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ABSTRACT 

Modelling large scale systems with natural and artificial components requires stor- 

age of voluminous amounts of knowledge/information as well as computing speed for 

simulations to provide reliable answers in reasonable time. Computing technology 

is becoming powerful enough to support such high performance modelling and sim- 

ulation. This report proposes a high performance simulation based optimization 

environment to support the design and modeling of large scale systems with high 

levels of resolution. 

The proposed environment consists of three layers — modeling, simulation and 

searcher layer. The modeling layer employs the Discrete Event System Specification 

(DEVS) formalism and shows how it provides efficient and effective representation 

of both continuous and discrete processes in mixed artificial/natural systems neces- 

sary to fully exploit available computational resources. Focusing on the portability 

of DEVS across serial/parallel platforms, the simulation layer adopts object-oriented 

technology to achieve it. DEVS is implemented in terms of a collection of classes, 

called containers, using C++. The searcher layer employs Genetic Algorithms to 

provide generic, robust search capability. In this layer, a class of parallel Genetic 

Algorithms, called Distributed Asynchronous Genetic Algorithm (DAGA), is devel- 

oped to provide the speed required for simulation based optimization of large scale 

systems. 



This report presents an example of DEVS modeling for a watershed, which is one 

of the most complex ecosystems. The example shows a well-justified process of ab- 

straction from traditional differential equation models to DEVS representation. An 

approach is proposed for valid aggregation of spatially distributed systems to reduce 

the simulation time of watershed models. DEVS representation and spatial aggre- 

gation assure relative validity and realism with feasible computational constraints. 

Throughout the report, several examples of GA optimization are presented to demon- 

strate the effectiveness of the proposed optimization environment in modeling large 

scale systems. 
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CHAPTER 1 

INTRODUCTION 

1.1    Problem Statement 

Simulation-based design and testing before deployment has become the preferred 

way of fielding new systems in many areas. For example, simulation is to play a major 

role in the plans of the US Army in its restructuring for the information age[lj. The 

complexity of behavior that modern systems can exhibit demands computing power 

far exceeding that of current workstation technology. To address challenging comput- 

ing problems using high-resolution, large scale representations of systems composed 

of natural and artificial elements, high performance simulation-based design environ- 

ments are characterized by two levels of intensive knowledge/information processing. 

At the decision-making level, searches are conducted through vast problem spaces of 

alternative design configurations and associated model structures; at the execution 

level, simulations generate and evaluate complex candidate model behaviors, possibly 

interacting with human participants in real time. 

This report proposes a high performance simulation based optimization environ- 

ment to support modelling and simulation of large-scale system with natural and 

artificial components at high levels of resolution.   The basic modelling formalism 
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employed is that of discrete events for representing both continuous and discrete pro- 

cesses. We will show that discrete event representations have significant performance 

and conceptual advantages over that of discrete time systems for continuous dynamic 

systems. 

Figure 1.1 depicts simulation-based decision making, in terms of a layered system 

of functions. In this paradigm, decision makers, for example, forest managers, base 

their decisions on experiments with alternative strategies (e.g., for reducing the risk 

of wild fires) where the best strategies (according to some criteria) are put into 

practice. For a variety of reasons, experiments on models are preferred to those 

carried out in reality. For realistic models (e.g., of forest fire spread), such experiments 

can not be worked out analytically and require direct simulation. The design of 

our environment to support all these activities is based on the layered collection of 

services shown in Figure 1.1, where each layer uses the services of lower layers to 

implement its functionality. To provide generic robust search capability we employ 

Genetic Algorithms (GAs) as the searcher in the model space. The optimization layer 

employs the searcher to find good or even optimal system designs (models). 

Experience with this environment has shown that only large numbers of intercon- 

nected processing nodes can provide 1) the memory to hold the enormous amounts of 

knowledge/information necessary to model complex systems, and 2) the simulation 

speed required to provide reliable answers in reasonable time. Currently one can 

marshal such large numbers of computing nodes dedicated to a single problem only 

12 



decision making 

optimization 

modelization 

Simulation 

Figure 1.1: Layered representation of simulation based decision making 

in scalable, high performance platforms such as the Connection Machine, CM-5 or 

the IBM SP2 which contain up to 1024 processors. However, we will show that at 

least a million fold increase in either speed or numbers of nodes is needed for such 

systems to support optimization of large scale models. Unfortunately, the cost of 

such platforms is beyond the means of most potential users and there are only a 

small number accessible in national high performance computing centers. 

By contrast, the numbers and speeds of desktop computers (PCs and workstations) 

are escalating rapidly so that harnessing these resources might offer a solution. How- 

ever the obstacles to networking large numbers of distributed computing resources 

are formidable. One survey result indicates that the largest network cluster contains 

130 workstations connected with Parallel Virtual Machine (PVM) over Ethernet[2] , 

much less than the massively parallel computer platforms. One significant social bar- 

rier to dedicating large numbers of workstations to a single computation is distributed 

ownership which tends to discourage shared usage. Two technical barriers which we 

addressed in the design of our environment are heterogeneity and portability. 

13 



1.2    The Layered High Performance Environment 

As illustrated in Figure 1.2, in the proposed environment the various processes are 

executed concurrently within a heterogeneous, distributed computing environment. 

Each GA agent has access to a simulator for executing its experiments. Although the 

simulator is shown as a single entity, it too could be distributed among the proces- 

sors. Generally an experiment consists of several trials testing how well a particular 

intelligent control (supervisory or management) agent functions in a prescribed prob- 

lem environment. This environment is represented as a simulation model which is 

controlled/observed by the agent through an appropriate experimental frame. The 

model in each simulator may actually be one several related models at several levels 

of abstraction ranging from low to high resolution. The GA may initially search 

through the coarser space spanned by the most abstract model before going on to 

higher resolution searches [3]. 

As an example, the family of model abstractions could be discrete event models 

of a watershed varying in resolution. The experimental frame may provide a storm 

track as input and it might observe the resulting flooding pattern. The effectiveness 

of a set of pre-flood stage sensors as an early warning system might then be reported 

to a GA agent and manipulated by the distributed GA to search for improving the 

locations for placement of the sensors. 

14 



models at different 
levels of abstraction 

models at different 
levels of abstraction 

models at different 
levels of abstraction 

Figure 1.2:  Search controlled high performance modelling and simulation environ- 
ment. 

1.3    Needs and Sources for High Performance 

The demands of such an environment on any technology capable of supporting it 

are enormous. Realistic simulations of large models with decision-making components 

are time consuming. The GA searcher, although robust, is apt to require thousands 

of simulation evaluations to locate an optimal configuration. 

For example we have demonstrated a successful application of our simulation- 

based optimization environment to fuzzy control system synthesis [4], to 1024-node 

parameter search problems in optical interconnection network design[5] and to wa- 

tershed modelling [6]. The number of iterations required to identify the optimum in 

these cases is shown in Table 1.1. 
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Optimization Run Iterations Needed 
Fuzzy Control System Synthesis 100,000 
Watershed Modelling 1,000,000 
Optical Interconnection Network Design 10,000,000 

Table 1.1: Iteration requirements for GA search 

These optimizations were run on the CM-5, but for illustration purposes, suppose 

that they had been executed on a conventional workstation. Were each simulation 

to require 10 minutes, 1,000,000 GA iterations would require a good part of person's 

lifetime. High performance is clearly needed to speed up such computations. Given 

our finite lifetimes and immediate daily concerns, the time we are willing to wait 

for its answers is strictly bounded. One would be hard pressed, for example, to find 

an existing simulation run taking years of continuous computation. However, with 

sufficient increases in speed afforded by high performance, system design studies that 

are not feasible today could be undertaken. Table 1.2 translates the effect of orders of 

magnitude speed up on feasibility of such computation. For example, with a speedup 

of 1,000 times the just mentioned example of an optimization can be be done in days 

instead of years. With another factor of 1,000 in speedup, optimizations that now 

take decades (and so are infeasible) would become commonplace. As a consequence, 

there could be a tremendous increase in the reliability, safety and effectiveness of 

tomorrow's complex systems such as flood, hurricane warning systems, forest fire 

fighting robotic systems, or space-based reconnaissance systems. 

16 



Speedup Order of Magnitude Computation Time Reduced to 1 min 
1 minute 

100 hours 
1,000 days 

10,000 months 
100,000 years 

1,000,000 decades 
10,000,000 centuries 

Table 1.2: Orders of magnitude speedup and the corresponding amount of computa- 
tion time that could be compressed into one minute 

Speedups of the order of 1,000,000 are in fact attainable with the technology and 

methodology on the horizon. Table 1.3 shows where such performance improvements 

could come from in the simulation environment. We will provide evidence for a) up to 

1,000 fold speedup gained by properly mapping continuous models into efficient DEVS 

approximations, b) up to 1,000 speedup with the application of parallel/distributed 

processing at the GA search level. The upper bound of this estimate is based on the 

best performance achievable on an N processor system, where N is currently around 

a thousand (e.g. 1024 in the CM-5). The number of processors in a single platform 

will increase another order of magnitude with the construction of the 9,000 processor 

system announced by Intel. By multiplying the two speedup factors, the speedup 

possible is of the order of 106. 

Speedup Order Sources 
100 - 1,000 DEVS Representation 
100 - 1,000 Parallel/Distributed GA Search 

Table 1.3: Sources of speedups in the high performance simulation based optimization 
environment 

17 



We will offer some evidence for the attainability of the individual speedups in 

Table 1.3 in the sequel. 

1.4    Report Organization 

First we review the DEVS formalism which is the basic mathematical language of 

the proposed environment and shows the implementation of the DEVS simulator in 

Chapter 2. Chapter 3 introduces a new parallel GA, called Distributed Asynchronous 

GA, employed in the searcher layer of the proposed environment. This chapter also 

includes some test results of the DAGA and shows an application example, designing 

a fuzzy controller. In Chapter 4 we discuss the use of DEVS in efficient continuous 

process representation taking watershed modeling as an example. In Chapter 5 we 

show an example of parameter search in the proposed environment for watershed 

models developed in Chapter 4. Finally Chapter 6 concludes the report. 
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CHAPTER 2 

The DEVS Formalism: Basis for the Simulation Based 

Optimization Environment 

To discuss the performance advantages of discrete event model formulations we 

will need to review the modelling formalism, called DEVS, underlying the current 

high performance simulation based optimization environment. 

2.1    Brief Review of the DEVS Formalism 

We now review the basic concepts of the DEVS formalism and its associated 

simulation methodology. 

In the conceptual framework underlying the DEVS formalism[7], the modelling 

and simulation enterprise concerns four basic objects: 

• the real system, in existence or proposed, which is regarded as fundamentally a 

source of data 

• the model, which is a set of instructions for generating data comparable to 

that observable in the real system. The structure of the model is its set of 

instructions. The behavior of the model is the set of all possible data that can 

be generated by faithfully executing the model instructions. 

19 



• the simulator which exercises the model's instructions to actually generate its 

behavior. 

• experimental frames capture how the modeller's objectives impact model con- 

struction, experimentation and validation. Experimental frames are formulated 

as model objects in the same manner as the models of primary interest. In this 

way, model/experimental frame pairs form coupled model objects which can be 

simulated to observe model behavior of interest. 

The basic objects are related by two relations: 

• the modelling relation, linking real system and model, defines how well the 

model represents the system or entity being modelled. In general terms a 

model can be considered valid if the data generated by the model agrees with 

the data produced by the real system in an experimental frame of interest. 

• The simulation relation, linking model and simulator, represents how faithfully 

the simulator is able to carry out the instructions of the model. 

The basic items of data produced by a system or model are time segments. These 

time segments are mappings from intervals denned over a specified time base to 

values in the ranges of one or more variables. The variables can either be observed 

or measured. 

The structure of a model may be expressed in a mathematical language called a 

formalism.  The discrete event formalism focuses on the changes of variable values 

20 



and generates time segments that are piecewise constant. Thus an event is a change 

in a variable value which occurs instantaneously. In essence the formalism defines 

how to generate new values for variables and the times the new values should take 

effect. An important aspect of the formalism is that the time intervals between event 

occurrences are variable in contrast to discrete time where the time step is a fixed 

number. 

Independence from a fixed time step affords important advantages for modelling 

and simulation. Multiprocess models contain many processes operating on different 

time scales. Such models are difficult to describe when a common time granule 

must be chosen on which to represent them all. Moreover, simulation is inherently 

inefficient since the states of all processes must be updated in step with this smallest 

time increment - such rapid updating is wasteful when applied to the slower processes. 

