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AFIT/GAP/ENP/97D-04 

Abstract 

Recombination mechanisms in mid-IR semiconductor lasers are strongly dependent 

on the carrier density of the active region. Therefore, in order to determine the importance 

of different recombination mechanisms, an accurate knowledge of the carrier density is 

important. The objective of this research is to improve previous carrier density estimates 

through the incorporation of spectral information. In the long run, this will help 

researchers to more accurately characterize the recombination mechanisms and improve 

the efficiency of the lasers at these wavelengths. 

One hundred photoluminescence (PL) spectra were calculated for a variety of 

carrier densities. Calculations were made for an InAsSb/InAlAsSb multiple quantum well 

laser sample assuming parabolic bands. In order to compare the results with experiment, 

the calculated spectra were convolved with the measured pump beam spectrum to account 

for broadening in the measurement process. The widths of the convolved calculated 

spectral profiles were tabulated as a function of carrier density. 

Actual spectra were measured using the Ultrafast Mid-Infrared Photoluminesce 

System, which uses upconversion to measure the PL intensity in time steps smaller than 1 

ps. PL spectra were obtained at 30 times, ranging from 100 ps to 3 ns. Spectral widths 

were measured and tabulated as a function of time. 

Combining the plot of convolved calculated spectral width vs. carrier density with 

the plot of measured spectral width vs. time, we were able to describe the variation of 

carrier density with time. The carrier density vs. time plot thus generated agreed with 

ix 



earlier measurements by Cooley for low carrier densities. The discrepancy at higher carrier 

densities could be due to changing experimental conditions or the break down of the 

parabolic band approximation at higher carrier densities. 



TIME RESOLVED PHOTOLUMINESCENCE SPECTRA OF A MID-INFRARED 

MULTIPLE QUANTUM WELL SEMICONDUCTOR LASER 

1. Introduction 

Background 

Mid-infrared semiconductor lasers are being developed for infrared (JR.) 

countermeasures and chemical analysis. These lasers take advantage of the 2-5 urn 

transparency window in the atmosphere and have applications in remote sensing and 

environmental monitoring. Past research has analyzed the nonradiative recombination 

mechanisms in these structures in an attempt to niinimize them. Auger recombination can 

be a major contributor to loss of efficiency in these devices resulting in increased lasing 

threshold currents at higher temperatures (Agrawal, 1993: 98-100). Techniques to study 

the carrier dynamics of these devices will help find solutions to the Auger problem. 

Capt William Cooley constructed the Ultrafast Mid-Infrared Photoluminescence 

System (UMIPS) as part of his dissertation research. UMIPS uses sum frequency 

generation (SFG), or upconversion, to examine the photoluminescence (PL) lifetime of 

lasers emitting in the mid-ER. (Cooley, 1996). We have extended his technique to measure 

PL spectra at 0.1 picosecond intervals. Analysis of the resulting spectra can provide 

insight into the carrier density at each time the PL is measured. 



After the sample is optically pumped with a pulse the carrier density will decrease 

over time as electrons and holes recombine. The typical model used to describe this 

decrease for situations below threshold is a rate equation 

—— = An + Bn2+Cni C1) 
dt 

where A, B, and C are the Shockley-Read-Hall, radiative, and Auger coefficients, 

respectively and n is the carrier density (Agrawal, 1993: 38). It is assumed that the 

number of electrons equals the number of holes. Each coefficient describes a type of 

recombination where the power of n in each term depends on the number of electrons and 

holes required for the type of recombination. 

The types of recombination considered are illustrated in Figure 1. Shockley-Read- 

Hall recombination occurs when a defect is present in the lattice. This defect has a 

localized continuous density of states and the electron returns to the valence band through 

these states (Agrawal, 1993: 119). Radiative recombination occurs when an electron 

transitions to an empty state (a hole) in the valence band. The excess energy is released as 

a photon which has a frequency equal to the energy difference between the two states. 

Band-to-band Auger recombination occurs when the excess energy from a downward 

transition is used to shift another electron into a higher energy state (Agrawal, 1993: 99). 

In direct gap semiconductors there are three types of Auger recombination processes 

which are differentiated by the bands involved (Agrawal, 1993: 99). These processes are 

shown in Figure 2. We are primarily interested in the CCCH Auger process. 
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Figure 1: Types of recombination in semiconductors. 
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Figure 2: Types of Auger recombination for direct gap semiconductors (after Figure 3.3 
inAgrawal, 1993:99). 



Approach 

This effort used calculated and measured spectral data to find an estimate of the 

carrier density as a function of time. PL spectra were calculated based on a given carrier 

density. As the number of available carriers and holes decrease, fewer energy levels in the 

quantum wells will be occupied and the width of the PL spectra becomes narrower. The 

peak may also shift to slightly lower energies, depending on the range of carrier densities 

observed, as more radiative recombination occurs between lower energy levels. These 

calculated spectra had to be corrected for broadening that occurs in the experiment. To 

correct the calculated data for this effect, the spectrum of the upconversion pump beam 

used in the experiment was measured and convolved with the calculated PL spectra. The 

widths of the resulting convolved calculated spectra were obtained as a function of carrier 

density as illustrated in Figure 3a. 

The measured spectral data were provided by Capt Craig Largent of the 

Engineering Physics Department at AFIT. He used the UMIPS to measure time-resolved 

spectra from the sample at different delay times after the excitation of the sample. The 

widths of these measured PL spectra were obtained as a function of time as illustrated in 

Figure 3b. 

In order to determine carrier density as a function of time, the measured widths 

and convolved calculated widths were compared. This process is illustrated in Figure 3. 

Each delay time has a measured width associated with it. This measured width can be 

compared to the convolved calculated widths to find the one that matches it. The 

matching convolved calculated width is associated with a carrier density. This process 
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Figure 3: Schematic showing how carrier density was linked to time. The plots are 
illustrative and do not represent real data, (a) is a plot of the convolved calculated spectral 
widths vs. carrier density, and (b) is a plot of the measured widths vs. time. First a width 
w\ is found for a given time t\ using (b). Then w\ is associated with a carrier density n\ 

using (a). The result of this is a pair of values (t\, n\). 

was repeated for each time to find the carrier density as a function of time. This relation 

was then plotted and compared to Cooley's results. 

Overview 

Chapter 2 will address the theoretical calculation of PL spectra for different carrier 

densities. Chapter 3 will discuss the UMIPS and the measured data obtained by Capt 

Largent. Chapter 4 will present the results of the spectral width calculation and discuss 

the convolution of the calculated spectra with the measured pump beam. The carrier 

density as a function of time results and conclusions from the analysis will be presented. 

Chapter 5 is a summary of the research and recommendations for future research in this 

area. 



2. Theory 

Overview 

This chapter will address the theoretical aspects of the research. The goal of the 

theoretical calculations is to determine the width of the PL spectra that are expected for 

different carrier densities. The first step is to calculate the energy levels in the quantum 

wells. This is the topic of the second section. The third section discusses how the 

spontaneous emission spectra are calculated, and the fourth section discusses the 

convolution of these spectra performed to account for intraband relaxation. The last 

section is a summary of the calculation process. 

It should be noted that a key assumption made in the calculations is that the band 

structure of the sample is parabolic so that 

b2k2 h2k2 

E.(k.) = Ee+±±-, Eh(kh) = Ev-\^ (2) 
2me 2mh 

where Ee and Eh are the energies of an electron and hole, ke and k/, are the wave vectors 

for the electron and hole, Ec and Ev are the conduction and valence band edges, and me 

and mh are the effective masses of the electrons and holes. The quality of the calculated 

spectra will depend on the quality of this assumption. 

Energy Levels in the Quantum Wells 

The first step in the calculation is to find the energy levels for electrons in the 

conduction band and for heavy and light holes in the valence band. The model used to 

calculate the energy levels is a single finite potential well. This is a standard problem in 

quantum mechanics texts and the results are well documented (Liboff, 1989: 256-65; 



Cohen-Tannoudji, 1977: 74-7). In this model the potential energy surface is modeled as a 

square well in the z direction as shown in Figure 4. This model assumes a parabolic band 

structure and, by applying it to the multiple quantum well structure, that each well is 

isolated from neighboring wells. 

The energy levels must be calculated for each band separately. Using the envelope 

functions as the wavefunctions and setting the electron momentum to zero the 

Schrödinger equation becomes 

h2 d2 

■ + VF =EF 
2m dz22 z 

(3) 

where m is the effective mass, Fis the potential, Fz is the envelope function in the z 

direction, and E is the energy of the band. It should be noted that both m and Fhave 

different values in the well and barrier regions. The effective mass for electrons, heavy 

holes, or light holes in each region is used when calculating the energy levels for the 

conduction, heavy hole, or light hole band respectively. Also, for reasons to be described 



later, the value for VQ in Figure 4 will be different for the conduction, heavy hole, and 

light hole bands. Plane wave solutions are assumed for the envelope functions and the 

following boundary conditions are applied at the interfaces (Corzine, 1993: 59-60): 

F F and     1   dFz-we" =     1     dFz'barrier (4) 
mwell       & ^barrier & 

There are two classes of solutions for the envelope functions: even and odd. The even 

solutions are cosines in the well and decay exponentially in the barrier; the odd solutions 

are sines in the well and also decay exponentially in the barrier (Liboff, 1989: 260). Using 

k\ = 2mwellEJti2   and a] - \2mbarrier/h2\(V0 -E), the characteristic equations for 

energy for even and odd solutions are 

(    Lz\     mwell   az 
tan k, — = — for even solutions 

^     2;    mbarrier kz 

coUti) for odd solutions 
(5) 

mbarrier   *z 

where Lz is the width of the quantum well and Vo is the depth of the well. These 

characteristic equations can only be solved for discrete values of energy, En (Corzine, 

1993a: 60-1). The energy levels for the conduction, heavy hole, and light hole bands, Ecn, 

Ehhn, and Eih„ respectively, are determined in this manner using the appropriate effective 

masses and well depths. 

The depth of the well is determined by the energy gaps of the well and barrier and 

the band offsets. The offsets are a property of the material, but several factors can change 

the gap for a given material. A major factor is the temperature of the system. The 

temperature dependence will be assumed to follow the Varshni relation 



where E^O) is the gap at T = 0 and a (in eV/K) and ß (in K) are constant parameters fit 

to experimental data (Varshni, 1967: 149). 

In addition to temperature, the energy gap for the well will be affected by strain. 

Stress in quantum well structures occurs when the lattice parameter of the well material is 

different than the lattice parameter of the substrate and the well layer is thinner than a 

critical thickness. If the well is thicker than the critical thickness then the lattice will 

crack to relieve the strain. If the well is thinner then the lattice will not crack and will be 

under compressive or tensile strain as shown in Figure 5 (O'Reilly, 1989:122-4). Figure 6 

shows the effect of compressive strain on the band structure of the well. There is little 

affect on the conduction band, but the valence band changes drastically. The gap between 

the conduction band and valence band increases and the degeneracy of the heavy and light 

holes is removed. Assuming parabolic bands at zone center, for ni-V compound 

semiconductors under a strain given by 

s, =■ 
°0, substrate      a0,well (7) 

°0, well 

the energy band shifts are given by 

A£„, = -2ass %A + be, %^ 
Cn °     Cn (8) 

Aß,fc = -las. — -be. 
C C *-ii *-n 
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Fig 
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(a)                                                          (b) 

2 5: Strain in semiconductor layers, (a) Three unstrained layers where the middle 
s a larger lattice parameter, (b) The middle layer distorts and is under compressive 

strain when placed between the two outer layers. 

Conduction Band 

Unstrained Strained 

Figure 6: Effect of compressive strain on the band structure of a quantum well (after 
Figure 6 in Coleman, 1993: 375). 
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where a is the hydrostatic deformation potential, b is the shear deformation potential, and 

the Cs are elastic stiffness coefficients (Coleman, 1993: 377). For a well under 

compressive strain the energy gap is given by Eg (f) + AE^. 

Thus when strain is present and the conduction band offset does not equal V2, three 

separate well depths must be considered: one each for electrons (conduction band), heavy 

holes, and light holes. Equation (5) must be applied to each band with the appropriate 

effective masses and well depth, VQ. For a layer under compressive strain the well depths 

are given by 

Vcb =AEcb[E^arrier(T)-Egwell(T)-AEhh] 

V* = [1 - AEcb ] [EgbaMer (T) - EgjmB (T) - AE», ] 

Vlh=[l-AEcb] [EgMrrier(T)-E^ell(T)-AEJ\-AEU 

(9) 

where AEcb is the conduction band offset expressed as a fraction of one. A comparison of 

a strained and an unstrained well is shown in Figure 7. 

> ' i ' 
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Figure 7: Effe ctofco mpressive strai month 

Strained 

e well depths. 

11 



Spontaneous Emission Spectrum 

The total spontaneous emission rate per unit volume over a given energy range is 

found by multiplying the transition rate per unit volume times the number of optical 

modes in the energy range: 

Rjhco) d(ha>) = W„\Vpopt{hco) d{ha>)] (10) 

where Wc-+V is the transition rate from the conduction band to the valence band, Fis the 

volume of the active region, and popt is the optical density of states (Corzine, 1993:42). 

The transition rate is found using Fermi's Golden Rule, which is derived using 

time-dependent perturbation theory to solve Schrödinger's equation when the 

Hamiltonian has the form H=H0 + XH'(t). In general the transition rate, W, from state a 

to state b is given by 

where H'^ = (b\H'\a), H'is the perturbation term in the Hamiltonian and p (E) is the 

density of states as a function of energy (Bransden, 1983: 111-6 and Liboff, 1989: 576- 

84). Spontaneous emission involves the interaction of the electron in the conduction band 

with an electromagnetic wave. The wave interaction term is treated as a perturbation to 

the system so that 

H'(r) = ^-A(r)e-p and H'eh =(^|#'(r)|^) (12) 

where e and m0 are the charge and mass of an electron, A is the vector potential of the 

spontaneous emission wave, e is the polarization unit vector of the wave, and p is the 

12 



momentum operator (Corzine, 1993: 28-9). y/, are the wavefunctions of the electrons and 

holes and are solutions to the Schrödinger equation when H= Ho. Using the envelope 

function approximation, 

K-FMuAr) (13) 

where Ft is the envelope function and ut is the Bloch function. The key assumption is that 

the Bloch functions are not a strong function of k (Corzine, 1993: 19). The Bloch 

functions are periodic with the crystal lattice (McKelvey, 1993: 319) and the envelope 

functions are normalized plane waves for unconfined directions in the crystal. The 

envelope functions for the confined direction of the well were discussed on page 8 

(Corzine, 1993: 20,59). 

For momentum to be conserved in the transition, kh = kg + kPh0ton must be valid. 

Typically the wavelength of the light is much greater than the De Broglie wavelength of 

the electron. If this is true then kh = k. and the transitions are said to obey k-selection 

rules. This applies to band-to-band transitions, not localized transitions, where the 

envelope functions of the initial and final states are plane waves (Corzine, 1993: 30). 

For a quantum well the electrons and holes are confined along the growth 

direction so the z direction envelope functions must be included in the wavefunctions. If 

the wavelength of the light is much larger than the width of the well then the vector 

potential is can be considered to be a constant, AQ, in the region of the well. Using these 

assumptions and substituting Equation (13) into Equation (12) gives 

|2 
H'\   = 

eA V 
0 

leh .2m, W 
MT\\  \MT\2 =\(uv\e-V\uc)\%Fh\Fef (14) 

13 



I       I2 

where \MT\ are the transition matrix elements which will be described below (Corzine, 

1993: 30-1). 

Equation (14) is substituted into Fermi's Golden Rule (Equation (11)). The 

transition rate per unit volume can be expressed as 

W     =^ 
n 

eAn 
2 

\MT\2p„d(Eeh-E'g)fc(l-fv) (15) 
\2mQ, 

where pred is the reduced density of states, Eeh is the transition energy fia>, E'g is the gap 

between the subbands of the transition, andfc and/, are the Fermi-Dirac distributions for 

electrons in the conduction and valence bands respectively (Corzine, 1993; 33-5). These 

terms are discussed individually in the following sections. 

Density of States 

Fermi's Golden Rule has the density of states as a factor. The density of states for 

a quantum well is different than for a bulk semiconductor. A bulk crystal with dimensions 

Lx, Ly, and Lz is modeled as a square well with infinitely high walls in each dimension 

(the electrons are confined to the crystal). Requiring the wavefunctions to be zero at the 

boundaries gives standing waves for the wavefunctions of the form 

^x>y'zHTT 
y2 

sin 
nx7tx 

sin ^IgjMi 06) 
LxLyLz) \    4    ) \    Ly 

where n, are the quantum numbers in each direction (Cohen-Tannoudji, 1977: 199). 

