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A Preliminary Study of Wear in the Solid-Armature Railgun 

John D. Powell 

Alexander E. Zielinski 

Preface 

A model previously developed to investigate current and heat transport in solid-armature 
railguns is extended. The model is two dimensional and involves the numerical solution of 
coupled Maxwell and heat-transport equations in both the armature and rails of the railgun. The 
principal extensions include the development of a general transformation which maps an 
armature of fairly arbitrary shape into a rectangular computational region, and the inclusion of 
melting within the appropriate governing equations. The transformation is found to facilitate 
greatly the numerical solution of the problem for complicated armatures. Two specific 
applications of the theory are then discussed. The first application involves the analysis of an 
armature under experimental study at the Army Research Laboratory. For this case, temperature 
and induction-field profiles are calculated within the rails and armature as functions of both 
space and time, and the physical reasons for the behavior observed are discussed. Some recent 
experimental data which indicate the performance of the armature are also presented. The second 
application involves some preliminary calculations concerning the entrainment of armature 
material on the surfaces of the rails. An estimate of the velocity with which the melt surface 
progresses through the armature is obtained, and the results are compared with results from a 
simpler, limiting-case analytic model. Possible reasons for the discrepancy in the two results are 
discussed and some suggestions for improving the calculations noted. 





1. INTRODUCTION 

In recent work, we have developed a two-dimensional model for investigating the 

diffusion of current and heat in a solid-armature railgun. The model has subsequently been 

employed to study various armatures subjected to various launch conditions. The most detailed 

investigations have been for a simple railgun used with a "U-shaped" armature (Powell, Walbert, 

and Zielinski 1993) and, later, for an augmented railgun used with the armature developed for the 

Cannon-Caliber Electromagnetic Gun Program (Powell and Zielinski 1995a, 1995b). It has been 

our view that these types of studies are important in order to guide the design of armatures and 

projectiles, in order to determine the limits under which these launchers can operate, and 

ultimately in order to study the dynamics of the armature and gun tube. 

A schematic diagram showing a cross section of a typical railgun with a simple 

rectangular armature is shown in Figure 1. The two dimensions depicted, namely, the direction of 

acceleration and the direction along the rail separation, are the dimensions actually treated in the 

model calculations. The rails and armature are assumed to be infinitely extended out of the page. 

Current flows in the direction indicated by the arrows and produces a magnetic induction field 

that points outward in the inner bore of the gun. This field interacts with the current to produce a 

Lorentz or J x B force that accelerates the armature and projectile down the barrel. Initially, the 

current flows along the inner surfaces of the conductors and later diffuses into the interior. The 

intent of the calculations is to determine this time-dependent diffusion and resulting ohmic 

heating in both the rails and armature. 
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Figure 1. Schematic Diagram Depicting the Operation of a Railgun. 

Models similar to that under study here have been investigated in the past by others. A 

fairly extensive discussion of previous work has been given earlier (Powell, Walbert, and 

Zielinski 1993) and here we indicate only the most closely related studies. The earliest 

comprehensive treatment of the two-dimensional problem was provided by Long (1986). He first 

considered only the electrodynamics problem in the steady state and without ohmic heating, and 

obtained a complete analytical solution in terms of infinite series. This work provided 

considerable insight into the problems that might be expected as the velocity of the projectile 

increased. Long (1987) later extended the calculations in graduate-thesis work to a finite- 

element solution which included time-dependent effects, resistive heating, and temperature- 

dependent properties. More recently, finite-element models have been extended to three 

dimensions by Rodger and coworkers (Rodger, Leonard, Eastman, and Atkinson 1989; Rodger, 

Leonard, and Eastman 1991; Rodger and Leonard 1991) and by Hsieh (1994). The model 

developed by Hsieh, known as EMAP3D, has been under particularly active investigation in the 

last few years and holds considerable promise of elucidating many outstanding problems in solid- 

armature railgun dynamics. 



In the present work, we will be interested in providing a number of extensions to our 

existing two-dimensional model. First, we will include the latent heat of fusion in the energy 

equation as well as material properties for the liquid phase. In our earlier work, melting was not 

accounted for and the temperature was simply allowed to rise beyond the melt temperature with 

no change in phase assumed. Melting will be accounted for only in the armature which is 

assumed to be aluminum, and not in the rails which are assumed to be copper. Our calculations 

have demonstrated that temperatures within the rails remain sufficiently low that melting does 

not occur under experimental conditions of interest. It would be possible and not particularly 

difficult to treat melting in the rails as well as to consider other armature and rail materials in the 

future if such considerations are warranted. 

The second extension to the model that we provide is the development of a 

transformation that maps an armature of fairly general shape into a rectangular region. The 

governing equations are then solved in this reasonably simple rectangular space. The use of 

transformed coordinates has been found to simplify vastly the study of armatures with 

complicated geometry. In particular, the technique is extremely flexible, permits simple 

specification of boundary conditions, and provides an easy method for grid control. 

Third, we will apply our newly developed model to analyze an armature recently 

investigated experimentally at the Army Research Laboratory (Zielinski and Le 1996). The 

armature is similar to the MCA 1.0.5 version (Price and Yun 1995) studied extensively at the 

Institute for Advanced Technology, but is scaled down to be suitable for a 15 mm, rather than a 

25 mm, square-bore launcher. We have actually tested the model on a number of other 

armatures, both simple and reasonably complicated, but will confine most of our discussion to 

this one specific case. This choice was made primarily because it represents an armature having 

fairly complicated geometry, amenable to study with the model, and because we have planned to 

attempt experimental measurements of the temperature on the surface of this armature. We 

believe that these measurements, if possible, will provide a useful opportunity to compare 

theoretical and experimental results, especially with regard to current distribution. We will also 



discuss briefly some of the existing experimental data for this armature, although detailed 

comparisons of experiment and calculations are not feasible at this time. 

Finally, we will discuss some preliminary work that we have done on the problem of 

armature melting with subsequent entrainment on the rail surface. There has been some 

speculation in the past that this sort of behavior may be a principal reason that solid-armature 

contacts fail at high velocities. Some quantitative analysis of the problem has been conducted by 

Parks (1990) and by Woods (1996), albeit with rather simple models, and it is timely to 

undertake more complicated calculations. Our discussion of this problem will be largely 

qualitative and to some extent speculative since our calculations at this time have been limited. 

