
SLL 79-051/PP 

cy  1 

L 
lJCRL-52071 

TIME-DEPENDENT PROPAGATION OF   HIGH-ENERGY 
LASER BEAMS THROUGH THE ATMOSPHERE:  II 

3.  A. Fleck, Jr. 
J. R. Morris 
M. D. Feit 

May 18, 1976 19980309 285 
Prepared for U.S. Energy Research & Development 
Administration under contract No. W-7405-Eng-48 

LAWRENCE 
LIVERMORE 
LABORATORY 
University of California/Livermore 

PLEASE RETURN TO:   DTIC QUALITYINSPECTED 4 

-_JD TECHNICAL INFORMATION CENTFR 
Approved " »FUSTIC MISSILE DEFENSE ORGANIZAfION ApProv^forpub]icre T     7100 DEFENSE PENTAGON 

^Ü^onUnJimited |  WASHINGTOND.C. 20301-7100 
IL HO^f 



NOTICE 

"This report was prepared as an account of work 
sponsored by the United States Government. 
Neither the United States nor the United States 
Energy Research & Development Administration, 
nor any of their employees, nor any of their 
contractors, subcontractors, or their employees, 
makes any warranty, express or implied, or 
assumes any legal liability or responsibility for the 
accuracy, completeness or usefulness of any 
information, apparatus, product or process 
disclosed, or represents that its use would not 
infringe privately-owned rights." 

Printed in the United States of America 
Available from 

National Technical Information Service 
U.S. Department of Commerce 
5285 Port Royal Road 
Springfield, VA 22161 
Price: Printed Copy $      ; Microfiche $2.25 

Domestic Domestic 
Page Range Price Page Range 

326-350 

Price 

001-025 $ 3.50 10.00 
026-050 4.00 351-375 10.50 
051-075 4.50 376-400 10.75 
076-100 5.00 401-425 11.00 
101-125 5.2,5 426-450 11.75 
126-150 5.50 451-475 12.00 
151-175 6.00 476-500 12.50 
176-200 7.50 501-525 12.75 
201-225 7.75 526-550 13.00 
226-250 8.00 551-575 13.50 
251-275 9.00 576-600 13.75 
276-300 9.25 601-up * 

301-325 9.75 

Add $2.50 for each additional 100 page increment from 601 to 1,000 pages: 
add $4.50 for each additional 100 page increment over 1,000 pages. 



Accession Number: 4029 

Publication Date: May 18,1976 

Title: Time-Dependent Propagation of High-Energy Laser Beams through the Atmosphere: II 

Personal Author: Fleck, JA.; Morris, J.R.; Feit, M.D. 

Corporate Author Or Publisher: Lawrence Livermore Laboratory, Livermore, CA 94550 Report Number: 
UCRL-52071; UC-34 Report Number Assigned by Contract Monitor: SLL 79-051 

Comments on Document: Archive, RRI, DEW. 

Descriptors, Keywords: Time Dependent Propagation High Energy Laser Beam Atmosphere Movement 
Stagnation Zone Coplanar Scenario Multipulse Transverse Wind Velocity Hydrodynamic Equation 

Pages: 00064 

Cataloged Date: Dec 07, 1992 

Document Type: HC 

Number of Copies In Library: 000001 

Record ID: 25515 

Source of Document: DEW 

\ 



Distribution Category 
UC-34 

m 
LAWRENCE LIVERMORE LABORATORY 

University of California/Livermore, California/94550 

UCRL-52071 

TIME-DEPENDENT PROPAGATION OF   HIGH-ENERGY 
LASER BEAMS THROUGH THE ATMOSPHERE:  II 

J. A. Fleck, Jr. 
J. R. Morris 

■M. D. Feit 

MS. date: May 18, 1976 



Foreword 

This work was done under contract to the U. S. Navy 

the Army Missile Command, Huntsville, Alabama, and the 

U.S. Energy Research and Development Administration. 

-ii- 



Contents 

Abstract       1 

1. Introduction        1 

2. Treatment of Moving Stagnation Zones in Coplanar Scenarios ...      9 

3. Propagation of Multipulse Laser Beams 
Through Stagnation Zones       10 

4. Effect of Longitudinal Air Motion on Flow in the Neighborhood 
of a Stagnation Zone for Coplanar Scenarios      16 

5. Calculation of Transverse Wind Velocities for Noncoplanar 
Scenarios      18 

6. Steady-State Solutions of Hydrodynamic Equations for 
Arbitrary Transverse Wind Velocities:  cw Steady State ....     20 

7. Steady-State Solutions of Hydrodynamic Equations for 
Arbitrary Transverse Wind Velocities: Multipulse 
Steady State       22 

8. Effect of Noncoplanarity on Propagation of cw Laser Beams 
Through Stagnation Zones       26 

9. Effect of Noncoplanarity of Propagation of Multipulse Beams 
Through Stagnation Zones       29 

10. Single-Pulse Thermal Blooming in the Triangular Pulse 
Approximation        31 

11. Multipulse Thermal Blooming in the Triangular Pulse 
Approximation        37 

Acknowledgment      43 

References      44 

Appendix A:  Adaptive Lens Transformation       45 

Appendix B:  An Adaptive Algorithm for Selecting the Axial 
Space Increment      53 

Appendix C:  Treatment of Multiline Absorption        56 

Appendix D:  Characterization of Nondiffraction-Limited Beams ....     59 

-iii- 



TIME-DEPENDENT PROPAGATION OF HIGH-ENERGY 
LASER BEAMS THROUGH THE ATMOSPHERE:   II 

Abstract 

Various factors that can affect 

thermal blooming in stagnation zones 

are examined, including stagnation-zone 

motion, longitudinal air motion in 

the neighborhood of the stagnation 

zone, and the effects of scenario 

noncoplanarity.  Of these effects, 

only the last offers any reasonable 

hope of reducing the strong thermal 

blooming that normally accompanies 

stagnation zones; in particular, non- 

coplanarity should benefit multi- 

pulse more than cw beams.  The methods 

of treating nonhorizontal winds hydro- 

dynamically for cw and multipulse 

steady-state sources are discussed. 

Pulse "self-blooming" in the triangu- 

lar pulse approximation is discussed 

in the context of both single and 

multipulse propagation.  It is shown 

that self-blooming and multipulse 

blooming cannot be treated independently. 

1.   Introduction 

This is the second report in a 

series dealing with the general 

problem of time-dependent thermal 

blooming of multipulse and cw laser 

beams.  Time dependence is essential 

for describing the propagation of 

laser beams through stagnation zones, 

which are created whenever the motion 

of the laser platform and the slewing 

of the laser beam combine to create 

a null effective transverse wind 

velocity at some location along the 

propagation path.  The location of 

vanishing transverse wind we shall 

call the stagnation point, and the 

term stagnation zone will refer to 

the portion of the propagation path, 

extending in both directions from the 

stagnation point, where the trans- 

verse wind has not yet had time to 

blow completely across the beam.  The 

lack of wind at the stagnation point 

creates a steadily decreasing density 

and a thermal lens whose strength 

grows with time.  This report will 

continue the study of stagnation 
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zones begun in Ref. 1, and discuss 

contributions of self-blooming to 

multipulse thermal blooming and new 

models that have been added to the 

Four-D code. 

Both pivoted-absorption-cell 
2 3 

measurements '  and detailed numer- 

ical calculations of the experimental 
1 4 

arrangements '  give evidence that 

the blooming effects of stagnation 

zones tend to saturate with time. 

Thus the beam characteristics seem 

to approach a kind of quasi-steady 

state, which is possibly a result of 

the steady reduction in length of the 
. ,     3 stagnation zone wxth time.  Despite 

the existence of these quasi-steady 

states, calculations for high-power 

beams show that stagnation zones can 

lead to severe beam degradation. 

The notion of a stagnation zone re- 

quires that the transverse wind veloc- 

ity vanish at at least one position 

along the propagation path.  There 

are always present, however, a number 

of additional effects that will pre- 

vent a completely stagnant wind con- 

dition from occurring at any 

position.  These effects are: 

1. Natural convection 

2. Motion of the stagnation point 

with time 

3. Longitudinal air motion at 

the stagnation point 

4. Vertical air motion due to 

noncoplanar scenario geometry 

A realistic appraisal of the influ- 

ence of stagnation zones on beam 

propagation requires that each of 

these effects be assessed and pos- 

sibly incorporated into the computa- 

tional model. 

Natural convection flow at the 

stagnation point should be negligible 

for practical beam sizes.  A 3.8-ym 

wavelength and a 474-kW beam power, 

for example, give a natural con- 

vection velocity of the order of 

10 cm/s.  For this flow velocity 

and a beam radius of 10 cm at the 

stagnation point, approximately 2 s 

is required for the beam to approach 

a steady-state density distribution. 

This time is excessive for preventing 

or reducing stagnation-zone blooming 

effects, which may develop in times 

ranging from 1 ms to 0.1 s.  At a 

10.6-ym wavelength the laser heating 

rate of the atmosphere is somewhat 

greater for the same intensity, but 

the natural convection velocity 

scales only with the cube root of the 

absorbed power, so flow velocities 

would not be significantly above 

those for the 3.8-ym case.  There- 

fore, we shall not consider the 

effects of natural convection 

further. 

Under most conditions the stag- 

nation point is not stationary but 

moves in the same general direction 

as the target with a velocity that 

is little different from the 
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target's.  The parcel of air that 

sees a null wind speed changes with 

time and thus does not heat up in 

the manner of a stationary parcel. 

The influence of this stagnation- 

point motion on beam propagation was 

found to be minimal for a cw wave- 

form example treated in Ref. 1. 

Stagnation-point motion also turns 

out to be unimportant for a multi- 

pulse scenario examined in this 

report.  The conclusion is that 

stagnation-point motion is unlikely 

to have much, if any, effect in 

alleviating stagnation-zone blooming, 

since, despite the motion, a sub- 

stantial propagation path exists over 

which wind velocities are negligible. 

The existence of a null transverse 

wind-velocity component at a stag- 

nation point in no way guarantees a 

vanishing magnitude of the wind vec- 

tor, because a nonvanishing longi- 

tudinal component almost always 

exists there.  Any air parcel found 

within the beam at the stagnation 

point will, as a result, exit from 

the beam in a finite length of time. 

Indeed, in coplanar geometries all 

wind-flow trajectories should cross 

the beam in two locations:  one for 

values of z   (longitudinal position) 

below the stagnation point z  , and s 
the other for values above z   .  The 

s 
wind flow may be in either the 

positive- or negative-3 direction. 

In the neighborhood of the stagnation 

point, the wind-flow trajectories 

will enter one side of the beam, 

reverse direction with the beam, and 

exit on the same side.  The resi- 

dence time in the beam for fluid 

parcels passing through the beam 

center at the stagnation point will, 

of course, depend on scenario param- 

eters, but for some typical beam 

sizes and scenarios this time can be 

of the order of 0.5 to 1 s.  Longi- 

tudinal flow should thus be as 

effective as natural convection in 

controlling density changes at the 

stagnation point.  One consequence 

of these re-entrant wind-flow 

trajectories is that air densities 

for z  values greater than z    could 

be influenced hydrodynamically by 

densities for z  values less than z   ; 
s' 

but, for any foreseeable practical 

scenarios, the re-entrant times — 

except perhaps in the immediate 

neighborhood of the stagnation 

point — would be considerably longer 

than times of interest.  Consequen- 

tly, hydrodynamic coupling between 

points above and below z    can be 
s 

safely neglected in cases of prac- 

tical interest. 

The existence of a position where 

the transverse wind velocity vanishes 

presupposes the extremely improbable 

coplanarity of the laser beam and 

the trajectories of its platform and 

the target — a situation that is 

clearly a limiting case of real-world 
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scenarios, which are invariably non- 

coplanar. In the more general' case of 

noncoplanar geometry, only the wind 

component along a certain transverse 

axis can be expected to vanish.  The 

wind vector in the transverse plane 

will rotate and attain its minimum 

magnitude at the stagnation point. 