In contrast, in a discrete event model every component has its own control over the 

time of its next internal event. Thus, components demand processing resources only 

to the extent dictated by their own intrinsic speeds or their responses to external 

events. 

DEVS falls within the formalisms identified by Ho[8] for discrete event dynamical 

systems (DEDS). Work on a mathematical foundation of discrete event dynamic 

modeling and simulation began in the 70s[7, 9, 10] when DEVS was introduced as an 

abstract formalism for discrete event modeling. Because of its system theoretic basis, 

DEVS is a universal formalism for discrete event dynamical systems (DEDS)[11]. 

21 



Indeed, DEVS is properly viewed as a short-hand to specify systems whose input, 

state and output trajectories are piecewise constant[ll]. The step-like transitions in 

the trajectories are identified as discrete events. 

Discrete event models provide a natural framework to include discrete formalisms 

for intelligent systems such as neural nets, fuzzy logic, qualitative reasoning, and 

expert systems. However, traditional differential equation models continue to be the 

basic paradigm for representing the physical environments in which intelligent agents 

operate. We have proposed that DEVS-based systems theory, incorporating discrete 

and continuous subformalisms, provides a sound, general framework within which to 

address modelling, simulation, design, and analysis issues for natural and artificial 

systems [12]. 

The universality claims of the DEVS just cited are addressed by characterizing the 

class of dynamical systems which can be represented by DEVS models. Praehofer and 

Zeigler[13] showed that any causal dynamical system which has piecewise constant 

input and output segments can be represented by DEVS. We call this class of sys- 

tems DEVS-Representable[ll]. In particular, Differential Equation Specified Systems 

(DESS) are often used to represent both the system under control and the controller, 

which, as a decision making component, has a natural DEVS representation. 
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DEVS supports construction of new models by interconnecting already existing 

models as components. Such interconnection, called coupling, is specified in a well de- 

fined manner embodied in the formalism of the coupled modeI[9]. Closure under cou- 

pling guarantees that coupling of class instances results in a system in the same class. 

The class of DEVS-representable dynamical systems is closed under coupling[14, 13]. 

Closure is an essential property since it justifies hierarchical, modular construc- 

tion of both DEVS models and the (continuous or discrete) counterpart systems they 

represent. 

2.2     Confluent Parallel DEVS 

The DEVS formalism, as revised to enable full exploitation of parallel execution[15] 

is the basis for the DEVS-C++ high performance environment under construction. 

A DEVS basic model is a structure: 

M = < A, O, Y, dint, Oext, Scon, A, td, > 

X: a set of input events. 

S: a set of sequential states. 

Y: a set of output events. 

6int '• S —> S: internal transition function. 

oext '• Q x Xh —> S: external transition function, 

Xb is a set of bags over elements in X, 
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Scon : S x Xb —> S: confluent transition function. 

A : S —> Yb: output function. 

ta : S —> i^o+^oo: time advance function, 

where Q = {(s,e)|s € S,0 < e < ta(s)}, 

e is the elapsed time since last state transition. 

DEVS models are constructed in a hierarchical fashion by interconnecting compo- 

nents (which are DEVS models). The specification of interconnection, or coupling, 

is provided in the form of a coupled model. The structure of such a coupled model is 

given by: 

DN=<XXD,{Mi},{Iih{Zij}> 

X: a set of input events. 

Y: a set of output events. 

D: an index set for the components of the coupled model. 

For each i in D, 

M{ is a component DEVS model. 

For each i in D U {self},   /,• is the set of influencees of i. 

For each j in /,-, 

Z{j is a function, 
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the i-to-j output translation mapping. 

The structure is subject to the constraints that for each i in D, 

Mi =< Xi,Si,Yi,6inti,8exti,8conhtai > is a DEVS basic structure, 

Ii is a subset of D U {self}, i is not in /,-, 

ZSelf,j '• Xself —► Xj, 

Zi,self '• M —* ^se//? 

Zi,j '• y% """* Xj. 

Here self refers to the coupled model itself and is a device for allowing specification 

of external input and external output couplings. More explicitly, I„elf is the set of 

components that receive external input; also if self is in /,-, then component i's 

output appears as external output of the coupled model. 

The behavior of a coupled model is constructed from the behaviors of its compo- 

nents and the coupling specification. The resultant of a coupled model is the formal 

expression of such behavior. Closure of the formalism under coupling is demon- 

strated by constructing the resultant and showing it to be a well defined DEVS. 

As already stated, such closure ensures that hierarchical construction is well defined 

since a coupled model (as represented by its resultant) is a DEVS model that can be 
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coupled with other components in a larger model. Details of closure proof are given 

by Chow[15] 

2.3    Implementation of Confluent DEVS-C++ Simulator 

In designing a DEVS-based high performance simulation based optimization en- 

vironment, our goal was portability of models across platforms at a high level of 

abstraction. A DEVS model should not have to be rewritten to run on serial, parallel 

or distributed environment. Ideally, this invariance should apply at the high level 

of abstraction (set-theory) in which DEVS is formulated. However, a computational 

equivalent of this level does yet not exist (although efforts are beginning in that di- 

rection). Falling short of this ideal, but still significant, is the ability to port DEVS 

models written in the same computer language across platforms. There are numer- 

ous advantages to such portability. To name several that are especially important 

in this context: 1) models developed on a serial workstation, with all its comfort- 

able development support, can be easily ported after verification to a parallel system 

for high performance production runs, 2) in a parallel/distributed environment, the 

same form of model description can be used for the interaction of model components 

executing within the (serial) nodes as for the (parallel) interaction of components 

executing on different nodes (more of this later). 

Object-oriented technology is the key to achieving DEVS portability objectives 

while retaining the flexibility to mitigate concomitant performance costs. Perhaps the 
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DEVS 

object-oriented technology 

serial 
platform 

parallel 

Figure 2.1: Object-oriented implementation of DEVS on various platforms. 

most characteristic attribute of this technology is its ability to separate behavior from 

implementation, enabling distinct implementations of the same behavior to coexist 

[16]. As shown in Figure 2.1, DEVS is implemented in an object-oriented form which 

enables it to be executed on serial or parallel platforms. The DEVS formalism is 

expressed as objects and their interactions with the details of the implementation 

(serial or parallel) hidden within the objects. The user interacts with only those 

interfaces that manifest the DEVS constructs while being shielded from the ultimate 

execution environment. 

DEVS 

containers classes 
ensemble methods 

C++ 

PC 
UNIX 

PVM 
Cluster CM-5 

Figure 2.2: Implementation of DEVS using containers classes with C++ 

The approach is illustrated in greater detail in Figure 2.2.   Due to its rapidly 

growing availability, C++ was employed as the target object-oriented language. As 
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shown, DEVS is implemented in terms of a collection of classes, called containers. In 

their usual serial guise, such classes provide well-known means for defining list data 

structures and their manipulation. However, a more abstract and useful characteri- 

zation of their functionality is that containers provide services to group objects into 

collections and coordinate the activity within such groups. 

2.3.1    Specification and implementation of containers 

container CONTAINER 
serial parallel 

tell-all 
ask-all 
which? 
which-one? 
reduce 

Figure 2.3: Five primitives of containers classes 

This is illustrated in Figure 2.3 which enumerates five basic primitives for coordi- 

nating behavior of objects in a container[16]. In outline: 

• tell-all sends the same command to each object in a container. 

• ask-all sends the same query to each object and returns a container holding the 

responses (which are also objects). 

• which?  returns the subcontainer of all objects whose response to a boolean 

query is TRUE. 
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• which-one?  returns one of the objects in the container whose response to a 

boolean query is TRUE. 

• reduce aggregates the responses of the objects in a container to a single response 

(e.g., taking the sum). 

While these so-called ensemble methods may seem more parallel than sequential 

in nature, they have abstract specifications that are independent of how one chooses 

to implement them. Thus, using the polymorphism properties of C++ we define two 

classes for each abstract container class; one (lower-case) implementing the ensemble 

methods in serial form, the other (upper-case), implementing them in parallel form 

(Figure 2.3). The serial implementations run on any architecture that has a C++ 

compiler. In particular, if the nodes of a parallel or distributed system run C++, 

then the serial containers will work on them. However, the implementation of parallel 

CONTAINERS involves physical (as opposed to virtual) message passing among ob- 

jects residing on different nodes. Such message passing must be implemented within 

the communications primitives afforded by the parallel/distributed system in ques- 

tion. For example, massively parallel CM-5 implementation employs CMMD(CM-5 

message passing library). Likewise, a network of workstations linked together under 

PVM [17] offers the communication primitives supplied by PVM. 
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In the next section, we discuss the serial implementation of the DEVS C++ sim- 

ulator based on containers (refer to [18] for the parallel implementation of DEVS 

C++). 

2.3.2    DEVS C++ implementation over containers classes 

top block 

cell(IJ) 

block of cells 

Figure 2.4: Hierarchical construction of block models from atomic cell models 

To illustrate, consider a two-dimensional grid of cells as shown in Figure 2.4. The 

cells could be the atomic components in a landscape model of watershed in Chapter 

4. They are grouped into blocks. The closure property of DEVS guarantees that 

each block can itself be regarded as a DEVS model which can now be considered as 

a component model. These components are then grouped together to form a new 

DEVS model which is equivalent in behavior to the original. 
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Blocks (or digraph models) are effectively containers whether they contain cells 

(or atomic models) or lower level blocks (or digraph models). In terms of ensemble 

methods, a cycle of DEVS simulation in block models can be outlined as follows: 

1. Compute the global next event time, tN: use reduce to get the minimum of 

component times to next event, 

2. Tell all components the global tN and if a component is imminent (tN equals 

to global tN), then generate output messages (using A), 

3. Sort and distribute (using coupling) output messages, 

4. Tell all components: if a component is imminent (tN equals to global tN) or 

has incoming mail (external events) or both, then execute transition functions. 

If a component is both imminent and has incoming mails (inputs), it executes 

the confluent transition function (8con). If a component is imminent and has no 

incoming mail, it executes the internal transition function (Sint)- If a component 

is not imminent and has incoming mails, then it executes the external transition 

function (6ext). 
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CHAPTER 3 

The GA Searcher Layer 

A major advantage of high resolution models is that many of the parameter values 

needed to calibrate the model to its real system counterpart are obtained directly 

from available engineering or measurement-derived data. Still, a large simulation 

model typically has many more parameters that are unknown. These parameters 

need adjustment to tune the model to real world observed behavior or to optimize its 

performance to achieve a desired objective. Searching through such large parameter 

spaces for optimal, or even acceptable points is a daunting task, especially in multiple 

process models where each simulation run may require hours or days to complete. 

The more that automated optimizers can relieve human modelers of this search task, 

the faster will be the pace of advance in the modelling or design effort. Therefore, 

optimization-based control of simulation is a key feature of our high performance 

environment. 

In this chapter we introduce a new GA, called Distributed Asynchronous Genetic 

Algorithm(DAGA), which is employed as a searcher in the high performance mod- 

elling and simulation environment. 
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3.1     Genetic Algorithms 

GAs are a class of stochastic operators that successively transform an initial pop- 

ulation of individuals until a convergence criterion is met [19, 20, 21, 22, 23, 24, 25]. 

Each individual represents a candidate system design and each design is evaluated 

using the underlying simulation layer to give some measure of its fitness. On each 

iteration, a new population is formed by selecting fitter individuals and transforming 

them in hopes of obtaining ones even fitter. Typically, crossover creates new children 

by combining parts from two parent individuals. Mutation creates new individuals by 

introducing small random changes [22]. After some number of generations the search 

converges and is successful if the best individual represents the global optimum. GAs 

often outperform classical optimization methods in search, optimization and learning 

[26, 23, 27, 22]. Interest has increased in their potential application to modeling, 

simulation and design of complex real world systems. 

The first step in the implementation of GAs is to generate an initial population 

randomly in most cases. Each member of this population will be a binary string 

of length L which corresponds to the problem encoding. Each string is sometimes 

referred to as a genotype or a chromosome. On the execution of the GA, it starts with 

the current population. The initial population becomes the current population in the 

beginning or in the first generation (the term generation will be explained shortly). 