We intend to report more details in a later report when the specific extensions discussed in 

Section 4 have been carried out. 

Before progressing to the calculations, we should point out that there are well-known 

problems with the use of two-dimensional, infinite-rail height models to analyze real armatures 

under specific experimental conditions. The principal problem is that two-dimensional models 

are known to overestimate substantially the magnitude of the in-bore induction fields and the 

acceleration imparted to the armature. Furthermore, at early times, current that is localized near 

the back surface of the armature tends to overestimate significantly the effects of ohmic heating. 

Batteh (1984) has pointed out that some problems can be ameliorated by use of an effective value 

of the magnetic permeability and, in a complicated calculation, has worked out the appropriate 

value. This technique works fairly well for steady-state problems, but cannot be expected to 

apply in the transient case; it will, for example, predict incorrectly the rate at which fields diffuse 

throughout the armature. In an effort not to overestimate both the Lorentz forces and ohmic 

heating at early times, we have in the MCA 1.0.5 calculations elected to scale the current down 

from the actual experimental value to a value that gives the correct acceleration for a real, two- 

dimensional railgun. This scaling is also not entirely satisfactory since it will underestimate 

steady-state ohmic heating for that armature. As a consequence, only a qualitative comparison of 

experimental and theoretical results can be made. The manner in which the scaling is performed 

will be discussed in more detail subsequently. 



There are, however, some advantages in the use of two-dimensional models. These 

models do contain most of the important physics, and their relative computational simplicity 

makes the study of those phenomena much easier than in the more realistic three-dimensional 

calculations. Consequently, it has been our view that two-dimensional models should be 

employed to study various physical effects, such as interface dynamics, phase changes, and the 

velocity skin effect. The ultimate goal, however, must be to include the information learned in 

the more predictive three-dimensional studies. 

The organization of this report is as follows. In Section 2, we describe the model in more 

detail and develop the general formalism and governing equations. Section 3 contains the 

analysis of the scaled MCA 1.0.5 armature and a discussion of the existing experimental data. In 

Section 4, we present a qualitative discussion of the rail-entrainment problem, indicate what our 

present analysis has shown, and suggest what needs to be studied further. Finally, Section 5 

contains some general discussion and conclusions. 

2. MODEL AND FORMALISM 

2.1 Governing Equations. The configuration to be considered is shown schematically in 

Figure 2. As in previous work, it is convenient to perform calculations in a frame of reference in 

which the armature is fixed in space and the rails move "backward" with velocity -vp, where vp is 

the projectile velocity. As shown in the figure, the plane x = 0 is chosen to pass through the 

trailing edge of the rail-armature interface, whereas the plane x = £a passes through the leading 

edge. We restrict ourselves to situations in which the armature is symmetric about the line y = 0 

and thus perform the calculations for only positive values of y. The rails and armature are 

assumed to be infinitely extended in the z direction to accord with the assumption that the model 

is two dimensional. 
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Figure 2. Schematic Diagram for Rail-Armature Model Calculations. 

The basic equations that must be solved consist of Maxwell's equations as well as the 

appropriate energy-transport equation. Let, J, B, and E be the current density, the magnetic 

induction, and the electric-field intensity. Let|i, K, a, and C be the magnetic permeability, the 

thermal conductivity, the electrical conductivity, and the specific heat. Finally, let T,p, and v be 

the temperature, density, and material velocity at any point in the rail-armature system. The 

governing Maxwell equations can then be written 

Vx£ = - 
dB 
dt' 

VxB = juJ, 

(1) 

(2) 

and 

J = a{E + vxB). (3) 



As is customary in these types of calculations, we have neglected the displacement current in 

equation (1). Such an approximation can be shown to be valid provided the velocity v is small 

compared to the light speed c, and provided the time scale ts of the problem satisfies the 

condition ts » (\lOc2). Both these conditions are very easily satisfied for rail-launcher problems. 

We now observe that for the infinite rail-height geometry discussed above, we must have 

B= Baz and that Jz and Ez both vanish. Furthermore there can be no z dependence in any of the 

physical variables. Making use of these observations, we then find that equations (l)-(3) can be 

uncoupled to produce a single partial differential equation which governs the convection and 

diffusion of the magnetic induction. The equation is 

//er- 
as    d2B    d2B dB    1 da dT dB    1 da dT dB 

+ -ßw^r--^- dt     dx2 ' dy2 dx    G dT dx dx    a dT dy dy' 

In obtaining this result, we have assumed that o depends on position only through the 

temperature T. 

(4) 

A similar assumption concerning K and C allows us to write for the energy-transport 

equation the result 

dT dT       d2T       d2T    die 

dt dx        dx2       dy 2 + dT 
rarY  drfdT^2 

+ df \dxj dy 
+ 

\uy j JU2(J 

'9BY   (dB^ 
\dxj 

+ 
v^y 

-EL.   (5) 

The term EL which appears in this equation represents the energy absorbed per unit volume and 

time by the solid during melting. A specific representation for this quantity will be discussed 

subsequently. The remaining terms are fairly obvious except perhaps for the terms enclosed in 

the square brackets. However, if we use equations (l)-(3) that contribution can just be 

recognized as J2/a and thus accounts for resistive heating in the armature and rails. 



In the rails, where melting is neglected, we have EL = 0 and v = -vp; in the armature, we have 
v = 0. 

Equations (4) and (5) represent two coupled, nonlinear partial differential equations 

which must be solved to determine the time evolution of the induction field and the temperature. 

Once these quantities have been obtained, other variables of interest such as the current density 

and electromagnetic forces within the rail-armature system can be obtained in a straightforward 
manner. 

2.2 Boundary Conditions  The solution of equations (4) and (5) requires implementation 

of certain boundary conditions. It is assumed in our analysis that there is no heat transfer from 

the railgun into the surrounding air. Consequently, at each conductor surface we require that 

n-VT = 0 (6) 

where h is the unit vector at the surface (pointing into the conductor). Such a condition also 

applies along the centerline from symmetry. 