Since this minimum magnitude can 

never vanish, except in a space of 

measure zero, a steady state can 

always be defined for the governing 

hydrodynamic equations.  The signif- 

icance of this is that, in systems 

analysis, steady-state numbers can 

always be assigned to stagnation-zone 

situations, at least for some nominal 

degree of noncoplanarity, and these 

numbers can be obtained from simple 

and relatively cheap steady-state 

calculations.  Truly coplanar 

stagnation-zone situations, in con- 

trast, require time-dependent cal- 

culations that are expensive and 

require considerable care in 

execution. 

In the coplanar scenario described 

in Ref. 1, for example, if the laser 

is given an elevation of 10 m above 

the plane containing the target and 

the laser platform, the vertical 

component of wind velocity at the 

stagnation point takes on the value 

of 1 m/s.  This is sufficient to 

establish a steady state in a time 

of the order of 0.1 s, which is short 

compared to times of interest.  The 

small vertical velocity component at 

the stagnation point leads to sub- 

stantial changes in isointensity con- 

tours in the focal plane, but the 

average intensity is remarkably close 

to the quasi-steady-state value 

obtained in a time-dependent calcu- 

lation for the corresponding coplanar 

case. 

Thus, small amounts of non- 

coplanarity should not be expected 

to greatly improve cw laser perfor- 

mance in stagnation-zone situations 

but should contribute to ease in 

understanding and predicting it. 

The case of multipulse beams is 

another matter.  As pulse-repetition 

frequencies are lowered, a small 

vertical wind component at the stag- 

nation point becomes more and more 

effective in sweeping out the air 

between pulses.  The benefits of non- 

coplanarity in stagnation-zone 

situations should thus be greater for 

multipulse beams than for cw beams. 

The current status of the Four-D 

code is summarized in Table 1, and 

recent additions to the code are 

described in the body of this report. 

We have continued to adhere to the 

philosophy that the best way to 

approach all laser-propagation cal- 

culations is through a single, 

unified computer code that can be 

applied to any problem. The advantages 

of this are threefold.  First, it 

greatly simplifies bookkeeping (or, 
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more appropriately, code-keeping), 

since a proliferation of limited 

special-purpose codes is avoided. 

Second, if each type of calculation 

is made a subset of a larger calcu- 

lational capability, new features 

added to the code — such as data- 

processing routines, adaptive-lens 

transformations, scenario features, 

etc. — are available to all types of 

calculation at once.  Third, real- 

istic simulations are possible, since 

a wide range of conditions can be 

incorporated into any calculation. 

Table 1.  Basic outline of current Four-D propagation code. 

Variables 
where x^  y  are transverse coordinates and 
z  is axial displacement. 

Form of propagation equation Scalar wave equation in parabolic approxi- 
mation 

2ik Z8 
dz = vp+ TC(?f -1)8 

Method of solving propagation 
equation 

Symmetrized split operator, finite Fourier 
series, fast Fourier transform (FFT) 
algorithm 

0n+l (    ihz  V72\    / ihz 
8        = exp (--^ Vj.) exp \-  -^ X 

e*P | " ~Tv  Vj. )g kk 

2     2 
X = k (n    - 1) 

Hydrodynamics for steady-state 
cw problems 

Transonic slewing 

Uses exact solution to linear hydrodynamic 
equations.  Fourier method for M < 1. 
Characteristic method for M > 1.  Solves 

V X      dx 

9p-, 
+  V    -r  +   pA   V.    •   V.   =   0, 

y dy        ^0 -1      -1 

3v, 3t>, 
if 0\   X   dx + V 

y ty 
+ viPl o, 

i^x h + »y ^T)(PI - Vi) = <? - 1>ar- 

Steady-state calculation valid for all Mach 
numbers except M = 1.  Code can be used 
arbitrarily close to M = 1. 
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Table 1 (continued). 

Treatment of stagnation-zone 
problems for cw beams 

Time-dependent isobar,ic approximation. 
Transient succession of steady-state den- 
sity changes; i.e., solves 

Sp-, 

TF + v 
9P] 

dx 
Y - 1 aJ 

Nonsteady treatment of multi- 
pulse density changes 

Changes in density from previous pulses in 
train are calculated with isobaric approxi- 
mation using 

apn 
+ V 

3Pn 

3t   x dx 

_ Y - 1- £ Tln(x,y)  8(t t  ) n 

Method of calculating density 
change for individual pulse 
in train 

where Tln(x,y)  is nth pulse fluence. Den- 
sity changes resulting from the same pulse 
are calculated using acoustic equations and 
triangular pulse shape. 

Takes two-dimensional Fourier transform of 

alt 
.£_ 

sin 
1 - 

2e 

1 
2°e (k

2
+k2)1/2t ] 

h (k2
+k2)1/2tl 2 s\ x    y)        p 

where I  is Fourier transform of intensity, 
and tp  is the time duration of each pulse. 
Source aperture should be softened when 
using this code provision. 

Treatment of steady-state 
multipulse blooming 

Previous pulses in train are assumed to be 
periodic replications of current pulse. 
Solves 

3P-, 
+ v 

X   dx 

3P, 
+ v 

y ty 

Treatment of turbulence 

Y - 1 J I 
n 

&(t  - t  ) n 

Pulse self-blooming is treated as in the 
nonsteady-state case. 

Uses phase-screen method of Bradley and 
Brown with Von Karman spectrum.  Phase 
screen determined by 
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Table 1 (continued). 

Lens transformation and 
treatment of lens optics 

00 

r(a?,#)  = / 

—CO 

6k    e-x.v(ik  ) x      r x 

0 

/. y    FV y 

a/2 x a(k ,k  ) ^"-(k ,k  ) , x' y      n    K x' y    ' 

where a is a complex random variable and $n 
is spectral density of index fluctuations. 

Compensates for a portion of lens phase 
front with cylindrical Talanov lens trans- 
formation.  Uses in spherical case 

Treatment of nondiffraction 
limited beams 

^ + L 
'f 

where Zf  is focal length of lens, z<]>  is 
focal length compensated for by Talanov 
transformation, and z^  is focal length of 
initial phase front. 

Spherical-aberration phase determined by 

,SA 2irA  ,  2 ,  2.2 
<J>  = —~ (x   + y  )  , 

or phase-screen method of Hogge et at. 
Phase  determined as  in turbulence,   only 

a2l2 (   lV 
*    = —* exp     - -f- n 2TT 

where l0  is correlation length and a    phase 
variance. 

Adaptive lens transformation Removes phase 

2 

It ai(xi ~ <**»  + h(x<t ~ <\ 
^=l 

d 
through lens transformation and deflection 
of beam.  Here xi  = x, X2 = y,  averages are 
intensity weighted, oi£ and 3-£ are calcu- 
lated to keep the intensity centroid at 
mesh center, and intensity weighted r.m.s. 
values of x  and y  are constant with z. 
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Table 1 (continued) 

Selection of 2-step 

Scenario capability 

Adaptive s-step selection based on limiting 
gradients in nonlinear contribution to 
phase.  Constant 2-step over any portion of 
range also possible. 

General noncoplanar scenario geometry capa- 
bility involving moving laser platform, 
moving target, and arbitrary wind direction. 
In coplanar case, wind can be function of 
t  and 3. 

Treatment of multiline 
effects 

Calculates average absorption coefficient 
based on assumption of identical field dis- 
tributions for all lines 

2 
—   % a = 

I 

\fi  exp(-cus) 

fi  exp(-ou<0 

Treatment of beam jitter 

Code output 

where fa  is fraction of energy in line i  at 
s = 0. 

Takes convolution of intensity in target 
plane with Gaussian distribution: 

Vtfr-//■*(- 
»2 .  ,2^ x'    + .y' 

2a2 

x I(x - x\y  - yx)  da' dy'   , 

2 . 
where a is variance introduced by jitter. 

Isointensity, isodensity, isophase, and 
spectrum contours.  Intensity averaged over 
contours.  Plots of intensity, phase, den- 
sity, spatial spectrum along specific 
directions, etc., at specific times. 

Plots of peak intensity and average inten- 
sity vs time. 

Numerical capacity when used 
with CDC 7600 and restricted 
to internal memory (large 
and small core) 

Spatial mesh, 64 x 64, 35 sampling times, 
no restriction on number of axial space 
increments. 

Problem zoning features Number of space increments in x  and y 
directions must be equal and expressible as 
a power of 2. 
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2.    Treatment of Moving Stagnation Zones 

in Coplanar Scenarios 

The basic coplanar scenario 

geometry is depicted in Fig. 1.  It 

is assumed that the target and laser 

platform will collide on the x  axis 

after a time T has elapsed.  The 

point of impact is denoted by P  and 

the position of the laser by L.     The 

effective transverse wind speed V, 

is given by the expression 

VV*) = "Sin QT[VT 
- -§ (Jm - V   + V    cot 0 J ] R  v T        p        n T 

+ vu  sin(9„ - ej,(l) w Jw T' 

where Vp  is the target (receiver) 

velocity, 7_ is the laser-platform 

(transmitter) velocity, F„ is the 

background wind velocity, R  is the 

Wind 
vector 

Transmitter motion 

mpact point 

Fig. 1.  Diagram of coplanar scenario model. 
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range, 

vp = vR cos eR , (2) 

and 

Vn  - VR  sin 6Ä. (3) 

From simple trigonometry, 

T 
co ■-'[ 

cos ea + <Ve - Z)/Vc 

sxn 
a ] 

i? = 
D sin tj) 

sin T 

(4a) 

(4b) 

where 9 is constant. 

The transverse wind speed V, 

depends on T and hence on time a 
through the dependence of the 

scenario parameters 6_ and R  on time 

in Eqs. (4a) and (4b).  The Four-D 

code is programmed to calculate 

V,(T  .z)   as a function of T and 
V      O O 

hence of time.  The hydrodynamic 

equations are solved numerically by 

assuming that V.   is stepwise constant 

over each integration time interval 

At. 

The location of a stagnation point 

is determined by setting the right- 

hand side of Eq. (1) equal to zero. 

Clearly, that point moves with time, 

and, as a result, a different parcel 

of air undergoes heating under con- 

ditions of zero wind velocity at each 

instant.  In general the stagnation 

point will move with a velocity 

comparable to that of the target. 

The determination of V,   from 

Eqs. (l)-(4) for use in the hydro- 

dynamic equations permits an accurate 

determination of the effect of motion 

on the thermal lens in the stagnation 

zone.  It is more difficult to follow 

the irradiance on a moving target, 

however, since all equations are 

solved in a retarded time frame.  It 

would be necessary to store the 

irradiance history for the values of 

s corresponding to the target motion. 

Since the relative change of the 

range R  in a time of interest is 

small, it is a good approximation to 

assume the focal distance and the 

range R  at which the laser intensity 

is monitored to be constants in time, 

while the correct variable R  is taken 

into account in the hydrodynamic 

portion of the calculation by means 

of Eqs. (l)-(4). 

3.    Propagation of Multipulse Laser Beams 
Through Stagnation Zones 

The particular scenario chosen 

leads to the effective transverse 

wind as a function of range for 

T = 0, shown in Fig. 2, where x is 

measured from the time the pulse 

turns on.  The pertinent physical 
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data are the following: 

Power, P 53 kW 

Range, R 2.5 km 

Focal length, / 4.5 km 

Absorption coefficient, a 0.25 km 
-1 

Wavelength, X 

Aperture diameter, 2a 
2 

(Gaussian at 1/e ) 

Slewing rate, Q 

10.6 um 

30 cm 

7.44 
mrad/s 

Pulse-repetition rate, V  10, 25, 50, 
and 100 s_1 

These data can be expressed in 

terms of the following dimensionless 

numbers: 

NF = half = 2.96, 

.-2 
N    = 2a/vQkt = 3.2 x 10    v, 

Ns = Üf/VQ =3.6, 

NA = af = 1.125, 

NDm2 3p 

1)E 

2  3 
a a s (?) 

