 

IV. LONG-WAVELENGTH FELs 
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agreement with the measured dispersion for a test struc- 
ture. We focus on the wiggler-mediated interaction in an 
FEL, and cor ae the discussion to operation to the 
supraluminoi,.- part of the HEn mode. 

The Poynting flux for each mode can be represented as 

m2c* 
P>.*,n-^R2M.*..*o>k,.mAP'™!n + C). 

where 5a,,m.„ = e5/i,,m.„/mec
2, 

I2 

(14) 

p(TE)  
* l.m.n — # 2 

<m.»R 
Jl(K,.m.nRg)lJl(Kl,„,„Rt) - /!,„.„], 

(15) 

is the TE-like component of the Poynting flux, and 

Ä = •//2Km.»^)[^('c,.m.BRg) - A,!m,„-] 

2/l,.„.„ 
Kl.m.nRg 

•/|(K,.m.„i?g)7,'(K,.m.„i?g) (16) 

is the TM-like component, and 4»,,£J|-i(fi.«,,Ä,) 
Jl+l(Kl,m,„Rt). 

The dynamical equations which govern the evolution 
for the amplitude and phase of each mode is found by 
substitution of the field representation into Maxwell's 
equations and the subsequent orthogonalization in the 
azimuthal, radial, and spatial harmonic mode structures, 
and the average over a wave period. We find that 

^Jd2     fco2 2    yi 

_p(R)    fa*      k2 r      YL 
*l.m.nl ~2  - «l.m.n ~ Kl.m.n I     00;.»,,» 

™ Td2   J\   ,K'2m.-VC°2      H 2       Ms +n 

_f^b/_^_TU> «2    „(2) 2jC,,m,„ 
C     \l»3l I "31 fc,.m,„ 

x>'i'(Ki.m,iiÄ»)Ji(K:».m.ii',)sina,.M.11 ), (17) 

^Vi.p^.^^/i.&i,,...)-*,,..^,«.!««,. 

+2P,"™» (*,....+ 
<, 
*!..... 

1/2 

*!.. 
K?       V/2 

,   K-l.m.n I       s 
+ - I     5<2,.m,„ 

-2S/-£LT<« "2 
* l.m.n T ■       : I /,„,„ + 

2*1. „.„ 
I I i,m,n ■ .    -   |,m,n     ■        i 

»3 I I »31 *,.„,.„ 

x^'('«,.„.„R,)y((K,.m,„r)cosa,.m.B), (18) 

where cob = 4ne2nb/me, the velocity components (t>,, v2, t3) 
are defined in the wiggler frame in which ex =excos fcwr 
+ ey sin ky,z, e2= — ex sin fc„z + ey cos /cwz, e3 = ez, and 

D(R) Kl,m.n   ^^l.m.n    ,, „  . r/. _   . 
n.m.„= -p ^-Jt(Kt.m.nRe)Jl(K,,m,„Rs). (19) 

Kl.m.n M.m.n^g 

describes the radial power flow into and out of the slots. 
In addition, 

T<I> 
' l.m.n 

r<2) 
* l.m.n 

T(3) 
' l.m.n 

(4) 
' l.m 

= J/+l(Kl.m.i|Äg)^-l(K|.™.»r) 

+ J/-i(K|.«.»Ä,)y,+ l(K,.m.IIr) 

-cos(a,,m,„-^) 

sin(a,,m.„-x) 

sin(a,,m,„-x) 

cos(a,.m.„-x) 

- cos(a,,m,„ + x) 

- sin(a,,m,„ + x) 

sin(a,,m,„ + x) 

-cos(a,,m,„ + ^)_ 

(20) 
and the averaging operator is defined as 

<("••)> -J4^5J jj<i3Po&oFb(Po)J    \dx0dy0cTL(x0,y0) 

xj"    d^„(7,(wf   dC6ff,(Co)(-■ ■). (21) 

where /?z0( = ur0/c) denotes the initial axial velocity, \j/0 is 
the initial ponderomotive phase, and f0( = ktz0) is the 
initial phase relative to the spatial harmonics of the 
corrugations. These equations reduce to those for the 
smooth-bore guide in the limit RsX -* Rt [3]. 

The initial distributions in the cross section and entry 
time model a beam with a uniform pulse structure and 
a flat-top radial profile, and the initial momentum distri- 
bution models a monoenergetic beam with a pitch-angle 
spread of the form 

«■,„»    exp[-(p.-0 -Po)2/Ap2WPo -Pxo -Pzo)H(pz0) Fb{p0) = — , 

7i I    dpz0 exp [ - (pz0 - p0)2/Ap2 ] 

(22) 

where p0 and Apz denote the bulk momentum and the 
axial momentum spread, and H is the Heaviside function. 
The axial energy spread associated with the distribution 
is 

7o 

1 

1+2(72-1) 
Po 

(23) 

where y0 =1 + p2/m2c2. 
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Electron dynamics are integrated subject to the mag- 
netostatic, electromagnetic, and self-electric and self- 
magnetic fields using the 3D Lorentz force equations. 
The effect of beam space-charge waves is not included in 
the analysis. Hence, we integrate in z via 

v:-p = -et5E(x,t) + E«\r,zn 
az 

--vx [£„,(*) + 55 (AT, t) + B"(r, z)],       (24) 
c 

where B„,(x) describes the axial magnetic field and the 
wiggler field, and SE and dB represent the electromag- 
netic field due to the aggregate of all the spatial har- 
monics. The self-fields are represented as [4] 

HE,, Mode(R = 0.41 cm; R. = 0.82 cm; p = 0.2 cm; s = 0.1 cm) 

2e 

B™ = -^wl(ß:)l(y-(y))ex-(x-<xy)eJ. 
2e 

(25) 

3. Numerical analysis 

The dynamical equations for the fields and the elec- 
trons are solved numerically for an amplifier configura- 
tion in which a single wave of frequency a is injected into 
the system at z = 0 in concert with the electron beam. 
The initial conditions on the waveguide modes are 
chosen to model the injection of each mode at the same 
frequency with some arbitrary power level and with 
a wave number equal to that of the vacuum value. The 
effect of the self-electric field on the initial kinetic energy 
includes the space-charge depression in kinetic energy 
across the beam. 

We consider amplification of an HEn mode in a 
waveguide with parameters corresponding to the cold 
waveguide dispersion studies shown in Fig. 2. The results 
of the simulation for a variety of beam voltages near 
200 kV and a beam current of 82 A and a beam radius of 
0.205 cm are shown in Fig. 3 where we plot the saturation 
efficiency versus frequency. It is evident from the figure 
that efficiencies ranging from 15 to 25% are achievable 
over a bandwidth extending from about 26-45 GHz for 
beam voltages which may vary from 195-210 kV. The 
runs illustrated in Fig. 3 were made for an ideal beam in 
which the axial energy spread vanishes. We can estimate 
the limits on the energy spread which can be tolerated by 
noting that the thermal regime occurs when 
Avjv0 ä Im fc/(Re k + kw). For the example shown of 
a beam voltage of 200 kV and a frequency of 35 GHz 
which is in the center of the band, we find that 
Im fc/fcw * 0.035 and Refc/few«1.08 so that 
Avz/v0 «1.7%. This translates into and axial energy 
spread which must be less than Ayz/yo Ä 1.6%, which is 
well within the state-of-the-art in electron gun design. 
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Fig. 3. Plot of the saturation efficiency versus frequency for the 
HEn mode. 

4. Summary and discussion 

In summary, we have compared the analytic dispersion 
relation for a corrugated waveguide with both the HFSS 
structure code and with the measured dispersion of a test 
structure and found good agreement. Based upon this 
analytic mode structure, we have then derived a nonlin- 
ear formulation and simulation code for the interaction 
of an electron beam with a helical wiggler field in a cor- 
rugated waveguide. Preliminary results indicate are 
encouraging in that both good efficiencies and broad 
bandwidth are possible. 
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Abstract 
A nonlinear analysis of an annular beam FEL with a helical wiggler and axial guide field is presented. An annular beam 

has the advantage of reduced DC self-fields, facilitating beam transport in short period wigglers. A 55 kV/5 A annular beam 
interacting with the TEn cylindrical waveguide mode is considered. The inner and outer beam radii are 0.27 and 0.33 cm, 
respectively. The wiggler amplitude is 250 G and the period is 0.9 cm. Axial guide fields up to 3 kG are studied. The 
ARACHNE slow-time-scale simulation code shows that efficiencies of 10%, corresponding to gains >40 dB, are possible for 
grazing incidence with the TEM mode in Ku-band. In addition, the 3 dB instantaneous bandwidth is found to be greater than 
20%. 

1. Introduction 

The free-electron laser (FEL) operation is based on the 
beating of the wiggler and radiation fields to produce a 
slowly varying ponderomotive wave in phase with the 
electron beam. The resonant wavelength depends upon the 
beam energy and the wiggler parameters as A«(1 + 
a\)k„l2y\, where Aw is the wiggler period, y0 is the bulk 
relativistic factor of the beam, and aw =0.0934SWA„ for a 
wiggler amplitude ßw in kG and period in cm. The 
wavelength, gain, and efficiency all decrease as the energy 
increases for fixed wiggler parameters. A great deal of 
effort has been devoted to the design of short period 
wigglers for high frequency operation with low beam 
energies. However, this is a self-defeating process since 
reductions in the wiggler period often result in reductions 
in the wiggler amplitude with a deleterious impact on the 
efficiency and gain. 

In order to circumvent these restrictions, we consider the 
effect of using an annular electron beam. This has the 
advantage that the DC self-fields are smaller than in a solid 
beam of comparable current, which facilities propagation 
through the small gaps required of short period wigglers. 
This configuration is simulated using the ARACHNE code 

[1,2] which is a slow-time-scale amplifier formulation 
which describes the interaction of the beam propagating 
through a helical wiggler and an axial guide field with the 
modes in a cylindrical waveguide and includes collective 
effects both in the beam-space-charge waves (i.e., Raman 
effects) and in the DC self-electric and self-magnetic fields 
due to the bulk beam charge and current densities. 

2. Simulation results 

The ARACHNE code was used to simulate the per- 
formance of an annular beam FEL amplifier with a helical 
wiggler and an axial guide field. The device parameters, 
which correspond to grazing incidence for the fundamental 
TE,, mode, are listed in Table 1. 

The theoretical prediction of efficiency versus frequency 
for an ideal beam (energy spread AXZ — 0) interacting with 
the TEn cylindrical waveguide mode is plotted in Fig. 1. 
The simulation shows a peak efficiency of 10.6% and a 
3 dB bandwidth of 22%. The degradation of peak ef- 

Table I 
Nominal design parameters for the Ku-band annular beam FEL 

* Corresponding author. Tel. +1 202 767 6656, fax +1 202 767 
1280, e-mail blank@mmace.nrl.navy.mil. 

Permanent address: Science Applications International Corp., 
McLean, VA 22102. 

Permanent address: Mission Research Corp., Newington, VA 
22122. 

Permanent address: University of Maryland, College Park, 
MD 20742. 

0I68-9002/96/S15.00 Copyright © 1996 Elsevier Science B.V. All rights reserved 
PII S0168-9002(96)00045-9 

Beam voltage 55 kV 
Beam current 5A 
Waveguide radius 0.6 cm 
Wiggler period 0.9 cm 
Wiggler field amplitude 0.25 kG 
Axial guide field amplitude 3kG 
Centre frequency 17.0 GHz 
Input power 1 W 
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16 17 
Frequency (GHz) 

Fig. 1. Theoretical predictions of efficiency versus frequency for a 
55kV/5A electron beam interacting the a TEM mode in the 
presence of a helical wiggler with 250 G magnetic field on axis. 

Fig. 2. Theoretical predictions of peak efficiency versus axial 
velocity spread. 

ficiency with increasing axial energy spread is shown in 
Fig. 2. At an energy spread Ay2/yz = 0.2%, the peak 
efficiency is reduced to approximately 4%, which is less 
than half the peak efficiency for an ideal beam. Thus, it is 
important to keep energy spread extremely low. 

The performance predictions for the annular beam 
interaction were compared to simulations for a solid beam 
interaction and the results are shown in Fig. 3. In the 
simulations, the total current, voltage, and wiggler field 
were held constant. The annular beam was assumed to 
have an inner radius of 0.27 cm and an outer radius of 

M    20 

Fig. 3. Comparison of output power versus interaction length for 
an annurar electron beam (inner and outer radii of 0.27 cm and 
0.33 cm, respectively), shown with the solid line, and a solid beam 
(0.3 cm radius), shown with the dashed line. 

0.33 cm, while the radius of the radius of the solid beam 
was 0.3 cm. For both cases self fields were included and 
the energy spread was assumed to be zero. Fig. 3 shows 
that the annular beam interaction offers dramatic per- 
formance improvements over the solid beam. The saturated 
power for the annular beam interaction is more than twice 
that of the solid beam case. In addition, the saturation 
length is significantly reduced for the hollow beam, 
indicating that a shorter device is possible. 
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Abstract 
We study the electron trajectories using two wiggler models. The first is a dipole wiggler (DW) constructed from the 

superposition of four arrays of individual magnetic dipoles with alternating orientations. This field has the advantage that 
since the field representation for each dipole is self-consistent, the aggregate field is also. The second model is the 
parabolic-pole-face (PPF) wiggler which is not self-consistent when wiggler imperfections are included. These two models 
are used to study the effects of wiggler imperfections on electron trajectories. In addition, the orbits in the PPF wiggler were 
qualitatively similar to those in the DW model. 

1. Introduction 

Wiggler imperfections in free-electron lasers (FEL) have 
been studied using a random walk model of the electron 
orbits including their effects on spontaneous emission [1]' 
and the linear gain [2,3]. Nonlinear modeling has typically 
employed the random walk model in conjunction with a 
wiggler-averaged formalism [4-7], however, non-wiggler- 
averaged models of the interaction have also been con- 
ducted [8-10]. Non-wiggler-averaged models indicate that 
the specific model used has important implications for FEL 
performance. 

This paper is the first phase of a comprehensive study of 
wiggler imperfections in FELs using non-wiggler-averaged 
techniques with self-consistent wiggler models. Here, we 
confine the analysis to the orbit dynamics. To this end, we 
construct a self-consistent wiggler model based upon the 
superposition of multiple magnetic dipoles arranged in four 
lattices placed symmetrically about the symmetry axis. 
Imperfections are introduced into this model by randomly 
varying the strength of each dipole, and the electron orbits 
are determined by integrating the 3-D Lorentz force 
equations. 

The orbits in this dipole wiggler (DW) are compared 
with the orbits for a comparable set of imperfections in a 
parabolic-pole-face (PPF) wiggler model. In contrast to the 
DW model, the PPF model does not satisfy the curl- and 
divergence-free requirements when wiggler imperfections 
are included. 

2. The wiggler configurations 

The dipole wiggler configuration we employ is a 
superposition of four lattices each of which is com- 
posed of an array of magnetic dipoles with alternating 
orientations. This is illustrated schematically in Fig. 1. 
As shown, each lattice is displaced from the symmetry 
axis by ±g in the y-direction and ±gx in the jr-direc- 
tion. This produces a field which is periodic in the z- 
direction and the separation between the dipoles is one 
half of the wiggler period (Aw). Our purpose in using 
four symmetrically placed lattices is to obtain a field 
with a local minimum along the symmetry axis to pro- 
vide focusing in both transverse directions. 

The field produced by each dipole is known in closed 
form, and the aggregate field produced by the superposi- 
tion of the field of each dipole is both curl- and di- 
vergence-free. We can write the aggregate field in the form 

* Corresponding author. Tel. +1 202 767 0034, fax +1 703 734 
1134, e-mail frei:nd@mmace.nrl.navy.mil. Fig. 1. Schematic representation of the dipole wiggler. 
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where ß„ is the strength of each consecutive period, Nf is 
the number of wiggler periods, 

PSx,y,z)* 

Rn(x,y,z) = 
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1 

- nAw - Av ,/2?]5n 
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I 

(4) 

[x2+/ + (2-/iAw-Aw/2)2]3 
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(5) 

S„(.v. v, z)m~,      , , ,., 
[x2+/ + (z-«Aw)Y2 

y(z - nAw - Aw/2) 

Ui+>-2 + (z-nAw-Aw/2f]5 (6) 

While this field is periodic it is not sinusoidal. An 
infinity long array produces a field with a uniform peak-to- 
peak field strength and period. However, since the field is 
composed of contributions from all the dipoles, bolh tin- 
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Fig. 2. Axial variation of the normalized on-axis y-component of 
the dipole wiggler field. 

amplitude and period shift with displacement from the 
midpoint of a finite length DW. This is illustrated in Fig. 2 
where we plot the normalized [aw = 0.09337ßwAw is the 
wiggler parameter] y-component of the on-axis field versus 
z for a 50 period DW with Aw = 1.8 cm, a peak amplitude 
of 5.2 kG, gx = 1.8 cm, and gy = 1.225 cm. As shown, the 
amplitude varies rapidly near the ends of the wiggler 
where large spikes are found. Note that the period (as 
indicated by the positions of the field zeroes) also varies 
with displacement from the midpoint. In a real wiggler, 
these end effects would be compensated for by tapering the 
dipole strengths near the ends of the wiggler; however, for 
our purposes, we adopt the simpler procedure of using a 
very long wiggler and focus oh the trajectories near the 
center where the field is nearly uniform. 

To compare trajectories in the DW with those in a PPF 
wiggler, g and g are chosen so that aw varies as 
cosh^x/V^) cosh(itwy/V2) as in the PPF model. This is 
illustrated in Fig. 3 where we plot the variation of aw in 
the wiggle-plane (i.e., the ^-direction), where the solid line 
represents the variation of the DW model and the dots 
represent the variation found from the PPF model. Note 
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Fig. 3. Variation in the y-component of the field with displace- 
ment in the jr-direction. 
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that the variation in the DW in the ^-direction is similarly 
close to the PPF model. It is clear that with this choice of 
gx and g , the transverse focusing of the DW matches that 
found for the PPF model. 

Finally, imperfections are introduced into the DW model 
by making random variations in the period-to-period dipole 
strengths. An actual wiggler would also have imperfections 
due to random variations in the offsets and spacing 
between the dipoles; however, we shall postpone the study 
of these effects for the future. 

The field in a PPF wiggler can be represented as 

Bw(x) = BJz)\ cos kwz\ ex sinhf -7=-J sinhf -j=-) 

+ *-,cosh(^)cosh(^£)] 

- s/lezs\n kwz coshf -V ) sinh( m- (7) 

where the amplitude varies in z to model wiggler imperfec- 
tions. However, this model is curl- and divergence-free 
only when the amplitude Bw is constant. If Bw varies with 
z, then only the z-component of the curl vanishes, and this 
model is not self-consistent. 

Imperfections will be introduced into the PPF model 
under the assumption that ßw(z) = ßw0 + Aßw(z), where 
ABw(z) describes random fluctuations in the amplitude. 
The random component is determined using a random 
sequence {Aß„}, where A5„[=Aßw(nAw/2) for integer n] 
denotes the random fluctuation at half wiggler period 
intervals. The amplitude is mapped between these points 
via Aßw(z) = Aß„ +(Aß„ + l - Aß„) sin2(ir5z/Aw), where 
z = nAw/2 + 8z for 0 ^ 8z £ A„/2 which is continuous. 

Observe that random variations in the DW result in both 
amplitude and period fluctuations. Period fluctuations 
occur because field zeroes are determined by cancellation 
in the fields produced by each dipole, and variation in the 
dipole strengths or offsets cause fluctuations in the posi- 
tions of the on-axis field nulls. However, the PPF model is 
sinusoidal and no period fluctuations are included. 

3. Numerical analysis 

We integrate electron orbits in the DW and PPF models 
using the 3-D Lorentz force equations. In the DW model, 
we inject electrons near the midpoint of a long 800 period 
wiggler using the same parameters shown in Figs. 2 and 3. 
This gives =200 wiggler periods on either side of the 
midpoint over which the field is relatively uniform. 

We first consider the ideal DW where the dipole 
strengths are identical and assume an electron energy of 
30MeV; hence, if we inject -the electron at z0 coae- 
sponding to a field maximum, then the initial conditions 
are x0Mw = 0.00023296,  yo=0,  z0/Aw = 399.5,   px0 = 

-0.002 

-0.004 

xj\w = 0.0023296 
ri0 

g = 1.8 cm 

400 450 500 550 600 

Fig. 4. Electron orbit in an ideal dipole wiggler field. 

p 0 = 0, and p.0/mcc = 59.703. The motion in the y-direc- 
tion is negligible and can be ignored. The resulting orbit is 
shown in Fig. 4, and very regular wiggler motion is found. 

We nw turn to the effect of imperfections, and randomly 
vary the dipole strengths for each of the 800 periods in the 
DW. The specific choice of imperfections is shown in Fig. 
5 where we plot the change in aw versus z. For this specific 
case, the rms fluctuation level is =1%. The variation in the 
distance between the field nulls is shown in Fig. 6. We find 
an rms jitter in the separation in the field nulls for this case 
of «0.7%. 

Injection of an electron with the same initial conditions 
used for the case shown in Fig. 4 results in a trajectory 
which displays both a large-scale betatron oscillation and 
orbit fluctuations. Focusing on the orbit jitter, we compen- 
sate for the betatron oscillation by giving the electron an 
initial px0/mec = 0.0275. The resulting orbit is shown in 
Fig. 7. The rms amplitude of the jitter is (Ajc/Aw)rml = 
0.024, and the average displacement of the orbit from the 
x-axis is *.vg/Aw « —1.1 X 10~". Observe that for this case 
there is no coherent "walk-off of the beam over an 
extended interaction length. 

Turning to the PPF model, we remark that the initial 

1 r    !—1—1—j— 

800 periods 

600 

Fig. 5. Peak-to-peak variations in the normalized on-axis y-com- 
ponent of the dipole wiggler field. 
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Fig. 6. Variation in the separation between the field nulls for the 
error distribution corresponding to the amplitude fluctuations in 
Fie. 5 

0.010 

0.005   - 

1 1™1— 

:  B   =5.2kG 
W 

X  = 1.8 cm 
w 

 ■'   i   i   i   i 

800 poles 

<   1   1   1   ,"-l— 

r0 = 59.7 : 

'i     .   .       M 
Jüillui i JaWW'lliR• 

-0.005 

-0.010 

x^ = 0.0023296T 
pxa/mjc = 0.0275 

gx= 1.225 cm 
gy = 1.8 cm 

400 450 550 

Fig. 7. Electron orbit in the dipole wiggler with the imperfections 
shown in Figs. 5 and 6. 
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Fig. 8. Electron trajectory in the parabolic-pole-face wiggler with 
imperfections. 

conditions used for the ideal DW also result in very 
uniform wiggler motion for the PPF wiggler. Imperfections 
have been introduced into the PPF wiggler model by 
mapping the peak amplitude at half wiggler period inter- 
vals from the DW onto Aß„ for the PPF model. This does 
not reproduce all the imperfections from the DW model 
since there are no period fluctuations in the PPF model. As 
a result, this misses some peaks and results in a smaller 
field fluctuation for the PPF wiggler than for the DW. In 
this case the rms amplitude fluctuation used in the PPF 
model is approximately 0.77%. While this is some 23% 
smaller than the rms fluctuation for the DW model, it 
provides as close a match as is possible to obtain with a 
sinusoidal wiggler. 

With no compensation, betatron oscillations are found as 
well as the expected orbit jitter (as for the DW). The 
betatron period is in close agreement with that of the DW, 
but the amplitude is smaller (due to the smaller rms 
amplitude fluctuation); hence, we require p„0lmtc — 0.015 
to compensate for the betatron oscillations. The resulting 
orbit shown in Fig. 8 is very similar to that found with the 
DW model. The rms amplitude of the jitter for the PFF 
wiggler is (Ax/Aw)rmj« 0.0017 which is 29% less than that 
for the DW. 

4. Summary and conclusions 

In this paper, we have analyzed electron orbits in two 
specific wiggler models to study the impact of imperfec- 
tions. The fundamental conclusions from this study can be 
divided into two categories relating to the DW and PPF 
models. 

The DW is self-consistent and the introduction of 
imperfections does not violate the curl- and divergence- 
free requirements, and no coherent "walk-off was found 
for a select choice of imperfections. While we have not yet 
performed a complete statistical analysis over a large 
ensemble of randomly generated imperfections, this is 
significant since the performance of an FEL is not a 
statistical process and is determined by one specific 
wiggler rather than an ensemble. If coherent "walk-off is 
not to a corollary to the presence of imperfections, then 
this has important implications for FEL performance and it 
is important to incorporate this (or similar) wiggler models 
into full-scale device simulations. 

Comparison with the PPF wiggler is important since this 
is a commonly used in both orbit and full-scale device 
simulations. To facilitate the comparison, we tailored the 
DW to provide PPF-like transverse focusing, and tailored 
the amplitude imperfections in the PPF model to corre- 
spond as closely as possible to the DW model. The orbits 
for the two models were identical for ideal wigglers, and 
surprisingly close when imperfections were present despite 
the fact that the PPF model was neither curl- nor di- 
vergence-free. 

V. SHORT WAVELENGTH FELs 
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Abstract 
A short summary of the current status and most important future directions for long wavelength free-electron lasers is 

presented. For the purposes of the discussion, long wavelength refers to wavelengths longer than 0.5 mm. The distinction 
between long and short wavelengths is not entirely arbitrary since different physical processes may be important. For 
example, higher current beams are typically employed at long wavelengths and space-charge effects may be important. 
Indeed, the dominant interaction mechanism is often coherent Raman rather than coherent Compton scattering. In addition, 
dispersion due to the beam dielectric effects and finite transverse dimensions in the drift tubes and cavities are important 
effects at longer wavelengths. The ultimate goals of long wavelength FEL research are to achieve much higher average 
powers with good overall efficiency in a compact design, and the highest average power produced in an FEL to date (36 W) 
has been recorded in the Ku-band. At the present time, electrostatic accelerators and long pulse modulators appear to be the 
prime candidates for drivers for these systems; however, advances in induction linac technology which lead to higher 
repetition rates and improved beam quality could alter this conclusion. 

Our purpose in this paper is to provide a summary of 
long wavelength (> 0.5 mm) free-electron lasers (FELs) 
which are currently either in operation or under construc- 
tion that can be used as a guide to the current state of this 
branch of the field. Note that a companion paper appears 
in this volume dealing with "short wavelength" FELs [1]. 
Our basic criterion for inclusion in the table is that the 
FEL must either be in operation or under construction. 
Projects which are still in the proposal stage, therefore, fall 
outside of the scope of this table and have been excluded. 
In compiling this list, we conducted a search which relies 
upon (1) contributions to general literature and the pro- 
ceedings of the annual Free-Electron Laser Conferences, 
and (2) personal contacts. Personal contacts have proven to 
be an important source of information concerning FEL 
programs which are either in the early operational stages 
or still under construction and have not as yet been de- 
scribed in archival literature. As a consequence, the best 
reference for many of the entries to the table are personal 
communcations. In addition, despite our best efforts to 
compile an exhaustive list, it is possible that several long 

" Corresponding author. Tel. +1 703 734 5840, fax +1 703 
821 1134, e-mail freund@mmace.nrl.navy.mil. Permanent ad- 
dress: Science Applications International Corp., McLean, VA 
22102, USA. 

wavelength FELs have been inadvertently omitted. Our 
intention is for this compilation to become an annual 
process associated with the FEL Conference, and we hope 
that each group will keep us abreast of their experimental 
results and that any groups we might have missed will 
contact us with the relevant data on their experiments. 

The distinction between long and short wavelength 
FELs is not entirely arbitrary since different physical 
processes may be important at longer wavelengths. For 
example, higher current beams are typically employed in 
this regime and space-charge effects are more important. 
In particular, the dominant interaction mechanism is often 
coherent Raman rather than coherent Compton scattering. 
In addition, while short wavelength FELs excite optical 
modes, dispersion due to the beam dielectric effects and 
finite transverse dimensions in the drift tubes and cavities 
are important effects at longer wavelengths. 

At the present time, we have identified 28 long wave- 
length FEL experiments which are either in operation or 
under construction around the world. The table lists the 
most relevant parameters describing the experiments in- 
cluding: wavelength/frequency, peak power, pulse time, 
repetition rate, beam voltage and current, wiggler period 
and field strength, and the type of device and accelerator 
employed. We have chosen to denote the wiggler parame- 
ter by K (= 0.0934ßwAw, where ßw is the wiggler ampli- 
tude in kG and Aw is the wiggler period in cm); however, 

0168-9002/95/S09.50 © 1995 Elsevier Science B.V. All rights reserved 
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this parameter is often called aw in the literature. Since it 
is impossible to give all the relevant information concern- 
ing each device in this format, some compromises have 
been made. For example, most of these FELs operate over 
a fairly broad spectral range, and the wavelength and 
frequency listed have been chosen to correspond to the 

shortest accessible wavelength. We have also chosen to list 
the peak powers since the average powers can be obtained 
from the specified pulse times and repetition rates. The 
wiggler type shown refers to helical (H), planar (P), circu- 
lar (C), and coaxial hybrid iron (CH) [2] wigglers. It is 
important to note that an axial guide field is often used in 

Table 1 

FEL A (mm)/ 'peak 
T

P "rep VbA Aw (cm)/ Type/ 
[Ref.] /(GHz) (MW) (M-S) (Hz) (MV/A) K (type) ace. 

TAU [11] 370/0.8 io-5 
100 SS 0.001/0.2 2/0.04 (P) A/IC 

TAU [12] 76/4.9 UC 10 100 0.07/1 4.4/0.12 (P) SASE/ES 
UL [13] 35/8 5X10-'° cw 0.055/0.001 1.9/0.05 (P) A&O/M 
KEK[7] 32/9.4 100 0.015 0.07 1.5/450 16/1.5 (P) A/IL 
ISAS [14] 26/12 0.6 0.4 SS 0.44/150 3.25/0.27 (C) O/PL 
NRL[10] 20/15 4.2 1 6 0.25/100 2.5/0.07 (H) A/M 
MIT [15] 8/33 60 0.025 SS 0.75/300 3.1/0.4 (H) A/PL 
CESTA [16] 8/35 50 0.03 SS 1.8/400 8/2.24 (H) A/PL 
NRL[17] 8/35 UC 1 6 150/10 0.75/0.2 (CH) A/M 
UT[18] 8/35 0.04 100 SS 0.5/200 3/0.53 (H) SASE/PL 
IEE [19] 8/35 140 0.05 3.4/800 11/3.5 (P) A/IL 
JINR [20] 8/35 4 0.2 SS 1.5/200 7.2/1.3 (H) O/IL 
JINR [20] 8/35 30 0.2 SS 1.5/200 7.2/1.3 (H) A/IL 
SIOFM [21] 8/35 UC 0.02 SS 0.4/800 2.2/1 (H) SASE/PL 
ISAS [14] 7/40 1 0.5 SS 0.5/150 3.27/0.27 (C) O/PL 
IAP [20] 6/47 6 0.02 SS 0.5/100 2/0.2 (H) O/PL 
ENEA [22] 2/150 0.001 4 40 2.3/0.27 2.5/1.42 (P) O/MI 
JAERI [23] 5/60 UC 0.12 1 1/1000 4.5/0.76 (P) O/IL 
IAP/INP[24] 4/70 1500 2 SS 1/15000 4/0.3 (H) O/PL 
INP [20] 4/70 30 2 SS 1/1500 4/0.3 (H) O/PL 
UM [25] 3.5/85 0.2 0.02 SS 0.45/17 0.96/0.36 (P) PL/A 
NSWC/MRC [26] 3/95 10 0.25 SS 2.5/100 10/1.9 (H) O/PL 
DLR [27] 3/100 1-2 0.1 SS 0.5/150 2/0.19 (H) SASE/PL 
KAERI [28] 3/100 UC CW 0.43/2 3.6/0.4 (H) O/ES 
TAU/WI [29] 3/100 UC 1000/CW 2.5/1 4.4/1.8 (P) O/ES 
CU[30] 2/150 5 0.15 SS 0.8/150 1.85/0.25 (H) A/PL 
FOM [9] 1/260 UC 1 X105 1 2/12 2/0.67 (P) O/ES 
UCLA [31] 0.5/560 UC 2X10-6 15/150 10/2.8 (P) O/RFL 

A - amplifier 
C - circular 
CESTA - Centre d'Etudes Scientifique e 

Techniques d'Aquitaine 
CH - CHI wiggler 
CU - Columbia University, USA 
CW - continuous wave 
DLR - German Aerospace Research 

Establishment 
ES - electrostatic accelerator 
H - helical wiggler 
IAP - Institute of Applied Physics, Russia 
INP - Institute of Nuclear Physics, Russia 
IC - Ignition Coil 
IEE - Institute of Electroni Engineering, China 
IL - Induction Linac 
ISAS - Institute of Space and Astronautical 

Science, Japan 
JAERI - Japan Atomic Energy Research Institute 
JINR - Joint Institute for Nuclear Research, Russia 
KAERI - Korean Atomic Energy Research Institute 

KEK - National Laboratory for High Energy 
Physics, Japan 

NRL - Naval Research Laboratory 
NSWC - Naval Surface Weapons Center, USA 
M - modulator 
MI - microtron 
MRC - Mission Research Corp. 
O - oscillator 
P - planar wiggler 
PL - pulse line accelerator 
RFL - radio frequency linac 
SASE - self amplified spontaneous emission 
SIOFM - Shanghai Institute of Optics and 

Fine Mechanics 
SS - single shot 
TAU - Tel Aviv University 
UC - under construction 
UL - University of Liverpool, UK 
UM - University of Maryland, USA 
UT - University of Twente, The Netherlands 
WI - Weizmann Institute, Israel 
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conjunction with helical wigglers in intense beam FELs, 
but that the brevity of this format did not permit inclusion 
of this information in the table. 

As the table illustrates, long wavelength FELs employ 
many types of accelerator (modulators, pulse line accelera- 
tors, electrostatic accelerators, microtrons, induction and 
radio frequency accelerators, and even an automobile igni- 
tion coil). As a result, the group exhibits a wide variety of 
pulse formats and peak and average powers. However, the 
bulk of the experiments employ pulse line accelerators 
which operate in a single-shot (SS) mode with high peak 
powers. Historically, the pioneering work on long wave- 
length FELs was performed by R.M. Phillips [3] prior to 
1964 using modulator technology developed in the mi- 
crowave tube community (note that Phillips referred to his 
devices as ubitrons and that the term free-electron laser 
first came into usage in the early 1970s when it was coined 
by J.M.J. Madey). Long wavelength FEL research began 
again at various laboratories in the early 1970s with the 
intention of extending Phillips' work using intense rela- 
tivistic electron beams. Much of this work was directed at 
exploring the basic physics of the Raman regime [4], and 
high average power was not an essential goal. As a result, 
single-shot pulse line accelerators are often used since they 
are capable of producing beams with energies of several 
MeV and currents of many kiloamperes. 

In order to achieve the necessary beam quality from 
pulse line accelerators, careful design of the diode is 
essential. The fundamental diode design used in most of 
the pulse line accelerator-based FELs [5] employ a shaped 
cathode/anode which is immersed in a converging axial 
guide field. The anode is designed to "scrape" a large 
fraction of the beam so that only a central core with a low 
velocity spread is injected into the wiggler. Typically, the 
diodes are designed in these configurations to scrape off 
approximately 90% of the beam but, since pulse line 
accelerators often produce beam currents in the tens of 
kiloamperes, this still leaves an appreciable current. As a 
result, collective FELs built using pulse line accelerators 
have produced high peak powers, although they suffer 
from the disadvantages of a low wall-plug efficiency and a 
low average power. 

The principal thrusts of current long wavelength FEL 
research include the achievements of high average powers, 
broad bandwidths, and compact systems. In this sense, 
pulse line accelerator FELs must be considered as proof- 
of-principle experiments, and the development of practical 
long wavelength FELs depends upon other accelerator 
technologies. 

Induction linacs have the advantage over pulse line 
accelerators in that they can be repetitively pulsed. Hence, 
it is possible, at least in principle, to produce high average 
powers and high efficiencies. However, there are two 
practical difficulties with induction linacs for FEL applica- 
tions. The first is that it is difficult to operate at high 
repetition rates. The ELF experiment [6] which produced a 

peak power of approximately 1 GW at 35 GHz operated 
with a pulse time of 10-20 ns and a repetition rate of 0.5 
Hz which represents an average power of only about 7 W. 
The second is emittance growth which often results in 
unacceptably high thermal spreads, and the necessity of 
beam scraping. For example, approximately 80% of the 
beam was scraped off in the ELF experiment. Thus, while 
the extraction efficiency was about 34% from the beam 
that passed through the wiggler, the overall efficiency 
(using the total beam power prior to scaping) was closer to 
7%. In view of this, the recent results from the induction 
linac-based FEL at KEK [7] which produced a peak power 
of 100 MW using some beam scraping and ion channel 
guiding represents a possibly significant advance. 

Other approaches which may hold more promise for 
achieving high average powers and efficiencies involve 
long pulse modulators and electrostatic accelerators. In the 
case of electrostatic accelerators, full CW operation is 
possible if nearly total beam recycling can be achieved. 
This has been accomplished at infrared wavelengths at the 
University of California at Santa Barbara [8]. However, the 
level of beam recovery which can be achieved decreases 
with increasing extraction efficiency from the FEL, and 
this may prove to be a limiting factor in the technology. A 
significant experiment using electrostatic accelerators is 
currently under construction at FOM in The Netherlands 
[9]. The ultimate goal of this experiment is to build a CW 
FEL designed to produce 1 MW at 260 GHz for the 
heating of plasmas in magnetic fusion reactors. Based 
upon a beam current of 12 A and a kinetic energy of 2 
MeV, this yields an extraction efficiency of the order of 
4%. However, the overall system efficiency can be much 
larger due to the beam recovery system. It will be interest- 
ing to see how effective beam recovery can be in a system 
with this level of extracted power. 

One disadvantage associated with electrostatic accelera- 
tors is that they are low current devices which often 
implies low gains as well. For this reason, the FOM 
configuration is that of an oscillator. A related disadvan- 
tage arises since high output power requires high beam 
power; hence, a high power electrostatic accelerator-based 
FEL also requires high energies which implies a large 
physical size. This would be inconsistent with applications 
requiring compact devices. 

For applications which require more compact devices, 
long pulse modulators may have advantages. A research 
program at the Naval Research Laboratory has been de- 
voted to the development of this concept with goals of 
high average power. The present experiment [10] employs 
a 250 kV/100 A modulator with a pulse time of 1 (is and 
a repetition rate of 6 Hz to produce approximately 4.2 MW 
in Ku-band. This represents an average power of about 36 
W which is the highest average power produced in an FEL 
to date. The direction of this program is to achieve still 
higher powers at higher frequencies using lower voltage 
electron beams. To this end, a follow-on experiment is in 
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the design stages now which will employ some form of 
dispersion control (i.e., a rippled-wall waveguide) to per- 
mit lower voltage operation. 

In summary, the highest average power produced in an 
FEL has now been recorded in a Ku-band FEL; however, 
the ultimate goals of long wavelength FEL research are to 
achieve much higher average powers with good overall 
efficiency. In addition, many applications require more 

compact designs than have yet been achieved. At the 
present time, electrostatic accelerators and long pulse mod- 
ulators appear to be the prime candidates for drivers for 
these systems; however, advances in induction linac tech- 
nology which lead to higher repetition rates and improved 

beam quality could change this conclusion. 
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Abstract 

A summaryof the current status and most important future directions for long wavelength (>0.5 mm) free-electron lasers 
is presented The dtst.nct.on between long and short wavelengths is a natural one since different physical processes may be 
important. Space-charge effects may be important for the high currents typically employed at long wavelengths and the 
dommant mteractton mechanism is often coherent Raman scattering. In addition, dispersion due to the dielectric effects and 
fintte transverse d.mens.ons in the drift tubes and cavities are important at longer wavelengths. The principal goals at long 
wavelengths are to ach.eve much higher average powers with good overall efficiency in a compact design; and the highest 
average power produced tn an FEL to date (36 W) has been recorded in the Ku-band 

This is the second paper dealing with the status of long 
wavelength free-electron lasers (FEL) and our purpose, as 
in the first paper [I], is to provide a summary of long 
wavelength (>0.5 mm) FELs which are currently either in 
operation or under construction. Also, as before, a compan- 
ion paper appears in this volume dealing with "short 
wavelength" FELs [2]. Our search in compiling this list 
relies upon (1) contributions to general literature and the 
proceedings of the annual Free-Electron Laser Confer- 
ences, and (2) personal contacts. The latter was an 
important source of information concerning FEL programs 
which are either in the early operational stages or still 
under construction and have not as yet been described in 
archival literature. Despite our best efforts, however, 
inadvertent omissions are still possible. 

The distinction between long and short wavelength 
FELs is natural because higher current and lower energy 
beams are typically employed ir this regime and space- 
charge effects are more important. In particular, the 
dominant interaction mechanism is often coherent Raman 
scattering. Also, while short wavelength FELs excite 
optical modes, dispersion due to the beam dielectric effects 
and finite transverse dimensions in the drift tubes and 
cavities are important effects at longer wavelengths. 

Table 1 lists parameters describing: wavelength/fre- 
quency, peak power, pulse time, repetition rate, beam 

* Corresponding author. Permanent address: Science Applica- 
tions International Corp., McLean, VA 22102, USA. Tel +1 202 
767 0034, fax +1 703 734 1134, e-mail 
freund@mmace.nrl.navy.mil. 
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voltage and current, wiggler period and field strength, and 
the type of device and accelerator employed. We have 
chosen to denote the wiggler parameter by K 
[=0.0934SwA„, where 5W is the wiggler amplitude in kG 
and Aw is the wiggler period in cm]; however, this 
parameter is often called aw in the literature. The wiggler 
type shown refers to helical (H), planar (P), circular (C), 
and coaxial hybrid iron (CH) [3] wigglers. Note that an 
axial guide field is often used in conjunction with helical 
wigglers in intense beam FELs, but that the brevity of this 
format did not permit inclusion of this information in the 
table. 

Long wavelengths FELs employ many types of ac- 
celerator. However, most of the experiments employ pulse 
line accelerators which operate in a single-shot (SS) mode 
with high peak powers. Historically, the pioneering work 
on long wavelength FELs was peformed by Phillips [4] 
prior to 1964 using modulators. Long wavelength FEL 
research began again at various laboratories in the early 
1970s with the intention of extending Phillips' work using 
intense relativistic electron beams. Much of this work was 
directed at exploring the basic physics of the Raman 
regime [5], and high average power was not an essential 
goal. Hence, pulse line accelerators are often used since 
they produce beam currents of many kiloamperes. In order 
to achieve the necessary beam quality from pulse line 
accelerators, careful design of the diode is essential [6] and 
a large fraction (-90%) of the beam is typically "scraped" 
off so that only a central core with a low velocity spread is 
injected into the wiggler. As a result, collective FELs built 
using pulse line accelerators suffer from the disadvantages 
of a low wall-plug efficiency and single-shot operation. 

rights reserved 
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Table I 
Summary of long wavelength FELs 

FEL [Ref.] 

UCSB [9] 
UCSB [23] 
TAU [29] 
TAU [37] 
TAU [27] 
UL[18] 
KEK[8] 
ISAS [20] 
ILT/ILE [24] 
MIT [15] 
CESTA [32] 
NRL[16] 
UT[25] 
IEE [35] 
JINR/INP[30] 
SIOFM [33] 
IAP[17] 
ENEA [21] 
JAERI [34] 
JAERI[34] 
NRL[12] 
INP/IAP[31] 
UM [13] 
NSWC/MRC[19] 
DLR [22] 
KAERI [26] 
TAU/WI [28] 
CU[14] 
FOM [9] 
LLNL/SLAC [36] 
DU [38] 

A [mm]/ Pfak 

/[GHz] [MW] fa] 

S2.5 mm 
1/260 
300/1 
30/10 
68/4.48 
35/8.2 
32/9.4 
26/12 
2.7/109 
8/33 
8/35 
8/35 
8/35 
8/35 
8/37 
3/100 
6.7/45 
2/150 
6/45 
0.8/300 
8/35 
4/75 
3.5/85 
3/95 
3/100 
1/260 
3/100 
2/150 
1/260 
38/11.4 
0.4/650 

1-5 

-5 

S0.5 
UC 
10" 
10" 
0.0023 
1X10" 
120 
3.6 
1 
60 
50 
UC 
2.3 
140 
23 
1 
7 
0.0015 
10 
UC 
UC 
50 
0.25 
10 
I 
0.001 
UC 
5 
UC 
DS 
UC 

[Hz] [MV/A] 

6 
CW 
1000 
1000 
5 
CW 
0.04 
0.4 
4X10"6 

0.025 
0.03 
1 
0.1 
0.05 
0.2 
0.015 
0.025 
5.5 
0.1 
0.16 
1 
1 

0.02 

0.25 
1.5 X10"2 

10-30 
100 
0.15 
1X103 

0.25 
10 

A. [cm] 
AT (type) 

SS 
SS 
1 

0.07 

SS 

2.856 
SS 
SS 
6 
SS 

SS 
SS 
SS 
40 
1 
1 
6 
SS 
SS 
SS 
SS 
SS 
SS 
SS 
1 
120 
60 

A - amplifier. 
C - circular. 
CA - coaxial. 

CESTA - Centre d'Etudes Scientifique e Techniques d'Aquitaine 
CH - CHI wiggler. 
CU - Columbia University, USA. 
DLR - German Aerospace Research Establishment 
DS - design study. 
DU - Dulce University. 
ES - electrostatic accelerator. 
H - helical wiggler. 
IAP - Institute of Applied Physics, Russia. 
INP - Institute of Nuclear Physics, Russia. 
IC - ignition coil. 

IEE - Institute of Electronic Engineering, China. 
IL - induction linac. 

ILT/ILE - Institute for Laser Technology /Institute for Laser 
Engineering,' Osaka, Japan. 

ISAS - Institute of Space and Astronautical Science, Japan. 
JAERI - Japan Atomic Energy Research Institute. 
JINR - Joint Institute for Nuclear Research, Russia. 
KAERI - Korean Atomic Energy Research Institute. 