The wave vector has the form k = kx + ky + k2 where kt = n^Lj. The k vector 

sweeps out a sphere of volume Vk =jnk3 which contains a number of states, Ns, given 

by 

14 



Ns=Vk±^ (17) 

where spin has been neglected. Spin will be addressed with the transition matrix 

elements. In general, if p(k) is the density of states then 

\fl{k)dk = NjV <18) 

when integrating over Vk, so that 

Ak)~v dk 

where Fis the total volume of the crystal (Corzine, 1993: 23-4). We are interested in the 

energy of the electron, not its wave vector. The density of states as a function of energy 

can be found through the relation 

p(E)dE = p(k)dk^p(E) = -0^ (20) 

which requires a knowledge of how the energy depends on the wave vector (Corzine, 

1993: 24). For the parabolic band approximation dE/dk can be found easily from 

Equation (2): 

, ,    h2k2      dE    h2 , ,on E{k) = —— -> — = — £ (21) 
2m        dk     m 

This relationship applies to the conduction and valence bands when the appropriate 

effective masses are used. 

For a bulk semiconductor Vk is a sphere as shown in Figure 8 and the density of 

states is found by plugging Equation (17) into Equation (19) 

15 



Figure 8: k space for an electron in a semiconductor, (a) k space for a bulk 
semiconductor, (b) k space for a quantum well semiconductor. The levels along the z 
(growth) direction have a larger spacing than the in-plane directions (after Figure 1 in 

Corzine, 1993: 22). 

M \dN,     Id 

V dk     V dk 

"Änk1 

{inf l(LxL,L,\ (2*) 

1       L L L    A Jr: 

———3m   =■ 
In1 

Substituting Equations (21) and (22) into Equation (20) gives 

dE) = 
4E(2m 
An2\h2 

(22) 

(23) 

for a bulk semiconductor with parabolic bands, ignoring spin degeneracy (Corzine, 1993: 

23-5). 

For a quantum well with Lz« Lx and Ly, kz» kx and ky and the distance between 

consecutive levels of kz will be very large compared to the spacing between consecutive 

levels of kx and ky as shown in Figure 8. The k vector will sweep out circles in each kz 

16 



level so that Vk = xk2 and one state occupies an area of(2nfl(LxLy). Ns will equal Vk 

divided by this area so the density of states is 

p(k) = 
1 dN,     Id 

V dk     V dk 

Ink' 

l(2*)7(i,i,)J (2*)2 y 
1     L L x    y 

27tk = ■ 
2nL. 

(24) 

for a quantum well. Substituting Equations (21) and (24) into Equation (20) gives 

p{E) = 
m 

2rti2L 
(25) 

for each plane of k states in a two dimensional quantum well semiconductor with 

parabolic bands, ignoring spin degeneracy. This form of the density of states is a step 

function with the step size given in Equation (25). A new step occurs at each energy level 

of the quantum well (Corzine, 1993: 23-5). The density of states functions for a bulk (3D) 

and quantum well (2D) semiconductor are compared in Figure 9. 

> 
Energy 

nz=3 

k 

V 
Quantum 

n2=2 

n2=1 

Well /Bulk 

Density of 

Figure 9: Comparison of the density of states, p(E), for a quantum well and a bulk 
semiconductor. As the width of the quantum well increases the step size decreases and 

the quantum well case will approach the bulk case (after Figure 2 in Corzine, 1993: 25). 
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The reduced density of states is defined as (Corzine, 1993: 34) 

M 
Pnd    dEjdk 

where Eeh is the transition energy, fico, given by 

(26) 

h2k2   n2k2 

Eeh^Ee-Eh=EL+^-+^- CT 

for the parabolic bands, where E'g is the gap between the subbands of the transition. 

Taking the derivative of this results in 

dEeh     h
2k 111 (7R. 

= , where — = — + — \z°) 
dk       mr mr     mc    mv 

with mr defined as the reduced mass. The reduced density of states, pred, has the form of 

Equation (25) with the mass replaced by the reduced mass and E by Eeh - ^'(Corzine, 

1993: 34). 

Quasi-Fermi Functions 

The transition rate given by Fermi's Golden Rule is for a transition from one state 

in the conduction band to one state in the valence band. The possibility that some states 

may be occupied must be taken into account. The transition rate is multiplied by the 

probability of having an electron present in the conduction band state and not having an 

electron present in the corresponding valence band state (presence of having a hole). 

When the laser impinges on the sample, electrons from the valence band are 

excited into the conduction band. Intraband relaxation occurs on the order of picoseconds 

while recombination takes tens of picoseconds or more. After intraband relaxation and 

before the start of recombination, the electrons occupy the lowest energy states available 

18 
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Figure 10: Electron distributions after intraband relaxation has occurred. The electron 
distribution, n, is equal to the product of the density of states, p, and the Fermi function,/ 

with the appropriate quasi-Fermi level for each band. 

according to the Fermi-Dirac distribution with an appropriate quasi-Fermi level. This 

quasi-equilibrium condition is illustrated in Figure 10. The Fermi-Dirac distribution with 

a corresponding quasi-Fermi level is 

fc = 

fv = 

1 + exp 
E-E Fc 

V     icB 
kDT 

1 + exp 
Eh  ~ EFv 

\        K-B kBT   ) 

n-i 

for the conduction band 

for the valence band 

(29) 

where Ee is the electron energy, Eh is the hole energy, kB is Boltzmann's constant, and Tis 

the temperature of the carriers. The quasi-Fermi levels, EFc and EFv, are the energies at 

which the probability of an electron occupying a state in the band is XA (Verdeyen, 1995: 

450 and Kittel, 1980:379). 

19 



The total carrier density, N for the conduction band and P for the valence band, 

can be calculated by integrating the product of the density of states (times two to account 

for spin) and the quasi-Fermi function over the entire band. For parabolic bands this is 

N = 2fy°(E-j;,)f,dE (3o) 

P = 2^p'"(E,-E){l-f,)dE 

where Ec and Ev are the conduction and valence band edges and p*D is the two 

dimensional density of states. Plugging Equations (25) and (29) into Equation (30) and 

integrating gives, for the conduction band, 

N=rnJcJ_Y}n 

nh2L2 r 
1 1 + exp 

Ecn ~ EFc (31) 
kBT   ) 

where the summation is over the energy levels in the conduction band. For a given total 

carrier density a quasi-Fermi level can be calculated numerically (Corzine, 1993: 44). The 

quasi-Fermi level for the valence band is found by replacing N with P and summing over 

the energy levels in the heavy and light hole subbands. 

Transition Matrix Elements 

The transition matrix elements are defined in Equation (14). The envelope 

function term will be close to unity when the conduction band and the valence band state 

have the same quantum numbers and close to zero when they have different quantum 

numbers (Corzine, 1993: 31-2). It is assumed that   (i^j^)   is unity for these allowed 

2 
transitions (nc = nv) and zero for other transitions {nc + nv). This reduces \MT\   to 
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\Mr\   = ("v|e-p|wc> (32) 

and the Bloch functions must be now be considered. 

Semiconductor band structure is frequently modeled as shown in Figure 11. These 

bands can be thought of as originating from atomic orbitals where the conduction band 

corresponds to as s orbital and the valence bands correspond to üiepx,py, andpz orbitals 

(McKelvey, 1993: 365-6). The Bloch functions for these orbitals are labeled us, ux, uy, and 

uz, respectively, and have the same symmetry properties of the corresponding atomic 

orbitals. These symmetry relations combined with the momentum operator give the 

following relations: 

\u,\pt\ Uj) = 0, for/*./ 

(^Mui) = (us\Pi\ui)=M 

WP|",-) = O 

(33) 

Conduction Band 

 Heavy Hole Subband 

Light Hole Subband 

Spin-Orbit Subband 

Figure 11: Subband structure for an unstrained semiconductor. The subbands are 
parabolic as represented by each bands' effective mass. Eg is the energy gap between the 

conduction and valence bands. Aso is the gap between the spin-orbit subband and the 
heavy and light hole subbands (after Figure 7 in Corzine, 1993: 49) 
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where / = x, y, z and w,, w, indicate spin-up and spin-down functions (Corzine, 1993: 45- 

6). Mis the orbital momentum matrix element and is a property of the material. The 

valence band Bloch functions Uhh, uih, and uso can be written as linear combinations of the 

orbital Bloch functions. For electron k vectors directed along the z direction 

Uhh =~ V2 ("*+My}'       "** =~4i^x +i"^ 

% = -~fö("x +my ~2"*)' "ft = j^{u' ~iuy + 2"*) 

uso=—f={üx+my+uz),    üso=-j=[ux-iuy-üz) 

(34) 

V3 V3' 

where six equations are used to account for the spin-up and spin-down states (Corzine, 

1993: 47). Including these spin states there are four possible transitions from the 

conduction band to each valence band. Setting the overlap integral to unity as described 

on page 20 gives 

MÄZZ|(">pk)f (35) 
u^,ar«„,u„ 

Expanding the dot product into its components, replacing uv in Equation (35) with the 

appropriate relations for each band from (34) and using the selection rules in (33) gives 

the relative transition strength with respect to | M\   for transitions to each valence band as 

\MT\ 

M2 

\"   A2 

1 - k • e     for the heavy hole band 

•j + |k • e 

2 
3 

for the light hole band 

for the spin - orbit band 

(36) 

where k is the unit vector of the electron wave vector which was set to the z direction 

(Corzine, 1993: 50-1). 
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Conduction Band to 
Heavy Hole 

1/3      1/3 
Conduction Band to Light Hole 

Figure 12: Dependence of the transition strength on the angle, 6, between the electron's k 
vector and the wave's polarization vector, e, for transitions to the heavy and light hole 

subbands. The strengths labeled are in units of |M\2 (after Figure 9 in Corzine, 1993: 53). 

By averaging over all of the possible directions of the k vector in the first 

quadrant of k space it is seen that for a quantum well the average direction is the growth 

or z direction. Because of the dot product in Equation (36), the transition strength is a 

function of the angle between k and e. This angular dependence is plotted in Figure 12 

for the heavy and light hole subbands. Setting k equal to kave allows the transition 

strengths to be found for three orthogonal e set in directions relative to the quantum well 

as shown in Figure 13 (Corzine, 1993: 52-5). We are interested in all spontaneous 

emission regardless of polarization so the | MT |   term in Equation (15) needs to be 

replaced with an average over the three polarization directions, \Mme | , defined as 

(Corzine, 1993: 43) 
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C-HH: 0 
C-LH: 4/3 

C-HH: 1 
C-LH: 1/3 

C-HH: 1 
C-LH: 1/3 

Figure 13: Relative band edge transition strengths (Figure 1 lb, Corzine, 1993: 55). 

M„ 4 2X1 (37) 
all three 

polarizations 

For the transitions in a quantum well, substituting Equation (36) into Equation (37) gives 

M„ 

j(0 + l + l)| M|2 

i(!+}+i)N: 

i(t+!+!MJ 
=fw2 (38) 

for transitions to all bands. The values for the heavy hole and light hole transitions came 

from Figure 13. Equation (38) is used in Equation (15) in place of the \MT\ term. 

| M\   must be determined for the sample to quantify the spontaneous emission 

rate. Using the k*p technique for the four bands in Figure 11 an equation for the 

approximate conduction band effective mass, m*, can be rearranged to solve for \M\2 

(Corzine, 1993: 48-9) 

(39) 
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2   .       im°E* 
fA. 

It should be noted that m* is not the true effective mass because contributions from higher 

and lower level bands will make the true effective mass heavier and lighter respectively. 

The inaccuracy in Equation (39) depends on how large an effect these unaccounted for 

bands have on the true effective mass (Corzine, 1993: 48-9 and Yan, 1990: 214-5). 

Optical Density of States 

The optical density of states in an energy range is found by using the 3D density 

of states, p (&), found in Equation (22). For photons 

. In        co    nr ,    v     dk t      n 

where nr and ng are the index of refraction and the group index of refraction. Substituting 

these relations into Equation (20) yields 

^  [he) 

in units of energy"1 cm"3, where a factor of two has been multiplied to account for the two 

polarization states (Corzine, 1993: 42). 

Vector Potential 

The vector potential is found by relating the energy in the field to the energy of a 

photon. Solving for the vector potential gives 

Ao= iT7 («) nrng£Qco V 
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Substituting Equations, (15), (38), (41), and (42) into Equation (10) gives 

*-'<H=^-f^r f|*r/>-(^-*;)/v(H/.(>-/.)        («) no nrngs0m0    5 

in units of transitions per (s cm3 energy) (Corzine, 1993: 42-3). This is the equation used 

to calculate the spontaneous emission spectrum. 

Intraband Relaxation 

The spectrum calculated by Equation (43) will have sharp peaks resulting from 

the discrete density of states. In reality intraband relaxation will cause the peaks to 

broaden. This is due to carrier-carrier scattering and carrier-phonon scattering. This 

process can be described by convolving the spectrum calculated with Equation (43) with 

a broadening function B: 

CO 

rsp(hco) = JRsp(Eeh)B(ho> - Eeh)dEeh (44) 
E'g 

where rsp{fico) is the convolved spontaneous emission as a function of the photon energy, 

fia and RSp(Eeh) is the unconvolved spontaneous emission as a function of the energy 

difference between the electron and hole states (Asada, 1993: 99). The broadening 

function used is derived in Asada, 1993. The lineshape used is non-Lorentzian and comes 

from the Fourier transform of the response of the polarization to an impulse electric field 

(Asada, 1993: 98). 

It should be noted here that the intraband relaxation convolution is not the 

convolution mentioned in the Introduction. The intraband relaxation convolution takes 

into account a phenomenon that is inherent to the semiconductor structure. The 
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convolution mentioned in the Introduction is performed to take into account a 

phenomenon that is introduced in the measurement process. This phenomenon will be 

described in the next Chapter. The terms "calculated spectrum" and "calculated widths" 

used in this thesis refer to spectra calculated with Equation (44) and the width of these 

spectra. The terms "convolved calculated spectra" and "convolved calculated widths" 

refer to the spectra that have been corrected for the experimental broadening mentioned in 

the Introduction and the widths of these spectra. 

Summary of Calculation Procedure 

The goal of the theoretical calculations is to determine the width of the PL spectra 

that are expected for different carrier densities. The calculation involves several steps. 

First the energy levels of the well region are calculated using Equations (5). Then 

spontaneous emission spectra are calculated for a range of carrier densities using 

Equation (43). The spectra are then convolved according to Equation (44) to account for 

intraband relaxation. Plots of some of these spectra will be presented in Chapter 4. 

As explained in the next chapter, these spectra have to be convolved again to 

account for broadening that occurs in the experimental measurements before the widths 

can be determined. Then the widths of the spectra can be plotted as a function of the 

carrier density used to calculate each PL spectrum. 
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3. Experiment 

Overview 

Capt Craig Largent of the Department of Engineering Physics at AFIT took the 

experimental data used in this thesis using the UMIPS constructed by Capt Cooley. This 

chapter will describe the experiment so the reader will understand what was measured 

and how the data was taken. The goal of the measurements is to obtain the width of the 

PL spectra at different delay times. The next section describes the configuration of the 

UMIPS and the technique. The third section describes the upconversion process and the 

fourth section describes efficiency and tuning considerations. The fifth section describes 

the method used to measure the spectra and presents the results as a plot of measured 

width as a function of delay time. The last section discusses the physical source of the 

convolution discussed in the Introduction. 

UMIPS Experiment 

The quantum well sample is optically pumped by a pulse of laser light. Figure 14 

shows a schematic of the UMIPS. Using a mode locked laser, short pulses can be 

produced at high repetition rates (Verdeyen, 1995: 296-7). The pump beam is split so that 

only one leg reaches the sample. The sample is excited and spontaneous emission occurs. 

The emission is recombined with the second leg of the pump beam in a Potassium Titanyl 

Arsenate (KTA) crystal. Sum frequency generation (SFG), or upconversion, occurs 

producing a third wave at a different wavelength, which is measured by a spectrometer. 
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Figure 14: Ultrafast Mid-Infrared Photoluminescence System (Cooley, 1996: 4-6). 

Upconversion will take place in the crystal and produce a third beam of 

upconverted photons such that 

a>p+ü)PL=a>up (45) 
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Figure 15: Schematic of the light gate. SFG photons are only emitted when the delayed 
pulse overlaps the PL (after Figurelb in Shah, 1988: 277). 

where cop, coPL, and coup are the frequencies of the pump beam, the PL wave, and the 

upconverted wave, respectively. Upconversion will only take place when the pump and 

PL waves overlap in space and time in the nonlinear optical crystal. As shown in Figure 

15, the pump beam acts as a light gate. By varying the distance the upconversion pump 

beam has to travel, the PL can be sampled at different delay times after the sample has 

been pumped (Shah, 1988: 277). 

