
RL-TR-97-146
Final Technical Report
October 1997

HIGH PERFORMANCE OPTIMIZATION AND
ABSTRACTION OF LARGE SIMULATION
MODELS

University of Arizona

Bernard P. Zeigler and Yoonkeon Moon

APPROVED FOR PUBLIC RELEASE; D/STR/BUT/ON UNLIMITED.

DTrc QTTALrnr mspscn©^

19980310 143
Rome Laboratory

Air Force Materiel Command
Rome, New York

This report has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RL-TR-97-146 has been reviewed and is approved for publication.

APPROVED: •-"'
ALEX F. SISTI
Project Engineer

f /. ? A~K\Jl- ')

FOR THE DIRECTOR:
JOSEPH CAMERA, Technical Director
Intelligence & Reconnaissance Directorate

If your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization, please
notify RL/IRAE, 32 Hangar Rd, Rome, NY 13441 -4114. This will assist us in
maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188). Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

Oct97
3. REPORT TYPE AND DATES COVERED

Final Sep 95 - Dec 96
4. TITLE AND SUBTITLE
HIGH PERFORMANCE OPTIMIZATION AND ABSTRACTION OF LARGE
SIMULATION MODELS

6. AUTHOR(S)

Bernard P. Zeigler and Yoonkeon Moon

5. FUNDING NUMBERS

c - F30602-95-C-0250
PE - 62702F
PR -4594
TA - 15
WU -N4

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Arizona
Dept of Electrical and Computer Engineering
Tucson, AZ 85721

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Rome Laboratory/IRAE
32 Hangar Rd.
Rome, NY 13441-4114

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

RL-TR-97-146

11. SUPPLEMENTARY NOTES

Rome Laboratory Project Engineer: Alex F. Sisti, IRAE, 315-330-3983

12a. DISTRIBUTION AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Modeling large scale systems with natural and artificial components requires storage of voluminous amounts of
knowledge/information as well as computing speed for simulations to provide reliable answers in reasonable time.
Computing technology is becoming powerful enough to support such high performance modeling and simulation. This
report proposes a high performance simulation based optimization environment to suppor t the design and modeling of
large scale systems with high levels of resolution, and represents the results of contract F30602-95-C-0250, "Methodology
for Simulation Model Abstraction."

14. SUBJECT TERMS
DEVS + + , Optimization, Genetic Algorithms, Watershed Modeling, Mixed Resolution
Modeling, Model Abstraction

15. NUMBER OF PAGES

130
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

This report was prepared under requirements for Contract F30602-95-C-0250

"Methodology for Simulation Model Abstraction". It reports results of research that

was supported by this contract and that were based on earlier work funded under

Rome Labs Contract F30602-95-C-0230 and the National Science Foundation.

1/2

TABLE OF CONTENTS

LIST OF FIGURES 5

LIST OF TABLES 8

ABSTRACT 9

1 INTRODUCTION 11
1.1 Problem Statement 11
1.2 The Layered High Performance Environment 14
1.3 Needs and Sources for High Performance 15
1.4 Report Organization 18

2 The DEVS Formalism: Basis for the Simulation Based Optimization
Environment • 19

2.1 Brief Review of the DEVS Formalism 19
2.2 Confluent Parallel DEVS 23
2.3 Implementation of Confluent DEVS-C++ Simulator 26

2.3.1 Specification and implementation of containers 28
2.3.2 DEVS C++ implementation over containers classes 30

3 The GA Searcher Layer 32
3.1 Genetic Algorithms 33
3.2 Distributed Asynchronous Genetic Algorithm 36
3.3 Experimental Results of the DAGA 43

3.3.1 Results for DeJong's Suite 45
3.3.2 Results for Rastrigin function 46
3.3.3 Results for Problem 5, 6 and 7 47

3.4 Application Example: Design of a Fuzzy Controller for the Inverted
Pendulum 48

3.5 Implementation of GA C++ 53

4 DEVS Modelling Example: Watershed 58
4.1 A Conceptual Hydrology Model for a Cell 59
4.2 DEVS representation of Infiltration 62

4.2.1 Green-Ampt Infiltration Model 63
4.2.2 DEVS Model for Infiltration 65

4.2.3 Implementing a DEVS Model using a Fuzzy System 71
4.2.4 Experimental Results 74

4.3 DEVS Representation of Runoff 78
4.4 Experimental Results 83

5 Optimization Example: Parameter Search for Watershed Models 89
5.1 Search for the parameters a and 6 90
5.2 Search for the C range 92
5.3 Search for C surface roughness 97
5.4 Spatial Aggregation 102

5.4.1 Experimental Results 107
5.4.2 Multiresolution search based on parameter morphism 109

6 Conclusions 112

Appendix A. Fuzzy Systems 116

REFERENCES 119

LIST OF FIGURES

1.1 Layered representation of simulation based decision making 13
1.2 Search controlled high performance modelling and simulation envi-

ronment. ...» 15

2.1 Object-oriented implementation of DEVS on various platforms. ... 27
2.2 Implementation of DEVS using containers classes with C++ 27
2.3 Five primitives of containers classes 28
2.4 Hierarchical construction of block models from atomic cell models . . 30

3.1 Construction of new population 34
3.2 Genetic operators: (a) crossover, and (b) mutation 35
3.3 A typical procedure for executing a GA 36
3.4 Asynchronous Genetic Algorithms 37
3.5 Operation flow of the AGA 38
3.6 Operation flow of the DAGA 39
3.7 Speedups of the AGA and DAGA on the CM-5 40
3.8 GA controlled high performance simulation environment 41
3.9 8x8 mesh graph with wraparound connections (the numbers inside

circles show two solutions for the coloring problem) 45
3.10 The Inverted Pendulum 48
3.11 Initial conditions 49
3.12 Optimized membership functions and control rules 50
3.13 (a) Pole angle, (b) Pole angular velocity, (c) Phase plane trajecto-

ries ending at (0,0), and (d) Input force.(Solid, dashed, and dot-
ted curves correspond to initial conditions (10,20), (15,30), and
(20,40), respectively) 51

3.14 (a) Pole length = 2.0 m, (b) Pole length = 0.5 m, (Solid, dashed, and
dotted curves correspond to initial conditions (10,20), (15,30),
and (20,40), respectively) 52

3.15 Implementation of GA C++ 54
3.16 GA C++ and Simulator classes 55
3.17 Code example for GA C++ and Simulator 56

4.1 Grid based representation of a watershed 59
4.2 Conceptual hydrology model for a cell 60
4.3 Connection of Cells 61

4.4 Green-Ampt infiltration model. 64

4.5 DEVS approximation model behavior (Solid and dashed curve repre-
sent the outputs of the DEVS and continuous model, respectively). 71

4.6 The time to constant runoff tto_const for the silt soil (Dashed, solid and
dotted curves are obtained for the fuzzy system, Newton-Raphson
method and two-term Taylor series approximation, respectively.). 75

4.7 The membership functions of the fuzzy system (SM, ME, LA stand
for small, medium and large, respectively.) 76

4.8 State space partitioning for DEVS representation 80

4.9 State space partitioning with granulized time axis 83

4.10 Elevation map of target watershed 84

4.11 Simulation results: hydrographs in the steady state 84

4.12 The Number of events for DM(dt=0.00001), QM(D=0.1,d=0.01) and
QM(D=50.0,d=0.01). 87

4.13 Accumulated total number of events in log scale (base 10) 88

5.1 Hydrographs of the optimized watershed model and KINEROS for
the planes with the slopes of 0.01, 0.05 and 0.1 93

5.2 Hydrographs of the optimized watershed model and KINEROS for a
randomly generated rainfall event 94

5.3 Hydrographs of the optimized watershed model and KINEROS for
slope 0.01, 0.05 and 0.1 95

5.4 Hydrographs of the optimized watershed model and KINEROS for
randomly generated rainfall event 96

5.5 A system that has some number of component models connected in
cascade. (Pn is a parameter in component model n.) 98

5.6 A system that has nxn blocks of models and each block has mxm
models . . . 100

5.7 Parameter morphism. . 103

5.8 Parameter morphism by GA optimization 104

5.9 Spatial aggregation for one-dimensional flow 105

5.10 Runoff of the base model and lumped models 109
5.11 Multiresolution search strategy. 110

6.1 Brown's pond elevation map. „ 113

6.2 Brown's pond runoff (m3/hour) after 2 simulated hours (1 hour after
end of 1 hour long rainfall). 113

A.l Fuzzy inference network and fuzzy subspaces 117

LIST OF TABLES

1.1 Iteration requirements for GA search 16

1.2 Orders of magnitude speedup and the corresponding amount of com-
putation time that could be compressed into one minute 17

1.3 Sources of speedups in the high performance simulation based opti-
mization environment 17

3.1 Execution times of Asynchronous Genetic Algorithm and Distributed
Asynchronous Genetic Algorithm on the CM-5 (The unit is second). 40

3.2 Performance of the AGA and DAGA on DeJong's test suite (evals:
average number of evaluations, std: standard deviation) 45

3.3 Performance of the AGA and DAGA on Problem 4 on the CM-5 with
400 nodes (solved: number of runs solved, avg: average best of
30 runs after 400,000 evaluations, avg. eval: average number of
evaluations, total evals: total number of evaluations, total time:
total execution time in seconds, time/eval: time taken per one
evaluation in microseconds). 46

3.4 Performance of the AGA and DAGA on Problem 5 (solved: number
of runs solved, avg. eval: average number of evaluations, std:
standard deviation, problem size: problem size in bits) 47

3.5 Performance of the AGA and DAGA on Problem 6 (avg. eval: average
number of evaluations, std: standard deviation) 47

3.6 Performance of the AGA and DAGA on Problem 7 (solved: number of
solved, avg. eval: average number of evaluations, std: standard
deviation, problem size: the size of mesh graph) 47

4.1 The execution time to optimize the fuzzy system on the CM-5 (mea-
sured for 1,000,000 evaluations) 77

4.2 Runoff of DEVS models in the Steady State. (DM(dt) is the dis-
crete time model, QM(D, d) is the quantized DEVS model with
quantum D and time granule, d, respectively.). 85

4.3 Execution times of DEVS models 86

5.1 Results of parameter search for a and b (optimization time is measured
for 20,000 GA iterations on the CM-5 with 256 nodes) 91

5.2 Results of parameter search for C (although the best values are ob-
tained within 1,200 GA iterations for all cases, the optimization
time is measured for 20,000 iterations on the CM-5 with 256 nodes). 97

5.3 Execution times of watershed models on a Sparc-2 processor for a 2
hour rainfall event 98

5.4 Results of global optimization (execution times are measured on the
CM-5 with 256 nodes) 102

5.5 Results of global optimization (execution times are measured on a
Sparc-1000) 102

5.6 Runoff error between base and lumped model for base model 1 (sim-
ulated for 3 hours with a 2 hour long 30 mm/hour rainfall event). 108

5.7 Runoff error between base and lumped model for base model 2 (sim-
ulated for 3 hours with a 2 hour long 30 mm/hour rainfall event). 108

5.8 Runoff error between base and lumped model for base model 3 (sim-
ulated for 3 hours with a 2 hour long 30 mm/hour rainfall event). 108

5.9 Execution times of the base and lumped models on a Sparc-2 processor. 109

ABSTRACT

Modelling large scale systems with natural and artificial components requires stor-

age of voluminous amounts of knowledge/information as well as computing speed for

simulations to provide reliable answers in reasonable time. Computing technology

is becoming powerful enough to support such high performance modelling and sim-

ulation. This report proposes a high performance simulation based optimization

environment to support the design and modeling of large scale systems with high

levels of resolution.

The proposed environment consists of three layers — modeling, simulation and

searcher layer. The modeling layer employs the Discrete Event System Specification

(DEVS) formalism and shows how it provides efficient and effective representation

of both continuous and discrete processes in mixed artificial/natural systems neces-

sary to fully exploit available computational resources. Focusing on the portability

of DEVS across serial/parallel platforms, the simulation layer adopts object-oriented

technology to achieve it. DEVS is implemented in terms of a collection of classes,

called containers, using C++. The searcher layer employs Genetic Algorithms to

provide generic, robust search capability. In this layer, a class of parallel Genetic

Algorithms, called Distributed Asynchronous Genetic Algorithm (DAGA), is devel-

oped to provide the speed required for simulation based optimization of large scale

systems.

This report presents an example of DEVS modeling for a watershed, which is one

of the most complex ecosystems. The example shows a well-justified process of ab-

straction from traditional differential equation models to DEVS representation. An

approach is proposed for valid aggregation of spatially distributed systems to reduce

the simulation time of watershed models. DEVS representation and spatial aggre-

gation assure relative validity and realism with feasible computational constraints.

Throughout the report, several examples of GA optimization are presented to demon-

strate the effectiveness of the proposed optimization environment in modeling large

scale systems.

10

CHAPTER 1

INTRODUCTION

1.1 Problem Statement

Simulation-based design and testing before deployment has become the preferred

way of fielding new systems in many areas. For example, simulation is to play a major

role in the plans of the US Army in its restructuring for the information age[lj. The

complexity of behavior that modern systems can exhibit demands computing power

far exceeding that of current workstation technology. To address challenging comput-

ing problems using high-resolution, large scale representations of systems composed

of natural and artificial elements, high performance simulation-based design environ-

ments are characterized by two levels of intensive knowledge/information processing.

At the decision-making level, searches are conducted through vast problem spaces of

alternative design configurations and associated model structures; at the execution

level, simulations generate and evaluate complex candidate model behaviors, possibly

interacting with human participants in real time.

This report proposes a high performance simulation based optimization environ-

ment to support modelling and simulation of large-scale system with natural and

artificial components at high levels of resolution. The basic modelling formalism

11

employed is that of discrete events for representing both continuous and discrete pro-

cesses. We will show that discrete event representations have significant performance

and conceptual advantages over that of discrete time systems for continuous dynamic

systems.

Figure 1.1 depicts simulation-based decision making, in terms of a layered system

of functions. In this paradigm, decision makers, for example, forest managers, base

their decisions on experiments with alternative strategies (e.g., for reducing the risk

of wild fires) where the best strategies (according to some criteria) are put into

practice. For a variety of reasons, experiments on models are preferred to those

carried out in reality. For realistic models (e.g., of forest fire spread), such experiments

can not be worked out analytically and require direct simulation. The design of

our environment to support all these activities is based on the layered collection of

services shown in Figure 1.1, where each layer uses the services of lower layers to

implement its functionality. To provide generic robust search capability we employ

Genetic Algorithms (GAs) as the searcher in the model space. The optimization layer

employs the searcher to find good or even optimal system designs (models).

Experience with this environment has shown that only large numbers of intercon-

nected processing nodes can provide 1) the memory to hold the enormous amounts of

knowledge/information necessary to model complex systems, and 2) the simulation

speed required to provide reliable answers in reasonable time. Currently one can

marshal such large numbers of computing nodes dedicated to a single problem only

12

decision making

optimization

modelization

Simulation

Figure 1.1: Layered representation of simulation based decision making

in scalable, high performance platforms such as the Connection Machine, CM-5 or

the IBM SP2 which contain up to 1024 processors. However, we will show that at

least a million fold increase in either speed or numbers of nodes is needed for such

systems to support optimization of large scale models. Unfortunately, the cost of

such platforms is beyond the means of most potential users and there are only a

small number accessible in national high performance computing centers.

By contrast, the numbers and speeds of desktop computers (PCs and workstations)

are escalating rapidly so that harnessing these resources might offer a solution. How-

ever the obstacles to networking large numbers of distributed computing resources

are formidable. One survey result indicates that the largest network cluster contains

130 workstations connected with Parallel Virtual Machine (PVM) over Ethernet[2] ,

much less than the massively parallel computer platforms. One significant social bar-

rier to dedicating large numbers of workstations to a single computation is distributed

ownership which tends to discourage shared usage. Two technical barriers which we

addressed in the design of our environment are heterogeneity and portability.