6/2 
2/2 
0.001/0.2 
0.01/0.2 

0.07/0.8 

0.13/0.0018 
1.5/700 
0.43/190 
9/50 
0.75/300 
1.8/400 
150/10 
0.5/750 
3.4/800 
0.8/150 
0.4/400 
0.5/120 
2.3/0.35 
1/600 
3.5/1000 
0.15/45 
1/1500 
0.45/17 
2.5/100 
0.5/100 
0.4/1.7 
1.5/0.5 
0.8/150 
2/12 
0.5/1000 
40/0.2 

Type/ 
Ace. 

7.14/1.0(P) O/ES 
3/0.73 (P) O/ES 
2/0.04 (P) O/IC 
2/0.02 (P) O/M 
4.4/0.12 (P) SASE/ES 
3.8/0.16 (P) O/M 
16/1.94 (P) SASA/IL 
3.27/0.27 (C) O/PL 
6/4 (P) O/RFL 
3.1/0.4(H) A/PL 
8/2.24 (H) A/PL 
0.75/0.2 (CH) A/M 
3/0.53 (H) SASE/PL 
11/3.5(P) A/IL 
6/0.84 (H) O/IL 
1/0.14 SASE/PL 
2.4/0.07 (P) O/PL 
2.5/1.42 (P) O/MI 
4.5/1.3 (P) A/IL 
UC(P) A/IL 
0.85/0.08 (H) A/M 
4/0.3 (P) O/PL 
0.96/0.34 (P) A/PL 
10/1.9 (H) O/PL 
2/0.28 (H) SASE/PL 
3.2/0.39 (H) O/ES 
4.4/0.82 (P) O/ES 
1.85/0.25 (H) A/PL 
2/0.67 (P) O/ES 
3.4/0.5 (CA) A/M 
3/1.4 (P) O/RFL 

KEK-National Laboratory for High Energy Physics, Japan. 
LLNL/SLAC -Lawrence Livermore National Laboratory/ 

Stanford Linear Accelerator Center. 
NRL-Naval Research Laboratory. 
NSWC-Naval Surface Weapons Center, USA. 
M - modulator. 
MI - microtron. 
MRC-Mission Research Corp. 
O - oscillator. 
P - planar wiggler. 
PL - pulse line accelerator. 
RFL - radio frequency linac. 
SASE - self amplified spontaneous emission. 
SIOFM-Shanghai Insutute of Optics and Fine Mechanics 
SS - single shot. 
TAU - Tel Aviv University. 
UC - under construction. 
UL - University of Liverpool, UK. 
UM - University of Maryland, USA. 
UT- University of Twente, the Netherlands. 
WI - Weizmann Institute, Israel. 
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The principal thrusts of current long wavt.mgth FEL 
research remains the achievements of high average powers, 
broad bandwidths, and compact systems. Hence, the 
development of practical long wavelength FELs depends 
upon other accelerator technologies. 

Induction linacs have the advantage that they can be 
repetitively pulsed and it is possible, at least in principle, 
to produce high average powers and high efficiencies. 
However, there are two practical difficulties. The first is 
the achievement of high repetition rates. The ELF experi- 
ment [7] which produced a peak power of ~1 GW at 
35 GHz operated with a pulse time of 10-20 ns and a 
repetition rate of 0.54Hz for an average power of only 
=7W. The second is emittance growth resulting in un- 
acceptably high thermal spreads, and the necessity of beam 
scraping (-80% of the beam was scraped off in the ELF 
experiment). Thus, while the extraction efficiency was 
about 34% from the beam that passed through the wiggler, 
the overall efficiency was closer to 7%. In view of this, the 
recent results from the induction linac-based FEL at KEK 
[8] which produced a peak power of 120 MW using some 
beam scraping and ion channel guiding represents a 
significant advance. 

Other promising approaches for achieving high average 
powers involve long pulse modulators and electrostatic 
accelerators. In the case of electrostatic accelerators, full 
CW operation is possible if a high degree of beam energy 
recovery can be achieved by using depressed collectors. 
This has been accomplished at the University of California 
at Santa Barbara [9]. However, the degree of beam energy 
recovery which can be achieved decreases with increasing 
extraction efficiency of the FEL, and this may prove to be 
a limiting factor in the technology. A significant experi- 
ment using electrostatic accelerators is currently under 
construction at FOM in the Netherlands [10]. The goal of 
this experiment is to build a 1 MW CW FEL operating in 
the frequency range 130-260 GHz to heat plasmas in 
magnetic fusion reactors. Based on a 2MeV/I2A beam, 
the design value of extraction efficiency is 4%, but with 
effective beam energy recovery in a depressed collector, 
the overall system efficiency can be much larger. It will be 
interesting to see how effective energy recovery can be in 
a system with this level of extracted power. 

For applications requiring more compact devices, long 
pulse modulators have advantages. A research program at 
the Naval Research Laboratory has been devoted to the 
development of this concept with goals of high average 
power. An experiment [11] reported in the previous status 
paper employed a 250 kV/100 A modulator with a charac- 
teristic 1.4 jis flat top and a repetition rate of 6hz to 
produce «4.2 MW peak in Ku-band. This represents an 
average power of «36 W which is the highest average 
Power produced in an FEL to date. The direction of this 
program is to achieve still higher powers at higher 
frequencies using lower voltage electron beams. To this 
end, a follow-on experiment is under construction which 

will employ a ridged waveguide to permit lower voltage 
operation [12]. 

In summary, the ultimate goals of long wavelength FEL 
research are to achieve much higher average powers with 
good overall efficiency and more compact designs than 
have yet been achieved. At the present time, high voltage/ 
low current DC accelerators and long pulse modulators 
remain the prime candidates for drivers for these systems; 
however, advances in induction linac technology which 
lead to higher repetition rates and improved beam quality 
could change this conclusion. 
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Abstract 
A summary of the current status and most important future directions for long wavelength ( > 0.5 mm) free-electron 

lasers is presented. The distinction between long and short wavelengths is a natural one since different physical processes 
may be important. Space-charge effects may be important for the high currents typically employed at long wavelengths, 
and the dominant interaction mechanism is often coherent Raman scattering. In addition, dispersion due to the dielectric 
effects and finite transverse dimensions in the drift tubes and cavities are important at longer wavelengths. The principal 
goals at long wavelengths are to achieve much higher average powers with good overall efficiency in a compact design, 
and the highest average power produced in an FEL to date (36 W) has been recorded in the Ku-band 

This is the third paper dealing with the status of long 
wavelength free-electron lasers (FEL) and our purpose, 
as in the first two papers [1,2], is to provide a summary of 
long wavelength (> 0.5 mm) FELs which are currently 
either in operation or under construction. Also, as before, 
a companion paper appears in this volume dealing with 
"short wavelength" FELs [3]. Our search in compiling 
this list relies upon (1) contributions to the general litera- 
ture and the proceedings of the annual Free-Electron 
Laser Conferences, and (2) personal contacts. The latter 
was an important source of information concerning FEL 
programs which are either in the early operational stages 
or still under construction and have not as yet been 
described in archival literature. Despite our best efforts, 
however, inadvertent omissions are still possible. 

The distinction between long and short wavelength 
FELs is natural because higher current and lower energy 
beams are typically employed in this regime and space- 
charge effects are more important. In particular, the 
dominant interaction mechanism is often coherent 
Raman scattering. Also, while short wavelength FELs 
excite optical modes, dispersion due to the beam dielec- 
tric effects and finite transverse dimensions in the drift 
tubes and cavities are important effects at longer 
wavelengths. 

The long wavelength FEL Table 1 lists parameters 
describing: wavelength/frequency, peak  power,  pulse 

* Correspondence address: Science Applications International 
Corporation, 1710 Goodridge Drive, McLean, VA 22102, USA. 

time, repetition rate, beam voltage and current, wiggler 
period and field strength, and the type of device and 
accelerator employed. We have chosen to denote the 
wiggler parameter by K (= 0.0934BWAW, where B„ is the 
wiggler amplitude, in kG and /.w is the wiggler period in 
cm); however, this parameter is often called aw in the 
literature. Note that in the case of planar wiggler designs 
this does denote the peak and not the rms amplitude. The 
wiggler type shown refers to helical (H), planar (P), circu- 
lar (C), and coaxial hybrid iron (CH) wigglers [4]. Note 
that an axial guide field is often used in conjunction with 
helical wigglers in intense beam FELs, but that the brev- 
ity of this format did not permit inclusion of this informa- 
tion in the table. 

Long wavelength FELs employ many types of acceler- 
ator. However, most of the experiments employ pulse line 
accelerators which operate in a single-shot (SS) mode 
with high peak powers. Historically, the pioneering work 
on long wavelength FELs was performed by Phillips [5] 
prior to 1964 using modulators. Long wavelength FEL 
research began again at various laboratories in the early 
1970s with the intention of extending Phillips' work using 
intense relativistic electron beams. Much of this work 
was directed at exploring the basic physics of the Raman 
regime [6], and high average power was not an essential 
goal. Hence, pulse line accelerators are often used since 
they produce beam currents of many kiloamperes. In 
order to achieve the necessary beam quality from pulse 
line accelerators, careful design of the diode is essential 
[7] and a large fraction (ä 90%) of the beam is typically 
"scraped" off so that only a central core with a low- 
velocity spread is injected into the wiggler. As a result, 

0168-9002/97/17.00 Copyright © 1997 Published by Elsevier Science B.V. All rights reserved 
PtI S0168-9002(97)00419-l I. STATUS OF FEL SOURCES 
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Table 1 

FEL Mjam)l p 
' peak TP ",«, VA XJcm)l Type/ 

[Ref.] /(GHz) (MW) (HS) (Hz) (MV/A) K(type) Acc 

UCSB [13] £ 2.5/120 £0.015 6 2 6/2 7.14/1.0 (P) O/ES 
UCSB [13] 1/300 UC CW 2/2 3/0.73 (H) O/ES 
TAU [14] 1070/0.28 10"' 2000 SS 0.0007/0.1 4/0.05 (P) O/PS 
TAU [15] 30/10 10"5 1000 SS 0.01/0.2 2/0.02 (P) O/M 
TAU [16] 68/4.48 0.0035 5 I 0.07/0.8 4.4/0.12 (P) O/ES 
UL [17] 32-37/8-9.3 10"5 CW 0.04- 

0.08/0.01 
1.9/0.03 (P) SASE/PS 

UL [18] 30/9.9 10-6 CW 0.05/0.01 1.9/0.03 (P) A/PS 
UL [19] 25-37/8-12.4 2xl0-i CW 0.12/0.18 3/0.28 (P) O/PS 
KEK [9] 32/9.4 150 0.015 0.07 1.5/450 16/1.5 (P) A/IL 
KEK [9] 32/9.4 100 0.015 0.07 1.5/450 16/1.5 (P) A/IL 
ISAS [20] 26/12 3.6 0.4 SS 0.43/190 3.3/0.27 (C) O/PL 
ILT/ILE [21] 2.7/109 0.01 5xl0"6 2.856 9/50 6/4 (P) O/RFL 
CESTA [22] 8/35 50 0.03 SS 1.8/400 8/2.24 (H) A/PL 
NRL [23] 8/35 UC 1 6 0.1/10 0.64/0.2 (CH) A/M 
UT[24] 8/35 2.3 0.1 SS 0.5/750 3/0.53 (H) SASE/PL 
IFP/IEE [25] 8/35 140 0.05 SS 3.4/800 11/3.1 (P) A/IL 
JINR/INP [26] 9.7/31 31 0.2 2 0.8/150 6/0.84 (H) O/IL 
SIOFM [27] 3/100 1 0.02 SS 0.3/400 1/0.14 (H) SASE/PL 
IAP [28] 6.7/45 7 0.025 SS 0.5/120 2.4/0.07 (P) O/PL 
ENEA [29] 2/150 0.0015 5.5 40 2.3/0.35 2.5/1.4 (P) O/MI 
ENEA [30] 0.6/500 UC 5.5 20 5.5/0.25 15/1.7 (P) O/MI 

JAERI [31] 6/45 10 0.1 SS 1/3000 4.5/1.3 (P) A/IL 
JAERI/KEK [31] 2-15/20-140 UC 0.1 SS 4/1000 UC(P) A/IL 
INP/IAP [32] 4/75 200 1 SS 1/2000 4/0.3 (P) O/PL 
DLR [33] 3/100 1 1.5 xlO-2 SS 0.5/100 2/0.28 (H) SASE/PL 
KAERI [34] 12/26 0.001 10-30 SS 0.4/2 3.2/0.39 (H) O/ES 
TAU/WI [35] 3/100 UC 100 SS 1.5/0.5 4.4/0.82 (P) O/ES 
CU [36] 2/150 5 0.15 SS 0.8/150 1.9/0.25 (H) A/PL 
FOM [11] 1/260 UC lxlO5 1 2/12 2/0.67 (P) O/ES 
UCD/SLAC [37] 38/11.4 DS 0.25 120 0.5/1000 3.4/0.5 (CA) A/M 
DU [38] 0.4/650 DS 10 60 40/0.2 3/1.4 (P) O/RFL 

A - Amplifier. 
C - Circular. 
CA - Coaxial. 
CESTA - Centre d'Etudes Scientifique e Techniques 

d'Aquitaine. 
CH - CHI Wiggler. 
CU - Columbia University, USA. 
DLR - German Aerospace Research Establishment. 
DS - Design Study 
DU - Duke University. 
ES - Electrostatic accelerator. 
H - Helical wiggler. 
IAP - Institute of Applied Physics, Russia. 
INP - Institute of Nuclear Physics, Russia. 
IFP/IEE - Institute of Fluid Physics/Institute of Electronic 

Engineering, China. 
IL - Induction Linac. 
ILT/ILE - Institute for Laser Technology/Institute for Laser 

Engineering Osaka, Japan. 
ISAS - Institute of Space and Astronautical Science, Japan. 
JAERI - Japan Atomic Energy Research Institute. 
JINR - Joint Institute for Nuclear Research, Russia. 
KAERI - Korean Atomic Energy Research Institute. 

KEK - National Laboratory for High Energy Physics, Japan. 
UCD/SLAC - University of California at Davis/Stanford 

Linear Accelerator Center. 
NRL - Naval Research Laboratory. 
NSWC - Naval Surface Weapons Center, USA. 
M - Modulator. 
MI - Microtron. 
MRC - Mission Research Corporation. 
O - Oscillator 
P - Planar wiggler. 
PL - Pulse line accelerator. 
PS - Power Supply. 
RFL - Radio Frequency Linac. 
SASE - Self Amplified Spontaneous Emission. 
SIOFM - Shanghai Institute of Optics and Fine Mechanics. 
SS - Single Shot. 
TAU - Tel Aviv University. 
UC - Under Construction. 
UL - University of Liverpool, UK. 
UM - University of Maryland USA. 
UT - University of Twente, the Netherlands. 
WI - Weizmann Institute, Israel. 
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collective FELs built using pulse line accelerators suffer 
from the disadvantages of a low wall-plug efficiency and 
single-shot operation. 

At present, the principal thrusts of long wavelength 
FEL research are the achievements of high average 
powers, broad bandwidths, and compact systems. Hence, 
the development of practical long wavelength FELs de- 
pends upon accelerator technologies other than pulse 
line accelerators. 

Induction linacs have the advantage that they can be 
repetitively pulsed and it is possible, at least in principle, 
to produce high average powers and high efficiencies. 
However, there are two practical difficulties. The first is 
the achievement of high repetition rates. The ELF experi- 
ment [8] which produced a peak power of «1GW at 
35 GHz operated with a pulse time of 10-20 ns and 
a repetition rate of 0.5 Hz for an average power of only 
«7 W. The second is emittance growth resulting in unac- 
ceptably high thermal spreads, and the necessity of beam 
scraping («80% of the beam was scraped off in the ELF 
experiment). Thus, while the extraction efficiency was 
about 34% from the beam that passed through the wig- 
gler, the overall efficiency was closer to 7%. In view of 
this, the recent results from the induction linac-based 
FEL at KEK [9] which produced a peak power of 
120 MW using less beam scraping and ion channel guid- 
ing represents an advance. 

Other promising approaches for achieving high aver- 
age powers involve long-pulse modulators and electros- 
tatic accelerators.In the case of electrostatic accelerators, 
full CW operation is possible if a high degree of beam 
energy recovery can be achieved by using depressed col- 
lectors. This has been accomplished at the University of 
California at Santa Barbara [10]. However, the degree of 
beam energy recovery which can be achieved decreases 
with increasing extraction efficiency of the FEL, and this 
may prove to be a limiting factor in the technology. 
A significant experiment using electrostatic accelerators 
is currently under construction at FOM in the Nether- 
lands [11]. The goal of this experiment is to build 
a 1 MW CW FEL operating in the frequency range 
130-260 GHz to heat plasmas in magnetic fusion reac- 
tors. Based on a 2 MeV/12 A beam, the design value of 
extraction efficiency is 4%, but with effective beam en- 
ergy recovery in a depressed collector, the overall system 
efficiency can be much larger. At the present time the 
experiment is in a stage in which beam propagation 
studies are in progress; a 3 A beam has been accelerated 
to 1.55 MeV and transported with negligible loss through 
the undulator. When FEL operation is achieved it will be 
interesting to see how effective energy recovery can be in 
a system with this predicted level of extracted power. 

For applications requiring more compact devices, 
long-pulse modulators have advantages. In this regard, it 
is interesting to observe that an experiment at the Naval 
Research Laboratory [12] reported in a status paper has 

achieved the highest average power in an FEL to date. 
This experiment employed a 250 kV/100 A modulator 
with a characteristic 1.4 us flat-top and a repetition rate 
of 6 Hz to produce «4.2 MW peak in Ku-band with 
a corresponding average power of «36 W. 

In summary, the ultimate goals of long wavelength 
FEL research are to achieve much higher average powers 
with good overall efficiency and more compact designs 
than have yet been achieved. At the present time, high 
voltage/low current DC accelerators and long-pulse 
modulators remain the prime candidates for drivers for 
these systems; however, advances in induction linac tech- 
nology which lead to higher repetition rates and im- 
proved beam quality could change this conclusion. 

This work was supported in part by the Naval Re- 
search Laboratory and the Office of Naval Research. 
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A time-dependent nonlinear formulation of the interaction in the helix traveling wave tube is 
presented for a configuration in which an electron beam propagates through a sheath helix 
surrounded by a conducting wall. In order to describe both the variation in the wave dispersion and 
in the transverse inhomogeneity of the electromagnetic field with wave number, the field is 
represented as a superposition of waves in a vacuum sheath helix. An overall explicit sinusoidal 
variation of the form exp(iJfcz —jwf) is assumed (where m denotes the angular frequency 
corresponding to the wave number k in the vacuum sheath helix), and the polarization and radial 
variation of each wave is determined by the boundary conditions in a vacuum sheath helix. Thus, 
while the field is three-dimensional in nature, it is azimuthally symmetric. The propagation of each 
wave in vacuo as well as the interaction of each wave with the electron beam is included by 
allowing the amplitudes of the waves to vary in z and t. A dynamical equation for the field 
amplitudes is derived analogously to Poynting's equation, and solved in conjunction with the 
three-dimensional Lorentz force equations for an ensemble of electrons. Numerical examples are 
presented corresponding to both single- and multiwave interactions. © 1995 American Institute of 
Physics. 

I. INTRODUCTION 

The development of the traveling wave tube (TWT) ex- 
tends over several decades since the pioneering work of 
Pierce and co-workers1-3 based upon a coupled-wave analy- 
sis utilizing the vacuum modes of the helix and the positive 
and negative energy space-charge waves of the beam. Im- 
proved linear theories based upon an eigenvector analysis of 
Maxwell's equations in a sheath helix have also been 
developed,4,5 and discussions of both the coupled-wave and 
field theories of the TWT are given by Beck6 and Hutter.7 

More recently, complete field theories of beam-loaded helix 
TWTs have been developed for both sheath8 and tape9 helix 
models. Nonlinear theories of the TWT also have a long 
history in the literature, and can be grouped into two broad 
classes dealing with steady-state and time-dependent models. 

Steady-state models have been extensively used for the 
analysis and design of amplifiers in order to study the growth 
of a single frequency wave injected simultaneously with the 
electron beam. These formulations constitute a slow-time- 
scale "moving-window" approach10-13 in which the electro- 
magnetic field is represented in terms of the normal modes in 
the vacuum structure. The amplitude and phase of the wave 
are assumed to vary slowly on the scale length of the wave 
period, and nonlinear differential equations for the evolution 
of the slowly varying amplitude and phase are obtained form 
Maxwell's equations. Note that the slow variation in the 
phase in this case refers to the slow variation with respect to 
the sinusoidal variation of the wave in vacuo [i.e., «expO'fcz 
— id)t), where a is the angular frequency corresponding to 
wave number Jfc]. Beam space-charge waves can be included 
in the formalism in a similar manner. Three-dimensional ef- 
fects arising from the boundary conditions at the helix and 

"'Permanent address: Science Applications International Corp., McLean, 
Virginia 22102. 

outer wall can be included in the formalism which then de- 
scribes the overlap of the beam with the transverse variation 
of the wave. As a result, both the appropriate dispersion and 
transverse polarization and inhomogeneity of the wave can 
be included in these formulations. A good review of this 
technique as applied to TWTs has been given by Rowe,14 and 
the approach is well suited to the analysis of a broad class of 
linear beam amplifiers and has also been applied, for ex- 
ample, to the free-electron laser.15 

Time-dependent models of helix TWTs rely upon 
particle-in-cell (PIC) simulation techniques. At the present 
time, a one-dimensional PIC simulation code is available16 

which treats the wave dispersion by means of a transmission 
line equivalent circuit model. Hence, the one-dimensional 
PIC simulation of this form is limited in its ability to model 
the dispersion of the helix and is unable to deal with radial 
variation in the mode structure. In order to deal with these 
effects self-consistently, a fully three-dimensional PIC for- 
malism is required. However, such a simulation code has not 
yet been implemented due to both the numerical complexity 
and the computational expense required. The most general 
PIC formulations of the interaction in a helix TWT to date 
are two-dimensional simulations of a sheath helix model.17,18 

Since the helix is in reality a three-dimensional structure, the 
restriction to a two-dimensional PIC formulation requires a 
prescription for dealing with the boundary condition at the 
helix. In practice, the simplification made is to treat the so- 
called sheath helix in which the helix is modeled in terms of 
a conducting sheet which is "thin" in the radial direction and 
in which the conductivity is infinite in the direction of the 
helix and zero otherwise. While this approach can provide a 
good approximation for the dispersion and radial mode 
variation in the sheath helix, however, it is not adaptable to 
more realistic helix models that include substantial harmonic 
components. 

The approach we adopt in this article differs from these 
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PIC formulations. As in the case of the two-dimensional PIC 
formulations, we assume azimuthal symmetry and deal with 
a sheath helix model. However, we treat the fields in terms of 
a spectral decomposition in which the electromagnetic field 
is expressed as a superposition of the normal modes of the 
vacuum sheath helix. In this representation, an overall sinu- 
soidal variation of the form cxp(ikz — i<at) is assumed for 
each wave, where u> denotes the angular frequency deter- 
mined from the vacuum sheath helix dispersion equation cor- 
responding to wave number k. The polarization and radial 
variation of each wave is assumed to be given by the normal 
mode solutions of Maxwell's equations for the vacuum 
sheath   helix   boundary   conditions   which   are   three- 
dimensional in nature.8 The evolution of each wave either in 
vacuo or in the presence of the electron beam is included by 
allowing the amplitudes to vary in both axial position and 
time. The detailed evolution of the waves is governed by a 
dynamical equation which is analogous to Poynting's equa- 
tion. This equation includes the coupling of the waves to the 
electron beam and, hence, the intermodulation between the 
waves themselves. In conjunction with the equations for the 
fields, the trajectories of an ensemble of electrons are inte- 
grated using the three-dimensional Lorentz force equations. 

As in the case of the two-dimensional PIC formulations, 
this spectral approach provides a good model for the disper- 
sion and radial variation of the electromagnetic field, but 
requires an explicit choice of the waves of interest to be 
specified as an initial condition. It has two advantages over 
the two-dimensional PIC models, however, in that (1) the 
technique can be readily generalized to deal with more real- 
istic tape helix models that include higher harmonic compo- 
nents, and (2) the numerical technique is considerably less 
computationally demanding. For the numerical examples dis- 
cussed in this article, typical run times on a Cray Y-MP su- 
percomputer were substantially less than 1 min. 

The present article deals with the first development and 
application of this technique, and certain simplifications have 
been made. One restriction that is imposed is the neglect of 
the beam space-charge modes that restricts the analysis to the 
ballistic regime in which the Pierce gain parameter^ is small. 
The exclusion of the space-charge modes is not an essential 
element of the formulation, and the inclusion of the space- 
charge modes is presently under study. It should be remarked 
that a recent work by Lau and Chernin19 asserts that the 
synchronous beam-mode interaction already includes the 
dominant effects due to the beam space-charge wave. Al- 
though we do not consider any examples in the present ar- 
ticle in which the space-charge wave is important, this asser- 
tion will be tested by comparison of the nonlinear simulation 
with experiments in the near future. 

The self-electric and self-magnetic fields have also been 
neglected. However, the self-fields can be readily included 
by means of a technique used for inclusion of the self-fields 
in free-electron lasers.20 The numerical examples discussed 
herein relate to the single-pass propagation of pulses through 
both vacuum and beam-loaded helix structures, and open 
boundary conditions have been imposed. However, various 
degrees of reflecting boundary conditions can also be used to 
treat various cavity and oscillator configurations. Finally, the 

min Rmnr   Rh Ra 
-+-r 

FIG. 1. Schematic representation of the cross section of the system. 

formulation can also be generalized to treat more realistic 
helix models; in particular, a tape helix model is presently 
under study.9 

The organization of the article is as follows. The general 
formulation is presented in Sec. II. This includes a discussion 
of the geometry, the dispersion equation and mode structure 
in a sheath helix, the field representation and the dynamical 
equation governing the evolution of the fields, and the Lor- 
entz force equations. Section III deals with the numerical 
techniques used to solve the dynamical equations as well as 
the representative solutions for various parameter regimes. A 
summary and discussion is given in Sec. IV. 

II. THE GENERAL FORMULATION 

The general formulation is intended to treat the propaga- 
tion of multiple waves through a sheath helix in the presence 
of an electron beam. Hence, this is a fully time-dependent 
problem, and a slow-time-scale formulation such as is com- 
monly used to treat single-frequency operation in TWTs, 
free-electron lasers, and cyclotron masers cannot be em- 
ployed for the current problems of interest. 

A. The physical configuration 

The physical configuration that is treated is that of an 
energetic electron beam propagating parallel to the axis of 
symmetry of a helix-loaded cylindrical waveguide. Azi- 
muthal symmetry is assumed throughout. The beam is as- 
sumed to be azimuthally symmetric with a "flat-top" radial 
density profile which can be either annular or solid. A sche- 
matic of the cross section of this configuration is shown in 
Fig. 1 in which Rh and Rg ait used to denote the radii of the 
helix and the outer cylinder respectively, and Rmin and RmiX 

denote the inner and outer radii of the electron beam (i.e., a 
solid profile is described by the simple expedient of setting 
#min=0). An external solenoidal magnetic field B0 [=ß0ej 
is also included. 

In practical TWTs the helix is composed of a metal strip 
that is supported at multiple points within the cylinder by 
posts or rods. A complete self-consistent description of wave 
dispersion in such a structure is beyond the scope of the 
present analysis and would require a complete three- 
dimensional particle-in-cell simulation code. For simplicity, 
we shall assume that both the helix and the outer cylinder are 
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FIG. 2. Schematic illustration of a tape helix structure. 

loss-free conductors and represent the electromagnetic field 
as a superposition of the azimuthally symmetric modes in the 
vacuum helix. Within the context of this assumption, there 
are several further simplifications that permit analytic solu- 
tion for the normal modes of the vacuum helix. 

In the commonly applied tape helix model it is assumed 
that only a surface current is induced in the helix and that the 
effects of the support posts can be neglected. The restriction 
to surface currents in the helix is equivalent to the assump- 
tion that the helix is "thin" in the radial direction. A sche- 
matic illustration of a "tape" helix is shown in Fig. 2 where 
kh denotes the helix period and Sh is the width of the tape. A 
multiplicity of azimuthally symmetric modes exist in such a 
system corresponding to the spatial harmonics of the helix 
period. The importance of the higher order spatial harmonics 
decreases as the width of the helix increases. Ultimately, if 
^A

=
^A *e induced currents in the helix can be modeled as a 

continuous helical current sheet and the effects of the spatial 
harmonics disappear. This is referred to a the sheath helix 
approximation. For simplicity, we shall adopt a sheath helix 
model for the electromagnetic fields, but observe that the 
tech:.: „us is nzl'ly g^cr^izuble to a tape helix model. 

B. The modes in a sheath helix 

We restrict the analysis to the azimuthally symmetric 
subluminous waves supported by the helix. The azimuthally 
symmetric electric and magnetic fields can be represented in 
the form8 

<5E(x,r) = E SEn{Rn(r)ersm(<pn+Sp„) 
n 

-[/V*n)en(r)ee-Z("(r)eJ 
XC0s((pn+8<p„)}, 

<5B(x,f) = E <5£„{e„(r)ercos(?„+<!>?>„) 
n 

+ [ßPH(lcn)Rn(r)ee-z[b\r)ez] 

Xsin(<pn+6<pn)}, (1) 

where the summation is over the appropriate modes to be 
included, and SEn denotes the wave amplitudes. The phase is 
composed of two parts, one given by the phase of the wave 
propagating   in   the   cold   vacuum   helix   given   by   <pn 

-knZ~unt for wave number k„ = nAk and angular fre- 
quency a>„, such that (kn,(on) satisfy the vacuum sheath 
helix dispersion equation, and a part which is governed by 
the interaction with the electron beam 8<pn. We assume that 
both SEn and Scpn vary in z and t. In addition, 
ßpb(kn)=vpb(kn)/c = o)Jck„ denotes the normalized phase 
velocity of each wave, and K

2
n=k2-a,2nlc

2. The vacuum 
sheath helix dispersion equation is°^' ,8,21 

Wn^     Kl    I0{KnRh)Ix{KnRg)  W0(KnRg,KnRh) 
V + 

klRlhi^R^lMnRh) W{{KnRg,KnRh)    °' 
(2) 

where kh[ = 2Tr/Xh] is the helix wave number, 
Wn(x,y)=K„(y)In(x)-In(y)Kn(x), and /„ and Kn denote 
the modified Bessel functions of the first and second kinds. 
The components of the polarization vectors depend upon the 
frequency, wave number, and dimensions of the helix and 
outer cylinder, and are given by 

Rn(r)=- I («R\    Z^KnRg>xnr) 

W0(KnR„,KnRh)' 
Rh<r=s:R„ 

(3) 

e„(r)= 
ck„fo)n 

hRh 

[h{Knr)I0{KnRh) 

X{ 

r=£Ä 
h(XnRh) 

A» 

'O(KA) W, (*„*., *„*„)' Rh<r^Ra 

7M 3,eV)= W0(KnRg,Knr) 
lo(KnRh) W0{KnRg,KnRhY Rh =Rg; 

(4) 

(5) 

z(A)(r) 

khRh 

' I0(K„Rh)I0(Knr) 

'I(KA) 
r*Rh, 

x< 
, I      D   ^      Z(Knr>><nRg) 

-IoiKM wliKnRg,KnRhy   **<^. 

(6) 

where Z(x,y) = K0{x)Ix{y) + I0(x)Kx(y). 
Energy transport for each wave within the vacuum helix/ 

cylinder is determined by the Poynting flux, the stored en- 
ergy density, and the group velocity. The Poynting flux for 
each wave denotes the time-averaged power flux over the 
entire cross section of the cylinder and helix, and can be 
expressed as 

Sn = P„SE2
n, 

where 

(7) 
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kna>n I0(KnRh)Io(K„Rg) 
1 8K<   W0(KnRg,KnRh) 

Io(KnRh) /l(*«Ä») 

/„(/^/g Wo(*«Ä,.f«Ä*)   'i(*«*«) ^i(*«Ä,.M») 

+ K„*A -f«^A 
Z(K„Rg,KnRh)      Z(K„Rh,xnRg) 

W0(K„Rg,K„Rh)     Wi(/c„/?Ä,/c„/?A)j 
(8) 

In addition, the time-averaged energy density per unit axial 
length over the entire cross section of the helix and cylinder 
is given by 

Wn = UnSE2„, 

where 

_   <on 1    I0(K„Rg)Io(KnRh) 
Un=k^lPn+T?n  W0(KnRg,KnRh) 

(9) 

(10) 

Finally, the group velocity of each individual wave is given 

by 

vv(Kn)    dkn     U' 
(ID 

For convenience, we rewrite the electric and magnetic 
fields in the form 

<5E(x,f) = 2 [SEi%n(x,t) + SE^e*(x,t)l 
it 

^(x,f) = 2[5E<%(x,r) + <5E<2)bn*(x,f)], 

(12) 

where SE^= SEn cos Sq>n and SE(2)= SEn sin 8<pn, and the 
polarization vectors are given in cylindrical coordinates by 

e„{x,t) = {Rn(r)er sin <pn-[ßph(kn)Qn(r)ee 

-Z<e)(r)eJcos <pn}, 

bn(x,f)^{e„(r)er cos 9n + [ß^kn)R,,(r)ee 

-Zib\r)tz]sm cpn}, 

e*(x,t)^{R„(r)er cos <pn+lßPMQn(.r)eg 

-Zie)(r)ez]sm <pn}, 

b„*(x,r)^{-e„(r)er sin 9n + [/3ph(^)/?n(r)efl 

-Z«6)(r)eJcos <p„}, 

Observe that the polarization vectors satisfy the source-free 
Maxwell equations; hence, 

1 a        ■ 1 a 
Vxe"=-7^7b«   and   Vxb"=c^e'" c at 

(14) 

as well as 

Vx< = -\jth*    and    VXb*=^e- (15) 

C. The dynamical equations for the fields 

The hyperbolic dispersion equation in a smooth-bore cy- 
lindrical waveguide ensures that K„ remains constant for 
each wave frequency corresponding to a given radial mode. 
As a result, the transverse variation for any TE/n or TM/n 

mode in the waveguide does not vary with frequency. This is 
not the case in a helix TWT where the solution of the dis- 
persion equation in a sheath helix indicates that K„ varies 
with frequency; hence, the radial variation of the electromag- 
netic field differs for each wave in the superposition. In order 
to treat this variation in the radial mode structure, we repre- 
sent the electromagnetic field in terms of the superposition 
given in Eqs. (12) under the assumption that the mode am- 
plitudes vary more slowly in z and t [i.e., SE{„1)= SE^\z,t) 
and SE^^SE^izJ)]- This spatial and temporal variation 
in the wave amplitudes will describe the propagation of a 
pulse through either a vacuum helix or in the presence of an 
electron beam subject to (1) the dispersion of the waves in a 
sheath helix, and (2) the variations in the radial inhomoge- 
neities of each wave with frequency. 

The dynamical equations for the wave amplitudes are 
obtained in a manner analogous to the derivation of Poynt- 
ing's theorem. Bearing in mind that e„(x,f) and b„(x,r) sat- 
isfy Maxwell equations in the absence of a source, Ampere's 
law is of the form 

E(szxbn£^"-e4^) 

+ 2(szxb*^£i2'-e^^) = ^J(x,r), 

(16) 

(13)      and Faraday's law is 

2 (**£««?•♦* 5*.") 

+2 (*«r^*£?>+!.; £*E!»)=O.        (i7) 

where J(x,/) denotes the microscopic source current. The 
dynamical equations for the fields are obtained in a manner 
analogous to the derivation of Poynting's equation by (1) 
taking the inner product of bm (and b*) with Faraday's law 
(17) and em (and e*) with Ampere's law (16), (2) subtracting 
the equations, (3) integrating the result over the entire cross 
section of the helix and cylinder, and (4) averaging the result 
over the axial length 2ir/Ak. The average is performed under 
the assumption that SE^p (i = l,2) varies on a slower spatial 
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scale length; hence, this operation diagonalizes the equations 
so that the evolution of each SE^ satisfies equations of the 
form 

jtSE^ + vp{kn)yzSE^ 

2Ak  f2ir/A*       r  r 
=W J     dz'j J dxdy3(x<y>z'<t^en(x>y>z'>t)> 

jtSE^ + Vgt(kn)yzSE^ 

(18) 

2A.k  n*iM      r r 
=7Ü~ \       dz>J J d-*4vJ(*0'»z',r)-e*(x):y,z',r), 

where Ah denotes the cross-sectional area enclosed by the 
helix. This equation describes the propagation of a pulse, or 
pulses, through the helix/cylinder at the appropriate group 
velocities. Intermodulation between the various waves is im- 
plicitly included through the particle trajectories. 

It is important to observe that these dynamical equations 
depend upon the field structure explicitly through (1) the 
group velocity, (2) the energy density, and (3) the polariza- 
tion of the wave. As such, it also depends implicitly upon the 
Poynting flux and the dispersion equation. In any case, simi- 
lar dynamical equations can be readily obtained for more 
realistic helix models as well as a wide range of both slow- 
and fast-wave devices such as free-electron lasers, and cy- 
clotron and Cerenkov masers. Indeed, the technique has been 
applied to the analysis of backward-wave oscillators22,23 and 
gyrotrons24 with good results. 

D. Electron dynamics 

The electron dynamics are treated using the full three- 
dimensional Lorentz force equations. It should be noted here 
that the present formulation is fully three-dimensional and 
relativistic. The azimuthal symmetry is imposed in the sense 
(1) that the beam distribution upon entry to the helix is azi- 
muthally symmetric, and (2) that each of the vector compo- 
nents of the electromagnetic fields varies only in (r,z,t). 
One important restriction in the present analysis is that the 
fluctuating radio-frequency (RF) space-charge fields are not 
explicitly included. Hence, the analysis is strictly valid only 
subject to the neglect of the positive and negative beam 
space-charge waves (i.e., the ballistic regime in which the 
Pierce gain parameter is small). Similarly, the effect of the 
direct current (DC) self-electric and self-magnetic fields are 
also neglected. The inclusion of the RF space-charge and DC 
self-fields are presently under study. As such, we integrate 
the Lorentz force equation for each electron in the simulation 
subject to both the external axial magnetic field and the elec- 
tromagnetic fields. Hence, 

d e 
— p= -eSE(x,t)- - vx[ß0e,+ <SB(x,f)]. (19) 
at c 

Observe that the electron dynamics are treated relativisti- 
cally. 

III. NUMERICAL ANALYSIS 

Equations (17) and (18) are solved for a system of length 
L on a grid with spacing Az using the MacCormack 
method25 and electrons are injected at z=0 on each time step 
At. The source current is represented as 

J(x,0 = -?2 vMSOc-xMWiy-ytit)) 

XSiz-zM), (20) 

where N is the number of electrons in the system at time t, 
(x,- ,v,) represents the location and velocity of the ith electron 
at time t, q is the charge per electron, and S is the shape 
function. The shape function describes the interpolation of 
the electron charge to the grid locations. We use a triangular 
shape algorithm 

f 7-7.+ A7 
z,-Az«z=ez,-, 

(21) 
z/<z^z, + Az, 

S(z-z,) = 

z-Zi+hz 
12— Az^ 

z-z,--Az 

Az1 

which provides a linear weighting in which the charge is 
mapped onto the two nearest neighbor grid points. The 
charge per electron includes a weight factor dependent upon 
the beam current. Since we are injecting electrons on each 
time step, we choose 

/*Af 
<?= N. 

(22) 
Ar 

where lb is the average beam current, and N^t is the number 
of electrons injected per time step. As a result, the dynamical 
equations for the field amplitudes are 

1 *£<•> + ,,,(*,,) l«g(>> 
dz 

2qAk 

k   i=l Jt 

Ivlkk 

cV„ ,=1 Jo 

•e„(*,-,y,-,z',r), 

dz'Siz'-ZiMt) 

i^+'jui8*?* 
(23) 

dt dz 

2qAk 

Tf7 ̂ 2/ 
n    i=l   JC 

2ir/A* 
dz'S(z'-z,)Vi(t) 

•e*(*; .y,-,r',f). 

Open boundary conditions for the field are imposed at both 
z=0 and L. 

The orbit equations are integrated by means of a fourth- 
order Runge-Kutta algorithm. In order to be consistent with 
the electron shape function that maps electron charge onto 
the grid, we use a linear interpolation scheme to map the 
field amplitude from the grid to the particle locations. 

Phys. Plasmas, Vol. 2, No. 10, October 1995 Freund ef al. 3875 



0     0.02   0.04   0.06   0.08    0.1    0.12   0.14   0.16 

k/k. 

FIG. 3. Plot of the variation of the frequency with wave number for the 
reference helix and waveguide. 

We now turn to the consideration of some numerical 
examples. We arbitrarily choose waveguide and helix dimen- 
sions of Äg=4.0 cm, Rh=lA cm, and XA = 1.4196 cm, and 
we will use these dimensions throughout the remainder of 
the article. The group and phase velocities of waves in this 
vacuum helix can be calculated using the dispersion equation 
(5). Plots showing (1) the variation of the frequency versus 
wave number, and (2) the variation of the group and phase 
velocity versus frequency is shown in Figs. 3 and 4. 

A. Propagation in the vacuum helix 

We first consider the case of the propagation of a pulse 
through the vacuum helix, and assume that a pulse is injected 
at z=0 with a smooth temporal shape given by 

8E{'\z = 0,t)- ■8E" 
V   t 

snn-- (24) 

and SE(*)(z = 0,t) = 0 for0s£r=£Tp, where rp describes both 
the rise and fall time of the pulse and SE^ is chosen 
to describe the peak power via Eq. (7). We use this same 
model for the injection of either single or multiple waves in 
the remaining sections. 

0.25 

0.2' 

0.15 
0     0.02   0.04   0.06   0.08    0.1    0.12   0.14   0.16 

k/kk 

FIG. 4. Plots of the group (dashed line) and phase (solid line) velocities vs 
frequency for the reference helix and waveguide. 

FIG. 5. Perspective plot of the propagation of a pulse through the vacuum 
helix. 

Consider the propagation of a pulse having a peak power 
of 1 W and a wave number klkh-Q.\. This corresponds to a 
wavelength of 14.196 cm, a frequency of approximately 459 
MHz, and a group velocity of Ug/c=0.18. We choose a sys- 
tem of length L=141.96 cm (i.e., 10 helix periods) and as- 
sume that Tp=10 ns corresponding to approximately five 
wave periods. A perspective plot of the propagation of the 
pulse is shown in Fig. 5 in which we plot the wave power on 
the vertical axis and the axial position and time on the hori- 
zontal axes. As shown in the figure, the pulse propagates 
through (and out of) the system with very little distortion. 
Energy conservation is satisfied to within several parts in 
105. 

More detail can be obtained by consideration of the in- 
stantaneous Poynting flux at z=L as a function of time. This 
is shown in Fig. 6. Given the length of the system and the 
group velocity of the wave, we expect to see the peak of the 
pulse arrive after 36 ns have elapsed, and this is clearly 
shown in the figure. 

B. Single-wave propagation with beam 

We now turn to the interaction of a single wave in the 
helix with an electron beam. For simplicity, we shall assume 
the injection of an identical electromagnetic pulse as de- 
scribed in Sec. Ill A with a helix length of L = 141.96 cm. We 
also consider the injection of a 16 kV/0.5 A electron beam 
with an flat-top annular beam profile with inner and outer 
radii of 0.99 and 1.01 cm, respectively. The rise time of the 
beam current is assumed to be 1 ns. For simplicity, we shall 
also assume that the beam has a zero emittance and energy 
spread. 

A linear stability analysis of the interaction of an annular 
beam in a sheath helix has appeared in Ref. 8, and we shall 
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FIG. 6. Plot of the output power at z = L as a function of time for a pulse 
propagating through a vacuum helix. FIG. 7. Perspective plot of the propagation of a pulse through a beam- 

loaded helix. 

make use of the results of that analysis for comparison pur- 
poses. The gain predicted by the theory for this choice of 
beam parameters and wave number is approximately 0.30 
dB/cm. The efficiency of the interaction can be estimated by 
the usual phase trapping argument; specifically, that at satu- 
ration the beam electrons will lose an amount of energy cor- 
responding to a deceleration of 2Au, where &v = vb-vph 

and vb is the initial bulk axial velocity of the beam. This 
technique was originally formulated by Slater for traveling 
wave tubes,26 but has also been used successfully for free- 
electron lasers15 and gives a predicted efficiency of 

Vs 
2T3 

y— 1  c 
Vb__ 

c 
^ph (25) 

For the case under discussion in which vblc «0.244 and 
uph/c«=0.217, this yields a predicted efficiency of 77=45%. 
Using this value of the saturation efficiency and the linear 
gain, we obtain a saturation length of approximately 117 cm 
for an input power of 1 W. 

It should be noted that the device is in the ballistic re- 
gime at this current level where the beam space-charge 
waves can be neglected. The transition current beyond which 
the space-charge waves must be included is in the range of 
some tens of amperes.15 

A perspective plot of the propagation and growth of the 
wave is shown in Fig. 7. This plot is directly analogous to 
that shown in Fig. 5 in which the vertical axis represents the 
wave power while the horizontal axes represent time and 
axial distance. It is evident from the figure that substantial 
growth is found and saturation sets in at a power level of 
more than 2 kW. The differences shown between this plot 
and Fig. 7 are due to the beam interaction, and it is important 
to observe that substantial pulse lengthening and distortion 
has occurred. 

This signal distortion is also observed in a plot of the 
output power as a function of time as shown in Fig. 8. Note 
that the transmit time of the beam through the helix is ap- 
proximately 20 ns, and no output power is observed prior to 
that time. The wave power grows rapidly after that time and 

reaches a peak at a power level of approximately 2.3 kW 
after 42 ns. This delay can be explained by noting that (1) the 
group velocity for this signal is vgI/c**0.18 and the transit 
time for the signal through the helix is about 26 ns, and (2) 
the predicted growth time to saturation (give the linear gain 
and efficiency estimate) is approximately 15 ns. Hence, the 
peak of the signal should not be found prior to 41 ns after the 
start of the interaction. 

A plot of the electron distributions in axial momentum 
and radial position as functions of axial position are shown 
in Fig. 9 at a late stage in the interaction. It is clear from the 
figure that electron trapping and subsequent bunching in 
axial position begins at ifcAz=300 with saturation of the sig- 
nal at khz^500 (i.e. z«113 cm) as evidenced by the rela- 
tively unchanging subsequent momentum distribution. 

