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Abstract ___  

Overdamping that is common to a single-degree-of-freedom damped linear vibratory system 
was extended to multidegree-of-freedom damped linear system, viz, a drive train situated in a 
typical gas turbine. Inequalities involving the mass, damping, and stiffness parameters were 
derived to form a system with a free response that was overdamped in each respective node. A 
general method to be employed in establishing the design parameters for designing systems to 
be overdamped in each mode has been identified for purposes of analysis, and the method was 
utilized to a four-degree- of-freedom model of a drive train in a gas turbine engine with a new 
look at a solution methodology for overdamping considerations. This technique, or method, for 
eliminating oscillations in n-degree-of-freedom lumped parameter systems by increasing the 
amount of viscous damping in the system has been illustrated by using actual data. 
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1. Introduction 

Viscous damping can limit the oscillations in mechanical systems such as in drive trains of 

modern tanks. If we look at a linear one-degree-of-freedom spring, mass, and dashpot arrangement, 

the selection of the proper values of mass, stiffness and damping constants to produce an 

overdamped or critically damped system can be effectuated without too much difficulty. The 

solution of a constant coefficient second-order ordinary differential equation shows that if c £ 2 mk 

(where m, c, and k are the mass, damping, and stiffness coefficients, respectively) then the 

mechanical system will not oscillate. The purpose of this treatise is to show similar inequalities for 

nonoscillation of multidegree-of-freedom systems, especially inherent in the accessory gear box, 

reduction gear box and output shaft of a typical gas turbine engine. This type of analysis can prove 

to be invaluable for the diagnostics and prognostics of engines as illustrated by Helfman, Dumer and 

Hanratty(1995). 

The systems considered here are those that can be modeled by the matrix differential equation 

Mx(t) + Cx(t) + Kx(t) = 0, (1) 

where x (t) is an n-dimensional vector of displacements and M, C, and K are nxn symmetric matrices 

containing the physical parameters of mass, damping, and stiffness constants. It is further assumed 

that M and K are positive definite matrices, and that C is at least a positive semi-definite matrix. The 

procedure presented in this work will take advantage of the derived matrix conditions (Inman and 

Andry 1980), to generate nonlinear algebraic inequalities for the physical parameters of the system. 

If the parameters can be chosen to satisfy these inequalities, the resulting transient energy response 

will be overdamped in each respective mode. The inequalities are stated explicitly in terms of the 

mass, damping, and stiffness constants of the system. 

The exact relations for overdamping will be derived for a general two-degree-of-freedom system. 

As soon as the damping criterion becomes satisfied, the results will be used to calculate the 



eigenvalues of the system to illustrate that the damped system is, in fact, overdamped in each mode. 

The design of a specific four-degree-of-freedom model of a drive train in a gas turbine engine 

asscociated with the reduction gear drive train in a tank will be given to illustrate the problems 

encountered in more practical design situations. The generalization to n degrees of freedom will 

become obvious from these examples. 

2. Conception 

Inman and Andry (1980) tell us that if, in addition to the restrictions previously listed, the 

matrices M, C, and K are such, that the matrix 

M-./2 CM-./2 _ 2(M-i/2 KM-,/2)1/2 ' (2) 

is positive definite, then all of the eigenvalues of equation (1) will be negative real numbers, and 

hence each mode will be classified as overdamped. Since M is symmetric and positive definite, it 

possesses a unique positive definite square root, M1/2 with inverse M~,/2. Using the transformation 

x = M'1/2 y, 

equation (1) is reduced to 

y + Ay + By = 0, (3) 

where A = M",/2 CM""2, and B = M"l/2 KM",/2. The condition for overdamping in each mode for 

equation (2) is that the matrix A-2BI/2 must be positive definite. Since the square root of a matrix 

is, in general, harder to compute then the square of a matrix, it is tempting to use the matrix A2-4B 



in design work. Fortunately, it has been shown (Bellman 1968) that if A2-4B is positive definite, 

then so is A-2B,/2. Thus, requiring the matrix A2-4B to be positive definite ensures that each mode 

of equation (2) will be a decaying nonoscillating (overdamped) function of time. 

If it is desired to make the solution of equation (3) overdamped in each mode for arbitrary initial 

conditions, then it suffices to choose the physical constants mi5 ci5 and k; so that A2-4B is positive 

definite. 

3. Methodology 

To illustrate the previously mentioned ideas, consider the two-mass arrangement in Figure 1. 

The appropriate matrices for the equations of motion are 

M - 
m, 0 ' 

,  c = 
c, + c2 -c2 

,   and K = 
ki + k2 -k2 

0 m2 ~C2 c2 l    ~k2 k2j 

Figure 1. Two-Degrcc-of-Freedom System. 