£_ = 100, 

where N„3  N 3  N03  N.3   and N-. repre- 
c O        o        A U 

sent respectively the Fresnel, over- 

lap, slewing, absorption, and dis- 

tortion numbers.  Although the 

chosen power, 53 kW, is rather low, 

the value of the distortion number 

Nn  is quite high, and the resulting 

thermal blooming is about the maxi- 

mum that the code can accommodate. 

In any case, the above parameters 

>* 
o 
o 
0) > 

c 

> 
c 
p 

Fig.   2. 

0.5      1.0      1.5     2.0     2.5 
Axial distance — km 

Transverse wind velocity as a 
function of axial distance. 

are adequate for assessing the 

sensitivity of typical multipulse 

laser performance to stagnation-zone 

motion. 

In the present scenario, the 

stagnation zone and target move with 

a speed of 300 m/s.  For a multi- 

pulse beam with V = 100 s  , the 

stagnation zone moves 3 m between 

pulses, whereas for V = 10 s  , the 

stagnation zone moves 30 m between 

pulses.  It would be hoped that, in 

the case of the lower pulse- 

repetition frequency, the greater 

movement of the stagnation zone 

would lead to a reduced buildup of 

stagnant-air density changes.  This 

effect turns out to be minimal. 

The time dependence of the average 

intensity on target (averaged over 

the minimum half-power area) is 

shown for the case of no stagnation- 

zone motion in Fig. 3(a) and for the 
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ü   Vacuum, corrected for linear absorption 
a   Absorbing atmosphere 

0.6 

Fig. 3.  Area-averaged target intensity as a function of pulse time:  six 
pulses at V = 10 s"l.  (a)  No stagnation-zone motion included, 
(b)  Stagnation-zone motion included. 

ft ■.>:■',„') 

i!!":'..1';!)!);) 

i  

!:'.   ill 

\iwi;_,.v,,1!;: i 

?T-=NX 

)) ~)    ^ \ \ 

IKiOlW/' ')) 

i.".:"■■■_■-'. ■-.■■■■■ 

UlKlK 

/feS> 

' / /   I 1 'l 
(11 o V) i 

1H(K' 

Mil 

its!) 

0.1 0.2 0.3 0.4: 0.5 0.6 s 

Fig. 4.  Isointensity contours as a function of pulse time for V = 10 s_1. 
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Table 2.  Comparison of multipulse intensities with and without stagnation- 
zone motion. 

Time-averaged intensity (W/cm ) 
Time 
(s) 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

No motion 
Average Peak 

168.5 234.0 

78.9 117.3 

60.7 100.7 

53.7 92.5 

49.6 88.7 

47.3 84.1 

Motion 
Average 

168.5 

78.7 

60.8 

55.3 

52.4 

50.2 

Peak 

234.0 

117.3 

103.3 

96.8 

92.7 

87.5 

Maximum increase resulting from stagnation-zone motion: av, 6.1%; peak, 4.0%. 

case with stagnation-zone motion in 

Fig. 3(b).  The calculation is car- 

ried out for six pulses.  The isoin- 

tensity contours for the six pulses 

are shown in Fig. 4 for the moving 

stagnation zone.  The contours in 

the nonmoving case are so similar 

that they are not shown.  The per- 

formance in the two cases is sum- 

marized pulse by pulse in Table 2, 

where the intensity values have been 

averaged over the interpulse 

separation time, and the percent 

improvements in intensity indicated 

are for the last pulse in the train. 

Surprisingly, the improvements 

in peak and average fluence go in 

the opposite direction. The peak 

and average fluences are actually 

slightly higher in the no-motion 

case, as shown in Table 3. 

This behavior is due to the large 

contribution that the first pulse 

in the train makes to the total 

fluence.  The isofluence contours 

for the case with motion are dis- 

played in Fig. 5.  The central 

fluence peak contains the maximum 

value and makes the largest contri- 

bution to the fluence averaged over 

the minimum half-power area. 

Apparently in the no-motion case 

the subsequent pulses in the train 

make a greater contribution in the 

central region than do the corre- 

sponding pulses in the case with 

motion.  This small difference in 

peak and average fluences is of 

Table 3. Comparison of fluences with 
and without stagnation-zone 
motion. 

Fluence (J/cm2) 
No motion Motion 

Average Peak Average Peak 

30.61 42.1 30.1 40.7 

Decrease resulting from stagnation- 
zone motion: av, 1.7%; peak, 3.3%. 
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Fig. 5.  Fluence contours for case of 
V = 10 s--*-, motion included. 

little or no practical importance, 

and is indicative of the fact that 

stagnation-zone motion plays no 

vital role in determining thermal 

blooming in stagnation zones. 

Figure 6 shows the dependence of 

average intensity on time at the 

target range for different values 

of pulse-repetition rate, V.  Each 

curve begins with the time of 

arrival of the second pulse.  (The 

first pulse would create a time- 
2 

averaged intensity of 189 W/cm .) 

It is clear that reducing V 

diminishes the effect of the stag- 

nation zone.  The reason obviously 

is that for smaller values of V the 

air can be swept out by wind between 

pulses over a greater proportion of 

the propagation path. 

Sample pulse-isointensity con- 

tours for V = 100 s  are displayed 

in Fig. 7; these should be compared 

with those for V = 10 s  in Fig. 4. 

At the lower repetition rate, the 

beam has divided into two distinct 

spots. At the higher rate, lateral 

peaks are also formed but they are 

much less distinct.  The lateral 

spreading of the contours as a 

function of time is shown in Fig. 8. 

The width perpendicular to the wind 

0.2     0.4 
Time — s 

0.6 

Fig. 6. Space-averaged intensity as a 
function of pulse time for 
various pulse-repetition 
rates. 
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is determined by measuring the 

maximum distance perpendicular to 

the wind direction between 30% con- 

tours . 

In conclusion, the performance 

of a multipulse laser under 

stagnation-zone conditions can be 

improved by lowering the pulse- 

repetition frequency, but, with or 

without motion of the stagnation 

point, the thermal blooming is 

likely to be substantial. 

4.   Effect of Longitudinal Air Motion on Flow 
in the Neighborhood of a Stagnation Zone 

for Coplanar Scenarios 

We wish to examine the air-flow 

trajectories in a coordinate system 

that moves with the laser beam. 

Take the x  axis along the direction 

of motion of the laser platform and 

the y  axis perpendicular to it in 

the scenario plane.  The unit vector 

s(t) is directed along the rotating 

laser beam, and x1 it)   is taken 

normal to z(t)   (see Fig. 9).  At 

any instant of time, z(t)  and x1it) 

can be expressed in the rest frame 

of the laser platform by means of 

the relations 

g(*0 = [cos GyCtO.sin ey(t)],  (5a) 

£'(t) = [sin Gy(t),-cos er(t)],(5b) 

where 

JT 
=  cos  (£ • x), (6) 

and the angle 0„ is calculated from 

the scenario Eq. (4a) by substi- 

tuting T - t  for T .  The common 

origin for the rest frames of the 

laser platform and the rotating 

laser beam will be taken at the cen- 

ter of the laser aperture. 

The effective wind vector in the 

moving coordinate system of the 

laser can be expressed as 

v « = v i —eff  -rel 
Off - V 
AC*) 

X' 

x [z(t)  £'(*) - x'(t)  z(t)].     (7) 

Fig. 9.  Vector diagram in scenario 
plane; z(t)   indicates 
instantaneous direction of 
slewing laser beam. 
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Here V„ is the target velocity rela- 
—TI 

tive to the earth's surface, and 

^rel = ^ " ^ • 
(8) 

where V^, is the velocity of the 

laser platform and V is the veloc- 

ity of the wind.  An air test par- 

ticle will move in the rest frame 

of the laser platform along trajec- 

tories described by 

r(t) = r(0) + V^j* (9) 

These trajectories can be expressed 

in the rotating frame of the laser 

beam by means of the following 

relations: 

x1(£) = r(t) • £'(*),   (10a) 

a(t) = r(t) • g(t) .    (10b) 

Figure 10 shows sample air- 

particle trajectories in the vicin- 

ity of a stagnation point for four 

different scenarios of practical 

interest (of the type shown in 

Fig. 1).  The target range and stag- 

nation point location at t  = 0 are 

indicated in Table 4.  At time t  = 0 

the particles are assumed to be 

located precisely at the stagnation 

point.  The origin of the transverse 

coordinate is assumed to be at the 

center of the beam.  The ticks on 

the trajectories indicate points 

separated by 0.5 s in time.  The 

arrows indicate the direction of air 

flow with increasing time.  Also 

shown in Table 4 are the times T 

actually spent in the laser beam by 

a particle that crosses the stag- 

nation point at the center of a 

10-cm-radius beam. 

The longitudinal wind speed in 

the neighborhood of the stagnation 

point is roughly equal to V , , as 

can be seen from Eq. (7).  For the 

scenarios described in Table 4, 

V , is of the order of 10 m/s.  For 
—rel 
these scenarios the longitudinal 

wind component will be of limited value 

in clearing the beam in the vicinity of 

the stagnation point. 

Table 4.  Residence time in beam for air particles passing through stagnation 
point. 

Scenario 

Target position 
at it = 0 

(km) 

Stagnation 
at t  = 
(km) 

point 
0 

Res- idence time, 
T 

Cs) 

A 1.5 0.844 1.0 

B 1.0 0.379 0.5 

C 2.5 2.33 1.7 

D 1.0 0.295 1.0 
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Fig. 10. Air-flow trajectories in rest frame of slewing laser beam in the 
presence of a stagnation zone.  Ticks on the curves denote 
0.5-s intervals.  (a) Range =1.5 km, stagnation point at 
z  = 0.844 km.  (b) Range =1.0 km, stagnation point at 
z  = 0.379 km.  (c) Range =2.5 km, stagnation point at 
z  = 2.33 km.  (d) Range = 1 km, stagnation point at z -  0.295 km. 

5.    Calculation of Transverse Wind Velocities 
for Noncoplanar Scenarios 

We shall again assume the 

scenario of Fig. 1, only now we 

shall relax the»assumption that the 

scenario or kinematic plane neces- 

sarily coincides with the earth's, 

or the horizontal, plane.  The line 

PLP  and the wind vector, however, 

will be assumed to lie in the earth's 

plane (see Fig. 11).  Again, the x 

direction will be along the direction 
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mpact point 

Fig. 11.  Diagram of noncoplanar scenario.  Laser is now situated at a 
height h  above the platform. 

of motion of the laser platform, the 

y  direction will be in the kinematic 

plane, and the unit vector normal 

to the kinematic plane will be 

called C  The laser aperture will 

be situated at position L1,  which 

is at a height h  above the line PLP. 

The line LL*   defines the vector h = 

h = hh9  which is normal to the 

horizontal plane and makes an 

angle 9 with the vector £.  The 

scenario parameters D3   <J> . R3   8^ l3 

and 9~ are now defined in a plane 

tilted with respect to the horizontal 

plane, but they are related exactly 

the same as before.  The distance R, 

however, no longer has the signifi- 

cance of range.  The calculation of 

the true range i?' is described below. 

In order to follow the wind in a 

frame of reference that moves with 

the laser, it is necessary to intro- 

duce an appropriate orthogonal 

coordinate system.  Clearly this 

coordinate system will not be 

unique, but a suitable one can be 

defined as follows: z  is directed 

along the laser beam, 

y   = 
% x 1T 

and 

Ä* = $'   x § 

(11a) 

(lib) 

It is most convenient to express all 

vectors used in the computation in 
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the kinematic coordinate system. 