Boundary conditions on the magnetic induction can be determined at most surfaces from 

Ampere's law. If we denote by j the total current per unit rail height, we must have that 

B = MJ     on S, and S2 (7) 

and 

B = 0    on S4, S5, and S6. (8) 

10 



Along the centerline, we have from symmetry, 

-r- = 0      on Si, 
dy 

(9) 

and along the left-hand end of the rail, we assume that current enters parallel to the x axis so that 

oB    n — = 0      on S3. ox 
(10) 

For this last assumption to be valid, it is necessary that the breech end of the rail be sufficiently 

far away from the armature that the current distribution at the breech is not affected by the 

armature motion. 

In general, the rails and armature are assumed to be composed of different materials so 

that 3B/3y and 3T/3y are not continuous across the interface. The appropriate jump conditions in 

these variables can be determined by integrating equations (4) and (5) across the boundary of 

assumed thickness e and then taking the limit as e tends to zero. One finds 

l_dB_ 

G ay 
= 0     at the interface (11) 

and 

K 
dY 

= 0     at the interface (12) 

where the brackets (here only) denote the change in the quantity enclosed as the interface is 

crossed. 

11 



2.3 Representation of the Heat Absorbed During Melting. For most pure metals, melting 

takes place at a reasonably well-defined temperature Tm. In such a case, it is customary [see, 

e. g., Powell (1983)] to represent the term EL in equation (5) as 

EL = pLÖ(T-TJ—, (13) 

where L represents the latent heat of fusion and 8 is a delta function. The singular nature of the 

delta function assures that energy L is absorbed by the solid at temperature Tm to produce an 

'equivalent amount of liquid without any change in temperature. 

For typical armature alloys, however, melting occurs over a small range in temperatures 

and, in that case, equation (13) must be replaced by the more general expression 

EL = pLF(T)—. (14) 

The function F(T) corresponds to the amount of liquid produced per unit rise in temperature of 

the solid-liquid mixture. For most materials F(T) is determined from phase diagrams, but this 

information is not known for most armature materials. It is generally known, however, that 

melting is initiated at some approximate temperature T; and is completed by some final 

temperature Tf. To approximate the physical situation, we will assume that F(T) can be 

represented by a "coarse-grained" delta function which we represent as 

l_ 
™ = -^   „   ,2, „2- (15) 

Here Tav=(Ti-i-Tf)/2 and e is to be chosen so that the function is suitably peaked about Tav. This 

particular choice of the function F(T) is, of course, not unique, but the representation does seem 

reasonable until more detailed information is known. It is furthermore possible to show that 

12 



um 
£->0 

F(T)=S(T-Tm). (16) 

As an example that will be used in our later analysis, we take T;= 750 K, Tf = 908 K, and 

e = (Tf - Tj)/6. We then obtain for F(T) the function shown in Figure 3. It should be noted that 

F(T0 = F (Tf)« 0.1 F(Tav) so that about 90% of the latent heat is absorbed in the relevant 

temperature range. 

0.014 

Figure 3. Function, F(T), Depicting Amount of Melted Material Formed Per Unit Rise in Temperature. 

2.4 Transformed Coordinates. Because armatures generally have irregular and 

complicated shapes, it is convenient to perform a coordinate transformation which maps the 

armature into a rectangular domain. Solutions of the pertinent differential equations are then 

carried out in this rectangular region, known as the computational space, and the resulting 

solutions then transformed back into the physical space of the armature. This procedure has a 

number of advantages, including easy implementation of the boundary conditions and extreme 

flexibility. It also provides a rather simple method by which grid spacing can be controlled. In 

13 



this section, we develop a general transformation for mapping an armature of arbitrary shape into 

a rectangular computational space, and obtain the transformed versions of equations (4) and (5). 

We then consider a situation in which the transformed coordinates satisfy Laplace's equation, 

and show that this restriction results in a significant simplification of the resulting equations. 

The analysis in this section is similar to that discussed by Hoffman (1989), although some 

modifications have been introduced and the application here is for the equations of 

electrodynamics rather than fluid dynamics. 

We denote the coordinates in the actual physical space by x, y, and t and define a 

transformation to new coordinates £, r\, and % which define the computational space. Thus, we 

write 

%=%x,y,t) 

T]=T](x,y,t) (17) 

t = t 

The partial derivatives which appear in equations (4) and (5) are then obtained in terms of 

the new variables by the chain rule. In particular, we have for any function F * 

Fx=F^x + FnT]x 

Fy=F^y + FnT]y (18) 

Ft = Fr+F^l + FnJ1t 

for the first derivatives, and 

Fxx=F44xx+FnTjxx + ^F^+7fxFnn + 24xVxF4n 

Fy> = Ff 4yy + Fn T}yy + % F« + % Fnn + 24y % F4n (19) 

F*y = Fs£xy + FnTixy + ZJyF%+7ixriyFnn + (ZxTi), + Zy7lx)Fzn 

for the second derivatives. 

In this section and in Appendix A, subscripts are used to denote partial derivatives. 

14 



The results in equations (18) and (19) can now be substituted into equations (4) and (5) to 

produce the transformed equations. It is evident, however, that the results will still contain 

derivatives of the computational-space coordinates, £ and T|, with respect to the physical-space 

coordinates, x, y, and t. Consequently, before any progress can be made these derivatives must 

be expressed as derivatives of x and y with respect to \, rj, and T. The derivation of the pertinent 

relationships is actually fairly complicated and has been relegated to Appendix A. The results 

which are needed in the substitution are summarized as follows: 

*,-*, (20) 

£t = Q(xnyt-ynxr) 

nt = Q(y(xt-xsyT), 

where Q is the Jacobian of the transformation, given by 

Q=l/(ynxt-xny{). (21) 

When the relevant substitutions are made in equations (4) and (5), there still remain terms 

that are multiplied by factors such as (£xx+£yy) and Cnxx+r|yy). Expressions for these second 

derivatives in terms of physical-space coordinates can also be obtained from results in Appendix 

A. However, some considerable simplification is obtained if we restrict ourselves 

to transformations in which t, and r\ satisfy Laplace's equation. Consequently, we require 

(22) 

Some additional rationale for choosing a transformation of this type has been discussed in detail 

by Hoffman (1989). 