The matrix M"1" is 

M -1/2 
1/,/m,       0 

0       1/,/m 
(4) 

Denoting the i-jlh element of a generic matrix A by Ay and forming the matrix A2-4B yields 

(A2-4B), 
(c,  + c-,)7 

in, m, m, 

k, + k. 

m, 
(5) 

(A2-4B)12 = 
■c, c2   c2 4k, 

m, ,/m, m2      m2J
m\ m2      \Jm\ m2 

- (A2 - AB) 21 (6) 

(A2-4B) 22 
111- 111,1112 

- 4 -L . 
m. (7) 

It is desired to choose mi5 cis and k; so that the matrix A2-4B is positive definite. A necessary and 

sufficient condition for a matrix D to be positive definite is for each of its leading principal minors 

to be positive. In particular, a real 2*2 matrix D is positive definite, if and only if 

Dn>0,     and     DnD22-Dl2D2l>0 . 

Applying these inequalities to (A2- 4B) yields 

(C| +c2)
2  +     c2      > ^ k, +k2 

m. m, m 2 m, (8) 



(c, +c2y k, +k2 

m. nij m2 m, 

c-, 

m- m,m2 m. 
> 

U 
4k, - 

c,c9 + c2 
\2 

m,m2 li^ mM/m,m2 m2\W*2y 
(9) 

If the parameters m,, cjs and kf are now chosen to satisfy equation (9) (along with the physical 

constraints that m;, ci5 and kf are all positive) then equation (1) will be overdamped in each mode and 

will not oscillate when perturbed from equilibrium. In total, the six parameters must satisfy eight 

inequalities (Brent 1973; Byrne and Hall 1973). 

The approach taken here was simply to fix the values of n^ and k; and chose values of c; to satisfy 

equation (3). For example, the values 

nll = 1 m, = 1 

cl = 4 c2=5 

k. = 1 1^=2 

satisfy equation (9). In order to verify that this set of values implies overdamping, we solve the 

eigenvalue problem using these parameters. This yields the characteristic polynomial 

with eigenvalues 

XA + 14A3 + 25A2+ 13A. + 2 -0 (10) 

A, =-0.2891 

X2 = -0.4652; 



and 

A, =-1.2389, 

A, =-12.0068 

Thus, the design procedure yields an overdamped response, since each eigenvalue is a negative real 

number. 

4. Design Application 

The process described here may be useful in enhancing the survivability of certain structures by 

designing them to have an overdamped free response. In order to illustrate this in a design contest, 

we consider the drive train of a gas turbine engine (see Figure 2). The numerical values for inertia 

and stiffness are listed in the appendix, along with the definition of each parameter. 

-D- 

K, 

M 

£} 
Kc 

c5 Mce 

rii 

a 
K, n< KH 

£ 
4 

J4 

Figure 2. Schematic of Turbine and Drive Train Components. 

In order to produce a C matrix that would allow inequalities similar to equation (9) to be 

formulated, some mechanism must be available for adding damping to the system.   For non- 



rotational systems, this may be accomplished by the use of shock absorbers or linear actuators. For 

dampers, this may be useful. Figure 2 indicates the addition of such dampers to an existing system 

(i.e., c„ c2, c3, c5, and c6). 

M 

J. 0 0 o" 
0 J2 

0 0 

0 0 J, 0 

0 0 0 ■T4. 

(11) 

c = 
V/i L/i    ~>* V"^ L") 

c,+c 
2        j> 

0 

0 

0        0        -c,    c, + d. 

(12) 

and 

K = 

k, -k. 0 0 

ki k,+k2 -k2 0 

0 -k2 
k2+k3 -k4n 

0 0 -k4n,n2 K 

(13) 

where J, = the various values of inertia; Cj = added damping constants; d4 = the damping constant, 

due to a possible connection strut; k, and k, = shaft stiffness constants; and k3 and k4 = stiffness 

constants associated with the transmission and gear system. The transmission has a gear ratio n,, and 

the timing gear has a ratio of n,. Forming the matrix A:-4B yields 

c,2 
(A^-4B)n  = -i- + —^- 

" T2 I     I J, JIJ2 

Kl 4x- (14) 



and 

(A2 - 4B),2 = (A2 - 4B). 
c,(c, +c2)       JU^ 

J./T^        J2JiJ2        /r^ 
(15) 

(A2 - 4B)13 = (A2 - 4B)31 
J2^,J3 

(16) 

(A2-4B),4 = (A2-4B)41 = 0, (17) 