Hence we have 

vT = (1, 0, 0) , 

VR  = (cos 8^, sin 0 , 0), 

R  = (cos 0y, sin 9^, 0) 

h  = (0, sin 8 , cos 0 ), p'     p' ' 

Vw =   (cos W sxn ör7 cos W P' 

(12a) 

(12b) 

(12c) 

(12d) 

- sin 0r7 sin 8 ) (12e) 

R' R - h (12f) 

where V~3   VR3   V^    are unit vectors 

directed along V™, V„, and V„, and 

the vectors R = RR  and R' are directed 

along lines extending from L  and L', 

respectively, to the receiver 

(target). 

The effective wind seen in the 

frame of reference moving with the 

laser beam is 

W*,*) = % ~ V - w {[^R ~ <V*>»] [Vy   -    (Vy.g)^]^ (13) 

The effective wind components along 

X1   and z/' are then obtained from 

effar'  —eff 

V effy' ^eff r 
(14a) 

(14b) 

The effective horizontal and ver- 

tical wind components in Eqs. (14) 

become inputs to the hydrodynamic 

calculation which is described in 

Sections 6 and 7. 

6.   Steady-State Solutions of Hydrodynamic 
Equations for Arbitrary Transverse Wind Velocities: 

cw Steady State 

Noncoplanar scenarios create 

effective winds whose orientation 

in the transverse plane vary with 

propagation distance z.     All 

symmetry in the transverse plane 

is lost, and the x  axis can no 

longer serve as the wind axis. 

The linearized hydrodynamic 

equations must be recast and 

solved for a wind having an 

arbitrary direction. 

The linearized hydrodynamic 

equations to be solved are 

dP-, 

At + P0 1     Zi - 0, (15a) 

d   v. - -vp, + a.  -JL 0 At -1 

3y 

'■z.    dx 

'Zv li 
dx 

^ - -I 6. .V 
dx.        3 "£j 

Is 

At  (?1 ~ °0\)  =   (Y 
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where p.. , v. , and p.. represent the 

density, velocity, and pressure per- 

turbations induced by laser heating, 

n is the viscosity, and the total 

derivative -jr  is defined by 
at 

d 9 , 9 . 9 f-,r\ 
-TX = -TTT + v -TT- + v -T-. (16) dt dt       x dx       y dy 

Elimination of p- and V,   yields the 

following equation for p^ 

dt\dtT    pl"ö
S 

V Pl"3^VplJ 

=  (Y - 1) av I  .      (17) 

We are interested in the steady state 

or the case in which Eq. (17) becomes 

i_ + v  L 
x 9cc        z/  3z/ *e V " I ^ v2 ^ - + ^ ^ p,   =  (Y - l)ari,     (18) 

where 

9P-, 9p1 

Pi   = v- + V 
y %y 

(19) 

The solution for p. is carried out in 

two steps:  first Eq. (18) is solved 

with Pj as dependent variable, and 

then Eq. (19) is solved for p1. 

We shall restrict our attention to 
2   2 the subsonic case, where V    + V 

2 X        V 

< G  .  In that case Eq. (18) is ellip- 
ö 

tic and can be expressed in terms of 

a finite Fourier series representation: 

P1(aJ»y) 

=  S     P1(VV   ^[Ukxx + kyy)] 
k ,k x* y 

(20) 

The coefficients p(k.k  ) satisfy 
Xs   zr J 

\(k  ,k )  =  - lv x' y' 
(Y-l) 

2 
°s    J„2 (X + fc ) 

^<*a»V<*£ + *y> 

H „   '    (t; &   + v k ) pne2      x x        y yJ 

lv k   + v k V 

(21) 

where X(fe ,fe ) is the Fourier trans-    means of the fast Fourier transform x> y' 
form of I(x,y).     The inverse Fourier    (FFT) algorithm.  The function 

transform of Eq. (21) is evaluated by   p.. (x,y)   thus obtained then becomes 
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3 = 

^ = 

V A 
y X 

V A 
X y 

V 
X 

the source term for Eq. (19), which     If we define 

can be solved using the Carlson method 

for integration along characteristics. 

The solution of Eq. (19) is obtained 

by a difference method in configura- 

tion space in preference to a Fourier 

transform method because the transform 

of p^(x,y)  will have poles whenever 

Vxkx + VyK =  °'     The evaluation of 

the inverse transform by the FFT 

algorithm will be troublesome, since 

these poles must be avoided. 

x' 

v 
JL 

(22a) 

(22b) 

(22c) 

the difference equation satisfied 

by P-• = P1(iAx,jAy) can be written 

PJJ = a" P. ij      ß    i-i1,3-j ;»  + H) ^,j-j' 

A. 
+ -JL 

2\v p.   .    + 
1,3 3  Pi-i\0-j'  + V1 "  ßj   pi,j-j'J for  ß > 1: (23a) 

Ptf-ßP*-*',^.  +   a-0)   Pi-i'J 

+ rng Yv + 3 pi-'^'+ (1"ß) pi-i',^for 3 <- !■ (23b) 

7.   Steady-State Solutions of Hydrodynamic Equations for 
Arbitrary Transverse Wind Velocities: 

Multipulse Steady State 

Isobaric density changes induced by multipulse heating are governed by 

the equation 

3p7 
+ v x      dx +  V 

3pf Y 
y   ty 

la 2 y»0*'^ 6(i- v.» (24) 

n 

where T JM(E,Z/) represents the fluence of the nth pulse, and T represents 
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the pulse width.  If "steady-state"     pulse.  Hence I  (x,y)  = I(x3y) n 
conditions prevail, it can be assumed   Taking the Fourier transform of Eq. (24) 

that I    does not vary from pulse to     with respect to x  and y    yields 

3pf 
~,    + i{v k   + v k )p?p 
dt xx       y y    1 

_ T - 1 
2 

o s 
°v(vy 26<*-v-       (25> 

n 

Solving Eq. (25) for p p at a time t  = mAt,  where m  is any integer and At 

is the time interval between successive pulses, gives 

217 

pi<WmAlt) = 
Y -  1 a f(W    I     expt-i^C^ + y^)]. (26) 

n=l 

The exponentials in Eq. (26) corres- 

pond to translations of the individual- 

pulse fluence distributions in con- 

figuration space by wind motion. 

The summation begins with n =  1 

because the isobaric density changes 

created by a given pulse do not have 

time to develop during the pulse 

width, T .  The upper limit 217 is 

based on numerical considerations and 

is determined by 

217p = MIN ^inpuf L^rjä*] ' 

(27) 

where 217 is the numerical length of the 

mesh used for solving the wave 

equation. 

-23- 

In Eq. (27) MIN signifies the min- 

imum of the arguments, and the square 

brackets represent the integer part 

of the arguments inside them.  An 

input value of 217 is useful if a true 

stagnation point is encountered along 

the propagation path.  In such cases 

the total density change at the stag- 

nation point can be kept bounded. 

For example, ft. might be set equal 

to the actual number of pulses in a 

given train, in which case a true 

lower bound could be assigned to the 

intensities at the target. 

The remaining arguments in Eq. (27) 

prevent any pulse fluence distribution 

from affecting the density calculation 

if it has been translated by more 

than the minimum (physical) dimension 

of the computational mesh for the 

wave equation, i.e. MIN(217Aa:J Nhy) . 



The density calculation itself is 

carried out on a IN  x 2N  mesh-, which 

has a buffer of length N  in both the 

x  and y  directions.  Thus if Np 

satisfies condition (27), periodic 

"wrap-around" or positional aliasing 

of the density contributions by past 

pulses in the train is avoided. 

The summation in Eq. (26) may be 

luated directly, ar 

expressed in the form 

evaluated directly, and p can be 

wy= - :Lf1 a7( vy exp 
s 

N + 1 "I 
is-2-^—   At(fe v    + k v ) 

a; a;        z/ 

Ü7 

sin -^ Ai(fe v ■ + k v ) 
 2 a: a?        .y .y 

sin —x-    (fey    + fe y ) 
2        re ic        2/ y 

(28) 

The density p (a;,z/) is then obtainable 

from Eq. (28) by an inverse transform 

operation using the FFT algorithm. 

Equation (28) has been used in a num- 

ber of test examples with satisfactory 

results.  If the spectrum J(fe .fe ) is 
ar y' 

particularly rich in high spatial fre- 

quencies, Eq. (28) may give rise to a 

ringing behavior in configuration space 

due to the fact that the shift operators 

exp (-inktkvj,  exp {-inätk v  ) (29) XX y  y 

may not correspond to lattice 

translation operators on the compu- 

tational mesh.  In such a case 

ringing can be suppressed by express- 

ing the solution of Eq. (26) in 

terms of the interpolations of lattice 

shift operations. 

By means of bilinear interpolation, 

one can express any function T(x3y) 

at positions intermediate to the lat- 

tice by means of 

TJ+fx.Wy 
=  (1 - V 4 Vl.fe + (1 " 4>  fy Tc,k+1 

0 < f    < 1   ,   0 < f    <    1 J x —     ' y — 

+ Wy W+l
+(1- V(1-4)2V,fe>      <30> 

-24- 



where f    and / represent fractional may thus be represented in the fol- x y 
distances between lattice coordinates, lowing alternative form, which avoids 

and where the numbers T.  , represent the use of nonlattice shift operators 

values of T(x3y)   sampled at lattice (the notation [ ] signifies the 

points.  The summation in Eq. (26) integer part of the argument): 

N 

£   exp   [-inM(kxVx + kv )] 

n=l 

N    r 
V r 

- I 
n=l 

4<x /„) expli j -l nk (.[r\xn]  + 1) + nv  [n„n] 
y x y   * ») 

+ fya ~ V exp y £ \\[r]xn] +  nk ([V] + 1} 
>» 

+ Vy exp  \ £ \\([V]'+ x) +   nk ([V] + 1} 
■}) 

TT +   (1"   V(1"^    eXP      ^ {\[V1 + nfe [v]}) r = ^VV' (31) 

where 

y At 

'a; ~    Aa; n„ = 

u At 
ny        Az/    » 

4(n) = V  [V]> 

//«>  - nyn -  [ry,]   . 
>* 

(32) 

The summation in Eq. (26) over n  can 

be evaluated as a 227 x 22V DFT with 

the aid of the FFT algorithm.  For a 

given value of n, the numbers [r) n], 

[T] n]  +  1 can each be identified as 

«-coordinates n    and the numbers x 
[ri n] ,   fr) n]  + 1 as y-coordinates n 

y u y 
in the lattice space.  Thus each 

exponential in the summation in 

Eq. (31) can be identified with a par- 

As the 

index n  is incremented, the appro- 

ticular lattice point n  , n 
x*    y 

priate bilinear function of / (n) and 
tu 
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f in)   is added to the contents of a 
a 
storage register corresponding to 

coordinates n   ,  n  .     On completion of x      y 
this operation, a two-dimensional DFT 

of the resultant array will yield the 

desired sum (31). 

The Fourier transform of the 

density can then be expressed as 

P±(kx,k    mAt) (Y ~ 1) 
2 o 
s 

x arc^.y g(kx,ky) 

Both the options (28) and (29) are 

currently available in the Four-D 

code, and the cases run have produced 

results that are almost indistinguish- 

able. 

The shifts and interpolations 

implied in Eq. (31) may, of course, 

be carried out strictly in configura- 

tion space.  If N    is small, this 

procedure may be more economical. 

As N     becomes large, the Fourier 

transform method becomes more 

(33)   economical. 

8.  Effect of Noncoplanarity on Propagation of 
cw Laser Beams Through Stagnation Zones 

We shall focus attention on the 

scenario discussed in Ref. 1, in 

which the total propagation dis- 

tance is 1.5 km and the stagnation 

point occurs at z  = 0.8439 km.  The 

initial diffraction-limited beam is 
2 

Gaussian, with 1/g -intensity 

diameter of 70 cm, and is assumed 

to be focused at the 1.5-km range. 

The wavelength and absorption coef- 

ficient are assumed to be 3.8 um 

and 0.07 km  , respectively.  For 

reference the results of the time 

dependent calculations at t  = 60 ms 

are given in Table 5.  For this 

value of t,   the beam properties are 

changing very slowly, and the assump- 

tion of a "quasi" steady state is a 

reasonable one. 