15 



We now substitute the preceding results into equations (4) and (5) and obtain for the 

governing equations in transformed coordinates 

/IO[BT+ Q(xnyT-ynxT )B4 + Q(y4xT-x4 yz)Bn]+ ßoQv(ynB4- y4Bn) = 

Q2(x2
n+y2

n)B^+Q2(4+yl)Bnn-2Q2(x^xn+y^yn)B^- 

-fL[(x2
n+y2

n)T4Bi + (xl+yl)TnBn-(x4xn+y^yn)T4Bn-(x,xn + y^yn)TnBi] 

(23) 

and 

p[c+ LF{T)\TT+ Q(xnyr - ynxT)Tt+ Q(y^xr - x4 y T )T„]+ PCvQ(y Js - }'4Tn) = 

*Q2[(x2
n + y2

n)T^ + (xl + yl)Tnn-2(xfXn + y^yn)Tin] + 

>cTQ2[(x2
n + y2

n)T2s+(xl + y] )T2
n -2(XfXn + y4 >•„ )T4 T n] + 

o2 

-2—[(xn + y2n)B2s+(x} + y% ) B2
n - 2(x4x„ + y4yn)B4 Bn] 

(24) 

As is customary in these types of transformations, the resulting equations are considerably more 

complicated than they were in the original coordinates. Nonetheless, the advantages gained with 

the transformation far outweigh the inconvenience of having to solve more complicated 

equations. 

There now remains the necessity of solving equations (22) to determine the 

transformation. These equations must be solved in the rectangular computational space and, 

consequently, it is necessary to represent them in terms of various derivatives of x and y with 

respect to % and x\ rather than in the opposite manner. From the results in Appendix A, equations 

(A-12) and (A-13), we find that equations (22) become 

16 



(4+?>«+(4+ y^K ~2(x$xn+ v-A* = ° 
(4+ y2

n)yg+(x2f+y2
4)ynn-2(x5xn + ysyn)yin = o. 

The procedure to be applied in the numerical solution of the foregoing equations can then 

be described as follows. A rectangular grid, described by coordinates £ and t|, is specified. The 

mapping into physical space is undertaken by specifying the mapping of certain points (x,y) on 

the boundaries of the physical domain by, for example, an algebraic transformation. Other points 

within the interior of the physical domain are determined by solving equations (25). Once x and 

y are known as functions of the computational-space coordinates, the results are used in 

equations (23) and (24) to determine B and T as functions of %, T|, and x. Since the mapping 

between (x,y) and (£,r|) is one-to-one, the values of these variables are therefore known at all 

points within the physical space. 

The numerical technique that is applied to solve equations (23) and (24) as well as 

equations (25) has been described in our earlier work (Powell, Walbert, and Zielinski 1993), and 

will not be discussed in detail here. In brief, all derivatives are represented by standard finite 

differences and the resulting nonlinear equations solved by iteration (Ames 1997). Specific grids 

employed will be discussed in the following section. Typically, a time step of 50-100 ns proves 

to be satisfactory. 

3. ANALYSIS OF SCALED MCA 1.0.5 

We now discuss a calculation that we have undertaken with this newly developed code to 

analyze the scaled version of the armature MCA 1.0.5. Our representation of this armature is 

shown in Figure 2. The rails were assumed to be composed of copper and the armature 

fabricated from aluminum alloy 7075. Material properties used in the calculation are presented 

17 



as a function of temperature in Appendix B. The absorption of the latent heat of aluminum was 

represented as in the example discussed earlier. In particular, melting was assumed to be 

initiated at Ti = 750 K and completed at Tf = 908 K, and L was taken to be 4.0 x 105 J/kg. The 

functional form for F(T) is that indicated in equation (15). 

3.1 Geometry and Transformation Coordinates. To effect the transformation to 

computational space, we chose the rectangular domain and accompanying grid shown in 

Figure 4. The figure actually depicts only a part of the grid since we have plotted only every 

third interior point in the £ direction and every third one in the rj direction. Consequently, there 

were nearly an order of magnitude more grid points used than are shown in the figure. Note that 

the rectangular grid extends for a distance la of approximately 16.5 mm along the x axis, and 

this distance is equal to the length of the armature at the interface where y = 7.5 mm (see 

Figure 2). Grids similar to that shown in the figure have been used in our earlier calculations for 

armatures composed of rectangular regions. 
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Figure 4. Rectangular Grid for the Computational Domain of the Armature. 
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It is then necessary to map the physical space (Figure 2) into the rectangular 

computational space (Figure 4). One possible transformation can be defined by the algebraic 

result 

s2(y)-si(y) g, 
* —*+*M (26) 

where si and S2 represent the x coordinate of the front and back edge of the armature, 

respectively, at some given y coordinate. Although this transformation will not satisfy Laplace's 

equation, it can be used to specify the location of points on the boundary of the armature in 

physical space as well as provide an initial guess for the location of interior points. Once this 

initial guess has been made, equations (25) can be solved iteratively to determine the actual 

location of grid points on the interior of the physical domain. The solution of these equations has 

been obtained and produced the grid shown in Figure 5 a, again with only every third interior 

point shown in each direction. Once the final physical-space grid had been obtained, the 

transformation metrics, dx/dg,dx/dT],dy/dt;, and dy / BTJ, needed in the solution of equations 

(23) and (24), were also calculated. 
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Figure 5. Grid for (a) the Physical Domain of the Armature; and (b) the Rails. 

In the rails, a nonuniform rectangular grid was used similar to those which have been 

employed in our earlier calculations. A part of the rail, with accompanying grid, is shown in 

Figure 5b. Again, only every third interior point in each direction, is shown. In addition, only 
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the part of the rail extending approximately 2 cm to the left of the armature and the part 

extending approximately 0.5 cm to the right of the armature are plotted. The remaining part of 

the rail on the left had the uniform grid spacing of approximately 5 mm. On the right, the 

calculation was not extended farther than the point shown because the fields decay rapidly ahead 

of the armature. Along the interface, the grid points in the rail, in the computational space of the 

armature, and in the physical space of the armature are coincident. 