13

1.2 The Layered High Performance Environment

As illustrated in Figure 1.2, in the proposed environment the various processes are

executed concurrently within a heterogeneous, distributed computing environment.

Each GA agent has access to a simulator for executing its experiments. Although the

simulator is shown as a single entity, it too could be distributed among the proces-

sors. Generally an experiment consists of several trials testing how well a particular

intelligent control (supervisory or management) agent functions in a prescribed prob-

lem environment. This environment is represented as a simulation model which is

controlled/observed by the agent through an appropriate experimental frame. The

model in each simulator may actually be one several related models at several levels

of abstraction ranging from low to high resolution. The GA may initially search

through the coarser space spanned by the most abstract model before going on to

higher resolution searches [3].

As an example, the family of model abstractions could be discrete event models

of a watershed varying in resolution. The experimental frame may provide a storm

track as input and it might observe the resulting flooding pattern. The effectiveness

of a set of pre-flood stage sensors as an early warning system might then be reported

to a GA agent and manipulated by the distributed GA to search for improving the

locations for placement of the sensors.

14

models at different
levels of abstraction

models at different
levels of abstraction

models at different
levels of abstraction

Figure 1.2: Search controlled high performance modelling and simulation environ-
ment.

1.3 Needs and Sources for High Performance

The demands of such an environment on any technology capable of supporting it

are enormous. Realistic simulations of large models with decision-making components

are time consuming. The GA searcher, although robust, is apt to require thousands

of simulation evaluations to locate an optimal configuration.

For example we have demonstrated a successful application of our simulation-

based optimization environment to fuzzy control system synthesis [4], to 1024-node

parameter search problems in optical interconnection network design[5] and to wa-

tershed modelling [6]. The number of iterations required to identify the optimum in

these cases is shown in Table 1.1.

15

Optimization Run Iterations Needed
Fuzzy Control System Synthesis 100,000
Watershed Modelling 1,000,000
Optical Interconnection Network Design 10,000,000

Table 1.1: Iteration requirements for GA search

These optimizations were run on the CM-5, but for illustration purposes, suppose

that they had been executed on a conventional workstation. Were each simulation

to require 10 minutes, 1,000,000 GA iterations would require a good part of person's

lifetime. High performance is clearly needed to speed up such computations. Given

our finite lifetimes and immediate daily concerns, the time we are willing to wait

for its answers is strictly bounded. One would be hard pressed, for example, to find

an existing simulation run taking years of continuous computation. However, with

sufficient increases in speed afforded by high performance, system design studies that

are not feasible today could be undertaken. Table 1.2 translates the effect of orders of

magnitude speed up on feasibility of such computation. For example, with a speedup

of 1,000 times the just mentioned example of an optimization can be be done in days

instead of years. With another factor of 1,000 in speedup, optimizations that now

take decades (and so are infeasible) would become commonplace. As a consequence,

there could be a tremendous increase in the reliability, safety and effectiveness of

tomorrow's complex systems such as flood, hurricane warning systems, forest fire

fighting robotic systems, or space-based reconnaissance systems.

16

Speedup Order of Magnitude Computation Time Reduced to 1 min
1 minute

100 hours
1,000 days

10,000 months
100,000 years

1,000,000 decades
10,000,000 centuries

Table 1.2: Orders of magnitude speedup and the corresponding amount of computa-
tion time that could be compressed into one minute

Speedups of the order of 1,000,000 are in fact attainable with the technology and

methodology on the horizon. Table 1.3 shows where such performance improvements

could come from in the simulation environment. We will provide evidence for a) up to

1,000 fold speedup gained by properly mapping continuous models into efficient DEVS

approximations, b) up to 1,000 speedup with the application of parallel/distributed

processing at the GA search level. The upper bound of this estimate is based on the

best performance achievable on an N processor system, where N is currently around

a thousand (e.g. 1024 in the CM-5). The number of processors in a single platform

will increase another order of magnitude with the construction of the 9,000 processor

system announced by Intel. By multiplying the two speedup factors, the speedup

possible is of the order of 106.

Speedup Order Sources
100 - 1,000 DEVS Representation
100 - 1,000 Parallel/Distributed GA Search

Table 1.3: Sources of speedups in the high performance simulation based optimization
environment

17

We will offer some evidence for the attainability of the individual speedups in

Table 1.3 in the sequel.

1.4 Report Organization

First we review the DEVS formalism which is the basic mathematical language of

the proposed environment and shows the implementation of the DEVS simulator in

Chapter 2. Chapter 3 introduces a new parallel GA, called Distributed Asynchronous

GA, employed in the searcher layer of the proposed environment. This chapter also

includes some test results of the DAGA and shows an application example, designing

a fuzzy controller. In Chapter 4 we discuss the use of DEVS in efficient continuous

process representation taking watershed modeling as an example. In Chapter 5 we

show an example of parameter search in the proposed environment for watershed

models developed in Chapter 4. Finally Chapter 6 concludes the report.

18

CHAPTER 2

The DEVS Formalism: Basis for the Simulation Based

Optimization Environment

To discuss the performance advantages of discrete event model formulations we

will need to review the modelling formalism, called DEVS, underlying the current

high performance simulation based optimization environment.

2.1 Brief Review of the DEVS Formalism

We now review the basic concepts of the DEVS formalism and its associated

simulation methodology.

In the conceptual framework underlying the DEVS formalism[7], the modelling

and simulation enterprise concerns four basic objects:

• the real system, in existence or proposed, which is regarded as fundamentally a

source of data

• the model, which is a set of instructions for generating data comparable to

that observable in the real system. The structure of the model is its set of

instructions. The behavior of the model is the set of all possible data that can

be generated by faithfully executing the model instructions.

19

• the simulator which exercises the model's instructions to actually generate its

behavior.

• experimental frames capture how the modeller's objectives impact model con-

struction, experimentation and validation. Experimental frames are formulated

as model objects in the same manner as the models of primary interest. In this

way, model/experimental frame pairs form coupled model objects which can be

simulated to observe model behavior of interest.

The basic objects are related by two relations:

• the modelling relation, linking real system and model, defines how well the

model represents the system or entity being modelled. In general terms a

model can be considered valid if the data generated by the model agrees with

the data produced by the real system in an experimental frame of interest.

• The simulation relation, linking model and simulator, represents how faithfully

the simulator is able to carry out the instructions of the model.

The basic items of data produced by a system or model are time segments. These

time segments are mappings from intervals denned over a specified time base to

values in the ranges of one or more variables. The variables can either be observed

or measured.

The structure of a model may be expressed in a mathematical language called a

formalism. The discrete event formalism focuses on the changes of variable values

20

and generates time segments that are piecewise constant. Thus an event is a change

in a variable value which occurs instantaneously. In essence the formalism defines

how to generate new values for variables and the times the new values should take

effect. An important aspect of the formalism is that the time intervals between event

occurrences are variable in contrast to discrete time where the time step is a fixed

number.

Independence from a fixed time step affords important advantages for modelling

and simulation. Multiprocess models contain many processes operating on different

time scales. Such models are difficult to describe when a common time granule

must be chosen on which to represent them all. Moreover, simulation is inherently

inefficient since the states of all processes must be updated in step with this smallest

time increment - such rapid updating is wasteful when applied to the slower processes.

In contrast, in a discrete event model every component has its own control over the

time of its next internal event. Thus, components demand processing resources only

to the extent dictated by their own intrinsic speeds or their responses to external

events.

DEVS falls within the formalisms identified by Ho[8] for discrete event dynamical

systems (DEDS). Work on a mathematical foundation of discrete event dynamic

modeling and simulation began in the 70s[7, 9, 10] when DEVS was introduced as an

abstract formalism for discrete event modeling. Because of its system theoretic basis,

DEVS is a universal formalism for discrete event dynamical systems (DEDS)[11].

21

Indeed, DEVS is properly viewed as a short-hand to specify systems whose input,

state and output trajectories are piecewise constant[ll]. The step-like transitions in

the trajectories are identified as discrete events.

Discrete event models provide a natural framework to include discrete formalisms

for intelligent systems such as neural nets, fuzzy logic, qualitative reasoning, and

expert systems. However, traditional differential equation models continue to be the

basic paradigm for representing the physical environments in which intelligent agents

operate. We have proposed that DEVS-based systems theory, incorporating discrete

and continuous subformalisms, provides a sound, general framework within which to

address modelling, simulation, design, and analysis issues for natural and artificial

systems [12].

The universality claims of the DEVS just cited are addressed by characterizing the

class of dynamical systems which can be represented by DEVS models. Praehofer and

Zeigler[13] showed that any causal dynamical system which has piecewise constant

input and output segments can be represented by DEVS. We call this class of sys-

tems DEVS-Representable[ll]. In particular, Differential Equation Specified Systems

(DESS) are often used to represent both the system under control and the controller,

which, as a decision making component, has a natural DEVS representation.

22

DEVS supports construction of new models by interconnecting already existing

models as components. Such interconnection, called coupling, is specified in a well de-

fined manner embodied in the formalism of the coupled modeI[9]. Closure under cou-

pling guarantees that coupling of class instances results in a system in the same class.

The class of DEVS-representable dynamical systems is closed under coupling[14, 13].

Closure is an essential property since it justifies hierarchical, modular construc-

tion of both DEVS models and the (continuous or discrete) counterpart systems they

represent.

2.2 Confluent Parallel DEVS

The DEVS formalism, as revised to enable full exploitation of parallel execution[15]

is the basis for the DEVS-C++ high performance environment under construction.

A DEVS basic model is a structure:

M = < A, O, Y, dint, Oext, Scon, A, td, >

X: a set of input events.

S: a set of sequential states.

Y: a set of output events.

6int '• S —> S: internal transition function.

oext '• Q x Xh —> S: external transition function,

Xb is a set of bags over elements in X,

23

Scon : S x Xb —> S: confluent transition function.

A : S —> Yb: output function.

ta : S —> i^o+^oo: time advance function,

where Q = {(s,e)|s € S,0 < e < ta(s)},

e is the elapsed time since last state transition.

DEVS models are constructed in a hierarchical fashion by interconnecting compo-

nents (which are DEVS models). The specification of interconnection, or coupling,

is provided in the form of a coupled model. The structure of such a coupled model is

given by:

DN=<XXD,{Mi},{Iih{Zij}>

X: a set of input events.

Y: a set of output events.

D: an index set for the components of the coupled model.

For each i in D,

M{ is a component DEVS model.

For each i in D U {self}, /,• is the set of influencees of i.

For each j in /,-,

Z{j is a function,

24

the i-to-j output translation mapping.

The structure is subject to the constraints that for each i in D,

Mi =< Xi,Si,Yi,6inti,8exti,8conhtai > is a DEVS basic structure,

Ii is a subset of D U {self}, i is not in /,-,

ZSelf,j '• Xself —► Xj,

Zi,self '• M —* ^se//?

Zi,j '• y% """* Xj.

Here self refers to the coupled model itself and is a device for allowing specification

of external input and external output couplings. More explicitly, I„elf is the set of

components that receive external input; also if self is in /,-, then component i's

output appears as external output of the coupled model.

The behavior of a coupled model is constructed from the behaviors of its compo-

nents and the coupling specification. The resultant of a coupled model is the formal

expression of such behavior. Closure of the formalism under coupling is demon-

strated by constructing the resultant and showing it to be a well defined DEVS.

As already stated, such closure ensures that hierarchical construction is well defined

since a coupled model (as represented by its resultant) is a DEVS model that can be

25

coupled with other components in a larger model. Details of closure proof are given

by Chow[15]

2.3 Implementation of Confluent DEVS-C++ Simulator

In designing a DEVS-based high performance simulation based optimization en-

vironment, our goal was portability of models across platforms at a high level of

abstraction. A DEVS model should not have to be rewritten to run on serial, parallel

or distributed environment. Ideally, this invariance should apply at the high level

of abstraction (set-theory) in which DEVS is formulated. However, a computational

equivalent of this level does yet not exist (although efforts are beginning in that di-

rection). Falling short of this ideal, but still significant, is the ability to port DEVS

models written in the same computer language across platforms. There are numer-

ous advantages to such portability. To name several that are especially important

in this context: 1) models developed on a serial workstation, with all its comfort-

able development support, can be easily ported after verification to a parallel system

for high performance production runs, 2) in a parallel/distributed environment, the

same form of model description can be used for the interaction of model components

executing within the (serial) nodes as for the (parallel) interaction of components

executing on different nodes (more of this later).

Object-oriented technology is the key to achieving DEVS portability objectives

while retaining the flexibility to mitigate concomitant performance costs. Perhaps the

26

DEVS

object-oriented technology

serial
platform

parallel

Figure 2.1: Object-oriented implementation of DEVS on various platforms.

most characteristic attribute of this technology is its ability to separate behavior from

implementation, enabling distinct implementations of the same behavior to coexist

[16]. As shown in Figure 2.1, DEVS is implemented in an object-oriented form which

enables it to be executed on serial or parallel platforms. The DEVS formalism is

expressed as objects and their interactions with the details of the implementation

(serial or parallel) hidden within the objects. The user interacts with only those

interfaces that manifest the DEVS constructs while being shielded from the ultimate

execution environment.

DEVS

containers classes
ensemble methods

C++

PC
UNIX

PVM
Cluster CM-5

Figure 2.2: Implementation of DEVS using containers classes with C++

The approach is illustrated in greater detail in Figure 2.2. Due to its rapidly

growing availability, C++ was employed as the target object-oriented language. As

27

shown, DEVS is implemented in terms of a collection of classes, called containers. In

their usual serial guise, such classes provide well-known means for defining list data

structures and their manipulation. However, a more abstract and useful characteri-

zation of their functionality is that containers provide services to group objects into

collections and coordinate the activity within such groups.

2.3.1 Specification and implementation of containers

container CONTAINER
serial parallel

tell-all
ask-all
which?
which-one?
reduce

Figure 2.3: Five primitives of containers classes

This is illustrated in Figure 2.3 which enumerates five basic primitives for coordi-

nating behavior of objects in a container[16]. In outline:

• tell-all sends the same command to each object in a container.

• ask-all sends the same query to each object and returns a container holding the

responses (which are also objects).

• which? returns the subcontainer of all objects whose response to a boolean

query is TRUE.

28

• which-one? returns one of the objects in the container whose response to a

boolean query is TRUE.

• reduce aggregates the responses of the objects in a container to a single response

(e.g., taking the sum).

While these so-called ensemble methods may seem more parallel than sequential

in nature, they have abstract specifications that are independent of how one chooses

to implement them. Thus, using the polymorphism properties of C++ we define two

classes for each abstract container class; one (lower-case) implementing the ensemble

methods in serial form, the other (upper-case), implementing them in parallel form

(Figure 2.3). The serial implementations run on any architecture that has a C++

compiler. In particular, if the nodes of a parallel or distributed system run C++,

then the serial containers will work on them. However, the implementation of parallel

CONTAINERS involves physical (as opposed to virtual) message passing among ob-

jects residing on different nodes. Such message passing must be implemented within

the communications primitives afforded by the parallel/distributed system in ques-

tion. For example, massively parallel CM-5 implementation employs CMMD(CM-5

message passing library). Likewise, a network of workstations linked together under

PVM [17] offers the communication primitives supplied by PVM.

29

In the next section, we discuss the serial implementation of the DEVS C++ sim-

ulator based on containers (refer to [18] for the parallel implementation of DEVS

C++).

2.3.2 DEVS C++ implementation over containers classes

top block

cell(IJ)

block of cells

Figure 2.4: Hierarchical construction of block models from atomic cell models

To illustrate, consider a two-dimensional grid of cells as shown in Figure 2.4. The

cells could be the atomic components in a landscape model of watershed in Chapter

4. They are grouped into blocks. The closure property of DEVS guarantees that

each block can itself be regarded as a DEVS model which can now be considered as

a component model. These components are then grouped together to form a new

DEVS model which is equivalent in behavior to the original.