We note that there is substantial agreement between the 
simplified linear gain theory that predicts a gain of 0.30 
dB/cm and the nonlinear simulation which for an input 
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FIG. 8. Plot of the output power at z = L as a function of time 
beam-loaded helix. 
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FIG. 9. Phase space plot showing the distribution of axial momenta and 
radial position of the beam electrons as a function of axial position at a late 
time of the interaction. 

power of 1 W and an output power of 2.3 kW over a satura- 
tion length of 113 cm yields a gain of «0.29 dB/cm; how- 
ever, the efficiency 57=*29% found in the nonlinear simula- 
tion is somewhat less than predicted by Eq. (25). We 
attribute this to deficiencies in the simplified phase trapping 
argument. Finally, energy conservation is good to within sev- 
eral parts in 103. 

C. Multiwave propagation with beam 

We now turn to the multiwave. case and consider the 
injection of two waves in conjunction with an electron beam 
identical to that considered in Sec. Ill B. We also choose 
identical helix and waveguide dimensions as used in the pre- 
ceding sections. One of the waves is chosen to be identical to 
that considered in the two preceding sections (i.e., 
k/kh=0.l), and an additional wave is included for which 
k/kh=0.05 (f=362 MHz). Both waves are assumed to have 
injected powers of 1 W and ^=10 ns. As shown in Fig. 4, 
this second wave has higher phase and group velocities 
(i>ph/c=0.234 and Vp/c^O.220), but the linear theory pre- 
dicts a substantially lower gain of approximately 0.19 dB/ 
cm. Hence, we would not expect the second wave to exhibit 
substantial growth over the length of the helix under consid- 
eration. 

Perspective plots of the evolution of the power of each 
wave with both axial position and time are shown in Figs. 10 
and 11. Figure 10 corresponds to the wave for which 
k/kh=0.l, which is the dominant wave by virtue of its higher 
growth rate. Observe that this result is very similar to the 
single-wave result shown in Fig. 7. The two waves are 
coupled through the electron beam, and this calculation in- 
cludes the intermodulation between the waves. Hence, we 
conclude that the intermodulation provides a relatively small 
perturbation to the evolution of this wave. However, that is 
not the case for the slower growing wave (for k/kh=0.05) 
which is shown in Fig. 11. In the absence of the second 
wave, this wave would grow in a fashion similar to that 
shown for the single-wave case in the preceding section, al- 
though it would not reach saturation over the length of the 

FIG. 10. Perspective plot of the propagation of the pulse corresponding to 
the faster growth rate through the beam-loaded helix. 

present helix. The intermodulation between these two waves, 
however, results in a substantial distortion in the pulse of the 
slower-growing wave. 

A clearer representation of the effects of the two waves 
on the output power is shown in Fig. 12 where the total 
output power at z=L is shown as a function of time. This 
figure is similar Fig. 8 for the single-wave case. The princi- 
pal differences in the two-wave case are that (1) the total 
power is reduced somewhat from 2.3 kW for the single-wave 
case to 2.2 kW for these two waves, and (2) the peak power 
now occurs at 43 ns, which is somewhat later than found for 
the single wave. 

The phase space in this case is not substantially different 
from that shown for the single-wave sample. These conclu- 
sions regarding the magnitude of the intermodulation, how- 
ever, should not be assumed to hold in general for arbitrary 
choices of the wave numbers and higher numbers of injected 

FIG. 11. Perspective plot of the propagation of the pulse corresponding to 
the slower growth rate through the beam-loaded helix. 
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FIG. 12. Plot of the output power at z = L as a function of time for the 
beam-loaded helix with two waves. 

waves. Detailed calculations are necessary to assess the im- 
portance of the intermodulation for different choices of the 
wave(s), beam, and helix parameters. 

IV. SUMMARY AND DISCUSSION 

In this article, we have described a nonlinear formulation 
of the interaction of an electron beam and multiple waves in 
a sheath helix TWT. The formulation is in the time domain 
and is able to treat the propagation of multiple pulses 
through the helix structure, and includes the intermodulation 
between the waves. In addition, the results are in substantial 
agreement with a linear theory of the gain in a helix TWT. 

The fundamental dynamical equations for the fields (17) 
are quite general in form, and rely largely on a knowledge of 
the dispersion, polarization, energy density, and Poynting 
flux for the waves under consideration. Thus, the technique 
is readily generalized to other configurations and structures. 
For example, we have considered open boundary conditions 
here, but it is straightforward to include reflections at either 
end of the interaction length and deal with cavities and os- 
cillator configurations. The model of the beam we have em- 
ployed is also very specific in that we studied an annular 
beam with a continuous temporal structure and zero emit- 
tance and energy spread. This can also be readily generalized 
to consider solid beams with a pulse temporal structure and a 
nonvanishing momentum and energy spread, as well as the 
inclusion of self-electric and self-magnetic fields. Other gen- 
eralizations that can be included are (1) to include a taper in 
the helix model, and (2) to generalize the helix model to 

more realistic configurations including, but not limited to, 
tape helix models. Each of these generalizations is currently 
in progress. 

In view of the computational efficiency and generality of 
the present formulation to more complex and realistic helix 
models, the technique has advantages over PIC simulations 
for treating interactions in helix TWTs. 
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A time-dependent nonlinear analysis of a helix traveling wave tube (TWT) is presented for a 
configuration where an electron beam propagates through a sheath helix surrounded by a conducting 
wall. The effects of dielectric and vane loading are included in the formulation as is efficiency 
enhancement by tapering the helix pitch. Dielectric loading is described under the assumption that 
the gap between the helix and the wall is uniformly filled by a dielectric material. The vane-loading 
model describes the insertion of an arbitrary number of vanes running the length of the helix, and 
the polarization of the field between the vanes is assumed to be an azimuthally symmetric 
transverse-electric mode. The field is represented as a superposition of azimuthally symmetric 
waves in a vacuum sheath helix. An overall explicit sinusoidal variation of the form exp(/ifcz-ia>r) 
is assumed (where w denotes the angular frequency corresponding to the wave number k in the 
vacuum sheath helix), and the polarization and radial variation of each wave is determined by the 
boundary conditions in a vacuum sheath helix. The propagation of each wave in vacuo as well as 
the interaction of each wave with the electron beam is included by allowing the amplitudes of the 
waves to vary in z and t. A dynamical equation for the field amplitudes is derived analogously to 
Poynting's equation, and solved in conjunction with the three-dimensional Lorentz force equations 
for an ensemble of electrons. Electron beams with a both a continuous and emission-gated pulse 
format are analyzed, and the model is compared with linear theory of the interaction as well as with 
the performance of a TWTs operated at the Naval Research Laboratory and at Northrop-Grumman 
Corporation.   © 1996 American Institute of Physics. [S1070-664X(96)02208-2] 

I. INTRODUCTION 

The development of the traveling wave tube (TWT) ex- 
tends over several decades since the pioneering work of 
Pierce and co-workers1"3 based upon a coupled-wave analy- 
sis utilizing the vacuum modes of the helix and the positive 
and negative energy space-charge waves of the beam. Im- 
proved linear theories based upon an eigenvector analysis of 
Maxwell's equations in a sheath helix have also been 
developed,4,5 and discussions of both the coupled-wave and 
field theories of the TWT are given by Beck6 and Hutter.7 

More recently, complete field theories of beam-loaded helix 
TWTs have been developed for both sheath8 and tape9 helix 
models, and dielectric loading has also been incorporated 
into the sheath helix analyses.10 

Nonlinear theories of the TWT also have a long history 
in the literature, and can be grouped into two broad classes 
dealing with steady-state and time-dependent models. 
Steady-state models have been used to study the growth of a 
single frequency wave injected simultaneously with the elec- 
tron beam. These formulations constitute a slow-time-scale 
approach.""14 A good review of this technique as applied to 
TWTs has been given by Rowe,15 and the approach is well 
suited to the analysis of a broad class of linear beam ampli- 
fiers and has also been applied, for example, to the free- 
electron laser.16 

Time-dependent models of helix TWTs rely upon 
particle-in-cell (PIC) simulation techniques. At the present 
time, a one-dimensional PIC simulation code is available,17 

"'Science Applications International Corp., McLean, Virginia 22102. 
wUniversity of Maryland, College Park, Maryland 20742. 

which treats dispersion by means of a transmission line 
equivalent circuit model. Hence, the one-dimensional PIC 
simulation of this form is limited in its ability to model the 
dispersion of the helix and is unable to deal with radial varia- 
tion in the mode structure. The most general PIC formula- 
tions of the interaction in a helix TWT to date are two- 
dimensional simulations of a sheath helix model.18,19 Since 
the helix is in reality a three-dimensional structure, a two- 
dimensional PIC formulation requires a prescription for deal- 
ing with the boundary condition at the helix. In practice, the 
simplification made is to treat the so-called sheath helix in 
which the conductivity is infinite in the direction of the helix, 
and zero otherwise. While this approach can provide a good 
approximation for the dispersion and radial mode variation 
in the sheath helix, it is not adaptable to more realistic helix 
models, which include substantial harmonic components. 

The approach we adopt in this paper differs from these 
PIC formulations. As in the case of the two-dimensional PIC 
formulations, we assume azimuthal symmetry and deal with 
a sheath helix model. However, we treat the fields in terms of 
a spectral decomposition in which the electromagnetic field 
is expressed as a superposition of the normal modes of the 
vacuum sheath helix. In this representation, an overall sinu- 
soidal variation of the form exp(ikz-icot) is assumed for 
each wave, where <o denotes the angular frequency deter- 
mined from the vacuum sheath helix dispersion equation cor- 
responding to wave number k. The polarization and radial 
variation of each wave is assumed to be given by the normal 
mode solutions of Maxwell's equations for the vacuum 
sheath helix boundary conditions, which are three- 
dimensional in nature. The evolution of each wave either in 
vacuo or in the presence of the electron beam is included by 
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allowing the amplitudes to vary in both axial position and 
time. The detailed evolution of the waves is governed by a 
dynamical equation that is analogous to Poynting's equation. 
This equation includes the coupling of the waves to the elec- 
tron beam and, hence, the intermodulation between the 
waves themselves. In conjunction with the equations for the 
fields, the trajectories of an ensemble of electrons are inte-. 
grated using the three-dimensional Lorentz force equations. 

As in the case of the two-dimensional PIC formulations, 
this spectral approach provides a good model for the disper- 
sion and radial variation of the electromagnetic field, but 
requires an explicit choice of the waves of interest to be 
specified as an initial condition. It has two advantages over 
the two-dimensional PIC models, however, in that (1) the 
technique can be readily generalized to deal with more real- 
istic tape helix models, which include higher harmonic com- 
ponents; and (2) the numerical technique is considerably less 
computationally demanding. For the numerical examples dis- 
cussed in this paper, typical run times on a Cray Y-MP su- 
percomputer were substantially less than one minute. 

One restriction that is imposed in the present analysis is 
the neglect of the beam space-charge modes that restricts the 
analysis to the ballistic regime in which the Pierce gain 
parameter2 is small. The exclusion of the space-charge 
modes is not an essential element of the formulation, and the 
inclusion of the space-charge modes is presently under study. 
The self-electric and self-magnetic fields have also been ne- 
glected. However, the self-fields can be readily included by 
means of a technique used for inclusion of the self-fields in 
free-electron lasers.20 

The numerical examples discussed herein relate to the 
single-pass propagation of pulses through both vacuum and 
beam-loaded helix structures, and open boundary conditions 
have been imposed. However, various degrees of reflecting 
boundary conditions can also be used to treat various cavity 
and oscillator configurations. Finally, the formulation can 
also be generalized to treat more realistic helix models; in 
particular, a tape helix model is presently under study.9 

The organization of the paper is as follows. The general 
formulation is presented in Sec. II. This includes a discussion 
of the geometry, the dispersion equation and mode structure 
in a sheath helix, the field representation and the dynamical 
equation governing the evolution of the fields, and the 
Lorentz force equations. In Sec. Ill we deal with the numeri- 
cal techniques used to solve the dynamical equations as well 
as the representative solutions for various parameter regimes. 
A summary and discussion is given in Sec. IV. 

II. THE GENERAL FORMULATION 

The general formulation treats the propagation of mul- 
tiple waves through a dielectric- and vane-loaded sheath he- 
lix in the presence of an electron beam. This is a fully time- 
dependent problem, and the electron beam model can 
represent either a continuous or prebunched pulse format. 
The prebunched electron beam is referred to in the literature 
as an emission-gated beam. In addition, we permit the in- 
jected radiation to have an arbitrary format; that is, we can 
inject either a definite radiation pulse or a continuous signal. 

FIG. 1. Schematic representation of the cross section of the helix circuit. 

A. The helix circuit configuration 

The physical configuration that is treated is that of an 
energetic electron beam propagating parallel to the axis of 
symmetry of a dielectric and vane-loaded helix. Azimuthal 
symmetry is assumed throughout. A schematic of the cross 
section of the helix circuit is shown in Fig. 1, in which the 
vanes are positioned radially, and where Rh and Rg are used 
to denote the radii of the helix and the outer cylinder, Rv 

denotes the inner radius of the vanes, and ^> is the dielectric 
constant. 

In practical TWTs the helix is composed of a metal strip 
or wire that is supported at multiple points within the cylin- 
der by posts or rods. A complete self-consistent description 
of wave dispersion in such a structure is beyond the scope of 
the present analysis. For simplicity, we assume that both the 
helix and the outer cylinder are loss-free conductors and rep- 
resent the electromagnetic field as a superposition of the azi- 
muthally symmetric modes in the vacuum helix. Within the 
context of this assumption, there are several further simpli- 
cations that permit an analytic solution for the normal modes 
of the vacuum helix. 

In the commonly applied tape helix model, it is assumed 
that only a surface current is induced in the helix and that the 
effects of the support posts can be neglected. The restriction 
to surface currents in the helix is equivalent to the assump- 
tion that the helix is "thin" in the radial direction. A sche- 
matic illustration of a "tape" helix is shown in Fig. 2, where 
Rh is the helix radius, kh denotes the helix period and 6), is 
the width of the tape. The unit vector describing the pitch of 
the helix is e^=e9cos <f>+e, sin <f>, where tan <f>=\lkhRh for 
a helix wave number kh(=2iT/\h). A multiplicity of azi- 
muthally symmetric modes exist in such a system corre- 
sponding to the spatial harmonics of the helix period. The 
importance of the higher-order spatial harmonics decreases 
as the width of the helix increases. Ultimately, if Sh = \h, the 
induced currents in the helix can be modeled as a continuous 
helical current sheet, and the effects of the spatial harmonics 
disappear. This is referred to as the sheath helix approxima- 
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FIG. 2. Schematic illustration of a tape helix structure. 

tion. For simplicity, we shall adopt a sheath helix model for 
the electromagnetic fields, but observe that the general tech- 
nique we describe is readily generalizable to a tape helix 
model. 

B. The modes in a sheath helix 

We restrict the analysis to the azimuthally symmetric 
subluminous waves supported by the circuit. The azimuthally 
symmetric electric and magnetic fields can be represented in 
the form (see the Appendix) 

(I) 

<5E(x,r) = 2 8En{R„(r)Zrsm(<pn+S<pn) 
n 

-[/3ph(^,)0„('-)e,-Z/
(
1'
)(r)eJcos((p,1 

+ S<P„)h 

<5B(x,r) = 2 SEn{@n(r)er cos(<pn+ 8<p„) 
n 

+ [ßph(kn)Rn(r)ee-Zib\r)ez]s\n(<pn 

+ S<pn)}, 

where the summation is over the modes to be included, and 
SEn denotes the wave amplitudes. The phase is composed of 
two parts: one given by the phase of the wave propagating in 
the cold vacuum helix given by <pn=knz — u)nt for wave 
number kn=n kk and angular frequency w„, such that 
(kn, w„) satisfy the vacuum sheath helix dispersion equation 
and Ak is the separation in wave number between the waves, 
and a part governed by the interaction with the electron beam 
Scpn. We assume that both SEn and 8<p„ vary in z and t. In 
addition, ßph(k„)^vph(kn)/c = a)n/ckn denotes the normal- 
ized phase velocity of each wave. The vacuum sheath helix 
dispersion equation is (see the Appendix) 

<"»    PnqnMPnRh) W0fi(q„Rv,q„Rh)    [pnJo(pnRh)wi,\(^nRg^nRh)-qnJi(PnRh)Wuo{qnRg,qnRh)] 

1?    ~kffi,J\{pnRh)W[A{qnRv,q„Rh)  [qnJi(pnRh)Ww(qnRv ,q„Rh) +eQp,,J0(pnRh)WU0(qnRh,qnRv)]      ' (2) 

where kh( = 2Tr/kh) is the helix wave number, p2
n= w2

nl c2 - k2
n, q2= eQ<a2

nl c2 - k2„ Wmn(x,y)^Ym(x)Jn(y)-Jm(x)Yn(y), 
and J„ and Yn denote the Bessel and Neumann functions. The components of the polarization vectors depend upon the 
frequency, wave number, and dimensions of the helix and outer cylinder, and are given by 

Pn 
J\(Pn&<    I. 
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II    and    III, 
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where   region   I   denotes   0=£r</?A,   region   II   denotes 
R,,^r<Rv, and region III denotes Rv*£r<Rg. 

It should be noted here that within the vanes in region HI 
the field is azimuthally symmetric, and that SE = SEZ = SBe 

= 0. In general, the field within the vanes (and, by extension, 
the overall field) will contain azimuthal harmonics based 
upon the number of vanes and the vane spacing. However, 
we have assumed azimuthal symmetry; this restricts the 
analysis to the lowest-order azimuthal harmonic, which dis- 
plays a simple transverse-electric polarization within the 
vanes. 

Energy transport for each wave within the vacuum helix/ 
cylinder is determined by the Poynting flux, the stored en- 
ergy density, and the group velocity. The Poynting flux for 
each wave denotes the time-averaged power flux over the 
entire cross section of the cylinder and helix, and using the 
fields given in Eqs. (1) can be expressed as 

Sn = P„ SE\, (7) 

where 

Pn=- IS" 
* „2 e0Pn 

-Jo(P*Rh) TJT 

In 

w\M*t*>9M 
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(8) 
Ki(qnRg>qnRh) 

In addition, the time-averaged energy density per unit axial length over the entire cross section of the helix and cylinder is 
given by 

Wn=UnSE\, (9) 

where 

,r            "'BJ.R"rf      oJlt      B^£0P"I,      r,
WldqnRn,qnR»)\Rl(eO-l)     2 > 
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(10) 

Finally, the group velocity of each individual wave is given 
by 

(11) 

For convenience, we rewrite the electric and magnetic 
fields in the form 

«5E(x,r) = S [*&„" en(x,f) + ,5E<2) e*(x,f)], 

•VB(x,f) = 2 [S&» bn(x,t)+SEi2) b„*(x,r)], 

(12) 

whe.P SEl
n
l)=SEn cos &p„ and SEi2)= 8En sin &pn, and the 

polaii/ation vectors are given in cylindrical coordinates by 

(13) 

en(x,0={Ä„(r)er sin ipn-[ß^{kn)®n(r)ee 

-Z<e)(r)ez]cos <pn}, 

bn(x,t)={@n(r)er cos <p„ + [)Sph(/:n)Ä„(r)eö 

-Z<,ft)(r)ez]sin <p„}, 

e„*(x,f) = {Än(r)er cos <p1I + [)8ph(A:jeil(r)es 

-Z<<>(r)ejsin «pj, 

b*(x,OH-0B(r)er sin <pn + {ßvii{kn)Rn{r)zg 

-Zib\r)ez]cos cpn}. 

Observe that the polarization vectors satisfy the source-free 
Maxwell equations; hence 
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Vxe„ = "7^7 b<< C at 
and Vxb 

well as 

Vxe* = 
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 b* 

c dt   " 
and Vxl 

1 s 

c dt 

1 d 

c dt 

(14) 

(15) 

2(e;xbn^£l"-en^^" 

+ ?(*xb: £**?>-* Itf» 

47T 
•J(x,/), (16) 

C. The dynamical equations for the fields 

In order to treat the variation in the radial mode structure 
as well as the axial and temporal evolution of the wave(s), 
we represent the electromagnetic field in terms of the super- 
position given in Eqs. (12) under the assumption that the 
mode amplitudes vary more slowly in z and / [i.e., 
8frn

X)=8E\}\z,t), and 8E™ = ÖE<n
2\zM This spatial and 

temporal variation in the wave amplitudes describes the 
propagation of a pulse through either a vacuum helix or in 
the presence of an electron beam subject to (1) the dispersion 
of the waves in a sheath helix, and (2) the variations in the 
radial inhomogeneities of each wave with frequency. 

The dynamical equations for the wave amplitudes are 
obtained in a manner analogous to the derivation of 
Poynting's theorem. Bearing in mind that e„(x,f) and b„(x,/) 
satisfy Maxwell equations in the absence of a source, Am- 
pere's law is of the form 

and Faraday's law is 

where J(x,f) denotes the microscopic source current. The 
dynamical equations for the fields are obtained in a manner 
analogous to the derivation of Poynting's equation by (1) 
taking the inner product of b,„ (and b*) with Faraday's law 
(17) and eOT (and e*) with Ampere's law (16); (2) subtracting 
the equations; (3) integrating the result over the entire cross 
section of the helix and cylinder; and (4) averaging the result 
over the axial length lirlLk. Observe that for a single wave, 
this scale length is just the wavelength. The average diago- 
nalizes the equations so that the evolution of each SE^ sat- 
isfies equations of the form 

d d\   ....   2 A*  f2^/A*       f  f 
Jt

+V^n) yz]SE['> = — Jo       dz'j j dx dy J(x,y,z',t)-e„(x,y,z',t), 

d d\   ....   2 A*  f2WA*       r r 
Jt+v%r{kn) -J8E[2) = -^j- Jo       dz'j  j dx dy J{x,y,z',t)-e*(x,y,z',t), 

Ah 

(18) 

r 

where Ah denotes the cross-sectional area enclosed by the 
helix. This equation describes the propagation of a pulse, or 
pulses, through the helix/cylinder at the appropriate group 
velocities. Intermodulation between the various waves is im- 
plicitly included through the particle trajectories. 

Using this procedure, we observe that there will be a 
gradient in the vacuum fields e„ and bm due to the taper. As 
a result, the vacuum fields satisfy the modified equations 

VXe'•+^b'•=:,I" 
(19) 

D. The case of a tapered helix 

This model can be adapted to treat the case of a helix 
with a spatially varying period by the relatively simple ex- 
pedient of allowing the helix wave number to vary in z and 
recalculating the wave number, group velocity, and the 
Poynting flux, and energy density of each wave as a function 
of axial position. In so doing, we neglect any reflected waves 
that might result from the tapered helix. In practice, this is 
equivalent to the assumption that the variation in the wave- 
length that results from the tapered helix period varies slowly 
in comparison with the wavelengths of interest; hence, 
\$>Az(d\/dz). 

1  d 
Vxb""7^e'' = ^- c at 

Vxen* + ~b,t = ^, 

1 d 

C dt 

(20) 

(21) 

(22) 

where 
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and this reflects the effect of the variation in the wave num- 
(2v      ber with axial position on the polarization vectors. Following 

the same procedure outlined above, we find that the dynami- 
cal equations for a tapered helix can be expressed in the 

/9 S \ 2Ak P      ciTTihk       r  r 
Jt

+^r(k„) Ty\a SEi») = -^f-jo       dz'j J dxdy J(W',0-e„(*,v,Z\r), 

/? <9 \ 2 AJfc Pm    f2n/Mc f    f 
Jt+

v^T^pl»n Sk{»))=-^T \Q       dz'\ J dxdyS{x,y,z',t)-e*n{x,y,z',t). 

(27) 

E. Electron dynamics 

The electron dynamics are treated using the full three- 
dimensional relativistic Lorentz force equations. Azimuthal 
symmetry is imposed in the sense (1) that the beam distribu- 
tion upon entry to the helix is azimuthally symmetric, and (2) 
that each of the vector components of the electromagnetic 
fields varies only in {r,z,t). With this in mind, we integrate 
the Lorentz force equation for each electron in the simulation 
subject to both the external axial magnetic field and the elec- 
tromagnetic fields. Hence 

d e 
— p=-e <5E(x,f)- - vx[ß0ez+ <5B(x,r)]. 
CLl C 

(28) 

The initial conditions on the ensemble of electrons reflects 
the specific pulse structure of interest. Thus, electrons are 
injected into the interaction region at uniform time intervals 
for a continuous beam, and at periodic but nonuniform inter- 
vals for an emission-gated beam. The specific algorithms 
used for these purposes are described in the following sec- 
tion. 

One important restriction in the present analysis is that 
the fluctuating if space-charge fields are not explicitly in- 
cluded. Hence, the analysis is stricdy valid only subject to 
the neglect of the positive and negative beam space-charge 
waves (i.e., the ballistic regime in which the Pierce gain 
parameter is small). Similarly, the effect of the dc self- 
electric and self-magnetic fields are also neglected. The in- 
clusion of the rf space-charge and dc self-fields are presently 
under study. 

III. NUMERICAL ANALYSIS 

Equations (18) [or (27) for a tapered helix] are solved for 
a system of length L on a grid with spacing Az over a time 
step Ar using the MacCormack method.21 The microscopic 
source current is represented as 

J(x,f) = -<?2 vMStx-XiWSty-yM] 
i=l 

XS[z-Zi(t)], (29) 

where N is the number of electrons in the system at time t, 
(Xj ,v,) represents the location and velocity of the ith electron 
at time t,q is the charge per electron, and 5 is the shape 
function. The shape function describes the interpolation of 
the electron charge to the grid locations. We use a triangular 
shape algorithm, 

( z~z,+Az 

S(z-zd=\ 
Az2     ' 

z-z,-Az 

—A?-; 

Zj-Az^z^Zt, 

z,<z^z,+Az, 

(30) 

which provides a linear weighting in which the charge is 
mapped onto the two nearest neighbor grid points. The 
charge per electron includes a weight factor dependent upon 
the beam current. Since we are injecting electrons on each 
time step, we choose 

/„Af 
q= N. 

(31) 
Ar 

where Ib is the beam current injected over each specific time 
step and N^, is the number of electrons injected per time 
step. Note that the charge per electron injected during each 
time step is found using the average current for a continuous 
beam, while this current will vary depending upon the bunch 
shape for an emission-gated beam. As a result, the dynamical 
equations for the field amplitudes are 

(£w*.>£Ha**.,)> 
1q Ak P\a  "    f2«/A* 

■ "   S dz'Siz'-Z^M 
clln      <=i Jo 
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•e„(x,,.y,,z',/) 

1/2   cr(2). 

:t/„        /li Jo dz' s(z'-ZiM') 

•e*(xi,yi,z',t). (32) 

Open boundary conditions for the held are imposed at both 
z=0 and L. 

The orbit equations are integrated by means of a fourth- 
order Runge-Kutta algorithm. In order to be consistent with 
the electron shape function that maps electron charge onto 
the grid, we use a linear interpolation scheme to map the 
field amplitude from the grid to the particle locations. 

The sequence of operations used in integrating the field 
and orbit equations are as follows. We first calculate the 
sources by accumulating electron charge to the grid and av- 
eraging over the appropriate scale length and then step the 
fields using the MacCormack method. Once the updated 
fields are calculated, we then step the electron trajectories. 
This procedure is repeated over the time scale of interest. 

A. Injection of electromagnetic waves 

TWTs are typically operated as amplifiers in which the 
electron beam has a continuous pulse format and an injected 
signal is amplified over the length of the helix. In order to 
model this configuration, we must specify an algorithm for 
the injection of a signal(s). For this purpose, we can inject a 
pulse with arbitrary start, rise, fiat and fall times in the fol- 
lowing way. We assume that a pulse is injected at z=-Aj 
and allowed to propagate into the interacr:"n 
pulse has a smooth temporal shape given by 

•—,   TH» 

SE[l)(z=-Az,t) 

sin' 

0; 

v (t- 

= SE{
0
U{ 

AT- -* ' rise 

1; 

COS^y 

0; 

^riSe
e'<Tflat. (33) 

ATfal, 
Tfla : Tfall. 

'> Tfall. 

and SE^\z=~^z,t)=0 for all t, where SE{
0
]) is chosen to 

describe the peak power via Eq. (7), TSIart denotes the start 
time of the pulse, Arrise is the rise time.of the pulse, 
Trise=Tslan+ATrise is the time at which the pulse has risen to 
its peak value, rHaI—rrise is the time interval over which the 
pulse retains a constant magnitude, &.T(M is the time interval 
over which the pulse falls to zero, and TraU=7|1a[+ATfali is the 
time after which the injected pulse vanishes. Note that the 
injection of power at ;=-Az requires the inclusion of a 
guard cell in the grid outside the interaction region 

Observe that this form gives us great flexibility in the 
pulse format. For example, a square pulse can be injected by 

'peak 

T T ~*t 

hvidth Lsignal 

FIG. 3. Schematic illustration of the pulse shape in an emission-gated beam. 

the simple expedient of allowing Arrisc=ATfilil=0, and a con- 
stant drive power can be imposed by the further requirement 
that rflat equal the entire pulse time. In addition, a single 
well-defined pulse can be injected by requiring that 
ATris<.=ATfai, and that rflat=Trise. This same model is used for 
the injection of either single or multiple waves. 

B. Injection of the electron beam 

The models of electron injection are chosen to corre- 
spond to either a continuous electron beam or an emission- 
gated beam. In the case of the continuous pulse, electrons are 
injected at the start of each time step. The charge per electron 
is calculated using Eq. (31) and we allow for an arbitrary 
current rise time by choosing a current of the form 

/*(<) = 
b sin' 

7T   t 

t>Tr 

■Tr, (34) 

where rr denotes the rise time of the beam. 
A schematic for a single beam pulse for an emission- 

gated beam is shown in Fig. 3. In the case of an emission- 
gated beam, bunching is assumed to occur prior to injection 
into the helix. This may be accomplished, for example, by a 
periodic signal applied to a gridded cathode. The detailed 
pulse shape we use is one in which beam pulses repeat over 
a period Tsigna, (=1//, where/ is the signal frequency), and in 
which the beam is "on" only over a time 7width (^Tsignai). 
This is illustrated schematically in Fig. 3. The detailed shape 
of the current pulse used for the emission over each wave 
period is 

M'H 
peak 

■^   '"width 

0=£f=£r, width » (35) 

0;        Twidlh<r«Tsigna|. 

The average current for this specific beam pulse shape is 
given by 

'avg      'width 

2rti 
(36) 

'peak       *• 'signal 

so that the width of the pulse can be determined by the speci- 
fication of the frequency of the bunching and the ratio of the 
average to peak currents. Note that no drive power is re- 
quired for the electromagnetic waves for the emission-gated 
beam. 
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FIG. 4. Schematic illustration of the mapping of charge to the grid and the 
current average. 

As mentioned previously, the sources are determined by 
first mapping the charge from each electron to the two 
nearest-neighbor grid points and then averaged over a length 
A\. The specific procedure we employ for this is a "moving- 
window" average in which the sources at the ith grid cell are 
determined by averaging over those grid cells within a length 
±A\/2 on either side. For example, if Az=AX./N for N 
even, then the sources at the ith grid cell are determined by 
averaging the charge over all grid cells within i±NI2. This 
necessitates the inclusion of Nil guard cells corresponding to 
z<0 and z>L. Thus, electrons are injected at z=-A\/2 and 
allowed to propagate ballistically until they reach z=0, at 
which point the interaction with the radiation is "turned on." 
Similarly, the electrons also propagate ballistically (i.e., the 
interaction with the radiation is "turned off") when the elec- 
trons exit the interaction region at z=L. This is illustrated 
schematically in Fig. 4. Electrons are ejected form the simu- 
lation whenever they pass beyond z=L+A\/2 or intersect 
the radial position of the helix. This procedure is also em- 
ployed in the case of a tapered helix with the generalization 
that the averaging length varies with axial position corre- 
sponding to the variation in the wavelength(s). 

One further point deserves mention before we turn to a 
discussion of the results of the simulation. Since charge is 
mapped onto the two nearest neighbor grid cells, the end 
cells of the average corresponding to the ith grid cell (i.e., 
the grid cells at i±NI2) will contain contributions from 
charges outside the length A\. This introduces an additional 
oscillation with a period of AX+2Az into the sources that 
must be filtered out. 

C. Propagation in a vacuum helix 

We first consider propagation of a single pulse through 
the vacuum helix (i.e., in the absence of the electron beam). 
The circuit parameters we choose to study correspond to a 
helix TWT built at Northrop-Grumman Corp.22 A schematic 
of the cross section of this tube is shown in Fig. 5. The helix 
and wall radii were 0.12446 and 0.2794 cm, respectively, and 
the helix period was 0.080 137 cm. The helix was supported 
by three dielectric rods with rectangular cross sections run- 
ning the length of the helix. The dielectric constant of the 
rods was 6.5 and the rod dimensions were 0.0508 cm 
X0.147 32 cm. No vanes were used in this structure. 

The cold dispersion solutions have been compared with 
the measured dispersion of this TWT. In order to test the 
utility of the present model in describing a real circuit, we 
varied CQ in the present model to determine the level of 
agreement that could be achieved over a broad bandwidth. 

0.14732 cm 
L 

FIG. 5. Schematic illustration of the Northrop-Grumman helix TWT. 

The results of this comparison were discussed in detail in a 
prior publication10 and are shown in Fig. 6, where we plot 
the variation in the phase velocity versus frequency as cal- 
culated using the cold helix dispersion equation (2) and as 
measured (dots) over frequencies up to 7.5 GHz for ^=1.75. 
It is evident from the figure that the agreement is very good 
over a broadband of frequencies extending from 3 up to 7 
GHz, and we conclude that the effect of the dielectric rods 
can be modeled using the uniform dielectric loading with an 
effective dielectric constant of 1.75. 

The effective dielectric constant used above can be esti- 
mated in a straightforward manner under the assumptions 
that the effect of the rods do not greatly perturb the field 
structures and that the field is approximately parallel to the 
rods. As such, the effective dielectric constant can be deter- 
mined from an estimate of the energy densities in the stored 
fields in the vacuum and the dielectric, and the effective 
dielectric constant is given by a volume-weighted average in 
which eeB-(Vtod€md+VvJ/Vtot, where Vrod and erod are the 
volume and dielectric constant of the rod, Vvac is the volume 
of the vacuum in the gap between the helix and the outer 
wall, and Vtot is the total volume in the gap between the helix 
and the wall. Of course, this formula is expected to yield 
only an approximation to the effective dielectric constant. 
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FIG. 6. Comparison of the dispersion in the cold Northrop-Grumman circuit 
with the solution of the cold helix dispersion equation. 
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FIG. 7. Perspective plot of the propagation of a pulse through a vacuum helix. 

For the parameters of interest, however, we find that 
eeff-»1.66, which is reasonably close to the value of 1.75 
found above. 

In propagating a pulse through this helix, we inject a 
signal with a pulse shape given in H?. (33) at f=0 with a 
frequency of 5 GHz arid a peak power level of 30 mW and a 
rise and fall time of 1 ns (note that this implies that rstart=0, 
ATris<.=Arfai,=Trise=Tftat=l ns, and Tfal,=2 ns). A perspective 
plot showing the propagation of this pulse through the helix 
versus both z and t is shown in Fig. 7. It is evident from the 
figure that the pulse propagates through the helix at the 
group velocity and with negligible distortion. 

D. Continuous beam case—Uniform helix 

The continuous beam example we consider corresponds 
to the TWT built at Northrop-Grumman discussed previ- 
ously in regard to the propagation of a pulse through the 

vacuum helix. Gain was measured in this TWT over a fre- 
quency range of 3-7 GHz using a 2.84 kV/0.17 A electron 
beam with a radius of 0.0495 cm. However, direct compari- 
son of the measured gain of this tube with the nonlinear 
theory is not. possible since space-charge effects were impor- 
tant but are not presently included in the nonlinear formula- 
tion. A linear theory of the interaction, which did include 
space-charge effects, however, was in substantial agreement 
with the observed gain.10 Hence, we choose to compare the 
results of the nonlinear simulation for these helix/beam pa- 
rameters with the aforementioned linear theory subject to the 
neglect of the space-charge contribution. This will give us a 
measure of the accuracy of the nonlinear formulation in the 
absence of space-charge forces. 

The linear dispersion equation in the absence of vane 
loading is of the form10 

(t)bcrb or 2~        2 ~     (O j\ipRb) 

r0(pRh)MpRs) 
Wo.oipRg.pRh). (37) 

where this describes the case of an annular electron beam with a radius Rb and a thickness kRb, crb=2TrRb ARb is the 
cross-sectional area of the beam, wb is the beam plasma frequency, y0=(l-vl/c2)~m, 

A( w,*) =-3—72^2- 
o>2      pq   MpRn) Wofi(qRg,qRh)   [pMpRhWuiqRg,g/?A)-^i(p/?A)^i.o(g/?y,g/?/,)] 

c7  kirtJi(pRh) wu(qR.,qRh) [^Ji(pRH)Wo.o(qRg.qRh)+eoPMpRh)wl0(qRh<qRg)y 
(38) 
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describes the vacuum helix dispersion function, and 

Aco2    b>2
barb      J0(pRb) 

eK(<o,k)=—j—J-ttP   j (nR s WQß(pRb,pRh), c       4yQc       J0(pKh) 
(39) 

describes the dielectric function of the beam space-charge 
waves for Ato=o)—kvb corresponding to a beam velocity vb. 
This linear theory corresponds to the case of a strongly mag- 
netized beam. 

Equation (37) describes the interaction in terms of the 
coupling of the vacuum helix mode with the beam space- 
charge mode. It can be expressed in the conventional form of 
the Pierce dispersion equation by making a near-resonant 
approximation in which a)**kvb after which we obtain 

(k2-kl
0)[A(o2-4QC:ik2vi] = 2Ci(ok0kvb (40) 

where 

*5-? 
w-l ,   , pt Ji(peRh) Wu(qtRg,qeRh) [qtJx{ptRh)WQß{qeRg,qeRh)+ eoPeJ0(peRh)Wuo(qeRh ,qeRg)] 

l~khKh qeMP<Rh) W0t0(qeRg,qeRh)   [pMPtRh)W1,i(qeRg,qtRh)-qtJiiptRh)WlJ^qeRg,qtRh)] )' 
(41) 

describes the wave number in the vacuum helix, pt- i(o/y0vb, qe=i<o( 1 - e0vl/c2) m/vb, and the Pierce Q and C parameters 
are given by 

w2
b<Tb   k

2Rljl(peRb) . ptJApeRh)Wx^qeRg,qeRh)  

4TTyA
QC

2
PeRh J$J^PeJ*{PeRh)WlMeRg,qeRh)-qeh{PeRh)WU<lcR

g'<ieRhY 

TT    PeRhJo(PeRh) „,    ,      n ..  x PMPt*h)WU(qtRg ,g,/?ft)-g^l(P^A)^i.o(g^ ,gt/?A) 
ß= TST 7^1 T7TT-T wfto(P^* ./>«**)  4#j *A

2ÄA /<,(/>.**) PeJi(P<Rh)Wul(qeRg,qeRh) 
(43) 

and fo=vb/c. Space-charge effects can be neglected when 
\Aoi2\>4\QC3k2vb\ and the term in QC* can be neglected. 
Physically, this corresponds to the regime in which the 
space-charge potential is too weak to significantly modify the 
effect of the vacuum helix wave on the electron trajectories. 
Solution of the dispersion equation indicates that the space- 
charge forces can be neglected when the Q and C parameters 
satisfy the inequality8 

c3N 
(1 + 8|Q|)2 

4|el   ' 
(44) 

Calculation indicates that this condition is not satisfied in the 
Northrop-Grumman TWT, and that space-charge forces are 
important in the description of that tube. 

The effect of space charge on gain of the Northrop- 
Grumman TWT can also be gauged by comparison of the 
linear growth rate as calculated by the complete dispersion 
equation (37) and by a reduced dispersion equation found by 
neglecting the space-charge terms. This reduced dispersion 
equation is found in the limit in which esc—»Au2/c2, and is 
equivalent to the neglect of the terms in QC3 in the reduced 
Pierce form of the dispersion equation. This dispersion equa- 
tion is of the form 

A((o,k)=- 
o>l<*b (o 

4y\c2 A a> IP 
A{pRb) 

J0(pRh)J0{pRg) 

XW0,0(pRg,pRh). (45) 

Collective space-charge effects generally act to reduce the 
gain of a device since they degrade the interaction between 
the beam and the vacuum mode, and this case is no excep- 

tion. The maximum gain, both as calculated by the general 
dispersion equation (37) and measured in the TWT, is ap- 
proximately 6.1 dB/cm at a frequency of 5.4 GHz. In con- 
trast, the solution of the dispersion equation (45) in the ab- 
sence of space-charge forces yields a maximum gain of 7.5 
dB/cm at a frequency of 4.5 GHz. 

In addition to obtaining the linear growth rate from Eq. 
(45), we can also estimate the nonlinear efficiency by phase 
trapping arguments. Specifically, that at saturation the beam 
electrons will lose an amount of energy corresponding to a 
deceleration of 2Au, where Av = vb—Vph and uph is the 
phase velocity of the wave. This technique was originally 
formulated by Slater for traveling wave tubes,23 but has also 
been used successfully for free-electron lasers16 and gives a 
predicted efficiency of 

2T3 v„ 
y— 1  c c 

Uph 
(46) 

Hence, the solution of Eq. (45) in the presence of the beam 
will also allow us to estimate the nonlinear efficiency. 

A plot of the solution of Eq. (45) for the gain and effi- 
ciency corresponding to the Northrop-Grumman parameters 
is shown in Fig. 8. Since this is an annular beam theory, we 
have chosen to use the rms beam radius (0.035 cm). As 
shown in the figure, gain is found over frequencies up to 7 
GHz, with the peak gain of approximately 7.5 dB/cm occur- 
ring at a frequency of about 4.5 GHz. The efficiency in- 
creases with frequency over this band and reaches a maxi- 
mum of about 40% at 7 GHz. 

Although the application of the nonlinear theory in the 
absence  of  space-charge  effects  is  unphysical   for  the 
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Gain & Efficiency without Space-Charge 
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FIG. 8. Plots of the gain (solid line) and efficiency (dashed line) for the 
parameters of the Northrop-Grumman TWT in the absence of space-charge 
effects. 

Northrop-Grumman TWT, the comparison with the linear 
predictions in the absence of space-charge affords another 
test of the validity of the nonlinear model. 

We now turn to the nonlinear simulation of this example. 
For purposes of comparison, we choose the same circuit pa- 
rameters for the helix, wall, and dielectric constant as used in 
the cold circuit dispersion comparison in Fig. 6 and in the 
linear theory in Fig. 8. The beam is assumed to have a con- 
tinuous pulse structure with a voltage and current of 2.84 
kV/0.17 A, and we inject an annular beam with a radius of 
0.035 cm. A magnetic field of 950 G was used. The beam 
rise time is 1 ns. We inject a single pulse of radiation at 5 

o 
0- 
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FIG. 9. Plots of the gain (dashed line) and power (solid line) versus axial 
distance from the nonlinear simulation. 

GHz, which is identical to that propagated previously 
through the vacuum helix with a peak power level of 30 mW, 
except that we start the pulse after 1 ns (i.e., rsmrt=l ns 
corresponding to the end of the beam rise time), and a 1 ns 
rise and fall time. The results showing the evolution of the 
gain and power as a function of axial position are shown in 
Fig. 9. 

It is evident from Fig. 9 that saturation occurs over a 
length of approximately 6.5 cm at a power level of approxi- 
mately 167 W for an efficiency of 34.6%. This is in good 
agreement with the efficiency estimate shown in Fig. 7, 
which yields an efficiency of about 36% at 5 GHz. As shown 
in the figure, the linear gain is also in substantial agreement 

FIG. 10. Perspective plot of the evolution of the injected signal as it propagates through the helix subject to amplification by the beam. 
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time = 4.2672 nsec 

FIG. 11. Plots showing the axial evolution of the phase space and radial structure of electron beam. 

with the prediction of the linear theory of a gain of 7.35 
dB/cm at 5 GHz. A perspective plot of the evolution of the 
injected signal as it propagates through the helix subject to 
amplification by the electron beam is shown in Fig. 10. 

Plots of the particle evolution in phase space and in ra- 
dial position as the beam propagates through the helix are 
shown in Fig. 11, which is a snapshot of the interaction re- 
gion once the power has saturated. It is clear from the figure 
that saturation is by electron trapping in the troughs of the 
wave and occurs at khz*=500, and that there has been some 
bunching and overtaking of the beam electrons as they be- 
come trapped. 

E. Continuous beam case—Tapered helix 

In treating a tapered helix, we consider the efficiency 
enhancements possible for the case considered previously for 
the uniform helix. The efficiency saturates in a uniform helix 
after the electrons become trapped in the troughs of the 
wave, and a state is reached where the number of electrons 
being decelerated by the wave (and thereby losing energy) is 
compensated by a similar number of electrons, which are 
being accelerated by the wave (and gaining energy). At this 
point the efficiency can be enhanced by decelerating the 
wave through a downward taper in the helix period. Care 
must be taken to choose the optimal start-taper point and 
slope of the taper in order to maximize the rate of efficiency 
enhancement. The optimum point at which to begin the taper 
is the point, prior to saturation in the uniform helix, where 
the electron beam has just become trapped by the wave. 

Saturation was found in the uniform helix example con- 
sidered previously (see Fig. 9) at 2=6.5 cm, and the nonlin- 
earity in the growth rate begins at z«*5.55 cm. Hence, we 
choose this point at which to begin the taper. As a result, we 
consider an interaction that is identical to that described pre- 
viously up to z=5.5 cm, after which the helix period will be 
tapered. The optimum slope of the taper is often not linear, 
and we choose a two step taper, as shown in Fig. 12, in 
which \h=0.080 137 cm for 0=£z«5.5 cm after which it de- 
creases linearly in the first step to \h=0.068 cm at z=7.0 
cm, and in the second step down to \h=0.058 at z = 10.0 cm. 
We now consider the evolution of the signal over this length. 