Selection is applied to the current population to create an intermediate population. 
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Then recombination and mutation are applied to the intermediate population to 

create the next population. The process of going from the current population to the 

next population is called one generation in the execution of a GA. Now the next 

population becomes the current population for the next generation and repeats the 

above process until a member of the current population represents a solution to the 

given problem. Figure 3.1 shows how one generation is constructed in the execution 

of a GA. 

selection 

. x ,     Intermediate 
Ne.xt

x. ) v    population population      ; ^ 

recombination 
and mutation 

Figure 3.1: Construction of new population 

The construction of the intermediate population from the current population is 

carried out as follows. In the first generation the initial population is considered 

as the current population. After calculating fitness of each member (string) in the 

current population, selection is performed. The fitness is a metric which measures, in 

most cases, how close the member is to the solution of the given problem in the search 

space. Thus, the design of a function to measure fitness is very problem dependent. 

After selection has been carried out, the construction of the intermediate population 
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is complete and recombination can occur. This can be viewed as creating the next 

population from the intermediate population. Recombination is done using a genetic 

operator called crossover. Crossover is applied to paired strings with a probability of 

pc as follows. Pick a pair of strings in the intermediate population. With probability 

of pc, recombine these strings to form two new strings, and then insert them in the 

next population. Figure 3.2.a shows how a crossover operator works on paired strings 

called parent strings to generate new strings called offsprings. 

crossover 
point 

crossover 
point 

Parents 

Offspring 

(b) Mutation operator 

Figure 3.2: Genetic operators: (a) crossover, and (b) mutation. 

After recombination, we can also apply another genetic operator called mutation 

as shown in Fig. 3.2.b as follows. For each bit in a bit string, mutate (or complement 

a bit in the string) with some probability pm. 

After the process of selection, recombination, and mutation is complete, the next 

population can be evaluated.   The process of evaluation, selection, recombination, 
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and mutation forms one generation in the execution of a GA. Thus, GAs use the 

notion of survival of the fittest by passing good genes (potential solutions) to the next 

generation and combining different genes to explore new search points. In summary, 

Fig. 3.3 describes typical steps for executing GAs. 

A genetic algorithm 
{ 

Initialize population; 

Current.population = Initial_population; 
while termination criterion not reached; 

{ 
Evaluate Current.population; 
Select members in Current.population for Intermediate.population; 
Perform crossover and mutation for Next.population; 
Current.population = Next.population; 

} 
} 

Figure 3.3: A typical procedure for executing a GA. 

3.2    Distributed Asynchronous Genetic Algorithm 

Adapted to the high performance simulation based optimization environment, 

GAs intelligently generate trial model candidates for simulation-based evaluation. 

Although schemes exist for parallelizing GAs [20, 21, 28, 29, 30], we designed a new 

parallel GA, called Distributed Asynchronous Genetic Algorithms (DAGAs), which is 

particularly suited to the demands of the high performance simulation environment. 

The following is an overview of the DAGA adapted to the optimization layer for the 

proposed environment. 
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Figure 3.4: Asynchronous Genetic Algorithms 

The DAG A is an extension of the Asynchronous Genetic Algorithm (AGA) [30]. 

The AGA maintains the genetic operations in one processing node (GA-controller) 

and distributes the evaluation (simulation) processes to many nodes (GA-agents) as 

shown in Figure 3.4. The operation of the AGA is shown in Figure 3.5. 

The novelty of the AGA is that the GA-controller doesn't wait for a full generation 

to complete, which would severely reduce throughput when simulation times are 

widely dispersed [30]. However, experimental results (refer Section 3.3) show two 

drawbacks of the AGA as follows: 

1. The AGA fails to solve some class of problems, that is, it is not robust. 

2. Due to centralization of the GA-controller, the communication overhead and 

sequential genetic operations bottleneck processing as the number of processing 

nodes increases. 
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Create Initial Population 

Evaluate Initial Population 

idle a »ent exist 

Reproduction(Selection) 

a set of candidate solutions 
(a set of randomly created binary strings) 

calculate fitness using N processors 

select 2 individuals randomly(parents) 

Recombination(Crossover) | recombine them using crossover operator 

Mutation random alteration 

Send children to GA_agent 

Wait idle agent 

I 
Update Population 

:=3r— 
Figure 3.5: Operation flow of the AGA 
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On each PE 

Create its own individual 
" 

evaluate its own individual 
^ »,. 

Reproduction(Selection) 
,r 

Recombination(Crossover) 
" 

Mutation 
" 

Evaluate New Individual 
,r 

Update Myself 

a candidate solution 
(a randomly created binary string) 

calculate fitness of individual 

select a mating partner among other individuals 
and get its chromosome and fitness 

recombine it with myself and create one child 

random alteration 

calculate fitness of child 

replace myself with new one 
if new one is better than its parents 

Figure 3.6: Operation flow of the DAGA 

To solve the first problem, we employ the different selection and updating schemes 

in the DAGA. To achieve scalability (solve the second problem), the DAGA dis- 

tributes both evaluation processes and genetic operations to processing nodes as 

shown in Figure 1.2. The operation of the DAGA is outlined as shown in Figure 3.6. 

As with the original asynchronous scheme, GA agents do not wait for a full genera- 

tion to complete, which would severely reduce throughput when simulation times are 

widely dispersed. Moreover, in this scheme there is no central processing to bottleneck 

performance since all genetic operations are carried out by processors autonomously 

with at most minimal exchange with a randomly chosen partner. 
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# of PEs 1 32 64 128 256 512 
AGA 14,410 770 512 282 254 259 

DAGA 12,940 567 298 142 71 36 

Table 3.1:   Execution times of Asynchronous Genetic Algorithm and Distributed 
Asynchronous Genetic Algorithm on the CM-5 (The unit is second). 
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Figure 3.7: Speedups of the AGA and DAGA on the CM-5. 
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The beneficial effect is shown in Table 3.1 and Figure 3.7 which compare the 

DAGA with the earlier scheme (the AGA) applied to the same problem of optimizing 

a fuzzy controller design for an inverted pendulum (refer to Section 3.4) in terms of 

execution time. Note that while the original scheme's performance does not scale 

with increasing processors, the distributed version achieves quite close to a linear 

speedup depending on number of processors. 

High Performance Simulation Environment 

AGA-Controlled DAGA-Controlled 

 1 1 > 1 DAGA-Simulators 
AGA Controller AGA-Simulators I | | 

I I I                                         DAGA-Simulator 
AGA-Simulator  I  

i I       I 
I ' DAGA agent Simulator 

AGA agent Simulator 

Figure 3.8: GA controlled high performance simulation environment. 

The DAGA can also be implemented like the AGA as follows: The GA controller 

1. creates its initial population randomly (population initialization step), 

2. evaluates the generated individual's fitness using GA agents, 

3. (as soon as this initial evaluation is completed) randomly selects two individuals 

(parents), 

4. applies crossover and mutation operators, 
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5. randomly selects one child and evaluates the selected child using an idle GA 

agent, 

6. replaces the parent (which is more similar to the selected child) with the child 

if the child's fitness is better than that of both parents, 

7. repeats steps 3-6 until a convergence criterion is met. 

Each GA agent 

1. is waiting for an individual from the GA controller, 

2. evaluates the received individual, 

3. returns the evaluation result to the GA controller, 

4. repeats steps 1-3. 

Figure 3.8 shows the system entity structure [10] of the GA controlled high perfor- 

mance simulation environment. This environment can be implemented in two ways 

depending on available resources and the computational complexity of the simula- 

tion. The DAGA based implementation performs better than the AGA as the number 

of computing resources (processing elements) becomes larger and the computational 

complexity of simulation becomes smaller, as shown in Table 3.1. Otherwise the 

AGA based implementation is preferred since its implementation is simpler and more 

flexible than that of the DAGA. 
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3.3    Experimental Results of the DAGA 

The DAGA described in the previous section was tested compared to the original 

AGA using the following seven test problems: 

• Problem 1 (DeJong function 1): 

/M.=i,3) = !>?>*.• e [-5.12,5.12] 
i=l 

• Problem 2 (DeJong function 3): 

f(xi\i=lfi) = 30 + J2[xi\,Xi e [-5.12,5.12] 
»=i 

• Problem 3 (DeJong function 5): 

25 2 

/(*.-|.=i,2) = El? + £(** - G.;)V< G [-65.536,65.536] 
3=1 t=l 

• Problem 4 (Rastrigin function): 

20 

/(3i|i=i,2o) = 200 + £ar? - 10cos(27ra;i),a;i € [-5.12,5.12] 
i=l 

• Problem 5: order-5 deceptive problems 

• Problem 6: Holland's revised Royal Road function 

• Problem 7: Coloring mesh graphs 

Problem 1-3 are borrowed from De Jong's suite [31]. DeJong function 1 is a uni- 

modal function known to be easy for GAs. DeJong function 3 is a discontinuous step 
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ladder function. DeJong function 5 has several local minima. Rastrigin function is 

a very difficult problem for GAs because of the large search space (2200) and large 

number of local minima [21]. Problem 5 is a class of order-five deceptive function, 

which is developed to deceive GAs [32]. We concatenated ten, twenty, thirty and 

forty size-five subfunctions together to form 50, 100, 150 and 200-bit problems. The 

order-five subfunction used here is a fully deceptive trap function of unitation [32] 

with value 0.58 at u = 0 ones, value 0.0 at u = 4 ones, and value 1.0 at u = 5 ones 

[33]. These deceptive functions are difficult problems. For example, the search space 

size of 200-bit problem is 2200 and it has 240 optima, of which only one is global. 

The Royal Road functions introduced in [34] were designed as functions that would 

be simple for GAs to optimize, but difficult for a class of hillclimbers. However, 

Holland recently revised the Royal Road functions since one form of hillclimbing 

outperformed GAs on this problem [35]. The revised Royal Road functions were 

designed to create insurmountable difficulties for a wider class of hillclimber, and yet 

can be optimized by GAs. 

Problem 7 is a simple graph coloring problem. The problem is to color the N x N 

mesh graph with wraparound connections using two colors so that each vertex has 

neighbors with a different color. For an even number N, we have two solutions as 

shown in Figure 3.9. This problem has a large search space (2NxN) that is easily 

expandable. 
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Figure 3.9: 8x8 mesh graph with wraparound connections (the numbers inside circles 
show two solutions for the coloring problem). 

For all experiments we adjust the parameters of GAs, such as population size, 

crossover and mutation probability, to get the best performance based on the number 

of evaluations. 

3.3.1    Results for DeJong's Suite 

Function Fl F2 F3 
Algorithm evals std evals std evals std 

AGA 1,020 496 1,448 1,608 1,607 1,549 
DAGA 2,766 2,000 3,250 1,465 1,484 793 

Table 3.2: Performance of the AGA and DAGA on DeJong's test suite (evals: average 
number of evaluations, std: standard deviation). 

We run the AGA and DAGA for 30 runs on DeJong's functions. We execute 

until the global optimum is found in all 30 runs and report the average number of 

evaluations and the standard deviation.   As shown in Table 3.2, the performance 
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of the AGA is better than that of the DAGA on Fl and F3 which have only one 

global optimum. But the DAGA outperforms the AGA on F5 which has several local 

minima. 

3.3.2    Results for Rastrigin function 

Algorithm solved avg avg. eval total evals total time(sec) time/eval(/^sec 
AGA 5 0.9 390,356 11,710,680 18,540 1,583 

DAGA 24 0.1 338,336 10,150,080 304 30 

Table 3.3: Performance of the AGA and DAGA on Problem 4 on the CM-5 with 
400 nodes (solved: number of runs solved, avg: average best of 30 runs after 400,000 
evaluations, avg. eval: average number of evaluations, total evals: total number of 
evaluations, total time: total execution time in seconds, time/eval: time taken per 
one evaluation in microseconds). 

For this problem, we run the AGA and DAGA for 30 runs with 400,000 evaluations 

and report the number of runs in which the global optimum is found with the average 

fitness of the best individuals at the end of each run. We set the population size as 

400 to compare the results with those found in the literature [21]. As shown in Table 

3.3, the performance of the DAGA for this problem is much better than that of the 

AGA. Compared to the results of the experiment done by Gordon [21], the DAGA 

outperforms the best one (Cellular GA) found in the literature on this problem. 

We also measured the execution times of each GA (shown in the last column in 

Table 3.3). The DAGA is about 50 times faster than the AGA on CM-5 with 400 

nodes. 
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3.3.3    Results for Problem 5, 6 and 7 

Algorithm avg. eval std problem size 
AGA 51,053 6,582 50 
AGA 124,600 14,161 100 
AGA 240,429 35,028 150 
AGA 408,822 60,233 200 

DAGA 45,372 6,439 50 
DAGA 101,806 8,770 100 
DAGA 166,411 16,186 150 
DAGA 252,443 30,496 200 

Table 3.4: Performance of the AGA and DAGA on Problem 5 (solved: number of runs 
solved, avg. eval: average number of evaluations, std: standard deviation, problem 
size: problem size in bits). 