In the noncoplanar scenario, on 

the other hand, a true steady state 

is known to exist, and a time to 

establish this steady state can be 

estimated by dividing the beam 

diameter by the magnitude of the 

vertical wind component at the 

stagnation point.  The noncoplanar 

results are naturally much cheaper 

to obtain than the corresponding 

coplanar results. 

In Table 6, steady-state results 

are given for the scenario corres- 

ponding to Table 5 for a variety of 

elevations of the laser aperture 
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Table  5. Beam properties  on  target  at t - 60 ms. 

Laser power 
(kW) 

Peak intensity               Minimum half- 
at  target                        power area 

(kW/cm2)                                (cm2) 

Intensity averaged 
over minimum 

half-power area 
(kW/cm2) 

500 10 8 33.4 6.72 
* 500a 9. 8 53.5 4.19 

500b 11. 0 33.2 6.76 

250 12. 4 13.5 8.34 

125 17. 7 4.42 12.7 

62. 5 22, 7 1.65 17.0 

. Focus 100 m beyond range. 

Motion  of  i stagnation zone taken into  account. 

Table 6 Steady-state cw 
scenario plane. 

beam properties as  a funct ion of laser height above 

Laser        Laser 
power    elevation 
(kW)              (m) 

Vertical wind 
speed at 

stagnation point 
(m/s) 

Minimum half- 
power area      Minimum half- 

(stagnation        power area 
point)                (target) 
(cm2)                      (cm2) 

Time  to 
steady 
state 

(s) 

Intensity 
averaged over 

Peak          minimum half- 
intensity    power area at 
at  target           target 

(kW/cm2)           (kW/cm2) 

500 5 0.55 293                          37.7 0.312 11.0 5.97 

10 1.1 291                          33.6 .155 12.0 6.69 

20 2.2 290                          29.1 .077 14.0 7.72 

30 3.3 289                          26.4 .052 15.9 8.52 

40 4.4 287                          23.6 .039 16.1 9.53 

250 5 0.55 279                          13.7 .303 16.6 8.2 

10 1.1 278                          12.0 .152 17.8 9.36 

20 2.2 277                          10.1 .076 19.5 11.0 

30 3.3 278                            8.9 .051 21.6 12.6 

V 

40 4.4 276                            7.88 .038 24.1 14.3 

125 5 0.55 272                            4.66 .300 22.9 12.0 

10 1.1 271                            4.04 .150 25.3 13.9 

20 2.2 271                            3.33 .075 28.6 19.5 

40 4.4 270                            2.31 .037 39.7 24.3 

62.5 5 0.55 268                            1.58 .29 30.6 17.7 

10 1.1 268                            1.37 0.14 34.3 20.5 
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0.5 1.0 
Axial distance — km 

1.5 

Fig. 12. Transverse wind velocity as 
a function of axial distance 
for cw beam.  (a) x  com- 
ponent,  (b) y  component, 
(c) Magnitude. 

above the scenario plane.  Figure 12 

shows the variations with z  of the 

horizontal and vertical components 

and the magnitude of the transverse 

wind. 

From Tables 5 and 6, it is evi- 

dent that the space-averaged inten- 

sities in the focal plane for the 

noncoplanar scenario at 5-m eleva- 

tion agree with the corresponding 

average steady-state intensities for 

Time-dependent 
coplanar, quasi- 
steady state 

Steady state, 
noncoplanar, 
h= 10 m 

Fig. 13.  Comparison of isointensity 
contours for stagnation- 
zone situations in coplanar 
and noncoplanar cases. 
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the coplanar scenarios to within 

less than 10%.  The peak intensities 

for the noncoplanar scenario at 5 m, 

on the other hand, are somewhat 

higher than the corresponding values 

for the coplanar case.  There is 

also a substantial difference in the 

appearance of the isointensity con- 

tours in the focal plane (Fig. 13). 

As would be expected, performance 

improves with height, although the 

improvement is marginal for the 

elevations considered.  In all cases 

a steady-state condition can be 

reached in a time small compared with 

times of interest. 

In conclusion, average intensi- 

ties for coplanar stagnation-zone 

scenarios can be calculated by 

adding nominal noncoplanar features 

to the scenario and performing a 

steady-state calculation.  For 

cw beams, however, rather 

substantial laser elevations 

must be provided to alleviate 

stagnation-zone effects. 

9.   Effect of Noncoplanarity of Propagation of 
Multipulse Beams Through Stagnation Zones 

We turn our attention again to 

the scenario of Section 3.  All 

problem parameters are the same, 

except that the laser is now assumed 

to be elevated 10 m above the 

scenario plane.  Figure 14 shows the 

vertical and horizontal components 

of transverse wind velocity as 

functions of propagation distance. 

Figure 15 shows the isointensity 

contours in the target plane for the 

various repetition rates. 

Table 7 compares laser perfor- 

mance on target as a function of 

pulse-repetition frequency for the 

coplanar scenario and the noncoplanar 

scenario with a laser elevation of 

10 m.  In the absence of complete 

steady-state data for the coplanar 

case, we have used in Table 7 inten- 

sity values corresponding to the 

final times exhibited in Fig. 6 for 

a given value of V.  Thus the 

improvements due to noncoplanarity 

shown in Table 7 are conservative 

estimates. 

It is seen from Table 7 that 

improvements of at least a factor 

of 2, conservatively estimated, are 

possible for all values of V.  In 

the case of V = 10 s~ the laser 

performance is even better than it 

would be in a vacuum.  The reason 

is that for this pulse-repetition 

frequency the overlap number at the 

stagnation point is only 2, and for 
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Fig. 15.  Changing shapes of isoin- 
tensity contours as a 
function of pulse-repetition 
rate for noncoplanar scenario; 
laser at 10-m elevation. 

0.5 1.0 1.5  2.0 
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2.5 

Fig. 14. Transverse wind velocity as 
a function of axial distance 
for multipulse beam.  (a) x 
component.  (b) y  component. 

overlap numbers in the range 1-2 

such enhancement effects for mult 

pulse beams are well known. 

To summarize:  there is clearly 

some hope of minimizing stagnation- 

zone blooming for multipulse beams 

by a combination of elevating the 

laser aperture above the scenario 

plane and lowering the pulse- 

repetition frequency. 
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Table 7.  Comparison of multipluse beam properties for coplanar and non- 
coplanar scenarios.  Power = 53 kW, range = 2.5 km, A = 10.6 \im, 
elevation h  = 10 m, and vertical wind speed at stagnation point 
=0.61 m/s. 

Intensity Intensity 
Minimum averaged averaged 

half-power Time to Peak over over 
area steady Overlap Peak intensity minimum minimum 

Pulse (stagnation state number at intensity at target half-power half-power 
repetition point, (non- stagnation at target (non- area area (non- 

frequency, noncoplanar coplanar point (non- (coplanar coplanar (coplanar coplanar 

V scenario) scenario) coplanar scenario) scenario) scenario) scenario) 

(s"1) (cm-2) (s) scenario) (W/cm2) (W/cm2) (W/cm2) (W/cm2) 

10 131 0.19 1.9 85.5° 287a 52.0C 181b 

25 116 0.18 4.49 59.5C 116 32.5C 65.6 

50 104 0.17 8.49 28.7d 70.9 17.8d 42.3 

100 140 0.19 19.0 30.4d 49.0 13.2e 30.3 

vacuum beam has value 238. 

Vacuum beam has value 170. 
C£ = 0.6 s, steady state has not been reached. 

£ = 0.32 s, steady state has not been reached. 
e-£ = 0.2 s, steady state has not been reached. 

10.   Single-Pulse Thermal Blooming in the 
Triangular Pulse Approximation 

The isobaric approximation for 

changes in air density is invalid 

for a single laser pulse whose dura- 

tion is comparable to or less than 

the transit time of sound across the 

beam.  In this time regime — referred 
3 

to as the t  -regime because of the 

time dependence of density changes 

arising from an applied constant 

laser-energy absorption rate — the 

air-density changes must be deter- 

mined from the complete set of time- 

dependent hydrodynamic equations, 

Eqs. (15).1'7 

At late times in the pulse, t 

thermal blooming tends to reduce the 

on-axis intensity relative to what 

it would be if the beam were propa- 

gating in vacuum.  This reduction 

increases with time, and for suf- 

ficiently late times a depression 

appears in the center of the beam. 

Energy added to the pulse at later 

times will contribute only margin- 

ally to the on-axis fluence.  Thus, 

for a specific peak pulse 

intensity, the on-axis fluence 

appears to saturate as the pulse 

-31- 



duration is stretched out more 

and more. 

These properties are best illus- 

trated by a numerical example.  Let 

us consider a beam that is Gaussian 
2 

at z  = 0 with I/o -intensity radius 

25 cm.  The beam, which is focused 

at 2.5 km, is assumed to be 2x  dif- 

fraction limited (A-scaled) with 

X  = 10.59 ym and a = 0.3 x io~5 cm"1. 

The pulse is square-shaped in time 

and lasts 100 ys.  The choice of a 

square-shaped pulse is convenient 

because a single calculation con- 

tains the complete information for 

all square pulses of duration 

shorter than the one chosen. 

Figure 16 shows the on-axis 

intensity at z =  2.0 km, obtained 

25   50   75 
Time — jus 

Fig. 16.  On-axis intensity as a 
function of time.  The pulse 
is taken to be square-shaped 
in time.  Thermal blooming 
reduces on-axis intensity 
to a negligible value after 
a sufficiently long time. 

by detailed numerical solution of 

Eqs. (15).  The on-axis intensity 

clearly drops to a negligible value 

before the end of the pulse, and, 

as a consequence, the on-axis 

fluence saturates as the pulse width 

increases, as can be seen in Fig. 17. 

The detailed temporal evolution of 

the spatial shape of the beam is 

shown in Figs. 18 and 19.  Figure 18 

is a three-dimensional plot of the 

laser intensity as a function of 

time and radius.  Figure 19 shows 

the radial intensity profiles for 

increasing values of time.  The 

opening up of a hole in the back of 

the pulse is clear from both 

Figs. 18 and 19. 

Calculations of the type repre- 

sented in Figs. 17-19 become 

impractical if one is treating a 

25   50 
Time — ^s 

75 100 

Fig. 17, Saturation of on-axis fluence 
due to strong pulse thermal 
blooming. 

-32- 



CN 
E 
o 

o 
o 

c 
(Ü 

3 
0. 

0      10    20     30 

Radius — cm 

CN 
E 
u 

c 

I I 

10    20    30 

Radius — cm 

Fig. 18.  Three-dimensional plot of 
intensity as a function of 
time and radius corresponding 
to Figs. 16 and 17. 

Fig. 19.  Intensity as a function of 
radius for increasing time 
in pulse corresponding to 
Figs. 16 and 17. 

multipulse beam.  The determination 

of nonisobaric contributions to the 

density is greatly simplified by the 
1 . triangular pulse approximation,  in 

which the dependence of the laser 

intensity on time is represented as 

an isosceles triangle with base 

equal to 2T .  The density is 

required only at time t  = T , since 

*SP _ PlH = -(Y " 1) 
OJT 

2c 
1 - 

the laser intensity is assumed to 

vanish for t =  0 and t  ^ 2x . 

The density change at t =  T can J p 

be evaluated analytically in terms 

of a finite Fourier series represen- 

tation of the laser intensity.  The 

Fourier transform of the noniso- 

barically induced density change is 

-\ 

(34) 

.   2 
sin 

1/2" 

— G    x \k   + k   } 2    s    p\ x        y 1 

where I is the spatial Fourier transform of the intensity.  The corresponding 

density changes at the grid points are given by the discrete Fourier transform 

(DFT) expression 

N 

pj-wi«.**) - <»r2  I   pf (f • f) -p (*&£*) • (35) 
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where the basis functions are 

periodic on a square of side 2D. 