The evolution of the power with axial position is shown 
in Fig. 13 for the tapered helix. It is evident that the effi- 
ciency increases substantially over this length, and reaches a 
maximum power of approximately 240 W for an efficiency 
of approximately 50%. The oscillation in the power shown 
subsequent to the start-taper point with a period of about 1.8 
cm corresponds to the bounce period of the electrons trapped 
in the trough of the wave. The amplitude of the oscillation 
can be reduced by further optimization on the start-taper 
point. It should also be noted that even more energy can be 
extracted from the beam by continuing the taper beyond 10 
cm. 

The phase space and radial evolution of the electron 
beam as a function of axial position within the helix are 
shown *in Fig. 14 at 7.0745 ns after the start of the pulse. This 
corresponds to the time when the peak of the signal exits the 
interaction region. It is evident from the figure that the beam 
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FIG. 12. Variation in the helix period as a function of axial position. 

is largely trapped after khz***500 (i.e., z=6.4 cm) and then 
decelerates rapidly corresponding to the taper in the helix 
period. It should be observed that the beam also experiences 
large-amplitude radial perturbations corresponding to the en- 
hanced energy loss. 

F. Emission-gated case 

The emission-gated example we consider corresponds to 
an experiment conducted at the Naval Research 
Laboratory.24 In contrast to the TWT at Northrop-Grumman, 
the helix in this case was supported by dielectric posts with a 
spacing of approximately the helix period and supported at 
the helix and wall by metallic structures. Thus, the dielectric 

250 
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FIG. 13. Plot of the power as a function of axial position for the tapered 
helix shown in Fig. 12. 

supports occupied a much smaller fraction of the volume of 
the helix/wall gap than was the case for the Northrop- 
Grumman TWT, and this circuit requires both dielectric and 
vane loading to model the cold helix dispersion. The wall 
radius in this case was 3.63 cm and the helix radius and 
period were 1.4 and 1.966 cm, respectively. Good agreement 
between the measured dispersion and the cold helix disper- 
sion equation (2) was found for an effective dielectric con- 
stant of 1.25 and a vane radius of 3.23 cm. The length of the 
helix was 33.5 cm. A comparison of the measured and cal- 
culated phase velocity as a function of frequency is shown in 
Fig. 15. 

time = 7.0745 nsec 

300 400 
khz 

FIG. 14. Plot of the axial evolution of the phase space and radial structure of the beam for the tapered helix interaction. 
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FIG. 16. Evolution of the output power as a function of time for the NRL 
experiment. 

This experiment employed a gridded cathode that was 
driven at a frequency of approximately 450 MHz. At this 
frequency, the helix is approximately two wavelengths in 
length. The specific cases under consideration here used an 
electron beam with a voltage of 14 kV, a current of 0.1 A, 
and a radius of 0.508 cm. An external magnetic field of 300 
G was imposed. It has been determined from the linear 
theory that space-charge effects for these beam and circuit 
parameters do not become important until the current reaches 
from 1-10 A; hence, we expect that the nonlinear model can 
treat this experiment. Comparisons between the experiment 
and simulations bear out this expectation. 

In order to minimize the number of electrons in the 
simulation (and, hence, minimize run times as well), an an- 
nular beam model was assumed with a beam radius of 
0.3592 cm (i.e., the rms beam radius). The utility of model- 
ing a solid beam by an annular beam with a radius equal to 
the rms radius of the solid beam has been demonstrated by 
means of a linear theory of the interaction.10 No external 
drive power was assumed in simulation. We used the beam 
model shown in Eq. (35) to inject electrons into the interac- 
tion region, and studied the variation in the output power as 
a function of the ratio /aVg//peak-' 

An example of the temporal evolution of the output 

time= 18.545 nsec 

0 40       ,       60 
khz       ■ 

80 100 

3158 

FIG. 17. Plots showing the axial evolution of the phase space and radial structure of the emission-gated electron beam. 
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FIG. 18. Comparison of the output power as seen in the experiment and as 
predicted in simulation as a function of /„gZ/p^k. 

power is shown in Fig. 16 for /avg//peak=0.34. As seen in the 
figure, there is no output power prior to about 5 ns after the 
start of the beam pulse, which corresponds to the transit time 
through the helix. The output power rises rapidly thereafter, 
however, and rises to its peak value within 2 ns (correspond- 
ing to the wave period) and remains relatively constant at a 
level of approximately 32 W for as long as the beam power 
is maintained. This corresponds to an efficiency of about 2%, 
and is in close agreement with the observed output power 
level of 32 W recorded in the experiment. We also remark 
that a modulation in the output power at a period of about 2 
ns is also observed after the plateau in the output power is 
achieved. This is a macroscopic effect that stems from to the 
fact that the electron beam is completely bunched at that 
period and there are vacuum regions between the bunches. 

The evolution of the phase space and the radial positions 
of the beam are shown in Fig. 17 at time well after the output 
power has plateaued. It is clear that very little energy is 
extracted from the beam at an efficiency of only 2%; hence, 
there has been only a marginal growth in the energy spread 
of the beam, as shown by the slight depression in the axial 
momentum of the beam electrons near the end of the inter- 
action region: 

The level of agreement between the experiment and the 
nonlinear simulation at /av/^peak=0.34 is also found as the 
ratio of average to peak current is varied. This is shown in 
Fig. 18 in which the average output power (in the plateau) is 
plotted versus /aVg/^peak • As shown in the figure, the agree- 
ment between the simulation and the experiment is good 
over a wide variation in the ratio of average to peak currents. 

IV. SUMMARY AND DISCUSSION 

In this paper, we have described a nonlinear formulation 
of the interaction of an electron beam and multiple waves in 
a dielectric- and vane-loaded sheath helix TWT with and 
without a tapered period. The formulation is in the time do- 
main and is able to treat the propagation of multiple radiation 
pulses through the helix structure (including the intermodu- 
lation between the waves), as well as both continuous and 
emission-gated electron beams. 

The formulation has been compared with linear theories 
of the interaction as well as with helix TWT experiments, 
and good agreement has been obtained. It is found that the 
essential characteristics of the interaction in the helix TWT 
can be well described by the nonlinear simulation once the 
effective dielectric constant and vane radius for the helix 
have been determined. Good estimates of the effective di- 
electric constant can be obtained using a relatively straight- 
forward volume-weighted average; however, refinements in 
the estimates of these parameters can be made by compari- 
son of the predicted cold helix dispersion properties with the 
measured phase velocities of the cold helix. 

The fundamental dynamical equation for the fields (27) 
is quite general in form, and relies largely on a knowledge of 
the dispersion, polarization, energy density, and Poynting 
flux for the waves under consideration. Thus, the technique 
is readily generalized to other configurations and structures. 
For example, it is straightforward to include reflections at 
either end of the interaction length and deal with cavities and 
oscillator configurations. Future work will be directed to- 
ward (1) the inclusion of a taper in the helix model, and (2) 
the treatment of space-charge effects and self-electric and 
self-magnetic fields. Each of these generalizations is cur- 
rently in progress. 

In view of the computational efficiency and generality of 
the present formulation to more complex and realistic helix 
models, the technique has advantages over PIC simulations 
for treating interactions in helix TWTs. 
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APPENDIX: MODELS IN A DIELECTRIC- AND VANE- 
LOADED HELIX 

We express the components of the electric and magnetic 
fields in the generic form 

8f— Sf(r)sxp{ikz - i at), (Al) 

for which Maxwell's equations for the axial components of 
the electric and magnetic field are 

where t?=e{r)oillcl—k1 and 

e{r): 
l; 0*r<Rh, 

Rh^r^Rg, 

(A2) 

(A3) 

denotes the radial variation of the dielectric coefficient. The 
transverse components of these fields are given by 
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.     ik  d     „ 
SE=^—SEZ, 

K   dr 

iwlc d 
SEa— j—— SB,, 

.     ik a    . 
SBr^-SBz, 

SBe=^-j — SEZ. 
" K2       dr      z 

8EZ = SEr= SBe=0. For such a case, the effect of the vanes 
(A4)       can be modeled by the inclusion of an additional sheath helix 

(A5) 

(A6) 

(A7) 

These equations must be solved subject to the boundary con- 
ditions at the helix, vanes, and wall. 

In general, the vanes introduce an azimuthal periodicity 
into the solution that are described by azimuthal harmonics. 
However, we restrict the analysis to the lowest-order azi- 
muthal harmonic, which describes an azimuthally symmetric 
solution. Since the electric field components tangent to the 
surface of the vanes and the magnetic field components nor- 
mal to the surface of the vanes must vanish, this implies that 
the azimuthally symmetric solutions in the region of the 
vanes    must    be    a    transverse    electric    mode    with 

at the vane radius for which the period goes to infinity. As 
such, we express the solution for the axial electric and mag- 
netic fields in the form 

SE = 

AeJ0(pr); 
BeJ0(qr) + CeY0(qr); 

.    DeW0ß(qRg,qr); 

I, 
II,                         (A8 
HI, 

and 

[          AbJ0(pr); 
SBZ=\ BbJ0{qr) + CbY0{qr); 

I, 

II,                         (A9 
III, 

where p2= co2/c2-k2, q2=eQ(o2/c'- !—k2, and we have al 
ready imposed the boundary conditions that the transverse 
components of the electric field and the normal components 
of the magnetic field must vanish at the waveguide wall at 
r=Rg. Note that the three regions are as defined in Eqs. 
(3)-(6). Imposing the boundary conditions that SEZ and SEe 

must be continuous at r.=Rh and Rv implies that 

SE,= 

AeJ0(pr); 

AeJ0(pRh)W0,0(qRv ,qr)-DeW0ß{qRs ,qRv)WM{qRh ,qr) 

W0,0(qRv,qRh) 

DeWofi(qRg,qr); 

and 

I, 

II, 

III, 

(A 10) 

SBZ=' 

AbJ0(pr); 

qAhJApRJW^qR^q^-pDtW^qR^qRJW^iqR^qr) 

PWu(qRv,qRh) ' 

DbWu0(qRg,qr); 

I, 

II, 

III. 

(All) 

Additional boundary conditions at the helix radii are that 
the tangential components of the electric field at the helix 
must be perpendicular to the helix, and that the tangential 
components of the magnetic field parallel to the helix must 
be continuous. This means that if the helix period goes to 
infinity then SEZ(.R t. + 0")=0 and ^(^„ + 0") 
= SB.(Rv + 0 + ). As a result, the axial components of the 
fields become 

SE. = A.A 

and 

8B. = A, 

■/of/"-); I, 

Ji>(nR„nv<w(qRu.<i>-) 
II, wlu)iqRr.t,Rh)    ■ 

0: III, 

./„!/>/•): I, 

'/•/|</'K/,lN'i.M<</tf,. •</''■ 
II and III 

/>IV|.il<//\. .</**) 

(A 12) 

Observe that the axial component of the magnetic field is 
unaffected by the presence of the vanes, while the axial com- 
ponent of the electric field vanishes in the region of the 
vanes. This yields the transverse-electric polarization in the 
region of the vanes. 

Imposing the same helix boundary conditions at r=Rh 

implies that 

5£z(/?A + 0±)sin (f>+SEe(Rh + 0±)cos 6=0 

and 

SBz(Rh + 0~)sin <j>+ SBe(Rh + 0~)cos <f> 

= SBz(Rh + 0 + )sin <t> + Be(Rh + 0 + )cos </>. 

These two conditions imply that 

i 10) 
AeJ0(pRh)tan <t>=- — AbJx{pRh) 

(A 14) 

(A 15) 

(A 16) 

(A 13)      and 
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/ q Wl0(qR,,qRh) 

CP      \ <? W0X)(qRu,qKh)l t 

(AH) 

The dispersion equation (2) is found by setting the determi- 
nant of the coefficients in Eqs. (A16) and (A17) to zero, and 
the field representation in Eq. (1) is obtained by conversion 
of these fields to a real representation and allowing the am- 
plitude and phase to vary in z and t. 
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A time-dependent collective nonlinear analysis of a helix traveling wave tube including fluctuating 
(ac) space-charge effects is presented for a configuration where an electron beam propagates 
through a sheath helix surrounded by a conducting wall. The effects of dielectric and vane loading 
of the helix are included, as is efficiency enhancement by tapering the helix pitch, and external 
focusing by means of either a uniform solenoidal magnetic field or a periodic field produced by a 
periodic permanent magnet stack. Dielectric loading is described under the assumption that the gap 
between the helix and the wall is uniformly filled by a dielectric material. Vane loading describes 
the insertion of an arbitrary number of vanes running the length of the helix. The electromagnetic 
field is represented as a superposition of azimuthally symmetric waves in a vacuum sheath helix. 
The propagation of each wave in vacuo, as well as the interaction of each wave with the electron 
beam, is included by allowing the amplitudes of the waves to vary in z and t. The dynamical 
equation for the field is solved in conjunction with the three-dimensional Lorentz force equations for 
an ensemble of electrons. Collective effects from the fluctuating rf beam space-charge waves are 
also included in the analysis by means of a superposition of solutions of the Helmholtz equation. 
The simulation is compared with a linear theory of the interaction, and an example is described 
corresponding to a tube built at Northrop-Grumman Corp. © 1997 American Institute of Physics. 
[S1070-664X(97)01706-0] 

I. INTRODUCTION 

Traveling wave tube (TWT) development extends over 
several decades and includes both linear1-8 and nonlinear 
theories.9-17 The nonlinear theories can be grouped into two 
broad classes dealing with steady-state (i.e., 
slow-time-scale)9-13 and time-dependent models.14-17 At the 
present time, a one-dimensional particle-in-cell (PIC) simu- 
lation code is available,14 which treats dispersion by means 
of a transmission line equivalent circuit model. Hence, the 
one-dimensional PIC simulation of this form is limited in its 
ability to model the dispersion of the helix and is unable to 
deal with radial variation in the mode structure. The most 
general PIC formulations of the helix TWT to date are two- 
dimensional simulations of a sheath helix model.15'16 While 
this approach provides a good approximation for the disper- 
sion and radial mode structure for a sheath helix model, it is 
not adaptable to more realistic helix models, which include 
substantial harmonic components. 

The analysis presented here is based upon a previously 
described time-dependent spectral approach,17 which differs 
from the PIC formulations. As in the case of the two- 
dimensional PIC formulations, a sheath helix model is as- 
sumed; however, in the spectral approach, the fields are ex- 
pressed as a superposition of the normal modes of the 
vacuum sheath helix. In this representation, an overall sinu- 
soidal variation is assumed for each wave whose evolution, 
either in vacuo or in the presence of the electron beam, is 
treated by allowing the amplitude and phase of each wave to 
vary in both axial position and time. This evolution is gov- 
erned by a dynamical equation, which is analogous to Poynt- 

"'Also at Science Applications International Corp., McLean, Virginia 22102; 
electronic mail: freund@mmace.nrl.navy.mil 

ing's equation. In conjunction with the equations for the 
fields, the trajectories of an ensemble of electrons are inte- 
grated using the three-dimensional Lorentz force equations. 
One advantage of the spectral approach over the PIC formu- 
lations is that it is readily generalizable to treat more realistic 
tape helix models. 

In its original formulation,17 the spectral approach in- 
cluded such effects as (1) the dielectric and vane loading of 
the helix for dispersion control, (2) the tapering of the helix 
period (i.e., the pitch) for efficiency enhancement, (3) the 
propagation of multiple signals (so-called multitone opera- 
tion) with the associated intermodulation between waves, (4) 
the inclusion of variable attenuation or severs in the helix 
circuit, (5) reflections and backward propagating waves, (6) 
the injection of either continuous or pulsed drive signal(s), 
and (7) the injection of either a continuous or pulsed (i.e., 
emission-gated) electron beam. In the present paper, we ex- 
tend the prior formulation to include collective effects aris- 
ing from the beam space-charge waves. In addition, external 
focusing is treated using either a uniform solenoidal mag- 
netic field or a periodic permanent magnet (PPM) array. 

The organization of the paper is as follows: The general 
formulation is described in Sec. DL This includes a brief de- 
scription of the dynamical equations governing the evolution 
of the electromagnetic helix modes, as well as a description 
of the formalism for treating the beam space-charge waves. 
The treatment of the external focusing fields is also dis- 
cussed. The numerical analysis is given in Sec. III. A brief 
description of the numerical techniques is presented in this 
section, but the reader is advised that a more complete de- 
scription is to be found in Ref. 17. Also included in Sec. HI 
is a discussion of several sample TWT parameter sets. A 
summary is given in Sec. IV. 
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and where Rh and Rg are used to denote the radii of the helix 
and the outer cylinder, Rv denotes the inner radius of the 
vanes, and e0 is the dielectric constant. For simplicity, we 
assume that both the helix and the outer cylinder are loss-free 
conductors and represent the electromagnetic field as a su- 
perposition of the azimuthally symmetric modes in the 
vacuum sheath helix in which the unit vector describing the 
pitch of the helix is e^=efl cos <f>+ez sin <f>, where tan <f> 
= \/khR), for a helix wave number kh \=*2irl\h, and \h is 
the helix period]. 

The azimuthally symmetric electric and magnetic fields 
can be represented in the form17 

<5E(x,r) = 2 [SEi^Ut) + SE™tf\x,t)l 

^B(x,r) = 2[^i1)bi1)(x,l) + ^2)bl2)(x,0], 

(1) 

FIG. 1. Schematic illustration of the cross section of the helix circuit. 
where the summation is over the waves to be included, and 
the polarization vectors are 

II. THE GENERAL FORMULATION 

The general formulation treats the propagation of mul- 
tiple waves through a dielectric- and vane-loaded sheath he- 
lix in the presence of an electron beam. This is a fully time- 
dependent problem, and the electron-beam model can 
represent either a continuous or prebunched pulse format, 
although we confine the present discussion to the case of a 
continuous beam. In addition, we permit the injected radia- 
tion to have an arbitrary format; that is, we can inject either 
a definite radiation pulse or a continuous signal. Collective 
effects due to the fluctuating rf beam space-charge waves are 
included in the analysis. External focusing by means of ei- 
ther a uniform solenoidal magnetic field or a periodic field 
produced by a PPM stack is also treated. 

A. The electromagnetic modes in a sheath helix 

The analysis in the absence of such collective effects as 
the beam space-charge waves has been discussed 
previously.17 The interested reader is referred to the earlier 
work for the detailed nonlinear analysis of the electromag- 
netic waves supported by the helix, and we shall only sum- 
marize the development here for completeness. 

A schematic of the cross section of the helix model is 
shown in Fig. 1, in which the vanes are positioned radially, 

fc ) mRn(r)K\ Z Z) +[/W*n)0n(r)S, 
(x,r) 

#J(x,f) 

sin <pn 

cos tpn 

-Zi'}(r)eJ 
-cos tp„ 
sin<p„ 

(2) 

biU(x,0 

b<2)(x,f) 
= e„(r)er 

cos cpn 

-sin<p„ + [ßPH(kn)Rn(r)ee 

-Z<»>(r)ej(SinH 
»   v   '  zJ\COS (pnj 

Here, <pn=knz— <o„t denotes the phase of the wave propa- 
gating in the cold vacuum helix for wave-number kn=n&k 
and angular frequency a>„, such that (kn,wn) satisfy the 
vacuum sheath helix dispersion equation and Ak is the sepa- 
ration in wave number between the waves. As such, the over- 

all amplitude of the wave is given by SE2
n= SE^ 

+ SE™ , and the phase variation governed by the interaction 
with the electron beam is given by S(pn=tan~1(SE^i/SE^\ 
where we assume that both SEn and S<pn vary in z and t. 
Observe that in the absence of the electron beam, both 8<pn 

= 0 and SE^=0 and the fields describe the propagation of 
circuit waves in vacua. In addition, ßph(kn)=vph(kn)lc 
= wn/ckn denotes the normalized phase velocity of each 
wave. The vacuum sheath helix dispersion equation is17 

»5    Pnln MPnRh) Woß(qnR0,q„Rh)   [pMpmRh)WiA(ql,Rt,ql,Rh)-qHJl(ipmRh)WljAqllRg,9n/?A)] 
T5"" k2

hRl JdPnRh) W1A(qnRu,qHRh) [qnJ1(pnRh)Wofi{qnR„,qnRh) + eoPnJ0(pnRh)Wlfi(qnRh,qnRv)] = 0, (3) 
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,2=,,2,2 2/„2_ where p^cope'-k', q^e0a>^c'-k'n, WmJx,y) 
= Ym(x)Jn(y)-Jm(x)Yn(y), and Jn and Yn denote the 
Bessel and Neumann functions, and 

Jo(Pnr); I, 

»W*..*» .?»«*)' 
lO; m, 

(6) 

~rJ\(Pnr)\ i. 

~~J0(PnKh) w    .    p—T"£"T;  n* 

.0; m, 

e„(r)=- 
ck„/cjn 

hRh 

( MPnRh)Ji(Pnr) 

x< 
; I, 

(4) 

•M/»»**) Wl,l(?nÄS.?«ÄA) 
; H and II, 

4ft)(r) = 
*A^A 

f J0(pnRh)MPnr) 

X< 

; I, 
•/I(PA) 

~J0\PnKh)  w    TTTf     „   n  \ 
Pn WiMnRg^nRh) 

;  II and m, 

(7) 

where region I denotes 0^r<Rh, region II denotes Rh^r 
<RV, and region HI denotes Rv^r^Rg. 

Energy transport for each wave is determined by the 
Poynting flux, the stored energy density, and the group ve- 
locity. The Poynting flux for each wave denotes the time- 
averaged power flux over the entire cross section of the cyl- 
inder and helix, and using the fields given in Eqs. (1) can be 

(5)      expressed as Sn = PnSEn, where 

_kna>X 
"n—       T~5 

X 

8p„   l\     q 

4(PnR») 

i-^I^A)+ J2l(PnRh)--yL4(PnRh)7JI 
wUinRh,qnRv) 

[J\{PnRh) 

,2,    „ , W[fi{qnRg,qnRh) 

In       "  ^0,0(9nRv >1nRh) 

2J0(PnRh) 

+ cV„    1 

,2„2 cYn   2 J0(pnRh) 
KhKh 

-2„2 ,2/ 

A(PnRh)      Pn 
--MPnRn) 

PnRh 

wu<JnRg,qnRh) 

Ji(PnRh)+—r-MpnRh) w (n K  „ „ , 
In W0ß{<lnRv ><InRh) 

a>i   kiRi    PnRh     [J^pM    9„-»"-«"•' W1A(qnRg,qnRh) 

2  c2p<4(pnRh) 
+ ~3~7J _2D2 

2   2   2 

■+■ 
tan2 <f> 

*     <        Wh      {KMnRvlnRh)       Wf.l(<7„*« .?„**) J 
(8) 

In addition, the time-averaged energy density per unit axial length over the entire cross section of the helix and cylinder is 
given by W„= U„SEn, where 

u-mj?p-+irm
J°<pju JdPnRh)+——Jo(PnRh) 

"W 
2  2   2 

WnC  In 
+ ■ 

In 

tan2 <f> 

W0,o(qnRV ,1nRh) 
+ 

KMnRvlnRk)       KMnRg,qnRh) 
-5—T + tan2 <b\- 
eYn 

£0wl W\MnRh^nRy) 

WqlKMnRv^nRh) 

^       2    .   W\MnRg,qnRh) 
+ tan   0 —1  

V W\x(qnRg,qnRh) qnRh 

€o^h wU0(qnRh,qnRv) 

cWn   W0.o(qnRV,qnRh) 
— tan  0  VWlA(qnR.,qnRh) 

(9) 
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Finally,  the group velocity of each individual wave is 
vp{kn) = du>nldkn = PnIUn. 

The dynamical equations for the wave amplitudes are of 
the form17 

d\{p\aSE^\ 

7rT» + Ve{K)Tz)\p\a8E™] 

AkPln fz+^/At      r r 
-T7T dz'\     **W(*i.z''t) 4TTU„  Jz-v/Ak      J  J 

ei"(ii,:V) 
e[2\xL,z',t)r 

where J(x,f) denotes the microscopic source current, Ah de- 
notes the cross-sectional area enclosed by the helix, and Tn 

describes the losses for the circuit wave. Observe that for a 
single wave, this scale length Itrläk in the average over z is 
just the wavelength. This equation describes the propagation 
of a pulse, or pulses, through the helix/cylinder at the appro- 
priate group velocities. The effect of a tapered helix and 
intermodulation between the various waves is implicitly in- 
cluded through the particle trajectories. 

B. Beam space-charge modes 

In treating the collective beam space-charge modes, we 
assume that the electrostatic field is azimuthally symmetric, 
and write 

E(sc)(r,Z,f) = 2 EiK\z,t)t{,r\r,z,t), (ID 

where E^ is the amplitude, 

e<,sc)(r,Z,/) = Ä<sc)(r)ercos(9n+Msc))+Zisc)(r) 

Xezsin(<p,,+ «5«p<sc)), (12) 

the sum denotes the ensemble of space-charge modes, each 
one corresponding to the nth electromagnetic mode in the 
helix, <p„ is the vacuum phase of the helix mode, and 
<5^sc), describes the effect of the interaction on the phase of 
the space-charge mode. As in the case of the electromagnetic 
modes supported by the helix, we find it convenient to write 

E^\r,zj) = ^[E^(zM1>(r,zj) + E^{z,t) 
n 

Xe&V.z.f)], (13) 

where 

e£W.O\       (sc)     ./ cos9n \      (sc) 

&r,z,t))-R"   (r)M-sin J+Z«   (r) 

Xe, 
Sin <pn 

(14) z\cos ipnl 

and £<?=E™ cos &fi#, and £$=£<*> sin &p™. 
If we now take the time derivative of Poisson's equation 

and use the continuity equation to replace the time derivative 
of the charge density by the divergence of the current, then 

ft 3 
— V-E(sc) = 4ir —p=-4irV-J. 
dt dt K 

Hence, we find that 

-E
(SC)

=-4TTJ, 

(15) 

(16) 

to within a contribution of vanishing divergence. Under the 
assumption that dE^ldt^aJ^, Poisson's equation can 
be written as 

(10)      S«.[^)(z,*)^)(r,z,/)+ifö)(z.r)ei5)(rfZ,r)] 

= -4«J, 

where 

(17) 

#?(r'*'0\_   (sc)     . /sin <pn\      (sc) 

^(r,z,t)j-R"   (r)Mcos«pJ+Z»   (r) 

Xe, 
-cos <p„ 
sin cpn 

(18) 

We must now specify a procedure for determining the profile 
functions Ä*,sc) and Z^. 

The sheath helix model approximates the helix as a con- 
ducting cylinder in which induced currents are constrained to 
flow helically with the pitch angle (f>. Within the context of 
this approximation, it is appropriate to assume that the space- 
charge potential vanishes on the helix (i.e., at r=Rh). The 
polarization functions, therefore, can be expanded in terms 
of the solutions of the Helmholtz equation subject to this 
boundary condition; hence, 

m = l 

and 

Z<K)(r)=2 kM*mr), 
m=l 

(19) 

(20) 

where km=x0m/Rh, and x0m is the /nth zero of J0 [i.e., 
70(.x0m)=0]. As such, the polarization vectors can be written 
as(i=l,2) 

m = ] 

where 

i%(r,Z,t)\ 

(21) 

eilit'-.z.'M        ..      ..[sin 9» 
I = ir    J.1 «■   r IP I 

cos <p„ 

+kRJ0(Kmr)ez\ sin ^ (22) 

The polarization functions satisfy the Bessel function or- 
thogonality conditions and, after integrating over the cross 
section and also orthogonalizing over the axial modes, we 
find that for «'=1,2 
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=•(">- 
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In practice, the application of this procedure requires trunca- 
tion of the summation over the number of radial modes. This 
is determined in an empirical manner for each specific con- 
figuration by the successive addition of more modes until 
convergence is achieved. 

The specific tests used for convergence relate to both the 
bulk gain in the linear regime and to the saturation effi- 
ciency. Hence, additional radial modes are added to the 
simulation until the bulk growth rate in the exponential gain 
regime and the saturation efficiency converge to within some 
desired accuracy. It should be noted that the number of radial 
modes required to reach convergence may vary widely de- 
pending upon the specific parameters of interest and beam 
configuration. For example, a large number of radial modes 
would be required to treat an annular beam profile than a 
solid beam profile. 

C. External focusing 

Additional focusing fields in the form of externally ap- 
plied magnetostatic fields are often necessary components of 
TWT designs. Two types of focusing fields are typically em- 
ployed: uniform solenoidal fields, and a rippled field gener- 
ated by a PPM stack. We employ both fields in the present 
formulation. The solenoidal field is simply 

Bext-ßOez (24) 

where B0 describes the amplitude. The PPM field can be 
represented as 

*exi=Bw[h(kwr)*r sin kwz+I0{kwr)ez cos kwz],   (25) 

where Bw describes the on-axis amplitude of the PPM field, 
jfcw [s=2ir/A.„,, where \w is the period] is the wave number, 
and /„ denotes the modified Bessel function of the first kind. 

D. Electron dynamics 

The electron dynamics are treated using the full three- 
dimensional relativistic Lorentz force equations. Azimuthal 
symmetry is imposed only in the sense (1) that the beam 
distribution upon entry to the helix is azimuthally symmetric, 
and (2) that each of the vector components of the fields var- 
ies only in (r,z,t). With this in mind, we integrate the Lor- 
entz force equation for each electron in the simulation sub- 
ject to external focusing magnetic fields, the electromagnetic 
fields, and the space-charge field. Hence, 

dt 
p=-e[5E(x,0 + E(sc)(x,r)] 

--vX[Bext(x) + <5B(x,f)]. 
c 

III. NUMERICAL ANALYSIS 

For convenience, we refer to the simulation code as GA- 
TOR. The sequence of operations used in integrating the field 
and orbit equations are as follows: We first calculate the 
source current for both the electromagnetic field(s) and the 
space-charge field by accumulating electron charge to the 
grid and averaging over the appropriate scale length. We 
then step the electromagnetic fields. Once the updated fields 
are calculated, we step the electron trajectories subject to the 
electromagnetic, magnetostatic, and space-charge fields. This 
procedure is repeated over the time scale of interest. 

The dynamical equations for the vacuum helix waves 
(10) are solved for a system of length L on a grid with 
spacing Az over a time step At using the MacCormack 
method.18 The source current is 

J(x,r) = -E qivMftx-XiWSty-yM] 

XS[z-Zi(t)], (27) 

where N is the number of electrons in the system at time t, 
(xitVi) represents the location and velocity of the j'th mac- 
roelectron at time /, qt is the charge per macroelectron, and 
S is the shape function. The shape function describes the 
interpolation of the electron charge to the grid locations. We 
use a triangular shape algorithm 

f   z-Zi+Az 
2—; z,-Az=£z=£z,-, 

5(z-z,)=" 
Az 

z-z.-Az 
(28) 

Az 
1—; z,<z«z, + Az, 

(26) 

which provides a linear weighting weighing in which the 
charge is mapped onto the two nearest-neighbor grid points. 
The charge per electron includes a weight factor dependent 
upon the beam current. We inject N rings of electrons on 
each time step and model a beam with a flat-top radial pro- 
file. Hence, we choose g,-=(2i- l)/fcAr/Jvf for the £th ring, 
where Ib is the beam current. Analogous models can be de- 
veloped for either a parabolic beam profile or an annular 
beam model. 

The source current calculated in this fashion is also used 
to determine the space-charge field(s) using Eq. (23). Note 
that in contrast to the equations for the vacuum helix waves 
in which a partial differential equation (10) is integrated to 
describe the propagation of the waves through the helix sub- 
ject to gain in the presence of the beam and attenuation, the 
space-charge fields are evaluated at each grid point at each 
time step from the source current and mapped to the location 
of each electron. Hence, these fields are not explicitly propa- 
gated but, rather, are "carried along" by the electron beam. 

The orbit equations are integrated by means of a fourth- 
order Runge-Kutta algorithm. In order to be consistent with 
the electron shape function, which maps electron charge onto 
the grid, we use a linear interpolation scheme to map the 
field from the grid to the particle locations. Electrons are 
injected at the start of each time step. The charge per electron 
is calculated as described above and we allow for an arbi- 
trary current rise time by choosing a current of the form 
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Ib(t)=\'"—\2 Tr 

hi t>Tr, 

0.0508 cm 
(29) 

where 77 denotes the rise time of the beam. The initial mo- 
mentum space distribution describes a beam that is initially 
propagating purely parallel to the axis of symmetry in which 
pz0/mec= yjri-l and px0=0. 

TWTs are typically operated as amplifiers in which an 
injected signal(s) grows over the length of the helix. In order 
to model this, we must specify an injection algorithm. For 
this purpose, we inject a pulse with arbitrary start, rise, flat, 
and fall times in the following way. We assume that a pulse 
is injected at z = — Az and allowed to propagate into the 
interaction region. The pulse has a smooth temporal shape 
given by 

8E%\z=-Lz,t) 

( 0;r<rsl 

ir(t-Ta*d 
2    AT„- 

= SEXH 

sin 
'rise 

1*.    'rise^^'flat. 

W (t~ '"fall) 
COS 

rstart^*<-Trise> 

Tflat^'^Tfall. 

(30) 

2 ATM r 
0;  r>rfaU, 

and 8E™(z= - Az,f) = 0 for all t, where SE(
Q
l) is chosen to 

describe the peak power, rstart denotes the start time of the 
pulse, Arrise is the rise time of the pulse, rlix= rstait+ ATrise 

is the time at which the pulse has risen to its peak value, 
'flat- rrise is *he ^me interval over which the pulse retains a 
constant magnitude, Ar&u is the time interval over which the 
pulse falls to zero, and Tfa]1=Tflat-l-Arfaii is the time after 
which the injected pulse vanishes. Note that the injection of 
power at z = — Az requires the inclusion of a guard cell in 
the grid outside of the interaction region. In this work, we 
assume a smooth rise time for the injected pulse followed by 
a constant drive power. 

We now consider the interaction for circuit parameters 
corresponding to a helix TWT built at Northrop-Grumman 
Corp.19 A schematic of the cross section of this tube is 
shown in Fig. 2. The helix and wall radii were 0.124 46 and 
0.2794 cm, respectively, and the helix period was 0.080 137 
cm. The helix was supported by three dielectric rods with 
rectangular cross sections running the length of the helix. 
The dielectric constant of the rods was 6.5 and the rod di- 
mensions were 0.0508 cmXO.14732 cm. No vanes were used 
in this structure. Gain was measured in this TWT over a 
frequency range of 3-7 GHz using a 2.84 kV/0.17 A elec- 
tron beam with a radius of 0.05 cm. 

The cold dispersion solutions have been compared with 
the measured dispersion of this TWT, and it was found that 
the effective dielectric constant can be approximated by a 
relatively simple volume-weighted average over the cross 
section of the circuit. The results of this comparison were 
discussed in detail in prior publications8,17 and are shown in 
Fig. 3, where we plot the variation in the phase velocity 
versus frequency as calculated using the cold helix disper- 

0.14732 cm 
L 

FIG. 2. Schematic illustration of the Northrop-Grumman helix TWT. 

sion equation and as measured (dots) over frequencies up to 
7.5 GHz for an effective dielectric constant e0= 1.75. It is 
evident from Fig. 3 that the agreement is very good over a 
broadband of frequencies extending from 3 up to 7 GHz, and 
we conclude that the effect of the dielectric rods on the dis- 
persion can be modeled using the uniform dielectric loading 
with an effective dielectric constant of 1.75. 

It should be remarked that many helix models, such as 
the one-dimensional PIC formalism described in Ref. 14, 
employ the impedance as an additional parameter, which de- 
scribes the coupling of the beam to the circuit. However, 
there is no explicit use of the interaction impedance in this 
formulation. Rather, the coupling of the helix waves to the 
beam is implicitly described by the dispersion, polarization, 
and the calculated Poynting flux and energy density. Hence, 
whether the effect of the dielectric-loading model extends 
beyond the description of the vacuum dispersion to the 
growth of the wave(s) in the presence of the electron beam 
must be verified by comparison with both linear theories of 
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FIG. 3. Comparison of the dispersion in the cold Northrop-Grumman cir- 
cuit with the solution of the cold helix dispersion equation. 
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TABLE I. Variation in the bulk growth rate and saturated power with the 
number of radial modes. 

Number of 
radial modes 

1 
2 
3 
4 
5 
6 
7 

Bulk growth rate Saturated power 
(dB/cm) (W) 

6.33 149.0 
6.25 149.4 
6.23 149.3 
6.23 149.1 
6.23 149.0 
6.23 148.9 
6.23 149.0 
6.23 148.9 
6.23 148.7 

FIG. 4. Plots of the gain and power versus axial distance from the nonlinear 
simulation at a frequency of 5 GHz. Also shown is the gain as predicted by 
the linear theory (dashed line). 

the interaction and experiment We also remark that the lin- 
ear theory used for this comparison8 employs the same 
dielectric-loading model as GATOR, but solves the full eigen- 
vector problem for the beam and dielectric-loaded helix. The 
difference, therefore, is that the linear theory does not use the 
vacuum helix mode expansion. 

In simulation of the interaction, we assume an injected 
power of 20 mW with a rise time of 1 ns and a constant 
power thereafter, and a beam with a rise time of 1 ns as well 
and the voltage, current, and beam radius given above. The 
beam is modeled with ten annular rings injected per time 
step, which are initially uniformly spaced. We also assume 
an axial magnetic field of 950 G, which is close to the Bril- 
louin field for this beam. 

A plot of the simulation's predictions for the power and 
gain at 5 GHz as functions of axial distance is shown in Fig. 
4. As is evident in Fig. 4, the power grows exponentially 
over the axial range of approximately 2-7 cm, and the bulk 
gain per unit length over this distance is approximately 6.2 
dB/cm. The power saturates at a level of approximately 149 
W over a distance of 7.5 cm for an efficiency of about 
30.7%. This result is in substantial agreement with the linear 
theory. As indicated by the dashed line in Fig. 4, this value 
of the bulk gain is close to the value of 5.9 dB/cm found 
from the linear theory for a solid electron-beam model and 
an axial field of 950 G.8 For comparison purposes, it should 
also be noted that the measured gain in the tube, after cor- 
rections for losses and attenuation, was observed to be ap- 
proximately 6.0 dB/cm. 

A total of 15 radial modes were used in the example 
shown in Fig. 4 for completeness; however, convergence 
was achieved with fewer radial modes. The convergence 
properties of the space-charge field model for this example is 
illustrated in Table I, where we show the evolution of the 
bulk growth rate in the exponential gain regime and the satu- 
rated power with the number of radial modes at a frequency 
of 5 GHz. The term "bulk growth rate" here refers to the 
overall growth rate from the start of the exponential gain 
region to the onset of the nonlinear regime prior to satura- 
tion. As seen in Table I, the saturated power is relatively 
constant for any choice of the number of radial modes, and 

the bulk growth rate converges to a value close to 6.23 dB/ 
cm, using only three radial modes. 

The fluctuations in the gain seen in GATOR can arise due 
to a variety of causes. In the first place, there are initial 
transients associated with the injection of the beam and the 
radiation into the helix, which contribute to the large oscil- 
lations in the growth rate near the entrance to the helix. In 
the second place, the detailed behavior of the electron beam 
over the course of the interaction also plays a role. One as- 
sumption underlying the linear theory is that of an electron 
beam with a uniform radial profile, as well as a fixed phase 
space distribution. However, in GATOR, as well as in an ac- 
tual tube, the radial extent of the beam may vary over the 
course of the interaction and the phase space distribution will 
also evolve as the beam loses energy and oscillates and be- 
comes trapped in the troughs of the growing wave. These 
effects can result in the gain fluctuations. Plots of the varia- 
tion in the axial momentum and the radial position of the 
beam versus axial position are shown in Fig. 5, correspond- 
ing to the case shown in Fig. 4. The large oscillations in the 
radial extent of the beam, as well as the oscillation in the 
axial phase space, seen in Fig. 5 account for some of the 

c fame (nsec) = 75458*10° 

5 6 7 B 9 t> 

z (cm) 

FIG. 5. Plots showing the axial evolution of the phase space and the radial 
structure of the electron beam. 
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FIG. 7. Plot of the power versus axial distance for the PPM focusing model. 

FIG. 6. Plots of the gain versus frequency corresponding to the linear theory 
(solid line), GATOR (circles), and the measured gain at Northrop-Grumman 
(diamonds). The "error bars" indicate the level of fluctuations in the gain 
observed in GATOR. 

aforementioned fluctuations in the gain. In addition, the form 
of the source currents used in determining the evolution of 
the helix and space-charge waves involves the overlap of the 
current with the wave polarization. This implicitly includes 
beat phenomena between the wave period and all the myriad 
oscillations in the beam current and envelope. The beating 
phenomena become still more complex once the electrons 
become trapped in the troughs of the helix wave and experi- 
ence the additional large oscillatory motion associated with 
trapped orbits, and this can contribute to the large oscilla- 
tions in the growth rate near the exit from the helix. 

The importance of the space charge to the configuration 
under study is evident from comparison with earlier results 
for these parameters obtained without space charge in the 
model.17 In particular, the results obtained without space 
charge yield a gain at 5 GHz of approximately 7.4 dB/cm 
and an efficiency of about 34.6%. As such, the inclusion of 
space-charge effects results in a degradation of the interac- 
tion for these parameters. One reason for this degradation in 
performance, when space-charge effects are included, is the 
effect of the space-charge fields on the bunching of the 
beam. This is evident by a comparison of the phase space 
shown in Fig. 5 with the equivalent phase space obtained 
without the inclusion of space-charge effects, which is 
shown in Fig. 11 of Ref. 17. Comparison of these two figures 
indicates that the trapped electron dynamics is much more 
regular without the presence of the space-charge forces. 

We also compare the variation in the gain with fre- 
quency as found in the linear theory, GATOR, and as mea- 
sured at Northrop-Grumman.19 The results of this compari- 
son are shown in Fig. 6, where the solid line denotes the 
linear theory, the diamonds are the measured gains at 
Northrop-Grumman, and the circles are from GATOR. Note 
that the "error bars" denote the limits on the fluctuations 
observed in the gain in GATOR. Observe that GATOR is in 
close agreement with the measured gain across the frequency 
band. In addition, GATOR is close to the linear theory for 
frequencies below 6 GHz, and the predictions of linear 

theory fall within the fluctuation range seen in GATOR over 
the entire frequency band. 

These comparisons between GATOR and the linear theory 
for solenoid focusing represent a good validation of the non- 
linear formulation. However, the actual tube built at 
Northrop-Grumman employed PPM rather than solenoid fo- 
cusing. The on-axis strength for the PPM was chosen to cor- 
respond to a Brillouin beam in a solenoid, which accounts 
for the agreement seen between both the linear theory and 
GATOR with the measured gain. However, it is also important 
to compare GATOR with PPM focusing and the Northrop- 
Grumman measurements. To this end, we employ a PPM 
field model with an on-axis field strength of 1325 G with a 
period of 0.6604 cm. The evolution of the power and growth 
rate with axial distance at 5 GHz for this PPM field is shown 
in Fig. 7. The bulk gain for this example is 6.5 dB/cm and 
saturation is found at a level of 131 W over a distance of 6.9 
cm. These results are within 5% of those found with solenoid 
focusing, and exhibit a similar series of oscillations in the 
instantaneous values of the growth rate. Finally, the evolu- 
tion of the axial phase space and the radial structure of the 

time (nsec) = 7.5458*10° 

el 

Is 
T v -y y ^- ^M 

FIG. 8. Plots showing the axial evolution of the phase space and the radial 
structure of the electron beam for the PPM focusing model. 
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FIG. 9. Attenuation profile in the Northrop-Gnimman TWT. FIG. 10. Evolution of the power in the Northrop-Grumman TWT. 

electron beam for the PPM field are shown in Fig. 8. Com- 
parison of Figs. 8 and 5 for the solenoidal field shows sub- 
stantial similarities. The principal difference lies in the in- 
creased fluctuation in the radial structure of the beam, which 
is expected, due to the nature of the periodic structure of the 
PPM field. 

The aforementioned comparisons between GATOR and 
the experiment at Northrop-Grumman represent a simplified 
model that neglects loss and attenuation in the tube, and was 
studied because it is convenient in the comparison of the 
linear gain. In order to compare GATOR with the nonlinear 
behavior of the experiment, we must include losses and at- 
tenuation. The actual TWT under consideration was struc- 
tured to have separate input and output sections separated by 
a sever, and there are regions of enhanced attenuation both 
preceding and following the sever in order to minimize 
reflections.19 The loss/attenuation profile is illustrated in Fig. 
9. The input section is 2.667 cm in length, and there is an 
overall loss rate of 0.31 dB/cm in the input section. Starting 
at 1.143 cm from the entrance to the helix, the attenuation 
rate is gradually increased from that value up to 15.8 dB/cm 
at the start of the sever, which occurs at 2.667 cm after the 
entrance to the helix. The sever is modeled by a region of 
high attenuation (78 dB/cm) over a length 0.254 cm. The 
attenuation in the output section ramps down from a value of 
8.56 dB/cm to the background loss rate of 0.267 dB/cm over 
a length of 1.651 cm and remains at that value over the 
remainder of the helix, which is a total length of 9.576 cm. 

We first consider the injection of a 30 mW drive signal 
into the helix using PPM focusing (for the parameters shown 
in Fig. 7) and the loss profile shown in Fig. 9. The evolution 
of the power as a function of axial distance through the helix 
is shown in Fig. 10. The power grows only marginally in the 
input section and is severely damped in the region of the 
sever. However, the exponential growth rate found in the 
output section corresponds to that found in the simpler cir- 
cuit used in Fig. 7, which at 6.5 dB/cm is about 8% higher 
than observed in the TWT. In addition, the power saturates at 
approximately 126 W. This is somewhat higher than the 100 
W of saturated power observed in the TWT at 
Northrop-Grumman.19 One possible explanation for the dis- 
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crepancy in the saturated power is that higher frequency har- 
monics in the space-charge field become important in the 
nonlinear regime, and this effect is not included in the model 
at the present time. 

IV. SUMMARY AND DISCUSSION 

In this paper, we have described a nonlinear formulation 
of the interaction of an electron beam in a helix TWT. The 
present study describes a simplified configuration in which a 
single frequency wave propagates through a helix with a uni- 
form period and dielectric loading. However, the formulation 
is able to treat a more general problem that includes both 
dielectric and vane loading with a tapered period. Further, 
the formulation is in the time domain and is able to treat the 
propagation of multiple radiation pulses (propagating both in 
the forward and backward directions) through the helix 
structure (including the intermodulation between the waves), 
as well as both continuous and emission-gated electron 
beams. 