30

Blocks (or digraph models) are effectively containers whether they contain cells

(or atomic models) or lower level blocks (or digraph models). In terms of ensemble

methods, a cycle of DEVS simulation in block models can be outlined as follows:

1. Compute the global next event time, tN: use reduce to get the minimum of

component times to next event,

2. Tell all components the global tN and if a component is imminent (tN equals

to global tN), then generate output messages (using A),

3. Sort and distribute (using coupling) output messages,

4. Tell all components: if a component is imminent (tN equals to global tN) or

has incoming mail (external events) or both, then execute transition functions.

If a component is both imminent and has incoming mails (inputs), it executes

the confluent transition function (8con). If a component is imminent and has no

incoming mail, it executes the internal transition function (Sint)- If a component

is not imminent and has incoming mails, then it executes the external transition

function (6ext).

31

CHAPTER 3

The GA Searcher Layer

A major advantage of high resolution models is that many of the parameter values

needed to calibrate the model to its real system counterpart are obtained directly

from available engineering or measurement-derived data. Still, a large simulation

model typically has many more parameters that are unknown. These parameters

need adjustment to tune the model to real world observed behavior or to optimize its

performance to achieve a desired objective. Searching through such large parameter

spaces for optimal, or even acceptable points is a daunting task, especially in multiple

process models where each simulation run may require hours or days to complete.

The more that automated optimizers can relieve human modelers of this search task,

the faster will be the pace of advance in the modelling or design effort. Therefore,

optimization-based control of simulation is a key feature of our high performance

environment.

In this chapter we introduce a new GA, called Distributed Asynchronous Genetic

Algorithm(DAGA), which is employed as a searcher in the high performance mod-

elling and simulation environment.

32

3.1 Genetic Algorithms

GAs are a class of stochastic operators that successively transform an initial pop-

ulation of individuals until a convergence criterion is met [19, 20, 21, 22, 23, 24, 25].

Each individual represents a candidate system design and each design is evaluated

using the underlying simulation layer to give some measure of its fitness. On each

iteration, a new population is formed by selecting fitter individuals and transforming

them in hopes of obtaining ones even fitter. Typically, crossover creates new children

by combining parts from two parent individuals. Mutation creates new individuals by

introducing small random changes [22]. After some number of generations the search

converges and is successful if the best individual represents the global optimum. GAs

often outperform classical optimization methods in search, optimization and learning

[26, 23, 27, 22]. Interest has increased in their potential application to modeling,

simulation and design of complex real world systems.

The first step in the implementation of GAs is to generate an initial population

randomly in most cases. Each member of this population will be a binary string

of length L which corresponds to the problem encoding. Each string is sometimes

referred to as a genotype or a chromosome. On the execution of the GA, it starts with

the current population. The initial population becomes the current population in the

beginning or in the first generation (the term generation will be explained shortly).

Selection is applied to the current population to create an intermediate population.

33

Then recombination and mutation are applied to the intermediate population to

create the next population. The process of going from the current population to the

next population is called one generation in the execution of a GA. Now the next

population becomes the current population for the next generation and repeats the

above process until a member of the current population represents a solution to the

given problem. Figure 3.1 shows how one generation is constructed in the execution

of a GA.

selection

. x , Intermediate
Ne.xt

x.) v population population ; ^

recombination
and mutation

Figure 3.1: Construction of new population

The construction of the intermediate population from the current population is

carried out as follows. In the first generation the initial population is considered

as the current population. After calculating fitness of each member (string) in the

current population, selection is performed. The fitness is a metric which measures, in

most cases, how close the member is to the solution of the given problem in the search

space. Thus, the design of a function to measure fitness is very problem dependent.

After selection has been carried out, the construction of the intermediate population

34

is complete and recombination can occur. This can be viewed as creating the next

population from the intermediate population. Recombination is done using a genetic

operator called crossover. Crossover is applied to paired strings with a probability of

pc as follows. Pick a pair of strings in the intermediate population. With probability

of pc, recombine these strings to form two new strings, and then insert them in the

next population. Figure 3.2.a shows how a crossover operator works on paired strings

called parent strings to generate new strings called offsprings.

crossover
point

crossover
point

Parents

Offspring

(b) Mutation operator

Figure 3.2: Genetic operators: (a) crossover, and (b) mutation.

After recombination, we can also apply another genetic operator called mutation

as shown in Fig. 3.2.b as follows. For each bit in a bit string, mutate (or complement

a bit in the string) with some probability pm.

After the process of selection, recombination, and mutation is complete, the next

population can be evaluated. The process of evaluation, selection, recombination,

35

and mutation forms one generation in the execution of a GA. Thus, GAs use the

notion of survival of the fittest by passing good genes (potential solutions) to the next

generation and combining different genes to explore new search points. In summary,

Fig. 3.3 describes typical steps for executing GAs.

A genetic algorithm
{

Initialize population;

Current.population = Initial_population;
while termination criterion not reached;

{
Evaluate Current.population;
Select members in Current.population for Intermediate.population;
Perform crossover and mutation for Next.population;
Current.population = Next.population;

}
}

Figure 3.3: A typical procedure for executing a GA.

3.2 Distributed Asynchronous Genetic Algorithm

Adapted to the high performance simulation based optimization environment,

GAs intelligently generate trial model candidates for simulation-based evaluation.

Although schemes exist for parallelizing GAs [20, 21, 28, 29, 30], we designed a new

parallel GA, called Distributed Asynchronous Genetic Algorithms (DAGAs), which is

particularly suited to the demands of the high performance simulation environment.

The following is an overview of the DAGA adapted to the optimization layer for the

proposed environment.

36

(new individual, fitness)

GA_Controller

Gene-Pool

00101101010
10010101101
01101101010

(control processor) (processing nodes)

Figure 3.4: Asynchronous Genetic Algorithms

The DAG A is an extension of the Asynchronous Genetic Algorithm (AGA) [30].

The AGA maintains the genetic operations in one processing node (GA-controller)

and distributes the evaluation (simulation) processes to many nodes (GA-agents) as

shown in Figure 3.4. The operation of the AGA is shown in Figure 3.5.

The novelty of the AGA is that the GA-controller doesn't wait for a full generation

to complete, which would severely reduce throughput when simulation times are

widely dispersed [30]. However, experimental results (refer Section 3.3) show two

drawbacks of the AGA as follows:

1. The AGA fails to solve some class of problems, that is, it is not robust.

2. Due to centralization of the GA-controller, the communication overhead and

sequential genetic operations bottleneck processing as the number of processing

nodes increases.

37

Create Initial Population

Evaluate Initial Population

idle a »ent exist

Reproduction(Selection)

a set of candidate solutions
(a set of randomly created binary strings)

calculate fitness using N processors

select 2 individuals randomly(parents)

Recombination(Crossover) | recombine them using crossover operator

Mutation random alteration

Send children to GA_agent

Wait idle agent

I
Update Population

:=3r—
Figure 3.5: Operation flow of the AGA

38

On each PE

Create its own individual
"

evaluate its own individual
^ »,.

Reproduction(Selection)
,r

Recombination(Crossover)
"

Mutation
"

Evaluate New Individual
,r

Update Myself

a candidate solution
(a randomly created binary string)

calculate fitness of individual

select a mating partner among other individuals
and get its chromosome and fitness

recombine it with myself and create one child

random alteration

calculate fitness of child

replace myself with new one
if new one is better than its parents

Figure 3.6: Operation flow of the DAGA

To solve the first problem, we employ the different selection and updating schemes

in the DAGA. To achieve scalability (solve the second problem), the DAGA dis-

tributes both evaluation processes and genetic operations to processing nodes as

shown in Figure 1.2. The operation of the DAGA is outlined as shown in Figure 3.6.

As with the original asynchronous scheme, GA agents do not wait for a full genera-

tion to complete, which would severely reduce throughput when simulation times are

widely dispersed. Moreover, in this scheme there is no central processing to bottleneck

performance since all genetic operations are carried out by processors autonomously

with at most minimal exchange with a randomly chosen partner.

39

of PEs 1 32 64 128 256 512
AGA 14,410 770 512 282 254 259

DAGA 12,940 567 298 142 71 36

Table 3.1: Execution times of Asynchronous Genetic Algorithm and Distributed
Asynchronous Genetic Algorithm on the CM-5 (The unit is second).

Speedups

i

350.0

/

J

300.0

/ '

250.0
/

200.0

/
150.0

/

100.0

/

50.0

0.0

AGA__

DAGA

100 200 300 400 500

Number of nodes

Figure 3.7: Speedups of the AGA and DAGA on the CM-5.

40

The beneficial effect is shown in Table 3.1 and Figure 3.7 which compare the

DAGA with the earlier scheme (the AGA) applied to the same problem of optimizing

a fuzzy controller design for an inverted pendulum (refer to Section 3.4) in terms of

execution time. Note that while the original scheme's performance does not scale

with increasing processors, the distributed version achieves quite close to a linear

speedup depending on number of processors.

High Performance Simulation Environment

AGA-Controlled DAGA-Controlled

 1 1 > 1 DAGA-Simulators
AGA Controller AGA-Simulators I | |

I I I DAGA-Simulator
AGA-Simulator I

i I I
I ' DAGA agent Simulator

AGA agent Simulator

Figure 3.8: GA controlled high performance simulation environment.

The DAGA can also be implemented like the AGA as follows: The GA controller

1. creates its initial population randomly (population initialization step),

2. evaluates the generated individual's fitness using GA agents,

3. (as soon as this initial evaluation is completed) randomly selects two individuals

(parents),

4. applies crossover and mutation operators,

41

5. randomly selects one child and evaluates the selected child using an idle GA

agent,

6. replaces the parent (which is more similar to the selected child) with the child

if the child's fitness is better than that of both parents,

7. repeats steps 3-6 until a convergence criterion is met.

Each GA agent

1. is waiting for an individual from the GA controller,

2. evaluates the received individual,

3. returns the evaluation result to the GA controller,

4. repeats steps 1-3.

Figure 3.8 shows the system entity structure [10] of the GA controlled high perfor-

mance simulation environment. This environment can be implemented in two ways

depending on available resources and the computational complexity of the simula-

tion. The DAGA based implementation performs better than the AGA as the number

of computing resources (processing elements) becomes larger and the computational

complexity of simulation becomes smaller, as shown in Table 3.1. Otherwise the

AGA based implementation is preferred since its implementation is simpler and more

flexible than that of the DAGA.

42

3.3 Experimental Results of the DAGA

The DAGA described in the previous section was tested compared to the original

AGA using the following seven test problems:

• Problem 1 (DeJong function 1):

/M.=i,3) = !>?>*.• e [-5.12,5.12]
i=l

• Problem 2 (DeJong function 3):

f(xi\i=lfi) = 30 + J2[xi\,Xi e [-5.12,5.12]
»=i

• Problem 3 (DeJong function 5):

25 2

/(*.-|.=i,2) = El? + £(** - G.;)V< G [-65.536,65.536]
3=1 t=l

• Problem 4 (Rastrigin function):

20

/(3i|i=i,2o) = 200 + £ar? - 10cos(27ra;i),a;i € [-5.12,5.12]
i=l

• Problem 5: order-5 deceptive problems

• Problem 6: Holland's revised Royal Road function

• Problem 7: Coloring mesh graphs

Problem 1-3 are borrowed from De Jong's suite [31]. DeJong function 1 is a uni-

modal function known to be easy for GAs. DeJong function 3 is a discontinuous step

43

ladder function. DeJong function 5 has several local minima. Rastrigin function is

a very difficult problem for GAs because of the large search space (2200) and large

number of local minima [21]. Problem 5 is a class of order-five deceptive function,

which is developed to deceive GAs [32]. We concatenated ten, twenty, thirty and

forty size-five subfunctions together to form 50, 100, 150 and 200-bit problems. The

order-five subfunction used here is a fully deceptive trap function of unitation [32]

with value 0.58 at u = 0 ones, value 0.0 at u = 4 ones, and value 1.0 at u = 5 ones

[33]. These deceptive functions are difficult problems. For example, the search space

size of 200-bit problem is 2200 and it has 240 optima, of which only one is global.

The Royal Road functions introduced in [34] were designed as functions that would

be simple for GAs to optimize, but difficult for a class of hillclimbers. However,

Holland recently revised the Royal Road functions since one form of hillclimbing

outperformed GAs on this problem [35]. The revised Royal Road functions were

designed to create insurmountable difficulties for a wider class of hillclimber, and yet

can be optimized by GAs.

Problem 7 is a simple graph coloring problem. The problem is to color the N x N

mesh graph with wraparound connections using two colors so that each vertex has

neighbors with a different color. For an even number N, we have two solutions as

shown in Figure 3.9. This problem has a large search space (2NxN) that is easily

expandable.

44

v!'v -(oi)- -flflj- -To,y-
V'V

—V'V V'V —V'V"

\(M)" ~V'V —Co.y- v'S)" "V'V —V'V
—C?'V —V'V

\!,(v viz —V'V v5'!/" -uA ~V'V V'V
—V'V

v0,1/" V'V ~C0,y V'V V'V ~V'V ~~V'V ~~V'V

v1'0/ —(o,y- —C1,0)" -ToA V'0/ V'V _V'V —V'V

vH/ ~V'V —(o,n- -(1,0)- V'V -(lßf ~\ftl/ ~0-5/

vi'v V'V —(1,0/ -To,y-
V'V ~v'V ~vv~ —V'V

v?'!/ ~\i,o)- "~V'V" -nw- v'v" —V'V —V'V —V1'V

Figure 3.9: 8x8 mesh graph with wraparound connections (the numbers inside circles
show two solutions for the coloring problem).

For all experiments we adjust the parameters of GAs, such as population size,

crossover and mutation probability, to get the best performance based on the number

of evaluations.

3.3.1 Results for DeJong's Suite

Function Fl F2 F3
Algorithm evals std evals std evals std

AGA 1,020 496 1,448 1,608 1,607 1,549
DAGA 2,766 2,000 3,250 1,465 1,484 793

Table 3.2: Performance of the AGA and DAGA on DeJong's test suite (evals: average
number of evaluations, std: standard deviation).

We run the AGA and DAGA for 30 runs on DeJong's functions. We execute

until the global optimum is found in all 30 runs and report the average number of

evaluations and the standard deviation. As shown in Table 3.2, the performance

45

of the AGA is better than that of the DAGA on Fl and F3 which have only one

global optimum. But the DAGA outperforms the AGA on F5 which has several local

minima.

3.3.2 Results for Rastrigin function

Algorithm solved avg avg. eval total evals total time(sec) time/eval(/^sec
AGA 5 0.9 390,356 11,710,680 18,540 1,583

DAGA 24 0.1 338,336 10,150,080 304 30

Table 3.3: Performance of the AGA and DAGA on Problem 4 on the CM-5 with
400 nodes (solved: number of runs solved, avg: average best of 30 runs after 400,000
evaluations, avg. eval: average number of evaluations, total evals: total number of
evaluations, total time: total execution time in seconds, time/eval: time taken per
one evaluation in microseconds).

For this problem, we run the AGA and DAGA for 30 runs with 400,000 evaluations

and report the number of runs in which the global optimum is found with the average

fitness of the best individuals at the end of each run. We set the population size as

400 to compare the results with those found in the literature [21]. As shown in Table

3.3, the performance of the DAGA for this problem is much better than that of the

AGA. Compared to the results of the experiment done by Gordon [21], the DAGA

outperforms the best one (Cellular GA) found in the literature on this problem.

We also measured the execution times of each GA (shown in the last column in

Table 3.3). The DAGA is about 50 times faster than the AGA on CM-5 with 400

nodes.