3.2 Input Current Versus Time.   As has been pointed out previously, we have chosen to 

scale the experimental current versus time so that we obtained the correct velocity for an actual 

two-dimensional railgun with infinite rail height. The functional form of the current per unit rail 

height as a function of time was obtained from experiment and obeyed the relations 

J = Jos'm 

\2tpj 
t < tp (27) 

where the time constants tp and t2 were given by 390 jxs and 1650 jxs, respectively. We then 

calculated the amplitude jo so that the two-dimensional armature reached a velocity of about 

1675 m/s in 1.1 ms, the nominal experimental result. The value obtained for j0 was 

approximately 11.1 MA/m, about a factor of two smaller than the real, experimental peak value 

of approximately 20 MA/m. Graphs of the scaled j(t) and the projectile velocity vp (t) are shown 

in Figure 6. 
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Figure 6. Time Dependence of (a) the Current Per Unit Rail Height; and (b) the Velocity. 

3.3 Results of Calculations. The solution of equations (23) and (24) was carried out 

numerically and values of B and T were found as functions of both position and time in the 

armature and in the rails. Results will be presented in the form of graphs which indicate lines of 
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constant T (isotherms) as well as lines of constant B within the armature and rails. It can be 

proved from Maxwell's equations that current cannot cross lines of constant induction, so the 

constant B-field lines can also be inferred to represent current streamlines or the general path 

followed by the current. The results will be presented at two times: The first is at 400 |is, just 

subsequent to the time the current reaches peak value (390 |is), and the second is at 1.1 ms, just 

prior to the time the projectile exits the bore. 

Shown in Figure 7 are lines of constant induction at 400 (is. At this time, the velocity of 

the armature was about 512 m/s and the current per unit rail height was about 11.1 MA/ra. It is 

interesting to note that the current, which is initially confined only to the left-hand face of the 

armature, has essentially diffused throughout the entire armature by this time. It may also be 

noted that the gradient in the B-field along the armature-rail interface (y = 7.5 mm) is highest at 

the left-hand side. This behavior occurs because of the velocity skin effect, a phenomenon which 

we have discussed in previous work. Essentially, the motion of the armature limits the amount of 

time available for current to diffuse into the rails during the time the armature is in contact with a 

given point on the rail surface. Consequently, current tends to be concentrated toward the back 

of the armature in the vicinity of the interface. While the effect is apparent in the figure, it is 

somewhat more obvious in rectangular armatures; in the cases studied here, there is substantial 

curvature of the field lines toward the breech simply because of the armature geometry. 
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Figure 7. Lines of Constant Induction within the Armature at 400 |is. 

Isotherms at 400 JLLS are shown in Figure 8. The maximum temperature in the armature is 

about 550 K, and the location of the maximum is on the left-hand side about 80 Jim below the 

interface. The substantial heating around this point is caused by the large current concentration 

resulting from the velocity skin effect. It is interesting, however, that the location of the 

maximum is somewhat removed from the interface. Presumably, this behavior can be attributed 

to conductive cooling at the interface, a phenomenon which occurs because the armature is 

moving and always encounters new, cold rail material. There is, consequently, a very steep 

temperature gradient in the armature toward the breech near the interface. There is also 

substantial heating on the breech side of the armature near the centerline where there is 

appreciable surface curvature (i. e., at the root radius). We have also noted this type of behavior 

in our previous work. In particular, current is expected to be concentrated in regions of the 

conductor where the surface curves through an angle of greater that 180 degrees (measured in the 

conductor). The resultant high current density then produces more significant heating than 

occurs along regions of the conductor that are fairly straight, and the amount of heating increases 

with increasing angle. Alternatively, regions in the conductor where the surface curves through 
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angles smaller than 180 degrees tend to carry small amounts of current and to be relatively cool. 

Thus, on the left-hand side of the armature at about y = 6 mm where such an angle is incurred, 

the temperature is somewhat lower than in the surrounding region. At no place in the armature 

has the incipient melt temperature of 750 K been reached at this time. 

£ 
E 

;' x {mm) 

Figure 8. Isotherms within the Armature at 400 (is. 

Similar behavior is evident in the isotherms at 1.1 ms shown in Figure 9. At this time, 

the armature velocity has reached 1,675 m/s, the current per unit rail height has dropped to about 

7.7 MA/m, and the projectile is just about to exit the gun. The maximum temperature is now 

about 1,100 K and the location of the maximum is about 175 |im below the interface. 

Presumably, the maximum is at a value of y lower than that observed at 400 (is because the 

higher velocity causes the armature to encounter cold rail material at a higher rate. There is a 

small region around the location of maximum temperature that has completely melted 

(T > 908 K), and a larger region that is undergoing incipient melt 

(750 K < T < 908 K). 
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Figure 9. Isotherms within the Armature at 1100 p.s. 

The extremely large temperature gradient in both the x and y directions near the interface 

corner can be seen more directly in Figure 10. In this figure, the temperature is plotted versus x 

for a short distance to the right and left of the corner along the interface (curve labelled I), just 

inside the armature (curve labelled A), and just inside the rails (curve labelled R). The "A" curve 

represents the temperature along the line y = 7.325 mm, and this line contains the grid point 

where the temperature is maximum (i. e., at x = 0). The curve labelled "R" was obtained in the 

rails along the y = 7.684 mm, or 184 jim above the interface. It is evident in the figure that there 

is very little heating in the rails beyond the interface, and this behavior is yet another 

manifestation of the velocity skin effect. 
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Figure 10. Temperature Versus x at Constant Values of y: A, Just Inside the Armature (y = 7.325 mm); I, 
Along the Interface (y = 7.5 mm); R, Just Inside the Rails (y = 7.684 mm). 

As was indicated earlier, this particular armature has been under experimental study at the 

Army Research Laboratory. Experimental conditions were similar to those discussed in the 

calculation, except for the scaling of the current described before. It is of some interest to 

examine briefly results of the diagnostic measurements on the armature since these 

measurements provide a method for assessing its performance. Diagnostic measurements, 

described more fully elsewhere (Zielinski and Le 1996), included measurements of the 

surrounding electric and magnetic fields, the time rate of change of the launcher current, and 

magnitudes of the breech and muzzle voltages as a function of time. In addition, flash x-ray 

stations were used to visualize the armature after exit. 