Upconversion 

Upconversion is a nonlinear optical phenomena. When an electromagnetic wave 

interacts with a medium, the polarization induced in the medium can be expressed as a 

series expansion 

Pi=eauEj+2dilkE]Ek + (46) 
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where P, is the induced polarization vector, 2?, is the induced electric field, so is the 

permeability of free space, Xy is the linear susceptibility, and dvk is the second-order 

susceptibility (Yariv, 1984: 504). Higher order terms in Equation (46) have been dropped. 

Upconversion occurs when two waves mix in a crystal for which dgk * 0 . The 

waves are modeled as plane waves with frequencies coi and a>2- Plugging these waves into 

the second term on the right hand side of Equation (46) gives rise to a cross term with a 

frequency C03, where (03 = coi + a>2- The crystal is assumed to be homogeneous, 

nonabsorbing, and magnetically isotropic (Yariv, 1984: 70). The crystal must be 

transparent to the three frequencies of interest. The polarization of this new wave is given 

by 

if3 =2dgkE?E? (47) 

The exact form of the susceptibility tensor, dgk, depends on the crystal symmetry (Yariv, 

1984: 506-7). 

Efficiency 

The efficiency of the upconversion process affects the strength of the upconverted 

signal. For the case of negligible pump depletion this is given as 

m-2*2d«L2(P>/A) 
ce0ÄPLAupnpnPLnup 

where rj(0) is the quantum efficiency, deffis the effective nonlinear coefficient of the 

crystal, L is the length of the interaction in the crystal, Pp and A are the power and area of 

the pump beam on the crystal, and np, nPL, and nup are the indexes of refraction for the 

pump, PL, and upconverted beams respectively (Shah, 1988: 278). The waves must be in 
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phase with each other or they will interfere and the efficiency will be reduced. The wave 

vectors are governed by 

kv=kp+kPL-Ak (49) 

where phase matching is achieved when Ak = 0 and Equation (45) is valid (Midwinter, 

1965: 1135). The quantum efficiency will decrease with increasing Ak as 

where TJ(0) is the efficiency for the phase matched case and is defined in Equation (48) 

(Shah, 1988: 278). The phase matching angle can be calculated for this interaction by 

adding the pump and PL wave vectors according to Equation (49) as shown in Figure 16. 

Using the law of cosines and k = 2nn/X gives 

"f-nhi-2T-T^-^ (51) A

up        APL       Ap APL   Ap 

where ^is the angle between the pump and PL wave vectors in the crystal in radians 

(Cooley, 1996: 2-22). 

The KTA crystal is biaxial and is oriented so that phase matching will occur when 

the ordinary polarization of the PL mixes with the extraordinary polarization of the pump 

beam to produce an upconversion wave that is polarized in the ordinary direction. This is 

k ^pump 

kPL 

Figure 16 

kSFG     HH^ "*5;::\^r> 

7t radians - \\i 

: Applying the law of cosines with the wave vectors. 
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called an "oeo" interaction and the index of refraction for the pump depends on the angle 

between the pump beam and the optic axis. Since np is a function of 9, this equation can 

be solved for the angle that the pump beam will make with the optic axis so that Ak is 

zero. This angle is the phase matching angle and will change as the wavelengths of the 

pump and PL change. Thus by turning the crystal the upconversion can be tuned to a 

specific wavelength. Also, for the oeo interaction deff= d32 sin^,, where 6up is the angle 

between the upconverted wave vector and the optic axis and d^ comes from the nonlinear 

susceptibility tensor (Dmitriev, 1991: 24). 

Measured Spectral Widths 

Capt Largent used the UMIPS to measure the upconversion spectra as a function 

of delay time. Data can be taken by scanning in either wavelength or time. The 

spectrometer can be scanned over a range of wavelengths for a set delay time. Then the 

delay time is adjusted and the spectrometer scans over the wavelength range at the new 

time delay. PL spectra can be measured at each time delay this way. As was mentioned 

earlier in the Chapter, the crystal is tuned to a wavelength of interest by turning it to a 

phase matching angle. If the spectrometer is scanned and the crystal is not tuned to the 

wavelength the spectrometer is set for, the intensity of the signal will decrease for 

wavelengths that are not near the wavelength the crystal is tuned to. Since the UMIPS 

does not have a rotation stage that can turn in step with the spectrometer, the spectra were 

measured by setting the spectrometer to a wavelength of interest, tuning the crystal to that 

wavelength, and scanning the delay stage over a range of time. By repeating this for 

several wavelengths at the same delay times, a PL spectrum can be found by taking all of 

the data for a particular delay time and plotting it as a function of wavelength. 
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Data was taken at 77 K by setting the spectrometer to a set wavelength and 

turning the KTA crystal to achieve the maximum signal. Thirty spectra were measured at 

delay times ranging from 100 ps to 3 ns in steps of 100 ps. Some of the spectra for 

different delay times are plotted in Figure 17. 

To find the width of the spectra, each point was converted from wavelength to 

energy space. Capt Largent fit the data in each time slice with a sixth order polynomial 

and the FWHM of the fit was calculated. The results are shown in Figure 18. As expected 

the widths decrease with time. This indicates the carrier density is dropping due to 

recombination as time passes. 

Broadening Due To Upconversion 

When the pump and PL waves mix in the KTA crystal, no broadening of the 

upconversion wave will occur if the pump beam is a delta function. By design the pump 

laser has been set up to emit short pulses to maintain the temporal resolution of the 
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Figure 17: Upconversion spectra for different time delays. 
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Figure 18: Measured widths as a function of time. 

upconversion spectra. This means that the spectrum in frequency space is large and the 

upconversion spectrum will be the convolution of the pump and PL spectra. This is 

because the entire pump spectrum can add with the first energy of the PL spectrum and 

with the second energy in the pump spectrum and so on. To account for this effect, the 

calculated spectra were convolved with a measured spectrum of the pump beam so that an 

accurate comparison of the calculated and measured widths could be performed. 
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4. Results 

Overview 

This chapter presents the results of the calculations and compares them to 

previously measured data. First the sample is described and the material parameters for 

the well and barrier discussed. The third section discusses the calculation of the 

spontaneous emission spectral widths as a function of total carrier density. The fourth 

section explains the convolution procedure used to adjust the calculated spectral widths 

for broadening that occurs in the measurement process. The last section shows the carrier 

density as a function of time and compares this result to Cooley's result. 

Sample Description 

The sample was a multiple quantum well structure consisting often 

InAso.935Sbo.065 well layers ten nm thick interspersed between 11 Ino.85Alo.15Aso.9Sbo.! 

barrier layers that are 20 nm thick. The sample was grown by Molecular Beam Epitaxy on 

an InAs substrate at the Massachusetts Institute of Technology/Lincoln Laboratory 

(MIT/LL). The sample has been thoroughly described in a previous publication (wafer B 

in Choi, 1996). Details of the growth process have also been published previously 

(Turner, 1995). Figure 19 shows an energy diagram of the laser structure. A conduction 

band offset of 0.75 was used in the calculations. This number came from Cooley who got 

it from Turner. 

Several parameters are needed for the calculations that depend on the type of 

materials used in the laser structure. The well material is the most important in terms of 

its effect on the calculations. This sample has a ternary structure of the form InAsi.xSbx 
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Figure 19: Quantum well structure for Laser B (after Figure 4-1 in Cooley, 1996: 4-2). 

which has not been thoroughly characterized. Where values for the ternary have not been 

published, linear interpolation between the values for InAs and InSb was used to find a 

value for the sample. Table 1 lists the parameters for the binary compounds used and the 

interpolated values found for the well. 

Several sources listed empirical relations or data for the energy gap of InAsi.xSbx 

as a function of antimony mole fraction for a given temperature (Woolley, 1964: 1883; 

Stringfellow, 1971: 805; Osbourn, 1984: 176; Yen, 1987: 928; Fang, 1990: 7038). A 

relationship for the energy gap as a function of antimony mole fraction and temperature 

initially published by Wieder and Clawson (Wieder, 1973: 220) and reprinted in 

Rogalski, 1989: 37, that fits these empirical relations well is 

34 x lO^T2 

Eg(x, f) = 0.411 -   • - 0.876* + 0.70x2 + 3.4 x 10"4xT(l - x) (52) 
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Table 1: Material parameters for binary compounds and interpolated values for the well 
and barrier. Values that were not calculated or used are left blank. 

Parameter InAs InSb AlAs      AlSb Well Barrier 

flo(A) 6.0583 6.47937 6.0857 

Cii (1011 dynes/cm2) 8.329 6.669 8.2211 

C12 (1011 dynes/cm2) 4.526 3.645 4.469 

fl(eV) -6.0' -7.7' -5.9 

*(eV) -1.8' -2.0' -1.8 

me (m0) 0.0239 0.01359 0.15       0.259 0.0232 0.044 

Whhz (m0) 0.35 0.34 0.409      0.336 0.35 0.36 

/wihz (mo) 0.026 0.0158 0.153      0.123 0.025 0.044 

Whhx(mo) 0.35 0.42 0.35 

wihx (m0) 0.026 0.0158 0.025 

"r 3.714b 4.418b 2.875c     3.182 3.760 3.730 

*(0) 15.15 16.8 15.2 

All values are from Madelung, 1991, except 
a) Blacha, 1984 
b)Aspnes, 1983 
c) Fern, 1971 

where x is the antimony mole fraction, Tis in Kelvin, and Eg is in eV. The spontaneous 

emission spectrum calculated using an energy gap predicted by this relation showed that 

the gap was to large for this sample as shown in Figure 20. 

Major Michael Marciniak studied several InAsi.xSbx samples with varying x and 

found smaller energy gaps for his samples (Marciniak, 1995). His samples were bulk 

samples grown by MIT/LL using Molecular Beam Epitaxy on GaSb substrates. Marciniak 

fit the temperature dependence of the energy gap for his samples using the Varshni 

relation (Equation 6). Using his data from the samples with x = 0.059 and x = 0.071,1 
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interpolated point by point to find the temperature dependence for the sample I studied (x 

= 0.065). The interpolated data was fit to the Varshni relation to find E^O), a, and ß for 

wafer B and resulted in 

Eg(T) = 0327-     346+T (53) 

for x = 0.065 and Eg in eV. Figure 20 shows a comparison between a time integrated 

spectrum of the sample and the spectra calculated with Equations (52) and (53) for T=ll 

K. Equation (53) was used to calculate the well energy gap since it matched the 

experimental data from the sample better. Marciniak found inconclusive evidence of 

phase separation in his samples (Marciniak, 1995: 7-47 - 7-48). Since wafer B was grown 

by the same researchers using the same technique it may suffer from the same problems 

as Marciniak's samples. 

The split-off energy band separation, Aso, was calculated with 

A„(x) = 1.17x2 -0.75* + 0.39 (54) 

for x = 0.065 and Aso in eV (Rogalski, 1989: 37). This relation is used in Equation (39) to 

calculate \M\   for the well material. 

Table 2 lists the calculated parameters for the system under strain at T= 77 K. The 

unstrained well energy gap was found using Equation (53). The strain and energy band 

shifts were calculated with Equations (7) and (8). The spin-orbit splitting and \M\   were 

calculated as described in the last paragraph. 
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Figure 20: Comparison of a measured time integrated spectrum with calculated spectra. 
(a) Measured time integrated spectrum, (b) Spectrum calculated using Equation (52). 

(c) Spectrum calculated using Equation (53) which was derived from Marciniak's data. 
JV=3xl016for(b)and(c). 
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Table 2: Calculated well parameters. Values are in 
meV unless stated otherwise. 

€s (percent) 0.450 

Well E% 334 

A£hh 11.7 

A^ih 41.3 

hh-lh separation 29.6 

Aso 346 

\M\2 (2 eV/m0) 16.9 

The barrier material is a quarternary of the form mi.yAlyAsi.xSbx. Values for most 

of the barrier parameters A (except a and ß) were interpolated with 

A = {\- x)4lnSb) + (1 - x)(l - y)4lnAs) + xyA(A\Sb) + jc(l - y)A(AlA&) (55) 

using the values for InAs, InSb, AlAs, and AlSb, where x is the mole fraction of antimony 

and y is the mole fraction of aluminum (Madelung, 1991: 156). Table 1 lists the values 

for the binaries used to interpolate the values for the barrier. 

The energy gap for the barrier was calculated at a given temperature by calculating 

the gap for each of the four binary compounds using Equation (6). The Varshni 

parameters used are listed in Table 3 along with the resulting energy gaps calculated for T 

= 77 K. These four energy gaps were then interpolated using Equation (55) to find the 

barrier band gap listed in the table. The fit parameters a and ß were not calculated for the 

barrier because these parameters are derived from the fit to the Varshni relation. Their 

values are not related to the mole fractions and so cannot be interpolated (Marciniak, 

1995:6-42 to 6-45 discusses this). 
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Table 3: Barrier 
energy gap at T= 

energy gap calculation. The Varshni parameters were used to find the 
: 77 K for each binary compound. These energy gaps were interpolated 

using Equation (55) to find the barrier gap. 

Varshni 
Parameter 

InAsa InSba AlAsb AlSbc Barrier 

«(lO^eV/K) 2.76 2.7 15.35 4.68 

/?(K) 83 106 1018 190 

^OK)(eV) 0.415 0.235 3.133 2.384 

^77K)(meV) 405 226 3125 2374 641 

a) Fang, 1990 
b) from fit of data in figure from Monemar, 1973 
c) from fit of data in figure from Joullie, 1982 

Spectral Width Calculation 

The first step in a calculation of the spectral widths is to calculate the energy 

levels in the quantum well. The depths of the wells were found using Equations (9) with 

the values in Table 2 and Table 3 and the conduction band offset listed on page 36. These 

well depths, listed in Table 4, were used in Equation (5) to calculate the energy levels for 

the conduction, heavy hole, and light hole bands (Ec„, Ehhn, and !?//,„) numerically. The 

energy levels are listed in Table 5 and plotted with the wells in Figure 21. The 

Mathematica code used in this calculation is listed in Appendix A. 

Table 4: Well depths in meV at T= 77 K.       Table 5: Energy levels in meV at T= 77 K. 

vcb 231 CB Level 1 55.1 

Fhh 76.8 CB Level 2 210.7 

Km 47.2 HH Level 1 

HH Level 2 

7.0 

27.2 

HH Level 3 58.2 

LH Level 1 54.0 
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Figure 21: Energy levels in the quantum well. The light hole level is dashed. 

The unconvolved spontaneous emission spectrum is calculated next. The well 

energies are used to define where the steps in the density of states occur (see Figure 9 on 

page 17). The quasi-Fermi levels £>c and £>v were found by solving Equation (31) 

numerically for the conduction band and the valence band for a given carrier density. The 

well energies, quasi-Fermi levels, and \M\   were then used to calculate the spontaneous 

emission spectrum for a given temperature and total carrier density with Equation (43). 

The spectra were convolved using Equation (44), which finishes the computation of the 

calculated spectra. The MatLab files used to calculate the spectra are listed in Appendix 

B. They are based on code written by Chia-Fu Hsu, a Ph.D. student of Peter Zory at the 

University of Florida. Figure 22 shows a plot of some calculated spectra for different 

carrier densities. 

The widths of the spectra were calculated using the Mathematica code in 

Appendix C. One hundred spectra were calculated with carrier densities ranging from 1 x 
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Figure 22: Calculated PL spectra for different carrier densities. The carrier densities are in 
units of cm" and were multiplied by the factors shown to fit them on the plot. 

1016 cm"3 to 1 x 1018 cm"3. Each calculated spectrum is composed of 625 discrete points. 

The energy spacing (along the x axis) between these points is 1 meV. Decreasing this 

spacing increased calculation time dramatically, so the FWHM of the spectra was found 

by linearly interpolating between the two points nearest to the half maximum value at 

each side of the peak in order to gain more resolution. Each of these 100 spectra were 

calculated for a total carrier density, so the FWHM of these emission spectra can be 

plotted vs. carrier density. 

Convolution With Upconversion Pump Beam 

As described in Chapter 3, the upconversion process occurs when the second leg 

of the pump beam mixes with the PL from the sample in the KTA crystal. The resulting 

upconversion spectrum is broadened due to the convolution of the two electromagnetic 

waves. In order to compare the widths of the calculated spectra with the widths of the 

measured spectra, this effect must be taken into account. This is done by convolving the 
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calculated spectra with the measured spectrum of the pump beam. The code used to 

perform the convolutions is listed in Appendix C. 

The first step was to measure the spectrum of the Ti: Sapphire pump beam while it 

was mode locked. Rick Patton, a technician with the Engineering Physics Department, 

performed this measurement by routing the beam into an EG&G model 1471 optical 

multichannel analyzer using an EG&G model 1453 silicon photodiode detector. The 

spectrum was converted from wavelength to energy and is shown in Figure 23. The 

FWHM of the peak is 15.39 meV. The spectrum was fit with a 30th order polynomial so 

that the spectrum could be regenerated with the same energy spacing as the calculated PL 

spectra. 