46

3.3.3 Results for Problem 5, 6 and 7

Algorithm avg. eval std problem size
AGA 51,053 6,582 50
AGA 124,600 14,161 100
AGA 240,429 35,028 150
AGA 408,822 60,233 200

DAGA 45,372 6,439 50
DAGA 101,806 8,770 100
DAGA 166,411 16,186 150
DAGA 252,443 30,496 200

Table 3.4: Performance of the AGA and DAGA on Problem 5 (solved: number of runs
solved, avg. eval: average number of evaluations, std: standard deviation, problem
size: problem size in bits).

Algorithm solved avg. evals std
AGA 21 6,453,834 4,479,478

DAGA 50 107,718 47,122

Table 3.5: Performance of the AGA and DAGA on Problem 6 (avg. eval: average
number of evaluations, std: standard deviation).

Algorithm solved avg. eval std problem size
AGA 50 1,111 38 4x4
AGA 50 9,344 1,832 8x8
AGA 43 2,018,566 3,395,681 16 x 16

DAGA 50 354 231 4x450
DAGA 50 10,407 7,360 8x8
DAGA 50 501,824 254,129 16x16

Table 3.6: Performance of the AGA and DAGA on Problem 7 (solved: number of
solved, avg. eval: average number of evaluations, std: standard deviation, problem
size: the size of mesh graph).

The tables 3.4, 3.5 and 3.6 show the performance of the DAGA compared to the

AGA on Problem 5, 6 and 7, respectively. The results show that the DAGA reliably

solve all three problems with a large search space.

47

The DAGA tested in this section outperforms (or is comparable to) those GAs

found in the literature[21], [36] and [34].

3.4 Application Example: Design of a Fuzzy Controller for the Inverted

Pendulum

In this section, we demonstrate the effectiveness of the DAGA by designing a fuzzy

controller for a benchmark system in intelligent control — the Inverted Pendulum.

0

w i ;

Figure 3.10: The Inverted Pendulum

Figure 3.10 shows the schematic diagram of an inverted pendulum system. Our

control goal is to balance the rigid pole by exerting appropriate force F to the cart.

Let xi(t) = 9(t) and X2(t) = 6(t), then this system can be defined by the following

differential equations [37] :

x\ = Xi

x2 =

• f \ i / \/—F—mlxl sin(a;i) \ gsm{x1) + cos{x1)(mJm >)

H2(xux2,F)

2(*i)>
TTlc+Wl

48

where g is 9.8meter/sec2, mc(mass of cart) is 1.0 kg, m (mass of pole) is 0.1 kg, I

(half length of pole) is 0.5 meter, and F is the applied force in newton. Using a

two-step forward Euler integration we can approximate its states at time t + h:

xi(t + 0.6h) = 0.5hx2(t) + «i(<)

x2(t + 0.bh) = 0.5hH2(x1(t),x2{t),F) + x2(t)

Xl(t + h) = 0.5hx2(t + 0.5A) + xi(< + O.bh)

x2(t + h) = 0.5Atf2(zi(* +0.5ft), x2(* +0.5/i), F)

+x2(t + 0.5Ä)

where h = O.Olsec.

X ideg/sec)

(0,0)

C X X X X X

[X X X X X

C X X X X X

: x x x x x
c x x x x x

(10,10)

X A X * X

X X x x x

X X X X X

X X X X X

X X X X X

X X X X X

X j(deg)

(10,-10)

Figure 3.11: Initial conditions

We define 3 fuzzy regions(NE,ZE,PO) for each input(xi,a;2) and output(F), re-

sulting in 9 membership functions and 9 control rules. By symmetry only half the

rules need be found.

49

Each membership function has a bell shape and the defuzzification layer uses the

weighted average method as described in Appendix A. We assume that the inverted

pendulum is expected to start from an initial point nearby the origin in the state

space, therefore we optimize the membership functions and control rules using the

GA optimizer for 60 initial conditions as shown in 3.11.

1.00-

0.90-

0.80"

0.70"
0.60-

0.50-

0.40"

0.30"

0.20"

0.10"
0.00"

I 3 T

a
-20.00 -10.00 0.00 10.00 20.00

(a) pole angle
1.00

0.90"

0.80"
0.70-

0.60"

0.50-

0.40"

0.30-

0.20"
0.10-

o.oo-
-30.00

-40.00 -20.00 0.00 20.00 40.00

(b) angular velocity

Angular Velocity

NE ZE PO

o NE
o> c
< ZE
o

CL

PO

NE NE ZE

NE ZE PO

ZE PO PO

0.00 30.00

(c) output force (d) control rules

Figure 3.12: Optimized membership functions and control rules.

Figure 3.12 shows final membership functions and rules obtained, and Figure 3.13

exhibits how the fuzzy controller designed by the GA optimizer can balance the pole

50

20.00
D)
CD

g510.00
CO

0
o
Q.

o.oo-

\ \

N ',
\

\' ,
\

0.00

Ü

■$ 40.00'
CD
H- 20.00-

0.00" Ü
o
CD

>-20.00~
_cg

B>-40.oa
c
CO

0.00

S 40.00

(a)

1.00
time(sec)

0.00

(b)

1.00
time (sec)

20.00

oT 10.00
ü

"5 0.00-
Q.
C

-10.00

■■

10.00 20.00 0-00
. . pole angle(deg)
(c) (d)

1.00
time(sec)

.Figure 3.13: (a) Pole angle, (b) Pole angular velocity, (c) Phase plane trajectories
ending at (0,0), and (d) Input force.(Solid, dashed, and dotted curves correspond to
initial conditions (10,20), (15,30), and (20,40), respectively).

51

20.00
05 16.00
O) o ;o

"|> 12.00
CO
® 8.00

^ 4.00

0.00'

\ ^
\ \

\ \
N * ^ \ ^

—V 1, X.

V ^ ^
\ \ \

V \
 1—, 1—

20.00

o) 16.00
CD

£ 12.00
D)

« 8.00

§■ 4.00

0.00 0.50 1.00 1.50
time(sec)

(a)

0.00"
0.00 0.40 0.80

time(sec)
(b)

Figure 3.14: (a) Pole length = 2.0 m, (b) Pole length = 0.5 m, (Solid, dashed, and
dotted curves correspond to initial conditions (10,20), (15,30), and (20,40), respec-
tively).

from 3 different initial conditions. Although this fuzzy controller is designed for

the initial conditions shown in Figure 3.11, it can also balance for initial conditions

outside that region. Furthermore, this fuzzy controller can balance poles of different

lengths as shown in Figure 3.14. Our results significantly improve upon those of [37].

We have demonstrated the use of the DAGA in Computer-Aided System Design.

The DAGA optimizer for the fuzzy controller affords more reliability in global opti-

mization than does an adaptive neural net approach [38]. We showed how the DAGA

optimizer helps design a control system even for complex operational specifications.

With the CM-5 supercomputer used in these studies, typical optimization runs

are completed within several minutes. Even with a single workstation, it can be

completed within a day. Thus the use of the DAGA in control system design is

feasible right now.

52

3.5 Implementation of GA C++

In this section we describe the implementation of the AGA and DAGA on different

platforms in the object oriented fashion using C++. The software package that we

implemented, called the GA C++, supports the AGA and DAGA on the CM-5 super

computer and various workstations including easy interface to any simulators defined

by the users.

As shown in Figure 3.15, the AGA controller resides on one workstation or one

•node on CM-5 and simulators are distributed to other workstations or nodes. The

DAGA is implemented only on CM-5. The DAGA agent and simulator is running on

each node on CM-5.

Figure 3.16 shows the classes of GA C++. The class GA has basic methods for

GA operators such as crossover, mutation and replace. Under the class GA, there are

three subclasses, AGA-CM5, AGA-PVM and DAGA Agent. These three subclasses

inherit basic methods from the GA class and control simulators distributed to other

nodes or workstations with their own start methods as explained in Section 3.2. The

difference between AGA-CM5 and AGA-PVM is only in communication methods

between the AGA controller and simulators. AGA-CM5 is an implementation for

the CM-5 and uses built-in CM-5 CMMD communication libraries. AGA-PVM is an

implementation for workstations using PVM.

53

GA on Single Processor

a binary string

GA Simulator

fitness(real number)

Asynchronous GA on CM-5 or Workstations

nodeorjMjricstation

node orworkstation ^^~-*(. Simulator)

 ■*{ Simulator)

(GA L •
\ •

Controller \
\ (^ Simulator)

\ lT Simulator)

Y Simulator")

Distributed AGA on CM-5

i.

" ''

(^GA^GA^A^GA agenT)

SiiQ Simulator)

Figure 3.15: Implementation of GA C++.

54

GA Simulator

crossover
mutate
replace
start

ÄGA
start

DAGA Agent
start

evaluate
transform
objfunc

DEVS Simulator
transform
objfunc

Other Simulators
transform
objfunc

Figure 3.16: GA C++ and Simulator classes.

The class Simulator is an abstract class for interface between GA C++ and user-

defined simulators. Simulator class provides three basic methods, evaluate, transform

and objfunc. Using these three methods a user easily combines his/her own simulation

and GA C++.

Figure 3.17 shows an example of the use of GA C++ on a single workstation

environment. In User.main program an object called sim is created from the User-

defined-simulator class (which should inherit Simulator class and whose two methods,

transform and objfunc are defined by the user) and passed to ga object created from

GA class. Every cycle in GA.start we call evaluate method with an argument of

newly created child from parents. Simulator.evaluate transforms childs chromosome

■ (defined as a character string inside GA C++) to a set of parameters using transform

method defined by the user and obtains fitness of child by calling objfunc which can

be any simulation or simple function evaluation defined by the user.

55

Program User.main
begin

User-defined-simulator * sim = User-defined-simulator();
GA * ga = GA(sim,);
ga->start();

end

Program GA.start
begin

initialize;
while(evalno++<maxeval) {

select parents;
crossover;
mutate;
sim->evaluate(individual * child);
replace;
if (optimum found) break;

}
end

Program Simulator.evaluate(individual * ind)
begin

double * param = transform(ind->chromosome);
ind->fitness = objfunc(param);

end

Figure 3.17: Code example for GA C++ and Simulator.

56

As shown in Figure 3.16, we have a predefined subclass called DEVS Simulator

which is a simulator based on the DEVS formalism. In the following chapters, We

show some examples of simulation based optimization with GA C++ and DEVS

C++ Simulator.

57

CHAPTER 4

DEVS Modelling Example: Watershed

An example of distributed watershed hydrology will illustrate modelling and sim-

ulation in the high performance simulation based optimization environment.

Rainfall runoff in a watershed is a complex process. Many factors influence this

process, including the conditions of the soil surface and its vegetative cover, the

properties of the soil such as its porosity and hydraulic conductivity, and the current

moisture content of the soil.

The complexity of watershed hydrology calls for powerful modelling methodologies

able to handle spatial interaction over a heterogeneous landscape as well as temporal

dynamics introduced by varying rainfall conditions. Geographic Information Systems

(GIS) can provide the spatially referenced data necessary to represent topography,

rainfall, and soil state distributions. Spatial dynamic models are needed to project

such states forward in time. However conventional differential equation formulations

entail an enormous computational burden that greatly limits their applicability. By

combining GIS, for state characterization, and DEVS, for dynamic state projection,

we derive an approach that can achieve realism within feasible computational con-

straints, albeit in high performance environments.

58

Evaportranspiration Rainfall

surface

bedrock
bedrock

air

air /
trees /
shrub V
glass.

soil
soil

soil
water /

water

water Sub-surface

Figure 4.1: Grid based representation of a watershed.

Figure 4.1 shows a typical watershed, which consists of several vertical layers,

such as air, surface water, subsurface soil, ground water and bedrock. We divide it

into many small cells and develop a conceptual hydrology model for each cell that

can be readily mapped into a DEVS component model. Then we define how the

directions of water flow are coded in a grid space and how the varying influx rates in

the discretized landscape are linked to create a coherent total runoff.

4.1 A Conceptual Hydrology Model for a Cell

As shown in Figure 4.2, we conceptually represent a cell with three vertically

connected reservoirs. The rainfall input (r(t)) is partially intercepted by vegetation

•cover and the rest of it, the effective rainfall (re(f)), becomes the source of surface

runoff and the infiltration. The surface reservoir receives the inputs, the effective

rainfall (re) and inflow (qi(t)) from the neighbor cells, and generates the outputs, the

59

'E(t)
r(t)

! Vegetation Cover

qi(t)
re(t)

qoft)

Rx(t)

-i r
surfacce reservoir

t I f(t)

W(t)

-i r

subsurface reservoir

P(t)
gift) goft)

G(t)
underground reservoir

Figure 4.2: Conceptual hydrology model for a cell,

runoff (qo(t)) to neighbor cells and infiltration(/(£)) to the subsurface reservoir. The

underground reservoir works similar to the surface reservoir except for infiltration.

We define the water depth on a cell, the rainfall excess (Rx(t)), and the runoff

(qo(t)) as follows:

Rx(t) = f\re(t) + X>'.-(*) - f(t) -Y,10i(t))dt

C(Si(t))a(Rx(t))
b

qOi(t) =
Wi

(4.1)

(4.2)

where

qii(t): inflow from zth neighbor cell,

qoi(t): runoff to ith. neighbor cell,

60

cell-0

cell-1

X^o^v'
q0iIllB °h.

cell-2
qij qo2

q°3: !*l

cell-3

Figure 4.3: Connection of Cells

C: a parameter characterizing the surface roughness at the cell's location,

Si(t): slope to the ith neighbor cell,

a, b: some constants,

Wii distance to the ith neighbor cell.

The slope 5; is computed by:

Si(t) =
h-hj + P(Rx{t) - Rxi(t))

Wi
(4.3)

where h = altitude of the cell, Rxi = rainfall excess of ith neighbor cell, hi = altitude

of ith neighbor cell, P = a constant (refer to Figure 4.3).

As shown in Figure 4.3, each cell can have at most eight neighboring cells. How-

ever, we may consider only four connections by ignoring diagonal neighbor cells or

even one connection (the direction of maximum runoff) depending on communication

overhead costs and required accuracy of simulation results. Some experimentation

indicates that there is not much difference in flow patterns between 4 and 8 neighbors

61

models but that the "gradient" (maximum flow) generates a distinctly different, and

less realistic looking behavior.

4.2 DEVS representation of Infiltration

In this section, we show how DEVS can represent the continuous infiltration pro-

cess.

During a rainstorm, the rate of rainfall changes constantly. Partly because of

limitations in measuring equipment, we commonly approximate this rate change with

a finite number of relatively short pulses. Each pulse is assumed to have a constant

rate, but the rate changes from pulse to pulse. This sequence of rainfall pulses is

both temporally and spatially distributed.

Infiltration is the process by which portions of the rain that are not intercepted by

plants or surface litter enter the soil. The infiltration rate is not constant. Its pattern

responds to the variation in rainfall rates and to the accumulated infiltration amount.

If the area of each cell in the grid based representation of watershed (Figure 4.1) is

small enough, it can be considered as a point source. There are several mathematical

models to compute infiltration for such a point source and most of them have the form

of nonlinear differential equations which are generally solved by iteration methods

such as the Newton-Raphson method. Discrete event simulation has been shown to

afford many advantages such as flexibility and efficiency over continuous simulation

for large scale landscape models [39].

62

Although the continuous system model described by a set of nonlinear differential

equations can be directly converted to a DEVS model without considering efficiency,

we need a model that fully takes advantage of discrete event simulation [40].

We adopt the approach of [40] to develop a DEVS model for infiltration by ab-

stracting a continuous model described by the Green-Ampt equation [41]. A fuzzy

system is designed to solve the Green-Ampt equation for significant events of the

infiltration process without using iteration methods in the proposed environment.

4.2.1 Green-Ampt Infiltration Model

The Green-Ampt equation has became widely used to compute infiltration in

catchment-scale hydrologic models [42, 43]. In addition to the fact that the pa-

rameters in the equation have physical significance, experimental works have been

completed or are underway to obtain values for the parameters based on soil texture

and on the effects of management [44].