Algorithm solved avg. evals std 
AGA 21 6,453,834 4,479,478 

DAGA 50 107,718 47,122 

Table 3.5:  Performance of the AGA and DAGA on Problem 6 (avg.  eval: average 
number of evaluations, std: standard deviation). 

Algorithm solved avg. eval std problem size 
AGA 50 1,111 38 4x4 
AGA 50 9,344 1,832 8x8 
AGA 43 2,018,566 3,395,681 16 x 16 

DAGA 50 354 231 4x450 
DAGA 50 10,407 7,360 8x8 
DAGA 50 501,824 254,129 16x16 

Table 3.6: Performance of the AGA and DAGA on Problem 7 (solved: number of 
solved, avg. eval: average number of evaluations, std: standard deviation, problem 
size: the size of mesh graph). 

The tables 3.4, 3.5 and 3.6 show the performance of the DAGA compared to the 

AGA on Problem 5, 6 and 7, respectively. The results show that the DAGA reliably 

solve all three problems with a large search space. 
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The DAGA tested in this section outperforms (or is comparable to) those GAs 

found in the literature[21], [36] and [34]. 

3.4    Application Example: Design of a Fuzzy Controller for the Inverted 

Pendulum 

In this section, we demonstrate the effectiveness of the DAGA by designing a fuzzy 

controller for a benchmark system in intelligent control — the Inverted Pendulum. 

0 

w i ; 

Figure 3.10: The Inverted Pendulum 

Figure 3.10 shows the schematic diagram of an inverted pendulum system. Our 

control goal is to balance the rigid pole by exerting appropriate force F to the cart. 

Let xi(t) = 9(t) and X2(t) = 6(t), then this system can be defined by the following 

differential equations [37] : 

x\    =    Xi 

x2   = 

•    f      \   i /      \/—F—mlxl sin(a;i) \ gsm{x1) + cos{x1)(       mJm     >) 

H2(xux2,F) 

2(*i)> 
TTlc+Wl 

48 



where g is 9.8meter/sec2, mc(mass of cart) is 1.0 kg, m (mass of pole) is 0.1 kg, I 

(half length of pole) is 0.5 meter, and F is the applied force in newton. Using a 

two-step forward Euler integration we can approximate its states at time t + h: 

xi(t + 0.6h)   =   0.5hx2(t) + «i(<) 

x2(t + 0.bh)   =   0.5hH2(x1(t),x2{t),F) + x2(t) 

Xl(t + h)  = 0.5hx2(t + 0.5A) + xi(< + O.bh) 

x2(t + h)  = 0.5Atf2(zi(* +0.5ft), x2(* +0.5/i), F) 

+x2(t + 0.5Ä) 

where h = O.Olsec. 
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Figure 3.11: Initial conditions 

We define 3 fuzzy regions(NE,ZE,PO) for each input(xi,a;2) and output(F), re- 

sulting in 9 membership functions and 9 control rules. By symmetry only half the 

rules need be found. 
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Each membership function has a bell shape and the defuzzification layer uses the 

weighted average method as described in Appendix A. We assume that the inverted 

pendulum is expected to start from an initial point nearby the origin in the state 

space, therefore we optimize the membership functions and control rules using the 

GA optimizer for 60 initial conditions as shown in 3.11. 
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Figure 3.12: Optimized membership functions and control rules. 

Figure 3.12 shows final membership functions and rules obtained, and Figure 3.13 

exhibits how the fuzzy controller designed by the GA optimizer can balance the pole 
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initial conditions (10,20), (15,30), and (20,40), respectively). 
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Figure 3.14: (a) Pole length = 2.0 m, (b) Pole length = 0.5 m, (Solid, dashed, and 
dotted curves correspond to initial conditions (10,20), (15,30), and (20,40), respec- 
tively). 

from 3 different initial conditions. Although this fuzzy controller is designed for 

the initial conditions shown in Figure 3.11, it can also balance for initial conditions 

outside that region. Furthermore, this fuzzy controller can balance poles of different 

lengths as shown in Figure 3.14. Our results significantly improve upon those of [37]. 

We have demonstrated the use of the DAGA in Computer-Aided System Design. 

The DAGA optimizer for the fuzzy controller affords more reliability in global opti- 

mization than does an adaptive neural net approach [38]. We showed how the DAGA 

optimizer helps design a control system even for complex operational specifications. 

With the CM-5 supercomputer used in these studies, typical optimization runs 

are completed within several minutes. Even with a single workstation, it can be 

completed within a day. Thus the use of the DAGA in control system design is 

feasible right now. 
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3.5    Implementation of GA C++ 

In this section we describe the implementation of the AGA and DAGA on different 

platforms in the object oriented fashion using C++. The software package that we 

implemented, called the GA C++, supports the AGA and DAGA on the CM-5 super 

computer and various workstations including easy interface to any simulators defined 

by the users. 

As shown in Figure 3.15, the AGA controller resides on one workstation or one 

•node on CM-5 and simulators are distributed to other workstations or nodes.  The 

DAGA is implemented only on CM-5. The DAGA agent and simulator is running on 

each node on CM-5. 

Figure 3.16 shows the classes of GA C++. The class GA has basic methods for 

GA operators such as crossover, mutation and replace. Under the class GA, there are 

three subclasses, AGA-CM5, AGA-PVM and DAGA Agent. These three subclasses 

inherit basic methods from the GA class and control simulators distributed to other 

nodes or workstations with their own start methods as explained in Section 3.2. The 

difference between AGA-CM5 and AGA-PVM is only in communication methods 

between the AGA controller and simulators. AGA-CM5 is an implementation for 

the CM-5 and uses built-in CM-5 CMMD communication libraries. AGA-PVM is an 

implementation for workstations using PVM. 
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Figure 3.15: Implementation of GA C++. 
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Figure 3.16: GA C++ and Simulator classes. 

The class Simulator is an abstract class for interface between GA C++ and user- 

defined simulators. Simulator class provides three basic methods, evaluate, transform 

and objfunc. Using these three methods a user easily combines his/her own simulation 

and GA C++. 

Figure 3.17 shows an example of the use of GA C++ on a single workstation 

environment. In User.main program an object called sim is created from the User- 

defined-simulator class (which should inherit Simulator class and whose two methods, 

transform and objfunc are defined by the user) and passed to ga object created from 

GA class. Every cycle in GA.start we call evaluate method with an argument of 

newly created child from parents. Simulator.evaluate transforms childs chromosome 

■ (defined as a character string inside GA C++) to a set of parameters using transform 

method defined by the user and obtains fitness of child by calling objfunc which can 

be any simulation or simple function evaluation defined by the user. 
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Program User.main 
begin 

User-defined-simulator * sim = User-defined-simulator(); 
GA * ga = GA(sim, ); 
ga->start(); 

end 

Program GA.start 
begin 

initialize; 
while(evalno++<maxeval) { 

select parents; 
crossover; 
mutate; 
sim->evaluate(individual * child); 
replace; 
if (optimum found) break; 

} 
end 

Program Simulator.evaluate(individual * ind) 
begin 

double * param = transform(ind->chromosome); 
ind->fitness = objfunc(param); 

end 

Figure 3.17: Code example for GA C++ and Simulator. 
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As shown in Figure 3.16, we have a predefined subclass called DEVS Simulator 

which is a simulator based on the DEVS formalism. In the following chapters, We 

show some examples of simulation based optimization with GA C++ and DEVS 

C++ Simulator. 
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CHAPTER 4 

DEVS Modelling Example: Watershed 

An example of distributed watershed hydrology will illustrate modelling and sim- 

ulation in the high performance simulation based optimization environment. 

Rainfall runoff in a watershed is a complex process. Many factors influence this 

process, including the conditions of the soil surface and its vegetative cover, the 

properties of the soil such as its porosity and hydraulic conductivity, and the current 

moisture content of the soil. 

The complexity of watershed hydrology calls for powerful modelling methodologies 

able to handle spatial interaction over a heterogeneous landscape as well as temporal 

dynamics introduced by varying rainfall conditions. Geographic Information Systems 

(GIS) can provide the spatially referenced data necessary to represent topography, 

rainfall, and soil state distributions. Spatial dynamic models are needed to project 

such states forward in time. However conventional differential equation formulations 

entail an enormous computational burden that greatly limits their applicability. By 

combining GIS, for state characterization, and DEVS, for dynamic state projection, 

we derive an approach that can achieve realism within feasible computational con- 

straints, albeit in high performance environments. 
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Figure 4.1: Grid based representation of a watershed. 

Figure 4.1 shows a typical watershed, which consists of several vertical layers, 

such as air, surface water, subsurface soil, ground water and bedrock. We divide it 

into many small cells and develop a conceptual hydrology model for each cell that 

can be readily mapped into a DEVS component model. Then we define how the 

directions of water flow are coded in a grid space and how the varying influx rates in 

the discretized landscape are linked to create a coherent total runoff. 

4.1     A Conceptual Hydrology Model for a Cell 

As shown in Figure 4.2, we conceptually represent a cell with three vertically 

connected reservoirs. The rainfall input (r(t)) is partially intercepted by vegetation 

•cover and the rest of it, the effective rainfall (re(f)), becomes the source of surface 

runoff and the infiltration. The surface reservoir receives the inputs, the effective 

rainfall (re) and inflow (qi(t)) from the neighbor cells, and generates the outputs, the 
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Figure 4.2: Conceptual hydrology model for a cell, 

runoff (qo(t)) to neighbor cells and infiltration(/(£)) to the subsurface reservoir. The 

underground reservoir works similar to the surface reservoir except for infiltration. 

We define the water depth on a cell, the rainfall excess (Rx(t)), and the runoff 

(qo(t)) as follows: 

Rx(t) =  f\re(t) + X>'.-(*) - f(t) -Y,10i(t))dt 

C(Si(t))a(Rx(t))
b 

qOi(t) = 
Wi 

(4.1) 

(4.2) 

where 

qii(t): inflow from zth neighbor cell, 

qoi(t): runoff to ith. neighbor cell, 
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Figure 4.3: Connection of Cells 

C: a parameter characterizing the surface roughness at the cell's location, 

Si(t): slope to the ith neighbor cell, 

a, b: some constants, 

Wii distance to the ith neighbor cell. 

The slope 5; is computed by: 

Si(t) = 
h-hj + P(Rx{t) - Rxi(t)) 

Wi 
(4.3) 

where h = altitude of the cell, Rxi = rainfall excess of ith neighbor cell, hi = altitude 

of ith neighbor cell, P = a constant (refer to Figure 4.3). 

As shown in Figure 4.3, each cell can have at most eight neighboring cells. How- 

ever, we may consider only four connections by ignoring diagonal neighbor cells or 

even one connection (the direction of maximum runoff) depending on communication 

overhead costs and required accuracy of simulation results. Some experimentation 

indicates that there is not much difference in flow patterns between 4 and 8 neighbors 
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models but that the "gradient" (maximum flow) generates a distinctly different, and 

less realistic looking behavior. 

4.2    DEVS representation of Infiltration 

In this section, we show how DEVS can represent the continuous infiltration pro- 

cess. 

During a rainstorm, the rate of rainfall changes constantly. Partly because of 

limitations in measuring equipment, we commonly approximate this rate change with 

a finite number of relatively short pulses. Each pulse is assumed to have a constant 

rate, but the rate changes from pulse to pulse. This sequence of rainfall pulses is 

both temporally and spatially distributed. 

Infiltration is the process by which portions of the rain that are not intercepted by 

plants or surface litter enter the soil. The infiltration rate is not constant. Its pattern 

responds to the variation in rainfall rates and to the accumulated infiltration amount. 

If the area of each cell in the grid based representation of watershed (Figure 4.1) is 

small enough, it can be considered as a point source. There are several mathematical 

models to compute infiltration for such a point source and most of them have the form 

of nonlinear differential equations which are generally solved by iteration methods 

such as the Newton-Raphson method. Discrete event simulation has been shown to 

afford many advantages such as flexibility and efficiency over continuous simulation 

for large scale landscape models [39]. 
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Although the continuous system model described by a set of nonlinear differential 

equations can be directly converted to a DEVS model without considering efficiency, 

we need a model that fully takes advantage of discrete event simulation [40]. 

We adopt the approach of [40] to develop a DEVS model for infiltration by ab- 

stracting a continuous model described by the Green-Ampt equation [41]. A fuzzy 

system is designed to solve the Green-Ampt equation for significant events of the 

infiltration process without using iteration methods in the proposed environment. 