Convolution is represented by ® and h =f<8> g is defined as (Jansson, 1984: 6) 

(56) 
h(x)= \f{x-x')g{x')dx' . 

CO •+* 
'c 
z> 
£» 
(0 

< 
+^ 
<o 
c 
a) 

1.52 

FWHM = 15.4 meV 

1.55 

Energy (eV) 
1.58 1.59 

Figure 23: Spectrum of Ti: Sapphire pump laser. 
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It is well known that the product of the Fourier Transform of two functions,/and g, is the 

Fourier Transform of the convolution of/and g: 

3(f)3(g) = 3(f®g) = 3(h) (57) 

where 

3 (A«)) = 4= )f{«>V*da> = f{t) (58) 

is the Fourier transform of f(a>) (Jansson, 1991:11). The convolution, h, can be found by 

taking the inverse Fourier transform of the right hand side of Equation (57). 

The convolution was performed using two methods. The first method used Fourier 

transforms with Equation (57). The high energy end of the calculated PL spectra was 

dropped to make the list of data 512 elements long. The values of the dropped elements 

were essentially zero and would have no effect on the convolution. The pump spectrum 

was regenerated with an energy spacing of 1 meV and zeros were added to each end of 

the list to make it 512 elements long (an equal number of points was required to use 

Mathematica's "Fourier" function). The transforms of the pump and calculated PL spectra 

were multiplied together and the inverse transform of the product taken with 

Mathematica's "InverseFourier" function. The widths were determined as described in 

the previous section on page 44. 

The second method used Equation (56) to compute the convolution. The PL 

spectra were not truncated and no extra zeros were added to the pump spectrum. The 

pump spectrum data list was reversed and lined up with the left side of the calculated PL 

spectrum. Since the energy spacing of the two spectra is the same, the sum of the energy 

values (x coordinate) of each pair of lined up data points will be the same. This sum of 
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the energy values is the energy (x coordinate) for the first point in the convolved spectra. 

Each intensity data point (y coordinate) from the reversed pump spectrum was multiplied 

with the intensity data point (y coordinate) from the PL spectrum that was lined up with 

it. These products were summed and this was the value of the intensity (y coordinate) of 

the first data point of the convolved spectrum. The reversed pump was moved one 

element to the right and the process repeated until the end of the PL spectrum was 

reached. The end result is the convolved spectrum which corresponds to the upconversion 

spectra. The widths were determined as described in the previous section on page 44. 

Both methods of convolution yielded the same widths for the convolved spectra. 

Since each of the PL spectra were calculated with a specific carrier density, these new 

convolved calculated widths can be plotted as a function of the carrier density of the PL 

spectrum used in the convolution. The calculated widths and convolved calculated widths 

are plotted as a function of carrier density in Figure 24. The effect of the convolution is 
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Figure 24: Calculated widths and convolved calculated widths as a function of carrier 
density. 

47 



greatest when the PL widths are smaller. As the PL widths widen, the pump beam width 

becomes narrower in comparison and broadens the PL less. 

Carrier Density as a Function of Time 

Since the convolved calculated widths were determined for specific carrier 

densities and the measured widths for specific times it should be possible to map the 

carrier densities to time. Each point in Figure 18 was measured at a specific time. The 

width measured at that time can be compared with the convolved widths calculated in 

Figure 24. Each of these convolved widths was calculated with a specific carrier density, 

so the a plot of carrier density as a function of time can be created. This plot is shown in 

Figure 25 and the code used to calculate the data is in Appendix D. 

Capt Cooley calculated the carrier density as a function of time using a different 

method (Cooley, 1996: 5-1 to 5-7). He measured the luminescence from the sample at 

one wavelength for different delay times and then plotted the luminescence as a function 
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Figure 25: Carrier density as a function of time 
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of time. Using the absorption of the material, he calculated the two dimensional carrier 

density created by different pump beam powers. He measured the luminescence over a 

range of times for each of these pump power levels and associated the first data point at 

each power with his calculated value of two dimensional carrier density. This gave him 

the luminescence as a function of carrier density. He connected the carrier density to the 

times through the luminescence and converted from a two dimensional carrier density to a 

three dimensional carrier density using 

n 
n 2D 

3D NL, 
(59) 

where N is the number of quantum wells and Lz is the thickness of a quantum well. This 

relationship assumes that the carriers are confined to the well regions. 

A comparison of Cooley's results and the results from this thesis are shown in 

Figure 26. The data is close at lower carrier densities but does not agree with Cooley's 

results at higher carrier densities. This discrepancy could be due to a slight change in the 
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Figure 26: Comparison of carrier density vs. time results with Cooley's results 
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experimental conditions. For example, the spot size of the pump beam on the sample 

could have changed slightly between the times the measurements were taken. This will 

affect the number of carriers created and Cooley's absorption calculation. Also the model 

I used to calculate the PL spectra assumes parabolic bands. This assumption is good near 

the band edge and becomes less accurate the farther the carriers are from the edge. At 

higher carrier densities higher levels of the band will be occupied and the applicability of 

the parabolic band assumption is reduced. 
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5. Conclusion 

Summary 

The objective of this research is to study the temporal behavior of the carrier 

density in a mid-IR quantum well laser. This will help researchers make more efficient 

lasers that emit at these wavelengths. PL spectra can be calculated for a given carrier 

density and measured at different times. The calculated spectra can be compared with the 

measured spectra to associate a specific carrier density with a specific time. The width of 

the PL spectra was the parameter chosen to compare spectra. 

The quasi-Fermi levels in a semiconductor can be related to the carrier density. As 

the carrier density increases the PL spectrum will become wider and shift slightly toward 

higher energies as the higher energy levels become more populated. The energy levels 

were calculated for an InAso.935Sbo.065/In0.85Alo.15As0.9Sb01 multiple quantum well sample 

at a temperature of 77 K assuming parabolic bands. Using these energy levels 100 spectra 

were calculated for different carrier densities. 

The UMIPS can measure spectra with a time resolution of the width of the pump 

pulse by measuring the upconversion spectra at different delay times. The PL spectrum of 

the sample was measured at 30 times using this technique. Because the pulse width of the 

pump is narrow, its spectrum is wide and the upconversion spectrum will be a 

convolution of the pump and the PL. The calculated spectra were convolved with the 

measured upconversion pump beam spectrum. The widths of these convolved calculated 

spectra were compared to the measured spectral widths to find the carrier density as 

function of time. These results agree with Cooley's results at low carrier densities and 
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disagree at higher carrier densities. This discrepancy could be due to changing 

experimental conditions or the break down of the parabolic band model at higher carrier 

densities. 

Future Research 

Two things can be done to improve the results of this research. The first would be 

to calculate the band structure of the material more accurately by using, for example, the 

k«p method. This would increase the accuracy of the spontaneous emission spectra 

calculation and provide a better relation between width and carrier density. This would 

also help determine the carrier densities at which the parabolic band approximation is 

applicable. 

A second improvement would be to slave the rotation stage of the KTA crystal to the 

spectrometer controller. As the spectrometer is scanned the stage would rotate so the 

optimum phase matching angle was used for each wavelength. This would allow a 

complete spectrum over wavelength to be taken at once which would provide more data 

in each time slice. This would improve the accuracy of the fits and provide a better 

relation between the measured widths and time. If the improvements are significant it 

could allow entire spectra to be compared instead of just the widths of the spectra. These 

improvements would allow better estimates of the carrier density as a function of time to 

be made. 

52 



Appendices 

Appendix A: Energy Level Calculation 

Last Modified: 3 Oct 97 

This file calculates the energy levels in a quantum well. The method follows the MatLab code written by Chia-Fu Hsu, a 

Ph.D. student of Peter Zory at the University of Florida. This code uses Newton's Method instead of the Bisection Method to 

numerically solve for the eigenenergies. The equations used are equations 68a and 68b on p. 60 of "Quantum Well Lasers", 

edited by Peter Zory. This model assumes parabolic bands with a single, finite square well. 

The first part of the code is used to define the material parameters for the well and barrier materials. The conduction band 

offset is used to determine the well depths. The second part calculates the energies for a given well width. The well width is 

listed two places so make sure the appropriate value is current in the Kernel. The third part displays the results. 

Off[General::"spelll"] 

■ Parameters 

T = 77;   (*  temperature of solid in K *) 

Universal constants 

m0  =  9.109 10~31;    (*  electron mass  in kg *) 
c = 2.998 108;    (*  speed of light in m/s  *) 
h =  6.626 10~34;    (*  Planck' s  constant in J-s  *) 

h 
h =    ; 

2TT 

kb = 1.381 10~23; (* Boltzmann' s Constant in J/K *) 
e = 1.602 10"19; (* charge of electron *) 
sO = 8.854 10~12; (* permitivity of free space *) 

Varshni formula and quarternary alloy interpolation formula 

oT2 

egT[o , ß  ,  egO , T ] := egO - _  _    -  - T + ß 
int[AlAs_, AlSb_, InAs_, InSb_, y_, x_] : = 
(1-x) y InSb + (1-x) (1 - y) InAs + xyAlSb + x (1-y) AlAs; 

e stands for energy in this notebook. 

■ Well Parameters 

The well width is also listed below in the code to make calculations easier. 
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lz =  100 10~10;   (* well width in m *) 

■ Material: InAsi.^Sb* 

The well in composed of InAsi-^Sb^ on an InAs substrate. Laser B has an Antimony concentration of 6.5%. 

x =  0.065;   (* Antimony concentration fraction *) 

(* Weider,   Clawson heavy hole energy bandgap in eV *) 

(*egxT[x_, t_]   =  0.411  -   ^f-^^—  0.876 x +  0.70  x2  +  3.4  10"4  t  x   (1-x); 

egNoStrain =  egxT[x,T];*) 
(*  energy gap  from Marciniak' s data *) 

3.79476 10"4 T2 
egNoStrain=0.327479- 

T + 346.193 
(* lattice parameter in Angstroms *) 

aOInAs = 6.0583; aOInSb = 6.47937; 

aO = xaOInSb + (1-x) aOInAs; 

(* substrate lattice parameter in Angstroms *) 

aOs = aOInAs; 

(* elastic stiffness coefficients in 1011 dyne/cm2 *) 

cllInAs = 8.329; clllnSb = 6.669; 

ell = xcllInSb + (1-x) cllInAs; 

cl2InAs = 4.526; cl2InSb = 3.645; 
cl2 = xcl2InSb + (1-x) cl2InAs; 

(* hydrostatic deformation potential in eV *) 

alnAs = -5.8; alnSb = -7.7; a = xalnSb + (1-x) alnAs; 
(* shear deformation potential in eV *) 

blnAs = -1.8; blnSb = -2.0; b = xblnSb + (l-x)blnAs; 
(* strain, positive for compression *) 

es = (aO - aOs) /aO; 

(* change in heavy hole energy gap *) 
cll-cl2       cll + cl2 

Aehh = -2 a es   + b es 
ell ell 

(* change in light hole energy gap *) 
cll-cl2       cll + 2cl2 

Aelh = -2 a es   - b es 
ell ell 

eg = egNoStrain + Aehh; 

(* hh - lh gap *) 

s = Aelh - Aehh; 

(* electron effective mass in kg *) 

melnAs = 0.0239m0; melnSb = 0.01359 mO; 

me = xmelnSb + (1 - x) melnAs; 

(* growth direction heavy hole effective mass in kg *) 

mhhzInAs = 0.35m0; mhhzInSb = 0.34m0; 
mhhz = xmhhzInSb + (1 - x) mhhzInAs; 

(* growth direction light hole effective mass in kg *) 

mlhzInAs = 0.026m0; mlhzInSb = 0.0158m0; 
mlhz = xmlhzInSb + (1 - x) mlhzInAs; 

(* in plane direction heavy hole effective mass in kg *) 
mhhxInAs = 0.35m0; mhhxInSb = 0.42m0; 

mhhx = xmhhxInSb + (1 - x) mhhxInAs; 

(* in plane direction light hole effective mass in kg *) 
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mlhxInAs = 0.026m0; mlhxInSb = 0.0158m0; 

mlhx = xmlhxInSb + (1 - x) mlhxInAs; 
(* index of refraction *) 

nlnAs=3.714; nlnSb=4.418; 

n = x nlnSb + (1-x) nlnAs; 

(* static dielectric coefficient *) 
elnAs = 15.15; elnSb = 16.8; 
6 = x slnSb + (1-x) slnAs; 
(* spin orbit splitting energy in eV *) 

Aso = 1.17x2 - 0.75x + 0.39; 
(* transition matrix elements in eV *) 

(mO   \    eg + Aso 
 1  mO eg; 
me   )   2  (eg + Aso 2 /3) 

Print["For the well:"] 
Print [" eg (no strain) = ", egNoStrain] 

Print[" strain corrections: ss = ", es] 
Printf  aO for well = ", aO, " A, aO for substrate = ", aOs, " A"] 

Printf eg = ", eg, " eV, s = ", s, " eV] 

Print[" me = ", me/mO, " mO"] 
Print[" mhhz = ", mhhz/mO, " mO, mhhx = ", mhhx/mO, " mO"] 

Print[" mlhz = ", mlhz/mO, " mO, mlhx = ", mlhx/mO, " mO"] 
2 

Printf" n =  ", n, ",   e  =  ", e, ",  M2  =  ",   m2, " m0/2"l L mO J 

For the well: 

eg (no strain) = 0.322162 

strain corrections: es = 0.00449738 

aO for well = 6.08567 A, aO for substrate = 6.0583 A 

Eg = 0.333895 eV, s = 0.0296039 eV 

me = 0.0232299 mO 

mhhz = 0.34935 mO, mhhx = 0.35455 mO 

mlhz = 0.025337 mO, mlhx = 0.025337 mO 

n = 3.75976, e = 15.2572, M2 = 16.9087 mO/2 

■ Barrier Parameters 

-,-10 lzb = 200 10"";   (* barrier width in m *) 

■ Material: Ini.yAl^Asi^Sb^ 

The concentrations are also listed in the well section to calculate the strain on the well. 

xb = 0.1; (* Antimony concentration fraction *) 

yb = 0.15; (* Aluminum concentration fraction *) 
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(* barrier lattice parameter in Angstroms *) 
aOAlAs = 5.660; aOAlSb = 6.1355; 

aOb = intfaOAlAs, aOAlSb, aOInAs, aOInSb, yb, xb]; (* heavy hole energy bandgap in eV *) 

olnAs = 2.76 10~4; /SInAs = 83; egOInAs = 0.415; 
eglnAs = egT[aInAs, ßlnAs, egOInAs, T] ; 

alnSb = 2.70 10~4; /SlnSb = 106; egOInSb = 0.235; 

eglnSb = egT[aInSb, /BInSb, egOInSb, T] ; 

oAlAs = 15.347 10"4; /SAlAs = 1018; egOAlAs = 3.133; 

egAlAs = egT[aAlAs, JSAIAS, egOAlAs, T]; 

oAlSb = 4.684 10"4; /SAlSb = 190; egOAlSb = 2.384; 
egAlSb = egT[oAlSb, /SAlSb, egOAlSb, T] ; 

egb = int[egAlAs, egAlSb, eglnAs, eglnSb, yb, xb]; 
(* electron effective mass in kg *) 

meAlSb = 0.259m0; meAlAs = 0.15m0; melnAs = 0.0239m0; melnSb = 0.01359 mO; 
meb = int[meAlAs, meAlSb, melnAs, melnSb, xb, yb] ; 
(* heavy hole effective mass in kg *) 

mhhzAlSb = 0.336m0; mhhzAlAs = 0.409m0; mhhzInAs = 0.35m0; mhhzInSb = 0.34m0; 

mhhb = int[mhhzAlAs, mhhzAlSb, mhhzInAs, mhhzInSb, xb, yb] ; 
(* light hole effective mass in kg *) 

mlhzAlSb = 0.123m0; mlhzAlAs = 0.153m0; mlhzInAs = 0.026m0; mlhzInSb = 0.0158m0; 

mlhb = intfmlhzAlAs, mlhzAlSb, mlhzInAs, mlhzInSb, xb, yb]; 
Print["For the barrier:"] 

Print[" aO = ", aOb, " A"] 

Print[" eg = ", egb, " eV"] 

Print[" me = ", meb/mO, " mO, mhh = ", mhhb/mO, " mO, mlh = ", mlhb/mO, " mO"] 