The formulation has been compared with a linear theory 
of the interaction,8 as well as with helix TWT experiments, 
and good agreement has been obtained. The gain found in 
the linear regime is typically in agreement with both the 
linear theory and the experimental measurements to within 
about 8%. The discrepancy between the saturated power seen 
in the simulation and in the experiment is somewhat larger 
(26%, for the example shown). It is speculated that the dis- 
crepancy may be due to frequency harmonics in the space- 
charge field, which become important in the nonlinear re- 
gime. This is presently under investigation. In general, 
however, it is found that the essential characteristics of the 
interaction in the helix TWT can be well described by the 
nonlinear simulation once the effective dielectric constant 
and vane radius for the vacuum helix have been determined. 
Good estimates of the effective dielectric constant can be 
obtained using a relatively straightforward volume-weighted 
average; however, refinements in the estimates of these pa- 
rameters can be made by comparison of the predicted cold 
helix dispersion properties with the measured phase veloci- 
ties of the cold helix. 
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The fundamental dynamical equations for the fields are 
quite general in form, and rely largely on a knowledge of the 
dispersion, polarization, energy density, and Poynting flux 
for the waves under consideration. Thus, the technique is 
readily generalized to other configurations and structures. 
For example, it is straightforward to include reflections at 
either end of the interaction length and deal with cavities and 
oscillator configurations. 
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Linearized Field Theory of a Dielectric-Loaded 
Helix Traveling Wave Tube Amplifier 

H. P. Freund, Ernest G. Zaidman, Member, IEEE, Mary Anne Kodis, 
and N. R. Vanderplaats 

A hontet— A linearized relativistic field theory of a helix trav- 
eling •a,"! mb* (TWT) is presented for a configuration where 
e{tj>ff, i thin annular beam or a solid beam propagates through 
a sfr+& bx&\ enclosed within a loss-free wall in which the gap 
berw<«* t*1* helix an^ the outer wall is filled with a dielectric. A 
linear iaatyiäs of the interaction is solved subject to the boundary 
com)««Mis imposed by the beam, helix, and wall. In the case 
0f th< «nmrtir beam, the electrons are assumed to be strongly 
magnrtuetl. In contrast, the effect of variations in the axial 
magrKCc fetid are included in the electron dynamics for the solid 
beam *aar«-ss. Determinantal dispersion equations are obtained 
for th* iönnuthally symmetric modes which implicitly includes 
beam «twee-charge effects without recourse to a heuristic model 
of th< »fsK-r-charge field. Numerical solutions of the dispersion 
eqoaKMLs ±rt discussed and compared with experiments. 

I. INTRODUCTION 

THV BASIC theory of the helix traveling wave tube (TWT) 
»as first developed by Pierce and co-workers [l]-[3] 

some K>ur decades ago based upon a coupled-wave analysis 
utiliz»"^ ** vacuum modes of the helix and the positive and 
neg3<',<? *£»£Tgy space-charge waves of the beam. Improved 
theon.** tused upon a more complete electromagnetic analysis 
of M*vWCH"s equations in the helix have also been developed 
by R\«.ibtf\& [4] and Chu and Jackson [5]. Detailed analyses 
0f bot* ttV coupled-wave and field theories of the TWT are 
given » B^ck [6] and Hutter [7]. More recently, field theories 
have «ttvared which included more realistic effects such as 
the prv«i«ttv« of the outer conducting shell [8] and the tape 
helix I*1'' k*ve also appeared. 

jn r>A< ^Naper. we develop a linearized relativistic field theory 
of the >f ü\ "HVT by solution of the relativistic fluid equations 
30(1 vuwxsU's equations in a configuration which consists 
of the Vftyagation of either a thin annular electron beam or a 
solid e^vtw»n beam down the axis of a dielectric-loaded sheath 
helix closed by a loss-free conducting wall. The essential 
idealist'*« we make are that the gap between the helix and 
the oitf« >vaU is uniformly filled with a dielectric material. 
Witfrif. &* context of this model, we divide the cross section 
of the f^T into three regions: 1) within the beam, 2) between 
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Fig. 1.    Schematic representaion of the physical configuration for the thin 
annular beam. 

the beam and the helix, and 3) between the helix and the wall. 
In the treatment of the annular beam, the electrons are assumed 
to be strongly magnetized in order to simplify the description 
of the electron dynamics. However, this assumption is not 
imposed in the treatment of the solid beam, in which case we 
treat the effect of variations in the axial magnetic field on the 
electron dynamics. The dispersion equation which determines 
both the propagation and gain of the modes in the helix 
is determined by application of the boundary conditions at 
the position of the beam, helix, and wall to the solutions of 
Maxwell's equations within these three regions. Note that the 
assumption of a thin annular beam imposes a jump condition 
on the parallel electric field at the beam radius. The effects of 
beam space-charge are implicitly included in the analysis. 

n. THE CASE OF AN ANNULAR BEAM 

The equilibrium configuration is shown schematically in 
Fig. 1. We consider the propagation of a thin annular beam 
through a sheath helix-loaded cylindrical drift tube. Hence, the 
equilibrium current density of the electron beam is described 
via an azimuthally symmetric charge density 

n0(r) = nbARb6(r - Rb) (1) 

where nb denotes the beam density, and Rh and ARb denote 
the mean radius and thickness of the annulus, respectively. 
The subscript "0" is used throughout to denote equilibrium 
quantities. The beam is assumed to propagate uniformly along 
the symmetry [i.e., z] axis of the system, and we take the 
equilibrium velocity to be vo = voez. The beam is assumed 
to be strongly magnetized. 
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The circuit configuration describes a sheath helix located 
within a cylindrical waveguide of radius Rg. The dielectric 
loading is included under the assumption that the gap be- 
tween the helix and the outer wall is uniformly filled with 
a material having a dielectric constant e0- The sheath helix 
model assumes that the conducting wires of the helix are thin 
enough that the helix can be modeled by a thin conducting 
cylindrical sheet of radius Rh[< Rg], and with a pitch angle 
<j>. Hence, the unit vector describing the pitch of the helix is 
e$ = eg cos <f> + ez sin </> where for a helix period of A/, 
and wavenumber £/,[= 2ir/\h) 

tan^=-r-£-. (2) 

A. Maxwell's Equations 

The perturbed current density and beam velocity are ob- 
tained by perturbation analysis in which we expand n - 
riQ+5n and v = vo+Sv. From the analysis in [8], the perturbed 
source current can be expressed as 

SJ^±^LARbS(r-Rb) 

w 
-ezez ■ SE + SE± + ß0ez x SB (3) 

.foAu 

where ub = 4jre2ni/7ome denotes the square of the plasma 
frequency, e and me denote the electron charge and rest mass, 
ßo = vo/c,7o = (1 - /?o)_1^2> Aw = w - kvo for angular 
frequency u and wavenumber k, 6E and SB denote the fluctu- 
ating electric and magnetic fields, and the perturbed quantities 
are obtained by a Fourier analysis in which the perturbed 
quantities are assumed to vary as Sf(x, t) = Sf(r) exp(iA:z - 
iu>t). A similar form is found for the perturbed charge density 

6p* »I 
A.-K 7Q Aw2 

kARbS(r - Rb)ez ■ SE. (4) 

Solution for the dispersion equation involves the substitution 
of these sources into Maxwell's equations subject to the 
appropriate boundary and jump conditions. 

Maxwell's equations for the axial components of the fluctu- 
ating electric and magnetic fields are found using the sources 
and can be written in the form 

[Vi + K2
]SEZ - -^L-^AÄ^r - Rb)SEz (5) 

and 

(6) 

(7) 

[Vi + K2
]SBZ £ 0 

where K
2
 = e(r)w2/c2 - k2 and 

,s/l;     0<r<Rh 
£^-\e0;    Rh<r<Rg 

denotes the radial variation of the dielectric coefficient. The 
transverse components of these fields are given by 

(8) 6Er =   , Q 8EZ 
K* or 

6E9=-^SBZ 
K

Z
   or (9) 

SB, - ik d SR 

K?     or 

(10) 

(ID 

These equations must be solved for the specific charge and 
current densities under consideration. Observe that we have 
neglected the effect of the beam current on the transverse 
components of the field since the beam is assumed to be a 
thin annulus and contributes only at r = Rb. 

These equations are consistent with the physical mechanism 
in a TWT in that the primary wave-particle coupling is 
between the axial motion of the beam and the axial component 
of the electric field. Hence, it is not surprising that the equation 
for the axial component of the magnetic field is simply the 
homogeneous wave equation. Note also that the source term 
for the axial electric field in (4) corresponds to a delta-function 
in radius; hence, the solution for the axial electric field can be 
expressed in terms of a jump condition in the radial derivative 
of the electric field. 

In order to obtain the jump condition, we integrate (5) across 
the beam as follows: 

1 i-Ri+S 
-i-lim /        drr[V\ + K2\SEz 
Rb*->0jRb-6 

_       ">t 

7^Aw: :K
2ARbSEz{Rb) (12) 

which expresses the discontinuity in the derivative of the axial 
electric field. 

B. The Dispersion Equation 

The solutions of Maxwell's equations can be expressed in 
the three regions as follows: 

{AeJ0(pr); I 
Be Joipr) + CeYo(pr);   II (13) 
DeJo(qr) + EeY0(qr);   HI 

and 

{AbJ0(pr); I 
BbJ0(pr) + CbY0{pr);   Ü 
DbJo(qr) + EbY0(qr);   HI 

(14) 

where p2 s u,2/<? - k2,q2 s e0u
2/c? - k2,Jn and Yn 

denote the regular Bessel and Neumann functions, and the 
three regions indicated are: region I is 0 < r < .Rj,, region II 
denotes Rb < r < Rh, and region HI denotes Rh<r < Rg. 
Application of the jump and boundary conditions permits the 
elimination of the unknown coefficients and the derivation of 
the determinantal equation which governs the dispersion of 
the wave. 

A statement of the boundary conditions is fairly straightfor- 
ward. For convenience, we define 

Wm,n(x, y) = Ym(x)Jn(y) - Jm{x)Yn{y).       (15) 

The boundary conditions at the waveguide wall require 
that the tangential component of the electric field and 
the normal component of the magnetic field must vanish, 
hence, SEz(r = Rg) = SEg(r = Rg) = 0 and SBr(r = 
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Rg) = 0. As a result, Et = -DeJ0(qRg)/Y0{qRg) and 

Eb = -DbJi{qRg)/Yi(qRg). We also require that 6E9 

must be continuous at r = Rb and Rh, and that SBZ 

must be continuous at r = Rb. These conditions imply 

that AbJ0(pRb) = BbJ0{pRb) + CbYQ(pRb),AbJi(pRb) = 
BbMvRb) + CiYiipRb), and BbJi(pRh) + CbYy{vRh) = 
(p/g)2Wi,i (?#<,, 9-^0. hence, £t = Ab,Cb = 0, and 
Db = (q/p)AbJi(pRh.)/Witl(qRg,qRh). We must also 
require that SEZ must be continuous at r = Rb and Rh, hence, 

W0.o(pÄfc,pÄk)£« = Jo(pRb)[DeY0(pRb)-AeJ0{pRh)} and 
W0,o(pÄ6,pÄh)Ce = -Jo(pRb)[D,J0(pIk) - AeYoipRh)]. 
As a result, the electric and magnetic fields can be written as 
(16) shown at the bottom of the page and 

(MPT)'' 

pJ^Rh)W^qRg,qR 

Wifi(qRg,qr) 
0 < r < i?/, 

(17) 

Observe that the expression for 6BZ is unaffected by the beam. 
The De coefficient may be eliminated by application of the 
jump condition, which yields 

where 

esc(ui,k) = 

De = 
c2£ac(u,k)     Jo(pRh) 

Aw2     " e J0(pRb) 

Aw2 *« + *<?*>)„, 
c2       47o

2c2^ J0(jpRh) 

(18) 

W0l0(pÄ6,pÄk) (19) 

is the dispersion function for the beam space-charge waves, 
ob = 27TÄ6AÄ6 is the cross-sectional area of the beam. As a 
consequence, the axial electric field can be expressed as (20) 
shown at the bottom of the page. 

The problem has now been reduced to two unknown coef- 
ficients, Ac and Ab, in (17)'and (20). The dispersion equation 
is obtained after imposition of two remaining boundary con- 
ditions. The first condition is that the tangential component of 
the electric field must be perpendicular to the direction of the 
helix, which requires that in the limit in which 6 —> 0 

SEz(Rh ± 6) sin <j> + SEe{Rh ± 6) cos <f> = 0.       (21) 

This implies that 

<?e.c{u,k) un ^ = _™AbMpRh)-     (22) 

A^r cq 

The second boundary condition is that the tangential com- 
ponents of the magnetic field parallel to the helix must be 
continuous, which can be expressed in the limit in which 

S -+ 0 as 

SBz{Rh - 6) sin <f> + 6B8(Rh - S) cos <p 

= 6Bz(Rh + 6)sin <f> + 6B9{Rh + 5) cos <f> (23) 

which implies 

Ab tan <j> 
7 API       gr/..n   \Wlfi(qRg,qRh) Jo(rR»)--Jo(?Rh)WiAqRg)qRh)l 

.2 iw t  f c
2esc(u, k) f T ,_p . 

.Wi,o(«Äh,?fifl) 
-£fMpRh)W,J(qRg,qRh) 

2   1 
+•- ^0(PÄ6) 

■xpRh W0io(pRb,pRh) 

eSc{u,k) _  "II 
Aw2 J J 

c2£sc(o; 

(24) 

The dispersion equation is found by setting the determinant 
of the coefficients in (22) and (24) equal to zero, and we find 
(25) and (26) [shown at the top of the next page] where (26) 
is the dispersion function for the vacuum helix. 

The limit in which the dielectric loading vanishes is one in 
which £0 -» 1 and q -> p. Noting that 

lim 
£0-1 

Ji(pRh)Wofi(qRg,qRh) 

+ ^JoipRhW^iqR^qRg) 
2 MpRg) 

■K     pRh 

lim 
£0-1 

MpRhWiAiRgiM 

-Ji(j>Rk)Wlfi(qRg,qRh) 
P 

2 JljpRg) 

7T     pRh 

(27) 

(28) 

( AeJ0(pr); 
MpRb) 

SEZ = ( W0<0(qRb,qRh 
r>   Tf„p N  Wofi(qRg,qr) 
DeJo{pRb)        , p . 

Wofl{qRg,qKh) 

[DeW0,o{pRb,pr) - AeW0,o(pRh,pr)];   H 

m 
(16) 

f Jo(pr); 
MpRb) 

6Ez=Ae{ WofiiqRb^Rn) 
<?e,c{tjj, k)      JoipRh) 

ch 
A^

J^W^R^-W^R^\ 

Aw2      W0,0(qRg,qRh) 
W0i0(qRg,qr); 

I 

n 

m 
(20) 
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A(t,k\e    t. ■  M - 2   P   "fa l»2 JpjpRb) 

W0fi(pRg,pRh) 

Ji(pRh)W0,o(qRg,qRk) + £-^J0(pRh)Wlt0(qRh,qRg) 

(25) 

A(.,*)^-P   tan   *jl(pRk)WlAqSttqSh) 

J0(pRh)W1A(qRg,qRh) - ^Ji(pÄfc)Wri1o.(gÄ,,«Äfc) 

Ji(pÄk)Wro,o(9Ä9,?Äfc) + — Jb(pÄ*)Wi,o(?Äfc>gÄ,) 

(26) 

and 

u 
lim  A(u, fc) = -r- + p   tan   d> 

Jo(pRh)MpRg) Wofi(gRg,qRh) 

' Jo(pRa)Ji(pRh) W1A(qRg,qRh) 

we find that the dispersion equation reduces to 

JlipRb) 

(29) 

A(w, fc)e,c(w, fc) = - _ 
wbffb v2  2 

~~ 2-2   -2? 470V c2" J0(pRh)MpRg) 

•W0,o(pRg,pRh) (30) 

which is in agreement with that found in [7]. 

C. Numerical Analysis 

The dispersion equation (25) is solved for a specific choice 
of helix, waveguide, and beam parameters. For the purposes 
of this discussion, we choose a helix period and radius of 
0.082042 and 0.12446 cm, respectively, and an outer wall 
radius of 0.2794 cm. Variations in the value of the dielectric 
constant will then illustrate the effect of dielectric loading. 
Note that the motivation for this specific choice of parameters 
is to give maximum gain in the neighborhood of 5 GHz for 
a 3 kV electron beam. 

We first consider the cold (i.e., in the absence of the 
beam) dispersion of the system and plot the frequency versus 
wavenumber for Co = 1» 1-75, and 3.5 in Fig. 2. Note that 
the choice of en = 1 corresponds to the absence of any 
dielectric material. It is clear from the figure that the effect 
of the dielectric is to 1) progressively reduce the frequency at 
a given wavenumber as the dielectric constant increases, and 
2) to flatten the dispersion curve. This can also be illustrated 
by consideration of the phase velocity. The phase velocity is 
plotted versus frequency in Fig. 3 for the family of dispersion 
curves shown in Fig. 2. As a result, the bandwidth of the 
interaction can be expected to increase under the action of 
the dielectric. 

The cold dispersion solutions have been compared with 
the measured dispersion of a test circuit constructed at 
Northrop-Gnimman Corporation [10]. This circuit has the 

0.06 

0.05 

0.04 

Rg = 0.2794 cm 
R^ 0.12446 cm 

0.2 0.3 

k/k. 

Hg. 2.   Plot of frequency versus wavenumber for several choices of the 
dielectric constant 

0,20 

0.15   =■ 
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012345678 
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Fig. 3.   Variation of the phase velocity with frequency for several choices of 
the dielectric constant. 

same helix and wall dimensions used in Figs. 2 and 3, but 
instead of a uniform dielectric material filling the gap between 
the helix and the wall, three dielectric rods spanning the gap 
between the helix and the outer wall and running the length 
of the helix (with a dielectric constant of 6.5 and a thickness 
of 0.051 cm) were used to support the helix. In order to test 