4.2.1    Green-Ampt Infiltration Model 

The Green-Ampt equation has became widely used to compute infiltration in 

catchment-scale hydrologic models [42, 43]. In addition to the fact that the pa- 

rameters in the equation have physical significance, experimental works have been 

completed or are underway to obtain values for the parameters based on soil texture 

and on the effects of management [44]. 

The rate form of the Green-Ampt equation for the one stage case of initially 

ponded condition is 

/c(*) = ^a(l + (4-4) 

where /c(/) = infiltration capacity(L/T), Ke = effective saturated hydraulic con- 

ductivity (L/T), if) — average capillary potential at the wetting front(L), 6a = soil 

moisture deficit(L/L), and F(t) = cumulative infiltrated depth(L) (note: L and T 

represent length and time for all variables). The soil moisture deficit can be computed 

63 



as 

Od = Os — Oi = r)(Smax — Si) (4.5) 

where 9S = volumetric water content at saturation(L/L), 0,- = initial volumetric water 

content (L/L), 77 = soil porosity, and Smax and Si are maximum and initial values of 

relative saturation. 

Recognizing that fc(t) = -jp, we integrate this relation to obtain 

F(t) = Ket + Wdln[l + ^nr) (4.6) 

Equation 4.6 is normally solved numerically for successive increments of time using 

the Newton-Raphson iteration method. 

Stage SI: No Runoff 
Stage S2: Transition 
Stage S3: Constant Runoff 

t      Time(hours) 

Figure 4.4: Green-Ampt infiltration model. 
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Figure 4.4 shows the infiltration capacity and the rainfall excess during a constant 

rainfall. There is no rainfall excess until the rainfall intensity becomes larger than the 

infiltration capacity. The rainfall intensity is lager than the infiltration capacity after 

the time to ponding (tp) where the rainfall intensity equals to the infiltration capacity. 

Equation 4.4 shows that the infiltration capacity fc asymptotically approaches to Üfe, 

and the rainfall excess can be considered as a constant after the time to constant 

runoff (Zc) where fc becomes Ke + e for small e. We can divide the infiltration process 

into three stages, a stage without runoff, a stage with transitional runoff and a stage 

with constant runoff using tp and tc as in Figure 4.4. 

4.2.2    DEVS Model for Infiltration 

The infiltration process in Section 4.2.1 can be described by the DEVS formalism 

in an efficient way if the following can be calculated: 

1. The time to ponding (tto-ponding) from any time t where the rainfall intensity 

changes in stage SI. This time is a function of the rainfall intensity and the 

cumulative infiltrated depth at t. 

2. The time to constant runoff from tp (tto-const =tc — tp) where the rainfall excess 

can be considered as a constant. This time is only a function of the cumulative 

infiltrated depth at tp. 

3. The cumulative infiltrated depth F(tc). 
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A DEVS model M for infiltration can be defined as 

M -< X, S, Y, Sint, Sext, A, ta > 

where X = {rin\ rin = input rainfall intensity (L/T)}, Y = {y\ y = runoff (L/T) }, 

S = {s\ s == (phase,sigma,rcur, re, -F, Tto-conat) }, rcur = current rainfall intensity 

(L/T), re = rainfall excess (L), F = cumulative infiltrated depth (L), and Tto-const 

= remaining time to constant runoff. 

In Section 4.2.1 we divided the infiltration process into three stages—NoRunoff 

(stage Si), Transition (stage S2), and ConstantRunoff (stage S3). We define 

phase as one of NoRunoff, Transition, and ConstantRunoff for each stage SI, 

S2, and S3, respectively. In addition to these three phases we need two more phases, 

Transition0 and ConstantRunof f°, to generate the output when the rainfall inten- 

sity changes during stages S2 and S3. 

The internal transition function <$,nt, the external transition function 8ext, and the 

time advance function ta for the DEVS model M are shown below. 

• The internal transition function Sint(s) = s', where s' = (phase', sigma', r'cur, 

r'   F' V \ 'ei        i     to—const/ 

When phase = NoRunoff 

F' = F + fcur * sigma 

rl   _   rCur*Uo-const(F')-{F(tc)-F') 
e tto-const(F') 
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phase' = Transition 

sigma' = ta(s) (Variables not shown are unchanged.) 

When phase = Transition 

F' = F{tc) 

re 
== rcur     jve 

phase' = Constant Runoff 

sigma' = ta(s) 

When p/mse = Transition0 

phase' = Transition 

sigma' = Tt0-const 

When pfoase = ConstantRunoff° 

phase' — ConstantRunof f 

sigma' = ta(s) 

• The external transition function Sext(s,e,x) = s', where s' = (phase', sigma', 

r'      r'   F'  T! t) 'curl ' ei x    '     to-const/ 

When phase = NoRunoff 

F' = F + rcur * e 

sigma' = £a(s) 

When p/mse = Transition 
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TL-const = si9™a - e 

"Te 
= Te       ycur       Tin) 

rcur ~ rin 

phase' = Transition0 

sigma' = 0 

When phase = ConstantRunoff 

F' = F + Ke*e 

cur          i? i 

r' =r' ' e           cur -Ke 

phase' = ConstantRunoff 

sigma' = 0 

• The time advance function ta(s): 

When phase = NoRunoff 

tQ>\8) = '-to—pondingy cur 5 " ) 

When phase = Transition 

ta(s) = tt0-const(F) 

When phase = ConstantRunoff 

ta(s) = 00 

• The output function A(s): 
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At the end of phase = NoRunoff 

\(„\  _   rcur*Uo-const(F)-(F(tc)-F) 
V   / tto-const{F) 

At the end of phase = Transition0 

\{s) = re 

At the end of phase = Transition 

A\S) = rcur     J\e 

At the end of phase = ConstantRunof f° 

X(s) = re 

The operation of the model M is as follows: 

1. At time t = 0, the phase is NoRunoff and the next event is scheduled as 

sigma = tto-.ponding(r, F), where r is the rainfall intensity and F is the cumula- 

tive infiltrated depth at t = 0. 

2. If the rainfall intensity changes at time tx during stage SI, the next event is 

rescheduled as sigma = tt0-ponding{r-,F). 

3. Note that between tp and tc the rainfall excess and, therefore the output runoff, 

varies. A DEVS model, however, can only approximate this curve by finite 

number of outputs. If the rainfall intensity doesn't change during stage S2, the 

output at tp is to represent the rainfall excess between tp and tc. Conservation 

of mass requires that re x (tc - tp) = total runoff. Therefore, at time t = tp, the 
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rainfall excess is approximated as re = r*tto-e°"»n p'~>Fy' p', where r is the 

rainfall intensity, U0-const(Fp) = tc — tp, Fp is the cumulative infiltrated depth 

at tp, and F(tc) is the cumulative infiltrated depth at time tc. The next internal 

event is scheduled as sigma = tto-Const{Fp). 

4. Consider a rainfall intensity change at ti(tp < t\ < tc). We update sigma = 

sigma — e, where e is time elapsed since the last internal or external model 

event. The rainfall excess r'e is recalculated as r'e — re — (rcur — rtri)(recall that 

rcur = current rainfall intensity and rtn = new input rainfall intensity). Note 

that the rainfall intensity change only affects the rainfall excess but not the 

infiltration process [41]. 

5. At time t = tc, the rainfall excess is calculated as rcur — Ke. The next event is 

scheduled as sigma = oo, i.e., the model will remain passive unless activated 

by an external event. 

6. The rainfall intensity change at time t during stage S3 recalculates the rainfall 

excess r'e as r'e = r — Ke, where r is the rainfall intensity at time t. 

To realize the above DEVS model we need to represent the Green-Ampt solution 

for tto-ponding, Uo-const, and F(tc). Although the DEVS model for infiltration ap- 

proximates the rainfall excess for the transitional stage as finite number of outputs, 

this is not a major source of error for a long term simulation of a large watershed 

represented by a grid system of small cells — the intended application. 
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Figure 4.5: DEVS approximation model behavior (Solid and dashed curve represent 
the outputs of the DEVS and continuous model, respectively). 

Figure 4.5 shows the behavior of the DEVS model for infiltration during a constant 

rainfall compared to that of the continuous system model. For constant rainfall input, 

the DEVS model approximates the continuous curve of rainfall excess in two steps. 

Since only two computations are needed, simulation of the DEVS model is more 

efficient than that of the continuous model which may need thousands of small steps. 

4.2.3    Implementing a DEVS Model using a Fuzzy System 

In Section 4.2.2, we presented a DEVS model for infiltration, but we need solve 

the Green-Ampt equation for three unknowns, tt0-Ponding, Uo-const, and F(tc), to 

implement it. We can analytically solve the Green-Ampt equation for U0-ponding in 

the case that the duration of a rainfall event is divided into many short periods in 
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such a way that within each period the rainfall intensity is essentially constant [45]. 

Assuming that the rainfall intensity changes from rprev to rcur at time t for t < tp, 

we can calculate the time to ponding U0-p0niina since we know that the infiltration 

capacity (fc(tp)) and the cumulative infiltrated depth (Fp) at tp should be rcur and 

rPrevt + fcurUo-ponding, respectively. If the rainfall intensity changes more than once 

before time t, then Fp should be F(t) + rcur x tto-p0nding, where F(t) is the cumulative 

infiltrated depth at time t. Using Equation 4.4, the time to ponding from any time 

t can be calculated as 

/ .     (r pm_M!)+Ml!^ (A7] ''to—ponding \> CUD 
r V')) — / »y- \ V*'') 

Tcur v cur       -^-e) 

and tto-ponding is a function of the rainfall intensity rcur and the cumulative infiltrated 

depth F at time t. 

We defined the time tc as the instant when the infiltration capacity f(tc) becomes 

Ke + e, and from Equation 4.4, the cumulative infiltrated depth F(tc) is 

^ (4.8) 

The Green-Ampt equation allows us to solve it for the time to ponding and the 

cumulative infiltrated depth F(tc) analytically, but it doesn't allow us to solve it for 

tto-const which is a function of Fp. There are several ways to solve this problem. One 

possible solution is to use approximation forms of the Green-Ampt equation which 

allow analytical solution for tto-const{Fp) [46]. The second one is to maintain a lookup 

table which contains all solutions for every possible input event. However this scheme 
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requires a lot of memory. Another way is to maintain the approximate solutions using 

different types of computational structure such as neural networks or fuzzy systems. 

In this paper we use a fuzzy system described in Appendix A to hold the solutions 

of tto-const(Fp) for the whole range of Fp. 

The range of Fp can be calculated from Equation 4.4 for a given soil, a range of 

input rainfall intensity, and an infiltration capacity at tc. At tp, the rainfall intensity r 

is fc and the cumulative infiltrated depth F is the ponding depth Fp. From Equation 

4.4, 

Thus, 

tp 

Fmi, = -!&%- (4.9) 

where Fpmin is the minimum ponding depth and rmax is the maximum rainfall inten- 

sity. Let the infiltration capacity and the cumulative infiltrated depth at tc be fc(tc) 

and F(tc), respectively, then the maximum ponding depth Fpmax is . ut-x since 

Fp < F(tc). If we define fc(tc) as Ke + e, then 

"pmax —- V       "J 

Given the range of Fp as in equations 4.9 and 4.10, we can solve the Green-Ampt 

equation for tt0-const for a given number of training input points and design a fuzzy 

system that approximates the solutions using the AGA optimizer. 
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4.2.4    Experimental Results 

Green-Ampt parameter values for a silt soil are Ke = 5.0 (mm/h), i/> = 190.0 

(mm), and 7/ = 0.42 [44]. Let the maximum rainfall intensity rmax be 200.0 (mm/h), 

Am««-be 1.0 and Si be 0.5, then Fpmin is 1.02 (mm) from Equation 4.9. We chose 

e to be Ke x 0.2 to keep tc close to 1 day, and Fpmax is calculated as 199.50 (mm) 

using Equation 4.10. The possible range for the output (tto-const) can be obtained 

by solving the Green-Ampt equation using an iteration method. As shown in Figure 

4.6, tto-const has a value between 0.0 (hours) and 32.0 (hours). 

It may happen that a better fuzzy approximation is obtained by locating the 

center of some membership functions outside the range calculated above. Therefore, 

we extended the search space by 60% and defined three fuzzy regions for -60.0 < 

Fp < 260 and -9.6 < tto-const < 41.6. We then optimized the membership functions 

and rules at the same time using the DAGA optimizer described in Chapter 3. 

Figure 4.6 shows the solution for tto-Const by the fuzzy system compared to the 

solution by the Newton-Raphson method, which is the target of the fuzzy system, 

and the solution by the two-term Taylor series approximation. 