For the barrier: 

aO = 6.08245 A 

eg  =  0.641398 eV 

me = 0.0435737 mO, mhh = 0.356905 mO, mlh = 0.043733 mO 

Depths of conduction band and valence band wells 

ecOffset = 0.75; (* conduction band offset for materials *) 

ech = ecOffset (egb - eg) ;    (*  conduction band well depth in eV *) 
evh =   (1 - ecOffset) (egb - eg);    (* valence band well height  in eV *) 
Print["conduction band well depth =  ", ech,  "  eV"] 
Print["valence band well height =  ", evh, "  eV"] 

conduction band well depth =  0.230627 eV 

valence band well height  =  0.0768755 eV 
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List Parameters 

Print["temperature = ", T, " K"] 
Print["For the well:"] 

Print[" eg (no strain) = ", egNoStrain] 
Print[" strain corrections: es = ", es] 

Print["  aO for well = ", aO, " A, aO for substrate = ", aOs, " A"] 

Print["  aO for barrier = ", aOb, " A"] 
Printf"  eg = ", eg, " eV, s = ", s, " eV"] 
Print[" me = ", me/mO, " mO"] 

Print[" mhhz = ", mhhz/mO, " mO, mhhx = ", mhhx/mO, " mO"] 

Printf mlhz = ", mlhz/mO, " mO, minx = ", mlhx/mO, " mO"] 

2 
Printf"  n =   ", n,  ",   e  =  ", 6,  ",   M2   =   ",   m2, " m0/2"l 

1 mO J 

Print["For the barrier:"] 
Printf  eg =  ", egb,  "  eV] 
Printf me = ", meb/mO, " mO, mhh = ", mhhb/mO, " mO, mlh = ", mlhb/mO, " mO"] 
Print["conduction band well depth = ", ech, " eV"] 
Print["valence band well height = ", evh, " eV"] 

temperature = 77 K 

For the well: 

eg (no strain) = 0.322162 

strain corrections: es = 0.00449738 

aO for well = 6.08567 A, aO for substrate = 6.0583 A 

aO for barrier = 6.08245 A 

eg = 0.333895 eV, s = 0.0296039 eV 

me = 0.0232299 mO 

mhhz = 0.34935 mO, mhhx = 0.35455 mO 

mlhz = 0.025337 mO, mlhx = 0.025337 mO 

n = 3.75976, e = 15.2572, M2 = 16.9087 mO/2 

For the barrier: 

eg =  0.641398 eV 

me = 0.0435737 mO, mhh = 0.356905 mO, mlh = 0.043733 mO 

conduction band well depth = 0.230627 eV 

valence band well height = 0.07 68755 eV 

■ Energy Levels of a single quantum well 

For ease of recomputing the well width is listed here so it can be changed. 
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(* well width in ID t) 

Set up equations 68a and 68b for electrons, heavy holes, and light holes. The equations come from solving Schrödinger's 

equation and applying boundary conditions. The energy, e, is in meV. The strain separation, s, for the light hole solutions is 

corrected for in the kzlh expression. The energies used by the light hole equations are really e+s from s to the valence band 

height. This accounts for the compressive strain that pushes the light holes away from the gap. 

Clear[e] 

kze = 
/ 2 me  e / 2 meb /      ex 

A/ e ; aze = A;   lech ) e ; 
V fi2  1000 V h2  . V     1000 / 

r   lz , me aze r   lz ,   me aze 
evene = Tan kze  -  ; odde = Cot kze   + 

2 J  meb kze L    2 J  meb kze 

2 mhhz  e / 2 mhhb Vt. mnnz   c              / 6 mnno /        e  \ 
 e ; azhh = A /  (evh -  ] e ; 

h2        1000          V  fi2   \              1000 ' 

.    lz .  mhhz azhh            .    lz ,  mhhz azhh 
evenhh = Tan kzhh  -  ; oddhh = Cot kzhh  + 

mhhb kzhh L    2 J  mhhb kzhh 

/ 2 mlhz /  e 
kzlh 

/ 2 mlhz 1    e \ / 2 mlhb /      e \ 
A/   ( s) e ; azlh = A/   (evh 1 e ; 
V  h2       \ 1000   / V  h2       V     1000 / 

r    lz n  mlhz azlh .    lz ,  mlhz azlh 
evenlh = Tan kzlh  -  ; oddlh = Cot kzlh 1 +  ; 1     2 J  mlhb kzlh l     2 J  mlhb kzlh 

Plot the even and odd solutions to find guesses for the root finding. If the plots have too few points to make a good guess, 

increment the appropriate PlotData table to calculate more points. This is especially helpful for the heavy hole plots. It is 

easier to see if a plot crosses the axis if the plots are temporarily made larger by draging the frame. The plotrange can also be 

varied so the plots will show more points in the lines. The xxPlotData tables are used to plot the functions with discrete points. 

This avoids having intersections with the energy axis at the assymptotes of the trigonometric functions. The lower limit for 
the light holes is s meV + 1 meV to prevent kzlh = VoT This occurs when e = s. 

Printed by Mathematica for Students 58 



plotrange = 5; 

Clear[evenePlotData, oddePlotData, 

evenhhPlotData, oddhhPlotData, evenlhPlotData, oddlhPlotData] 
evenePlotData = Table[{e, evene}, {e, 1, 1000 ech}]; 
oddePlotData = Table[{e, odde}, {e, 1, 1000ech}]; 

evenhhPlotData = Table[{e, evenhh}, {e, 1, 1000 evh, 0.5}]; 
oddhhPlotData = Table[{e, oddhh}, {e, 1, 1000 evh}]; 

evenlhPlotData = Table[{e, evenlh}, {e, 1000s+1, 1000 evh}]; 
oddlhPlotData = Table[{e, oddlh}, {e, 1000 s + 1, 1000 evh}]; 
oddePlot = ListPlot[oddePlotData, 

PlotRange -» {-plotrange, plotrange}, AxesLabel -> {"meV", "Odd"}, 

PlotLabel -» FontForm["Electrons", {"Arial", 12}], DisplayFunction -+ Identity]; 
evenePlot = ListPlot[evenePlotData, 

PlotRange -» {-plotrange, plotrange}, AxesLabel -» {"meV", "Even"}, 

PlotLabel ->  FontForm["Electrons", {"Arial", 12}], DisplayFunction -► Identity]; 
oddhhPlot = ListPlot[oddhhPlotData, 

PlotRange -» {-plotrange, plotrange}, AxesLabel -» {"meV", "Odd"}, 

PlotLabel -» FontForm["Heavy Hole", {"Arial", 12}], DisplayFunction -► Identity]; 
evenhhPlot = ListPlot[evenhhPlotData, 

PlotRange -> {-plotrange, plotrange}, AxesLabel -+ {"meV", "Even"}, 

PlotLabel -> FontForm["Heavy Hole", {"Arial", 12}], DisplayFunction -► Identity]; 
oddlhPlot = ListPlot[oddlhPlotData, 

PlotRange -» {-plotrange, plotrange}, AxesLabel -» {"meV", "Odd"}, 

PlotLabel -> FontForm["Light Hole", {"Arial", 12}], DisplayFunction-» Identity]; 
evenlhPlot = ListPlot[evenlhPlotData, 

PlotRange -*  {-plotrange, plotrange}, AxesLabel -► {"meV", "Even"}, 
PlotLabel -► FontForm["Light Hole", {"Arial", 12}], DisplayFunction -► Identity]; 

Print["Well Width = ", lz/10"10, " A, T = ", T, " K"] 
Show[GraphicsArray[ 

{{oddePlot, evenePlot}, {oddhhPlot, evenhhPlot}, {oddlhPlot, evenlhPlot}}], 
DisplayFunction -» $DisplayFunction] 

Well Width = 100 A, T = 77 K 
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- GraphicsArray - 

The equations are solved when e equals the values of the x-intercepts. Plug the guesses from the plots into the respective lists 

below. Surround the values with curly brackets { } and separate multiple guesses with a comma. If there is no solution set the 

value equal to {}. 

oddeGuess = {210}; eveneGuess = {60}; oddhhGuess = {27}; evenhhGuess = {7, 60}; 

oddlhGuess = {}; evenlhGuess = {57}; 

The eigenvalues are found using Newton's Method for each guess. 
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maxOddE = Length[oddeGuess]; maxEvenE = Length[eveneGuess]; 

maxOddHH = Length[oddhhGuess]; maxEvenHH = Length[evenhhGuess]; 

maxOddLH = Length[oddlhGuess]; maxEvenLH = Length[evenlhGuess]; 

oddee = {}; evenee = {}; oddhhe = {>; evenhhe = {>; oddlhe = {}; evenlhe = {}; 
Do[solution = FindRoot[odde == 0, {e, oddeGuess[[i]]}]; 

e = e /. solution; AppendTo[oddee, e], {i, 1, maxOddE}]; 

Dofsolution = FindRootfevene == 0, {e, eveneGuessf[i]]}]; 

e = e /. solution; AppendTo[evenee, e], {i, 1, maxEvenE}]; 

Do[solution = FindRoot[oddhh == 0, {e, oddhhGuessf[i]]}]; 

e = e /. solution; AppendTo[oddhhe, e], {i, 1, maxOddHH}]; 

Do[solution = FindRoot[evenhh == 0, {e, evenhhGuessf[i]]}]; 

e = e /. solution; AppendTo[evenhhe, e], (i, 1, maxEvenHH}]; 
Do[solution = FindRoot[oddlh == 0, {e, oddlhGuess[[i]]}]; 

e = e /. solution; AppendTo[oddlhe, e], {i, 1, maxOddLH}]; 

Dofsolution = FindRootfevenlh == 0, {e, evenlhGuess[[i]]}]; 

e = e /. solution; AppendTo[evenlhe, e], {i, 1, maxEvenLH}]; 

ee = Sort[Join[oddee, evenee]]; 

hhe = Sort[Join[oddhhe, evenhhe]]; lhe = Sort[Join[oddlhe, evenlhe]]; 

Print["Electron Energies: ", ee] 

Print["Heavy Hole Energies: ", hhe] 

Print["Light Hole Energies: ", lhe] 

Electron Energies: {55.0927, 210.669} 

Heavy Hole Energies: {6.95165, 27.2429, 58.2015} 

Light Hole Energies: {53.9502} 

■ Display Results 

This displays the results. 

Printed by Mathematica for Students 61 



Print ["Well Width = ", lz/10"10, " A, T = ", T, " K"] 
Show[GraphicsArray[ 

{{oddePlot, evenePlot}, {oddhhPlot, evenhhPlot}, {oddlhPlot, evenlhPlot}}], 
DisplayFunction -» $DisplayFunction] ; 

Print["Electron Energy Guesses: ", Sort[Join[oddeGuess, eveneGuess]]] 

Print["Heavy Hole Energy Guesses: ", Sort[Join[oddhhGuess, evenhhGuess]]] 
Print["Light Hole Energy Guesses: ", Sort[Join[oddlhGuess, evenlhGuess]]] 

Print["Electron Energies: ", ee] 

Printf'Heavy Hole Energies: ", hhe] 
Print["Light Hole Energies: ", lhe] 

Well Width = 100 A, T = 77 K 
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Electron Energy Guesses:   {60, 210} 

Heavy Hole Energy Guesses:   {7, 27,  60} 

Light Hole Energy Guesses:   {57} 

Electron Energies:   {55.0927, 210.669} 

Heavy Hole Energies:   {6.95165, 27.2429, 58.2015} 

Light Hole Energies:   {53.9502} 
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■ Well Plot 

■ Energy Levels 

This plots a diagram of the well and the energy levels. 

Needs["Graphics *MultipleListPlotN" ] 

cBandl = {{-100, 1000 (ech + eg)}, {-49.9, 1000 (ech + eg)}}; 
cBand2 = Table[{-50 + 100 i, 1000 eg}, {i, 0, 1}]; 

cBand3 = Table[{50.1 + 49.9 i, 1000 (ech + eg)}, {i, 0, 1}]; 
conductionBand = Join[cBandl, cBand2, cBand3]; 

vBandl = Table[{-100 + 49. 9 i, -1000 evh}, {i, 0, 1}]; 

vBand2 = Table[{-50 + 100 i, 0}, {i, 0, 1}]; 

vBand3 = Table [{50 .1 + 49. 9 i, -1000 evh}, {i, 0, 1}]; 

valenceBand = Join[vBandl, vBand2, vBand3]; 

cbLevell = Table[{-50 + 100 i, ee[[1]] +1000 eg}, {i, 0, 1}]; 

cbLevel2 = Table[{-50 + 100 i, ee[[2]] +1000 eg}, {i, 0, 1}]; 

hhLevell = Table[{-50 + 100 i, -hhe[[l]]}, {i, 0, 1}] 

hhLevel2 = Table[{-50 + 100 i, -hhe[[2]]}, {i, 0, 1}] 

hhLevel3 = Table[{-50 + 100 i, -hhe[[3]]}, {i, 0, 1}], 

lhLevell = Table[{-50 + 100 i, -lhe[[l]]}, {i, 0, 1}] 

Print["temperature = ", T, " K"] 

MultipleListPlot[ 

conductionBand, valenceBand, cbLevell, cbLevel2, hhLevell, hhLevel2, hhLevel3, 

lhLevell, PlotJoined-»True, PlotStyle-> {AbsoluteThickness[2], AbsoluteThickness[2], 

AbsoluteThickness[l], AbsoluteThickness[l], AbsoluteThickness[l], 

AbsoluteThickness[l], AbsoluteThicknessfl], AbsoluteDashing[{2, 2}]}, 
SymbolShape -» None, AspectRatio -» 1.2, 

Axes-»False, Frame-»True, FrameLabel -> {"A", "meV", "", ""}]; 

Print["well eg = ", eg, " eV, barrier eg = ", egb, " eV"] 

Print["conduction band well depth = ", ech, " eV"] 

Print["valence band well height = ", evh, " eV"] 

Print["Electron Energies: ", ee, " meV"] 

Print["Heavy Hole Energies: ", hhe, " meV"] 

Print["Light Hole Energies: ", lhe, " meV"] 

temperature = 77 K 
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well eg =  0.333895 eV,   barrier eg =  0.641398 eV 

conduction band well depth = 0.230627 eV 

valence band well height■=  0.0768755 eV 

Electron Energies:   {55.0927, 210.669}  meV 

Heavy Hole Energies:   {6.95165, 27.2429,  58.2015}  meV 

Light Hole Energies:   {53.9502}  meV 

Wavefunctions 

This calculates the k=0 wavefunctions for the single quantum well. Define a function for k. 

k[m , e  , v ] 
2 m    (e-v) 

i2       1000 

Calculate wavefunctions and load them into tables. The factor of 50 enlarges the scale of the wavefunctions. 
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r.                                   Cos[k[me, ee[[l]], 0] (-50 1CT10)] 
cbltfl = Table[{d = -100 + i, 50  — ■  /J 

+ 1000eg + ee[[l]]},   {i, 0, 50, 1}]; 

2 

Exp[-ik[meb, ee[[l]], 1000 ech] d 10"10] 

Exp[-ik[meb, ee[[l]], 1000 ech] (-50 10"10)] 

cbl#2 = 

rr                             Cos[k[me, ee[[l]], 0] dlO"10] 
Table[{d =-50 + i, 50-  + 1000 eg + ee [ [1] ] },  {i, 0, 100, 1}]; 

chltlr3  =  Table[{d= 50 + i,  50 

2 

Cos[k[me, ee[[l]], 0] 50 10"10] 

2 

Exp[ik[meb, ee[[l]], 1000 ech] d 10"10] 

Exp[ik[meb, ee[[l]], 1000 ech] 50 10"10] 

Sin[k[me, ee[[2]], 0] (-50 10'10)] 

+ 1000eg + ee[[l]]},   {i, 0, 50, 1}]; 

cb2tfd = Table[{d =-100 + i, 50 
2 

Exp[-ik[meb, ee[[2]], 1000 ech] d 10"10] 
 + 1000eg + ee[[2]]},   {i, 0, 50, 1}]; 
10"10)] J J Exp[-ik[meb, ee[[2]], 1000 ech] (-50 10-10)] 

cb2#2  = 

rr                               Sin[k[me, ee[[2]], 0] dlO"10] 
Table[{d = -50 + i, 50 '-  + 1000 eg + ee [ [2] ] },  {i, 0, 100, 1}]; 

cb2tfr3 = Table[{d = 50 + i, 50 

2 

Sin[k[me, ee[[2]], 0] 50 10"10] 

2 

Exp[ik[meb, ee[[2]], 1000 ech] d 10"10] 
+ 1000eg + ee[[2]]},   {i, 0, 50,  1}]; 

Exp[ik[meb, ee[[2]], 1000 ech] 50 10"10] 

rr                                   Cos[k[mhhz, hhe[[l]], 0] (-50 10"10)] 
hhl*l = Table[{d=-100 + i, 50 — ' LL  JJ—— LL 

2 

Exp[-ik[mhhb, hhe[[l]],  1000 evh] dlO"10] 