The rate form of the Green-Ampt equation for the one stage case of initially

ponded condition is

/c(*) = ^a(l + (4-4)

where /c(/) = infiltration capacity(L/T), Ke = effective saturated hydraulic con-

ductivity (L/T), if) — average capillary potential at the wetting front(L), 6a = soil

moisture deficit(L/L), and F(t) = cumulative infiltrated depth(L) (note: L and T

represent length and time for all variables). The soil moisture deficit can be computed

63

as

Od = Os — Oi = r)(Smax — Si) (4.5)

where 9S = volumetric water content at saturation(L/L), 0,- = initial volumetric water

content (L/L), 77 = soil porosity, and Smax and Si are maximum and initial values of

relative saturation.

Recognizing that fc(t) = -jp, we integrate this relation to obtain

F(t) = Ket + Wdln[l + ^nr) (4.6)

Equation 4.6 is normally solved numerically for successive increments of time using

the Newton-Raphson iteration method.

Stage SI: No Runoff
Stage S2: Transition
Stage S3: Constant Runoff

t Time(hours)

Figure 4.4: Green-Ampt infiltration model.

64

Figure 4.4 shows the infiltration capacity and the rainfall excess during a constant

rainfall. There is no rainfall excess until the rainfall intensity becomes larger than the

infiltration capacity. The rainfall intensity is lager than the infiltration capacity after

the time to ponding (tp) where the rainfall intensity equals to the infiltration capacity.

Equation 4.4 shows that the infiltration capacity fc asymptotically approaches to Üfe,

and the rainfall excess can be considered as a constant after the time to constant

runoff (Zc) where fc becomes Ke + e for small e. We can divide the infiltration process

into three stages, a stage without runoff, a stage with transitional runoff and a stage

with constant runoff using tp and tc as in Figure 4.4.

4.2.2 DEVS Model for Infiltration

The infiltration process in Section 4.2.1 can be described by the DEVS formalism

in an efficient way if the following can be calculated:

1. The time to ponding (tto-ponding) from any time t where the rainfall intensity

changes in stage SI. This time is a function of the rainfall intensity and the

cumulative infiltrated depth at t.

2. The time to constant runoff from tp (tto-const =tc — tp) where the rainfall excess

can be considered as a constant. This time is only a function of the cumulative

infiltrated depth at tp.

3. The cumulative infiltrated depth F(tc).

65

A DEVS model M for infiltration can be defined as

M -< X, S, Y, Sint, Sext, A, ta >

where X = {rin\ rin = input rainfall intensity (L/T)}, Y = {y\ y = runoff (L/T) },

S = {s\ s == (phase,sigma,rcur, re, -F, Tto-conat) }, rcur = current rainfall intensity

(L/T), re = rainfall excess (L), F = cumulative infiltrated depth (L), and Tto-const

= remaining time to constant runoff.

In Section 4.2.1 we divided the infiltration process into three stages—NoRunoff

(stage Si), Transition (stage S2), and ConstantRunoff (stage S3). We define

phase as one of NoRunoff, Transition, and ConstantRunoff for each stage SI,

S2, and S3, respectively. In addition to these three phases we need two more phases,

Transition0 and ConstantRunof f°, to generate the output when the rainfall inten-

sity changes during stages S2 and S3.

The internal transition function <$,nt, the external transition function 8ext, and the

time advance function ta for the DEVS model M are shown below.

• The internal transition function Sint(s) = s', where s' = (phase', sigma', r'cur,

r' F' V \ 'ei i to—const/

When phase = NoRunoff

F' = F + fcur * sigma

rl _ rCur*Uo-const(F')-{F(tc)-F')
e tto-const(F')

66

phase' = Transition

sigma' = ta(s) (Variables not shown are unchanged.)

When phase = Transition

F' = F{tc)

re
== rcur jve

phase' = Constant Runoff

sigma' = ta(s)

When p/mse = Transition0

phase' = Transition

sigma' = Tt0-const

When pfoase = ConstantRunoff°

phase' — ConstantRunof f

sigma' = ta(s)

• The external transition function Sext(s,e,x) = s', where s' = (phase', sigma',

r' r' F' T! t) 'curl ' ei x ' to-const/

When phase = NoRunoff

F' = F + rcur * e

sigma' = £a(s)

When p/mse = Transition

67

TL-const = si9™a - e

"Te
= Te ycur Tin)

rcur ~ rin

phase' = Transition0

sigma' = 0

When phase = ConstantRunoff

F' = F + Ke*e

cur i? i

r' =r' ' e cur -Ke

phase' = ConstantRunoff

sigma' = 0

• The time advance function ta(s):

When phase = NoRunoff

tQ>\8) = '-to—pondingy cur 5 ")

When phase = Transition

ta(s) = tt0-const(F)

When phase = ConstantRunoff

ta(s) = 00

• The output function A(s):

68

At the end of phase = NoRunoff

\(„\ _ rcur*Uo-const(F)-(F(tc)-F)
V / tto-const{F)

At the end of phase = Transition0

\{s) = re

At the end of phase = Transition

A\S) = rcur J\e

At the end of phase = ConstantRunof f°

X(s) = re

The operation of the model M is as follows:

1. At time t = 0, the phase is NoRunoff and the next event is scheduled as

sigma = tto-.ponding(r, F), where r is the rainfall intensity and F is the cumula-

tive infiltrated depth at t = 0.

2. If the rainfall intensity changes at time tx during stage SI, the next event is

rescheduled as sigma = tt0-ponding{r-,F).

3. Note that between tp and tc the rainfall excess and, therefore the output runoff,

varies. A DEVS model, however, can only approximate this curve by finite

number of outputs. If the rainfall intensity doesn't change during stage S2, the

output at tp is to represent the rainfall excess between tp and tc. Conservation

of mass requires that re x (tc - tp) = total runoff. Therefore, at time t = tp, the

69

rainfall excess is approximated as re = r*tto-e°"»n p'~>Fy' p', where r is the

rainfall intensity, U0-const(Fp) = tc — tp, Fp is the cumulative infiltrated depth

at tp, and F(tc) is the cumulative infiltrated depth at time tc. The next internal

event is scheduled as sigma = tto-Const{Fp).

4. Consider a rainfall intensity change at ti(tp < t\ < tc). We update sigma =

sigma — e, where e is time elapsed since the last internal or external model

event. The rainfall excess r'e is recalculated as r'e — re — (rcur — rtri)(recall that

rcur = current rainfall intensity and rtn = new input rainfall intensity). Note

that the rainfall intensity change only affects the rainfall excess but not the

infiltration process [41].

5. At time t = tc, the rainfall excess is calculated as rcur — Ke. The next event is

scheduled as sigma = oo, i.e., the model will remain passive unless activated

by an external event.

6. The rainfall intensity change at time t during stage S3 recalculates the rainfall

excess r'e as r'e = r — Ke, where r is the rainfall intensity at time t.

To realize the above DEVS model we need to represent the Green-Ampt solution

for tto-ponding, Uo-const, and F(tc). Although the DEVS model for infiltration ap-

proximates the rainfall excess for the transitional stage as finite number of outputs,

this is not a major source of error for a long term simulation of a large watershed

represented by a grid system of small cells — the intended application.

70

Stage SI: No Runoff
Stage S2: Transition
Stage S3: Constant Runoff

SI S2 S3
r ■---

r: rainfall intensity

r-Ke -

jf rainfall excess(mm/h)
f \

n
t P

[c Time(hours)

Figure 4.5: DEVS approximation model behavior (Solid and dashed curve represent
the outputs of the DEVS and continuous model, respectively).

Figure 4.5 shows the behavior of the DEVS model for infiltration during a constant

rainfall compared to that of the continuous system model. For constant rainfall input,

the DEVS model approximates the continuous curve of rainfall excess in two steps.

Since only two computations are needed, simulation of the DEVS model is more

efficient than that of the continuous model which may need thousands of small steps.

4.2.3 Implementing a DEVS Model using a Fuzzy System

In Section 4.2.2, we presented a DEVS model for infiltration, but we need solve

the Green-Ampt equation for three unknowns, tt0-Ponding, Uo-const, and F(tc), to

implement it. We can analytically solve the Green-Ampt equation for U0-ponding in

the case that the duration of a rainfall event is divided into many short periods in

71

such a way that within each period the rainfall intensity is essentially constant [45].

Assuming that the rainfall intensity changes from rprev to rcur at time t for t < tp,

we can calculate the time to ponding U0-p0niina since we know that the infiltration

capacity (fc(tp)) and the cumulative infiltrated depth (Fp) at tp should be rcur and

rPrevt + fcurUo-ponding, respectively. If the rainfall intensity changes more than once

before time t, then Fp should be F(t) + rcur x tto-p0nding, where F(t) is the cumulative

infiltrated depth at time t. Using Equation 4.4, the time to ponding from any time

t can be calculated as

/ . (r pm_M!)+Ml!^ (A7] ''to—ponding \> CUD
r V')) — / »y- \ V*'')

Tcur v cur -^-e)

and tto-ponding is a function of the rainfall intensity rcur and the cumulative infiltrated

depth F at time t.

We defined the time tc as the instant when the infiltration capacity f(tc) becomes

Ke + e, and from Equation 4.4, the cumulative infiltrated depth F(tc) is

^ (4.8)

The Green-Ampt equation allows us to solve it for the time to ponding and the

cumulative infiltrated depth F(tc) analytically, but it doesn't allow us to solve it for

tto-const which is a function of Fp. There are several ways to solve this problem. One

possible solution is to use approximation forms of the Green-Ampt equation which

allow analytical solution for tto-const{Fp) [46]. The second one is to maintain a lookup

table which contains all solutions for every possible input event. However this scheme

72

requires a lot of memory. Another way is to maintain the approximate solutions using

different types of computational structure such as neural networks or fuzzy systems.

In this paper we use a fuzzy system described in Appendix A to hold the solutions

of tto-const(Fp) for the whole range of Fp.

The range of Fp can be calculated from Equation 4.4 for a given soil, a range of

input rainfall intensity, and an infiltration capacity at tc. At tp, the rainfall intensity r

is fc and the cumulative infiltrated depth F is the ponding depth Fp. From Equation

4.4,

Thus,

tp

Fmi, = -!&%- (4.9)

where Fpmin is the minimum ponding depth and rmax is the maximum rainfall inten-

sity. Let the infiltration capacity and the cumulative infiltrated depth at tc be fc(tc)

and F(tc), respectively, then the maximum ponding depth Fpmax is . ut-x since

Fp < F(tc). If we define fc(tc) as Ke + e, then

"pmax —- V "J

Given the range of Fp as in equations 4.9 and 4.10, we can solve the Green-Ampt

equation for tt0-const for a given number of training input points and design a fuzzy

system that approximates the solutions using the AGA optimizer.

73

4.2.4 Experimental Results

Green-Ampt parameter values for a silt soil are Ke = 5.0 (mm/h), i/> = 190.0

(mm), and 7/ = 0.42 [44]. Let the maximum rainfall intensity rmax be 200.0 (mm/h),

Am««-be 1.0 and Si be 0.5, then Fpmin is 1.02 (mm) from Equation 4.9. We chose

e to be Ke x 0.2 to keep tc close to 1 day, and Fpmax is calculated as 199.50 (mm)

using Equation 4.10. The possible range for the output (tto-const) can be obtained

by solving the Green-Ampt equation using an iteration method. As shown in Figure

4.6, tto-const has a value between 0.0 (hours) and 32.0 (hours).

It may happen that a better fuzzy approximation is obtained by locating the

center of some membership functions outside the range calculated above. Therefore,

we extended the search space by 60% and defined three fuzzy regions for -60.0 <

Fp < 260 and -9.6 < tto-const < 41.6. We then optimized the membership functions

and rules at the same time using the DAGA optimizer described in Chapter 3.

Figure 4.6 shows the solution for tto-Const by the fuzzy system compared to the

solution by the Newton-Raphson method, which is the target of the fuzzy system,

and the solution by the two-term Taylor series approximation.

The experimental results show that the fuzzy system can solve the Green-Ampt

equation for tto-const within 0.3 hours maximum error. The fuzzy system approxi-

mates tto-const better than the two-term Taylor series approximation of the Green-

Ampt equation which recently appeared in the literature [46]. The latter suffers 3.5

hours maximum error as shown in Figure 4.6. The fuzzy system was trained using

74

to-const

30.0"

25.0-

20.0-

15.0"

10.0-

5.0-

0.0-

0.0 50.0 100.0 150.0 200.0
Fp(mm)

Figure 4.6: The time to constant runoff Uo-const for the silt soil (Dashed, solid and
dotted curves are obtained for the fuzzy system, Newton-Raphson method and two-
term Taylor series approximation, respectively.).

15

only 100 data points while the curve shown in Figure 4.6 represents the output for

1,000 input points. The membership functions of the fuzzy approximation are shown

in Figure 4.7 and the rules are as follows:

• Rule 1: If Fp is Small, tto-Const is 35.2 hours.

• Rule 2: If Fp is Medium, tto-const is 31.7 hours.

• Rule 3: If Fp is Large, tto-Const is -7.2 hours.

SM ME LA
1.0

/ / / / / /
/ ;

/ i

1 /
I i
I i
1 i
1 /

1 i

I i
I i
II

11
11
11
11
ji

\ /

y'

;' \ ; \ ! \
; i

,' i

; i

; i

; i ; \ ', \
i

\

0.5

/ /

/ /

/ /

it
i
ij

i

1 /

i
i
i

i

\

\
\

\

FP
-200.0 -100.0 0.0 100.0 200.0 300.0 400.0

Fp(mm)

Figure 4.7: The membership functions of the fuzzy system (SM, ME, LA stand for
small, medium and large, respectively.).

76

We need about 1,000,000 evaluations to optimize the fuzzy system. Execution

times for this task for various processor sets on the CM-5 massively parallel computer

are shown in Table 4.1. While it takes about 7 hours to complete an optimization

run using 1 processor, this time is reduced to approximately 1 minute using 512 pro-

cessors. The approximate speedup of 350 times is certainly significant in establishing

the practicality of the approach.

of nodes 1 32 64 128 256 512
execution time (sec) 25,221 1,205 615 281 149 72

Table 4.1: The execution time to optimize the fuzzy system on the CM-5 (measured
for 1,000,000 evaluations).

We have devised a DEVS model for infiltration described by the Green-Ampt

equation and shown that this model can be realized using a fuzzy system approxi-

mation designed by GA optimization on a CM-5 supercomputer. The fuzzy system

outperforms the two-term Taylor series approximation proposed in [46] on the same

data set.

The approach using fuzzy approximation requires offline training using GAs. How-

ever it has an important benefit. Real world observed data, alone or combined with

that generated by a mathematical model, can be used to train the fuzzy membership

functions. In contrast, the Taylor series approximation requires a mathematically

tractable model.

We have also shown that fuzzy systems can represent the time to constant runoff

for any one type of soil. However, if this technique were to be used in a watershed

77

consisting of many different types of soil, one fuzzy approximation for each would be

required. So it remains of interest to design a fuzzy system that can represent the time

to constant runoff for different types of soil with just one set of membership functions

and employing one or more additional dimensions to represent soil characteristics.

Writing the DEVS model forced us to consider several state-input conditions that

are not typically considered in the hydrology literature. By forcing us to provide

behaviors under these conditions, the DEVS abstraction methodology afforded new

insights into underlying real processes. It also stimulated us to plan new experiments

to fill in gaps in our understanding of basic hydrologic processes.

4.3 DEVS Representation of Runoff

Recall that for a set of component models, a coupled model can be created by

specifying how the input and output ports of the components will be connected to

each other and to the input and output ports of the coupled model. Due to closure

under coupling [15], the new coupled model is itself a modular model and thus can

be used as a component in a yet larger, higher level model.