. ... | .... j .« ri p ■ i. j i i . i 1 ' ' • ' 1 ' ' ' ' 1 ' ' ' '_ 

"'—^~*"*—-— . 
~~~^~ —_______£= 1.0 ; 

~"    ' — 

£fl = 3.5 - 

■_   R =0.2794 cm 
■    R_ = 0.12446 cm 
•    Xh = 0.082042 cm - 

i i i 11 111 i 11 , i , i i i i ■ i . i . 
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Fig. 4. Comparison of the theory with cold test measurements (dots) from 
a helix TWT. 

the utility of the present model in describing a real circuit, 
we varied eo in the present model to determine the level of 
agreement which could be achieved over a broad bandwidth. 
The results of this comparison are shown in Fig. 4 in which 
we plot the variation in the phase velocity versus frequency as 
calculated using (25) and as measured (dots) over frequencies 
up to 7.5 GHz for e0 = 1-75. It is evident from the figure that 
the agreement is very good over a broad band of frequencies 
extending from 3 GHz up to 7 GHz, and we conclude that the 
effect of the dielectric rods can be modeled using the uniform 
dielectric loading with an effective dielectric constant of 1.75. 

The effective dielectric constant can be estimated in a 
straightforward way under the assumptions that the effect 
of the rods do not greatly perturb the field structures and 
that the field is approximately parallel to the rods. As such, 
the effective dielectric constant can be determined from an 
estimate of the energy densities in the stored fields in the 
vacuum and the dielectric, and the effective dielectric constant 
is given by a volume weighted average in which eeff « 
(Vrod£rod + Vvae)/Vtot where Vtod and erod are the volume 
and dielectric constant of the rod, Kae is the volume of the 
vacuum in the gap between the helix and the outer wall, and 
Vtot is the total volume in the gap between the helix and 
the wall. Of course, this formula is expected to yield only 
an approximation to the effective dielectric constant. For the 
parameters of interest, however, we find that eeg « 1.66 which 
is reasonably close to the value of 1.75 found above. 

The gain is plotted as a function of frequency in Fig. 5 for 
e0 = 1.75, a beam voltage of 3 kV, a current of 0.2 A, and a 
beam radius of 0.3 cm. As shown in the figure, the gain band 
extends to frequencies up to approximately 9 GHz with a peak 
gain of «6 dB/cm at a frequency of approximately 5.6 GHz. 

The variation in the phase velocity as a function of fre- 
quency is shown in Fig. 6 for both the hot (beam-loaded) and 
cold cases. It is clear from the figure that the effect of the 
beam is to flatten the dispersion still further relative to the 
cold helix. In addition, the phase velocity is reduced relative 
to the cold helix for the low frequency portion of the gain band, 
but increased in the high frequency range. Note, however, that 
this behavior is also found in the absence of the dielectric. 
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_    i     I     i     |     .     .      ,     !     .     .^ ^.      •      •     i     • 
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/         I =0.2 A               \ : 
/             R^ 0.03 cm              \ i       j 

/               R =0.2794 cm 
L         /                  R^ 0.12446 cm \      : 

/                      X = 0.082042 cm I 

\ /                          £o=1-75 

',   .   i   1   i   ,   i   1   ,   i   .   1   ,    ,    •   1   , 
1] 

0 2 4 6 8 10 
Frequency (GHz) 

Fig. 5.   Plot of the gain versus frequency for a dielectric-loaded helix. 
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0.100 Hot Helix         N -_ 

0.095 
= 3.0 kV 
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-—-^^^                   '■ 
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.   i   ...   i ...   i   ...   i   ,  J 
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Frequency (GHz) 

Fig. 6. Comparison of the dispersion in the cold (vacuum) and hot 
(beam-loaded) helixes. 

The transition frequency at which this shift occurs is «7 GHz 
for the present case. This implies that the interaction with the 
beam results in an increase (decrease) in the wavenumber at 
frequencies below (above) 7 GHz. 

The gain in a beam-loaded helix can also be compared with 
a helix constructed at Northrop-Grumman Corporation. This 
test circuit is identical to that previously described for the 
cold test except that the helix period was decreased slightly to 
0.080137 cm. The effective dielectric constant of e0 = 1.75 
is unaltered by this small change in the helix period, and the 
agreement between the theory and the measured dispersion 
for this case is as good as that shown in Fig. 4 for a helix 
period of 0.082042. This experiment employed a solid beam 
with a voltage of 2.84 kV, a current of 0.17 A, and a radius 
of 0.0495 cm. A magnetic field of about 950 G was used 
(which corresponds to the Brillouin field), and a maximum 
gain of approximately 6 dB/cm was found at a frequency of 
5 GHz. In order to model this device with the annular beam 
formulation described in this section, we solve the dispersion 
equation using the rms beam radius of 0.035 cm. The results 
are shown in Fig. 7 in which we plot the both the calculated 
and observed gain as functions of frequency. It is evident 
from the figure that the agreement between the theory and 
the experiment is good. 
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Fig. 7.   Comparison of the measured and calculated gains versus frequency 
for the annular beam model. 
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Fig. 8.   Schematic representation of the physical configuration for the solid 
beam. 

III. THE CASE OF A SOLID BEAM 

The equilibrium model we employ is that of the propagation 
of a solid cylindrical beam through a tape helix-loaded cylin- 
drical drift tube in the presence of a uniform axial magnetic 
field Bo[= B0ez]. The equilibrium current density of the 
electron beam is described via an azimuthally symmetric 
charge density 

no(r) = nbH(Rb - r) (31) 

with a flat-top density profile where nb denotes the ambient 
beam density, R* denotes the beam radius, and H is the Heav- 
iside function. This configuration is illustrated schematically 
in Fig. 8. As in the annular beam case, the beam is assumed to 
propagate uniformly along the symmetry axis, and we take the 
equilibrium velocity to be VQ = vo£z. The circuit configuration 
is identical to that employed for the annular beam in Section II 
and, as in Section n, we define three regions. Region I refers 
to the volume enclosed by the beam for which (0 < r < Rb). 
Region II is the volume between the beam and the helix for 
(Rb <r < Rh), and Region EQ refers to the gap between the 
helix and the outer wall (Rh <r < Rg). 

The use of the flat-top density profile is a simplification 
of the configuration in an actual helix TWT in which the 
density profile decreases smoothly. The advantage of this 

model is in the solution of the eigenvalue problem in which 
solutions of Maxwell's equations within the beam are obtained 
subject to the inclusion of the dielectric tensor and matched 
via the boundary conditions to the vacuum solutions exterior 
to the beam. This procedure is reasonable as long as the scale 
length for the decrease of the density is much shorter than the 
transverse variation in the fields. 

This equilibrium beam model is a special case of the rigid 
rotor equilibrium [11], [12] which describes a cylindrical 
pencil beam with a flat-top density profile which rotates at 
an angular frequency 

0 = ^^-2^ (32) 

where fio[— e-Bo/7omec] is the Larmor frequency. The vari- 
ation in the axial velocity with radius is 

ß2Ar)-ß2
z(0) = 

2-2 

2c2 
(JkS) 

\\/2UJJ 
(33) 

where f±(x) = 1 - x2 =F x(x2 - l)1/2. Brillouin flow 
corresponds to x = 1 for which f±(x) = 0, and there is 
no variation in the axial velocity across the beam. We now 
address the question of how the radial variation in the axial 
velocity varies as the magnetic field increases. If we consider 
the solution corresponding to the plus sign and note that as 
i-»oo then /+ —► 1/2. Therefore, f+(x) varies between 0 
and 1/2 over the entire range of magnetic fields. This means 
that the maximum possible difference in the axial velocity 
across the beam is given by 

#(Jfc)-#(0) = 
u, 

4c2  ' 
(34) 

As a result, the maximum difference between the axial veloc- 
ities at the center and edge of the beam is given by 

ßz(0)      ~2-94xl°   ßi(oy (35) 

The approximation that the variation in the axial velocity 
across the beam is negligible is valid as long as this velocity 
change is small. For parameters used in the paper of Ib « 0.2 
A and Vb « 3 keV (7) gives A&/& « 0.5%; hence, the 
neglect of any radial variation in the axial velocity is justified. 

The next question is the validity of the neglect of the 
rotation of the beam. Note that f+(x) corresponds to the 
minus sign in the angular rotation frequency. For Brillouin 
flow, therefore 0 = ub/^2, which decreases as the magnetic 
field increase, while for large magnetic fields 0 = w2/2fio- 
Hence, the angular rotation frequency goes to zero as the 
magnetic field goes to infinity, and we can neglect the beam 
rotation in the large magnetic field limit. In general, however, 
the beam rotation can be neglected as long as the axial distance 
required for one rotation of the beam for Brillouin flow is much 
less than the helix period. This condition can be expressed as 
w&/\/2 < khvz « u. 
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A. Maxwell's Equations 

Maxwell's equations in Regions II and III are identical to 
that given in (5) and (6) in Section II. However, in order 
to obtain Maxwell's equations in Region I, the dielectric 
properties of the magnetized electron beam must be used. 
It has been shown that Maxwell's equations for a uniformly 
magnetized beam can be expressed as fourth-order differential 
equations for the axial electric and magnetic fields [9] 

(Vi + 4)(Vi + «2-)^|;)=0 (36) 

where 

2 2 
K%=KU1 

o;2Asc ut 

1
2(Au2-u,2uh)^2Au,2(Au;2-u2

uh) 

{ck-Ljß0)
2Au2' 

C2«2 

Aw2 - ft2, 
L7o 

2Ao;2(Aa;2-ft21)|Aa;2-ft2)| 

f*«) (37) 

where w2
h = ft2, + u2hl denotes the square of the upper 

hybrid frequency, and A« = 1 - ulhoAu2. As a conse- 
quence, there are two possible modes corresponding to K± 

rather than the single mode which is found in the absence 
of the ambient magnetic field. These modes correspond to 
the Appleton-Hartree magnetoionic wave modes in an infinite 
uniformly magnetized plasma [13], [14]. It should be observed 
here that the presence of the magnetic field couples the 
longitudinal and transverse modes, and these modes represent 
a mixed polarization between the electromagnetic modes and 
the beam space-charge waves. For convenience, we refer to the 
K± mode as the O-mode and the X-mode. In free space these 
modes are uncoupled and propagate independently; however, 
in the presence of the helix and outer wall the two modes are 
coupled and the aggregate axial electric and magnetic fields 
satisfy the equation [9] 

where 

[(*■ 
«6         A">2       \V2 

<?p2Au2-Sll)   x 

. w2 flo(cfc — vßo) 
~%c2p2   Aw2-ftg 

+ A+A_p2 

V2JEZ 

A±(u k) sl- ot 
<?v2 

Aa; 
Aa; T fto 

SBZ 

(38) 

We solve these equations subject to the superposition of 
modes given by (38) as well as the boundary conditions at the 
edge of the beam, the helix, and the wall. It is also important to 
recognize that the dielectric effect of the beam also modifies 
the relationships between the transverse and axial fields. In 

Region I, therefore, we have that 

ik I d u 6Er=^   ^-JE^-rR^k)- 
dr ck dr 

'(<*-»M.s&M + iS§M 
Aw 

6Ee=-^(ir6Bz- iR{u,k) — 
Cjr \ar or 

{ck-"ßo)-6Ez + i6B2 
Aw 

ik f d ^ = ^2   ^JBz-iR(.,k)- 
p1- \dr 

~(ck-vßo) 
Aa» 

cp2 \dr 

dr 

5EZ + i8Bz 

ck 
5Be=^[^-SEz + i-R(u},k) 

8EZ + iSBz 

Or 
(ck - wßo) 

Aa; 

where 

and 

K^tc>- A+(u,k)A-(u>,k) 

a(v,k) = _ <*t Aw2 

c2p2 Aw2 - ft2, 
,2 

AoKAOiEl-^. 
c?p2 

(40) 

(41) 

(42) 

(43) 

(44) 

(45) 

(46) 

Observe that (40H43) reduce to (8H11) in the limit in which 
the beam vanishes. 

B. The Dispersion Equation 

The solutions for the axial field components after application 
of the boundary condition at r = Rg can be written in the form 

SEz = l BeMpr) + CeY0(pr); II (47) 
, DeW0i0(qRg,qry, ffl 

and 

f4+)Jo(«+r) + 4")jo(«-r);    I 
6Bz=l BbJQ(pr) + CbYotpr); H (48) 

[DbWlfi(qR3,qr); m. 
Note that in Region I the field is given by a superposition of 
the two Appleton-Hartree modes. Application of (38) yields 
4^ = iT±Ai±] where 

(39)    r± = 4 
fto(cfc — o;/?o) 

cV 4(Ao.2A0 - ft2,) - p2A+A_(Ao;2 - ft2,)' 
(49) 

The boundary conditions at r = .R& are that the tangential 
components of the electric field, the axial components of the 
magnetic field, and the normal components of the electric 
displacement must be continuous. As a consequence, the axial 
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SEZ = 

SBZ = 

'^+)Jo(«+r)+i4i-)J0(«-r); I 
[a+Ai+) + a.Ai^jJoipr) + [b+A™ + 6_i4<-)]Yo(pr);   H 
DeWQ<0(qRg,qr); ffl 

iT+Ai+) J0(«+r) + iT.A^ J0(K-r); I 
i[c+Ai+) + c-Ai^Joipr) + i[d+Ai+) + d-Ai^jYoipr);   U 
DbWU0{qRg,qr); ÜI 

(50) 

(51) 

De = 
A{+)[a+J0(pRh) + b+Y0(pRh)] + AJ-^a.MpRh) + b.Y0(pRh)) 

W0t0{qRg,qRh) 
(60) 

i(+)r i(-)r 
D _ t.g Ar>{c+ J^pRJ + d+YijpRi)} + AJ-'IC-MPRK) + d-YiipRn)] 

b      P W1A{qRg,qRh) 
(61) 

field components can be reduced to (50) and (51) shown at 
the top of the page where 

and 

■K 
a±= - -pRb Jo{K±Rb)Yx(j>Rb) 

K± N±Ji{K±Rb)YQ{pRb) 
V 

6± = ^pRb\jo(K±Rb)Ji(pRb) 

- ^-NiM^R^MpR,,) 
P 

c±= - -^pRb 

K± 

TiJoiKiR^YiipRt) 

- -^MiJ^RJYoipR,) 
P 

d± = 2 PRb 

K± 

r±Jo{K±Rb)MpRb) 

- —MiJ^KiR^JoipRh) 
P 

Aw 

w2 Aw2 zp fig 

_ u/2    Awf2o 
£9   = ' w2 Aw2Tnr 

(52) 

(53) 

the electric field must be perpendicular to the helix, and that 
the tangential components of the magnetic field parallel to the 
helix must be continuous. This procedure yields two equations 
in Ai , and the dispersion equation results from setting the 
determinant of the coefficients of Ai ' in these equations to 
zero. As a result, we find that the general dispersion equation 
can be written as 

•2 r £pP Wifi(qRh,qRg) ^-cot2 ^|£»i,i + 

-P2bo,o- 

q  W0fi(qRg,qRh) -Do,: 

qWifi{qRg,qRh) 
pW^iqR^qRh) A),i 

 ~-=r-A cot 6 — 0 
C   Rh 

(62) 

(54)    where 

(55) 

£>m,„ = [a+Jm(pRh) + b+Ym{pRh)) 
■[c-Jn(pRh) + d-Yn(pRh)] 

-[a-Jm(pRh) + b-Ym(pRh)) 

■ [c+Jn(pRh) + d+Yn(pRh)} (63) 

and 

(56) 

(57) 

(58) 

(59) 

A = ^±JQ(K-Rb)Ji(K+Rb)(N+ - r_M+) 
P 

- — Jo(«+i^)^(«-ü*)(iV- - r+M_). 
P 

K- 
(64) 

We can eliminate the De and Db coefficients by noting that 
the axial and azimuthal components of the electric field must 
be continuous at r = Rh, hence, see (60) and (61) at the top 
of the page. 

The solution for the axial fields has now been reduced to 
two unknown coefficients, Al '. The dispersion equation can 
be found by application of the boundary conditions given in 
(21) and (23); specifically, that the tangential component of 

It is straightforward to show that the general dispersion 
equation reduces to the vacuum helix dispersion equation 
A(ui, k) = 0 found in Section II. 

C. Numerical Analysis 

We solve the dispersion equation (62) for the solid beam 
for the same helix configuration described in Fig. 7 for com- 
parison «with the helix TWT built at Northrop-Grumman 
Corporation. In particular, the helix parameters are Rg — 
0.2794 cm, Rh = 0.12446 cm, Ah = 0.080137 cm, and an 
effective dielectric constant of £<> = 1.75. The solid beam is 
characterized by a voltage 2.84 kV and a current of 0.17 A 
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Fig. 10. Variation in the phase velocity with frequency for the cold helix as 
well as the hot helix. 

and a radius of 0.0495 cm, and the Brillouin field for this 
example is «950 G. 

The gain is plotted as a function of frequency for this 
example in Fig. 9. The solid line represents the solution of the 
dispersion equation (62) and the dots represent the measured 
values of the gain. Observe that agreement between the solid 
beam theory and the measured values of the gain is good. The 
effect of the beam upon the helix dispersion is illustrated in 
Fig. 10 in which we plot the phase velocity versus frequency 
for both the cold helix and the beam-loaded helix. It is evident 
that, as found in the annular beam model, the effect of the beam 
is to flatten out the dispersion over a broad frequency band. 

The peak gain shown in Fig. 7 in the preceding section 
is approximately 6.1 dB/cm at a frequency of 5.3 GHz. 
In contrast, the peak gain shown in Fig. 9 is 5.9 dB/cm 
at 5.0 GHz. The discrepancy between these two results is 
only partly due to the differing beam models. The principal 
source of the discrepancy stems from the fact that the annular 
beam formulation in the preceding section is based upon 
the assumption of a strongly magnetized beam, while the 
solid beam analysis deals with a magnetic field which is 
unconstrained except insofar as it must be greater than the 
Brillouin field. In order to study the effect of variations in the 

magnetic field, we plot the maximum gain as a function of 
axial magnetic field in Fig. 11. As shown in the figure, the 
maximum gain increases with increasing magnetic field and 
asymptotes at a value of approximately 6.2 dB/cm for magnetic 
fields above 3.5 kG at which point the strongly magnetized 
approximation is good. Since the maximum gain at this point 
is found at a frequency of 5.2 GHz, we conclude that the 
annular and solid beam analyzes are in essential agreement in 
the strongly magnetized regime. 

IV. SUMMARY AND DISCUSSION 

In this paper, we have presented a linearized relativistic 
field theory of a dielectric-loaded helix TWT which implicitly 
includes the effects of beam space-charge both in terms of 
the coupling to beam space-charge waves as well as upon 
the dielectric loading of the helix modes. The treatment has 
been formulated for the cases of both 1) a thin annular beam 
and 2) a. solid electron beam. In the former case, the electron 
dynamics are included under the assumption of an strongly 
magnetized beam. The latter case is able to treat arbitrary 
magnetic fields above the Brillouin field. Nevertheless, the two 
analytic formulations are found to be in essential agreement 
in the strongly magnetized regime. Agreement between the 
theory and experiment is also found to be reasonably good. 
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A re-examination of scaling laws in the traveling wave interaction 

H.P.Freund '-1 
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Abstract 
A re-examination of traveling wave interactions (in the helix traveling wave tube and the free-electron laser) is performed 

to investigate the validity of the well-known scaling laws in which the gain varies as the cube (fourth) root of the current 
when space-charge effects are negligible (dominant). The results indicate that these scaling laws are simplistic generaliza- 
tions which break down for broad bandwidth interactions, and that the actual variation of the gain with the current can be 

more complex. 

1. Introduction 

Linear traveling wave devices such as the helix travel- 
ing wave tube (TWT) [1-3] and the free-electron laser 
(FED [4,5] have a long history. The TWT interaction is 
between the axial electric field of a subluminous mode and 
the axial electron velocity, which results in axial bunching. 
The FEL interaction is mediated by the ponderomotive 
force due to the beating of the wiggler and a supralumi- 
nous mode also resulting in axial bunching. Similar inter- 
actions also occur in devices [6,7] with dielectric linings, 
gratings, or rippled walls. The equations governing the 
gain in all such devices bear many similarities. 

The particular issue addressed is the scaling of the gain 
with current in TWTs and FELs. For low currents the 
maximum gain scales as the cube root of the current. This 
is called the ballistic (Compton) regime in the TWT (FEL) 
literature. When the current is large enough that the 
space-charge potential is important then the maximum gain 
scales as the fourth root of the current. This is referred to 
as the space-charge dominated (Raman) regime in TWTs 
(FELs). The principal purpose of this paper is to show that 
these simple scaling laws can break down. 

The source of these scaling laws lies in the linearized 
gain. As formulated by Pierce [1] for TWTs, the dispersion 
equation for frequency <a and wavenumber k is 

where k0(.a>) is the wavenumber in the absence of the 
beam, un is the axial beam velocity, and the Q and C3 

parameters describe the effect of the beam on the space- 
charge wave and on the interaction gain, where C3 is 
proportional to the current. 

The scaling laws are obtained upon neglect of the 
backward waves (i.e., it = k0) for which Eq. (1) reduces to 

C3        '• 

[t*-$(*>)][(»-kvrf-tQCWo]] 

■ 2C3—k0(co)k2u], 
Uli 

(1) 

where 

«An 

4ßC3 v 
■kl        (2) 

(3) 

describes the positive and negative energy space-charge 
waves. In the low current regime, the space-charge svaves 
are negligible and 

Im- Tc- (4) 

Hence, the gain scales as the cube root of the current. In 
the space-charge dominated regime, the interaction is with 
the negative-energy space-charge wave (i.e., k~ «_) and 
the maximum gain is given by 

Im- 

which scales as the fourth root of the current. 

(5) 

' Corresponding author. Tel. +1 703 734 5840, fax +1 703 
821 1134, e-mail frcund@mmace.nrl.navy.mil. 

' Permanent address: Science Applications International Corp., 
McLean, VA 22102, USA. 

2. Linear theory of the TWT 

These scaling laws follow from a complete TWT field 
theory [8] using a sheath helix model with radius Rh, and 
period Ah which is surrounded by a conducting wall of 

0168-9002/95/S09.50 © 1995 Elsevier Science B.V. All rights reserved 
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radius Rg. The equilibrium model is a thin annulus of 
radius Rb and thickness ARb; hence, the equilibrium 
density is n0(r) = nbARb8(r — Rb). The dispersion equa- 
tion for the azimuthally symmetric subluminous modes is 

A0{k, a>)[(a>-kvll)
2 + 4QC3ß2y2c2K2] 

= 2   yi*^3^^^^») ^oC^h. **g) 
r"     *^2 j^KRg)jl(KRh) Wl(KRh, KRS) ' 

(6) 

where ßn = vn/c, y2 = (1 - /3(f)"', kh = 2it/\h is the 
helix   wavenumber,    K2 = w2/c2 - k2,   W„(£,  f) = 
Yn(DU£)-UOYn(S), J„ and Yn denote the regular 
Bessel and Neumann functions of order n, 

A0(k, w) 

c2 +k2R2J0(KRg)J1(KRtl) ^(KÄh, KRS) 

(7) 

is the dispersion function of the vacuum helix, and 

W^KR^KRJ, C3-k*Rl 
u>2<r2 70

2(K/?b)J,(/cJ?h) 

87y J^KR^J^KRJ 

Q = 
1        J^KR^J^KR^) W0(KRh,KRb) 

2ß2k2R2 J^KR^J^KR^) Wx(KRb, KRS) ' 

(8) 

where ti)\ = ATte2nb/mt denotes the square of the beam 
plasma frequency, and ab = 2irÄbAÄb is the cross-sec- 
tional area of the beam. 

In order to reduce Eq. (6) to the Pierce theory, a 
near-resonant approximation (i.e., o> « kv |, and K-* KC = 

iio/ßu -yn) is made and 

..2 

*oO) = 

W0( KcRb, KcRg) 

describes the vacuum dispersion relation. In this limit 

(*2-*3) JoKahViK*.) 
*h

2Äh
2     J0(K.Rt)Jl(K.Rh) 

TV0(/(e/fh,/ceÄg) 

(9) 

A0(k, w)= - 

Wi(*.*h. t.Äf) ' 
(10) 

and the Pierce theory is recovered. 
A comparison is made of the maximum growth rates 

from the field theory (6) and the three approximate forms 
of the dispersion equation: the quartic Pierce theory (1), 
and the solutions in the ballistic (4) and space-charge 
dominated (5) regimes. Fig. 1 shows the maximum gain 

« •o 

O 
B 

10- 10° 10' 
Beam Current (A) 

Fig. 1. Scaling of the maximum gain with the current in 
TWT. 

102 

a helix 

versus current for Rg = 4.0 cm, Rb - 1.4 cm, Ah = 1.42 
cm, and a beam with Vb = 16 keV and Rb = 1.0 cm. The 
circles and triangles in the figure represent the maximum 
gain from Eqs. (4) and (5) respectively, and the transition 
between the ballistic and space-charge dominated regimes 
occurs for /b = 20 A. 

The ballistic and space-charge dominated approxima- 
tions are in reasonable agreement with the Pierce theory 
over a wide range of currents. In addition, the field and 
Pierce theories are in reasonable agreement in the ballistic 
regime. The major discrepancies between the field theory 
and both the Pierce theory and the ballistic and space- 
charge dominated approximations are in (1) the scaling of 
the gain in the ballistic regime, and (2) the magnitude of 
the gain in the space-charge dominated regime. 

In the first case, the gain from the field theory scales 
closely as /b

/2 over the entire ballistic regime from 0.1 to 
20 A, and not as Ib

/3. Indeed, the gain increases faster 
than Ib

/3 even for the quartic Pierce theory in this regime. 
The reasons for this are twofold. Firstly, since the Pierce 
theory indicates that the gain scales faster than Ib

/3, the 
neglect of the backward wave in the Eq. (3) evidently has 
broken down. Secondly, the Q and C3 parameters are not 
constants, but vary widely with current since the gain 
increases with current and the frequency of maximum gain 
is displaced farther from the "exact resonance. This is 
related to the broad bandwidth of the interaction. Hence, 
the near-resonant approximation breaks down. 

In the second case, the gain in the space-charge domi- 
nated regime scales as /b

/4 for all three analyses for 
currents between 20 and 100 A although the field theory 
predicts lower gains. However, the gain decreases rapidly 
with increasing current above 100 A due to dispersive 
shifts in the gain band. In essence, the dielectric effect of 
the beam shifts the helix mode out of resonance. Hence, 
while the field theory does predict the /b

I/4 scaling as 
found in Eq. (5), the predicted gain is much less than that 
found with the Pierce theory (which breaks down com- 
pletely for currents in excess of 100 A). 
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Note that attempt has been made to self-consistently 
include the effects of DC self-electric and magnetic fields. 
However, confined flow has been implicitly assumed. In 
addition, since the equilibrium model is a thin annulus the 
velocity shear is negligible. Finally, the space-charge limit- 
ing current can also be increased under the assumptions 
that the axial magnetic field is arbitrarily large and that the 
16 keV beam energy describes the kinetic energy of the 
beam after equilibrium has been achieved (i.e., it is not the 
injection energy). 

3. Linear theory of the FEL 

A waveguide model is assumed for the FEL [9,10]. In 
contrast with the TWT, the FEL operates with a smooth- 
bore waveguide (of radius Rg) and supraluminous TE,„ or 
TM/n modes. The basic analysis employed is 3-D and 
deals with a thin annular beam propagating through a 
cylindrical waveguide with a helical wiggler [9,10]. The 
steady-state orbits describe a velocity v = vw(ex cos kwz 
+ eysin kvlz) + uKez, where kw = 2-n/\w (Aw denotes 
the wiggler period). The transverse velocity vw is propor- 
tional to the product of the wiggler period and amplitude 
and is related to the axial velocity via v2, + v\ = (1 — 
yö2)c2, where y0 is the relativistic factor. Further, the 
radius of the orbit is twÄb = | uw/vn |. For simplicity, the 
analysis is limited to the TEln modes. 

The FEL couples TE;„/TM/n modes with an azimuthal 
variation = exp(i/0) to space-charge modes with an az- 
imuthal variation = exp[i(/- 1)0 ]. At the fundamental 
resonance, the TEIn dispersion equation is [9,10] 

[«-(* + *w)«i]2 

X/!„(*, w) = 

2 2   2 

4y0V 1 + A* jyA>(*i*b. *!*,) 

<"b<>b 

1 + A* 16y0V 
w2Dx(KRb, KRg), 

(11) 

where Ab = kwRb, K
2

 = io2/c2- U + kj1, £>„(£, £) = 

and A0(k, w)=J[(KRg) denotes the dispersion function 
for the vacuum TElB modes. This notation differs from 
that used in Refs. [9,10] to more closely match the TWT 
analysis. Eq. (11) reduces to the Pierce form subject to a 
near-resonant approximation and replacing K -* K 

(= cutoff wavenumber of the mode) in the Bessel func- 
tions. However, Eq. (11) will be used in the numerical 
analysis since this is a more complete form. 

The current scaling of the maximum gain is shown in 
Fig. 2 for Vb = 1.3 MeV, Rg = 0.72 cm, Aw = 3.0 cm, and 
5W = 625 G, for which kwRb = 0.052 and /3„ = 0.957. 
The dots represent solutions of Eq. (11) for the maximum 
gain and the solid and dashed lines vary as /b

I/3 and /b
1/4 

for comparison. This FEL has a much narrower bandwidth 
than the TWT and the frequency of maximum gain varies 
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Scaling of the maximum gain with the current for an FEL. 

over 12.7-13.3 GHz over this range of currents. It is 
evident that, in contrast to the TWT example, the maxi- 
mum gain follows the expected scaling laws, and for 
currents below (above) approximately 15 A the gain scales 
as the cube (fourth) root of the current. The reason for this 
is that frequency and the Q and C3 parameters vary less 
than for the TWT, and the near-resonant approximation is 
good. Observe that the analysis represented by Eq. (11) 
has been verified by comparison with experiment [11-13]. 
In particular, the /b

1/4 scaling predicted in the Ramai. 
regime has been confirmed [12]. 

This analysis is an idealized treatment of the gain in 
TWTs and FELs based upon a thin annular beam model 
and propagation confined by a waveguide. However, 
small-signal analyses have been conducted for FELs in the 
Compton [14] and Raman regimes [15] in which alternate 
scaling laws were obtained. These analyses in both regimes 
omitted the waveguide so that the radiation is free to 
diffract away from the electron beam if the gain is not high 
enough for optical guiding to confine the radiation field 
within the electron beam. In cases where diffraction is 
large, the area of the radiation field is much greater that 
that of the electron beam, and the gain was found to scale 
as /b (In /b)

1/2 in the Compton regime and as /b
/: in the 

Raman regime. 

4. Nonlinear analysis of the FEL 

Nonlinear analyses using more general models of the 
beam in waveguide-based FELs also exhibit scaling laws 
which differ from lb

i/3 and Ib
l/4. The particular analysis 

and simulation code of interest here is referred to as 
WIGGLIN for convenience, and treats the injection of a 
solid beam into a rectangular waveguide with a planar 
wiggler [16,17]. 

WIGGLIN is a 3-D slow-time-scale description of an 
FEL. The electromagnetic field is represented as a super- 
position of the TE and TM modes of a rectangular wave- 
guide, and second order nonlinear differential equations 
are obtained for the evolution of the amplitude and phase 
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of each mode. Electron dynamics are treated using the 
complete 3-D Lorentz force equations. No wiggler average 
is imposed. 

The specific parameters considered correspond to a 35 
GHz experiment [18] in which a 3.5 MeV/850 A beam 
with a 1 cm radius propagated through a rectangular 
waveguide [9.8 cm X 2.9 cm] with a planar wiggler with 
gw = 3.72 kG and Aw = 9.8 cm. Three wave modes could 
interact: the TE01, TE21, and TM2I modes. The injected 
power was = 50 kW, the bulk of which was in the TE0] 

mode. The experiment yielded a saturated power of = 180 
MW over a length of = 1.3 m. WIGGLIN is in good 
agreement with the experiment for an initial beam energy 
spread of A-y2/70 = 1.5% [16,17]. We focus here on the 
predicted scaling of the efficiency with beam current for 
currents ranging from 100 to 1000 A. 

In the present discussion, the efficiency is used rather 
than the gain. This is because the gain in an experiment, or 
in the WIGGLIN simulation, is not purely exponential. 
The instantaneous gain varies widely due to betatron oscil- 
lations, multi-mode couplings, velocity shear, and higher 
order beating between the wiggler and radiation fields to 
name a few. This makes it more convenient to deal with 
the efficiency. Since in the case of saturation by phase 
trapping, the efficiency is also expected to scale as /b

1/3 

and /b
1/4 in the Compton and Raman regimes (see Ref. 

[10], p. 10), this poses no essential difficulty. 
Space-charge effects have been shown to be negligible 

in the ELF experiment [19]; hence, the efficiency might be 
expected to scale as /b

1/'3 in the Compton regime. The 
efficiency predicted by WIGGLIN is plotted versus beam 
current in Fig. 3 for both A-yz/70 = 0 (circles) and 1.5% 
(triangles). The solid line increases as the cube root of the 
current for reference. Evidently, the scaling diverges sub- 
stantially from /b

/3 over the range of currents studied, and 
that no simple power law can approximate the predicted 
scaling. 

The principal reason for this divergence from the l£/3 

scaling is that, in contrast to the FEL discussed in Section 
3, the interaction in this case is extremely broad band. 
Strong gain is predicted to occur over frequencies ranging 
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Fig. 3. Plot of the variation in the saturation efficiency versus 
beam current for parameters consistent with the ELF experiment. 

from 30 to 43 GHz [16,17]. Hence, the FEL does no 
always obeys the simple Compton and Raman scalinj 
laws. 

5. Summary and conclusions 

The conclusion is that the well-known scaling laws fo: 
the Compton and Raman regimes are overly simplistic 
The TWT example shown exhibited an /b

1/2 scaling law ir 
the ballistic regime, and an /b

l/'4 scaling in the space-chargi 
dominated regime. The cause of this is that a broa< 
bandwidth interaction exists in which the near-resonan 
approximation breaks down. The FEL example in Sectior 
3 followed the Compton and Raman regime scaling law; 
due to a narrower bandwidth than in the TWT example 
However, the nonlinear simulation in Section 4 resulted ir 
a scaling law which could not be modeled by a simple 
power law because of a broader bandwidth than in th« 
example in Section 3. Hence, these scaling laws must be 
used with some caution for both TWTs and FELs as wel' 
as the entire class of linear traveling wave devices. 
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The performance of traveling wave tube amplifiers incorporating nonlinear dielectric 

elements is studied via computer simulation. Two different situations are investigated: a) 

the use of nonlinear dielectric elements to reduce intermodulation distortion, and b) the use 

of voltage controlled dielectrics to provide rapid modification of the dispersion 

characteristics of the slow wave structure. In the first case, the use of dielectrics with 

negative second order susceptibilities is studied as a means of reducing phase and 

intermodulation distortion. Use of these dielectrics along with dynamic velocity taper to 

reduce amplitude modulation distortion results in marked reduction of predicted 

intermodulation distortion. In the second case, the goal is to design an amplifying structure 

whose gain as a function of frequency can be varied electrically. Preliminary design 

studies show that relatively large changes in the center frequency of the amplification band 

can be achieved with relatively modest changes in the dielectric constant of helix support 
structure. 
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I. Introduction 

In many applications of traveling wave tubes (TWTs) in the defense arena, 

including EW, radar, and communication applications, TWT amplifiers are required to 

provide simultaneous amplification of multiple frequencies. In these applications 

intermodulation and amplitude and phase cross modulation will take place as a result of the 

nonlinearities in the amplification process. In cases when the number of carriers is large, 

this phenomenon becomes even more complex. In existing tubes, these parasitic effects are 

avoided by a combination of techniques such as feed-forward compensation [] or operation 

in the linear regime with depressed energy collection of the electron beam. Associated with 

these techniques are the cost of increasing the complexity of the tube or weight of the 

power supply. Some EW applications require intermodulation products at levels of no 

greater than -30 to -40dBC and phase stability less than 37dB. Communication applications 

can require intermodulation levels as low as -70dBC. These levels can be achieved in 

narrow band applications by a technique known as predistortion linearization[] in which the 

signal is deliberately distorted, prior to injection in the TWT, in such a away that the 

combination of the TWT and predistortion nonlinearities cancel. Alternately, some 

applications require amplifications of signals over a range in frequency which may exceed 

the range of optimal performance of the TWT. In this case it would be beneficial to be able 

to control electrically the band pass characteristics of the amplifier, so that it could adapt 

rapidly to the changing properties of the signal. 

The present paper investigates theoretically the possibility of achieving reduced 

distortion and dynamic tuning of TWT amplifiers using non linear dielectric elements. In 

the case of reducing distortion, the basic idea is that a nonlinear dielectric element in the 

signal path can introduce phase distortion which will cancel the phase distortion inherent in 

the amplification process. Such an element would be used in conjunction with a TWT 

which was designed to minimize amplitude distortion. This idea is similar to that of the 

predistortion linearizer[]. It has possible advantages over the predistortion linearizer in that 

the phase distortion can be introduced at the output of the amplifier. This results in a 

cancellation of distortion which is more complete over a greater range of operating powers 

and frequencies. It suffers from the disadvantage that the nonlinear elements are inserted in 

the highest power portion of the signal path, and thus, these elements must have low 

losses. In the second case, that of realizing an electrically controllable amplifier, we 

consider inserting nonlinear, voltage controlled, dielectric elements in the support 

structures of the TWT helix. These elements then allow for varying of the phase velocity 



and impedance of the slow wave structure and consequently tuning the amplification band 
of the TWT. In addition to varying the amplification band such elements would allow one 
to electrical compensate for voltage fluctuations in the injected electron beam[]. 

The organization of this paper is as follows. In Sec. II we present the theoretical 
model, describing multifrequency operation of a TWT, on which our subsequent 
calculations are based. Included in this section is a description of the way in which 

nonlinear dielectric elements in the circuit are modeled. Section III presents an example of 
the reduction of intermodulation distortion for a amplifier with a specific set of parameters. 
Section IV illustrates the way in which nonlinear dielectric elements can be used to control 

the frequency response of an amplifier. Finally, in Sec. V we discuss some of the issues 
surrounding the implementation of non linear dielectrics in these devices. 

II Physical Model 

A. The Electromagnetic Fields of the Structure and their Frequencies 

The physical model employed in the current studies is essentially the same as that 
used in the development of the one dimensional, multifrequency simulation code 
CHRISTINE[]. We begin the description of the physical model with the representation of 
the assumed fields of the cold structure. Ultimately, in the type of model presented here, 
only two frequency dependent quantities; the phase velocity and the coupling impedance, 
are needed to specify the parameters of the cold structure fields. However, the presentation 
will start at a more basic level to underscore the nature of the approximations being made. 

The fields of the structure are represented in the form of the product of a slowly 
varying, complex amplitude, 8An, periodic eigenfunctions en(x) and bn(x), and an 
exponential phase factor, 

Erf(x,t)  = X i -± SAn(z) en(x) exp [i(J  k„(z') dz' - cont)] + c.c. , (la) 

and 

Brf(x,t)  = £ i -^ SAn(z) bn(x) exp [/(f kjz') dz' - cont)] + c.c. . (lb) 
n Jo 



Here it is assumed that en(x) and bn(x) are the solutions of Maxwell's equations for the 
empty structure corresponding to angular frequency on and real axial wave number kzn. In 
this regard en(x) and bn(x) will be periodic in axial distance with a period equal to that of 
the structure. To allow for the slow axial variation of parameters of the structure the wave 
number kzn corresponding to frequency con as well as the eigensolutions en(x) and bn(x) 

will vary with axial distance. It is assumed that such variations are slow and that it is 
permissible to think of the functions en(x) and bn(x) as being locally periodic. As 
Maxwell's Equations for the cold structure are linear we can take the eigensolutions en(x) 

and bn(x) to be dimensionless. In this case the slowly varying amplitude 8An has the 

dimensions of a vector potential. 

The sum over the subscript n in Eqs. (la) and (lb) represents a sum over 

frequencies 0)n. Note, that all the time dependence of the fields is contained in the 

exponential factors; that is, the amplitudes 8An depend only on axial distance. This 
representation of the field corresponds to the case in which the device is excited by a signal 
consisting of a discrete set of frequencies belonging to the set con. It is assumed that all 
frequencies are integer multiples of some minimum frequency Aco. In this case, the 
nonlinear beating of any two signals in the device will produce a signal at a frequency 
which is a member of the set C0n. This beating could be in the form of self beating in which 
case harmonic frequencies are generated, or it could be in the form of beating of two 
signals of different frequency generating intermodulation distortion. The restriction that 
members of the set con are integer multiples of some minimum frequency Aco can be put 
another way. The input signal and all other quantities of interest are assumed to be periodic 

in time with period T= 2n/Aco. 

The time averaged electromagnetic power flux along the structure implied by Eqs. 

(la) and (lb) can be evaluated using Poynting's theorem, 

P  =^P^SAn(z)\2Aefftn, (2) 

where AejftH is the effective crossectional area defined by the relation, 

AeffA   = ij" Al-   l  <enXbn + *n X O • (3) 



and z is a unit vector in the axial direction. For a structure with slowly varying 

parameters the contribution to the power flux from each frequency (i.e. each term in the 

sum in Eq. (2)) will be independent of axial distance in the absence of a beam or 

attenuation. Basically, this assumes that the parameters are tapered gently enough so that 
the amount of power reflected from a forward propagating wave is negligibly small. With 
tapering, the quantity Aeff)n will vary with axial distance as the parameters of the structure 
vary. Consequently, according to (2), in a structure with slowly varying parameters the 

amplitude 8An will vary with axial distance even if the power flux is constant. To account 
for this we introduce a normalized field amplitude, 

„ M   _   <°n g&nfr)   ,1/2 (As 
niZ) c ^2~ Aeff,n> (4) 

where q and m are the charge and mass of an electron respectively. The above choice of 
normalization gives the following expression for the power flux, 

P   =Pflux,2^K(z)\2 (5) 

where 

Pflux,2 = ^ (npf = 1-3862 x 109 watts , (6) 

is a constant. A consequence of this choice of normalization is that under the stated 
assumptions, namely negligibly small reflection of forward propagating power, an varies 
due to attenuation and coupling to the beam, but not due to the slowly changing parameters 
of the structure. 

The evolution of the complex amplitude is obtained by the following standard steps. 
Expressions (la) and (lb) are inserted in Maxwell's equations along with the beam current. 
Ampere's law is dotted with e*n(x) and Faraday's law is dotted with   b*n(x).   The two 

products are combined in the same way as one forms Poynting's theorem, and the resulting 
expression is averaged over the spatial period of the structure and the temporal period T of 
the fields. Weak attenuation is introduced by the boundary condition that the tangential 
electric field of the radiation does not quite vanish on the structure walls. The resulting 
equation for the amplitude of the ntri spectral component is thus, 



[li+ a«(z))a«= rx^{Sd2x±J' e*n(x) exp [ ~ i([ k^(z<) di - ü,"0])' (7) 

where ccn(z) is the attenuation in Nepers/cm, I A = mc3/q ,j is the beam current density, and 

the angular brackets denote averages over the temporal period of the radiation and the 

spatial period of the structure. The right hand side of Eq. (7) will be further refined after a 

discussion of the equations of motion. 

B. Equations of Motion 

The beam electrons are treated as annular discs of charge of outer radius rt,o and 

inner radius rbi which are constrained to move in the axial direction only. One expects this 

approximation to be appropriate when the electrons are confined by either a strong axial 

magnetic field or a system of periodic focusing magnets. The motion of the electrons will 

be one dimensional if the frequency of the amplified signal is much smaller than the 

frequency of particle oscillations in the relevant confining field: the gyrofrequency or the 

betatron frequency. The disc approximation will be appropriate if the axial electric field of 

the signal does not vary appreciably over the radial extent of the electron beam. 

The rate of change of electron energy is expressed in terms of the rate of change of 

therelativistic factor 7 = 1/ \/l -v2/c2 , 

Here, Erf is the electric field of the structure field given by Eq. (la), Esc is the space charge 

field which is discussed in part C of this section, and Edc is a steady state axial electric 

field, if present, which changes the energy of beam electrons as they travel through the 

structure. Equation (8) describes the Lagrangian rate of change of energy of a particle as it 

travels down the interaction region. The independent coordinate is the axial location of an 

electron. One must also determine the arrival time t(z) of an electron at a particular axial 

location. This is done by solving 

dt_ _ _j_ 
dz   ~ vJf)' (9) 



where, the axial velocity of an electron is given in terms of the relativistic factor 7, and the 

pitch factor 0, 

vz(y)  = c l+(^-l)02V/2 
1 -       U°f j      . (10) 

The pitch factor 0 is the ratio of the transverse component to the total momentum on 

injection and 70 is the electron's relativistic factor on injection. It is assumed that 0 «1. 

That is, it is small enough so that the motion is one dimensional, but large enough that there 

can be a significant spread in axial velocities. The initial conditions for the equations of 

motion are the following: particles are injected with a specified relativistic factor 70, pitch 

factor 0, and entrance time t(0). In the present simulations the pitch factor is taken to be 

zero implying a cold beam. 

In the simulations, the quantity t(z) is not solved directly using Eq. (9). Instead, 

the phase relative to the nth signal is determined. This phase is defined as 

Yn = con{zlvx-t) (11) 

where vzo is the initial axial velocity of a particle with pitch factor zero. The evolution of 

this phase is then given by 

^  =^(l/vz0-l/vz). (12) 

Introduction of the phase yn in the expression for the radiation field (la) gives 

^j     = Re{2iYJan{z)e2{n,z)ei^) (13) 

for the contribution to the rate of change of 7due to the structure fields. In the above the 

quantity e2(n,z) is defined as 

e2{n,z)  = (Z ' Ci"/)2e0m exP ['' f (W ~ ®n' Vtf) dz'] , (14) 
Aeff,n Jo 



where the angular bracket denotes average over the radial extent of the beam and over one 
axial period of the structure fields. 

The above quantity also appears effectively in Eq.(7) for the complex field 
amplitude. To see this we first represent the current density in the form of a sum over 
moving charge discs, 

_^vzj®6(z-zft)) '    °' r<Tbi 

jz{r,Z,f)   = X Z'J_^2 _  l\ { 1 '   rbi < r < rbo 
"bo   rb0      I    o,   r > rfco 

where the sum is over all the electrons. Equation (7) calls for an average over one spatial 

period of the structure and one temporal period of the fields. Due to the time periodicity of 
all quantities this average may be evaluated by integration over the shaded region depicted 
in fig. 1. The shaded region, a parallelogram, is preferable to a rectangle, with upper and 
lower boundaries at fixed /, for evaluation of the average because it contains the orbits of a 
group electrons all of which pass through both lateral boundaries. The average in Eq. (7) 
may be evaluated by first integrating over time, 

ij j f v*./° ^ - zJ{t)) exp [ - 4 k^z'} di -a« 
z+x"dze*n(x)-z =n[ ^p-^ exp [ - /(£ km(z') dz' - contf)} 

where the sum over particles j' represents a sum over the group of particles entering the 
interaction region during one period, T of time as depicted in fig. 1., and tj{z) is the time 
of flight for particle / to the point z. The number of particles that will contribute to the sum 
is the number that entered during a time T, viz. Tl/q where / is the beam current. Now the 
integral over z can be carried out. Because the exponent is evaluated along a particle 



te+T 

Fig. 1 Characteristics in the t versus z plane for electron trajectories. The shaded region 
corresponds to one spatial period of the structure and one temporal period of the fields. 

trajectory it can be regarded as slowly varying over a distance given by the structure period 

XH- Thus, the average over z reduces to an average of the axial component of the structure 

field. Including the radial dependence of the current density implied by the disc model we 

see that Eq. (7) calls for precisely the same average of the structure fields as does the 

equation of motion. The result is that the average in (7) produces 

d_ 
dz 

an(z))an=2fle*2(n,z)(e-^), (15) 

where / is the total beam current and the angular bracket now signifies average over 

particles entering the interaction region during the time interval T. Since the beam current 

enters in the form of a ratio I/I A, the beam current and I A can be evaluated in any system of 

units.  From Eqs. (13) and (15) it is clear that the relevant information concerning the 



structure fields is contained in the complex coupling function eiin.z). The amplitude of 
this quantity is related to the axial impedance. In particular, 

i 19 0 

\* (w, *\\2   -   K^  • en)beam\      _   %■ K \e2(n,z)\    = —   -377^. W 
*eff,n 

where K is the coupling impedance in ohms. The phase of the coupling function (14) is 
determined by the phase velocity of the structure fields. 

C.   The Space Charge Field 

In this section we describe the procedure for modeling the space charge electric field 
which appears in Eq. (8). The effect of this field is to resist the formation of electron 
bunches and, as a consequence, to give rise to collective oscillations of the beam at a 
modified plasma frequency. The natural frequency of these oscillations depends of the 
beam density, its radial profile, and the configuration of the metallic structure surrounding 
the beam. We assume that the basic form of the field can be written, 

mso)beam   = " ? „ J *     2, {«V«) *'n + *.C.} • (") 

where Rn' is an unknown coefficient which will be determined subsequently. Were this 
the only field acting on the particles, the linearized bunching factor would oscillate in time 
with an angular frequency cop, where 

0,2 = WE  
p   ^Ado-d!) 

This result is obtained by taking the small signal limit of Eqs (8), (10), and (12) and 
assuming for simplicity that the beam is cold (0 = 0 in Eq. (10)). Thus, the factor R' 
describes the reduction in the collective oscillation frequency accounting for the distribution 
of fields outside the beam. 

The space charge field is calculated including the effects of the structure using the 
sheath helix model. The presentation here will be different from other approaches in that 



no attempt will be made to separate fields into electromagnetic and electrostatic 

components. This approach allows one to identify in an unambiguous way the correct 

coefficient, /?', for the space charge field to be included in the equation of motion. The 

space charge field that we seek will have a time dependence similar to that of the structure 

fields, namely it will be periodic in time with period T and thus include frequencies 

belonging to the set 0)n. In general the number of frequencies that are needed to correctly 

model the space charge term is higher than that needed to model the structure fields. This is 

because in the nonlinear regime the bunched current density of the beam has a high 

harmonic content. Frequency con is generally accompanied by spatial wave number co„/vz. 

These spectral components of the current will tend to excite modes of the structure over that 

range of frequencies where the dispersion relation of the structure is linear. However, as 

the excitation of the space charge field does not rely on resonance with the structure fields 

the harmonic content of the current density will produce appreciable space charge fields 

over a greater range of frequencies. 

The approach taken here is to assume that the beam current density is known, and 

to calculate the total Cstructure' plus 'space charge') axial electric field at the beam that 

appears in response to the given current density. From the total field, one can then extract 

the appropriate factor R'. We take the form of the current density to correspond to an 

ensemble of moving annular discs oscillating in time with a frequency con and an as yet 

unspecified wave number kz. In order to connect the present calculation with the model of 

the current used in Eq. (7) we write 

(    °>   r<ru    \ 
ttr*,t)  =      J    2   exp[i(kj- ay)] (e-ty { 1 ,   rbi<r<rbo\ + c.c. ,       (18) 

ib°     bi) I    0,   r>rb0    I 

where rbo and rbi are the outer and inner radii of the beam discs, and the angular bracket 

represents the ensemble average over particles. Inserting the above expression along with 

its corresponding charge density perturbation determined by continuity into Maxwell's 

equations results in the following radial differential equation for the complex amplitude of 

the axial electric field with frequency (On and wavenumber kz, 

[Wrri - *2] £<M " *2 ^ft-fr <'-'"> 11 • ^« < ' < '* \    < w> 



where 

K ■2   _ kl-K 

We solve (19) for r < /-#, the radius of the sheath helix. In addition, we solve the similar 

(but homogeneous) equation for the axial magnetic field of the TE component of the 

radiation for r < ru- Outside the helix, r > r#, we solve similar homogeneous equations 

for the TE and TM components of the field, but assume that a dielectric with relative 

permitivity e is present. The following boundary conditions are imposed: Eg(r) vanishes 

at r = rw > r#, Ez(r) vanishes at r = rv > 77/ (where rw > rv), simulating the effect of 

vanes, and the components of electric field parallel to the helix direction and surface current 

perpendicular to the helix direction vanish at the helix. Finally, we average the axial electric 

field over the annular discs. The resulting expression for this averaged field is, 

(Ez) 
2/6X, 

beam c2D(kz,o)n) 
I{e-^[HY Ail 

Wo-^«) 
(<r'>) R (20) 

The quantity D(kz,(On) in the denominator of the first term in Eq. (20) is the vacuum 

dispersion function for the sheath helix, 

D(kvcon) = (»H ^o(Wfc) ^/A) 
c2   [KrhI0(Krh)     KfhCv(Kfh) 

22 
Hrh kur 

KTh A)(«?"/,) KjjJl^K^) 
Dw(^h) 

(21) 

where kn is the helix wave number,  Dw and Cv are linear combinations of Bessel 

functions, 

and 

AVCKVA) =Io(K£rh)K0(K£rw)-K0(K^h)I0(K£rw) , (22a) 

(22b) 

and 
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In Eq. (20) the quantities H and R are defined as follows, 

H = 2[KrAO/i(KrA0)-^f/i(wW)] 
A(A ^n0-ru (23a) 

and, 

R =1 + 
r2 -r2 {r/^Kr)];» ^o(^)-^^^i(^-)]:r 

- rMKrdrK^Kr)],»} . (23b) 

The first term in Eq. (20) is essentially the contribution of the structure field to the axial 

electric field at the beam, and the second term, involving R, is essentially the space charge 

field. The quantity R is the space charge reduction factor, and it is an interesting exercise in 

Bessel function identities to show that R vanishes as r\,i —> r\j0. 

To determine the space charge field to be inserted in Eq. (8), we write it in the form 

of Eq. (17) where the coefficient Rn' is to be determined. Assuming all fields vary as 

exp(ikzz) the total field implied by (17) and (7) is 

(i-Etf + t.EK)btam = X iKJ 
"   CikZ-kzn) 

I (e-''V) \z-en\2 

A
eff,n 

Ail 

®n(rlo-rÜ 
(e-i{f)Rn   + c.c. (24) 

As can be seen, Eqs. (20) and (24) have similar behavior with respect to their dependence 

on kz. They both diverge as kz —> kzn where kzn is the solution of the vacuum dispersion 

relation at frequency (on. We pick the space charge factor Rn' to give agreement between 

(20) and (24) when both are expanded about kz =kzn . To lowest order, the coefficient of 

the singular term determines the impedance in the sheath helix model, 
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In next order, matching the coefficient of the constant term gives, 

R  = R 
i2/v2 

4cHD's)
2 

(25) 

(26) 

where, 

D, = 
dJD/H2) 

dk, 
*™ 

and D. = —s- 
dk, (27) 

The difference between R and R' can be interpreted as the effect of the sheath helix on the 

space charge reduction factor. In particular, if the helix is replaced by a conducting tube, 

no structure field can resonate with the beam, and the space charge reduction factor is 

simply R. With the helix present some of the space charge field is able to penetrate outside 

the helix, and the reduction factor is modified. 

The final equation of motion is thus, 

Tz ' Re[2i^anb)<:2(n,Z)e'y. -        «it. £** «,»V(e-V..)\ 
V A^ bo       bi' J 

mc' \ z   ' *^ del beam » (28) 

where the separate sums over n and n' are over frequencies belonging to the set con. In our 

model, the number of frequencies kept to evaluate the space charge term is independent of 

the number kept to evaluate the structure fields. In particular, a range of frequencies is 

specified in the input list for the radiation field as is the number of space charge harmonics. 

In computing the space charge factor Rn' for each frequency harmonic the simulation code 

first checks to see if the frequency is in the range corresponding to the structure fields. If it 

is, the reduction factor is calculated according to (30). If the space charge harmonic 

frequency is out of the range specified for the structure fields, the reduction factor is taken 

to be just R and calculated for a spatial wave number kz = O)n/vzo. 



C.    Nonlinear Dielectrics 

To treat the effect of nonlinear dielectric elements we assume that the nonlinearity is 

weak in the sense that the signal field is still described by Eqs (la) and (lb), but the 

nonlinearity modifies the wave equation (7). Effectively, we separate the current density, 

j, into a contribution from the electron beam, calculated as described above, and a 

contribution from the nonlinearity of dielectrics in the vicinity of the structure. The linear 

contribution of these dielectrics is included implicitly in the determination of the transverse 

eigenfunctions en and bn. The nonlinear dielectric contribution to the current density is 
given by j - dP Idt, where P(t) is the nonlinear polarization. The polarization can be 

expressed in terms of the instantaneous electric field AitP{t) = Se^\ E(t) \2E(t) where 

5ä3) is a constant characterizing the nonlinear response of the dielectric, and we have 

assumed the dielectric responds instantaneously to the electric field. Inserting the above 

into Eq. (7) and introducing the normalized amplitudes an(z) defined in Eq.(4) results in the 

following evolution equation for the nth mode, 

d_ 
dz 

■.-£f^(*,r*.*) 
,1/2 
[eff,n 

/«'"*-e_(x)fl, 
.1/2 
{eff,m 

+ C.C. (29) 

where 

8e{t) = Se^(^ff ie'*"ejx)a. 
,1/2 + C.C. 

is the time dependent non linear contribution to the dielectric constant,  and 

<pn =     k^z') dz' - Q)nt is the phase of the nth signal component. It is understood that 
Jo 

the right hand side of Eq.(29) is to be added to Eq.(7) 

The angular brackets in Eq. (29) indicate that the time dependent quantity is to be 

averaged over the repetition time T = 2TC/ACO. In general this induces a nonlinear coupling 

between all signal components. If only a single frequency is present, Eq. (29) gives rise to 

a nonlinear wavenumber shift 5kz, 

^J^{^)2\"n\2\d\L8eOy 
A2 (30) 



The sign of the wave number shift depends on the sign of the coefficient Sä3). We shall 
find that a negative wave number shift, giving a negative phase shift when integrated over 
the length of the region where the nonlinear dielectric is located, is required to compensate 
the positive nonlinear phase shift of the electron beam. Note, that öä3) depends both on 
transverse and axial coordinates. Thus, the wave number shift given by Eq.(30) could be 
an arbitrary function of z, reflecting the placement of the dielectric elements along the 
interaction region. In fact, these elements need not be in the interaction region, but could 

be anywhere in the signal path. 

To estimate the degree to which various modes are affected by the nonlinear 

dielectric, we temporarily assume that the perturbed dielectric constant 8e(t) is independent 

of time and can be factored into the product of a magnitude, 8eo, and a spatially dependent 
form factor, 8e(x±)/8eo . In this case it induces a linear phase shift for each mode given 

by, 

&^=^T«&°- (31) 

where the dimensionless parameter %n characterizes the overlap between the perturbed 

dielectric and the mode electric field, 

r2
n =jd2x± 

&(*i) K(*i)l (32) 
&0 Aeff,n 

This parameter is estimated in the present model by assuming the nonlinear dielectric fills 
the entire region between the wall and the helix, just as the support structure for the helix is 
modeled in the sheath helix approximation as a uniform dielectric annulus. Thus, xn can be 
determined by differentiation of the solution of the sheath helix dispersion relation with 
respect to the dielectric constant in the outer region, 

Finally, our expression for the nonlinear phase shift in the presence of many signals is 

written, 



Tza« = "^(&o(r) T«e" *"' ? ^ ^ + c-c-])' (34) 

where 

8e{t) = 8efA£z)[yf)   | $ \ixme ». am + cc.] |2 , (35) 

5eo^ is trje magnitude of the nonlinear dielectric coefficient, and A^z) is the effective 
cross sectional area of the nonlinear dielectric element. In the case of single frequency 
operation, Eqs. (34) and (35) predict a nonlinear wave number shift, 

which can be compared with Eq. (30) thus giving the definition of the effective area. 

While it seems that many simplifying assumptions and unknown form factors have 
been introduced to describe the effect of the nonlinear dielectric, this effect depends only on 
the integrated nonlinear phase shift induced by the signal. Thus, while a specific realization 