We present some of the data for one shot in this experimental study (Shot 6). A plot of 

the measured muzzle voltage is shown in Figure 11. The armature operated at less than 20 volts 

for most of the acceleration. A small transition to 30 volts is seen at 0.97 ms and lasts for nearly 

50 |is. The voltage resumes a 20 volt drop at 1.0 ms where it remains until exit at 1.1 ms. The 

rapid rise at 1.1 ms to 1800 volts is indicative of opening the inductive circuit (i.e., the railgun) 

with 200 kA flowing in the armature. The voltage measured at the muzzle can be used to assess 
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the performance of the armature. Typically, solid-armature performance is considered good 

when the muzzle voltage is less than 20 volts. The sudden rise to roughly 30 volts is indicative 

of one of the armature contacts transitioning to a low-ionized plasma state. This state can briefly 

oscillate between 20 and 30 volts and is often indicative of one armature contact skipping along 

the rail surface. A small patch of aluminum was observed on one rail surface after the shot, 

consistent with a loss of contact and the observed rise in muzzle voltage. 
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Figure 11. Measured Muzzle Voltage Versus Time. 

Three flash x-ray images were also obtained a few meters downrange of the launcher. 

Photographs of the x-rays are shown in Figure 12. Parts a and b are from an orthogonal x-ray 

station, whereas c is from a single station slightly farther downrange. Since the x-rays are taken 

downrange of the muzzle and the armature is not aerodynamic ally stable, the armature is 

tumbling. In order to facilitate visualization of the armature in the x-ray images, there are also 

included in the figure illustrations of the armature with the same orientation as in the x-ray. The 

contact surfaces and root radius are not clearly visible in the images. However, it appears that 

there is no major loss of armature material at the contacts and at the root radius. 
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Figure 12. Flash X-ray Images of Armature Downrange of Launcher. 

The x-ray images are consistent with calculations for temperature presented in Figure 9 in 

the sense that the calculations reveal no melting at the root radius and minimal melting at the 

trailing edge of the contact. Furthermore, the low voltage measured at the muzzle is consistent 
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with these same observations. This consistency is certainly not surprising since the current was 

scaled down as noted before. On the other hand, in previous tests with a tandem-contact 

armature, the x-rays clearly show signs of missing material from the contacts and the root radius 

(Zielinski and Hildenbrand 1997). Calculations corresponding to these tests were also performed 

in earlier work in which the current was scaled in the same manner described here. For that case 

the calculations indicated temperatures predicting that significant melting at the trailing edge of 

the contact and at the root radius occurred. On a lower-current test with the same tandem-contact 

design, the x-ray image showed negligible erosion at the contact and root radius. Similarly, the 

calculations for that test indicated minimum melting at these two locations. 

4. ENTRAINMENT OF MELTED ARMATURE MATERIAL ON THE RAILS 

There has been some speculation in recent years that melted armature material at the rail- 

armature interface could be entrained along the surface of the rails by viscous forces. If such an 

effect occurs, clearly there will arise a gap between the rails and armature at the interface, and 

this gap will move forward as additional melting takes place. Ultimately, it has been 

hypothesized, complete solid contact between the armature and rails will be lost and transitioning 

to a plasma in the interface will occur. We discuss in this section a one-dimensional model that 

has been developed to describe the propagation of the melt surface through the solid, describe 

some calculations that we have done in an effort to assess the importance of this effect, and give 

some indication of specific numerical calculations that would be advisable in the future. Most of 

the calculations described are preliminary and to some extent speculative and require further 

study. 

The one-dimensional model is based on the assumptions that the material properties are 

constant, that the current is independent of time, and that the heat of fusion L is absorbed 

uniformly (i.e., as a step function) between values of temperature given byTj and Tf. Although 

we have performed some numerical calculations for time-dependent problems, we will restrict 
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discussion here to steady-state conditions for which the governing equations can be solved 

analytically. If we denote the location of the melt front by x = s, then in a frame of reference 

fixed at the front, the equation governing heat transport becomes 

ZT   J2    32r -Q^ = -+^, (28) 

where t, = x - s, s is the speed with which the melt front moves, and Ceff denotes an effective 

specific heat. Ceff is given explicitly by 

Cejf = C        fort, >  £ 

L ,      * £ (29) Ceff = C + —-— for{<  $, 
lf-lj 

where ^ denotes the location at which T = Tj. 

For a known value of J2(£), equation (28) can be solved for "t, < t,\ and for £, > ^, with 

integration constants as well as s and ^ determined from boundary conditions at t, = 0, 

t, = oo, and Z, = ^j. Results then yield the temperature profile to the right of the melt front. If only 

s is of interest, however, it is somewhat simpler just to integrate equation (28) over the entire 

space to the right of the melt front and obtain for the velocity 

s = — . (30) 
pa[C(Tf-To)+L] 

A very crude approximation for J can be obtained if we assume that melting occurs just at 

the interface between the armature and the rails, and that just inside the rails we have an 

approximate balance of field diffusion and convection. Thus, we have for ^ > 0 
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B(^) = juje-Ma^. (31) 

In obtaining this equation we have assumed s « vp and have denoted by oR the conductivity of 

the rails. (Unsubscripted variables always refer to properties of the armature in this section.) We 

J = ßjaRvpe-ßa^. (32) 

now assume continuity of J across the interface and employ equation (2) to find 

S~ 2ap[C(Tf-T0)+L]' (33) 

Substituting (32) into equation (30) and evaluating the integral yield for the melt velocity 

where To is the ambient temperature. 

Because of the crude approximation employed to determine J at the interface, we would 

expect equation (33) to similarly provide only a crude approximation for the melt velocity. It is 

interesting, however, that Woods (1996), in a better, two-dimensional model, has obtained the 

same value for the armature current density at the corner formed by the melt front and the rails. 