The experimental results show that the fuzzy system can solve the Green-Ampt 

equation for tto-const within 0.3 hours maximum error. The fuzzy system approxi- 

mates tto-const better than the two-term Taylor series approximation of the Green- 

Ampt equation which recently appeared in the literature [46]. The latter suffers 3.5 

hours maximum error as shown in Figure 4.6.  The fuzzy system was trained using 
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Figure 4.6: The time to constant runoff Uo-const for the silt soil (Dashed, solid and 
dotted curves are obtained for the fuzzy system, Newton-Raphson method and two- 
term Taylor series approximation, respectively.). 
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only 100 data points while the curve shown in Figure 4.6 represents the output for 

1,000 input points. The membership functions of the fuzzy approximation are shown 

in Figure 4.7 and the rules are as follows: 

• Rule 1: If Fp is Small, tto-Const is 35.2 hours. 

• Rule 2: If Fp is Medium, tto-const is 31.7 hours. 

• Rule 3: If Fp is Large, tto-Const is -7.2 hours. 
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Figure 4.7: The membership functions of the fuzzy system (SM, ME, LA stand for 
small, medium and large, respectively.). 
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We need about 1,000,000 evaluations to optimize the fuzzy system. Execution 

times for this task for various processor sets on the CM-5 massively parallel computer 

are shown in Table 4.1. While it takes about 7 hours to complete an optimization 

run using 1 processor, this time is reduced to approximately 1 minute using 512 pro- 

cessors. The approximate speedup of 350 times is certainly significant in establishing 

the practicality of the approach. 

# of nodes 1 32 64 128 256 512 
execution time (sec) 25,221 1,205 615 281 149 72 

Table 4.1: The execution time to optimize the fuzzy system on the CM-5 (measured 
for 1,000,000 evaluations). 

We have devised a DEVS model for infiltration described by the Green-Ampt 

equation and shown that this model can be realized using a fuzzy system approxi- 

mation designed by GA optimization on a CM-5 supercomputer. The fuzzy system 

outperforms the two-term Taylor series approximation proposed in [46] on the same 

data set. 

The approach using fuzzy approximation requires offline training using GAs. How- 

ever it has an important benefit. Real world observed data, alone or combined with 

that generated by a mathematical model, can be used to train the fuzzy membership 

functions. In contrast, the Taylor series approximation requires a mathematically 

tractable model. 

We have also shown that fuzzy systems can represent the time to constant runoff 

for any one type of soil. However, if this technique were to be used in a watershed 
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consisting of many different types of soil, one fuzzy approximation for each would be 

required. So it remains of interest to design a fuzzy system that can represent the time 

to constant runoff for different types of soil with just one set of membership functions 

and employing one or more additional dimensions to represent soil characteristics. 

Writing the DEVS model forced us to consider several state-input conditions that 

are not typically considered in the hydrology literature. By forcing us to provide 

behaviors under these conditions, the DEVS abstraction methodology afforded new 

insights into underlying real processes. It also stimulated us to plan new experiments 

to fill in gaps in our understanding of basic hydrologic processes. 

4.3    DEVS Representation of Runoff 

Recall that for a set of component models, a coupled model can be created by 

specifying how the input and output ports of the components will be connected to 

each other and to the input and output ports of the coupled model. Due to closure 

under coupling [15], the new coupled model is itself a modular model and thus can 

be used as a component in a yet larger, higher level model. 

For the simulation of water flow in a cellular space one can envision the placement 

of an atomic model at each cell location. Thus there is an array of spatially referenced 

models that form a coupled DEVS model that can be coupled to an experimental 

frame component. DEVS atomic models are stand-alone modular objects that contain 

state variables and parameters, internal transition, external transition, output and 
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time advance functions. Two state variables are standard: phase and sigma. In the 

absence of external events the model remains in the current state, including phase 

state variable, for the time given by sigma at which time an internal transition occurs. 

If an external event occurs, the external transition immediately places the model into 

a new state, depending on the input event, the current state, the time that has elapsed 

in that state. The new state may have a new value for sigma thus scheduling the 

next internal transition. Note that DEVS recognizes the crucial role that the elapsed 

time plays in the external transition computation. This enables DEVS to faithfully 

represent the behavior of continuous systems through discrete events [11, 47]. 

The differential equation system described in Section 4.1 can be formalized in 

an atomic model cell One way, equivalent to the conventional numerical analysis 

approach, is to transform the continuous system into a discrete time approximation. 

That is, we set sigma of the cell to some constant d. Each cell updates its states 

and generates outputs to neighbor cells at every fixed time step. However, while 

straightforward, updating the states of every cell every time step imposes a heavy 

computational burden that may be far more than necessary as suggested in Section 

2.1. 

A more efficient and conceptually satisfying approach is to partition the state 

space into output equivalent blocks as shown in Figure 4.8. While its state trajectory 

remains in a block, each ce/fs output remains constant. Internal events of each 

cell correspond to boundary crossings in the celFs state space.   Given a state on a 
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Figure 4.8: State space partitioning for DEVS representation. 

boundary, each cell predicts the state that will be reached on the next boundary 

crossing and the time (sigma) to reach it. Due to the heterogeneity of soil conditions, 

slope, and input flux conditions each cell fills at a different rate and thus takes a 

different time to reach its next quantization level. Note that while it is in a quantum 

block, the cell's output fluxes to its neighbors are constant and all input fluxes are 

constant as well.  Therefore, this enables us to compute when and where the next 

level crossing (increasing or decreasing) will occur. 

For example, assume that in the cell A the rainfall excess (water depth) is RXA(t) 

and rainfall excess rate (difference between input and output) is rXA(t) at time t, then 

from Equation 4.2 and 4.3 the runoff to the ith neighboring cell (^(i + St)) at time 

■t + St is calculated by: 

RXA(t + St)   =   RXA(t) + rXA{t)St 

Rxi(t + St)   =   Rxi(t) + rxi{t)St 
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c.                  hA-hj + P(RXA(t + St) - Rxi(t + St)) 
Si{t + 6t)   =    ^ 

u , m         C(Si(t + 8t)Y(RxJ + St))b , 
qAi{t + bt)   =    — , I4.ii; 

where Rxi(t) and rxi(t) are the ith neighboring cell's rainfall excess and rainfall excess 

rate at time t, respectively. 

If the runoff of a cell to its neighbor is nD (for some integer n and quantum size 

D) at time t, then we can compute the time advance St when the runoff qAi becomes 

n(D - 1) or n(D + 1) using Equation 4.11. The equation can analytically be solved 

for the cases when P = 0.0 or when a = b = 1.0. Otherwise it can be solved by 

iteration methods. Since there can be up to eight neighbor cells and each neighbor 

cell can be in different states, the times to next level crossing for each neighbor can 

be different. In this case we have to take the minimum of these times as sigma. 

When a cell receives an external event from a neighbor, the message carries the 

latter's new output flux. The receiving cell's time and location of next boundary 

crossing may differ from that initially predicted. As indicated before, the DEVS for- 

malism can handle this situation. Since elapsed time is known, the actual water level 

can be computed and sigma recalculated to represent reaching of the next quantum 

level at the new rate using Equation 4.11. 

When the quantized cell model implemented in this way was tested, the results 

were disappointing. There was little if any reduction in computation time compared 

with discrete time models. One source of overhead that the quantized model entails, 
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not found in the discrete time model, is the extra calculation for sigma. However, 

analysis revealed that the main differentiating overhead was due to the structure of 

the DEVS-C++ simulator (described in Section 2.3). Consider the case where N 

cells, in different states, schedule their next events at different points on the real 

time axis. In this case, the DEVS-C++ simulator requires N iterations to execute 

all the events. This requires N times as many iterations than for a discrete time 

model in which the DEVS-C++ simulator updates all cells in one iteration. Note 

that the simulator can perform such a one iteration update since it implements the 

new parallel DEVS formalism where all the inputs and outputs of all simultaneously 

scheduled cells are properly managed. Thus the discrete time simulation is actually 

getting more of a boost than it would get in a conventional sequential cell scanning 

algorithm. 

This analysis immediately suggested a remedy: squeeze events dispersed over the 

time axis that are "close enough" to each other into groups, that are executed in one 

iteration. (Note that this equivalencing is, in effect, an abstraction and is prone to 

introduce error into the representation.) To accomplish this effect, we quantize the 

time axis with a time granule of size e?, in addition to quantizing the state space. 

The events between t and t + d are mapped to t + d by upward roundoff, as shown 

in Figure 4.9. Note that in this quantized and granulized representation, the outputs 

may be delayed by d in the worst case, but the change of state still propagates in 

zero time. For example, when a cell receives a flux change input from a neighbor cell 
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Figure 4.9: State space partitioning with granulized time axis, 

at time t, this causes its state to change at the same time. Then the cell sends its 

updated states to all neighbor cells also at time t without delay, setting its sigma to 

0 for this purpose. 

4.4    Experimental Results 

Figure 4.10 shows the elevation map of a watershed artificially created for exper- 

imentation. The target watershed is an array of 30 X 30 cells, each with dimension 

of 20m x 20m (400m2). We applied a 50 mm/hour rainfall to the whole watershed 

for ten hours and observed the behavior of the model during the period followed by 

a subsequent dry period. We compared the quantized DEVS models, with different 

state quanta and time granules to the simple discrete time DEVS models with vari- 

ous time steps. We chose the value 1.0 for a, b and P in Equation 4.2 and 4.3. The 

spatial evolution of flow was visually indistinguishable in all cases. However, to get 
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Figure 4.10: Elevation map of target watershed. 
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a quantitative estimate, we measured the runoff at the outlet (lowest point) over the 

20 hour period. Figure 4.11 shows hydrographs obtained by these experiments near 

the steady state and Table 4.2 shows the runoff values of each model in the steady 

state. 

Models Runoff (m3/hour) Difference from DM(dt = 0.00001) 

DM(dt=0.01) 5,152.21 186.98 

DM(dt=0.001) 4,982.91 17.68 

DM(dt=0.0001) 4,966.86 1.63 

DM(dt=0.00001) 4,965.23 0.00 

QM(D=50.0, d=0.01) 4,960.00 -5.23 

QM(D=1.0, d=0.01) 4,966.00 0.77 

QM(D=0.1, d=0.01) 4,965.08 -0.15 

QM(D=1.0,d=0.001) 4,965.60 -0.77 

QM(D=50.0,d=1.0e-8) 4,960.00 -5.23 

Table 4.2: Runoff of DEVS models in the Steady State. (DM(dt) is the discrete time 
model, QM(D, d) is the quantized DEVS model with quantum D and time granule, 
d, respectively.). 

We assume that the discrete time DEVS model with the smallest time step 

(0.00001 hour) is the most accurate one. The third column of Table 4.2 is the steady 

state difference of each model from the 0.00001-step model baseline. The results show 

the quantized model with quantum 0.1 and time granule 0.01 is closer to the baseline 

than any other model. 

Table 4.3 shows the execution times of the models on a Sparc-1000 processor. 

Simulation with the quantized model (D=0.1 and d=0.01) is 153 times faster than 

that of the discrete time model with time step 0.0001 (recall it is also more accurate) 

and 1,203 times faster than that of the discrete time model with time step 0.00001 

85 



Models Iterations Execution Time(sec) 
DM(dt=0.01) 4,000 867 
DM(dt=0.001) 40,000 8,353 
DM(dt=0.0001) 400,000 92,235 
DM(dt=0.00001) 4,000,000 726,557 
QM(D=50, d=0.01) 35,100 375 
QM(D=1.0, d=0.01) 24,200 523 
QM(D=0.1, d=0.01) 29,100 604 
QM(D=1.0,d=0.001) 87,300 2,345 
QM(D=50.0,d=1.0e-8) 3,052,100 30,096 

Table 4.3: Execution times of DEVS models, 

(from which it differs very little). The results also show that the quantum size only 

affects the steady state error.   The simulation time mainly depends on the time 

granule. 

To analyze the source of this speedup we measured the number of events (sum of 

internal and external transitions) during simulation. Figure 4.12 and Figure 4.13 show 

the number of events sampled in 0.1 hour steps and the accumulated total number of 

events in log scale (base 10), respectively. The average number of events per iteration 

in the model QM(D=0.1,d=0.01) is approximately 6 % of that in DM(dt=0.00001). 