For the simulation of water flow in a cellular space one can envision the placement

of an atomic model at each cell location. Thus there is an array of spatially referenced

models that form a coupled DEVS model that can be coupled to an experimental

frame component. DEVS atomic models are stand-alone modular objects that contain

state variables and parameters, internal transition, external transition, output and

78

time advance functions. Two state variables are standard: phase and sigma. In the

absence of external events the model remains in the current state, including phase

state variable, for the time given by sigma at which time an internal transition occurs.

If an external event occurs, the external transition immediately places the model into

a new state, depending on the input event, the current state, the time that has elapsed

in that state. The new state may have a new value for sigma thus scheduling the

next internal transition. Note that DEVS recognizes the crucial role that the elapsed

time plays in the external transition computation. This enables DEVS to faithfully

represent the behavior of continuous systems through discrete events [11, 47].

The differential equation system described in Section 4.1 can be formalized in

an atomic model cell One way, equivalent to the conventional numerical analysis

approach, is to transform the continuous system into a discrete time approximation.

That is, we set sigma of the cell to some constant d. Each cell updates its states

and generates outputs to neighbor cells at every fixed time step. However, while

straightforward, updating the states of every cell every time step imposes a heavy

computational burden that may be far more than necessary as suggested in Section

2.1.

A more efficient and conceptually satisfying approach is to partition the state

space into output equivalent blocks as shown in Figure 4.8. While its state trajectory

remains in a block, each ce/fs output remains constant. Internal events of each

cell correspond to boundary crossings in the celFs state space. Given a state on a

79

State s

timet

Figure 4.8: State space partitioning for DEVS representation.

boundary, each cell predicts the state that will be reached on the next boundary

crossing and the time (sigma) to reach it. Due to the heterogeneity of soil conditions,

slope, and input flux conditions each cell fills at a different rate and thus takes a

different time to reach its next quantization level. Note that while it is in a quantum

block, the cell's output fluxes to its neighbors are constant and all input fluxes are

constant as well. Therefore, this enables us to compute when and where the next

level crossing (increasing or decreasing) will occur.

For example, assume that in the cell A the rainfall excess (water depth) is RXA(t)

and rainfall excess rate (difference between input and output) is rXA(t) at time t, then

from Equation 4.2 and 4.3 the runoff to the ith neighboring cell (^(i + St)) at time

■t + St is calculated by:

RXA(t + St) = RXA(t) + rXA{t)St

Rxi(t + St) = Rxi(t) + rxi{t)St

80

c. hA-hj + P(RXA(t + St) - Rxi(t + St))
Si{t + 6t) = ^

u , m C(Si(t + 8t)Y(RxJ + St))b ,
qAi{t + bt) = — , I4.ii;

where Rxi(t) and rxi(t) are the ith neighboring cell's rainfall excess and rainfall excess

rate at time t, respectively.

If the runoff of a cell to its neighbor is nD (for some integer n and quantum size

D) at time t, then we can compute the time advance St when the runoff qAi becomes

n(D - 1) or n(D + 1) using Equation 4.11. The equation can analytically be solved

for the cases when P = 0.0 or when a = b = 1.0. Otherwise it can be solved by

iteration methods. Since there can be up to eight neighbor cells and each neighbor

cell can be in different states, the times to next level crossing for each neighbor can

be different. In this case we have to take the minimum of these times as sigma.

When a cell receives an external event from a neighbor, the message carries the

latter's new output flux. The receiving cell's time and location of next boundary

crossing may differ from that initially predicted. As indicated before, the DEVS for-

malism can handle this situation. Since elapsed time is known, the actual water level

can be computed and sigma recalculated to represent reaching of the next quantum

level at the new rate using Equation 4.11.

When the quantized cell model implemented in this way was tested, the results

were disappointing. There was little if any reduction in computation time compared

with discrete time models. One source of overhead that the quantized model entails,

81

not found in the discrete time model, is the extra calculation for sigma. However,

analysis revealed that the main differentiating overhead was due to the structure of

the DEVS-C++ simulator (described in Section 2.3). Consider the case where N

cells, in different states, schedule their next events at different points on the real

time axis. In this case, the DEVS-C++ simulator requires N iterations to execute

all the events. This requires N times as many iterations than for a discrete time

model in which the DEVS-C++ simulator updates all cells in one iteration. Note

that the simulator can perform such a one iteration update since it implements the

new parallel DEVS formalism where all the inputs and outputs of all simultaneously

scheduled cells are properly managed. Thus the discrete time simulation is actually

getting more of a boost than it would get in a conventional sequential cell scanning

algorithm.

This analysis immediately suggested a remedy: squeeze events dispersed over the

time axis that are "close enough" to each other into groups, that are executed in one

iteration. (Note that this equivalencing is, in effect, an abstraction and is prone to

introduce error into the representation.) To accomplish this effect, we quantize the

time axis with a time granule of size e?, in addition to quantizing the state space.

The events between t and t + d are mapped to t + d by upward roundoff, as shown

in Figure 4.9. Note that in this quantized and granulized representation, the outputs

may be delayed by d in the worst case, but the change of state still propagates in

zero time. For example, when a cell receives a flux change input from a neighbor cell

82

State s

stp?*- timet

Figure 4.9: State space partitioning with granulized time axis,

at time t, this causes its state to change at the same time. Then the cell sends its

updated states to all neighbor cells also at time t without delay, setting its sigma to

0 for this purpose.

4.4 Experimental Results

Figure 4.10 shows the elevation map of a watershed artificially created for exper-

imentation. The target watershed is an array of 30 X 30 cells, each with dimension

of 20m x 20m (400m2). We applied a 50 mm/hour rainfall to the whole watershed

for ten hours and observed the behavior of the model during the period followed by

a subsequent dry period. We compared the quantized DEVS models, with different

state quanta and time granules to the simple discrete time DEVS models with vari-

ous time steps. We chose the value 1.0 for a, b and P in Equation 4.2 and 4.3. The

spatial evolution of flow was visually indistinguishable in all cases. However, to get

83

Figure 4.10: Elevation map of target watershed.

runoff Xia(ni /hour)
5.20—

5.15-

5.10-

5.05-

5.00-

4.95^
f

dt = 0.01

dt=äöoi"'
dt=ö."öööi'
dt = 0.00001
'b"=5Ö.cu"=o.oi
D="lAd"="0.01

D = 0.1, d = 0.01

4.90—

6.00 7.00 8.00

Figure 4.11: Simulation results: hydrographs in the steady state.

9.00 10.00
time(hour)

84

a quantitative estimate, we measured the runoff at the outlet (lowest point) over the

20 hour period. Figure 4.11 shows hydrographs obtained by these experiments near

the steady state and Table 4.2 shows the runoff values of each model in the steady

state.

Models Runoff (m3/hour) Difference from DM(dt = 0.00001)

DM(dt=0.01) 5,152.21 186.98

DM(dt=0.001) 4,982.91 17.68

DM(dt=0.0001) 4,966.86 1.63

DM(dt=0.00001) 4,965.23 0.00

QM(D=50.0, d=0.01) 4,960.00 -5.23

QM(D=1.0, d=0.01) 4,966.00 0.77

QM(D=0.1, d=0.01) 4,965.08 -0.15

QM(D=1.0,d=0.001) 4,965.60 -0.77

QM(D=50.0,d=1.0e-8) 4,960.00 -5.23

Table 4.2: Runoff of DEVS models in the Steady State. (DM(dt) is the discrete time
model, QM(D, d) is the quantized DEVS model with quantum D and time granule,
d, respectively.).

We assume that the discrete time DEVS model with the smallest time step

(0.00001 hour) is the most accurate one. The third column of Table 4.2 is the steady

state difference of each model from the 0.00001-step model baseline. The results show

the quantized model with quantum 0.1 and time granule 0.01 is closer to the baseline

than any other model.

Table 4.3 shows the execution times of the models on a Sparc-1000 processor.

Simulation with the quantized model (D=0.1 and d=0.01) is 153 times faster than

that of the discrete time model with time step 0.0001 (recall it is also more accurate)

and 1,203 times faster than that of the discrete time model with time step 0.00001

85

Models Iterations Execution Time(sec)
DM(dt=0.01) 4,000 867
DM(dt=0.001) 40,000 8,353
DM(dt=0.0001) 400,000 92,235
DM(dt=0.00001) 4,000,000 726,557
QM(D=50, d=0.01) 35,100 375
QM(D=1.0, d=0.01) 24,200 523
QM(D=0.1, d=0.01) 29,100 604
QM(D=1.0,d=0.001) 87,300 2,345
QM(D=50.0,d=1.0e-8) 3,052,100 30,096

Table 4.3: Execution times of DEVS models,

(from which it differs very little). The results also show that the quantum size only

affects the steady state error. The simulation time mainly depends on the time

granule.

To analyze the source of this speedup we measured the number of events (sum of

internal and external transitions) during simulation. Figure 4.12 and Figure 4.13 show

the number of events sampled in 0.1 hour steps and the accumulated total number of

events in log scale (base 10), respectively. The average number of events per iteration

in the model QM(D=0.1,d=0.01) is approximately 6 % of that in DM(dt=0.00001).

As shown in Table 4.3 and Figure 4.13, we greatly reduce both the number of

iterations and events by quantization and granulization without losing accuracy in

the steady state. By this reduction we achieve about 1,000 fold speedup in simulation

execution time.

86

number of events

45,000,000"

40,000,000"

35,000,000"

45,000-

40,000"

35,000-

30,000"

25,000"

20,000"

5,000"

0.00"

15,000-! ^^^wvvv^^SSiiÜilil,
!.! ' »' if:!:!!u.V.

10,000 ' jl 'I'll

DM(O.OppOl)

QM(0.1,0.01)

QM(50.0,0.01)

0.00 5.00 10.00 15.00 20.00
time(hour)

Figure 4.12: The Number of events for DM(dt=0.00001), QM(D=0.1,d=0.01) and
QM(D=50.0,d=0.01).

87

total number of events
DM(0.00001)

QM(Ö.1,Ö.Ö1)

QM(50.0,0.01)

0.00 5.00 10.00 15.00 20.00
time(hour)

Figure 4.13: Accumulated total number of events in log scale (base 10).

88

CHAPTER 5

Optimization Example: Parameter Search for Watershed

Models

The previous chapter showed that DEVS representation for spatially distributed

systems could greatly reduce the simulation time. In the experiments, we arbitrarily

chose the values for C, a, b and P in Equation 4.2 and 4.3. In this chapter, we'll

show some examples of search for these parameters of watershed models in the pro-

posed high performance simulation based optimization environment. We will also

propose an approach to valid aggregation for spatially distributed systems to reduce

the simulation time.

For experimental convenience, we employ KINEROS [48] as a target system,

.and show how to search the optimal values of the parameters in watershed mod-

els. The parameter search is considered only for a one-dimensional overland flow

since KINEROS approximates overland flow as one-dimensional flow. The parameter

P in Equation 4.3 can be considered as zero for overland flow since rainfall excess

(water depth) difference between two cells is small enough compared to the elevation

difference. By this assumption we have two advantages. First, we can reduce the

communication overhead required to exchange rainfall excess data between the neigh-

boring cells. Secondly, we can obtain an analytical form of spatial aggregation (will

89

be shown shortly). This assumption does not affect the speedups shown in Table 4.3

since communication overhead in both discrete time and DEVS models is reduced in

the same ratio.

5.1 Search for the parameters a and b

In KINEROS, overland flow is approximated as one-dimensional flow process in

which the runoff is given by:

Q = ahm. (5-1)

Four options for a and m are provided in KINEROS. In the experiments, we chose

the Manning hydraulic resistance law. In this option,

1.49S0-5

a =
n

(5.2)

and m = §, where S is the slope and n is the Manning roughness coefficient. The

range of Manning's roughness coefficient is from 0.01 to 0.68 which correspond to

concrete and grassland, respectively [48].

We use the following steps to obtain the optimal values for the parameters a and

b of the watershed model.

• Step 1: Obtain the behavior of KINEROS for three simple planes with three

different slopes for n = 0.1.

90

• Step 2: Search for the best values of the parameters, C, a and b of water-

shed models with three different resolutions compared to the target behavior

obtained in Step 1.

In Step 1, we obtain the target behavior (hydrographs) for three 500 m long planes

(the slopes of the planes are 0.01, 0.05 and 0.1, respectively) using KINEROS. Sim-

ulations covered 3 hours of real time for the 2 hour long, 30 mm/hour rainfall event.

In Step 2, we run optimization to find the optimal values for C, a and b for three

watershed models with different resolutions (10, 20 and 50 cells). The criterion for

optimization is to minimize the maximum absolute runoff error. The search ranges

are 1.0 - 10000.0 for C, and 0.0 - 3.0 for a and b. Each parameter is decoded as a

16-bit binary string in the GA optimizer.

model
resolution

C a b maximum runoff error
(mm/hour)

optimization
time (sec)

10 cells 336.9 0,52 1.74 1.3 485
20 cells 285.1 0.50 1.74 0.73 1,225
50 cells 376.7 0.48 1.62 0.48 4,193

•Table 5.1: Results of parameter search for a and b (optimization time is measured
for 20,000 GA iterations on the CM-5 with 256 nodes).

As shown in Table 5.1, the GA optimizer found the values, 0.48 for a, 1.62 for b

and 376.7 for C. The watershed model has a resolution of 50 cells. Its maximum

runoff error was 0.48 (mm/hour) which was 1.6 % of the steady state runoff (=30.0

mm/hour). This optimization takes 4,193 seconds for the 50 cell DEVS model on the

91

CM-5 with 256 nodes, while the estimated execution time on a Sparc-1000 worksta-

tion is about 6 days. This indicates that even a simple parameter search based on

simulation is impractical without help of the high performance optimization environ-

ment proposed in the report.

Figure 5.1 shows the hydrographs of the DEVS model with 50 cells compared to

those of KINEROS for three different slopes. Figure 5.2 also shows the hydrographs

of the DEVS model with 50 cells compared to those of KINEROS for a randomly

generated rainfall event. In the latter case, the maximum runoff error was 0.53. This

result shows that the values obtained for one simple rainfall pattern can be used for

other rainfall patterns.

5.2 Search for the C range

In the previous section, we obtained the optimal values for parameters a and b of

the watershed model. However, search for the optimal value of C for each cell in the

watershed model requires the range of the parameter C. Based on the Manning's

coefficient table given in the literature [48], it's only necessary to find the value of C

for the concrete and grassland which correspond to Manning's coefficients, 0.01 and

0.68, respectively. With a = 0.48 and b = 1.62 obtained in the previous section, we

search for the optimal values of C for the concrete and grassland with the resolution

of 50 cells.

92

Runoff (mm/hour)

30.00 ••"

25.00

20.00

15.00

10.00

5.00

0.00

0.00 50.00 100.00 150.00 Time (min)

Figure 5.1: Hydrographs of the optimized watershed model and KINEROS for the
planes with the slopes of 0.01, 0.05 and 0.1.

93

Runoff (mm/hour)

70.00

60.00

50.00

40.00

30.00

20.00

10.00

0.00

0.00 50.00 100.00 150.00 200.00

KINEROSp.pi_.

.KJNEROS0.Q5.

HNEROS_0._1_

DEVS0.01_

DEVS 0.05

DEVS0.1

250.00

Time (min)

Figure 5.2: Hydrographs of the optimized watershed model and KINEROS for a
randomly generated rainfall event.

94

The C range obtained in this experiment was from 65.6 (for grass) to 3213.1 (for

concrete) with the maximum runoff error of 0.57 (mm/hour). The GA optimizer

found this range within 1,000 iterations. Figure 5.3 and 5.4 show the hydrographs

generated by the DEVS model of the grassland with the optimized parameters for

different rainfall patterns compared to KINEROS.

Runoff (mm/hour)

30.00

25.00

20.00-

15.00

10.00-

5.00

0.00"

rainfall

i :

.KINEROSAQl.