This allows for a buffer region that 

extends an additional distance L  in 

both the x  and y  directions from the 

region of interest. 

Comparison of the triangular 

pulse approximation and detailed 

pulse thermal-blooming calculations 

for Gaussian-shaped pulses in time 

have shown good agreement between 

the calculated fluences for weak or 

moderate thermal blooming. 

250 
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o 
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S3 — 

S3 — 

/ 1 1 
0 25   50   75 

Pulse length — ps 

100 

Fig. 20. On-axis fluence as a function 
of pulse length, as calcu- 
lated with triangular pulse 
approximation (x's) and by 
detailed numerical solution 
of hydrodynamic equations 
for a square pulse in time 
(solid curve).  The tri- 
angular pulse approximation 
breaks down as saturated- 
fluence condition sets in 
at T = 1.5t  .  Erratic 
behavior is due to develop- 
ment of spikes in the 
intensity pattern as a 
function of transverse 
position. 

25   50   75       100 

Pulse length — fxs 

Fig. 21.  Fluence averaged over 
minimum area containing one 
half of total beam energy, 
as a function of pulse 
length.  Solid curve is 
detailed calculation for 
square pulse, x's represent 
triangular pulse approxi- 
mation. 

Figure 20 shows the on-axis fluence 

calculated for the previous example 

with the triangular pulse approx- 

imation (x's) and the detailed 

solution of Eqs. (15) for square 

pulses in time (solid line). 

Despite the difference in assumed 

pulse shapes, the agreement between 

the two types of calculation is very 

good up until time t  52 50 us, which 

is well above the saturation time 

t    =  38 us predicted by the pertur- 
S 8 

bation theory of Ulrich and Hayes 
9 

based on the work of Aitken et at. 

Above 55 Us, or approximately 1.5£ , 
s 

the beam abruptly develops spikes 

in its transverse spatial dependence; 
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this clearly signals the breakdown 

of the triangular pulse approxima- 

tion, which must obviously fail when 

strong saturation behavior sets in. 

Figure 21 shows the fluence 

averaged over the minimum half- 

energy area (the area within the 

one-half peak energy contour) cal- 

culated with the triangular pulse 

approximation and with the detailed 

solution of Eqs. (15) for square 

pulses.  Both calculations increase 

initially, reach a maximum, and then 

turn over with increasing time. 

This is in part due to the increase 

of the area within the one-half peak 

energy contour with time.  There is, 

however, no point in believing the 

triangular pulse approximation 

beyond the time when the average 

fluence curve has reached a maximum, 

which also coincides with the onset 

of erratic behavior in the on-axis 

fluence (Fig. 20). 

The perturbation theory alluded 

to earlier '  describes the on-axis 

fluence saturation for a beam that 

is initially Gaussian in shape and 

for a pulse shape that is square in 

time.  In this theory, the expression 

for the on-axis intensity is 

lit)   = «< s ' 

(36) 

where ^n(s) is the on-axis intensity 

for a Gaussian beam propagating in 

vacuum, or 

■T0(0) e 

V3) = ~HT) 

-as 

(37) 

Here a is the absorption coefficient 

and 

D(*) = H)2+(^) .  . (38) 

where f  is the focal distance and a 

is the radius of the original 

Gaussian beam.  The saturation time 

t    at on-axial position z  is given 
s 

by 

t    = s 

2N(y -  1) az2E e aB 

3na6D2(z)  T 

-1/3 

(39) 

t > t 

where N  is the refractivity, E    is 

the pulse energy, and T is the 

pulse duration.  Since the fluence 

cannot be increased for pulses 

longer than t  , it can be argued 
s 

that nothing is accomplished by 

making the pulse longer than t  . s 
The fluence must be maximized 

instead by maximizing the product 

J (s) t    or, equivalently, by 
u    s 

maximizing Xn(s).  The maximum 

allowable value of !()(%)  at point z 

is normally determined by the con- 

dition that it not exceed the break- 

down intensity, or 
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max JQO) = Ißr) (40) 

This maximum allowable intensity in 

turn determines a critical input 

pulse energy at s = 0 given by 

E    . = va2t I^D(z)eaZ 

crxt      s BD 
(41) 

where Eq. (37) has been made use of, 

and where t    is calculated from 
s 

t    = 
s 

2N(y  - 1) as J. BD 

3a4£(s) 

-1/3 

(42) 

If one is dealing with a multipulse 

laser with pulse-repetition fre- 

quency V, Eq. (41) can be used to 

define a critical input power with 

P     .     =  V#     .. crxt crxt 

= ira vtsIBDP(s)e (43) 

The self-consistency of the 

triangular pulse approximation, on 

the other hand, prevents the on-axis 

intensity from ever becoming 

negative, but, as previously 

remarked, the triangular pulse 

approximation breaks down for pulse 

energies greater than the value that 

maximizes the space-averaged target 

fluence.  For this pulse energy, the 

average and on-axis fluences should 

be saturated, and further increases 

in pulse energy would give no return. 

Figures 22 and 23 have been calcu- 

lated with the data on which 

1.00 

0.75 

Jl 
-  b0.50 

£15 
i c 

O 0.25 

0 
0      0.5     1.0     1.5     2.0   2.5 
Normalized input-pulse energy 

Fig.   22.     On-target  fluence  from tri- 
angular pulse approximation 
averaged over area contain- 
ing   (1 -  1/e)   fraction of 
total beam energy.     Range 
=  1.5 km,  J-n-p. =  1.6 

106 w/ 
BD 

cm' 

0  0.5  1.0  1.5 2.0 2.5 
Normalized input - pulse energy 

Fig. 23.  On-target space-averaged 
fluence and intensity as 
functions of input pulse 
energy for triangular pulse 
approximation.  Range 
= 2 km, JBD = 3 x 10

6 W/cm2. 
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Figs. 16-21 are based, but with the 

following differences:  the ranges 

for Figs. 22 and 23 are 1.5 km and 

2.0 km respectively; the values 

assigned (somewhat arbitrarily) to 
6  , 2 

JÜT- at these ranges are 3 x 10 W/cm 
fi    2 

and 1.5 x 10 W/cm . 

Both the on-target space-averaged 

fluence and intensity (Fig. 23) are 

plotted as functions of the input 

pulse energy normalized to E     . 

given in Eq. (42).  The space 

averaging is over the area contained 

within the 1/e energy contour.  The 

indicated maxima of the average 

fluences in both Figs. 22 and 23 

occur at an input pulse energy equal 

to 1.7Ä  . .  The space-averaged 
crit 

fluence curves in Figs. 22 and 23 

are smoother than those displayed 

in Fig. 20 because the former are 

averaged over larger areas.  The 

scaling implications of the pertur- 

bation theory described in 

Eqs. (36)-(42) are apparently valid 

for the triangular pulse approx- 

imation, although the maximum useful 

pulse energy predicted by the latter 

is about 50% greater than that 

predicted by the perturbation 

theory. 

In summary:  the triangular pulse 

approximation should provide reason- 

ably accurate fluence results for 

pulse energies up to the values 

where strong thermal blooming 

saturates the on-axis fluence.  The 

breakdown of the approximation will 

be indicated by the development of 

spikes in the transverse spatial 

dependence of the beam intensity as 

well as by a sharp falloff in the 

fluence averaged over some area as 

a function of pulse energy. 

11.   Multipulse Thermal Blooming in the 
Triangular Pulse Approximation 

The propagation of a given pulse 

in a train is influenced by both the 

nonisobaric density changes 

discussed in the previous section 

and by the isobaric density changes 

due to heating by previous pulses 

in the train.  But can the self- 

blooming and multipulse blooming 

effects be treated independently? 

If so, the results and discussion 

of the previous section suggest 

that, as time-averaged laser power 

is increased by lengthening the 

duration of the constituent pulses 

in the train, the time-averaged 

intensity on target should saturate 

at a value that is predictable from 

the saturation fluence for a single 

-37- 



pulse.  If <T> represents the time- 

averaged intensity, the maximum 

achievable value of <J> for a given 

pulse-repetition rate should be 

expressible as 

<J>   = vF    ^ ,        (44) 
max    sat '        v ' 

where F        is the single-pulse 
Sau 

saturation fluence. 

In order to test the hypothesis 

of the independence of self and 

multipulse blooming, a set of cal- 

culations has been carried out with 

the following set of parameters: 

Start beam shape Gaussian, truncated 
2 

at 1/e  radius 

Range, R 2.5 km 

Focal length/ 

range, F/R 1.0 and 1.2 

Wavelength, X     10.6 ym 

Absorption 

coefficient, a  0.25 km 

Aperture diameter, 

2a  (Gaussian at 

1/e2) 21.2 cm 

Wind velocity, y_ 10 m/s 

Pulse-repetition 

rate, V        33-1/3 and 50 s 

Maximum pulse 

intensity at 

-1 

-1 

receiver, I 4.9 MW/cm" 
max 

Overlap number, 

NQ  = 2av/vQ 1.0, 1.5 

Figure 24 shows the space- 

averaged single-pulse intensity I 

for V = 33-1/3 s_1 and NQ  = 1, with 

F/R  = 1.0 and 1.2, calculated as a 

function of input time-averaged power 

<P>  = VEp.     The curves have been cal- 

culated with and without the effects 

of pulse self-blooming.  The curve 

without self-blooming for F/R  =1.2 

rises slightly with input power 

because of a very slight amount of 

pulse overlap.  It is clear from 

Fig. 24, in any case, that thermal 

blooming is due almost entirely to 

self-blooming effects.  The corres- 

ponding curves for space- and time- 

averaged target intensities <J> are 

displayed in Fig. 25, where 

<I>  = Jxv (44) 

It is seen that <J> with self-blooming 

rises initially, reaches a peak, and 

then falls.  From the analysis of the 

previous section, we interpret the 

peak values of <I>  as the saturated 

values. 

Figure 26 shows I  as a function 

of <P> for V = 50 s-1 and NQ  = 1.5, 

with F/R  =1.0 and 1.2.  Above <P> = 

=0.5 MW, and an enhancement effect 

sets in that is greater in the case 

of the defocused beam.  The corres- 

ponding curves for space- and time- 

averaged target intensities are shown 

in Fig. 27. 

A comparison of Figs. 25 and 27 

is summarized in Table 8.  It is seen 

that at V = 50 s~ the power <P> 
sat 

at which saturation of <J> occurs is 
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Fig. 24.  Space^averaged intensity on target as a function of time-averaged 
power at transmitter:  V = 33-1/3 s_1, NQ  = 1.  (a) F/R  =1.0. 
(b) F/R  = 1.2. 
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Fig. 25.  Space- and time-averaged intensity on target as a function of time- 
averaged power at transmitter:  V = 33-1/3 s-1 Nn  = 1.  (a) F/R  =10 
(b) F/R  = 1.2. '  ° 

-40- 



(a) 

6- 

<N 
E u 

h 
I 

.*- 
"Ü5 c 

tJ   0 
P> 
o   8 

With self-blooming 

Without self-blooming       _ 

With self-blooming 

1 
0.5 1.0 1.5 

Time-averaged transmitter power — MW 
2.0 

Fig. 26.  Space-averaged intensity on target as a function of time-averaged 
power at transmitter:  V = 50 s~l, ^o = 1*5.  (a) F/R  = 1.0. 
(b) F/R  = 1.2. 
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Table 8.  Saturation of time- and 
space-averaged target 
intensity due to self- 
blooming. 

V 

(a"1) F/R 

<P> 
sat 

(MW) 

<J> «- sat 
(kW/cm2) 

33 1/3 1.0 1.0 2.4 

33 1/3 1.2 1.2 2.5 

50 1.0 1.75 2.7 

50 1.2 2.0 3.5 

higher for both values of F/R than 

it is at V = 33-1/3 s~ . The cor- 

responding saturation intensity 

values <J> ^ are also greater at 
-lSat -1 

V = 50 s  than at V = 33-1/3 s  . 