Exp[-ik[mhhb, hhe[[l]], 1000 evh] (-50 10"10)] 
hhl#2  = 

■hhe[[l]]},   {i, 0, 50, 1}]; 

rr                               Cos[k[mhhz, hhe[[l]], 0] dlO"10] 
Table[{d = -50 + i,  50 — '  --hhe[[l]]},  {i, 0, 100, 1}]; 

2 
rr Cos[k[mhhz, hhe[[l]], 0] 50 10"10] 

hhl#3 = Tableffd = 50 + i, 50  — ■ LL JJ —- L 
11 2 

Exp[ik[mhhb, hhe[[l]], lOOOevh] dlO'10] 
 _!__hhe[[l]]},   {i, 0, 50,  1}   ; 
Exp[ik[mhhb, hhe [[1]], lOOOevh] 50 10"10] ' J 

rr Sin[k[mhhz, hhe[[2]], 0]  (-50 10"10)] 
hh2#l = Table[{d = -100 + i, 50 — - LL  JJ —_ LL Li 2 

Exp[-ik[mhhb, hhe[[2]], lOOOevh] dlO"10] 
 hhe[[2]]},   {i, 0, 50, 1}   ; 
Exp[-ik[mhhb, hhe[ [2]], lOOOevh]  (-50 lO"10)] ' J 

hh2tf2  = 

rr                               Sin[k[mhhz, hhe[[2]], 0] dlO"10] 
Table[{d = -50 + i, 50 — ^L-LL:—  - hhe [ [2] ] },  {i, 0, 100,  1}]; 

hh2tfr3 = Table[{d = 50 + i, 50 

2 

Sin[k[mhhz, hhe [[2]], 0] 50 10"10] 

2 

Exp[ik[mhhb, hhe [[2]], 1000 evh] d 10"10] 
hhe[[2]]}, (i, 0, 50, 1}]; 

Exp[ik[mhhb, hhe [[2]], lOOOevh] 50 10"10] 

rr             Cos[k[mhhz, hhe[[3]], 0] (-50 10-10)] 
hh3#l = Table[{d=-100 + i, 50 — ■ l JJ —— LL 
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Exp[-ik[mhhb, hhe[[3]], lOOOevh] dlO"10] ^rr,,,i      ,•    n    cn    nl hhe[[3]]},   {i, 0, 50, 1}J; 
Exp[-ik[mhhb, hhe[[3]], 1000 evh]  (-50 10"10)] 

hh3tfr2   = 
Cos[k[mhhz, hhe[[3]], 0] dlO"10] _ , ^>uo I A. I iiuiii.^.,   line. ii^JJ/Vjitxi/j * « 

Table[{d=-50 + i, 50 — ■ ^-^ -  - hhe [ [3] ] },  {i, 0,  100,  1}]; 

Cos[k[mhhz, hhe[[3]], 0] 50 10"10] 
hh3tf3 = Table[{d = 50 + i, 50  — -^-^  

•hhe[[3]]},   {i, 0, 50, 1}]; 
Exp[ik[mhhb, hhe [[3]], 1000 evh] dlO"10] 

Exp[ik[mhhb, hhe[[3]], 1000 evh] 50 10"10] 

lhltfl = Table[{d= -100 + i, 50 
Cos[k[mlhz, lhe[[l]], 0] (-50 10'10)] 

Exp[-ik[mlhb, lhe[[l]], 1000 evh] dlO"10] lv.rMlll      ..    n    Kn    „i 
lhe[[l]]},   {i, 0, 50, 1}J; 

Exp[-ik[mlhb, lhe [[!]], 1000 evh] (-50 10'10)] 
lhl^2  = 

Table[{d = -50 + i, 50 ^t^i""-"-* ""t^J' "■■ ——--lhe[[l]]},  {i, 0, 100, 1}]; Cos[k[mlhz, lhe[[l]], 0] dlO'10] 

lhl#3 = Table[{d=50 + i, 50 
Cos[k[mlhz, lhe[[l]], 0] 50 10"10] 

Exp[ik[mlhb, lhe[[l]], 1000 evh] dlO-10]       ........     ,.     .    cn    nl lhe[[l]]j,   {i, 0, 50, 1}J; 
Exp[ik[mlhb, lhe[[l]], 1000 evh] 50 10-10] 

cbltfr = Join[cbl(/rl, cbl#2, cbl^3] ; 
cb2^ =  Join[cb2^1, cb2i/r2, cb2i^3]; hhl# = Join[hhltfd, hhli^2, hhl*3]; 
hh2i^= Join[hh2tfl, hh.2^2, hh2tfr3]; hh3tfr = Join[hh3tfrl, hh3tfr2, hh3#3]; 
lhl^= Join[lhl^l, lhl</r2, lhl^3]; 

Plot wavefunctions. 

Print["temperature = ", T, " K"] 

MultipleListPlot[conductionBand, valenceBand, cbLevell, cbLevel2, hhLevell, hhLevel2, 
hhLevel3, lhLevell, cbli/r, cb2#, hhlilr,  hh2#, hh3^, lhltf, Plot Joined -* True, 

PlotStyle-»{AbsoluteThickness[2], AbsoluteThickness[2], AbsoluteThickness[l], 

AbsoluteThickness[l], AbsoluteThickness[l], AbsoluteThickness[l], 

AbsoluteThickness[l], AbsoluteDashing[{2, 2}], AbsoluteThickness[l], 

AbsoluteThickness[l], AbsoluteThickness[l] , AbsoluteThickness[l], 

AbsoluteThickness[l], AbsoluteDashing[{2, 2}]}, SymbolShape-»None, 

AspectRatio-» 1.2, Axes-» False, Frame-> True, FrameLabel -» {"A", "meV", "", ""}] 

Print["well eg = ", eg, " eV, barrier eg = ", egb, " eV"] 

Print["conduction band well depth = ", ech, " eV"] 

Print["valence band well height = ", evh, " eV"] 

Print["Electron Energies: ", ee, " meV"] 

Print["Heavy Hole Energies: ", hhe, " meV"] 

Print ["Light Hole Energies: ", lhe, " meV] 

temperature = 77 K 
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well eg  =  0.333895 eV,   barrier eg =  0.641398 eV 

conduction band well depth =  0.230627 eV 

valence band well height  =  0.0768755 eV 

Electron Energies:   {55.0927, 210.669}  meV 

Heavy Hole Energies:   {6.95165, 27.2429, 58.2015}  meV 

Light Hole Energies:   {53.9502}  meV 
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Appendix B: Spontaneous Emission Spectra Calculation 

Sponlasb.m is the main program used to calculate the spectra. It calls PInAsSb.m and P_BarB.m to input 
the material parameters for the well and the barrier. It also calls efcm and efv.m to help with the quasi- 
Fermi level calculations. 

SponlasB.m 

%This program is to calculate gain and spontaneous emission 
%spectrum for a QW laser structure. 
% 

% assumptions:(1) parabolic band model (finite well) 
%       (2) large strain regime in-plane effective mass 
(ansiotropic mass) (???) 
% (3) non-Lorentzian line-shape function (Ch2, 
QWL) 

written by by C.F. Hsu   08/05/96 
modified for Laser B    08/01/97 by Anthony Franz 
last modified      08/26/97 

earn 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
9. 
er 
10 

specify well/barrier materials for p_<material>.m 
specify mole fractions of the materials 
specify Gamma, alpha 
choose QB=1 for QW, QB=2 for bulk 
temperature T in K 
conduction band offset ratio, Ec_off, in percent 
Run Mathematica code to find energy levels 
specify Ni(initial carrier density) & Nf(final 

density) 
. specify tau(scattering time) 

clear 

universal constant 

c =2.998*10*8; 
h =6.626*10*(-34); 
h_=h/2/pi; 
k =1.381*10*(-23) 
m0=9.109*10*(-31) 
e =1.602*10*(-19) 
e0=8.854*10*(-12) % permittivity 
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condition parameters 

T=input('Enter temperature (K) 
in K 
x=0.065; 
xb=0.1; 
yb=0.15; 

);  % enter temperature 

Sb concentration in well 
Sb concentration in barrier 
Al concentration in barrier 

% material parameter (call function pr_ 

mp=p inassb(T,x); % active layer region 

.m) 

Eg_a=mp(1) 
Nr_a=mp(2) 
rl_a=mp(3) 
r2_a=mp(4) 
r3_a=mp(5) 
Me_a=mp(6) 
Mhz_a=mp(7) 
Mlz_a=mp(8) 
Mhx_a=mp(9) 
Mlx_a=mp(10) 
S=mp(ll); 
M_2=mp(12); 
ee=mp (13) ; 

% Energy band gap (eV) 
% refractive index 
% gamma1 
% gamma2 
% gamma3 
% electron effective mass (mO) 

's  z-direction HH effective mass (mO) 
's  z-direction LH effective mass (mO) 
Ir in-plane HH effective mass (mO) 
? in-plane LH effective mass (mO) 
splitting energy Eg(LH)-Eg(HH) (eV) 
transition coefficient MA2 
static dielectric constant (eO) 

mp=p_barB(T,xb,yb); 
Eg_b=mp(l) 
Nr_b=mp(2) 
rl_b=mp(3) 
r2_b=mp(4) 
r3_b=mp (5) 
Me_b=mp(6) 
Mh_b=mp(7) 
Ml_b=mp(8) 

% barrier layer region 
% Energy band gap (eV) 
% refractive index 
% gamal 
% gama2 
% gama3 
% effective mass of e 
% of hh 
% of lh 

device parameters, kept from Jeff Hsu's code 
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MT=M_2; % basis function momentum matrix 
element M^2 
Gama=0.01; % confinement factor, from Choi et 
al, Apl.Phys.Lett.68,2936, (1996) 
alfa=1.7; % internal loss 1/cm 
eta_i=0.67; % injection efficiency 

% potential profile, offset from Bill's thesis 

Ec_off=0.75; % conduction band offset 
dEc=Ec_off*(Eg_b-Eg_a); 
dEv=(l-Ec_off)*(Eg_b-Eg_a); 

% variable limits 

hv_i=0.001;        % initial Eeh-Eg 
hv_f=0.8; % final Eeh-Eg 
hv_step=0.001;     % step in photon energy 
dhv=hv_i:hv_step:hv_f;   % photon energy vector 
dhvl=-l*hv_f:hv_step:2*hv_f;  % photon energy vector 

% Data files generated at the very end of the code are named 
% after the carrier density so update these as well 

Ni=201*10A15;  % initial carrier density (cm^-3) 

Nf=250*10A15;  % final carier density (cmA-3) 

N_step=l*10A15;     % step (cmA-3) 

ooooooooooooooo'o'o'o'o'o 

% Entering quantum well width in A for Laser B 

da=100;   % QW thickness in A 

% Entering conduction band and valence band for 
eigenenergies at kt=0 

Ecm=input('Enter C subband energies (meV)   ')/1000; 
Ehm=input('Enter HH subband energies (meV)   ')/1000; 
Elm=input('Enter LH subband energies (mev)   ')/l000; 
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N_C=length(Ecm); 
N_HH=length(Ehm); 
N LH=length(Elm); 

% N_C: # of conduction subbands 
% N_HH: # of HH subbands 
% N LH: # of LH subbands 

Ehl=Ehm(l); 
in_ch=min(N_C,N_HH); % # of C-HH transitions, k selection 
rule 
in_cl=min(N_C,N_LH); % # of C-LH transitions, k selection 
rule 

material parameter 

dz=da; 
Me=Me_a; 
Mhz=Mhz_a; 
Mlz=Mlz_a; 
Mhx=Mhx_a; 
Mlx=Mlx_a; 
Mrh=Me*Mhx/ 
Mrl=Me*Mlx/ 
Mrhz=Me*Mhz 
mass 
Mrlz=Me*Mlz 
mass 
nr=Nr_a; 
Ro=(nr-l)^2 
Rb=Ro; 
ee=ee*eO; 
eel=nr^2*e0 

% QW thickness 
% electron effective mass 
% z-direction HH effective mass 
% z-direction LH effective mass 
% in-plane HH effective mass 
% in-plane LH effective mass 

(Me+Mhx);% in-plane reduced C-HH effective mass 
(Me+Mlx);% in-plane reduced C-LH effective mass 
/(Me+Mhz)% z-direction reduced C-HH effective 

/(Me+Mlz);% z-direction reduced C-LH effective 

% refractive index 
/(nr+l)^2;% facet reflectivity 

% facet reflectivity 
% static dielectric constant 

;    % optical dielectric constant 

Eg=Eg_a; 

% initial conditions 

iN=0; 

% start of N loops 

for N=Ni:N_step:Nf 
iN=iN+l 
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Eyc=0.15;% initial guess of electron fermi level Eyc=Efc- 
Ec 

Eyv=-0.01;% initial guess of hole fermi level Eyv=Ev-Efv 
P=N; 
Nm(iN)=N; 

% find fermi level Fc,Fv 
dE=0.00001;     % differential Energy (eV) 
tol=0.00001;    % tolerance 

% using Newton method to find the solution of fermi level 
Fcc=l; % assumed former initial guess 

while abs(Eyc-Fcc) > tol 
% if the difference between two consequent initial 

guesses is greater than tolerance 
yfc=efc(N,Eyc,Me,T,dz,Ecm);     % initial guess as input 
yfc_=(efc(N,Eyc+dE,Me,T,dz,Ecm)-yfc)/dE; % slope 
Fcc=Eyc; % initial guess becomes 

former inital guess 
Eyc=Eyc-yfc/yfc_; % new initial guess 

end 

Fcm(iN)=Fcc; % Efc-Ec 

Fw=l;       % assumed former initial guess 

while abs (Eyv-Fw) > tol 
yfc=efv(P,Eyv,Mhx/Mlx,T,dz,Ehm,Elm); % N in cm 
yfc_=(efv(N/Eyv+dE,Mhx,Mlx,T,dz,Ehm,Elm)-yfc)/dE; 
Fw=Eyv; 
Eyv=Eyv-yfc/yfc_; 

end 

Fvm(iN)=Fvv; % Ev-Efv 

Phm=Mhx*mO*k*T/(pi*h_A2*dz*10A(-10))*log(1+exp(e*(Fvv- 
Ehm)/(k*T))); 

Plm=Mlx*m0*k*T/ (pi*h_A2*dz*10Ä (-10) ) *log (1+exp (e* (Fw- 
Elm)/(k*T))); 

gc=MT*eA2*h/2/(e0*nr*c*m0A2);    % B(hv)/hv/MT2 
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rdh=Mrh*mO/2/pi/h_^2/(dz*10A(-10)); 
states for C-HH transition 
rdl=Mrl*mO/2/pi/h_A2/(dz*10A(-10)); 

states for C-LH transition 

reduce density of 

reduce density of 

rc=(4*pi*eA2*nr)/(eO*hÄ2*cA3*m0^2)*MT;% eq.44, p.43 of QWL 

gE_sum=dhv.*0; 
gM_sum=dhv.* 0; 
rh_sum=dhv.* 0; 
rl_sum=dhv. * 0; 

for ii=l:l:in_ch % C_ii to HH_ii transition 

fchl=(dhv-Ecm(ii)-Ehm(ii)).*e*Mrh/Me; 
in eq.29,p.34 QWL 

fch2=(Ecm(ii)-Fee)*e; 
fch=l./(l+exp((fchl+fch2)./k/T)); 

Fermi-Dirac distribution 
fvhl=(dhv-Ecm(ii) -Ehtn(ii) ) . *e*Mrh/Mhx; 
fvh2= (Ehm(ii) -Fw) *e; 
fvh=l./(l+exp((fvhl+fvh2)./k/T)); 

eq.28,p.34 QWL 
iic=0; 
for iil=hv_i:hv_step:hv_f 

iic=iic+l; 
if fchl(iic) < 0 

gnh(iic)=0; % 
factor=0 when hv<Eg+Ecnz+Ehnz 

elseif fchl(iic) == 0 
gnh(iic)=1; 

else 
gnh(iic)=1; 

end 
end 

% Ee-Ecnz 

Ecnz-Efc 
% eq.28, 

% Ehnz-Eh 
Efv-Ehnz 

% (1-fv) 

normalization 

cos2=(Ecm(ii)+Ehm(ii))*(Mrhz/Mrh)./((dhv-Ecm(ii)- 
Ehm(ii))+(Ecm(ii)+Ehm(ii))*Mrhz/Mrh);   % cosA2(Theta_nz) 

sh_TE=0.5*(l+cos2); % transition 
strength S_TE for HH, p.22 Kenny's thesis 
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sh_TM=l-cos2; % transition strength 
S_TM for HH, p. 22 Kenny's thesis 

gh_TE(ii,:)=((((dhv+Eg).*e).\(gc*rdh)).*sh_TE).*(fch - 
(1-fvh))*0.01; 

gE sum=gE_sum+gh_TE(ii,:).*gnh; % C-HH TE gain 

gh_TM(ii,:)=((((dhv+Eg).*e).\(gc*rdh)).*sh_TM).*(fch - 
(1-fvh))*0.01; 

gM_sum=gM_sum+gh_TM(ii,:).*gnh; % C-HH TM gain 

sh_avg== (2*sh_TE+l*sh_TM)/3; % e average for 
C-HH 

rh=((((dhv+Eg).*e*rc).*sh_avg).*rdh).*(fch.*fvh); % C-HH 
e average spontaneous 

rh_sum=rh_sum+rh.*gnh; % C-HH e average 
spontaneous 

end 

for ii=l:l:in_cl  % C_ii to LH_ii transition 

fcll=(dhv-Ecm(ii)-Elm(ii)).*e*Mrl/Me;    % Ee-Ec in 
eq.29,p.34 QWL 

fcl2=(Ecm(ii)-Fee)*e; % Ec-Efc 
fcl=l./(l+exp((fcll+fcl2)./k/T));        %eq.28, Fermi- 