.W.NERQ5.0,05..

JSSSR9.5.9J.....
DEVS 0.01.
pEVS0.Q5_.__.

DEVS 0.1

■-VK-

0.00 50.00 100.00 150.00 Time (min)

Figure 5.3: Hydrographs of the optimized watershed model and KINEROS for slope
0.01, 0.05 and 0.1.

Another experiment was conducted to show how the resolution of watershed affects

the modelling accuracy, the optimal value of C and the search time. The experiment

95

Runoff (mm/hour)

70.00-

60.00-

50.00-

40.00-

30.00-

20.00-

10.00

0.00"

0.00

rainfall

- 1

JKINEROSa0]_

KJNEROSa05_

KINEROS 0..1. .
DEVS0.01

DEVS0.05

DEVS0.1

50.00 100.00 150.00 200.00 250.00

Figure 5.4: Hydrographs of the optimized watershed model and KINEROS for ran-
domly generated rainfall event.

96

found the optimal value C of the watershed model with seven different resolutions

(1, 2, 4,8, 16, 32, 64 cells) for the target watershed in the previous section (n =

0.1). As shown in Table 5.2, the optimal value of C depends on the resolution of the

watershed model. However, the optimal resolution that minimizes the runoff error

is not the highest one. This result seems to fly in the face of the usual assumption

that higher resolution is better. It may be that there is an optimal level of resolution

for a given behavior. We have not probed deeper to resolve why this should be so.

(The situation is reminiscent of numerical integration methods where decreasing step

size may sometimes increase error due to propagation of roundoff error introduced at

each step (over more steps as resolution increases)).

model
resolution

C maximum runoff error
(mm/hour)

optimization
time (sec)

1 cell 659.0 4.30 54

2 cells 538.3 3.33 65
4 cells 466.9 2.52 136

8 cells 419.7 1.71 361
16 cells 396.7 1.03 986
32 cells 381.3 0.44 2,412

64 cells 369.5 0.52 5,655

Table 5.2: Results of parameter search for C (although the best values are obtained
within 1,200 GA iterations for all cases, the optimization time is measured for 20,000
iterations on the CM-5 with 256 nodes).

5.3 Search for C surface roughness

Two previous sections obtained the optimal values for a, b and the range of C

by the experiments. This section addresses the problem of how to search for the

97

best value of C within each cell of the watershed model for a given target watershed.

Although the GIS data base can provide roughness information to some extent, the

parameter search or tuning is still required to obtain an optimal C value for each cell

since it depends on the resolution of watershed models as shown in Table 5.2.

However, parameter search for large watersheds takes a tremendous amount of

time as shown in Table 5.3. For example, one simulation run of the DEVS model

with a quarter million cells takes about three days on a Sparc-2 processor. Thus

parameter search requiring 20,000 GA iterations takes about 1.5 centuries. Moreover,

this is calculated under the assumption that GAs can optimize a quarter million

parameters within 20,000 iterations.

Number of cells Execution time/run (sec) Execution time/20,000 runs
961 cells (31 x 31) 242 2 months
3,696 cells (63 x 63) 1,486 1 year
16,129 cells (127 x 127) 8,084 5 years
65,025 cells (255 x 255) 49,319 3 decades
261,121 cells (511 x 511) 231,177 1.5 centuries

Table 5.3: Execution times of watershed models on a Sparc-2 processor for a 2 hour
rainfall event.

input 1 input 2 input n

' ' ' '

component
model 1 output 1 component

model o
output 2

P
I

P 9

Figure 5.5: A system that has some number of component models connected in
cascade. (Pn is a parameter in component model n.)

98

To solve this problem, consider the system with n component models connected

in cascade shown in Figure 5.5. Assume that each component model n has one pa-

rameter to be optimized. It is clear that parameter optimization for the component

model 1 is not dependent on any other component models when the output of model

1 does not depend on the states of any other model. With the optimized component

model 1, parameter optimization for the component model 2 becomes independent of

other component models in the same condition. Thus we can transform a big search

problem into many smaller search problems. This method, incremental optimiza-

tion, can be applied to watershed models when the direction of water flow does not

change during a rainfall event. This incremental optimization may not find the global

optimal solutions, but it can greatly reduce the optimization time. The estimated

optimization time for the 511 x 511 watershed model with this method is about 2

days on the CM-5 with 512 nodes. That is, we can reduce 2 years of optimization

time to 2 days. Estimation is based on the assumption that it takes 1,000 iterations

to tune one parameter of one cell (the execution time of 1,000 GA iterations for the

watershed model with 1 cell is measured as about 0.7 seconds).

To generalize the incremental optimization, consider the system in Figure 5.6.

Assume that the system has nxn blocks of models and each block has mxm models

(that is, the system has N x N models in total for N = n x m). If the input/output

behavior of each model inside the blocks is available, an N x N parameters search

problem can be reduced to N x N single parameter search problems as explained

99

D D D
D D

block 1,1

D D

■
1

D D D
D D

block 2,1

D D

D D D
D D

block 1,2

D D

D D D
D D

block l,n

D D

each block has m x m models

D D D
D D

block n,l

D D

«—
D D D
D D

block n,2

D D

D D D
D □

block n,n

D D

Figure 5.6: A system that has n x n blocks of models and each block has m X m
models.

100

above. However, if only the input/output behavior for each block is available, the

N x N parameter search problem is transformed into n x n (m x m)-parameter

search problems. The reduction of optimization time for this case depends on the

complexity of GAs. Let the complexity of GAs be 0(lk), where / is the chromosome

length and A; is a constant. Then the complexity of the N X N parameter search

problem is 0((N x N)k) and that of the n x n (m x m)-parameter search problems

is 0(n xnx(mx m)k). From N = n x m, we can achieve (n x n)fe_1 fold speedups.

The constant k depends on the problem to be optimized by GAs.

An experiment is conducted to show the effectiveness of incremental optimization

and to get the complexity of GA optimization for watershed models. We randomly

create the target watersheds (one-dimensional DEVS models) with 4 different number

of cells. The slopes and C values are chosen between 0.01 and 0.1, and between 50.0

and 3500.0, respectively. We run GA optimization until it finds the watershed model

with the maximum runoff error of 1.5 mm/hour (which is 5 % of the steady state

runoff). Table 5.4 and 5.5 show the results of the experiment. As shown in the tables,

the incremental optimization markedly reduced execution time. Table 5.4 also shows

the complexity of the GA optimizer for watershed model. The constant k in 0(lk) is

definitely more than 2.

101

number of cells GA iterations maximum runoff error Execution time(sec)
4 508 1.00 40
8 11,589 1.00 87
16 60,200 1.50 780
32 312,239 1.48 7,650

Table 5.4: Results of global optimization (execution times are measured on the CM-5
with 256 nodes).

number of cells GA iterations maximum runoff error Execution time(sec)
4 352 1.00 5
8 630 1.00 7
16 920 1.50 9
32 1,215 1.48 11

Table 5.5: Results of global optimization (execution times are measured on a Sparc-
1000).

5.4 Spatial Aggregation

The previous chapter showed that DEVS abstraction could greatly reduce the sim-

ulation time. However, simulations of large watershed models still require a powerful

computer such as the CM-5 or IBM SP2. Table 5.3 shows that one simulation run for

511 X 511 cells on one Sparc-2 processor takes about 3 days. The table also indicates

that lowering the spatial resolution with some allowable error can greatly reduce

simulation time. For example, lowering the spatial resolution by a factor of 4 , from

511 x 511 to 127 x 127, reduces simulation time by the factor of 30 as shown in Table

5.3. To do so, we develop an approach to valid aggregation of spatial watershed mod-

els based on parameter morphism. Aggregation of the states for variable-resolution

.modeling was studied by Davis [49]. Abstraction of DEVS models by aggregation

102

was studied by Zeigler [7]. As far as we know, however, there has been no research

related to aggregation of spatially distributed systems.

base model

state

a given
state mapping

parameters

output

parameter
mapping

&> ^--j-^ output error

state

parameters
output

lumped model

Figure 5.7: Parameter morphism.

Parameter morphism is defined as a parameter mapping that yields a lumped

model, a valid abstraction, of a base model in some experimental frame. As shown

•in Figure 5.7, parameter morphism preserves the output behaviors of the base and

lumped model with some allowable error. There are two methods to derive parameter

morphism — a GA optimization based method and an analytical method. In the

former, parameter morphism can be obtained using GA optimization as shown in

Figure 5.8. In the latter, parameter morphism can be obtained analytically (an

103

GA optimization

fitness

parameters

Lumped model

state/output trajetory

Base model
state/output trajetory

Figure 5.8: Parameter morphism by GA optimization,

example will be shown shortly). We will not show the example of the former method

since it's a trivial GA optimization problem.

Consider a simple one-dimensional watershed shown in Figure 5.9. We will ag-

gregate pairs of adjacent cells, i and i + 1, into single cells. The problem is how to

obtain a surface roughness value Cj of the low resolution model from the values, c;

and c,-+i of a high resolution model. With the assumption of P = 0.0, one possible

set of reasonable constraints for this spatial aggregation is:

Rxi =

Si

2 '

2

(5.3)

104

Figure 5.9: Spatial aggregation for one-dimensional flow.

105

From equations 4.2 and 5.3, the surface roughness Cj of the low resolution model is

calculated by:

d = ci+1(-^-n 2r:i+1)"■ (5-4)

As shown in Equation 5.4, the parameter Cj depends on rainfall excess of the high

resolution model. In other words, Cj must be time varying to satisfy the constraints

given by Equation 5.3. However, in the steady state,

qi+1 = g,- + r,-+i, (5.5)

where ri+1 is the rainfall intensity for cell i + 1. Using equations 4.2 and 5.5, in the

steady state we have:

w w
where W is the width of a cell in the high resolution model. Under zero rainfall, we

have r;+i = 0, and

r,, = (2±^)tr.i+I. (5.7)

From equations 5.4 and 5.7, C is calculated as:

2«m XB, 2 ,6 ^^
c' = Ci+l(^T^)0(iT^^i)

Although steady state and zero rainfall conditions were employed to derive Equa-

tion 5.8, we can experiment to see how well this parameter mapping works in general.

106

5.4.1 Experimental Results

In this section, we will present some experimental results for spatial aggregation

based on the proposed parameter mapping.

To show how much we can reduce spatial resolution, we did the following experi-

ments.

• Step 1: Create the base (high resolution) model with a randomly generated C

value (within the range found in the previous section) and slope for each cell.

• Step 2: Obtain the lumped models using the parameter mapping given by

Equation 5.8 and measure the error between the lumped and base models.

In Step 1, we create the base model with 128 cells for a 2,560 m long watershed

and randomly assign the slope s and C values to each cell (0.01 < s < 0.1, 60.0 <

C < 3500.0). In Step 2, we apply the parameter mapping to the base model and get

a lumped model. We repeat the lumping process until we get a lumped model with

only 1 cell. We measure the runoff error between the base and lumped models in

each lumping step. The maximum absolute error is the criterion for comparison.

The tables 5.6, 5.7 and 5.8 show the results for three different randomly generated

base models. Simulations covered 3 hours of real time with 2 hour long 30 mm/hour

rainfall event. The results show that we can reduce the spatial resolution by a factor

of 8 with less than 10 % error from the steady state value of runoff. Figure 5.10

shows the hydrograph (runoff) of the base and lumped models at the outlet of the

107

Models maximum runoff error (mm/hour)
base (128 cells) 0.00
lumped (64 cells) 0.50
lumped (32 cells) 1.42
lumped (16 cells) 2.72
lumped (8 cells) 4.28
lumped (4 cells) 6.28
lumped (2 cells) 8.78
lumped (1 cells) 10.44

Table 5.6: Runoff error between base and lumped model for base model 1 (simulated
for 3 hours with a 2 hour long 30 mm/hour rainfall event).

Models maximum runoff error (mm/hour)
base (128 cells) 0.00
lumped (64 cells) 0.60
lumped (32 cells) 1.37
lumped (16 cells) 2.37
lumped (8 cells) 3.75
lumped (4 cells) 5.62
lumped (2 cells) 8.12
lumped (1 cells) 10.19

Table 5.7: Runoff error between base and lumped model for base model 2 (simulated
for 3 hours with a 2 hour long 30 mm/hour rainfall event).

Models maximum runoff error (mm/hour)
base (128 cells) 0.00
lumped (64 cells) 0.51
lumped (32 cells) 1.23
lumped (16 cells) 2.26
lumped (8 cells) 3.70
lumped (4 cells) 5.42
lumped (2 cells) 7.42
lumped (1 cells) 9.84

.Table 5.8: Runoff error between base and lumped model for base model 3 (simulated
for 3 hours with a 2 hour long 30 mm/hour rainfall event).

108

watershed. Smaller error after the rain stops is consistent with the assumptions

behind parameter mapping.

Runoff (mm/hour)

0.00 50.00 100.00 150.00 Time (rain)

Figure 5.10: Runoff of the base model and lumped models

Models Execution time (sec)
base (128 cells) 60.1
lumped (64 cells) 26.3
lumped (32 cells) 10.2
lumped (16 cells) 4.0

Table 5.9: Execution times of the base and lumped models on a Sparc-2 processor.

In Table 5.9, execution time of each model measured on a Sparc-2 processor shows

we can achieve about 15 fold speedup by lumping with less than 10 % error.

5.4.2 Multiresolution search based on parameter morphism

109

Low
resolution,
wide scope

low resolution

model

parameter
morphism

Incresing
number of
parameters

parameter
morphism

High
resolution,
narrow scope

high resolution
model

Successive
Approximation

Figure 5.11: Multiresolution search strategy.

As shown in the previous sections, parameter morphism can greatly reduce the

simulation time of watershed models. This section addresses the optimization time

reduction for watershed models using a multiresolution search. As depicted in Figure

5.11, the multiresolution search strategy can obtain the optimal values of the pa-

rameters in the high resolution model if the parameter values of the high resolution

models are located in the vicinity of those of low resolution models. That is, we first

search for the optimal parameters in the low resolution model. Then we search for

the parameters in the high resolution model in the vicinity of the values. This process

is repeated until the model with the desired level of resolution is found. This method

110

may reduce optimization time. But we leave the research related to this topic as

future work.

Ill

CHAPTER 6

Conclusions

This report proposed a high performance simulation based optimization environ-

ment capable of supporting the design and modeling of large scale systems with

natural and artificial components at high levels of resolution.

We demonstrated the advantage of using the DEVS formalism to represent large

scale continuous system models in efficient high fidelity. For example, in the case

of watershed behavior discussed in the report, traditional approaches based on par-

tial differential equations decompose the watershed into "parking lots", each with

builtin channel flow - without such coarse representation, such simulations would

take months or years to complete. In contrast, our high resolution model allows

channel flows to "emerge" from the underlying water dynamics and landscape topog-

raphy. Figure 6.1 is an elevation map of a real watershed, Brown's Pond. Figure 6.2

shows the distribution of runoff at some time after a uniform rainfall. One can see

that channels have formed that are clearly correlated with the topography.

It should be noted that hybrid models containing both discrete and continuous

components offer an attractive alternative and are undergoing intensive research [50].

However, without mapping the continuous parts to DEVS they can not exploit the

112

Altitude(m)

X 40(m)

Figure 6.1: Brown's pond elevation map.

ninoffOTV^/hour)

Figure 6.2: Brown's pond runoff (ra3/hour) after 2 simulated hours (1 hour after end
of 1 hour long rainfall).

113

thousand-fold speedups necessary to achieve feasible optimizations of complex sys-

tems. As shown in the report, the quantized/granulized DEVS model achieved the

thousand-fold speedups compared to the discrete time model.

The searcher layer has employed Genetic Algorithms to provide generic robust

search capability. We have developed a class of parallel Genetic Algorithms, called

Distributed Asynchronous Genetic Algorithm (DAGA), which provides the speed

required for simulation based optimization of large scale systems with various appli-

cations.