As shown in Table 4.3 and Figure 4.13, we greatly reduce both the number of 

iterations and events by quantization and granulization without losing accuracy in 

the steady state. By this reduction we achieve about 1,000 fold speedup in simulation 

execution time. 
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Figure 4.12:  The Number of events for DM(dt=0.00001), QM(D=0.1,d=0.01) and 
QM(D=50.0,d=0.01). 
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Figure 4.13: Accumulated total number of events in log scale (base 10). 
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CHAPTER 5 

Optimization Example: Parameter Search for Watershed 

Models 

The previous chapter showed that DEVS representation for spatially distributed 

systems could greatly reduce the simulation time. In the experiments, we arbitrarily 

chose the values for C, a, b and P in Equation 4.2 and 4.3. In this chapter, we'll 

show some examples of search for these parameters of watershed models in the pro- 

posed high performance simulation based optimization environment. We will also 

propose an approach to valid aggregation for spatially distributed systems to reduce 

the simulation time. 

For experimental convenience, we employ KINEROS [48] as a target system, 

.and show how to search the optimal values of the parameters in watershed mod- 

els. The parameter search is considered only for a one-dimensional overland flow 

since KINEROS approximates overland flow as one-dimensional flow. The parameter 

P in Equation 4.3 can be considered as zero for overland flow since rainfall excess 

(water depth) difference between two cells is small enough compared to the elevation 

difference. By this assumption we have two advantages. First, we can reduce the 

communication overhead required to exchange rainfall excess data between the neigh- 

boring cells. Secondly, we can obtain an analytical form of spatial aggregation (will 
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be shown shortly). This assumption does not affect the speedups shown in Table 4.3 

since communication overhead in both discrete time and DEVS models is reduced in 

the same ratio. 

5.1    Search for the parameters a and b 

In KINEROS, overland flow is approximated as one-dimensional flow process in 

which the runoff is given by: 

Q = ahm. (5-1) 

Four options for a and m are provided in KINEROS. In the experiments, we chose 

the Manning hydraulic resistance law. In this option, 

1.49S0-5 

a = 
n 

(5.2) 

and m = §, where S is the slope and n is the Manning roughness coefficient. The 

range of Manning's roughness coefficient is from 0.01 to 0.68 which correspond to 

concrete and grassland, respectively [48]. 

We use the following steps to obtain the optimal values for the parameters a and 

b of the watershed model. 

• Step 1: Obtain the behavior of KINEROS for three simple planes with three 

different slopes for n = 0.1. 
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• Step 2: Search for the best values of the parameters, C, a and b of water- 

shed models with three different resolutions compared to the target behavior 

obtained in Step 1. 

In Step 1, we obtain the target behavior (hydrographs) for three 500 m long planes 

(the slopes of the planes are 0.01, 0.05 and 0.1, respectively) using KINEROS. Sim- 

ulations covered 3 hours of real time for the 2 hour long, 30 mm/hour rainfall event. 

In Step 2, we run optimization to find the optimal values for C, a and b for three 

watershed models with different resolutions (10, 20 and 50 cells). The criterion for 

optimization is to minimize the maximum absolute runoff error. The search ranges 

are 1.0 - 10000.0 for C, and 0.0 - 3.0 for a and b. Each parameter is decoded as a 

16-bit binary string in the GA optimizer. 

model 
resolution 

C a b maximum   runoff    error 
(mm/hour) 

optimization 
time (sec) 

10 cells 336.9 0,52 1.74 1.3 485 
20 cells 285.1 0.50 1.74 0.73 1,225 
50 cells 376.7 0.48 1.62 0.48 4,193 

•Table 5.1:  Results of parameter search for a and b (optimization time is measured 
for 20,000 GA iterations on the CM-5 with 256 nodes). 

As shown in Table 5.1, the GA optimizer found the values, 0.48 for a, 1.62 for b 

and 376.7 for C. The watershed model has a resolution of 50 cells. Its maximum 

runoff error was 0.48 (mm/hour) which was 1.6 % of the steady state runoff (=30.0 

mm/hour). This optimization takes 4,193 seconds for the 50 cell DEVS model on the 
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CM-5 with 256 nodes, while the estimated execution time on a Sparc-1000 worksta- 

tion is about 6 days. This indicates that even a simple parameter search based on 

simulation is impractical without help of the high performance optimization environ- 

ment proposed in the report. 

Figure 5.1 shows the hydrographs of the DEVS model with 50 cells compared to 

those of KINEROS for three different slopes. Figure 5.2 also shows the hydrographs 

of the DEVS model with 50 cells compared to those of KINEROS for a randomly 

generated rainfall event. In the latter case, the maximum runoff error was 0.53. This 

result shows that the values obtained for one simple rainfall pattern can be used for 

other rainfall patterns. 

5.2    Search for the C range 

In the previous section, we obtained the optimal values for parameters a and b of 

the watershed model. However, search for the optimal value of C for each cell in the 

watershed model requires the range of the parameter C. Based on the Manning's 

coefficient table given in the literature [48], it's only necessary to find the value of C 

for the concrete and grassland which correspond to Manning's coefficients, 0.01 and 

0.68, respectively. With a = 0.48 and b = 1.62 obtained in the previous section, we 

search for the optimal values of C for the concrete and grassland with the resolution 

of 50 cells. 
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Figure 5.1: Hydrographs of the optimized watershed model and KINEROS for the 
planes with the slopes of 0.01, 0.05 and 0.1. 
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Figure 5.2:   Hydrographs of the optimized watershed model and KINEROS for a 
randomly generated rainfall event. 
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The C range obtained in this experiment was from 65.6 (for grass) to 3213.1 (for 

concrete) with the maximum runoff error of 0.57 (mm/hour). The GA optimizer 

found this range within 1,000 iterations. Figure 5.3 and 5.4 show the hydrographs 

generated by the DEVS model of the grassland with the optimized parameters for 

different rainfall patterns compared to KINEROS. 
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Figure 5.3: Hydrographs of the optimized watershed model and KINEROS for slope 
0.01, 0.05 and 0.1. 

Another experiment was conducted to show how the resolution of watershed affects 

the modelling accuracy, the optimal value of C and the search time. The experiment 
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Figure 5.4: Hydrographs of the optimized watershed model and KINEROS for ran- 
domly generated rainfall event. 
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found the optimal value C of the watershed model with seven different resolutions 

(1, 2, 4,8, 16, 32, 64 cells) for the target watershed in the previous section (n = 

0.1). As shown in Table 5.2, the optimal value of C depends on the resolution of the 

watershed model. However, the optimal resolution that minimizes the runoff error 

is not the highest one. This result seems to fly in the face of the usual assumption 

that higher resolution is better. It may be that there is an optimal level of resolution 

for a given behavior. We have not probed deeper to resolve why this should be so. 

(The situation is reminiscent of numerical integration methods where decreasing step 

size may sometimes increase error due to propagation of roundoff error introduced at 

each step (over more steps as resolution increases)). 

model 
resolution 

C maximum   runoff   error 
(mm/hour) 

optimization 
time (sec) 

1 cell 659.0 4.30 54 

2 cells 538.3 3.33 65 
4 cells 466.9 2.52 136 

8 cells 419.7 1.71 361 
16 cells 396.7 1.03 986 
32 cells 381.3 0.44 2,412 

64 cells 369.5 0.52 5,655 

Table 5.2: Results of parameter search for C (although the best values are obtained 
within 1,200 GA iterations for all cases, the optimization time is measured for 20,000 
iterations on the CM-5 with 256 nodes). 

5.3    Search for C surface roughness 

Two previous sections obtained the optimal values for a, b and the range of C 

by the experiments.   This section addresses the problem of how to search for the 
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best value of C within each cell of the watershed model for a given target watershed. 

Although the GIS data base can provide roughness information to some extent, the 

parameter search or tuning is still required to obtain an optimal C value for each cell 

since it depends on the resolution of watershed models as shown in Table 5.2. 

However, parameter search for large watersheds takes a tremendous amount of 

time as shown in Table 5.3. For example, one simulation run of the DEVS model 

with a quarter million cells takes about three days on a Sparc-2 processor. Thus 

parameter search requiring 20,000 GA iterations takes about 1.5 centuries. Moreover, 

this is calculated under the assumption that GAs can optimize a quarter million 

parameters within 20,000 iterations. 

Number of cells Execution time/run (sec) Execution time/20,000 runs 
961 cells (31 x 31) 242 2 months 
3,696 cells (63 x 63) 1,486 1 year 
16,129 cells (127 x 127) 8,084 5 years 
65,025 cells (255 x 255) 49,319 3 decades 
261,121 cells (511 x 511) 231,177 1.5 centuries 

Table 5.3: Execution times of watershed models on a Sparc-2 processor for a 2 hour 
rainfall event. 

input 1 input 2 input n 

' ' ' ' 

component 
model     1 output 1 component 

model    o 
output 2 

P 
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P 9 

Figure 5.5:   A system that has some number of component models connected in 
cascade. (Pn is a parameter in component model n.) 
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To solve this problem, consider the system with n component models connected 

in cascade shown in Figure 5.5. Assume that each component model n has one pa- 

rameter to be optimized. It is clear that parameter optimization for the component 

model 1 is not dependent on any other component models when the output of model 

1 does not depend on the states of any other model. With the optimized component 

model 1, parameter optimization for the component model 2 becomes independent of 

other component models in the same condition. Thus we can transform a big search 

problem into many smaller search problems. This method, incremental optimiza- 

tion, can be applied to watershed models when the direction of water flow does not 

change during a rainfall event. This incremental optimization may not find the global 

optimal solutions, but it can greatly reduce the optimization time. The estimated 

optimization time for the 511 x 511 watershed model with this method is about 2 

days on the CM-5 with 512 nodes. That is, we can reduce 2 years of optimization 

time to 2 days. Estimation is based on the assumption that it takes 1,000 iterations 

to tune one parameter of one cell (the execution time of 1,000 GA iterations for the 

watershed model with 1 cell is measured as about 0.7 seconds). 

To generalize the incremental optimization, consider the system in Figure 5.6. 

Assume that the system has nxn blocks of models and each block has mxm models 

(that is, the system has N x N models in total for N = n x m). If the input/output 

behavior of each model inside the blocks is available, an N x N parameters search 

problem can be reduced to N x N single parameter search problems as explained 
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Figure 5.6:  A system that has n x n blocks of models and each block has m X m 
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above. However, if only the input/output behavior for each block is available, the 

N x N parameter search problem is transformed into n x n (m x m)-parameter 

search problems. The reduction of optimization time for this case depends on the 

complexity of GAs. Let the complexity of GAs be 0(lk), where / is the chromosome 

length and A; is a constant. Then the complexity of the N X N parameter search 

problem is 0((N x N)k) and that of the n x n (m x m)-parameter search problems 

is 0(n xnx(mx m)k). From N = n x m, we can achieve (n x n)fe_1 fold speedups. 

The constant k depends on the problem to be optimized by GAs. 

An experiment is conducted to show the effectiveness of incremental optimization 

and to get the complexity of GA optimization for watershed models. We randomly 

create the target watersheds (one-dimensional DEVS models) with 4 different number 

of cells. The slopes and C values are chosen between 0.01 and 0.1, and between 50.0 

and 3500.0, respectively. We run GA optimization until it finds the watershed model 

with the maximum runoff error of 1.5 mm/hour (which is 5 % of the steady state 

runoff). Table 5.4 and 5.5 show the results of the experiment. As shown in the tables, 

the incremental optimization markedly reduced execution time. Table 5.4 also shows 

the complexity of the GA optimizer for watershed model. The constant k in 0(lk) is 

definitely more than 2. 
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number of cells GA iterations maximum runoff error Execution time(sec) 
4 508 1.00 40 
8 11,589 1.00 87 
16 60,200 1.50 780 
32 312,239 1.48 7,650 

Table 5.4: Results of global optimization (execution times are measured on the CM-5 
with 256 nodes). 

number of cells GA iterations maximum runoff error Execution time(sec) 
4 352 1.00 5 
8 630 1.00 7 
16 920 1.50 9 
32 1,215 1.48 11 

Table 5.5: Results of global optimization (execution times are measured on a Sparc- 
1000). 