Dirac distribution 

fvll=(dhv-Ecm(ii)-Elm(ii)).*e*Mrl/Mlx;   % Ev-Eh 
fvl2=(Elm(ii)-Fvv)*e; % Efv-Ev 
fvl=l./(l+exp((fvll+fvl2)./k/T));        % (1-fv) 

eq.28,p.34 QWL 

iic=0; 

for iil=hv_i:hv_step:hv_f 
iic=iic+l; 
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if fcll(iic) < 0 % normalization 
factor=0 when hv<Eg+Ecnz+El nz 

gnl(iic)=0; 
elseif fell(iic) == 0 

gnl(iic)= 1; 
else 

gnl(iic)=l; 
end 

end 

cos2=(Ecm(ii)+Elm(ii))* (Mrl z/Mrl) ./((dhv-Ecm(ii)- 
Elm(ii))+(Ecm(ii)+Elm(ii))* Mrlz /Mrl), % cosA2(Theta_nz) 

sl_TE=l/6*(5-3*cos2); % transition 
strength S_TE for LH 

sl_TM=l/3+cos2; % transition strength 
S_TM for LH 

gl_TE(ii,:)=((((dhv+Eg) • *e) •\(gc* rdl)) .*sl_TE).*(fcl - 
(1-fvl))*0.01; 

gE_sum=gE_sum+gl_TE(ii, :) .* gnl; % + C-LH TE 
gain 

gl_TM(ii,:)=((((dhv+Eg) • *e) • \(gc* rdl)) .*sl_TM).*(fcl - 
(1-fvl))*0.01; 

gM_sum=gM_sum+gl TM(i i, :) •* gnl; % + C-LH TM 
gain 

sl_avg=(2*sl_TE+l*sl_TM)/3; % e average for 
C-LH 

rl=((((dhv+Eg).*e*rc).*sl_avg).*rdl).* (fcl.*fvl); 
rl_sum=rl_sum+rl.*gnl; % + C-LH e average 

spontaneous 
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end 

% parameters used in the non-Lorentzian lineshape function 

% Broadening factors 

BFv=12+0.3*(N-1. 
(meV) 
BFc=8+0.3*(N-1.5 

(meV) 
BFFv(iN)=BFv; 
BFFc(iN)=BFc; 

5*10*18)/(0.2*10*18); % 

*10*18)/(0.2*10*18);  % 

broadening factor 

broadening factor 

tau_v=h_*1000/BF 
time 

tau_c=h_*1000/BF 
time 

t_v(iN)=tau_v; 
t_c(iN)=tau_c; 

v/e 

c/e # 

% intraband scattering 

% intraband scattering 

% effective well wi äths, modif ied eq.38, p. 112, QWL 

Lc=[l:l:N_C]*pi* 
well width for e, 

Lh=[l:l:N_HH]*pi 
well width for HH, 

L1=[1:1:N_LH]*pi 
well width for LH, 

eq. 
*h_ 
eq 
*h_ 
eq 

/sqrt(2*Me* 
38, p.112, 
./sqrt(2*Mh 
.38, p.112, 
./sqrt(2*M1 
.38, p.112, 

mO*Ecm*e); 
QWL 
z*mO*Ehm*e 
QWL 
z*mO*Elm*e 
QWL 

% effective 

) ; % effective 

) ; % effective 

% equivalent z component wavevectors, ec [.38, p. 112, QWL 

kvlt=pi/Lh(l); 
kvl perpendicular, 

kclt=pi/Lc(l); 
kcl perpendicular, 

% 
eq 
% 

eq 

equivalent 
.38, p.112, 
equivalent 
.38, p.112, 

z component wavevector, 
QWL 
z component wavevector, 
QWL 

% minimum of the 
QWL 

effective well widths, in eq.41, p.113, 

Leh=Lh(1) ; 

76 



Lec=Lc(1); 

% inverse screeing length 

a_c=Me*mO*l./(l+exp((Ecm-Fcc)*e/k/T))./Lc; % mcfc(Ecj)/Lcj 
a_h=Mhx*mO*l./(1+exp((Ehm-Fw)*e/k/T))./Lh;     % 

ravfv(Evj)/Lvj for HH 
a_l=Mlx*mO*l./(1+exp((Elm-Fw)*e/k/T))./Ll;     % 

for LH 
a__L=eA2/pi/h_A2/ee* (sum( [a_c a_h a_l] ) ) ;   % eq.39, p.112, 

QWL 

% T(0,kvlt,kvlt), in eq.64, p.124, QWL 

T_lv=2/a_L+l/(a_L+4*kvltA2); 
T_2v=2/Leh/sqrt(a_L)*(1-exp(-Leh*sqrt(a_L))); 
T_3v=l/a_L-(a_L+8*kvltA2)/(a_L+4*kvltA2)A2; 
T_4v=Leh*kvlt*(Leh*kvlt-pi)*(a_L- 

4*kvltA2)/4/(a_L+4*kvltA2)A2/(exp(Leh*sqrt(a_L))-1); 

T_Lv==(T_lv-T_2v* (T_3v+T_4v) ) A2;  % eq.42, p.113, QWL 

% T(0,kclt,kclt), in eq.64, p.124, QWL 

T_lc=2/a_L+l/(a_L+4*kcltA2); 
T_2c=2/Lec/sqrt(a_L)*(1-exp(-Lec*sqrt(a_L))); 
T_3c=l/a_L-(a_L+8*kcltA2)/(a_L+4*kcltA2)A2; 
T_4c=Lec*kclt*(Lec*kclt-pi)*(a_L- 

4*kcltA2)/4/(a_L+4*kcltA2)A2/(exp(Lec*sqrt(a_L))-1); 

T_Lc=(T_lc-T_2c*(T_3c+T_4c))^2;  % eq.42, p.113, QWL 

% big K, eq.64, p.124, QWL 

k_v=eA4/(48*pi*eeA2*h_*Lh(l)A2)*(2*Mhx*mO/h_A2)A2*k*T; 
% eq.64, p.124, constant in the front 

k_c=eA4/(48*pi*eeA2*h_*Lc(1)A2)*(2*Me*mO/h_A2)A2*k*T; 
% eq.64, p.124, constant in the front 

Kv=k_v*tau_v*T_Lv/ (1+exp (-Fw*e/k/T) ) ; % 
eq.64, p.124, QWL 
Kc=k_c*tau_c*T_Lv/(1+exp(-Fcc*e/k/T)); % 

eq.64, p.124, QWL 
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% BGR 

N_2D=N*10A6*(dz*10A(-10)); % n2D l/mA2 
d_L=0*(-1)*eA2/4/ee/Lh(l)*sgrt(T_Lv)*(N_2D);    % 

delta_vl, eq.63, p.123, QWL 

% lineshape normalization factor 

G_vf=h_/2/tau_v*(1+exp((Eg-(Eg+dhvl)- 
Fvv) .*e/k/T) ) . / (1+exp (-Fw*e/k/T) ) ; 
G_vl=G_vf.*exp((-Kv*e*abs(Eg-(Eg+dhvl)))./k/T);      % 

G_vlkll(E), eq.62, p.123, QWL 
G_cf=h_/2/tau_c*(1+exp((Eg-(Eg+dhvl)- 

Fee).*e/k/T))./(1+exp(-Fcc*e/k/T)); 
G_cl=G_cf.*exp((-Kc*e*abs(Eg-(Eg+dhvl)))./k/T);      % 

G_clkll(E), eq.62, p.123, QWL 

Ln=e*l/pi*(G_vl+G_cl)./(((Eg-(Eg+dhvl)). *e- 
d_L).A2+(G_vl+G_cl).A2).*(1-i*((dhvl+Eg- 
Eg)+d_L/e)./(G_vl+G_cl)*e); 

sum_L=sum(real(real(Ln)))*hv_step;        % normalization 
factor 

ic=0; 

chv=Eg-0.08 *hv_f:hv_step:Eg+0.7*hv_f; 

for oj=l:length(chv) 

ic=ic+l; 

% non-Lorentzian lineshape 

G_vf=h_/2/tau_v*(1+exp((chv(oj)-(Eg+dhv)- 
Fvv) .*e/k/T) ) ./(1+exp (-Fw*e/k/T) ) ; 

G_vl=G_vf.*exp((-Kv*e*abs(chv(oj)-(Eg+dhv)))./k/T); 
% G_vlkll(E), eq.62, p.123, QWL 

G_cf=h_/2/tau_c*(1+exp((chv(oj)-(Eg+dhv)- 
Fee).*e/k/T))./(1+exp(-Fcc*e/k/T)); 

G_cl=G_cf.*exp((-Kc*e*abs(chv(oj)-(Eg+dhv)))./k/T); 
% G_clkll(E), eq.62, p.123, QWL 
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G_L=G_vl+G_cl; 

L=e*l/pi*G_L./(((chv(oj)-(Eg+dhv)). *e- 
d_L).A2+G_L.^2).*(1-i*((dhv+Eg-chv(oj))+d_L/e)./G_L*e); 

L=L/sum_L; 

gEc(iN,ic)=sum(L.*gE_sum)*hv_step; 

rch_sum(iN,ic)=sum(L.*rh_sum)*hv_step; 

rcl_sum(iN,ic)=sum(L.*rl_sum)*hv_step; 

end    % end of ic 

gEu(iN,:)=gE_sum;     % unconvolved gain spectra 

Rspu(iN,:)=rh_sum+rl_sum;   % unconvolved spontaneous 
emission 

[gc_max(iN) iMAX(iN)]=max(real(gEc(iN,:) ) ) ; 

L_cav(iN)=0.5*log(l/(Ro*Rb))/(Gama*gc_max(iN)-alfa); % 
cavity length 

hv_lasing(iN)=chv(iMAX(iN)); % lasing 
energy 

lamda_lasing(iN)=h*c/e/hv_lasing(iN); % 
wavelength 

Rspc(iN,:)=rch_sum(iN,:)+rcl_sum(iN,:);        % 
convolved spontaneous emission 

jrad(iN)=real(sum(Rspc(iN,:))*(hv_step*e)*e/l0^4*dz*10A(- 
10)); % Jrad in A/(cm*2) 

end % end of N loops 
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jth=jrad/eta_i; % Jth in A/cmA2 

% plot unconvolved TE gain 

%figure(l) 

%plot(dhv+Eg,gEu) 

% plot convolved TE gain 

%figure(2) 

%plot(chv,real(gEc)) 

% plot unconvolved spontaneous emission 

%figure(3) 

%plot(dhv+Eg,Rspu) 

% plot convolved spontaneous emission 

%figure(4) 

%plot(chv,real(Rspc)) 

% plots I added 

%figure(5) 
%plot(dhv+Eg,Rspu(1,:),chv,real(Rspc(l,:))) 
%xlabel('Energy (eV)') 
%title(['Spontanoeus Emission, N=',num2str(Ni)]) 

%figure(6) 
%plot(dhv+Eg,Rspu(2,:),chv,real(Rspc(2,:))) 
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%xlabel('Energy (eV)') 
%title(['Spontanoeus Emission, N=',num2str(Ni+N_step)]) 

%figure(7) 
%plot(dhv+Eg,Rspu(3,:),chv,real(Rspc(3,:))) 
%xlabel('Energy (eV) ») 
%title(['Spontanoeus Emission, N=',num2str(Nf)]) 

%figure(8) 
%plot(dhv+Eg,gEu(l,:),chv,real(gEc(1,:))) 
%xlabel('Energy (eV)') 
%ylabel(,cmA-ll) 
%title(['TE Gain, N=',num2str(Ni)]) 

%figure(9) 
%plot(dhv+Eg,gEu(2,:),chv,real(gEc(2,:))) 
%xlabel('Energy (eV)') 
%ylabel('cmA-l') 
%title(['TE Gain, N=*,num2str(Ni+N_step)]) 

%figure(10) 
%plot(dhv+Eg,gEu(3,:),chv,real(gEc(3,:))) 
%xlabel('Energy (eV)') 
%ylabel('cmA-l') 
%title(['TE Gain, N=•,num2str(Nf)]) 

%save 150testx.txt chv -ascii; % me##x.txt: x data for 10A## 
%export=real(Rspc(1,:)); 
%save 150testl.txt export -ascii; % m#e##.txt: y data for # 
x 10A## 
%export=real(Rspc(2,:)); 
%save 150test2.txt export -ascii; 
%export=real(Rspc(3,:)); 
%save 150test3.txt export -ascii; 

save all2xl7x.txt chv -ascii; 
export=real(Rspc)/10A49; 
save all2xl7.txt export -ascii; 

PJnAsSb.m 

function mt=p_inassb(T,x) 
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% last modified by Anthony Franz on 7 Aug 97 
% well material for laser B 
% material parameters for InAs(1-x)Sb(x) at temp T K 
% output mt=[Eg Nr gamal gama2 gama3 Me Mhz Mlz Mhx Mix S M2 ee] 

% strain effect on energy gap is included 
% matrix elements approximated from k.p model 

m0=9.109*10*(-31); 
e =1.602*10*(-19); 

% Luttinger parameters 
gamallnAs = 20.4; % LB, vol 22a, p 118 
gamallnSb = 36.13; % LB, vol 22a, p 126 

gamal = x*gamalInSb + (1 - x)*gamalInAs; 
gama2InAs = 8.3; % LB, vol 22a, p 118 
gama2InSb = 16.24; % LB, vol 22a, p 126 

gama2 = x*gama2InSb + (1 - x)*gama2InAs; 
gama3InAs = 9.1; % LB, vol 22a, p 118 
gama3InSb = 17.34; % LB, vol 22a, p 126 

gama3 = x*gama3InSb + (1 - x)*gama3InAs; 

% energy gap with no strain, from Rogalski, Infrared Phys., vol 29, no 
1, p 35, 1989 

%egNoStrain=0.411-(3.4*10*(-4)*T*2)/(T+210)-0.876*x+0.7*x*2+(3.4*10*(- 
4)*T*x*(1-x)); 

% strain correction to energy gap 

aOInAs = 6.0583; % LB1991, p 136 
aOInSb = 6.47937; % LB1991, p 144 

aO = x*a0InSb + (1 - x)*a0InAs; % well lattice parameter in Angstroms 
aOs = aOInAs; % substrate lattice parameter 
cllInAs = 8.329; % LB1991, p 137 
clllnSb = 6.669; % LB1991, p 147 

ell = x*cllInSb + (1 - x)*cllInAs; % elastic stiffness coefficients in 
10*11 dyne/cm*2 
Cl2InAs = 4.526; % LB1991, p 137 
cl2InSb = 3.645; % LB1991, p 147 

cl2 = x*cl2InSb + (1 - x)*cl2InAs; 
alnAs = -6.0; % Blacha, Phys Stat Sol b, voll26, p 11, table 2 
alnSb = -7.7; % Blacha, Phys Stat Sol b, voll26, p 11, table 2 

a = x*aInSb + (1 - x)*aInAs; % hydrostatic deformation potential in eV 
blnAs = -1.8; % Blacha, Phys Stat Sol b, voll26, p 11, table 3 
blnSb = -2.0; % Blacha, Phys Stat Sol b, voll26, p 11, table 3 

b = x*bInSb + (1 - x)*bInAs; % shear deformation potential in eV 
es = (aO - a0s)/a0; % compressive strain (positive) from eq 9, p. 377 of 
Zory, QWL 
delehh = -2*a*es*(ell - cl2)/cll + b*es*(ell + cl2)/cll; % change in hh 
position relative to cb, eq7,p377,QWL 
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deleih = -2*a*es* (eil - cl2)/cll - b*es*(eil + 2*cl2)/cll; % change in 
hh position relative to cb, eq8,p377,QWL 
egNoStrain = 0.327479 - (3.79476*10*(-4)*T*2)/(T + 346.193); 
Eg = egNoStrain + delehh; % strain corrected energy gap in eV 
S = delelh - delehh; % strain induced hh-lh gap in eV 