This value was obtained by separating variables in the field-transport equation, and then using 

physical arguments to approximate the separation constants. The expression for the melt velocity 

obtained by Woods was the same as that given in equation (33), except that Woods' result 

contains a second term which represents a small correction. Apparently, the correction term 

results from the consideration of heat conduction in the y direction. 
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As an aside, we should now indicate that Woods (1997) has criticized the use by Young 

and Hughes (1982) (and, consequently, by Parks, who adopted their model) of the boundary 

condition set forth in our equation (11). This condition essentially forces the tangential 

components of the electric field to be continuous across the interface, and then computes the 

appropriate values from Ohm's law. The condition was also assumed in the present calculations 

and, insofar as we are aware, has been assumed by other investigators of this and similar 

problems (see, e.g., Long 1986; Long 1987; Shankar et al. 1995; Rodger et al. 1991; Hsieh 

1997). Presumably, Woods' objection arises because of an electric dipole layer in the interface, 

whose existence may preclude the continuity of Etangemiai- We have not been able to estimate 

reliably the magnitude of this effect, especially relative to other effects that have been neglected, 

and thus have adopted equation (11) as have others. Woods' contention does, however, merit 

additional study. 

In the analysis undertaken in the preceding section, we observed that there existed an 

extremely steep temperature gradient near the rail-armature interface (see Figure 10), and that the 

maximum temperature in the armature was actually located a small distance below the interface. 

This observation seems to suggest that melting also would occur below the surface, and would 

leave a small layer of unmelted material between the melt front and rail. The behavior does not 

necessarily invalidate the entrainment hypothesis, since the unmelted layer is probably too thin to 

be structurally stable and is swept onto the rail surface along with melted material. On the other 

hand, the occurrence of melting even this small distance below the surface may affect the speed 

with which the front propagates. 

In an effort to examine this contention in greater detail, we have used numerical results 

from calculations undertaken with rectangular armatures (not previously discussed) to 

approximate the melt-wave speed. In these calculations, the current per unit rail height j was 

increased linearly from zero to 20 MA/ra in 50 (is, and then held constant for the remainder of 

the calculation. At about 190 (is, when the projectile velocity was about 150 m/s, we observed 

that melting was about to occur at a point (0, ym), where ym was about 125 |im below the 
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interface. From the numerical data, we then evaluated J   ' J2 (£ ym) dt, and used the result in 

equation (30) to approximate s. Material-property values were assumed to be given by the 

arithmetic average of values at T = 300 K and T = 908 K (see Appendix B). We obtained the 

value s = 10 m/s. If we use instead, equation (33), under the assumption that melting occurs at 

the interface with the current density given by equation (32), then we obtain for the same 

material-property values, s « 55 m/s. There appear to be two reasons for the discrepancy. First, 

the current density at (0, ym) is smaller than that at interface, as is the integral over J2 discussed 

above. Second, even at the interface, equation (32) appears to provide an overestimate of the 

current density near the corner. We have noted this overestimate by comparing that prediction 

with both our numerical data and with analytic results of Long (1986, 1987), who carried forward 

the full, two-dimensional separation-of-variables solution of the governing equations. 

We have also performed the exercise just described at later times when the projectile 

velocity was higher. At 300 jis, for example, when vp = 250 m/s, we found that the maximum 

temperature was slightly farther removed from the interface, and the integral over f was only 

slightly higher than before. In consequence, the melt-front velocity was nearly the same as that at 

190 fis, namely, about 10 m/s. The result predicted by equation (33) at this time is about 90 m/s. 

Clearly, these calculations can be considered only very crude. First, especially at early 

times, the current density even near the corner of the armature may not be well approximated by 

steady conditions. Second, the current density may be perturbed somewhat by the motion of the 

melt surface or the removal of melted material, and that effect is not accounted for in the 

calculations. It is also not accounted for in equation (32), since we assumed s « vp, but may be 

less important if melting occurs directly at the interface than if it occurs at some point below. 

We should point out incidentally that the condition s « vp is not well satisfied a posteriori by 

the result obtained from equation (33), since s is only about one-third of the armature speed. 

Presumably, the more correct treatment, in which s is included in the relative velocity between 

the melt front and the rails, would lead to an even higher velocity of the melt front and a greater 
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discrepancy with the numerical results. Third, at late times, there will exist some curvature of the 

melt surface and that effect, not accounted for in any of the calculations so far, will likely affect 

the melt rate. Finally, in the numerical calculations discussed, the armature resistivity was 

assumed to vary with temperature (and hence time) and increased somewhat during the time of 

the calculation. For instance, at 190 (J,s, the resistivity at (0, ym) was about 2.7 x 10" Ohm-m, 

and had increased to about 3.3 x 10"7 Ohm-m at 300 |xs. If the melted material were actually 

removed in the calculations, then the resistivity at the melt front would remain constant in time. 

Despite these many caveats, we do believe that the foregoing analysis is sufficient to 

indicate that equation (33) probably does overestimate the velocity of the melt front. Before any 

definite conclusions can be reached, however, detailed numerical calculations in which the 

melted material is removed should be performed. We believe that the model described here, with 

transformed coordinates, could provide the basis for such a calculation. In particular, we could 

employ a transformation such that the time-dependent shape of the armature, which results from 

the removal of completely melted material, was continuously mapped into a rectangular 

computational space. An algebraic transformation similar to that indicated in equation (26), but 

with Si depending on t as well as y, and s? given by ta, would probably be satisfactory. The 

value of Si would be determined by the farthest location of the melt front in the armature at any 

time, and unmelted material located between that point and the interface would be removed. 

That assumption would be consistent with the notion described earlier that unmelted material 

between the interface and the melt front is entrained along with the melted material on the rail 

surface. 

5. SUMMARY AND CONCLUSIONS 

We have developed a general formalism for mapping an armature of fairly arbitrary shape 

into a rectangular computational space, and have demonstrated that the use of these transformed 

coordinates greatly simplifies numerical calculations. The formalism has been used to analyze a 

scaled version of the armature MCA 1.0.5 in some detail. Temperature and induction fields as 
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functions of both space and time have been predicted, and the physical reasons for the behavior 

of the armature have been discussed. General conclusions reached as a result of the analysis 

were: 

(1) Complete diffusion of current occurs throughout the armature during the time of the 

calculation. This effect, not observed in previous armatures which we have investigated, can be 

ascribed to the judicious design and small size of the armature studied here. 