If effects of self-blooming are not 

included, on the other hand, values 

of <J> are always greater at a given 

value of <P>  in the case of 

V = 33-1/3 s"1. 

Unfortunately, we have no guide 

to the accuracy of the triangular 

pulse approximation in the overlap 

case as we do in the nonoverlap case. 

But the above results strongly sug- 

gest that the contributions of iso- 

baric and nonisobaric density changes 

to thermal blooming of multipulse 

beams are interrelated, and that 

time-averaged saturation intensities 

based on single saturation fluences 

may not be applicable for overlap 

numbers somewhat above 1.  In fact, 

overlapping isobaric density patterns 

may in certain situations actually 

override the effects of single-pulse 

nonisobaric density changes. 
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Appendix A:   Adaptive Lens Transformation 

One key to the successful implementation of a laser-propagation code 

is finding a coordinate transformation that keeps the laser beam away from 

the calculational mesh boundary and at the same time prevents the beam from 

contracting to an unreasonably small fraction of the total mesh area at the 

focus.  If one is solving the Fresnel equation by the finite Fourier trans- 

form method, one may alternatively view the problem in terms of comple- 

mentarity:  one wishes to find a transformation that simultaneously keeps 

the beam intensity small on the mesh boundaries in configuration space and 

keeps the Fourier spectrum small on the mesh boundaries in fe-space.  If 

these two conditions are met, one knows from sampling theory that the 

numerical solution is highly accurate. 

The Four-D code uses an automated procedure that is designed to keep 

the intensity centroid at the center of the mesh and the intensity-weighted 

r.m.s. values of x  and y  constant with propagation distance z.     These con- 

ditions can be written 

!i <Xi>I 
= °- <Ma> 

|j <xi - <xi>)1>    =  0   , i = 1,   2   , (Alb) 

where 

X-.     x, Xj     y > 

/dx dy Iix3ylu 

<u>1 = -1  
dx dy T(x3y) 

(Ale) 

/■ 

Hereafter, all averages will be assumed to be intensity-weighted, and the 

subscript I will be dropped. 

Conditions (Al) also apply to the adaptive coordinate transformation 
Al 

of Bradley and Hermann,  which differs from the one employed in the Four-D 

Al.  L. C. Bradley and J. Hermann, "Change of Reference Wavefront," 
Massachusetts Institute of Technology, Lincoln Laboratory, Lexington, 
Mass., unpublished internal report. 
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code only in that it is preceded by a transformation to the coordinates of 

an arbitrary Gaussian beam propagating in vacuum.  It should be evident, in 

any case, that such adaptive transformations are restricted to steady-state 

problems, since for time-dependent problems no single transformation will 

apply to all time values.  To solve time-dependent problems one must employ 

a Talanov transformation that is optimized to all time values.  This 

optimization is accomplished by a combination of trial and error and 

intuition. 

The splitting algorithm employed in the Four-D code can be written 

formally as 

g        - exp (- w- VjJ exp (- w- x) exp (- J** VJ g^     (A2) 

X k2(n2  - 1) 

where the middle exponential on the right-hand side of Eq. (A2) contains the 

changes in phase resulting from hydrodynamic changes in density, turbulence, 

etc.  Immediately after this step in the calculation, a quadratic reference 

phase front is determined and is removed from 8 by means of a Talanov 

transformation and a deflection of the beam coordinates.  These operations 

are carried out as part of the vacuum propagation step.  During vacuum 

propagation the solution is advanced by solving 

UK. ff = v\g (A3) 

Equation (Al) can be written 

<xi> 

2 <x. > 
i 

= p   I dx±  dx2 ^1^(^,^2,3)1      , 

= p   I &c
1 da?2 x±\S{x1,x2,z)\     , 

(A4a) 

i  = 1, 2   (A4b) 

where "P is the beam power given by 

P  = / dx± dx2   \${x±,x2)| 
2 
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By differentiating Eqs. (A4a) and (A4b) with respect to z  and making 

use of the Fresnel equation (A3), one obtains the following relations: 

h<xi>=-WJ     ^1 te2\£(xvx2,z)\2 xi^Hxvx2ts)l (A6a) 

= - -^p     /    <&! dx2\s(cc1,x2,z) |    -^- <$>(x1,x2,2)   , (A6b) 
•J Is 

te<xi> 

where the phase cb(a?.. ,  x^,   z)   is defined by 

4>(.xltx2,z)   = Im[lng(x1,x2,z)]   . (A6c) 

In fc-space one can similarly derive 

3     .. 
T—  <X ■>   = 
dz -V 

8^2^ 2    _ 
te<xi >= " W ^ 

*P  JJ   dKl dK2  <i\&KvK2>*> \2 =HT- > (A7a) 

/ /   dKx dK2 K^lJ'^.Kj.a)! 

x    g^- ip(KrK2,z)   , (A7b) 
i 

where «§'(K1 ,K„,<J)   is  the Fourier transform of &(x^,x~,z) ,   and 

IKK15K2,3)  = Im[ln^'(K1,K2,s)]   . (A8) 

We now wish to determine a phase front that will preserve the following 

conditions: 

t-<x.>  = 0 , (A9a) 
öz      ^ 

|j<(a? -<xi>)2>=  0 , £=1,2.      (A9b) 

-47- 



Equation   (A9b)   is  equivalent to 

WZ<X.   >  -   2<X.>  ir-<X.>  =   0. 
oz      ^ %    az      % (A9c) 

From Eqs. (A9) and (A6) one obtains 

-Ö— <x •> ds      ^ i(w.^ = ° > (AlOa) 

7T— <« •> = 
02   ?. K** sir V - ° • (AlOb) 

Thus the reference phase front must satisfy 

dx. 
i 

= 0 (Alia) 

<**-<**» -gi-+>- ° • (Al lb) 

Let us define a new phase variable: 

r (xrx2,zn+li) =  V'WW 

+   2   [ai(^ - <xi>)2 + h(xi - <xi>)] > 
1.-1 

(A12) 

where ^Q^l'^'Vf^ rePresents the Phase <Ka1>a?2>
JVf}^ at z^  before the 

vacuum propagation operator has been applied, and where a,,  and ß. are 

determined so as to make conditions (Alia) and (Allb) hold for the phase 

front ^ {x1,x2,zn^).   From Eq, (Alia) we obtain 

(■gir^r^'W) = 2ai <*i ~ ^i» + h 

(Al 3) 
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or 

From  (Allb)  we obtain 

(<*i ~ <xi» ir *' <*i> V w) = 2ai({xi - <xi>)2 > 

or 

a. 

\   9*G 

((x.  - <^>)2) 

+ ß .<rc. - <ic •» = 0 

i  = 1, 2 (A14) 

Equations (A13) and (A14), which determine the desired reference 

phase-front parameters (A12), can be shown to be completely equivalent to 
Al 

the relations used by Bradley and Hermann. 

If the optimal phase front ((>' is now substituted for the original 

phase front <j>0 at zn^,   the phase increment 

4>0 - *' - S \.*i<*i - <xi»2 + h^i - <xi>)] (A15) 

i=l 

must be compensated for in some way in order to preserve the original field. 

The quadratic contribution in (A15) is compensated for by a generalized 

Talanov transformation, which involves a rescaling of <f,the mesh, and As, 

according to 

£(x,y,z)   = 

■«(' 

As1 

xl 

x Si X 
Ä2 '   _ As ' 

x y 

z \  exp k I     x 
* Tl s -  As 

+ 
s - As 

2/ 
(A16a) 
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where 

^(lV VS) = ^Kx'Ky*8  " As) exp 
2        2 

2k (Al6b) 

S-, = 
'1  1 - (As/s ) 

s^ = 
2  1 - (As/a ) 

(A16c) 

(A16d) 

The generalized focal lengths z^  and a are determined by combining the 

reciprocals of the current focal lengths, 

zx  = 2a±/k  , (A17a) 

Zy  = 2a2/fe > (A17b) 

with those remaining from previous propagation steps (see argument of expo- 

nential in Eq, (A16a)). 

The linear term in (A15) corresponds to solving Eq. (A3) in a coor- 

dinate system that has been rotated in x-y-z  space.  If this rotation is 

assumed to be small, it can be represented by a net deflection in the x  and 

y  coordinates given by 

6x  = -(ßj/fc)* , (A18a) 

Sy = -(ß2/fc)a . (Al8b) 

The contribution 2^ ß^(a^ - <a^>) must also be added to <|>0 before the vacuum 

propagation calculation, but this operation may correspond to a translation 

of the Fourier transform &(<x,Ky)  by a nonintegral number of steps on the 
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/c-space mesh.  In order to avoid this, ß- /AK and 39/AK are both rounded 

off to the nearest integer, and &(K 3K  ) is then translated on its mesh in x    y 
the x  and z/ directions by the corresponding number of steps. 

The numerical implementation of Eqs. (A13) and (A14) requires the 

following computations, where j  and k  represent the numerical coordinates 

of the mesh points: 

3,k 

3,k 

((x - <x»2) = | £ ^I^'fel2 " * 2 ' (M9) 

3>k 

I 
g = «? > ^ 

2 

J 
K'' \*jk 

x       V i~ 12 

Ä l*7fc' 

((* - <x>)  H^- (2AZ27)"1 

x Im £ ^ (<^ - ^lffc)Mjk + ^_lffe) -<-><|) 
J,fc 
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The computations involving the variable y  are carried out in an 

analogous manner.  In the calculation of the average phase derivative, the 

phase derivative is monitored at each point and limited in magnitude to a 

fraction of ir.  This prevents rapid phase fluctuations near the mesh 

boundary, where intensities may be weak, from contributing disproportionately 

to the average. 
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Appendix B:   An Adaptive Algorithm for Selecting the 
Axial Space Increment 

It is desirable to have the code select the next axial space increment 

As at a given axial position on the basis of requirements for numerical 

accuracy in the solution of the wave equation.  The numerical acquracy of 

the vacuum propagators in the symmetrically split solution operator, 

S        =  exp (- 4£- Vx 1 exp I- ^- XJ exp I- -^-   Vj_. I<?,(B1) 

is independent of As if the solution is based on a discrete Fourier trans- 

form.  The imposition of the phase front, 

A* = - |f* , (B2) 

at 8 = 3M, which is equivalent to passing the beam through a lens, will 

make the solution meaningless if any of the transverse zone-to-zone phase 

differences violate 

\&   (A<j>)| <Jv  , (B3) 

|S (A(j>)| < /TT , 
y 

0 < f <1  . 

It will always be necessary then to restrict the value of As so that con- 

ditions (B3) are met. While violating conditions (B3) destroys the numerical 

integrity of the solution, satisfying them does not completely guarantee 
2 

accuracy, sxnce errors can also result from the noncommutation of V_j_ and 

X, and from upgrading x to° infrequently.  These errors must be controlled 

externally by inputting a maximum allowable value of As. 

In practice, part of the effect of the phase front (B2) is removed by 

the adaptive lens transformation.  It would therefore be too restrictive to 

limit As on the basis of conditions (B3).  As an alternative one can restrict 

the value of As so as to control transverse gradients in the phase variable 
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0= 1  «i<*i - <*i*/ - ? Jf   **\   > CB4) 

which is that part of the nonlinear phase front at s ,, that cannot be 

removed by the adaptive lens transformation.  The next spacial increment 
W+l n 

As   is then chosen in terms of the current value As by means of the 

relation 

A n+1 = __^ fkz\  

3k—     max 

The arguments of the maximum function in the denominator of expression (B5) 

are restricted to those mesh points where the intensity is greater than a 

certain fraction /' of the maximum intensity.  The final value of Asn , 

however, must satisfy the additional constraints: 

0.8AsTC < AsW+1 < 1.2 AsW , (B6) 

As .  < As   < As   , (B7) mxn        —  max ' v  ' 

,42f" 
Az"^1 <  —±  ,        (B8) 

4^B 
%rp 

k[ ((x - <*»2).+ ((z/ - <y>)2)] 

with (B6) taking precedence over (B5), (B7) over (B6), and (B8) over (B7). 