(A2 - 4B> 
c,"        (c, + c,)2        Cj k, + k, 

+  -JL.  -   4 
Ll      iv2 

22       T T T2 T T 
(18) 

(A2-4B)23 =- 
c,(c,+c2)       c2(c2+c3) k2 

+ 4 

•^2 V   2   3 .iV    J.     J yhh 

(A2-4B)32 

(A2-4B)24 - (A2-4B)4, 
c, c, 

2    j 

W 

(19) 

(20) 

(A2-4B)33 =— + 
Jn*r T 

c2
2        (c, + c3)

2        c? k2 + k3 

J::      hh      h 
(21) 

(A2-4B)34 

c3(c2 + c3) _  c3(c3+d4)  + ^ n,n2k4 

= (A2-4B)43, (22) 



c,        (c, + d.)2 k, 
(A2-4B)44 = -i-+^T^--4-l. (23) 

J3J4 J4- J4 

The addition of c„ c2, c3, c5, and c6 is necessary to make A2-4B positive definite. Requiring the four 

leading principal minors of the 4 * 4 matrix A2-4B to be positive yields four inequalities in the 

inertia, damping and stiffness parameters. Using the values for I, and k, (listed in the appendix) and 

choosing c{ to satisfy the inequalities yields 

c, = 12.0000 x 104 N-m s/rad, 

c2 = 5.8653 x 104 N-m s/rad, 

c3 = 1.4700 x 102        N-m      s/rad, 

and 

c4 = 3.5300 x 102       N-m      s/rad, 

c5 = 18.0000 x 104     N-m      s/rad, 

c6 = 7.1347 x 10"       N-m     s/rad 

as one possible solution for the added damping constants. 

The characteristic polynomial for this system is 

2.024397 x 10"5 Xs + 8.57279 x 10"3 X1 + 1.186625 X6 

+ 58.521594 Xs + 7.830627 x 102 X4 

+ 2.5788556 x 103 A3+ 5.7545081 xl03X2 

+ 5.7354329 x 103 X + 16.620975 = 0, (24) 

which has roots 



and 

A, = -0.002, 

X2 = -1.707, 

A3 = -14.814, 

XA = -68.894, 

A5 =-1.5x 102, 

X6 = -1.85x 102, 

A7 =-0.943+2.216 i, 

Xs = -0.943- 2.216 i 

5. Conclusion 

A method accompanied by the complexity of the process and its level of applicability has been 

presented for eliminating oscillations in n-degree-of-freedom lumped parameter systems by 

increasing the amount of viscous damping in a four-degree-of-freedom system. 

Another method available to produce total overdamping is given in Beskos and Boley (1980) for 

two-degree-of-freedom systems. Unfortunately, to extend the process in Beskos and Boley (1980) 

to n degrees of freedom requires a closed-form solution of polynomials of degree (n - 1). However, 

the method here requires only the numerical solution of nonlinear equalities. In addition, for the 

two-degree-of-freedom case, the method presented in Bellman (1970) allows only the parameters 

c, and c2 to be adjusted. As an alternative, the method presented here allows all of the parameters 

mj, Cj, and kf to be sensitized i.e., adjusted to effectuate mass, damping and stiffness characteristics. 

Hence, it seems quite apparent that this method is more advantageous for design work especially 

when it involves computationally intensive operations. 
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The parameter values of the turbine for the case of tip speed (ratio of 2) and turbine rotational 

speed of 5,000 RPM are 

J,    = J2 = 1/2 of turbine motor inertia = 1.65 * 104 N - s3 - m (1.46 x 105 lb - s2 - in) 

J3   = transmission inertia = 2.43 * 102 N - s2 - in (2.15 x 103 lb - s2 - in) 

J4   = generator inertia = 3.06 N - s2 - in (27.1 lb - s2 - in) 

ii,   = transmission gear ratio = 35.6 

178,000       _ n QQ0 n,   = pulley sear ratio =  - U.yyy 2       P      y b (35.6) (5,000) 

k,   = rotor stiffness = 1.65 * 10s N-m/rad (1.46 x 106 lb - in/rad) 

k2   = shaft stiffness = 2.69 x 105 N - m/rad (2.39 x 106 lb - in/rad) 

K,  - transmission shaft stiffness = 1.41 x 10s N - m/rad (1.25 x 106 lb - in/rad) 

KH = generator shaft stiffness = 2.10 x 103 N - m/rad (1.86 * 104 lb - in/rad) MI  -   6 

2    3K K 
k3   =   n' "2    '    '"' = 2.62 x 106 N - m/rad (2.39 x 109 lb - in/rad) 

k, + n2
3KH 

L   =       <3     - 2.07 x I03n - m/rad (1.83 x 106 lb - in/rad) 
4 2     3 n, n2 

15 
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