is dependent on details such as the coupling parameters Tn, the effective area A^z) and the 
magnitude of the nonlinear coefficient Seo (3K once these are selected to give a specific 
phase shift the operation of the device should be well described by Eqs. (34) and (35). 

Ill Reduction of Intermodulation Distortion 

We begin our discussion of intermodulation distortion by considering the nonlinear 
transfer function for single frequency operation of a traveling wave tube amplifier. 
Suppose a signal at a single frequency (On with complex amplitude an(0) is injected into the 
amplifier. As the phases of injected electrons are uniformly distributed, the phase of the 
amplified signal at any point along the interaction region is related to the phase of the 
injected signal by an additive constant which depends only on the magnitude of the injected 
signal. Further, the magnitude of the signal at any point along the interaction region only 
depends on the magnitude of the injected signal. Thus, the nonlinear gain of the TWT can 
be characterized by a complex transfer function, 



g„(K(0)|) = an(L)/an(0) 

where L is the length of the interaction region. 

As mentioned, the transfer function is complex. It's magnitude and phase both 

depend on the amplitude of the injected signal. This is illustrated in fig. 2, where we plot 

the magnitude and phase of the transfer function at 5 GHz for a structure with parameters 

given in table 1. These parameters are similar to, but not identical to, those of the Northrop 

Grumman research tube #8. In the plot the magnitude of the transfer function is given in 

dB, and the magnitude of the input signal is given in units of power. As input power is 

increased, two effects are apparent. First, the gain decreases as the amplifier is driven to 

saturation. This is known as gain compression. Second, the phase of the transfer 

function increases with signal power. This is known as AM (amplitude modulation) to PM 

(phase modulation) distortion. Changing parameters of the amplifier, for example the beam 

voltage, or introducing dynamic velocity tapering can reduce the amount of gain 

compression considerably. However, these measures have substantially less influence of 

the phase distortion. The fundamental reason for the phase distortion is the dependence of 

the beam speed on the signal amplitude. In a TWT the signal is partially carried by the 

electromagnetic slow wave and partially carried by the streaming electron beam. The phase 

delay associated with the beam is I  dz(Onlvt.   Note that this phase is positive as a 

consequence of our choice of representation of the complex fields in Eqs. (la) and (lb). 

Thus, at high signal levels, when the beam loses substantial energy and slows down, the 

phase delay associated with the beam goes up. 

Table 1 

Low Dispersion Structure Parameters 

Helix period, XH 0.07.779 cm 

Helix radius, r# 0.12446 cm 

Wall radius, rw 0.2794 cm 

Vane radius, rv 0.19 cm 

Effective dielectric constant, e                       1.25 

Beam voltage, VB 2.84 kV 

Beam current, / 0.17 A 

Beam radius, r\j0 ( r\,i - 0.) 0.05 cm 
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Fig. 2 Gain and phase of the nonlinear transfer function versus input power for a TWT 
with the parameters shown in Table 1. 

The effect of the nonlinearity of the transfer function when multiple signal 

frequencies are present is illustrated in the output power spectrum of fig. 3. In this case we 

have injected two signals of equal power (4 mW), one at 5 GHz, and one at 5.5 GHz. The 

output spectrum consists of all frequencies separated by 0.5GHz intervals. From the figure 

is seen that for frequencies near the driven signals the largest power is in the third order 

intermodulation products at 4.5 GHz and 6 GHz respectively. There is also signal power 

at frequencies corresponding to the second harmonics and sum of the driven signals. 

3 
OO 
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OO 

The goal of our study is to reduce the amplitude of the intermodulation products. 

This will be done by finding ways to improve the linearity of the transfer function. The 

ideal transfer function would be one in which the complex gain is independent of the 

injected signal amplitude. Use of predistortion linearizers attempts to reach this goal by 

passing the signal first through a nonlinear circuit which compensates for gain compression 

and phase distortion. We instead will use a combination of dynamic velocity taper and 
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fig. 3 Output power versus frequency for the TWT of table 1. The two vertical lines 
correspond to the frequencies of the injected signals. 

nonlinear phase modification to linearize the tube. To be specific, we take the circuit 
parameters listed in Table 1 as a starting point. We then add a region of nonlinear dielectric 
with wave number shift given by Eq.(34) to the last .2 cm of the interaction region. In fact 
this nonlinear phase shifter could equally well be attached outside the tube. To implement 
dynamic velocity taper we allow the helix wavelength to be a piecewise linear function of 
axial distance defined at eight points along the interaction region: zj= 0., 6., 7., 8., 9., 
9.4, 9.41, and 9.6 cm. The nonlinear transfer function then depends parametrically on the 
eight values of helix period, lm for i = lto 8, and the strength of the dielectric nonlinearity, 

5eo<3> 

8n   =*.Cfl»(0)|*JH*&?)>. 



The degree of linearity is quantified by the square error which we define to be 

error(kHi,8ef) = 
/"•», 

dP, out 

max 

*,,<K(0)D-*„(0) 
*„(0) 

(37) 

Thus, a perfectly linear amplifier, over the range of output powers, Pout < Pmax» would 
produce zero error. The error defined in Eq.(37) is then minimized numerically with 

respect to the parameters, 'km and 6eo (3K For the circuit under consideration, there is 
considerable excitation of the second harmonic. Thus, the nonlinear transfer function is 

calculated including the excitation of the second harmonic signal. 

The results of the minimization of the gain error for the case of 60 watts maximum 
output power are displayed in figs 4 through 8. First, in fig. 4 we display the optimum 
profile of axial phase velocity. This profile is very similar to one which results in optimum 
efficiency. By way of comparison, the error value for the untapered, uncompensated 
circuit is 2.42xl0"2 whereas the tapered, phase compensated circuit is 3.66xl0*5. 
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Fig. 4 Profile of normalized phase velocity versus axial distance for optimized circuit. 

Figure 5 shows a comparison of the gain compression for the compensated and optimized 
transfer function and the original transfer function displayed in fig. 2, except here the 
transfer function is plotted versus output power. Clearly, the improvement in the linearity 
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Fig. 5   Comparison of a) gain compression and b) phase distortion for linearized, 
unlinearized and taper optimized circuits 
is particularly evident in the dependence of the phase of the transfer function on output 
power. For further comparison, fig 5 also displays the transfer function obtained when the 



nonlinear phase compensation is not employed but the circuit parameters are chosen to 
minimize the error defined in Eq. (37). This case shows only a very modest improvement 
over the unlinearized case, and is not clearly as effective as the combination of phase 
compensation and circuit tapering. Figure 6 shows the output spectra for the linearized 
and unlinearized amplifiers when two signals are injected. In this case the signal levels 
have been adjusted so that the output power is 30 watts in each case. For these parameters 
there is over an order of magnitude reduction in power in the intermodulation products in 

the optimized and phase compensated case. The role of the nonlinear dielectric's in 
reducing the intermodulation product amplitudes is illustrated in fig. 7. Here we have 

plotted the power in the two driven signals, 5.0 and 5.5 GHz, as well as the power in the 
third order intermodulation products at 4.5 and 6.0 GHz. Only the last .6 cm of the 
interaction region as shown; the shaded region corresponds to where the nonlinear 
dielectrics are present. It can be seen that the intermodulation power is 
reduced dramatically in this region. We note that this is not attenuation, rather the power 
from the intermodulation products is converted into power at the driven frequencies. 
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Fig. 6 Comparison of output spectra for linearized and unlinearized circuits. 
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Fig. 7 Power versus axial distance for the linearized circuit. The injected signals are at 5.0 
and 5.5 GHz. The shaded region corresponds to the location of the nonlinear dielectric 
element. 

The effectiveness of the linearization over a range of output powers is illustrated in 

fig. 8 where we have plotted the signal to intermodulation power ratio as a function of 

output power. This ratio is one to two orders of magnitude higher for the linearized case 

for powers below 40 watts. At higher powers, approaching the saturated output power of 

the device the ratio decreases. The unlinearized case shows the expected (Pout)"2 

dependence. The linearized case shows this dependence at low output powers, with a 

slight improvement in the range of powers for which the optimization was performed. The 

location of this enhancement can be varied by changing the value of Pmax in the 

optimization. For the present case, if one requires a signal to intermodulation distortion 

ratio of 104, then the linearized case allows for operation with over six times the output 

power. 
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products as a function of output power for the linearized and unlinearized circuits. 

In the preceding we have compared the unlinearized circuit with one in which 

nonlinear dielectric elements are added at the output end of the interaction region. We now 

compare the case in which the nonlinear dielectric element is placed at the input with the 

case in which it is placed at the output. In the case of input linearization we again perform 

the optimization over the helix period and the nonlinear dielectric constant. 

In this way the performance predicted with input linearization should be comparable to 

what is achieved with predistortion linearizers. We perform the optimization for 

Pmax=60w, and frequency 5 GHz. We then compare the nonlinear transfer functions for a 

range of drive frequencies. This comparison is illustrated in figs. 9 and 10 where the 

transfer functions for the cases of output linearization and input linearization are shown 

receptively. In fig. 9 which shows the gain versus output power there is not much 

difference between the two cases. However, fig. 10, which shows the phase versus output 

power is more revealing. As is seen, the linearization which is optimized for 5 GHz is 



more effective over a range of frequencies for the output linearization case as compared 

with the input 
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fig. 9 Gain versus output power for a range of drive frequencies, a) for output 
linearization and b) for input linearization 

linearization case. Note that the scales on these two figures differ, and that the variation of 
phase with output power is much smaller in the output linearization case. This is further 
illustrated in fig. 11 where we compare the carrier to intermodulation distortion power as a 
function of frequency for two methods. To generate this plot two signals of equal power 
are injected, one at the indicated frequency, and one at a frequency .5 GHz higher. The 
power in the injected signals is adjusted so that the output power is 30 watts. We then plot 

the ratio of the power in the two driven 
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fig. 10. Phase shift versus output power for a range of drive frequencies, a) for output 
linearization and b) for input linearization 

frequencies with that in the two third order intermodulation products. We note that even at 

5 GHz where both circuits were optimized, the output linearized circuit has superior 

linearity as compared with the input linearized circuit. This difference grows as frequency 

is varies away from 5 GHz. The main cause for this difference is that the distortion in the 

TWT is generated at the output where the signal is large. Thus, the level of the output 

power is a more reliable indicator of the distortion than the input power. We conclude that 

output linearization is an effective way to reduce intermodulation distortion in a TWT 

amplifier, and the reduced distortion can be realizes over a range of operating frequencies. 

Figure 11 shows for example that the carrier to intermodulation power ratio remains well 

over 103 for frequencies 4 and 6.5 GHz. 
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Ill Electronic Tuning of Gain 

In this section we consider the possibility of tuning the frequency response of the 

TWT transfer function by electrically varying the dielectric constant of the rods which 

support the helix. The basic idea is that these rods could be made of or coated with a 

ferroelectric material (operating in the paraelectric phase). A DC voltage applied to the rods 

would then change their dielectric constant and alter both the phase velocity and coupling 

impedance of the helix structure. We imagine that relatively modest changes, + 20 %, are 

realizable and seek to determine the effect on the TWT transfer function. The bandwidth of 

Helix TWTs is determined by both the dispersion of the structure as well as the frequency 

dependence of its coupling impedance. For this reason we can not employ the formulation 

of Sec. IIC to calculate the effect of a small change in dielectric constant on the transfer 

function. This formulation calculates only the change in dispersion (specifically, axial 

wavenumber) due to a given change in dielectric constant. Instead, we use the solutions of 

the sheath helix dispersion relation (25) and vary the dielectric constant of the outer region. 



We begin this study by calculating the linear gain as a function of frequency for the 

untapered structure considered in the previous section. The parameters of this structure are 

shown in table 1. Figure 12 shows the gain versus frequency for this structure when the 

effective dielectric constant is varied. 
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Fig. 12 Gain versus frequency for the low dispersion structure of table 1. 
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As can be seen, the main effect of varying the dielectric constant is to vary the magnitude of 

the gain but not to vary the frequency of maximum gain. This is because the structure has 

low dispersion. Thus, varying the dielectric constant mainly moves the phase velocity on 

and off synchronism with the beam across the entire frequency range. Further, since the 

effective dielectric constant is rather low, e = 1.25 the variation in susceptibility , (e - 1), 

implied by fig. 12 is rather large. 

To achieve tuning requires a dispersive phase velocity. Additionally, the gain at 

higher frequencies tends to be limited by the decrease in coupling impedance.  Thus a 



means must be found to increase coupling impedance at higher frequency. The structure 

whose parameters are given in table 2 has these properties. 

Table 2 

High Dispersion Structure Parameters 

Helix period, XJJ 

Helix radius, r# 

Wall radius, rw 

Vane radius, rv 

Effective dielectric constant, e 

Beam voltage, Vg 

Beam current, / 

Beam radius, r^o ( W = 0-) 

0.0802 cm 

0.12446 cm 

0.18 cm 

0.2794 cm 

1.75 

3.0 kV 

0.17 A 

0.05 cm 

Note that for this structure the vane radius is greater than the wall radius. This implies that 

the interaction waveguide needs to be loaded with conducting discs. Future studies which 
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Fig. .13    Comparison of phase velocities for low and high dispersion structures. 
Parameters are given in Tables 1 and 2. 



go beyond the sheath helix model will address the issue of the structure geometry in more 
detail. 

The dispersion and coupling impedance versus frequency for the two structures is 
shown in figs 13 and 14. 
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Fig. 14   Comparison of coupling impedance for low and high dispersion structures. 
Parameters are given in Tables 1 and 2. 

As can be seen the phase velocity for the high dispersion structure varies across the 
frequency band, and the coupling impedance for frequencies between 5 and 7 GHz is 30 to 
50% larger than that of the low dispersion structure. 

The gain versus frequency for the high dispersion structure is shown for several 
values of dielectric constant in fig. 15. 
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Fig. 15 Gain versus frequency for t several values of dielectric constant for the structure 
whose parameters are given in table 2. 

In the case of fig. 15, variation of the dielectric constant has tuned the frequency of peak 
gain from 5 to 8 GHz. Further, the overall bandwidth has been improved over the low 
dispersion structure. While the improvement in bandwidth over the low case dispersion 
case is marginal, it must be remembered that a helix TWT is an inherently high bandwidth 
device. Thus, it is difficult to improve the bandwidth by a large margin. The concept of 
electronic tuning of gain to increase bandwidth might be more attractive if applied to low 
bandwidth amplifiers, such as coupled cavity TWTs. 

Ill Conclusions 

In this manuscript we have examined two possible uses for nonlinear dielectric 
elements in traveling wave tube amplifiers. The realization of these depends in large part 
on finding appropriate dielectric materials. The two schemes require materials for which 



the dielectric constant depends on the strength of the applied electric field. In the case of 

intermodulation distortion reduction what is required is a material with a negative 

coefficient of third order dielectric constant 8eo (3). While in the case of electronically 

tuning of amplifier gain what is required is a material whose first order dielectric constant 

can be varied by applying a bias voltage. 

A possible candidate material fulfilling both requirements is a ferroelectric operating 

above the Curie temperature. These materials have a dielectric constant which depends on 

applied electric field. For small electric fields the dielectric constant depends quadratically 

on the field strength and decreases with increasing field strength giving the required 

negative third order dielectric constant [Vendik]. Additionally, the dielectric constant can 

be changed over a relatively large range by varying a DC bias electric field, this feature is 

required for the concept of electronically tuning the gain of a TWT. Recent advances in the 

development of Barium Strontium Titanate composites [ ] have allowed significant progress 

in the design of phase shifters for phased array antennas [ ]. The proper composition of 

Barium and Strontium with additives allows one to operate the phase shifter in the para- 

electric regime, thus reducing possible losses and hysteresis effects. For example, these 

material improvements have resulted in voltage controlled phase shifts greater than 360 

degrees with less than 6 dB insertion loss [ ]. The phase shift variation is proportional to 

the tunability of a material [e'(0) - E'CVapp)] / e'(0), where e'(0) is the dielectric constant 

without applied electric field and e'(Vapp) is the dielectric constant after some electric field 

is applied. Depending on the material composition the tunability can be between 1 % to 40% 

[ ] when electric field on the order of few volts/mm is applied . The dielectric constant of 

these materials can be as high as few thousand. The loss tangent also has significant 

variation as a function of compositions as well as a function of frequency. For example, at 

10 GHz Ba.5o Sr so TiC>3 with sixty percent by weight added oxide has a relative 

permitivity 84.5 and loss tangent 6.55 x 10"3 [ ] 

As mentioned, an important consideration for such materials is the amount of loss 

caused by their introduction into the circuit. For example, in the case of output 

linearization, since the phase compensation is applied at the output of the amplifier it is 

critical that the loss be small. An order of magnitude estimate of these losses can be 

obtained as follows. Examination of fig. 5b shows that the nonlinear dielectric element 

must provide a nonlinear phase shift of about .4 radians to be effective. This number is 

obtained by comparing the phase shift at 100 W output power in the taper optimized circuit 

with that in the fully linearized circuit. This phase shift would be realized by passing the 



signal through a section of circuit of length L£ which had a nonlinear wave number shift of 
the form given by Eq. (30). Using the same reasoning that lead to Eq. (33) we can write 
this phase shift S/p = 8enl (dkzn/de)Le where 8eni is the nonlinear shift in the dielectric. 

The attenuation T in dB realized in passing through this dielectric, assuming perfect 
matching, can be expressed in terms of the loss tangent and the real part of the dielectric 
constant, r =8.69 (tand)£ (dk^/de)Le.   Thus, for a phase shift of .4 radians the 

attenuation can be estimated as 

r=3A8(tanS)(£/S£n[). (38) 

This attenuation will be small provided the loss tangent is much smaller than the tunability 

of the material 8eni It. For example, it is reasonable to assume 10% tunability and 1% 

loss tangent is achievable in practice. This will result only in 0.348 dB attenuation. The 

above estimate, however, assumed perfect matching. The dielectric constant of 
ferroelectric materials operating in this regime tends to be very large. Thus, there is the 
problem, which is solvable with proper matching design, of coupling the field into the 

dielectric without inducing large reflections. 

The electronic tuning of gain can be implemented, for example, by incorporating 
the ferroelectric material in the dielectric structures which are used in the TWT circuit to 
support the helix. If the amplifier is of the coupled cavity type the ferroelectric material 
would be added to the individual cavities of the structure. The dielectric constant of the 
ferroelectric material is typically measured in thousands, while the dielectric constant of 
BeO, the material of which the helix support structures is made, is about 6. The high 
dielectric constant will again raise the issue of coupling the fields into the material. One 
approach would be to deposit a very thin layer of the ferroelectric material on to another 
dielectric substrate. Electrical conductors would have to be attached so that a DC electric 
field would be applied to the ferroelectric material. If the dimension of the ferroelectric is 
small enough it would only require a small voltage to achieve the desired tunability. In 
future studies we will address more specifically the optimum geometry and effective 
implementation of the adaptive TWT circuit with tunable a ferroelectric for gain control. 

What we have shown here is that nonlinear dielectric elements have, in principle, 
the capability of enhancing the performance of traveling wave tube amplifiers. The next 
step is to attempt to implement these ideas in a real amplifier. 
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Abstract 

Expressions for the shot noise generated in the input cavity of a Gyroklystron are 

calculated. Results are given for noise amplitude, noise temperature, and phase noise. For 
a beam of uncorrelated electrons the noise temperature scales as the beam energy. An 
estimate of the role of collective effects on the noise properties is given. These might either 
decrease or increase the noise level. It is expected that the shot noise in an actual device 
will depend in a sensitive way on the profile of magnetic field in the compression region 

preceding the input cavity. 
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I   Introduction 

A high power 94 GHz Gyroklystron is now being developed at NRL, ultimately for 

application in a millimeter wave radar system [1]. In modern radar systems, it is important 

to keep the transmitter noise as low as possible. For the gyroklystron, which is a multiple 

cavity amplifier, this means minimizing the noise in the input cavity, since this is the noise 

which is amplified as it progresses through the various cavities. There are a number of 

sources of noise which can effect electron beam devices [2]. These may be classified as 

intrinsic or extrinsic depending on their source. Intrinsic noise results from processes 

directly associated with the formation and transport of the electron beam. Examples include 

shot noise which is associated with the discreteness of the electronic charge, flicker noise 

which is associated with imperfections in the emmision process, and ion oscillation noise 

which is associated with the unstable interaction between the electron beam and ions 

trapped in the beam region. Extrinsic source noise results from fluctuations in the external 

power supplies attached to the device. The effect of these has been examined for 

gyroklystrons in in ref. 3. This paper will be concerned exclusively with shot noise. 

As a result of the discreteness of the electronic charge, the beam current entering the 

first cavity is not steady in time, but has a high frequency fluctuation spectrum which 

excites a signal in the cavity. The level of the signal depends on the spectrum and 

amplitude of the current fluctuations as well as the mean parameters of the electron beam 

and those of the cavity. As we shall see these latter parameters serve to define an effective 

resistance which along with the fluctuating part of the beam current determines the noise 

power in the cavity. The effective resistance, given in Eq. (15), depends on the geometry 

of the cavity, the coupling between the cavity mode and the beam, and the velocity pitch 

ratio of the spiraling electron beam. A typical value is about 100<2 Ohms. 

The level of current fluctuations depends on the degree of correlation of the 

electrons as they enter the cavity. The simplest expression for 'bare' shot noise assumes 

that all of the particles in the electron beam are uncorrelated with one another. In this 

sense, the 'bare' shot noise is a very fundamental quantity to calculate. It is certainly a 

useful quantity to know as one starts to do noise measurements on the input cavity. Under 

the assumption of uncorrelated electrons we shall find that the noise power spectrum in the 

cavity corresponds to a noise temperature of the order of the beam energy. Various 

physical processes can increase or decrease the shot noise level by inducing correlations 

among the electrons. It could be decreased by electrostatic shielding of long wavelength 

fluctuations (dependent on beam temperature and geometry) or by some active beam 

conditioning. It could be increased by electrostatic instabilities in the beam tunnel. The 



possibility of these effects will also be discussed in this paper. Calculation of the 'bare' 
shot noise is thus the point of departure for more refined theories which take into account 

dielectric shielding and beam instabilities. . We hope this work will prove useful in 

interpreting initial noise experiments and in stimulating future theoretical studies. 

II.   Calculation of Shot Noise in the Input Cavity of a Gyroklystron 

The input of a gyroklystron is coupled to the microwave source through a 

combination of waveguides and coupling cavities. This excites a signal in the bunching 
cavity of some strength which is amplified from cavity to cavity. However, there is also 

noise (current fluctuations) on the electron beam. These fluctuations also excite a signal in 
the bunching cavity which will compete with the desired signal. One cause of the noise is 
that the electron beam is not a continuous stream of charge, but rather, a random stream of 
electrons which enter the input cavity at some rate. This is the shot noise. The purpose 
here is to calculate the shot noise under a variety of assumptions. 

We now sketch out a derivation of the basic equations. The cavity fields are 
governed by Maxwell's equations which we write in the Fourier domain 

Vx£ = &J -i§E (la) 

Vx£ = if B (lb) 

where the hatted variables are the Fourier transforms with frequency co of the real time 
dependent fields. We now assume that the fields in the cavity are dominantly those of a 
single mode of the cavity. The mode eigenfunction satisfies Eqs (la) and (lb) with J =0 , 

and satisfies the boundary condition that tangential components of electric field and normal 
components of magnetic field vanish on the cavity walls. This eigenfunction is denoted by 
En, and Bn, where the eigenfrequency is (On, and we choose the normalization of the 

electric and magnetic fields to be given by 

jd'x\En\
2  =\d'x\Bn\

1   =V (2) 

where V is the volume of the cavity. Thus, En and Bn are dimensionless. Further, we 
have used the fact that the electric and magnetic fields of a resonant cavity mode have the 
same stored energy. 

The actual, time dependent field in the cavity is given approximately by 

B(x,t) = Jo ^f A{co) Bn{x) e~i0* + c.c. , (3a) 



and 

E(x,t) = |" || A{co) En(x) e~i(0t +c.c, (3b) 

where A(co) is a complex scalar amplitude to be determined. Here we have introduced the 

single sided Fourier integral, which when added to its complex conjugate is equivalent to 

the normal Fourier integral for the real functions E(x,t) and B(x,t). This step is taken so 

that in subsequent operations only positive values of frequency need to be considered. 

Inserting E =AEn  and B =ABn into Eqs. (la) and (lb) and using a few 

standard vector manipulations gives [4,5], 

2K i (d3xE*„J i ( d3xE*n 

A{co) -~V((o-con + icon/2Q) (4) 

where we have lumped all dissipation and frequency shifts due to, for instance, coupling 
holes, beam tunnels, wall resistivity, etc. into the value of Q and adjusted the resonant 
frequency (On. The average energy stored in the cavity can be expressed in terms of A, 

U = JL( dcodaLMco)A*(<y) e-i{<o-<d)t + CXm (5) 
Anh    (27T)2 

where we have assumed, according to Eq. (4), that A(w) is peaked near 0)n and averaged 

over time corresponding to 2jt/(0n eliminating terms with approximate frequency 2con. The 

average power dissipated in the cavity is given in terms of the energy stored, the frequency, 

and the quality factor, 

The next step of the calculation is to evaluate the numerator in Eq. (4). To do this 

we first write the time dependent current density in terms of the trajectory followed by 

individual increments of charge, 

J{x,t) =^SQ v0(t) S(x- x0(t)) (6) 

where 5Q represents an increment of charge which follows the trajectory [x0(t),v0(t)]. For 

the case of shot noise SQ will represent the charge of an individual electron and the 

summation will include all electrons passing through the cavity. However, at this point we 

will allow flexibility in our treatment and leave the specification of SQ for later. The 

trajectory will be calculated assuming that the high frequency fields in the cavity are weak 

and that the trajectory is unaffected by them. In this case trajectories for particles with 



identical entrance momenta and coordinates are distinguished only by their entrance time. 

The current density can then be written 

oQ   VZ\Z) 

where we now express the orbit with z as the independent variable and T(Z) represents the 
time to reach the point z (measured from some reference surface, z=0). The variable te is 

the time of entrance of the increment of charge SQ. This increment of charge can be related 

to the beam current entering at a particular time I(te), 

8Q(te)=jdteI(te) 

That is, we replace the sum over increments of charge by an integral over the time 
dependent beam current. Various temporal forms for this beam current can be assumed. 
For example, bare shot noise is calculated if one takes the beam current to consist of a train 
of delta functions with weight e, the electron charge, and random entrance times. 
Alternatively one could take the beam current to vary coherently in time. Both these and 

more will be considered subsequently. 
We now take the Fourier transform with respect to time of Eq. (7), and insert it in 

the numerator of Eq.(4) to obtain for A(co), 

AW = " V(co-a>n + icon/2Q) • (8) 

where I(co) is the Fourier transform of the time dependent beam current. The quantity 

F(a) in Eq. (8), 

F(a>) = j dx E*n[x0(t)] • AT) eim, (9) 

is an integral over time along the orbit. It represents the Fourier transform of the product of 
the relativistic factor, ß(z) = v0(r)/c, and the cavity electric field eigenfunction. A similar 
quantity appears in the expression for the power radiatied per unit frequency and per unit 
solid angle into free space [6]. Generally, the quantity F will have a peak value which 
scales as the product of the perpendicular component of ß times the time of flight through 
the cavity. Due to the oscillatory nature of ß±, this peak will occur for frequencies near the 
cyclotron frequency. Additionally, the value of F will reflect how well the particles couple 
to the fields in the cavity. This time integral can be evaluated for a TEnpi mode in a 



circularly symmetric cavity of radius rw and length Lc. We take the axial profile of the 
electric field to be Gaussian with a full width at 1/e of the maximum to be Lc(En~ exp (- 

4z2/Lc
2)). The resulting value of F(co) is 

F(fl» = (f),/4^«p(-#/4) (10) 

where 
Jn+lU'nprbfrw) h = 

{l-n2/f2
npy

l2Jn0\P) 

is the coupling coefficient, with Jn the ordinary Bessel function, 77, the annular beam 

radius, and j'np the zero of the derivative of the Bessel function. The frequency 

dependence of F enters through the dimensionless detuning parameter 8, 

8 = (m-üc/fj^-, (11) 

where Q.Jl is the relativistic cyclotron frequency. The quantity F is, thus, peaked in 
frequency at the cyclotron frequency with a width in frequency determined by the particle 
transit time through the cavity. 

We are now at a point where we can compare the power dissipated in the cavity for 
the case of a beam which is premodulated at a specified frequency and an unmodulated 
beam consisting of a stream of uncorrelated electrons. In the first case the time dependent 
beam current is given by I(t) = Io + 81 coscoot. The Fourier transform for 0)>0 is thus, 
I(co) =K 8l 8(0)- 0)0). The resulting power dissipated in the cavity is given by, 

P = Eg*   ^!Q     [ÖIf . (12) 
2V     \o)0-con + i(Dn/2Q\2 V   ; 

In circuit theory this formula corresponds to the power dissipated in the parallel 
combination of a resistor, capacitor, and inductor driven by an ideal current source 81. The 
equivalent shunt resistance is given by, 

RW=T£®\ (13) 

and the power dissipated at the resonance is P = (1/2) R(con) (8I)2. The values of the 
equivalent inductance and capacitance can then be determined by the relations con = 
1/(LC)1/2 and Q = R (C/L)M. 

The shunt resistance is frequency dependent through its dependence on F. In this 
sense, the simple circuit analogy doesn't quite apply. However, the concept of a shunt 



resistance, which is used to characterize cavities in accelerators and klystrons [7], is useful 
anyway as we shall see. In the electrostatic system of units (ESU), which we have used so 

far, resistance has the units of inverse velocity. To convert to ohms (SI) one multiplies by 

c/4it and the impedance of free space, (u</£o)1/2 = 377 ohms, 

^=377T@b[ohms]- (14) 

For a TEnpi mode in a cylindrical cavity we can use expressions (10) and (14) to write the 

resistance, 

Ri2=236Q^(l-j^)^exp(-S2/2)   [ohms],     (15) 

where a= vjvz is the beam pitch factor and A is the wavelength based on the cavity 

resonance frequency. Thus, for typical parameters the shunt resistance is on the order of 
100 Q ohms. For example, for a TEon mode, with the beam placed on the maximum of 

the coupling coefficient, a = 1, 8- 0, and Lc/X = 3 we find RQ = 97 Q ohms. An electron 
beam with a 2 A modulation injected into a cavity with a quality factor of 150 would then 
dissipate about 29 kW in the cavity. This number is comparable to the expected saturated 
power that would be extracted in the output cavity. This follows from the observation that 
in a good design the beam current is nearly fully modulated when it reaches the output 

cavity. 
For the case of random electrons we need to compute the expected value of the 

product I(co) I*(co'). This we do by first representing the current by a train of delta 
functions, 7(0 = eZ 8(t - tt). This leads to the Fourier transform I{co) = eZ exp (iö»,-). 

We then form the expected value of the product of two Fourier transforms, 

(/>)/V)) = e2Z (exp [i{(otr aftj)]) . 

We now assume that the entrance times are uncorrelated, and as a result, only terms with 
i=j contribute to the sum. Then, assuming entrance times are uniformly distributed, we 
replace the sum and average with an integral over entrance time, 

Z (exp [/(©- af)tH) = J   -^exp [i(o>- af)t,] = ^5(0)- of) 

where At = e/Io is the mean time between electron arrivals, and IQ is the average current 
(taken here to be positive). The result is the well known 'white noise' power spectrum for 
a beam of uncorrelated electrons 



(I(0))I\Q)')} = 2KeIQb\<D-co') . (16) 

This expression, when inserted in Eqs (8) and (5), gives the following for the power 

dissipated in the cavity, 

p =fh MR{o}) ^nlQ? (17) 
21Z \co-can + icon/2Q\2 

The shape of the spectral density of the power is thus determined by both the cavity 

resonance and the shunt resistance. We recall from (15) that the shunt resistance is peaked 

in frequency at the cyclotron frequency. The width of the shunt resistance resonance is 

vz/Lc while the width of the cavity resonance is 0)n/Q. Thus, the detailed shape of the 

spectral density of the power will vary depending on the widths and central frequencies of 

the two resonance functions. 

The total amount of noise power (integrated over frequency) will now be estimated 

in two limiting cases. In the first case we assume that the cyclotron resonance is much 

broader than the cavity resonance. This requires Q Lc con/vz » 1. In this case, carrying 

out the integral in the above gives, 

P =iR{con) (eO)n/Q)I0. (18) 

From (17) it is clear that in this case the noise power is spread out over a range of 

frequencies corresponding to the Q width of the input cavity. 

The power given by (18) can be compared with the form that applies in the case of 

coherent excitation by noting, e(ün/Q = I(/N, where N is the number of electrons that pass 

through the cavity in a cavity decay time Q/(On. A typical vale of N is 1010. Thus, the 

noise power is about ten orders of magnitude smaller than the amount of power that could 

be driven by a coherently modulated beam. Since the later power corresponds roughly to 

the saturated output power in the device and since noise is amplified as the signal proceeds 

through the device, a very rough rule for the signal to noise ratio measured in dB is, 

Signal I Noise  = 10 log l0N - G [dB] (19) 

where G is the gain of the amplifier. Equation (19) is really only approximate as the 

parameters of the input and output cavities might be quite different. Also, it compares the 

signal power which may be in a very narrow band to the noise power which will be spread 

out over the resonance width of the cavity. More properly the signal to noise ratio is found 

by comparing Eq. (18) with drive power coupled into the first cavity. 



In the second case of a narrow cyclotron resonance, Q Lc con/vz «1 , the noise 

power can be estimated using the form (15) for the shunt resistance, one obtains 

P 4 (f)' /2*(0) tn/   
{<°n'&2 nnl2 ^ I vz> 'o • (20) 2V2; \njy-con + i(Dnl2Q\l 

In this case the detuning between the cyclotron frequency and cavity frequency is 

introduced into the cavity resonance function and the noise power is spread out over a 

range of frequencies corresponding to the inverse of the particle transit time, vz/Lc . 

Further, one can introduce a dimensionless number of electrons N based on the transit time 

cL(/vz = I(/N. Generally, the smaller of (18) and (20) is applicable. 

An alternate way of characterizing the noise is in terms of the noise temperature. 

According to the definition, the noise temperature is the power per unit frequency [in Hz] 

dissipated in the cavity. From (17) this is seen to be 

T(a>) = i/?(fl>) el0 ^-^ ä . (21) 
2 °\co0-con + icon/2Q\2 

At resonance the temperature T((On) is given by, 

T((On) = 2R{(Dn) el0 =4(e //0) x ±R{con) l\ . (22) 

According to our previous discussions, the last factor on the right hand side, 1/2 RI0
2 

(with R replaced by the resistance of the output cavity), is essentially the maximum output 

power the beam could deliver. This is a good fraction of the beam power VVo- The 

temperature, therefore, corresponds roughly to the energy of the electron beam. This may 

seem surprising at first since our beam is cold, but a spiraling electron beam is far from 

thermodynamic equilibrium and has an available free energy which for a ~ 1 scales as the 

beam energy. This interpretation is enforced by noting that the resistance R is proportional 

to a2, and thus vanishes if the free energy of the beam is removed. 

For pulsed Doppler radar applications the phase of the returning signal is detected. 

Over a period of many pulses this phase will change reflecting the motion of the target 

relative to the source and detector. To estimate the pulse to pulse fluctuations due to shot 

noise in the detected phase we assume the phase is determined after integrating the beating 

the signal with the carrier and integrating over the pulse duration rp 

►T„/2 



Here, As is the complex amplitude of the total signal, A# is the complex amplitude of the 

coherent signal and A(co) is the Fourier transform of the noise. The phase error is then 

given by 8<P = arg{As AQ *}. For low levels of noise this gives, 

S0=Im{r^^l>sn{co-a>o)}, 
Jo    z/t       \An\ \Ao\' 

where 
sin [(0)-(O0) XJ2] 

sn(co-coQ) =    [iü)_ü)Q)Tp/2] 

represents a filter function describing the integrating process. 

Each pulse will have a phase error. The mean phase error will be zero, and the 

variance will be given by, 

/Ä»2\  -  r dcodco' /A(co)A*(of) + c.c. \ 
{      }  "1   (2^)2\        4|A0|

2 / 
sn (CO- co0) sn (of- O)0) . 

Using the expression (5) for the energy density in the cavity, along with the definition of 

the noise temperature, and the expression the coherent power coupled into the cavity PQ - 

(On V\Ao \
2

/(2TCQQ) where QQ is the ohmic Q value (not including the coupling hole) it is 

possible to express the variance of the phase error, 

w-^r^»j<-^^ 
Basically, the variance of the phase errors is proportional to the noise power in a 

band of frequencies of width xp ~l and centered at the drive frequency. 

Ill Collective Effects 

Expression (17) for the power spectrum of the beam current was derived assuming 

that the electrons entering the cavity are uncorrelated with one another. This is an 

assumption which most likely is not valid. Experience with sources of microwaves driven 

by linear beams has shown that the electrons can become highly correlated and this reduces 

substantially the noise in the beam. An excellent review of the early studies of shot noise in 

devices with linear beams can be found in Refs. 2 and 8. We will review here some 

important results, but presented from an alternate point of view. Within the framework of 

plasma kinetic theory the correlations occur because of the dielectric shielding of the 



discrete electron charges by the beam itself. We can consider this effect by analogy to the 

case of electrostatic plasma waves treated in text books [9]. By working in either the 

spatial or Fourier domain one can show that the shot noise is generated by shielded rather 

than bare electrons. The end result is that the power spectrum of the noise is modified by a 

term representing the dielectric shielding. For example, we modify expression (21) by 

noting that the shunt resistance depends on the velocity space coordinates of the electron 

beam. Thus, if the beam has a distribution of velocities we expect that the shunt resistance 

R(co) should be redefined as follows, 

R(a>) -> vo        I l+x((o,kd) |2 

where f(v) is the velocity space distribution function for the beam, vo is the average axial 

velocity of the beam, xi^k)ls tne beam susceptibility (we assume a one dimensional 

model of the self fields), and kd(v) = Cü/VZ, is the Doppler wave number for electrons of 

velocity v interacting with fields of frequency co. The factor VZ/VQ accounts for the fact the 

product IoR is what enters expression (17). Thus, if we were to consider the beam to be 

composed of many beamlets the distribution function should be weighted by the axial 

velocity. 

The shielding effect occurs when the beam susceptibility % is large. Generally, this 

requires a combination of sufficiently high beam density and sufficiently low beam 

temperature. To illustrate this we consider for the moment the case of a linear beam. We 

ignore the velocity dependence of the shunt resistance and calculate a reduction factor 

H(a>), 

H(co) = div £ fW (24) vo | l+x(co,kd) |2 

where we have used kd = co/vz for the Doppler wave number. Let us further take the beam 

distribution function to be Maxwellian with mean velocity VQ and temperature Tf, = (1/2) 

mvt
2, 

W-^)"2«*!-24^ OS 

For this distribution the beam susceptibility can be expressed in terms of the plasma 

dispersion function Z(£), 

y(0} k) - I?! f 1 + ^±0 Z[±J^\ z(,) ^r i*h zU*iv, J. (26) 



We emphasize again that we are using a one dimensional model of the self fields. Thus, 
the quantity (Op represents the reduced plasma frequency which accounts for the transverse 

structure of the space charge fields. 
The integral in Eq. (24) can be evaluated approximately in the limit of low beam 

temperature. That is, k2v2 = CO2 v2 /VQ « 2(o2 . There are two types of contribution to 

the integral. First, for velocities vz which are in the thermal distribution, lvz-V0l ~ vt, the 
susceptibility is large, % »1, and the contribution to the reduction factor scales as 

H « —5-U    *-4-4   , (27) 
\lcü2v2)        copE

2 

Where Eb = (l/2)mvo2 is the beam energy. For a cold dense beam, this is a large 

reduction. A second contribution comes from velocities for which 1 + % = 0; in other 
words, from velocities which resonantly interact with beam space charge waves. For a 

relatively cold beam these velocities are in the tail of the distribution function so the 
numerator in the integral is very small. However, the imaginary part of the susceptibility is 
also very small and the contribution to the integral is nonnegligible. This contribution can 
be found by expanding the denominator around the two velocities corresponding to 
excitation of the slow and fast space charge waves. The result for the contribution to the 
reduction factor is, 

where n = 1 or 2 depending on whether there are one or two forward propagating space 
charge modes where the denominator in Eq. (24) becomes very small. This contribution 
dominates that of the thermal particles if Ti/Eb < (cop/co)3.  In this limit the noise 
temperature at resonance (22) is given by 

R(co„) 
T(con)=n-y±Tb, (29) 

where Z# = 2(c0p/0))Eb/(eIo) is a characteristic impedance. In fact, one can show that Zo is 
the characteristic impedance of the space charge modes [8]. That is, a beam that supports a 
small space charge wave will have fluctuations in both voltage and current. The ratio of the 
voltage fluctuation to the current fluctuation is Zo. In the case in which the cavity and space 
charge waves have comparable impedances the noise temperature is equal to the beam 
temperature. Further, the dominant current fluctuations are in the form of weakly damped 
space charge modes as opposed to ballistic perturbations associated directly with the motion 



of individual particles. In linear beam devices these fluctuations are imposed near the 
cathode where the beam is dense and the mean speed is comparable to the thermal speed. 

That is the, the damping Landau damping of plasma waves is sufficiently weak once the 
beam has been accelerated that the waves and beam are not strongly coupled. That is the 
temperature Tt> is determined by the cathode temperature and the linear propagation of 

plasma waves on the accelerating beam as they travel from the cathode to the interaction 
region. 

In the preceding discussion we evaluated the susceptibility for a one dimensional, 
linear beam. The dominant collective effect in this case is the excitation of beam space 
charge modes: i.e. plasma waves. The beam in a magnetron injection gun (MIG) is 
spiraling about the magnetic field lines and a more appropriate susceptibility takes into 
account the possibility of cyclotron resonance. For example, the susceptibility of a warm 
beam, responding to transverse electrostatic fields with frequencies near the cyclotron 
resonance can be found in ref. [10], 

X(<»,k)=!-^r^[o)2-k2c2) 
dyduzf(%uz) 

(yo)-kuz-ncy 
(30) 

where yo = is the mean relativistic factor, yzo = (l-(v(/c)2)-1/2 where vo is the mean axial 
velocity of the beam and ß±o is the mean transverse relativistic factor for the beams 
perpendicular velocity. This expression assumes k is the axial wave number, and that the 
perturbations also have a perpendicular wave number which is much greater than k. 
However, in this approximation, the value of the perpendicular wavenumber does not 
appear in the expression for the susceptibility (See ref. 10 for details). The function f(y,uz) 

describes the beam's distribution of energy and axial momentum. In principle, one should 
include the variations of perpendicular momentum under the integral. However, when the 
spread in the various momenta is small, as assumed here, only the variation of quantities 
which appear in the resonant denominator needs to be taken into account. Let us now 
assume that the beam is monoenergetic but with a distribution that depends on axial 
momentum. For ease of integration we take the distribution of axial momenta to be 
Loretzian with mean velocity VQ and thermal velocity vt 

Muz) 
v, 8{y-y0) 

Wo [("2/ro-v0)2 + v2] 
(31) 

In this case the susceptibility can be evaluated in terms of simple functions, 



Xico,k) = ß^Yotf [co2-k2c2) 

4fzOQ2c   {o>-njYo-kv0+ikvty 
(32) 

The sign of the term co2 - k2c2 in the numerator of the expression for % is of significance. 

The factor co2 can be attributed to gyrophase bunching of the beam while the term k2c2 is 

attributable to axial bunching. If (o2 > k2c2 gyrophase bunching dominates and 

electrostatic cyclotron modes can be unstable. The axial wavenumber of the cyclotron 

mode with frequency co is determined by setting 1 + x = 0. It can be written as the Doppler 

wavenumber based on the mean velocity of the beam plus a correction, 

vo (33) 

In the limit of a tenuous beam, PJ^YQO)
2
 < < ly^ü2. ,the small wave number shift 8k is 

given by, 
8k = ±ikj + ikt (34) 

where 

2 _ Torfa2 

1 = *m co i   {co-QjroY 

and 
_ \a)-njy0\vt 

(35a) 

(35b) 

The quantity kj represents the spatial growth rate of the instability for a cold beam, while kt 

represents a damping rate due to axial velocity spread. We note that the spatial growth rate 

is maximum at cyclotron resonance where k\ reaches its maximum value and kt vanishes. 

The maximum growth rate occurs at cyclotron resonance because the Doppler wave number 

vanishes. Consequently, axial bunching is negligible and the resonant denominator in (30) 

is insensitive to the spread in axial velocities. 

In a MIG the magnetic field typically varies by a factor of 10 to 30 in the drift 

region between the cathode and the cavity. This has a large effect on the amount of spatial 

amplification a fluctuation with fixed frequency will experience. Fluctuations with 

frequencies close to the cyclotron frequency in the input cavity, where the magnetic field is 

near its maximum, will be damped in the drift region up to a point where the magnetic field 

is close to its value in the cavity. At this point the fluctuations become unstable and grow 

exponentially. Thus the amount of noise will be largely affected by the amount of growth 

that occurs in these last few centimeters [10]. The growth length of the instability is also 



on the order of a few centimeters. Therefore, large enhancements in the noise level are 
possible. For example, fig. 1 [11] shows the expected amount of noise power amplification 

due to the electrostatic cyclotron instability for the beam parameters of the NRL 
gyroklystron [1]. Plotted is the number of decibels of growth versus frequency for a 

several different beam currents. For these calculations the beam was assumed to have a 
'top hat' dependence on axial velocity as opposed to Lorenzian. The resulting expression 

for the wavenumber is given by Eq. (27) of Ref. (10). As can be seen, for the highest 

currents nearly 50 dB of amplification is expected. 
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Fig. 1 Noise amplification [11] versus frequency for the parameters of the NRL 94 GHz 
gyroklystron. 

Formula (23) for the effect of dielectric shielding assumes that the plasma is stable, 
and can not be applied for cases in which the instability is present. A more refined theory 



is required to describe the growth of current fluctuations on the beam as it passes from a 

region where the beam is stable to one where the beam is unstable. Presumably 

fluctuations start at a level given by (23) and then grow exponentially after the beam 

becomes unstable. At the point where the beam becomes unstable the susceptibility is of 

order unity, since 1 + %=0. Thus the noise may grow from a level for which the dielectric 

shielding is unimportant. This was the situation assumed in ref. [10]. However, a more 

precise prediction awaits the development of a theory which treats the evolution of noise 

fluctuations on an inhomogeneous beam. 

An additional collective effect which is easily incorporated in the present theory is 

the coherent response of the electron beam to the fields in the cavity. In particular, we have 

calculated the fields in the cavity assuming the current perturbation is prescribed. These 

fields will produce a coherent response in the beam which is nonnegligible if the beam is 

close to the value required to start oscillations in the cavity. The result is that all the 

resonant denominators appearing in Eqs (4), (8), (12), (17), (20), and (21) need to be 

modified to include the complex frequency shift induced by the beam. That is the 

following replacement should be made [5], 

(o - o)n + icon I2Q  -» coQ - con + icon I2Q - Aco , (36) 

where after a small calculation the frequency shift is written 

Aco = -lKi ^JA/4ii(J>F^4        <37> 

The integral over d3vf in (37) is an average over initial particle momenta, while the 

integral over T is carried out along the unperturbed particle orbit. The quantity F<r is 

defined 

F^O),ßd = jT dt E*n[x0(if)] ■ #T0 eitaf. (38) 

Thus, according to Eq.(9) Foo = F(co). Using Eq. (38) the imaginary part of the frequency 

shift can be expressed in terms of the shunt resistance. 

Expression (39) reiterates the known relation between the linear gain and the spontaneous 

emission rate. In the case of free electron lasers this is known as Madey's theorem. It has 

been derived previously for gyrotrons by Latham [12]. 



Conclusions 

The excitation of noise in the input of a gyroklystron cavity can be expressed in 

terms of the excitation of a resonant circuit, with an equivalent frequency dependent shunt 

resistance, by the random fluctuations of the beam current. A typical value of the shunt 

resistance is 100 Q ohms where Q is the quality factor of the cavity. For the case of 

spontaneous emission, which neglects correlations in the entrance times of particles, the 

noise spectrum has two peaks, one at the cyclotron resonance and one at the cavity 

resonance. The noise temperature in the case of spontaneous emission scales as the beam 

energy. Collective effects tend to reduce the noise level in linear beams to a value 

dependent on the beam temperature. However, in the case of a spiraling beam such as that 

produced by a MIG the noise can be enhanced by many dB due to the presence of unstable 

electrostatic cyclotron modes on the beam. 
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Amplifier performance of the NRL ubitron * 

D.E. Pershing ••*, R.D. Seeley \ R.H. Jackson, H.P. Freund 2 
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Abstract 
Operation of the Naval Research Laboratory Ku-band ubitron has successfully demonstrated a high power/efficiency and 

broad bandwidth. This device employs a helical wiggler/axial guide field configuration. Performance levels achieved at 
16.6 GHz can be summarized as a peak power of 4.2 MW for an efficiency of 17.5% and a gain of 29 dB, and an 
instantaneous bandwidth of 22%. Substantial beam loss was observed. The specific loss rate was correlated with output 
power, and reached a level of 50% beam loss at the 4.2 MW level. Nonlinear simulations of the experiment are in good 
agreement with these observations. 

1. Introduction 

The NRL ubitron [1] has demonstrated operation as a 
high power, broad band, and efficient amplifier with a 
maximum output power of 4.2 MW for an efficiency of 
18%, a 29 dB gain, and a large signal bandwidth (not 
saturated) greater than 22%. The experiment met the per- 
formance goals for the fundamental mode amplifier; 
specifically, an output power of 1-5 MW, an efficiency 
greater than 15%, a large-signal gain of 25-30 dB, and a 
large-signal bandwidth greater than 20%. Experimental 
results are in good agreement with theoretical predictions 
using the 3-D nonlinear code ARACHNE [2-4]. It is 
important to note in this regard that, in contrast to earlier 
devices operating in the Raman regime [3], the DC self- 
fields of the beam played an important role in the interac- 
tion. 

2. Experimental results 

An extensive description of the experiment is given in 
Ref. [1]. The wiggler is a pulsed bifilar helix with a period 
of 2.54 cm and a length of 33 wiggler periods. The first 
five and the last three periods represent an adiabatic 
entrance and exit. Amplification was measured over the 

This work is supported by the Office of Naval Research. 
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339 6953. 
1 Permanent address: Mission Research Corp., Newington, VA 

22122, USA 
Permanent address: Science Applications International Corp., 

McLean, VA 22102, USA. 

following parameter ranges: wiggler amplitude = 175-320 
G, axial field = 1.75-2.54 kG, beam voltage « 212-254 
kV, and beam current = 67-100 A. The beam radius upon 
wiggler entry is =0.4 cm and the waveguide radius is 
0.815 cm. The FWHM of the beam pulse is = 2.4 JJLS, 

with a flat top of = 1 p.s. Operation is largely in the TEU 

mode at Ku band (12.4-18 GHz). The experimental con- 
figuration is shown in Fig. 1. Note that the solenoid is split 
to accommodate a gate valve separating the gun and the 
interaction/diagnostics sections which necessitated addi- 
tional solenoid coils to maintain the field profile. 

Amplification has been measured over a wide parame- 
ter range. Although the nominal beam and axial field 
values are 250 kV/100 A and 2.2 kG, these do not 
necessarily represent the optimal parameter range, and 
equivalent output power has been obtained for several 
different parameter sets. The maximum power measured is 
4.2-4.5 MW at 16.6 GHz. Typical waveforms showing the 
essential characteristics of ubitron operation are given in 
Fig. 2. In this case, an output power of = 4.5 MW (4.2 
MW from calorimeter) was measured for a 245 kV/94 A 
beam, with axial guide field and wiggler field amplitudes 
of 2.47 kG and 270 G, respectively. This represents a gain 
of 29 dB and an efficiency of 18%. 

It is important to observe the beam loss on the rising 
and falling edges of the pulse at the voltage resulting in 
gyroresonance for the fixed magnetic fields, as well as the 
high beam loss during the interaction. The ripples on the 
two beam current traces are due to current monitor ringing. 
It should also be noted that the output power shown does 
not represent saturation. Indeed, for most parameters we 
have been unable to drive the system to saturation. 

The ubitron has also demonstrated a wide instantaneous 
bandwidth. However, there are two factors which render 
this measurement difficult. Specifically 1) the modulator 

0168-9002/95/$09.50 © 1995 Elsevier Science B.V. All rights reserved 
SSDl 0168-9002(94)01581-3 
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exhibits a slow time scale voltage drift, and 2) in order to 
accommodate high input power, the phase splitting cir- 
cuitry utilizes two sets of short slot hybrids to cover most 
of the Ku band and several hours are required to switch 
between them. Hence, the bandwidth measurements are 
not always made with the identical parameters, but are 
indicative of ubitron bandwidth potential. Fig. 3 shows the 
bandwidth characteristics for a case in which the output 
power exceeds 600 kW. This represents a bandwidth in 
excess of 22%. 

The NRL ubitron exhibits is highly sensitive to varia- 
tions in the beam voltage and the axial and wiggler 
magnetic fields. An example of the output power sensitiv- 
ity to beam voltage is shown in Fig. 4. Output power is 
seen to reach a maximum in excess of 4 MW at of 245 kV, 
and to increase from 2-4 MW as the voltage increases 
about 4.5% from 234-245 kV. This sensitivity points to 
the need for very tight modulator voltage control. Similar 
sensitivity to variations in the axial and wiggler magnetic 
fields has also been observed. In order to illustrate the 
sensitivity of the interaction to variations in the axial 
magnetic field, we consider a 250 kV/83 A beam with a 
wiggler field amplitude of 275 G. Experimentally, the 
output power varies from 2-4.4 MW at 16.6 GHz as the 
axial magnetic field increases from 2.4-2.54 kG. Observe 
that the output power nearly doubles for an axial field 
increase of 5.5%. Somewhat less sensitivity is measured 
for wiggler field variations. With a 247 kV/83 A beam 
and an axial magnetic field of 7.6 kG, the output power 
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Fig. 2. Typical waveforms. 

increases from 0.4 to 2.6 MW at 16.6 GHz as the wiggler 
field increases from 160-280 G (i.e., a field increase of 
~ 25% is required to double the output power). Part of this 
parametric sensitivity arises because the system is not 