Coded in the object-oriented language, C++, the proposed environment runs on

both serial and parallel computing platforms [51]. The universality of the the DEVS

modelling formalism, the portability of the C++ implementations, and the robustness

of the GA searcher layer are intended to facilitate widespread use of the environment.

We have presented actual experiments that show how each of the sources — DEVS

representation, and distributed GA-based search can individually achieve thousand

fold speedups. With the DEVS representation, and the combined simulation/searcher

layers each affording a thousand fold speedup, taken together, these sources of high

performance can achieve at least a million fold speedup over current workstation

performance levels. As indicated, performance increases of such scale will make

possible some ambitious studies that are not feasible today.

This report also proposed an approach to valid aggregation of spatially distributed

systems based on parameter morphisms, and showed its validity and reduction of

114

simulation time for watershed models. However, several topics such as spatial aggre-

gation for two-dimensional watershed models, parameter search for large watershed

models using GA optimization based on multiresolution search strategy, and valida-

tion of watershed models against real watersheds, still remain as future work.

115

Appendix A

Fuzzy Systems

The basic idea of fuzzy systems centers around the labeling process, in which the

reading of a sensor is translated into a label as done by human expert controllers [52].

With expert supplied membership functions for labels, a reading of a sensor can be

fuzzified and defuzzified. It is important to note that the transitions between labels

are not abrupt and a given reading might belong to several label regions.

However, the fuzzification and defuzzification processing need not be sequential.

The input signal can be fuzzified/defuzzified simultaneously by matching membership

functions. Therefore fuzzy control processing can be adapted to a parallel neural

network structure where each neuron represents functions (fuzzy membership) and

each link represents the weight of a fuzzy rule.

Figure A. 1(a) shows the structure of the fuzzy system and its fuzzy subspace

(Figure A.1(b)) [38]. In this example, 5 fuzzy regions are defined for the inputs and

output.

While an earlier fuzzy systems [53, 54] was implemented in rule-based form (if-

then), the fuzzy system employs parallel inferencing network structure. Due to the

parallel fuzzification/defuzzification scheme, the fuzzy system can improve real-time

116

input

Input Membership
Function

Output Membership
Function

layer 1 layer 2 layer 3 layer 4 Iayer5

I Input Signal B

1:PL 2:PS 3:ZE 4:NS 5:NL

(a) Fuzzy logic processor (b) Fuzzy rule table

Figure A.l: Fuzzy inference network and fuzzy subspaces

performance of the control system for practical applications. The operations of layers

in fuzzy inference network are,

Layer 1 Every node i in the first layer has a node function, 0} = //^(z)- 0}

is the membership function of A; (a linguistic label such as positive small, negative

large, etc.) and it specifies the degree to which x given satisfies the quantifier A;.

Layer 2 A node in the second layer performs the generalized AND operation.

W{ represents the firing strength of rule-i, W{ = min(iJ,Ai(x), fiß^x)).

Layer 3 Every node computes the ratio of the i-th rule's firing strength to the

sum of the firing strengths of all the rules, wl = ^^—.

Layer 4 Every node computes the defuzzified value of each rule i. Of — Wifi,

where /,• is the defuzzified value for rule i.

Layer 5 This node computes the overall output as the summation of all

incoming signals. O5 = £?=o Of = E-L„ Wi/t-

117

In order to find well-performing fuzzy membership functions without help of hu-

man expertise, it is necessary to employ computer-aided optimization. Since tuning

the membership functions requires adjusting many parameters simultaneously, hill-

climbing search methods would suffer from the complexity of the search space.

For this reason, GAs were employed to find optimal membership functions and

rules in this research.

118

REFERENCES

[1] Committee on Future Technologies, "Commercial Multimedia Technologies and
the 21st Century Army: A Technology Management Strategy," tech. rep., Na-
tional Research Council, Washington DC, 1996.

[2] PVM project team, "PVM User Survey Results." posted on comp.parallel.pvm,

1994.

[3] J. Kim and B. P. Zeigler, "Hierarchical Distributed Genetic Algorithms in an
Intelligent Machine Architecture," IEEE Expert Magazine, vol. 11, pp. 76-84,

June 1996.

[4] J. Kim, Y. Moon, and B. P. Zeigler, "Designing Fuzzy Neural Net Controllers
using Genetic Algorithms," IEEE Control Magazine, vol. 15, no. 3, pp. 66-72,

1995.

[5] A. Louri, H. Sung, Y. Moon, and B. P. Zeigler, "An Efficient Signal Distinction
Scheme for Large-scale Free-space Optical Networks Using Genetic Algorithms,"
in Photonics in Switching: Topical Meeting, OSA, Salt Lake City, Utah, pp. 90-

92, Mar. 12-17 1995.

[6] B. P. Zeigler, Y. Moon, V. L. Lopes, and J. Kim, "DEVS Approximation of
Infiltration Using Genetic Algorithm Optimization of a Fuzzy System," Journal
of Mathematical and Computer Modeling, vol. 23, pp. 215-228, June 1996.

[7] B. P. Zeigler, Theory of Modelling and Simulation. New York: John Wiley, 1976.

[8] Y. C. Ho, "Special issue on discrete event dynamic systems," Proceedings of the

IEEE, vol. 77, no. 1, 1989.

[9] B. P. Zeigler, Multifacetted Modelling and Discrete Event Simulation. London:
Academic Press, 1984.

[10] B. P. Zeigler, Object-Oriented Simulation with Hierarchical, Modular Models:
Intelligent Agents and Endomorphic Systems. San Diego,CA: Academic Press,

1990.

119

[11] B. P. Zeigler and W. H. Sanders, "Preface to Special Issue on Environments for
Discrete Event Dynamic Systems," Discrete Event Dynamic Systems: Theory
and Application, vol. 3, no. 2, pp. 110-119, 1993.

[12] B. P. Zeigler, T. G. Kim, H. Praehofer, and H. S. Song, "DEVS Framework
for Modelling, Simulation, Analysis, and Design of Hybrid Systems," in Leture
Notes in CS (P. Antsaklis and A. Nerode, eds.), pp. 529-551, Springer-Verlag,
1996.

[13] H. Praehofer and B. P. Zeigler, "On the Expressibility of Discrete Event Specified
Systems," in Proceedings of CAST (Computer Aided Systems Theory) Confer-
ence, Ottawa, Canada, May 1994, Springer Verlag, 1996. (will appear).

[14] H. Praehofer, "System Theoretic Foundations for Combined Discrete-Continuous
System Simulation," Ph.D. dissertation, Johannes Kepler University of Linz,
Linz, Austria, 1991.

[15] A. Chow and B. P. Zeigler, "Revised DEVS: a Parallel, Hierarchical, Modular
Modeling Formalism," in Winter Simulation Conf, 1994.

[16] Y. K. Cho, "Parallel Implementation of Container using Parallel Virtual Ma-
chine," Ph.D. dissertation, The University of Arizona, Tucson, Arizona, 1995.

[17] V. L. Sunderam and et. al., "The PVM Concurrent Computing System: Evolu-
tion, Experience, and Trends," Parallel Computing, vol. 20, no. 4, pp. 531-545,
1994.

[18] B. P. Zeigler, Y. Moon, D. Kim, and G. Ball, "High Performance Modelling
and Simulation: Progress and Challenges," IEEE Computational Science and
Engineering, 1996. accepted.

[19] J. Holland, Adaptation in Natural and Artificial Systems. University of Michigan
Press, 1975.

[20] D. Whitley and T. Starkweather, "GENITOR II : A Distributed Genetic Algo-
rithm," Journal of Expert Theory and Artificial Intelligence, vol. 2, pp. 189-214,
Jan. 1994.

120

[21] V. S. Gordon and D. Whitley, "Serial and Parallel Genetic Algorithms as Func-
tion Optimization," in Proceeding of the 5th International Conference on Ge-
netic Algorithms, Urbana-Champaign, IL, pp. 177-190, Univ. of Illinois Urbana-
Champaign, July 1993.

[22] Z. Miachalewicz, Genetic Algorithm + Data Structure = Evolution Program-
ming. New York: Springer-Verlag, 1992.

[23] T. Back and H. P. Schwefel, An Overview of Evolutionary Algorithms for Pa-
rameter Optimization, vol. 1, pp. 1-23. MIT Press, 1993.

[24] M. Srinivas and L. M. Patnaik, "Genetic Algorithms: A Survey," Computer,
vol. 27, pp. 17-26, June 1994.

[25] J. L. R. Filho and P. C. Treleaven, "Genetic-Algorithms Programming Environ-
ments," Computer, vol. 27, pp. 28-43, June 1994.

[26] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Reading, MA: Addison-Wesley, 1989.

[27] D. B. Fogel, "An Introduction to Simulated Evolutionary Optimization," IEEE
trans, on Neural Nets, Jan. 1994.

[28] R. Bianchini and C. Brown, "Parallel Genetic Algorithms on Distributed-
Memory Architectures," Tech. Rep. TR 436, Computer Science Department,
Univ. of Rochester, Rochester, 1992.

[29] S. Baluja, "Structure and Performance of Fine-Grain Parallelism in Genetic
Search," in Proceeding of the 5th International Conference on Genetic Al-
gorithms, Urbana-Champaign, IL, pp. 155-162, Univ. of Illinois Urbana-
Champaign, July 1993.

[30] B. P. Zeigler and J. Kim, "Asynchronous Genetic Algorithm on Parallel Com-
puter," in Proceeding of the 5th International Conference on Genetic Algorithms,
Urbana-Champaign, IL, pp. 660-660, Univ. of Illinois Urbana-Champaign, July
1993.

[31] K. DeJong, "An Analysis of the Behavior of a Class of Genetic Adaptive Sys-
tems," Ph.D. dissertation, Univ. of Michigan, Ann Abor, Michigan, 1975.

121

[32] K. Deb and D. E. Goldberg, "Analyzing Deception in Trap Functions," Foun-
dations of Genetic Algorithms, pp. 93-108, 1993.

[33] D. E. Goldberg, K. Deb, H. Kargupta, and G. Harik, "Rapid, Accurate Opti-
mization of Difficult Problems Using Fast Messy Genetic Algorithms," in Pro-
ceeding of the 5th International Conference on Genetic Algorithms, Urbana-
Champaign, IL, pp. 56-64, Univ. of Illinois Urbana-Champaign, July 1993.

[34] M. Mitchell, S. Forrest, and J. H. Holland, "The Royal Road for Genetic Al-
gorithms: Fitness Landscapes and GA Performance," in Proceeding of the First
European Conference on Artificial Life, Cambridge, MA, MIT Press/Bradford
Books, 1992.

[35] J. H. Holland, "Royal Road Functions," Internet Genetic Algorithms Digest,
vol. 7, August 1993.

[36] D. E. Goldberg, "First Flights at Genetic-Algorithm Kitty Hawk," Tech. Rep. II-
HGal Report No. 94008, University of Illinois, General Engineering Department,
Urbana-Champaign, IL, 1994.

[37] J. S. Jang, "Self-learning fuzzy controller based on temporal back-propagation,"
IEEE Transactions on Neural Networks, vol. 3, no. 5, 1992.

[38] J. S. Jang, "ANFIS: Adaptive-network-based Fuzzy Inference Systems," IEEE
Transactions on Systems, Man Cybernetics, vol. 23, no. 3, pp. 665-685, 1993.

[39] M. J. Vasconcelos and B. P. Zeigler, "Simulation of forest landscape response to
fire disturbances," Ecological Modeling, vol. 65, pp. 177-198, 1993.

[40] C. J. Luh and B. P. Zeigler, "Abstracting Event-based Control Models for High
Autonomy Systems," IEEE Transactions on Systems, Man and Cybernetics,
vol. 23, no. 1, pp. 42-54, 1993.

[41] W. H. Green and G. A. Ampt, "Studies on Soil Physics, I. The Flow of Air and
Water through Soils," Journal Agr. Sei., vol. 4, no. 1, pp. 1-24, 1911.

[42] W. J. Rawls, J. J. Stone, and D. L. Brakensiek, "USDA-Water Erosion Prediction
Project: Hillslope Profile Model Documentation," in ,NSERL Rep. No. 2 (L. J.
Lane and M. A. Nearing, eds.), ch. 4.1-4.12, West Lafayette, Ind.: National Soil
Erosion Research Laboratory, USDA-ARS, 1989.

122

[43] V. L. Lopes, "A Distributed Model of Stormflow and Sediment Yield for Small
Watersheds," Journal of Soil and Water Conservation, (in press).

[44] W. J. Rawls, D. L. Brakensiek, and K. E. Saxton, "Estimation of soil water
properties," Trans. ASAE Spec. Ed.; Soil and Water, vol. 25, pp. 1316-1320.

[45] S. T. Chu, "Infiltration During an Unsteady Rain," Water Resources Research,
vol. 14, no. 3, pp. 461-466, 1978.

[46] J. J. Stone, R. H. Hawkins, and E. D. Shirley, "Approximation Form of Green-
Ampt Infiltration Equation," ASCE Journal of Irrigation and Drainage Engi-
neering, vol. 120, no. 1, pp. 128-137, 1994.

[47] B. P. Zeigler, "DEVS Representation of Dynamical Systems: Event-based Intel-
ligent Control," Proceedings of the IEEE, vol. 77, no. 1, pp. 72-80, 1989.

[48] D. A. Woolhiser, R. E. Smith, and D. C. Goodrich, "KINEROS, A Kinematic
Runoff and Erosion Model: Documentation and User Manual." U.S. Department
of Agriculture, Agricultural Research Service, ARS-77, 1990.

[49] P. K. Davis, "An Introduction to Variable-Resolution Modeling," Naval Research
Logistics, vol. 42, pp. 151-181, 1995.

[50] H. Praehofer, F. Auernig, and G. Reisinger, "An Environment for DEVS-Based
Multiformalism Simulation in Common Lisp/CLOS," Discrete Event Dynamic
Systems: Theory and Applications, 1993.

[51] B. P. Zeigler, Y. Moon, D. Kim, and J. G. Kim, "DEVS-C++: An Environment
for High Performance Simulation," in Proceedings of the Hawaii International
Conf. on Systems Science, Hawaii, Jan. 1996.

[52] M. A. Lee and H. Takagi, "Embedding Apriori Knowledge into an Integrated
Fuzzy System Design Method Based on Genetic Algorithms," in Proceeding of
the 5th IFSA World Congress, pp. 1293-1296, 1993.

[53] B. P. Zeigler and J. W. Kim, "Event-based Fuzzy Logic Control System," in Pro-
ceedings of 8th IEEE International Symposium on Intelligent Control, Columbus,
OH, pp. 611-616, 1993.

123

[54] L. C. Schooley, F. E. Cellier, B. P. Zeigler, M. M. Marefat, and F. Wang, "High
Autonomy Control of Space Resource Processing Plants," Control Systems Mag-
azine, June 1993.

«U.S. GOVERNMENT PRINTING OFFICE: 1998-610-130-61119

124

MISSION
OF

ROME LABORA TOR Y

Mission. The mission of Rome Laboratory is to advance the science and
technologies of command, control, communications and intelligence and to
transition them into systems to meet customer needs. To achieve this,
Rome Lab:

a. Conducts vigorous research, development and test programs in all
applicable technologies;

b. Transitions technology to current and future systems to improve
operational capability, readiness, and supportability;

c. Provides a full range of technical support to Air Force Material
Command product centers and other Air Force organizations;

d. Promotes transfer of technology to the private sector;

e. Maintains leading edge technological expertise in the areas of
surveillance, communications, command and control, intelligence, reliability
science, electro-magnetic technology, photonics, signal processing, and
computational science.

The thrust areas of technical competence include: Surveillance,
Communications, Command and Control, Intelligence, Signal Processing,
Computer Science and Technology, Electromagnetic Technology,
Photonics and Reliability Sciences.