In Eq. (B8), / « 0.005 is an input fraction and a_ = min(|s |, \z   |). 

Condition (B8) is designed to reduce As near a focus, where the geometric- 

optics scaling of the mesh by the Talanov transformation may result in an 

excessive shrinkage of the mesh.  By updating the Talanov transformation 

sufficiently often, one can usually avoid a geometric-optics catastrophe. 

The adaptive s-step algorithm just described adds greatly to the con- 

venience of running problems; it often improves problem running time, and 

avoids large nonlinear phase changes that can invalidate the calculation. 

It should not, however, be regarded as a panacea.  For sufficiently high 

beam power and strong enough thermal blooming, the criteria (B5)-(B8) can 
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be satisfied and yet the problem still goes bad.  In such cases, large non- 

quadratic transverse zone-to-zone .phase differences can accumulate over many 

s-steps. 
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Appendix C: Treatment of Multiline Absorption 

The treatment of multiline absorption in the Four-D code follows the 
Cl 

method of Hogge.   The basic assumptions are that all lines operate with 

the same transverse mode structure in the laser and that the line frequen- 

cies are near enough to each other so that the field for each line will be 

affected in the same way by the atmospheric density distribution. Thus at 

each position g, for the ith line <^.(s) = S{z) , and the field will be com- 

pletely characterized by the fractions f.(g) of the total power P(z)   that 
Is 

are found in each line. 

At g = 0 one has 

^(0) = /\(0) P(0) , (cl) 

and at position z 

P^z)  = P^(0) e~alz  , 

P(z)  = £ P^z)  = P(o)  £jf\(0) e    °^2, (C2) 

-a .g 
fAO)  e    ^ 

fA*)  = •z-     v       -a.3" I 
^ 

#0) s 

Thus, 

Vs) = fiiz)   Iiz)> CC31 

and the energy-deposition rate per unit volume is given by 

Cl.  C. B. Hogge, "A Comparison of Several High Energy Laser Systems with 
Emphasis on Propagation Aspects," in Laser Digest,  AFWL-TR-75-140 
(May 1975). 
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Iw>= J(s) 2<W2) 
(C4) 

in which 

I aiVz^ = "^ (C5) 

can be interpreted as an average cross section throughout the calculation. 

Tables Cl and C2 show values for a(z)   as a function of z  for the DF 

line data found in Ref. C2.  Clearly, for DF the effect of including all 

line absorption details leads to a very small correction even at 10 km. 

Table Cl.  Line-by- -line absorption- coefficient data. 

Absorption 
Line frequency Fraction of total power coefficient 

Line ID (cm-1) z  = 0 z  = 10 km (km-1 ) 

4-3,7 — 0.01040 0.01006 0.06000 
3-2,10 2496.77 .00590 .00636 .04920 
4-3,6 — .02130 .02060 .06000 
3-2,9 2521.81 .01330 .01632 .03620 
4-3,5 — .01040 .01006 .06000 
3-2,8 2546.42 .04750 .05401 .04380 
3-2,7 2570.51 .06380 .06108 .06100 
2-1,10 2580.10 .00910 .00813 .06790 
3-2,6 2594.25 .08970 .11944 .02800 
2-1,9 2605.80 .03180 .03786 .03920 
3-2,5 2617.44 .05630 .07960 .02200 
2-1,8 2631.06 .08450 .10460 .03530 
2-1,7 2655.85 .09040 .05918 .09900 
2-1,6 2680.17 .13040 .12864 .05800 
1-0,9 2691.61 .03230 .02557 .08000 
2-1,5 2703.99 .04000 .05300 .02850 
1-0,8 2717.54 .06440 .03629 .11400 
1-0,7 2743.00 .08740 .08434 .06020 
1-0,6 2767.97 .08370 .06178 .08700 
1-0,5 2792.43 0.02740 0.02310 0.07370 

C2. R. K. Long, F. S. Mills, and G. L. Trusty, Calculated Absorption 
Coefficients for DF Laser Frequencies,  Ohio State University Electro- 
Science Laboratory, Rept. RADC-TR-73-389. 
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Table C2.  Mean absorption coefficient as a function of distance. 

Propagation 
distance 

(km) 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Mean 
absorption 

coefficient 
(km-1) 

0.06001 
0.05931 
0.05862 
0.05793 
0.05726 
0.05660 
0.05594 
0.05530 
0.05467 
0.05404 
0.05343 

Remaining 
power 

fraction 
in beam 

1.00000 
0.94209 
0.88815 
0.83787 
0.79097 
0.74720 
0.70632 
0.66811 
0.63236 
0.59891 
0.56758 
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Appendix D:   Characterization of 
Nondiffraction-Limited Beams 

In the absence of detailed a priori  information regarding the exact mode 

content of a beam, several models of nondiffraction-limited beam behavior can 

be applied with the Four-D code. 

The simplest of these, which requires no special coding, is wavelength 

scaling, wherein the laser wavelength is multiplied by a number equal to the 

beam quality factor. Wavelength scaling gives the correct vacuum peak 

intensity, although it may incorrectly represent the vacuum focal-spot size. 

It represents, in any case, a prescription whose accuracy needs to be evaluated 

ad hoc for each specific application. While it has been useful in a variety 

of applications, it does not properly account for discrepancies between cal- 

culations and stagnation .blooming experiments in vertical absorption cells. 

Agreement between measured data and calculations for these experiments 

is improved, on the other hand, by adding spherical aberration to the initial 

beam in such a way that the vacuum focal-spot size is correctly reproduced 

(see Fig. Dl).  The spherical aberration contribution to the initial phase can 

be represented as 

,SA  2TL4 , 2 _,  2N2 
<i>   = —2 ^x    y' 

a 
x 

(Dl) 

where A  represents the number of waves of aberration at radius 0 . 
X D2 A third model of nondiffraction-limited behavior is due to Hogge et at. 

This model is based on the assumption that the initial beam can be represented 

80e,y.,0)  = gQ(x,y) e^
(x*y)   , (D2) 

where the phase aberration§(x,y)   is a Gaussian random variable, arising from 

laser-medium inhomogeneities, mirror imperfections, etc.  If it is assumed 

that the correlation function for phase fluctuations is 

Dl. J. A. Fleck, Jr;, J. R. Morris, and M. D. Feit, Time-Dependent 
Propagation of High Energy Laser Beams Through the Atmosphere, 
Lawrence Livermore Laboratory, Rept. UCRL-51826 (1975). 

D2.  C. B. Hogge, R. R. Butts, and M. Burlakoff, Appl.   Opt.   13, 1065 (1974) 
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C.(r)  = a.   exp 
. 21 

(D3) 

0, 

2 2 2       2 
where r    = x    + y   ,  a^ is  the variance of <j>,   and  Z.Q  is  the phase  coherence 

length,   then the spectrum of  the phase fluctuations  is given by 

<j> -^ 2TT 
exp  I- 

I1 klS 

(D4) 

l.Ot 

^ 0.6 
c 

> 

cS   0.4 

-" — ——   Unbloomed 

■■ Calculated 

——- —  Calculated with A/25 spherical 
aberration 

Experiment 

0   =0.178 rad/s 

x   = 0.48 

.0.06 0.08 0.10 
Time — s 

Fig. Dl. Intensity on target after passing through stagnation zone.  Com- 
parison between experiment and calculation with and without spherical 
aberration.  (Data from P. J. Berger, F. G. Gebhardt, and D. Smith, 
Thermal Blooming Due to a Stagnation Zone in a Slewed Beam,  United 
Aircraft Research Laboratory, East Hartford, Conn., Rept. N921724-12 
(1974).) 
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Using the method of phase screens, one can obtain the Fourier transform of 

the phase §(x3y)   to be used in Eq. (Dl) in the following form: 

/a'(k.) + ia"(k.)\ ^ 
(D5) 

where a' and a" are Gaussian random variables with variance 1, and where 

a'O^) = a'C-k^) , 

a»^) - -a"(-k^) 

(D6) 

Equations (D5) and (D6) were originally included in the Four-D code for 

simulating turbulence,  The phase-screen model of nondiffraction-limited 

beams utilizes the same subroutines. 

The following parameters were the basis of an example for comparing the 

difference between the wavelength-scaling and the phase-screen models of non- 

diffraction-limited behavior: 

Beam shape 

Aperture size, 2a 

Range 

Absorption coefficient, a 

Transverse wind speed, V 

Focal distance, / 

Beam is 2* diffraction limited 

Wavelength, X 

Scaled wavelength, X 

Phase correlation length, I 

Phase standard deviation, 0, 

Number of phase-screen calculations 

for ensemble average 10 

Gaussian 

80 cm 

2.5 km 

0.07 km"1 

10 m/s 

2.5 km 

5.7 ym 

11.4 urn 

5.0 cm 

1.177 (rad) 
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Table Dl gives a comparison of peak intensities in the focal plane for propa- 

gation in vacuum and air.  Also included are results for a uniformly illumina- 

ted aperture of radius aQ  = 2a,  which can likewise be used as a model of a 2x 

diffraction-limited beam. 

Table Dl.  Comparison of peak intensities in the focal plane.  Beam propagates 
in vacuum (linear) and air (nonlinear).  Case:  Gaussian diffraction- 
limited beam, a uniformly illuminated aperture (top hat), Gaussian 
wavelength scaled (2x diffraction limited), and a Gaussian beam 
with a phase screen adjusted to 2x diffraction limited. 

Peak intensity in 
Model focal plane (kW/cm2) 

Linear 

Gaussian, A 63.8 

Gaussian, 2A 15.9 

Top hat 17_4 

Phase screen 17.7 

Nonlinear 

Gaussian, 2A 5.94 

Top hat 5#47 

Phase screen 3.03 

The nondiffraction-limited beams all give roughly one quarter of the 

focal-plane intensity of the diffraction-limited beam when propagated in 

vacuum.  For propagation in a real absorbing atmosphere both the scaled wave- 

length and the top-hat beam calculations result in twice the peak intensity 

of the phase-screen model calculation, which is based on an ensemble average 

taken over 10 independent phase screens.  Figures D2 and D3 show respectively 

the beam intensity as a function of position along the a;-axis and along a line 

parallel to the y-axls  passing through the point of maximum intensity along the 

ar-axis for the wavelength-scaled beam.  Figures D4 and D5 show the same plots 
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Fig. D2.  Wavelength scaling for 
2x diffraction-limited beam. 
Intensity on target as a 
function of s along x-axis. 

CM 
E u 

c 

Fig. D4. Phase-screen model of 2x 
diffraction-limited beam 
averaged over 10 independ- 
ent realizations.  Inten- 
sity on target as a 
function of x  along 37-axis. 

Fig. D3.  Wavelength scaling for 2x 
diffraction-limited beam. 
Intensity on target as a 
function of y  along a line 
parallel to ?/-axis and 
passing through point of 
maximum intensity along the 
a;-axis. 

for the ensemble averaged phase- 

screen calculation.  In the case of 

the wavelength-scaled calculation, 

thermal blooming leads primarily to 

a broadening of the beam.  In the 

phase-screen calculation, thermal 

blooming is accompanied by con- 

siderable scattering of energy to the 

far reaches of the mesh. 

From these calculations it can 

be concluded that different models 

of nondiffraction-limited beam 

behavior can lead to qualitatively 

as well as quantitatively different 

thermal-blooming behavior. Which 
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-20  -10 

y — cm 

model is best must be determined for 

each specific situation.  In the last 

analysis there is no substitute for an 

accurate experimental characterization 

of the beam for each specific laser. 

Fig. D5. Phase-screen model of 2x 
diffraction-limited beam 
averaged over 10 independ- 
ent realizations.  Inten- 
sity on target as a 
function of y    along a 
line parallel to y-$xls 
and passing through point 
of maximum intensity 
along the x-axis. 

GS/11/mm/edas/la 
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