5.4    Spatial Aggregation 

The previous chapter showed that DEVS abstraction could greatly reduce the sim- 

ulation time. However, simulations of large watershed models still require a powerful 

computer such as the CM-5 or IBM SP2. Table 5.3 shows that one simulation run for 

511 X 511 cells on one Sparc-2 processor takes about 3 days. The table also indicates 

that lowering the spatial resolution with some allowable error can greatly reduce 

simulation time. For example, lowering the spatial resolution by a factor of 4 , from 

511 x 511 to 127 x 127, reduces simulation time by the factor of 30 as shown in Table 

5.3. To do so, we develop an approach to valid aggregation of spatial watershed mod- 

els based on parameter morphism. Aggregation of the states for variable-resolution 

.modeling was studied by Davis [49].   Abstraction of DEVS models by aggregation 
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was studied by Zeigler [7]. As far as we know, however, there has been no research 

related to aggregation of spatially distributed systems. 

base model 

state 

a given 
state mapping 

parameters 

output 

parameter 
mapping 

&>  ^--j-^ output error 

state 

parameters 
output 

lumped model 

Figure 5.7: Parameter morphism. 

Parameter morphism is defined as a parameter mapping that yields a lumped 

model, a valid abstraction, of a base model in some experimental frame. As shown 

•in Figure 5.7, parameter morphism preserves the output behaviors of the base and 

lumped model with some allowable error. There are two methods to derive parameter 

morphism — a GA optimization based method and an analytical method. In the 

former, parameter morphism can be obtained using GA optimization as shown in 

Figure 5.8.    In the latter, parameter morphism can be obtained analytically (an 
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GA optimization 

fitness 

parameters 

Lumped model 

state/output trajetory 

Base model 
state/output trajetory 

Figure 5.8: Parameter morphism by GA optimization, 

example will be shown shortly). We will not show the example of the former method 

since it's a trivial GA optimization problem. 

Consider a simple one-dimensional watershed shown in Figure 5.9. We will ag- 

gregate pairs of adjacent cells, i and i + 1, into single cells. The problem is how to 

obtain a surface roughness value Cj of the low resolution model from the values, c; 

and c,-+i of a high resolution model. With the assumption of P = 0.0, one possible 

set of reasonable constraints for this spatial aggregation is: 

Rxi   = 

Si 

2  ' 

2 

(5.3) 
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Figure 5.9: Spatial aggregation for one-dimensional flow. 

105 



From equations 4.2 and 5.3, the surface roughness Cj of the low resolution model is 

calculated by: 

d = ci+1(-^-n 2r:i+1 )"■ (5-4) 

As shown in Equation 5.4, the parameter Cj depends on rainfall excess of the high 

resolution model. In other words, Cj must be time varying to satisfy the constraints 

given by Equation 5.3. However, in the steady state, 

qi+1 = g,- + r,-+i, (5.5) 

where ri+1 is the rainfall intensity for cell i + 1. Using equations 4.2 and 5.5, in the 

steady state we have: 

w w 
where W is the width of a cell in the high resolution model. Under zero rainfall, we 

have r;+i = 0, and 

r,, = (2±^)tr.i+I. (5.7) 

From equations 5.4 and 5.7, C is calculated as: 

2«m    XB, 2 ,6 ^^ 
c' = Ci+l(^T^)0(iT^^i) 

Although steady state and zero rainfall conditions were employed to derive Equa- 

tion 5.8, we can experiment to see how well this parameter mapping works in general. 
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5.4.1    Experimental Results 

In this section, we will present some experimental results for spatial aggregation 

based on the proposed parameter mapping. 

To show how much we can reduce spatial resolution, we did the following experi- 

ments. 

• Step 1: Create the base (high resolution) model with a randomly generated C 

value (within the range found in the previous section) and slope for each cell. 

• Step 2:   Obtain the lumped models using the parameter mapping given by 

Equation 5.8 and measure the error between the lumped and base models. 

In Step 1, we create the base model with 128 cells for a 2,560 m long watershed 

and randomly assign the slope s and C values to each cell (0.01 < s < 0.1, 60.0 < 

C < 3500.0). In Step 2, we apply the parameter mapping to the base model and get 

a lumped model. We repeat the lumping process until we get a lumped model with 

only 1 cell. We measure the runoff error between the base and lumped models in 

each lumping step. The maximum absolute error is the criterion for comparison. 

The tables 5.6, 5.7 and 5.8 show the results for three different randomly generated 

base models. Simulations covered 3 hours of real time with 2 hour long 30 mm/hour 

rainfall event. The results show that we can reduce the spatial resolution by a factor 

of 8 with less than 10 % error from the steady state value of runoff. Figure 5.10 

shows the hydrograph (runoff) of the base and lumped models at the outlet of the 
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Models maximum runoff error (mm/hour) 
base (128 cells) 0.00 
lumped (64 cells) 0.50 
lumped (32 cells) 1.42 
lumped (16 cells) 2.72 
lumped ( 8 cells) 4.28 
lumped ( 4 cells) 6.28 
lumped ( 2 cells) 8.78 
lumped ( 1 cells) 10.44 

Table 5.6: Runoff error between base and lumped model for base model 1 (simulated 
for 3 hours with a 2 hour long 30 mm/hour rainfall event). 

Models maximum runoff error (mm/hour) 
base (128 cells) 0.00 
lumped (64 cells) 0.60 
lumped (32 cells) 1.37 
lumped (16 cells) 2.37 
lumped ( 8 cells) 3.75 
lumped ( 4 cells) 5.62 
lumped ( 2 cells) 8.12 
lumped ( 1 cells) 10.19 

Table 5.7: Runoff error between base and lumped model for base model 2 (simulated 
for 3 hours with a 2 hour long 30 mm/hour rainfall event). 

Models maximum runoff error (mm/hour) 
base (128 cells) 0.00 
lumped (64 cells) 0.51 
lumped (32 cells) 1.23 
lumped (16 cells) 2.26 
lumped ( 8 cells) 3.70 
lumped ( 4 cells) 5.42 
lumped ( 2 cells) 7.42 
lumped ( 1 cells) 9.84 

.Table 5.8: Runoff error between base and lumped model for base model 3 (simulated 
for 3 hours with a 2 hour long 30 mm/hour rainfall event). 
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watershed.   Smaller error after the rain stops is consistent with the assumptions 

behind parameter mapping. 

Runoff (mm/hour) 

0.00 50.00 100.00 150.00 Time (rain) 

Figure 5.10: Runoff of the base model and lumped models 

Models Execution time (sec) 
base (128 cells) 60.1 
lumped (64 cells) 26.3 
lumped (32 cells) 10.2 
lumped (16 cells) 4.0 

Table 5.9: Execution times of the base and lumped models on a Sparc-2 processor. 

In Table 5.9, execution time of each model measured on a Sparc-2 processor shows 

we can achieve about 15 fold speedup by lumping with less than 10 % error. 

5.4.2    Multiresolution search based on parameter morphism 
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Figure 5.11: Multiresolution search strategy. 

As shown in the previous sections, parameter morphism can greatly reduce the 

simulation time of watershed models. This section addresses the optimization time 

reduction for watershed models using a multiresolution search. As depicted in Figure 

5.11, the multiresolution search strategy can obtain the optimal values of the pa- 

rameters in the high resolution model if the parameter values of the high resolution 

models are located in the vicinity of those of low resolution models. That is, we first 

search for the optimal parameters in the low resolution model. Then we search for 

the parameters in the high resolution model in the vicinity of the values. This process 

is repeated until the model with the desired level of resolution is found. This method 
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may reduce optimization time.   But we leave the research related to this topic as 

future work. 
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CHAPTER 6 

Conclusions 

This report proposed a high performance simulation based optimization environ- 

ment capable of supporting the design and modeling of large scale systems with 

natural and artificial components at high levels of resolution. 

We demonstrated the advantage of using the DEVS formalism to represent large 

scale continuous system models in efficient high fidelity. For example, in the case 

of watershed behavior discussed in the report, traditional approaches based on par- 

tial differential equations decompose the watershed into "parking lots", each with 

builtin channel flow - without such coarse representation, such simulations would 

take months or years to complete. In contrast, our high resolution model allows 

channel flows to "emerge" from the underlying water dynamics and landscape topog- 

raphy. Figure 6.1 is an elevation map of a real watershed, Brown's Pond. Figure 6.2 

shows the distribution of runoff at some time after a uniform rainfall. One can see 

that channels have formed that are clearly correlated with the topography. 

It should be noted that hybrid models containing both discrete and continuous 

components offer an attractive alternative and are undergoing intensive research [50]. 

However, without mapping the continuous parts to DEVS they can not exploit the 
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Altitude(m) 

X 40(m) 

Figure 6.1: Brown's pond elevation map. 

ninoffOTV^/hour) 

Figure 6.2: Brown's pond runoff (ra3/hour) after 2 simulated hours (1 hour after end 
of 1 hour long rainfall). 
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thousand-fold speedups necessary to achieve feasible optimizations of complex sys- 

tems. As shown in the report, the quantized/granulized DEVS model achieved the 

thousand-fold speedups compared to the discrete time model. 

The searcher layer has employed Genetic Algorithms to provide generic robust 

search capability. We have developed a class of parallel Genetic Algorithms, called 

Distributed Asynchronous Genetic Algorithm (DAGA), which provides the speed 

required for simulation based optimization of large scale systems with various appli- 

cations. 

Coded in the object-oriented language, C++, the proposed environment runs on 

both serial and parallel computing platforms [51]. The universality of the the DEVS 

modelling formalism, the portability of the C++ implementations, and the robustness 

of the GA searcher layer are intended to facilitate widespread use of the environment. 

We have presented actual experiments that show how each of the sources — DEVS 

representation, and distributed GA-based search can individually achieve thousand 

fold speedups. With the DEVS representation, and the combined simulation/searcher 

layers each affording a thousand fold speedup, taken together, these sources of high 

performance can achieve at least a million fold speedup over current workstation 

performance levels. As indicated, performance increases of such scale will make 

possible some ambitious studies that are not feasible today. 

This report also proposed an approach to valid aggregation of spatially distributed 

systems based on parameter morphisms, and showed its validity and reduction of 
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simulation time for watershed models. However, several topics such as spatial aggre- 

gation for two-dimensional watershed models, parameter search for large watershed 

models using GA optimization based on multiresolution search strategy, and valida- 

tion of watershed models against real watersheds, still remain as future work. 
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Appendix A 

Fuzzy Systems 

The basic idea of fuzzy systems centers around the labeling process, in which the 

reading of a sensor is translated into a label as done by human expert controllers [52]. 

With expert supplied membership functions for labels, a reading of a sensor can be 

fuzzified and defuzzified. It is important to note that the transitions between labels 

are not abrupt and a given reading might belong to several label regions. 

However, the fuzzification and defuzzification processing need not be sequential. 

The input signal can be fuzzified/defuzzified simultaneously by matching membership 

functions. Therefore fuzzy control processing can be adapted to a parallel neural 

network structure where each neuron represents functions (fuzzy membership) and 

each link represents the weight of a fuzzy rule. 

Figure A. 1(a) shows the structure of the fuzzy system and its fuzzy subspace 

(Figure A.1(b)) [38]. In this example, 5 fuzzy regions are defined for the inputs and 

output. 

While an earlier fuzzy systems [53, 54] was implemented in rule-based form (if- 

then), the fuzzy system employs parallel inferencing network structure. Due to the 

parallel fuzzification/defuzzification scheme, the fuzzy system can improve real-time 

116 



input 

Input Membership 
Function 

Output Membership 
Function 

layer 1      layer 2        layer 3       layer 4        Iayer5 

I Input Signal B 

1:PL  2:PS   3:ZE   4:NS   5:NL 

(a) Fuzzy logic processor (b) Fuzzy rule table 

Figure A.l: Fuzzy inference network and fuzzy subspaces 

performance of the control system for practical applications. The operations of layers 

in fuzzy inference network are, 

Layer 1 Every node i in the first layer has a node function, 0} = //^(z)- 0} 

is the membership function of A; (a linguistic label such as positive small, negative 

large, etc.) and it specifies the degree to which x given satisfies the quantifier A;. 

Layer 2 A node in the second layer performs the generalized AND operation. 

W{ represents the firing strength of rule-i, W{ = min(iJ,Ai(x), fiß^x)). 

Layer 3 Every node computes the ratio of the i-th rule's firing strength to the 

sum of the firing strengths of all the rules, wl = ^^—. 

Layer 4 Every node computes the defuzzified value of each rule i. Of — Wifi, 

where /,• is the defuzzified value for rule i. 

Layer 5 This node computes the overall output as the summation of all 

incoming signals. O5 = £?=o Of = E-L„ Wi/t- 
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In order to find well-performing fuzzy membership functions without help of hu- 

man expertise, it is necessary to employ computer-aided optimization. Since tuning 

the membership functions requires adjusting many parameters simultaneously, hill- 

climbing search methods would suffer from the complexity of the search space. 

For this reason, GAs were employed to find optimal membership functions and 

rules in this research. 
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