(2) The velocity skin effect is important and leads to high thermal loading near the trailing corner 

of the armature. Even though the current was scaled down considerably to undertake the two- 

dimensional calculation, melting was nonetheless observed near that corner. The location of this 

high-temperature region is below the interface a small distance. 

(3) Other locations in the armature where the temperature is high include regions where the angle 

measured in the conductor is greater than 180 degrees. Such a region occurs in this armature at 

the trailing edge near the center line. 

(4) The experimental assessment of armature contact performance suggests little melting both at 

the root radius and at the armature contact. Future experimental work will include an attempt to 

measure the surface temperature of the armature. Such a measurement would provide more 

meaningful, albeit qualitative, correlation between theory and experiment. In addition, there 

appears to be a number of mechanical interactions, such as initial preload on the contact and 

gouging, that can alter the contact performance. These effects are not included in the present 

calculations. 

We have also performed some limited calculations concerning the entrainment of molten 

armature material on the rail surface, and compared results with a simpler analytic model.   These 

calculations are preliminary at this point, but have indicated that the simpler model may 

overestimate the velocity with which the melt surface advances into the armature. Before any 
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definite conclusions are made, however, some additional calculations are necessary. In 

particular, calculations which account directly for removal of melted material, and which allow 

the solid layer between the melt front and the interface to be entrained along with the melted 

material, would be worthwhile. A description of the appropriate calculations has been provided. 
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APPENDIX A: 

TRANSFORMATION METRICS 

The purpose of this appendix is to derive expressions for the partial derivatives of the 

computational-space coordinates with respect to physical-space coordinates or, in other words, 

the results contained in equation (20). We also obtain expressions for the second derivatives ^xx, 

^yy, T|xx, and T|yy. These relationships are needed in the derivation of equations (25). 

Consider equations (18) and (19) and write in matrix form as 

Fx 

Fy 

F, 

L    XX 

Fyy 

F„ 

ty n, o 

I   n, 1 

£ v o 
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Fn 

FT 

Ftf 

F nn 

(A-l) 

or symbolically as 

F, = A F2) (A-2) 

where Fi and F2 are column vectors and A the 6 x 6 matrix. It is apparent that a similar equation 

could be written by interchanging the roles of the independent and dependent variables to 

produce 

F2 = B F„ (A-3) 
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where B is a matrix similar to A but with the interchanges: x-»£, y-»r|, £-«, r| ->y, and t-n. 

Consequently, we must have 

AB = I (A-4) 

where I is the identity matrix. 

Nontrivial results obtained by multiplying rows 1 and 2 of A with columns of B produce 

ZxXf + T]xxn=l 

* n (A-5) 
£yXs + TJyxn = 0 

Zyyf+Tjyyn = l. 

These equations can now be solved by successive elimination to yield 

l = Qy, 

(A-6) 

~* >^J n 

nx= -Qy, 

*y = ~Q\ 

% = ■Qx^ 

where Q is given by 

Q = . (A-7) 
yn xz   xn y^ 
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Similarly, nontrivial results obtained by multiplying row 3 of A by columns of B are 

!,*= + rj xn+xr = 0 
I n (A'8) 

whence 

V, = Q(y£Xr-x,yT) 
(A-9) 

s, = Q(x„yt-ynxT) 

The remaining nontrivial results obtained from multiplying A and B are the following six 

equations 

ysL+yn
7i„+£y%+rtynn+2^ri*ysn=0 

XS Zyy + xn % + % *« + t xnn + 2 €y % x4n = 0 

yfiyy+yn %+¥y Vg +t y nn+2 £y % y4n = o 

*t <L + x, % + £ £, x(i + r\x fly xm + (£ TJy + £, rjx )x4n = 0 

yA + yn% + ^yy^+^%ynn + (^y + ^^K=°- 

(A-10) 

These results can now presumably be used to determine the second derivatives ^xx, t,yy, £xy, Tixx, 

Tjyy, and r|xy. However, as indicated before, a judicious choice of the transformation can preclude 

our actually having to solve the equations. For the special case which % and r| satisfy Laplace's 

equations, we write the relation as 
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*S L + *4 ^v +XnT}„+ X, % = 0, (A-ll) 

and use the results above in equation (A-10) to obtain 

.2   ,    „2 (xi, + y- )x% + (x\ + y^)xnn-2(y^yn + x^xn )x^ = 0, (A-12) 

for the appropriate governing equation in computational space. If, furthermore, we write an 

equation similar to (A-ll), but with x^ replaced by y4 and xn replaced by yn, we obtain 

(4 + y\) y% + (x\ + y\)ynn-2(y^yll+ x, xn)y^n = 0. (A-13) 
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APPENDIX B: 

MATERIAL PROPERTIES 

Material properties used in this analysis have been obtained from curve fits for copper 

and aluminum worked out by Zielinski. In those fits, it was assumed that the specific heat C, the 

resistivity r\T, the thermal conductivity K, and the density p could be represented as linear 

functions of the temperature. Consequently, for any property F, we have 

F = äT+ß. 

Values of a and ß for solid copper as well as solid and liquid aluminum are shown in 

Table B-l. All properties are expressed in MKS units. 

Table B-l. Values of Coefficients Employed in Data for Copper and Aluminum 

Cu(CDAllO) Al (7075) 

Solid Solid Liquid 

Property a ß a ß a ß 

C 0.1 360.0 0.705 645.0 0 1302.0 

T|r 7.81xl0~n -5.42xl0"9 1.36xl0"10 1.42xl0"8 1.33x10 "10 1.51xl0"7 

K -7.87xl0"2 412.0 -6.92x10 "2 247.0 0 93.0 

P -0.58 9125.0 -0.5 2851.0 0 2294.0 
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For aluminum, solid properties were used for values of temperature less than Ti? which 

was taken to be 750 K, and liquid properties were used above Tf, taken to be 908 K. At 

intermediate values of T, i. e., for a solid-liquid-mixture, the property in question was scaled 

linearly with temperature between the value for the solid at T; and the value for the liquid at Tf. 

The only additional property needed in the analysis is the heat of fusion of aluminum, given by 

L = 4.0 x 10 J/kg. The melting temperature of copper is about 1350 K, a value considerably 

higher than the maximum temperature reached anywhere in the rail in any of our calculations. 
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