driven to saturation; hence, small changes in the growth 
rate can result in relatively large variations in the output 
power. 

3. Comparison with theory 

A key feature of the NRL ubitron program is the 
integration of theoretical and experimental efforts which 
leads to the development and validation of a design and 
simulation capability. To demonstrate this capability, we 
compare experimental measurements with theory. We use 
the 3-D nonlinear simulation code ARACHNE, which in 
its latest version [3,4] includes both RF and DC beam 
space charge effects, under the assumption of an initial 
axial energy spread of 1.5%. It is also important to, the 
inclusion of the DC space-charge fields is important for 
the current experiment. 

In general, experimental performance follows theoreti- 
cal predictions as far as trends with wiggler field, axial 
field, beam voltage, and beam transmission are concerned. 
However, we usually measure a somewhat higher power 
than predicted. Typically, we find that a 5% increase in 
both the wiggler and axial fields in ARACHNE, over the 
experimental calibration, results in good agreement with 
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the experiment. This is slightly outside our estimated 
2-3% experimental uncertainty. Although this is not a 
large discrepancy, it is an issue that is still under investiga- 
tion, and there are several possible contributory factors. On 
the theoretical side, possible reasons for the discrepancy 
include unavoidable differences between the experimental 
implementation and theoretical model, such as mechanical 
and field misalignments or actual injected beam condi- 
tions. Although these factors normally have a deleterious 
affect on output power, they cannot be ruled out. Experi- 
mentally, the presence of internal reflections could in- 
crease the effective input power, and thereby increase the 
output power over that expected for a single pass ampli- 
fier. In addition, although the solenoid and wiggler fields 
were carefully measured with calibrated diagnostics and 
compared with simulations prior to assembly, a final con- 
firmation of the field calibrations must await the ultimate 
dismantling of the apparatus. 

The first comparison between theory and experiment 
deals with the dependence of output power on input power. 
Power measurements are typically higher than predicted by 
ARACHNE for single-pass amplification with no reflec- 
tions and for the nominal experimental parameters. To 
explain the discrepancy, we first assume the presence of a 
small amount of internal reflections. Note that the beam 
flat top is about 1 (is wide and more than 100 round trips 
of the radiation are possible. Hence, even a small degree of 
reflection can substantially alter the output power. In order 
to describe the effect of internal reflections using 
ARACHNE we adopt the following procedure. A single- 
pass drive curve is first computed to obtain a gain function 
P^ = G(Pin). Using this gain function, we define a repeti- 
tive map for the output power over each roundtrip of the 
radiation through the cavity, i.e. Pn+l = G(Pini + sP„), 
where Pinj is the injected power and e is the roundtrip 
reflection coefficient. As expected, the output power over 
the total pulse time increases with the reflection coeffi- 
cient, and good agreement can be found with the experi- 
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Fig. 5. Drive curve showing the output power and gain as a 
function of the input power. 

ment for an effective reflection coefficient of 0.65%. This 
is illustrated in Fig. 5 showing drive curves obtained from 
the experiment and from the above-mentioned procedure 
for a 244 kV/82 A beam and for wiggler and guide 
magnetic fields of 231 G and 2.47 kG at 16.6 GHz. 
However, based on cold tests and measurements of re- 
flected power during operation, we expect round trip re- 
flections of the order of 0.1-0.3%. 

It is also possible that the actual injected power is 
underestimated. However, the uncertainty in the injected 
power is thought to be < 20% and this is not sufficient to 
explain the discrepancy over a single-pass; internal reflec- 
tions affect output power much more strongly. Therefore, 
we expect that other factors must be involved. 

A second possible explanation for the discrepancy be- 
tween the theory and experiment is in the diagnostic 
calibration accuracy of 2-3%. The strong dependence of 
the output power on beam voltage for several values of the 

4 - 

5 o 

Scam -83 A 
2.47 kG 

z 

  

! 

B. = 278 G 
f= 16.61 GH 
Pi. - 8.4 IcW s 

4^   ' 
i 
i ! 

1 
i 

I 0 
232    234    236    238     240    242    244    246    248 

Beam Voltage (kV) 

Fig. 4. Variation in the output power with beam voltage. 

250 

Fig. 6. Variation in the output power with beam voltage for 
several values of wiggler amplitude. 
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wiggler field is shown in Fig. 6. The data for this figure 
are presented as output power vs. beam voltage. The 
simulation results from ARACHNE are shown with the 
solid curves, with the curve thickness matching the corre- 
sponding point thickness of the experimental measurement. 
Reasonable agreement is shown in the voltage where the 
peak power occurs and in the overall voltage dependence, 
although the output power peaks as predicted by 
ARACHNE are at voltages 2-3% less than observed. 
However, both the wiggler and axial magnetic field values 
used in ARACHNE were 5% higher than the nominal 
experimental values. 

In view of these comparisons, we expect that the bulk 
of the discrepancy between theory and experiment is ac- 
counted for by the assumptions of 1) a small degree of 
internal reflections, and 2) small changes from the nominal 
values of the magnetic fields and beam voltage. 

One final issue important for a production device is 
beam loss. Both simulation and experiment show high 
beam loss in the interaction region at multimegawatt power 
levels. This is demonstrated in Fig. 7 in which we plot the 
variation in beam loss with output power for a variety of 
different beam, wiggler and axial field parameters. The 
solid triangles in the figure represent data collected from 
experimental runs in which the variation in output power 
versus wiggler amplitude was studied. Similarly, the solid 
circles (diamonds) represent data collected from studies of 
the variation in the output power versus the axial guide 
field (beam voltage). The hollow triangles represent 
ARACHNE simulations of output power dependencies on 
wiggler and axial guide fields. The solid line is simply a 
smooth fit to all of these points. It is evident that the 
fraction of transmitted beam falls fairly uniformly with 
output power and reaches about 50% transmission at a 4 
MW power level. Observe that all the points from both the 

experiment and the simulation cluster fairly closely about 
the fitted curve, and represent good agreement between the 
theory and the experiment. Two factors contribute to the 
high beam loss: operation near gyroresonance, and large 
beam orbits at high output power. Note that gyroresonant 
beam loss begins at a voltage reduction of ~ 20%, which 
is comparable to the measured 18% efficiency. 

Although this degree of beam loss is clearly undesir- 
able for high duty factor operation, it does not necessarily 
result in tube damage. The NRL ubitron was disassembled 
after many hours of operation at 6 pps and examined for 
damage. For this experiment it was found that the beam 
loss is sufficiently distributed axially to result in little or 
no tube damage. This effect could probably be reduced by 
simply reducing the initial beam diameter, or operation 
further from gyroresonance. 

4. Summary 

In conclusion, results from the NRL ubitron experiment 
demonstrate that the performance potential of the 
ubitron/FEL has been realized. A configuration using a 
fundamental mode circularly polarized rf wave and a 
helical wiggler results in a relatively compact, high power, 
and efficient amplifier with wide instantaneous bandwidth 
and without the necessity of wiggler field tapering. Perfor- 
mance levels compare quite favorably with those from 
other pulsed, high power microwave amplifier designs. 

In general, there is good agreement between theory and 
experiment. Both theory and experiment show a high 
degree of output power sensitivity to beam voltage and 
axial magnetic field. Some differences exist, with the 
experimental power levels typically higher than predicted. 
We are examining the questions of internal reflections, 
magnetic field calibrations, and beam modeling as sources 
of the discrepancy. Further attention to the beam loss issue 
is required for higher duty factor operation. Future work 
will include more extensive measurements of noise and 
phase characteristics, as well as utilization of our 
theory/design capability for designs at higher frequency 
and lower voltage regimes. 
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ubitron amplifier 
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Abstract 
Design and performance calculations for a coaxial hybrid iron (CHI) wiggler free-electron laser configuration are 

presented. The capability of generating high fields at short periods, as well as good beam focusing properties, make it a 
desirable configuration for high power coherent radiation sources in relatively compact systems. In addition to a description 
of the geometry, numerical calculations detailing the magnetostatic wiggler fields, the beam dynamics, and the interaction of 
the beam with the electromagnetic waves in the Ka-band (26-40 GHz) will be presented. Key considerations for the 
experimental design will be outlined and discussed. 

1. Introduction 

Fast-wave interaction devices, i.e. gyrotrons and 
FEL/ubitrons, have many attractive properties for the 
generation of high power, high frequency microwaves. 
However, practical devices have been elusive because of 
magnetic field, voltage, and size requirements. For 
FELs/ubitrons the disadvantage can be partially overcome 
by the utilization of short period (Aw<5 mm) magnetic 
wigglers. Several micro-wiggler configurations have been 
investigated, each having its own advantages and disadvan- 
tages in the areas of achievable field strength and uniform- 
ity, ease and cost of fabrication, control, tuning, arid beam 
acceptance and focusing. 

The coaxial hybrid iron (CHI) wiggler is a short-period 
compatible configuration which offers several advantages 
relative to the above issues. The CHI wiggler is a coaxial 
configuration constructed by insertion of ferromagnetic 
and non-ferromagnetic elements into a solenoidal field 
[1,2]. Other wiggler configurations derived from a 
solenoidal field have also been discussed in the literature 
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[3-6]. This paper will present design and performance 
calculations for a CHI wiggler based Ka-band FEL ampli- 
fier under development at the Naval Research Laboratory. 
The goal is an output power of 100 kW at 35 GHz while 
reducing the voltage to approximately 150 kV. A compan- 
ion paper appearing in this issue discusses the application 
of the CHI wiggler to a high power FEL designed for the 
cyclotron resonant heating of fusion plasmas [7]. 

2. CHI wiggler configuration 

The CHI wiggler consists of alternating rings of ferro- 
and nonferromagnetic materials, surrounding a central rod 
consisting of cylinders of the same materials as the rings 
but shifted axially by half a period. As shown in Fig. 1, a 
wiggler period consists of only two ferromagnetic pieces 
(an inner cylinder and an outer ring) along with their 
respective non-ferromagnetic spacers. The width of the 
two ferromagnetic pieces need not be the same, as long as 
the combined length is the same for both inner and outer 
sections. This entire structure is placed inside a solenoid 
(the axes of the solenoid and the wiggler are coincident) 
and causes a deformation of the solenoidal field into a 
combination of periodic radial and axial components. Hav- 
ing the magnetic field source external to the wiggler offers 
advantages for coil cooling and field tapering. Large wig- 
gler fields are possible while maintaining a relatively 
simple and low-cost design. 

The electron beam is annular and travels down the gap 

0168-9002/95/$09.50 © 1995 Elsevier Science B.V. AH rights reserved 
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Fig. 1. CHI wiggler geometry. 

input because the codes take advantage of cylindi 
symmetry. The configuration used in POISSON also 
lows the study of the entrance fields. Parameters varie> 
the standard configuration include: gap height; inner | 
height, width, taper angle; outer pole height, width, t£ 
angle; and axial phase offset of inner and outer pieces. 

The ultimate field strength of the periodic componen 
limited by the saturation of the ferromagnetic material.'. 
variation in the maximum radial field at saturation 
been studied in Ref. [1] as a function of gap height, 
shown in Fig. 5 in that paper, the maximum radial field 
saturation decreases monotonically with increasing j 
spacing. Fig. 2 shows how varying the height of the ou 
rings can also be used to change the value of the pe 
radial field. These and other results show that variations 
pole shapes increased the peak radial field by only a f< 
percent, and also show various ways to taper the field. 

between the outer rings and the central piece. The radially 
undulating magnetic fields cause this annular beam to 
wiggle azimuthally. The electrons may then exchange 
energy with coaxial modes which contain an azimuthal 
electric field component, for example the TE0I mode. Note 
that for the experiment under construction the primary 
interaction is with this mode. Simulations using the formu- 
lation described in Ref. [2] indicate that the interaction 
with the TEM and TM modes is much weaker at the 
frequencies of interest. 

The magnetic fields in the gap can be found analyti- 
cally by solving Laplace's equation with the boundary 
conditions that the axial component of the magnetic field 
be zero along the faces of the ferromagnetic pieces and 
some constant value Bz along the faces of the non-ferro- 
magnetic ones. The resulting equations for both the axial 
and radial components of the field (and accompanying 
figures) are described in earlier publications [1,2]. In 
essence, the radial component varies sinusoidaliy along the 
axial direction and has a minimum at the center of the gap. 
The axial component consists of a constant term and 
oscillating terms which are small at the gap center. 

4. Beam dynamics 

The dynamics of electrons in the CHI fields we 
studied both analytically and computationally. For tl 
analytic solution, it was assumed that the particle did m 
stray far from the gap center - its original position (i.i 
hr « Aw); hence an idealized field model is used for th 
analytic orbit treatment. The simplified form used for th 
field is: 

Br = 5W sin *wz,       Bz-B0, (1 

In the above equations *w = 2ir/Aw and Bw and B0 an 
constants. Assuming a constant bulk axial velocity v^ am 
solving the equations of motion to lowest order in wiggle: 
amplitude, one obtains the quasi-steady-state solutions: 

Bw{ßz/ß0)BT 

2D2 *0 -( ft/A)'B} 

Bi-(ß,/ßo)2B* 

ü|l cos kvz. 

v., sin kwz, 

(2) 

(3) 

3. Magnetostatic wiggler analysis 

The magnetic field profile of a CHI wiggler may be 
modified by changing or tapering several parameters of the 
basic configuration. Multiple variations of the basic CHI 
wiggler geometry were studied in order to optimize the 
configuration for the highest periodic field. This search 
also detailed ways in which the field may be tailored by 
varying the parameters of the geometry. These parametric 
variations were performed using the POISSON simulation 
codes. The ferromagnetic material was assumed to be 
low-carbon steel, and the B-H table provided with the 
codes was used. Only one quarter of the actual wiggler is 
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Fig. 2. Peak radial field versus the height of the outer rings. 
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where ßz = v^/c and BT is a constant field in the axial 
direction, called the transition field, and is given by: 

mc2 

By yß0kw, (4) 
. e 

where y is the relativistic factor and ß0 is the magnitude 
of the total particle velocity (a constant) in units of c. The 
transition field is a constant value of the axial field which 
delineates the transition from group I orbits to group II 
orbits as Bz is increased. These equations describe an 
electron performing an elliptical orbit in the r-0 plane 
(with a period equal to the wiggler period) while streaming 
at a constant axial velocity. These results are analogous to 
those of a simplified planar wiggler field with a constant 
axial guide field [8]. 

Using energy conservation and the quasi-steady state 
solutions for vg and ur obtained above, one may obtain a 
quartic polynomial in v^, which may be solved numeri- 
cally. The existence of a constant field in the axial direc- 
tion causes the transverse velocities to increase about a 
certain resonant value of the axial field. The azimuthal 
component of the velocity (Eq. (2)) (as well as the radial 
component) is seen to depend strongly on this gyroreso- 
nance effect, from the fact that the fields are squared in the 
denominator. 

A figure of merit of the strength of the wiggler is a 
(the ratio of azir.iu.hü! to axial vei-j^Iiy). A pi., of a 
against the applied field is given in Fig. 3 showing the 
gyroresonant gap. Notice that orbits below BT (Group I) 
are more sensitive as Bz approaches Br than those above 
BT (Group II). This sensitivity indicates that tapering of 
parameters will be very important for achieving maximum 
performance. It also shows the enhancement possible in 
the interaction due to the existence of the axial field. In 
preparing this figure, single and multi-particle three-di- 
mensional orbits were simulated using the TRACK-3 code 
to integrate trajectories using the realistic three-dimen- 
sional field model described in Refs. [1,2]. Results of the 
simulations agree very well with simplified analytic values 
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Fig. 3. Variation of a versus the applied field for Bw /BT = 0.135 
(comparison of theory and TRACK-3 simulation results). 

away from the gyroresonant gap, as the electron remains 
very near the wiggler gap center. 

An examination of the trajectories shows a drift in the 
0-direction, but this is acceptable in the CHI FEL case 
since it remains in the interaction region due to the cylin- 
drical geometry. Calculations have shown that this drift 
can be explained using Busch's theorem and depends on 
the entrance conditions used in the simulation. Actual CHI 
wiggler axial fields decrease in magnitude at the entrance 
into the wiggler (due to the iron pieces), and may partially 
cancel out this drift. Future plans include running simula- 
tions with PIC (particle in cell) codes utilizing 2-D simula- 
tions of the CHI wiggler field including entrance condi- 
tions. 

5. The experimental design . 

The experiment to be built at the Naval Research Lab 
will be a CHI-wiggler FEL operating as an amplifier at a 
frequency of 35 GHz in the Ka-band. The principal goal of 
the experiment is to operate at lower voltages while still 
generating high power, high frequency microwaves. Cur- 
rent plans call for operation at approximately 150 kV with 
an output power of 100 kW. 

The major components of the FEL are the gun, the 
wiggler section (including the solenoid and the waveguide), 
the beam collector, and the input and output couplers. The 
gun will operate at around 150 kV and produce a 10 A 
annular beam for the CHI wiggler. The wiggler assembly 
will be placed horizontally within the bore of an existing 
superconducting magnet. The central rod of the wiggler 
will be supported by radial struts located near the gun and 
the collector. The coaxial waveguide consists of the (elec- 
troplated) faces of the inner and outer pieces of the wig- 
gler. This waveguide will contain a central sever to reduce 
rf reflections. The diameter of the wiggler, and therefore of 
the waveguide, is limited by the bore of the magnet, 6.4 
cm, and places a lower bound on our operating frequency. 
The wiggler will have a period of about 1 cm and will be 
about 60 periods in length. 

A SLAC klystron gun will be modified to produce the 
necessary annular beam. The superconducting magnet, with 
an axial field of up to 30 kG, will permit an extensive 
study of the full performance range of the CHI FEL. The 
bore size of the magnet is 6.4 cm and its total length is 
78.3 cm. 

Preliminary calculations using untapered configurations 
(using a previously described nonlinear three-dimensional 
slow-time-scale formulation [2]) have shown gains on the 
order of 0.3 dB/cm and efficiencies in excess of 10% in 
this frequency range. Studies are currently under way to 
lower the voltage required while still retaining perfor- 
mance. Fig. 4 shows the gain profile for a specific set of 
parameters, for which a saturated gain of about 30 dB 
(0.26 dB/cm) with a gain bandwidth of around 20% was 

V. HIGH POWER 
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Fig. 4. Preliminary simulation results for a Ka-band amplifier 
utilizing a coaxial TE0I mode. 

achieved. In this figure, Rmin and Rmix are the inner and 
outer radii of the coaxial waveguide (i.e. the wiggler gap), 
and N„ is the number of adiabatic entrance periods. It 
must again be stressed that these results are very prelimi- 
nary since optimization of parameters was not performed. 

6. Summary and conclusions 

The above results indicate interesting potential for high 
frequency amplifiers based on the CHI wiggler configura- 
tion. Work is in progress on the design of a CHI wiggler 
ubitron amplifier in the Ka-band. A Pierce-type electron 
gun is being modified to produce a hollow beam for the 

device, which will have a period of about 1 cm and wil 
consist of about sixty periods with a central sever. Ai 
existing superconducting magnet (Bz^30 kG) will b< 
used to produce the axial field in order to allow explo 
ration of the full performance range of the CHI wiggler. 
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Abstract 
A Ka-band (26-40 GHz) coaxial hybrid iron (CHI) wiggler ubitron amplifier experiment under construction at the Naval 

Research Laboratory is described. The principal goal of the experiment is to investigate the performance tradeoffs involved 
in the CHI configuration for high frequency amplifiers operating at low voltages with small wiggler periods. The nominal 
design parameters are a center frequency of 35 GHz, wiggler period of 0.75 cm, and beam voltage of approximately 150 kV. 
Nonlinear simulations of the interaction are presented, along with the results of magnetic field measurements performed on a 
prototype version of the CHI wiggler. 

1. Introduction 

Free Electron Lasers (FELs) are an attractive alternative 
as generators of high power, high frequency microwaves. 
Their strong points include a wide instantaneous operating 
bandwidth, frequency tunability, high power, and com- 
ponent physical dimensions which can be large compared 
to the operating wavelength. One of the major obstacles to 
practical devices is the high voltage necessary for opera- 
tion. The higher the voltage, the larger the system be- 
comes. One would like to lower the voltage requirement, 
allowing for a more compact system, while maintaining a 
strong enough magnetic field to sustain a high gain. 

An FEL being designed and built at the Naval Research 
Laboratory, addresses some of these issues by utilizing a 
coaxial hybrid iron (CHI) wiggler [2]. Its simple design 
enables scaling to smaller periods while maintaining high 
magnetic fields. The CHI wiggler consists of rings of 
ferromagnetic and non-ferromagnetic materials stacked 
together by alternating between each type. A central rod of 
similar alternating design is radially concentric with the 
annual stack, but is shifted along the axis by half a period. 
The if waveguide, which doubles as the vacuum envelope, 
consists of two non-ferromagnetic stainless steel cylindri- 
cal tubes: the outer tube fits inside the outer CHI rings; the 
inner tube contains the inner CHI pieces inside it. A lateral 

cross-section of the wiggler, along with the waveguide, is 
shown in Fig. 1. Once inserted in a solenoidal magnetic 
field, the CHI structure deforms the axial field to create a 
radial field oscillating with the same periodicity as the 
rings. An annular electron beam propagates along the axis 
through the coaxial gap, where the oscillating radial 
magnetic field imparts an aximuthal wiggle motion to it. 

An analytic approximation to the CHI wiggler magnetic 
fields has been calculated and can be found in Refs. [1,2]. 
Two major points which distinguish these fields are the 
constant presence of the axial field and the good focusing 
quality of the field due to the increase in field amplitude 
towards the gap edges. Harmonics are also present, since 
the fields are formed from a discrete set of pole pieces. Up 
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M68-9002/96/S15.00 Copyright © 1996 Elsevier Science B.V. All rights reserved 
:<!DI 0168-9002(95)01230-3 



J.M. Taccetli et cd. I Nucl. Instr. and Meth. in Phys. Res. A 375 (1996) 496-499 497 

to the third harmonic component is visible in both the 
analytic and simulation field plots [1,2]. 

Issues regarding the design of the CHI experiment have 
been published previously [3]. Related work shows the 
CHI wiggler in a G-band amplifier configuration also has 
great potential for cyclotron resonant heating in magnetic 
fusion reactors [4]. 

2. Wiggler construction and characterization 

A CHI wiggler prototype has been fabricated and its 
performance characteristics investigated. This prototype is 
to scale but consists of only twenty periods instead of the 
full length of about sixty periods to be used in the final 
version. The purpose of this exercise was to study the 
fabrication techniques and the uniformity of the resulting 
fields and to compare them to those expected from theory 
and simulations. Both the pulsed wire [5] and the Hall 
probe methods were used to measure the magnetic fields. 
The Hall probe method is not sufficient on its own due to 
the small dimensions of the gap and the restricted motion 
allowed within it due to the struts supporting the central 
rod. It is useful, though, as a check of the pulsed wire 
method. 

The inner and outer pole pieces were made out of 
Consummate iron (a ferromagnetic material with a high 
saturation field). Aluminum was used for the non-fer- 
romagnetic spacers. The outer rings had an outer diameter 
of 5.09 cm and an inner diameter of 1.75 cm. Both iron and 
aluminum pieces were 0.5AW thick (Aw = wiggler period). 
These fit over a 304 stainless steel (non-ferromagnetic) 
tube, which makes up the outer cylinder of the coaxial 
waveguide. To hold the outer rings together, four equally 
spaced holes were drilled into their faces and stainless steel 
rods were run through them. This method causes an 
asymmetry in the field in the azimuthal direction, and will 
not be used in the final version of the wiggler, but it was 
thought to be acceptable for an axial measurement. A 
measurement in the azimuthal direction would also show 
the magnitude of the symmetry. Minor imperfections in the 
machining of the parts and misalignments of the holes, 
however, can also cause an asymmetry in the axial 
direction, either directly or indirectly by making it hard to 
assemble the pieces together. In the final version, the 
aluminum spacers will be replaced by copper spacers and 
will be held together with the iron pieces by brazing. 

The inner pieces were manufactured of the same materi- 
als as the outer pieces. They were made with a hole in their 
center also, to decrease the weight of the inner rod and to 
allow a stiffer rod through them to hold them together if 
necessary. Studies of this configuration showed that the 
resulting wiggler field would still be adequate in am- 
plitude. These inner pieces had an outer diameter of 
0.58 cm and an inner diameter of 0.3 cm. The thickness of 
the iron pieces was 0.55AW, while that of the spacers was 

0.45A„. They fit inside another stainless steel tube, which 
became the inner cylinder of the coaxial waveguide. 

Two sets of three equally spaced struts, one at either 
end, support the central rod horizontally. The struts used 
for the prototype consist of small screws which connect 
two indexing pieces, an inner one and an outer one, each 
butting up against the respective wiggler pieces (see Fig. 
2). The outer indexing piece slips on the outer waveguide 
tube, while the inner indexing piece fits partly inside the 
inner waveguide. This method is not acceptable for the 
final version since it necessitates that the struts go through 
the vacuum envelope. The final design for the struts to be 
used in the experiment is therefore still under develop- 
ment. The struts nearest the gun may in fact be done away 
with by attaching the central rod to the central focusing 
electrode in the gun. 

As stated above, both pulsed wire and Hall probe 
methods were used to measure the magnetic fields. The 
pulsed wire system consisted of a 25 u.m diameter tungsten 
wire stretched from one end of the structure to the other, 
held taut by a small mass hung at one end. Short electrical 
pulses were sent down this wire, causing the wire to 
respond to the wiggler fields as a free electron would. The 
deflections were detected outside the wiggler, at one end of 
the structure, by using a laser detector-photodetector pair 
for each orthogonal direction of motion. The deflections 
recorded are proportional to the integral of the magnetic 
field. 

The Hall probe used was a miniature transverse field 
probe mounted on an annular piece which fit in the gap 
spacing of the wiggler and moved in the axial direction 
indexed on the outer diameter of the coaxial waveguide. 
The motion of the index piece was very limited, and the 
wires were frayed after only two full measurements of the 
field along the axis. The probe holder is being redesigned 
for a new set of measurements. 

A sample of measurements performed using the pulsed 
wire method is shown in Fig. 3. This figure shows a 
measurement done using the pulsed wire method at B. = 
6.25 kG (below saturation) at a radius close to the inner 
rod. The initial and final periods have higher amplitudes. 

Inner 
Fig. 2. Inner rod support system. 
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Table 1 
Experimental parameters for the 35 GHz CHI wiggler FEL 

.26 .28        .30        .32 
time (msec) 

J4 36 

Fig. 3. Wiggler field measured by pulsed wire method. 

as expected. This sudden jump in the field is taken care of 
in the final version by adding a five period adiabatic entry 
taper in the field. A comparison of the Hall probe and 
pulsed wire methods was done and the two agree very 
well. Such agreement corroborates the pulsed wire mea- 
surement technique, although it does not say why it is 
nonuniform. The nonuniformity is believed to be due to 
the method in which the prototype was assembled. The 
tightness of the outer pole pieces and spacers on the 
waveguide did not allow much freedom of motion and 
restricted them to certain positions which resulted in the 
nonconcentricity of the pieces with respect to each other. 
Due to the tight fit of the pieces, it is impossible to 
reassemble the prototype and check if this is the cause. For 
this reason, an improved method was developed for putting 
the prototype together and will be tested shortly. 

3. Device simulation 

The experiment being built will be a CHI wiggler FEL 
operating as an amplifier at a frequency of 35 GHz in the 
Ka-band (26.5-40 GHz). The principal goal of the experi- 
ment is to test the CHI concept and achieve operation at 
lower voltages than normal while still generating high 
power, high frequency microwaves. Current plans call for 
operation in the neighborhood of 150 kV with an output 
power of 100 kW for an input power of 100 W. The inner 
and outer waveguide radii are 0.317 cm and 0.843 cm, 
respectively, the wiggler period is 0.75 cm, and the axial 
field used has an amplitude of 6.2 kG. 

The major components of the FEL (the gun, the wiggler, 
the beam collector, and the input and output rf couplers) 
are being designed or modified specifically for the experi- 
ment. The gun to be used is a modified version of a SLAC 

Beam voltage 
Beam current 
Inner waveguide radius 
Outer waveguide radius 
Wiggler period 
Axial guide field amplitude 
Center frequency 
Input power 

150 kV 
10 A 
0.317 cm 
0.843 cm 
0.75 cm 
6.2 kG 
35 GHz 
100 W 

klystron gun which will be modified in-house. The cathode 
is being redesigned to produce an annular beam at the 
appropriate voltage and radii. The wiggler will be placed 
horizontally within the bore of an existing superconducting 
magnet. The magnet, having a maximum field amplitude of 
30 kG, will permit a study of the performance of the FEL 
over an extensive range of parameters. A central sever will 
be used in the wiggler section to reduce rf reflections and 
prevent oscillations at high gain. 

Calculations using untapered configurations (using a 
previously described nonlinear three-dimensional slow- 
time-scale formulation [3]) and the parameters of Table 1 
yield the gain curve shown in Fig. 4. In this figure, Äbmin 

and Rbmmx are the inner and outer beam radii, and Nw is the 
number of wiggler adiabatic entrance periods. A 28 dB 
gain was obtained. The bandwidth is so wide (greater than 
25%) because the interaction between the uncoupled 
dispersion curves of the TE01 mode and the beam line 
occurs at grazing incidence. The upper part of it falls 
outside the range of the Ka band, but the entire range could 
be utilized with custom sized waveguides. The saturation 
length was 53 cm at 35 GHz (72 cm at 42 GHz). Fig. 5 
shows a plot of the efficiency versus the beam's axial 
energy spread. According to the figure, the efficiency only 
decreases by 35% for a relizable axial energy spread of 
0.2%. Better efficiencies, on the order of 9% (at zero 
energy spread), were found by raising the current, but for 
the current experiment it is desired to keep the current at 

35 40 45 
Frequency (GHz) 

Fig. 4. Gain curve. 

50 55 
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Hg. 5. Effect of energy spread on efficiency. 

10 A. Work is still in progress to raise the efficiency, by 

wiggler field tapering or other methods. 

4. Conclusion 

The simulation results show very interesting potential 
for high frequency amplifiers based on the CHI wiggler 
configuration. Work is still ongoing to increase the ef- 
ficiency of the wiggler. A new prototype, with a more 
precise method of assembly, is being fabricated and new 
measurements will be performed. 

We note that the gain and efficiency are similar to those 
realized in a recent experiment [6] using a sheet electron 

beam (gain = 24 dB, 77= =3.3%). However, the annular 
configuration of the present study is easier to fabricate and 
may be more practical, as well as allowing for smaller 

realizable values of Aw. 
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ABSTRACT 

Results from a high efficiency miniaturized C-Band vacuum power booster (VPB) 

development program have resulted in the development of a miniature C-Band traveling 

wave tube (TWT) operating at 32% circuit efficiency and 61% total efficiency at an output 

power in excess of 170 W. When combined with a microwave power module (MPM) this 

VPB results in a module DC-to-RF conversion efficiency of 51%. This high efficiency 

power amplifier is particularly well suited for space and airborne applications where small 

size, light weight and low thermal dissipation is required. Other parallel development of 

VPBs operating at lower perveance and higher power has also been pursued and has 

resulted in nearly identical performance of 32% circuit efficiency and 61% total 

efficiency at power levels in excess of 240 W. A new TWT interaction code CHRISTINE 

is benchmarked with experimental data from several of these VPBs. Simulated 

performance is seen to accurately predict experimental data. 

I.    INTRODUCTION 

The development of the Microwave Power Module (MPM) is the result of the need for 

an efficient compact lightweight microwave power source which possesses both high 



power, high gain, and low noise characteristics. Northrop Grumman Corporation's 

development of microwave power modules provides microwave power at various power 

levels, frequencies, and bandwidths for a variety of applications including 

communications, radar, and electronic countermeasures (ECM). The MPM combines an 

integrated power conditioner (IPC), solid state amplifier (SSA), and a vacuum power 

booster traveling wave tube within a single module resulting in a small, lightweight device 

for efficient DC-to-RF energy conversion. This unique combination of both solid state 

and vacuum electronic technologies results in significant reduction in size and weight over 

conventional transmitters as well as increasing overall efficiency, decreasing thermal 

dissipation and prime power requirements, and reducing noise. 

Many airborne and space applications require high RF conversion efficiencies due to 

limitations on size and weight of available system power supplies. The MPM 

subcomponent which most limits the overall MPM efficiency is the miniaturized TWT 

which serves as the module power booster. As current requirements for these VPBs 

become more and more difficult to achieve in practice, accurate modeling of the device is 

required as well as effective design and testing optimization methods. Several advances 

have been realized in methodology, modeling, and testing which have substantially 

improved VPB and MPM performance while maintaining the original miniature size and 

light weight. The resulting VPBs, and MPMs incorporating them, are the smallest and 

lightest of their kind operating at such efficiency and power levels. 

H.   GENERAL VPB/MPM DESIGN 

A photograph of the C-Band MPM is shown in Fig. 1 and a table of general MPM 

specifications is shown in Table 1. The components shown include the high voltage IPC, 

SSA, modulator, and VPB. The C-Band VPB shown at the bottom of the photograph 

includes, from left to right, the electron gun, pole piece-magnet structure, RF vacuum 

windows, and collector. The length and weight of the VPB are 18.5 cm (7.3 in) and 

0.2 kg (0.44 lb), respectively. VPB fabrication uses high temperature precision brazed 

metal and ceramic parts. The major sub-assemblies - the electron gun, input line, output 

line and collector - are joined together via laser welded flanges. The electron gun is of 

Pierce type using a focus electrode designed to provide beam cutoff at approximately 

1 kV.  The low perveance design, at 0.51 u\P produces a 0.130 A beam at 4.0 kV using an 

M-type dispenser cathode with a current density of 1.2 A/cm2. The gun assembly 

incorporates an adjustable gun housing which allows for in situ change of the relative 

anode-cathode spacing and therefore of gun perveance for the space charge limited 



Operation. This permits empirical perveance correction required due to build tolerance 

and assures tube-to-tube reproducibility. The interaction circuit consists of two helix 

sections supported in a barrel assembly by three BeO rods. The rod ends are sputtered 

with graphite which serve as attenuators of the RF wave near the sever. The collector is a 

graphite four-stage depressed collector required for high total efficiency under saturated 

conditions and low thermal dissipation under low drive conditions. The RF chain starts at 

the RF input to the MPM followed by the SSA which provides 30-35 dB gain under 

saturated and small signal VPB drive conditions, respectively. The SSA output feeds the 

VPB which further amplifies the power by 23-33 dB. The output window connects to a 

multipaction-free connector designed for low loss and high power transmission. The total 

270 V DC-to-RF conversion efficiency of the MPM shown here is in excess of 50%, with 

the VPB conversion efficiency exceeding 60%. 

m. MODELING AND TESTING 

The miniaturized vacuum power booster performance has been increased substantially 

during a C-Band efficiency enhancement program. During the program, 14 VPBs have 

been designed and tested and the progression of the VPB efficiency during the program is 

shown in Figure 2. The total efficiency of the device is seen to increase from -40% at the 

start of the program to over 60% at its conclusion. Advances include accurate modeling 

and optimization of the VPB magnetic field structure and beam entrance conditions, 

enhanced accuracy of design codes, new hybrid circuit design methodology for high 

efficiency interaction including harmonic power growth, electron gun perveance 

reduction, and development of a real-time automated system for parameter optimization. 

A. Magnetic Field Optimization 

The magnetic field used to focus and confine the beam of a VPB takes the form shown 

in Fig. 3. The field shown is that of a periodic permanent magnet (PPM) structure and is 

seen to oscillate in 'z' with a period equal to two magnet cells of the periodic magnet 

structure. The magnetic field labeled 'stack field' can be designed to any value greater 

than the Brillioun value and determines the confinement factor and consequently the 

stiffness of the electron beam under the influence of RF forces. The electrons are not 

born in the PPM stack but in the fringe field at the entrance to the stack before they are 

accelerated though the full cathode potential into the oscillating magnetic field. Laminar 

flow can be achieved in this field only if the electrons possess the correct angular rotation 

frequency when they reach the first peak of the full stack field.   For confined flow 



conditions at fields greater than the Brillioun value, this matching of the angular rotation 

frequency requires the cathode threading shown in Fig. 3.   The non-zero field at the 

cathode increases the canonical angular momentum of the electrons to the value necessary 

for laminar flow once the beam is fully transported into the PPM stack.   To achieve 

laminar flow, not only must the angular rotation frequency of the electrons be correct at 

the first maximum of the full stack field, but at the same location the beam must 

experience no expansion or contraction i.e. drb/dz = 0.   This requirement implies proper 

tailoring of the magnetic field entrance profile of the first few cells of the PPM structure. 

This is seen in Fig. 3 as the increasing stack field at the entrance to the structure before the 

full field is attained.   Much care has been taken during this program to properly model 

and optimize the entrance magnetic field profile to produce the desired laminar beam. 

Difficulty with simulation and optimization arises due to cell-to-cell coupling of the PPM 

stack magnetic cells as well as the computation time required to generate accurate 

solutions of the inherent high-gradient fields.    A method has been developed to rapidly 

and very accurately compute the actual vector potential fields generated by the PPM stack 

magnets which are required to produce an arbitrary user-defined PPM stack profile.   In 

this way precise magnetic profile optimizations can be rapidly performed Which result in 

highly laminar electron beams.   An example of a beam immersed in an optimized PPM 

stack magnetic field is shown in Fig. 4. 

The highly laminar beams produced using this method have several advantages. Such 

beams have good transmission characteristics and require essentially no empirical 

optimization of the magnetic field during test. This is the case for these C-Band VPBs 

which exhibit essentially 100% transmission (<0.1 mA helix current) at turn-on with no 

tuning or shimming of the original field required. The shimless design of the VPB is 

clearly seen in Fig. 1. With the collector lenses biased, the backstreaming helix current 

from the collector also remains low, typically less than 1%. This increased beam 

laminarity also allows for an increased fill factor and therefore higher beam/circuit 

coupling without sacrificing the good helix current characteristics of the device. 

Laminarity also favors fundamental over harmonic power growth as the ya values for 

harmonic excitation are significantly greater than that of the fundamental. The electric 

field, and therefore coupling of large ya circuit waves, increases more rapidly with radius 

than low ya circuit waves. A scalloping beam will therefore experience a greater increase 

in coupling and consequently a more rapid growth of harmonic power. 

This simulation method resulting in the shimless design of the C-Band VPBs has to 

date resulted in fabrication of over 10 consecutive C-Band VPBs, spanning three different 

design programs, all exhibiting the same beam focus and transport characteristics. 

Experimental console test time has been significantly reduced for each of these tubes and 

effects of azimuthal field asymmetries which in itself induces scalloping are no longer 



observed in the VPBs. The method for calculation of vector potential fields in the gun 

region is also applied to the collector region to determine the optimum refocusing cell 

field profile for maximum collector efficiency. 

B. Circuit Design 

The RF interaction circuit of the VPB is of helix type and has been optimized for high 

fundamental circuit efficiency. The circuit design is the result of a compromise between 

several factors. The VPB must exhibit signal amplification adequate to produce saturated 

output power at an input drive value not exceeding the maximum drive produced by the 

module SSA. Excessive amplification will however degrade the module noise figure, 

increase small signal gain variation, group delay and may cause the VPB to oscillate. For 

high efficiency operation the circuit must also generate maximum fundamental RF 

current in the output section of the VPB before final energy extraction while maintaining 

low harmonic RF current levels. Proper phasing of the circuit phase velocity and beam 

velocity in the large signal region of the output circuit is also crucial for high efficiency 

interaction. Proper gain partitioning between input and output circuits is also found to be 

important for efficient operation. The input and output are decoupled along the circuit 

through implementation of a circuit sever. Ballistic debunching of the tightening electron 

packets can occur in the sever if excessive signal amplification and bunching is allowed in 

the input section of the VPB. In contrast, if insufficient amplification occurs in the input 

section, the RF modulation of the electron beam is not adequate to excite the circuit wave 

at the output of the sever. These considerations have resulted in a methodology used to 

determine the proper circuit profile for high fundamental interaction efficiency and has 

now been used on the two of the three C-Band programs mentioned above. All seven of 

these VPBs have performed at over 30% interaction efficiency. 

C. Automated Testing 

To achieve maximum total VPB efficiency, many parameters must be optimized during 

test. The total efficiency of the device is a function of 11 measured parameters (cathode 

voltage, cathode current, RF power, four collector stage voltages, and four corresponding 

collector stage currents), six of which are independently variable during test and five of 

which are dependent on the first six. This optimization is by nature extremely labor 

intensive and for this reason, an automated efficiency optimization system has been 

developed and implemented which acquires from the laboratory measurement equipment, 

in real time, all experimental data necessary to compute DC-to-RF VPB conversion 

efficiency. The data is acquired and displayed on the computer control monitor as well as 

computed quantities such as circuit efficiency, collector efficiency, total efficiency, beam 



power, recovered power, etc.    Real time plots are displayed for each time-changing 

quantity. 

The most difficult optimization to perform is the collector optimization where the 

kinetic energy in the spent beam of the VPB must be efficiently recovered. During the 

design process, the geometry of the four stages of the VPB collector is optimized as is the 

predicted bias voltages for maximum beam energy recovery. This design process relies 

on the computed energy distribution of the beam exiting the interaction region of the 

VPB helix and therefore these optimized voltages must again be determined empirically 

during test. The automated efficiency optimization system allows for real-time evaluation 

of the total efficiency of the device as a function of the four collector bias voltages and 

corresponding dependent currents. Full collector optimizations have proven to be rapid 

and not only has the collector voltage optimization time for the VPB been reduced to -15 

minutes, one can be sure to have completely optimized the collector voltages for 

maximum efficiency. Typical collector efficiency for the C-Band collectors have reached 

73% under full RF drive conditions. Optimizations of cathode voltage and current are 

also easily performed along with the corresponding collector optimizations. 

The voltages supplied to the VPB by the IPC can vary from those specified during VPB 

tests. With real-time feedback of the VPB efficiency to cathode and collector voltages, the 

sensitivity to variation in these voltages can also be easily determined. This performance 

sensitivity is important for IPC design. The efficiency optimization system is now used on 

all VPBs and TWTs developed in the C-Band program. 

IV. EXPERIMENTAL RESULTS AND SIMULATION 

A. C-Band VPB performance 

The performance of the C-Band VPB shown in this section was attained using the 

methods previously described. Power and efficiency data for the VPB and the MPM 

operating at 100% duty factor is shown in Figs. 5(a) and (b). Figure 5(a) shows an output 

power of 170 W with a bandwidth at 1 dB power points of approximately 1.6 GHz. 

Figure 5(b) shows the corresponding efficiency of the optimized VPB with a 61% total 

conversion efficiency centerband. Here the 92% efficient IPC allows for a maximum total 

MPM DC-to-RF conversion efficiency of 51%. The VPB and MPM are operated at any 

duty factor between 0% and 100%. 

The prime power requirements for the VPB are shown in Fig. 6 as well as resulting 

dissipated power along the VPB drive curve. For a saturated output power of 170 W, the 

high voltage prime power increases from 125 W in the small signal regime to -275 W at 

saturation.   Due to the four stage collector, the dissipated power remains approximately 



constant over the entire drive curve, the current being collected on the highly efficient 

back stages under small signal conditions and on the lower voltage front stages under full 

drive conditions. This low thermal dissipation, independent of drive, reduces MPM 

cooling requirements and increases reliability of the device regardless of whether the 

operating point is chosen near saturation or far into the small signal regime. 

The drive curve for fundamental and harmonic power is shown in Fig. 7. This figure 

shows evidence of the good electron bunching and harmonic control of these high 

efficiency circuits. The minimum harmonic separation over the drive curve is 11 dB and 

over 20 dB separation is seen at saturation. The good electron phase bunching manifests 

itself in the n=2 drive curve where the electron bunch is seen to fall in and out of phase 

with the second harmonic circuit wave as the electron bunch is progressively slowed by the 

fundamental interaction as saturation is approached with increasing input drive power. 

One remark that should be made is that after testing and optimizing the total VPB 

efficiency at many points in the drive curves for several tubes in each of the three C-Band 

programs, it is found that maximum total VPB efficiency with this design always 

corresponds to maximum circuit efficiency. No conditions were found in which one can 

optimize the collector at a backed off point in the drive curve and with the increased 

collector efficiency achievable, exceed the total efficiency achieved when the VPB is 

optimized at saturation. 

Other high efficiency C-Band VPBs were developed as a parallel effort for applications 

requiring powers in excess of 170 W using the same methods of design and test as the 

original 170 W version. These VPBs operates at higher voltage and current, and lower 

perveance than the original C-Band VPB and has a lower gain per unit length and a 

modified circuit profile. The experimental results are essentially identical as shown in 

Fig. 8 with an output power of 240 W at an efficiency of 61% and a 1 dB power 

bandwidth of 1.6 GHz. This VPB can also operated at a duty factor between 0% and 

100%.  General operating parameters of both VPBs are summarized in Table 2. 

Since the development of the High Efficiency C-Band VPBs, several tubes have been 

fabricated and tested of both the 170 W or 240 W version. Tube-to-tube reproducibility is 

important for production build of these devices to insure repeatable performance for a 

system comprised of many MPMs or VPBs. Figure 9 shows the peak efficiency and 

power performance of the seven high efficiency VPBs produced in the past several 

months. Reproducibility is seen to be good from device to device for both efficiency and 

output power. 

B. CHRISTINE Simulation of C-Band VPBs 

The performance of these C-^ :' "^Bs has been simulated by a recently developed 

TWT interaction simulation code, CHRISTINE, developed at (politically correct location). 



(description of CHRISTINE by Tom and Baruch with reference to NRL report) 

These VPBs are a good vehicle with which to compare computed results to 

experimental data since these devices produce a scallop-free laminar electron beam similar 

to an ideal one dimensional beam. The electron beam is also mildly confined and stiffer 

under the influence of RF forces than a Brillioun focused beam. In the following figures, 

computed and measured data is shown for two types of curves - drive curves showing 

fundamental and harmonic power as a function of input power for a single frequency and 

saturated output power as a function of frequency. In the latter plots, each point has been 

optimized in input drive power both experimentally and during simulation to maximize 

output power. 

The simulations with CHRISTINE are rapid and require -10 s of execution time for 

each operating point on a 133 MHz IBM-compatible machine with a Pentium based 

processor. The code has the ability to compute coupling impedance and phase velocity of 

the helix circuit based on a helix sheath model for given input geometry or experimental 

data can be input in tabular form. The sheath helix model assumes a smeared dielectric 

between the helix and TWT backwall. The code includes a model for annular beams as 

well as pencil beams and DC space charge, shot noise, and thermal spread can also be 

included. Interaction with gated beams can be computed as well as interaction with several 

input frequencies at arbitrary relative input powers and phase. For the case of multiple 

input frequencies, intermodulation products are also computed. For the C-Band 

simulations, CW beams with single frequency injection has been used. Attenuation 

profiles can also be input and typically values resulting from measurement are used. 

Frequency scaling of attenuation is included with the scaling factor allowed as an input 

parameter. Severs are modeled as regions of high attenuation which appears to be a good 

model provided the equivalent profile is chosen with care. Variable pitch helices can be 

input and are modeled in V as a piecewise continuous pitch function. Continuously 

varying profiles can be modeled by defining several points along the variable pitch 

section. The code also will include an arbitrary number of harmonic frequencies in the 

calculation, the desired number specified in the input. 

Output includes values of interaction efficiency, output power, axial power profiles, 

axial beam energy profiles, and phase space plots as a function of axial position. The 

code has scanning capabilities as well which is useful when performing optimizations or 

determining parameter sensitivities. The code will scan in beam current, beam voltage, 

energy spread, beam size, input frequency, input power, input phase. One or two 

dimensional scans can be performed with either linear or logarithmic step sizes and the 

output is tabulated in convenient output files. 



Two approximations have been made in the simulations presented here. Since 

CHRISTINE uses a sheath helix model to compute beam/helix coupling impedance, an 

impedance reduction factor is used, reducing the coupling factor to account for the tape 

geometry of the actual helix. A typical reduction factor used is Rreti= Zaaml/ Zshealh - 0.9. 

Also since the code uses a one dimensional beam in its formulation, it does not account 

for the increased size of the beam under near saturated conditions in the latter part of the 

output circuit of the VPB. For this reason, the equivalent one dimensional beam fill 

factor, rb/rheiix, has been increased by 10% from the actual design value for these 

simulations. In all of the simulations shown here for each of the C-Band VPB types, a 

consistent impedance reduction factor of R=0.9 and an increase in equivalent fill factor of 

10% are used. 

Inclusion of the harmonic interaction in the interaction calculation is found to be 

important in reproducing experimental data. Even if one is interested only in 

fundamental power, the presence at the second harmonic frequency is seen to significantly 

alter fundamental output performance and should be included in the calculation. This is 

illustrated in Fig. 10 where the calculated drive curves for the 170 W VPB is shown where 

only the fundamental interaction is calculated and where both fundamental and first 

harmonic power growth is included. It is clear that even though the second harmonic 

power is relatively low as seen later, the qualitative appearance of the fundamental drive 

curve is significantly altered by the presence of the second harmonic wave. The shape of 

fundamental drive curve including the second harmonic calculation is quite distinctive and 

is in fact that which is measured experimentally. One sees two linear sections in the 

fundamental drive curve, the turnover point occurring approximately 10 dB below 

saturation. The fundamental-only drive curve is more classic with a linear rise to just 

below saturation and a corresponding lower input drive power required to achieve 

saturation. This type of fundamental-only drive curve has never been measured on the C- 

Band VPBs and therefore exemplifies the need for inclusion of harmonic power growth in 

the interaction calculation. Including higher harmonics in the CHRISTINE calculation 

significantly increases run times but simulations show that only second harmonic power is 

necessary to properly simulate the C-Band interaction. 

Figure 11 illustrates the good agreement that has been observed between experimental 

data from the C-Band VPBs and CHRISTINE results. The distinctive qualitative shape of 

the fundamental and second harmonic drive curves are reproduced. The small signal gain 

at the lower end of the curve is correct for both frequencies, the turnover point between 

the two linear regimes of the fundamental curve is correctly predicted, minimum 

separation between fundamental and second harmonic curves are correct as are the 

minimums in the second harmonic drive curve. These minimums are due to premature 

saturation of second harmonic power along 'z' and subsequent re-extraction of this 



power by the well formed electron bunch as the it falls into the acceleration region of the 

second harmonic circuit wave. 

These distinctive drive curves change in shape with frequency and between the 170 W 

and 240 W C-Band VPB. Figures 12(a) and (b) show similar harmonic drive curves for 

the 240 W VPB at 4.5 and 5.0 GHz respectively. Using the same impedance reduction 

factor and beam fill factor as for the curves of Fig. 11, CHRISTINE is seen to accurately 

predict the unique drive curves for each of the cases shown. 

The response of the VPBs with frequency can also be computed. Again choosing 

consistent simulation values for the impedance reduction and fill factors as for the drive 

curve simulations, the experimental and simulation results for the two different C-Band 

programs are shown in Figs. 13 and 14. Here the saturated power for each frequency is 

shown, each point optimized in input drive power, and the agreement is seen to be good. 

The CHRISTINE code accurately predicts the shapes of these curves, the band center 

easily predicted by the code as well as the rolloff characteristics on each side of band 

center. Output powers are typically computed to be slightly higher than measured but this 

is most likely due to the one dimensional nature of the code, not allowing for PPM 

transport along the helix, axial beam shear inherent in PPM structures, and helix 

interception in the large signal region. One VPB has been built and tested incorporating 

an output helix circuit taper defined by CHRISTINE. Predicted circuit efficiency was 

within 1% of the existing 170 W VPBs. Within measurement error, this VPB did perform 

at expected output power and bandwidth. 

V.   CONCLUSIONS 

The development program and results of high efficiency C-Band VPBs and MPMs 

have been presented. These miniaturized devices are particularly suited for space and 

airborne applications where lightweight highly efficient power amplifiers of small size and 

low thermal dissipation are required. The performance presented in this paper is a result 

of improvements in beam quality through magnetic modeling, effective circuit design 

methodology, and development of a real-time automated parameter optimization system. 

Two different programs have resulted in VPBs operating at 170 W and 240 W both at over 

30% circuit efficiency and over 60% total efficiency. The resulting MPM incorporating 

the 170 W VPB operates at over 50% DC-to-RF conversion efficiency with a total weight 

and volume of only 1.2 kg and 770 cm3 respectively. The TWT interaction code 

CHRISTINE has been shown to accurately predict performance of the C-Band VPBs for 

both the 170 W and 240 W versions which exhibit distinctly different experimental drive 

and frequency dependence. 