% effective masses 

melnAs = 0.0239; % LB1991, p 134 
melnSb = 0.01359; % LB1991, p 142 

Me = x*meInSb + (1 - x)*meInAs; % electron effective mass 
mhhzInAs = 0.35; % LB1991, p 134 
mhhzInSb = 0.34; % LB1991, p 142 

Mhz = x*mhhzInSb + (1 - x)*mhhzInAs; % z-direction hh effective mass 
mlhzInAs = 0.026; % LB1991, p 134 
mlhzInSb = 0.0158; % LB1991, p 142 

Mlz = x*mlhzInSb + (1 - x)*mlhzInAs; % z-direction lh effective mass 
mhhxInAs = 0.35; % LB1991, p 134 
mhhxInSb = 0.42; % LB1991, p 142 

Mhx = x*mhhxInSb + (1 - x)*mhhxInAs; % in-plane hh effective mass 
mlhxInAs = 0.026; % LB1991, p 134 
mlhxInSb = 0.0158; % LB1991, p 142 

Mix = x*mlhxInSb + (1 - x)*mlhxInAs; % in-plane lh effective mass 

nlnAs = 3.714; % LB1991, p 138 
nlnSb = 4.418; % LB1991, p 148 

Nr = x*nInSb + (1 - x)*nInAs; % index of refraction 

elnAs = 15.15; % LB1991, p 138 
elnSb = 16.8; % LB1991, p 147 

ee = x*eInSb + (1 - x)*eInAs; % static dielectric constant coefficient 

delso = 1.17*x*2 - 0.75*x + 0.39; % spin-orbit splitting in eV, from 
Rogalski, 1989 
M2 = (1/Me - l)*((Eg + delso)/(2*(Eg + delso*(2/3))))*Eg*m0*e; % 
momentum matrix elements, eq54,p49,QWL 

mt=[Eg Nr gamal gama2 gama3 Me Mhz Mlz Mhx Mix S M2 ee]; 

P BarB.m 

function mt=p_barB(T,x,y) 

% last modified by Anthony Franz on 7 Aug 97 
% barrier material for laser B 
% material parameter for In(l-y)Al(y)As(1-x)Sb(x) 
% output mt=[Eg Nr gamal gama2 gama3 Me Mh Ml] 

at temp T K 

m0=9.109*10*(-31); 
e =1.602*10*(-19); 

83 



% final values are interpolated using formula from LB, vol 22a, p 151 
% strain in the barrier layer has not been considered 

% Luttinger parameters 

gamallnAs = 20.4; % LB, vol 22a, p 118 
gamallnSb = 36.13; % LB, vol 22a, p 126 
gamalAlAs = 4.04; % P. Lawaetz, Phys Rev B, vol 4, p 3460 
gamalAlSb = 4.15; % Lawaetz 

gamal = (1-x)*y*gamalInSb + (1-x)*(1-y)*gamalInAs + x*y*gamalAlSb + 
x*(1-y)*gamalAlAs; 
gama2InAs = 8.3; % LB, vol 22a, p 118 
gama2InSb = 16.24; % LB, vol 22a, p 126 
gama2AlAs = 0.78; % Lawaetz 
gama2AlSb = 1.01; % Lawaetz 

gama2 = (1-x)*y*gama2InSb + (1-x)*(1-y)*gama2InAs + x*y*gama2AlSb + 
x*(1-y)*gama2AlAs; 
gama3InAs = 9.1; % LB, vol 22a, p 118 
gama3InSb = 17.34; % LB, vol 22a, p 126 
gama3AlAs = 1.57; % Lawaetz 
gama3AlSb = 1.75; % Lawaetz 

gama3 = (1-x)*y*gama3InSb + (1-x)*(1-y)*gama3InAs + x*y*gama3AlSb + 
x*(1-y)*gama3AlAs; 

% energy gaps in eV from Varshni's relation (Physica, vol 34, p 149, 
1967) 

alphalnAs = 2.76*10* (-4); 
betalnAs = 83; 
egOInAs = 0.415; % parameters from Fang, J Appl Phys, vol 67, p 7034, 

1990 
eglnAs = egOInAs - alphaInAs*T*2/(T+betalnAs); 
alphalnSb = 2.7*10* (-4); 
betalnSb = 106; 
egOInSb = 0.235; % parameters from Fang, J Appl Phys, vol 67, p 7034, 

1990 
eglnSb = egOInSb - alphaInSb*T*2/(T+betalnSb); 
alphaAlAs = 15.35*10* (-4); % calculated from data from: 
betaAlAs = 1018; % Monemar, Phys Rev B, vol 8, p 5711, 1973 
egOAlAs = 3.133; %  LB vol 22a, p 63 

egAlAs = egOAlAs - alphaAlAs*T*2/(T+betaAlAs); 
alphaAlSb = 4.68*10*(-4); % calculated from data from: 
betaAlSb = 190; % Joullie, Phys Rev B, vol 25, p 7830, 1982 
egOAlSb = 2.384; %  LB vol 22a, p 67 

egAlSb = egOAlSb - alphaAlSb*T*2/(T+betaAlSb); 
Eg = (l-x)*y*egInSb + (1-x)*(1-y)*egInAs + x*y*egAlSb + x*(1-y)*egAlAs; 

% barrier lattice parameter in case I need to add in strain later 
% aOInAs = 6.0583; % LB1991, p 136 
% aOInSb = 6.47937; % LB1991, p 144 
% aOAlAs = 5.660; % LB1991, p 
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% aOAlSb = 6.1355; % LB1991, p 
%aOb = (l-x)*y*aOInSb + (1-x)*(1-y)*aOInAs + x*y*aOAlSb + x*(1- 
y)*aOAlAs; 

% effective masses 

meAlSb = 0.259; 
meAlAs = 0.15; 
melnAs = 0.0239; % LB1991, p 134 
melnSb = 0.01359; % LB1991, p 142 

Me = (1-x)*y*meInSb + (1-x)*(1-y)*meInAs + x*y*meAlSb + x*(1-y)*meAlAs; 
mhhzAlSb = 0.336; 
mhhzAlAs = 0.409; 
mhhzInAs = 0.35; %, LB1991, p 134 
mhhzInSb = 0.34; % LB1991, p 142 

Mh = (1-x)*y*mhhzInSb + (1-x)*(1-y)*mhhzInAs + x*y*mhhzAlSb + x*(1- 
y)*mhhzAlAs; 
mlhzAlSb = 0.123; 
mlhzAlAs = 0.153; 
mlhzInAs = 0.026; % LB1991, p 134 
mlhzInSb = 0.0158; % LB1991, p 134 

Ml = (1-x)*y*mlhzInSb + (1-x)*(1-y)*mlhzInAs + x*y*mlhzAlSb + x*(1- 
y)*mlhzAlAs; 

% index of refraction 

nlnAs = 3.714; % LB1991, p 138 
nlnSb = 4.418; % LB1991, p 148 
nAlAs = 2.875; % RE Fern, A Onton, J Appl Phys, vol 42, p.3499, 1971 
nAlSb = 3.182; % LB1991, p 85 

Nr = (1-x)*y*nInSb + (1-x)*(1-y)*nInAs + x*y*nAlSb + x*(1-y)*nAlAs; 

mt=[Eg Nr gamal gama2 gama3 Me Mh Ml]; 

efc.m 

function yf=Efc(N,E,Me,T,d,Ecm) 
% 
% 

% This subroutine is to calculate the Fermi level of conduction band 
% N = carrier density (l/cm*3) 
% Me= conduction band effective mass 
% T = temperature (K) 
% d = active layer thickness (A) 
% Ecm= eigenvalue of Ecl,Ec2.. 
% 
% universal constants 
c =2.998*10*8; 
h =6.626*10*(-34); 
h_=h/2/pi; 
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k =1.381*10*(-23) 
m0=9.109*10*(-31) 
e =1.602*10~(-19) 
% 
cl=Me*mO*k*T/(pi*h_*2*d*10*(-10)); 
% 
ym=cl*log(l+exp( e/k/T* (E-Ecm) )); 
yf=sum(ym);     % sum of N(subbands) 
yf=yf-N*10A6;    % [sum of N(subbands)]-[N(given)] 
solution 

if yf=0, we get the 

efv.m 

function yf=Efv(N,E,Mh,Ml,T,d,Ehm,Elm) 
% 

% This subroutine is to calculate the Fermi level of conduction band 
% N = carrier density (l/cm*3) 
% Mh= heavy hole effective mass 

light hole effective mass 
temperature (K) 
active layer thickness (A) 

% Ml 
% T 
% d 

% universal constant 
% 
c =2.998*10*8; 
h =6.626*10*(-34) ; 
h_=h/2/pi; 
k =1.381*10A (-23) 
m0=9.109*10*(-31) 
e =1.602*10*(-19) 
% 
ch=Mh*mO*k*T/(pi*h_*2*d*10*(-10)); 
cl=Ml*mO*k*T/(pi*h_*2*d*10*(-10)); 
% 
yhm=ch*log(l+exp( e/k/T* (E-Ehm) )); 
ylm=cl*log(l+exp( e/k/T* (E-Elm) )); 
yf=sum(yhm)+sum(ylm); 
yf=yf-N*10*6; 
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Appendix C: Width Calculations and Convolution of Calculated Spectra 

This files convolves the calculated spontaneous emission spectra with the measured pump spectra and creates a file of the 

results. 

Off[General::"spelll"] 

This module calculates the FWHM of a set of x,y data. The x-data should be in one list and the y-data in another list. 

fwhm[x_, y_] :=Module[{max, i, count, xlow, xhigh}, max=Max[y]; 

For [i = 1; count = 1, y[[i]] <= 0.5 max, count = i; i = i + 1]; 

(x[ [count + 1]] -x[ [count]]) (0.5 max - y[ [count]]) 
xlow =  + x [ [count] ] ; 

y[[count+1]] - y[[count]] 

For[i = Flatten [Position [y, max]] [[1]]; count = 1, y[[i]] >= 0.5 max, count = i; i = i + 1] ; 

(x[[count + 1]] -x[[count]]) (0. 5 max - y [ [count] ]) 
xhigh =  + x [ [count] ] ; 

y[[count + 1]] - y[[count]] 

xhigh - xlow] 

Read in calculated spectra. Check the file names. The magnitudes have been divided by 1049. 

xData = ReadList["c:\Tony\Thesis\Calculations\SpectralData\unconvx.txt", Number] ; 
yData = ReadList["c:\Tony\Thesis\Calculations\SpectralData\unconv.txt", 

Number, RecordLists -> True]; 

Length[yData] 

Length[yData[[l]]] 

100 

625 
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testPlotData = Transpose[{xData, yData[[1]]}]; 
testPlotData2 = Transpose[{xData, yData[[100]]}]; 
ListPlot[testPlotData, PlotRange -> All] 
ListPlot[testPlotData2, PlotRange -> All] 
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- Graphics - 
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- Graphics - 

List of the carrier densities associated with each spectrum. 

density = Table[i 1016, {i, 100}]; 

Find the widths before convolution. 

calcwidth = {}; 
Do[dataPoint= fwhm[xData, yData[[i]]] ; 

AppendTo[calcwidth, dataPoint], 
{i, 1, Length[yData]}] 

0.8 0.9 
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Length[calcwidth] 

100 

plotData = Transpose[{N[density 10""] , N[1000 calcwidth] }] ; 

calcPlot = 

ListPlot[plotData, PlotRange-> {{0, 10}, {0, 110}}, Axes-> False, Frame-> True, 

FrameLabel-> {"Density (1017 cm"3)", "Width (meV)", "Calculated Widths", ""}] 
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- Graphics - 

Writes a tab delimited file of width vs. n data called "CalculatvedWidthVsDensity.txt" 

outputA = OpenWrite["CalculatedWidthVsDensity.txt"] 

OutputStreamfCalculatedWidthVsDensity.txt, 5] 

Do[WriteString[outputA, ToString[plotData[[i, 1]]], 

"\t", ToString[plotData[[i, 2]]], "\n"], {i, 1, Length[plotData]}]; 
Close[outputA]; 

Load the measured pump spectrum. Subtract the background and normalize it before fitting. The fit is with a 30th order 
polynomial. 

Needs["NumericalMath'PolynomialFitM' ] 
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pumpData = 

ReadList["c:\Tony\Thesis\Calculations\DensityVsTime\pumpdata.txt", {Number, Number}]; 
xpumpData=Table[pumpData[[i, 1]], {i, 1, Length[pumpData]}]; 

ypumpDataBG=Table[pumpData[[i, 2]], {i, 1, Length[pumpData]}]; 

ypumpDataBG2 = Table[ypumpDataBG[[i]] - 4000, {i, 1, Length[xpumpData]}]; 
ypumpData = 

Table[If[ypumpDataBG2[[i]] < 0, 0, ypumpDataBG2[[i]]], {i, 1, Length[xpumpData]}]; 
pumpNormalization=Sum[ypumpData[[i]], {i, 1, Length[ypumpData]}]; 

ypumpData=Table[ypumpData[[i]]/pumpNormalization, {i, 1, Length[xpumpData]>]; 

pumpFitData = Table[{xpumpData[[i]], ypumpData[[i]]}, {i, 1, Length[xpumpData]}]; 
Clear[e]; 

pumpFit = PolynomialFit[pumpFitData, 30] ; 
Length[xpumpData] 

1021 

xpumpData[[1]] 

xpumpData[[-1]] 

1.48904 

1.60857 

dataPlot = ListPlot[pumpFitData, DisplayFunction -> Identity]; 

fitPlot = Plot[pumpFit[e], {e, 1.489, 1.609}, DisplayFunction-> Identity]; 

Show[dataPlot, fitPlot, DisplayFunction-> $DisplayFunction, PlotRange-> {0, 0.0005}] 
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- Graphics - 

Data for pump with same x spacing as the spectra (1 meV). 

xPump = Table[1.51+ i, {i, 0, 1.6-1.51, 0.001}]; 

yPump=Table[pumpFit[xPump[[i]]], {i, 1, Length[xPump]}]; 

pumpPlotData = Transpose[{xPump, yPump}]; 

Length[pumpPlotData] 

91 

Printed by Mathematicafor Students 90 



ListPlot[pumpPlotData, PlotRange-> {0, 0.001}] 
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- Graphics - 
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Set up pump with 512 data points for Fourier transform. 

buffer = Table[0, {i, (512 - Length[xPump] - 1) / 2}] ; 
largeYPump= Flatten[Prepend[yPump, buffer]]; 

largeYPump = Flatten[PrependflargeYPump, {0}]]; 

largeYPump = Flatten[Append[largeYPump, buffer]]; 
Length[largeYPump] 

512 

Drop end elements of the spectra so they are 512 elements long. 

shortYData = Table[Drop[yData[[i]], -(Length[xData] - 512)], {i, Length[yData]}]; 
Length[shortYData] 

Length[shortYData[[1]]] 

100 

512 

Set up an x data list with the same spacing between points as the other lists (1 meV). 

xConv = Table [0 + 0.001 i,  {i,  1, Length[xData]}]; 

Convolve using Fourier transforms. 

conv = Table[RotateRight[InverseFourier[Fourier[RotateLeft[shortYData[[i]], 256]] 
Fourier[RotateLeft[largeYPump, 256]]], 256], 

{i, 1, Length[yData]}]; 
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- Graphics - 

Find the widths of the convolved spectra. 

convwidth ={}; 
Do[dataPoint = fwhm[xConv, Abs[conv[[i]]]]; 

AppendTo[convwidth, dataPoint], 
{i, 1, Length[yData]}] 

Length[convwidth] 

100 

plotConvData = Transpose[{N[density 10"17] , 1000 convwidth}] ; 
plotConvData[[-1]] 

{10., 107.592} 
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convPlot = 

ListPlot[plotConvData, PlotRange-> {{0, 10}, {0, 110}}, Axes-> False, Frame-> True, 

FrameLabel-> {"Density (1017 cm-3)", "Width (meV)", "Convolved Widths", ""}] 
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- Graphics - 

Compare the widths of the calculated spectra with the corresponding convolved spectra. 

ShowfcalcPlot, convPlot, Graphics[Text["Convolved", {0.1, 40}, {-1, -0.1}]], 
Graphics[Text["Calculated", {2, 20}, {-1, 0}]], 

FrameLabel-> {"Density (1017 cm"3)", "Width (meV)", "Comparison", ""}] 
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Graphics 

diff = Table [ convwidth[ [i] ] - calcwidth[ [i] ], {i, 1, Length [density] }], 

plotDif fData = Transpose [{density 10"17, 1000 diff}] ; 
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ListPlot[plotDiffData, Axes-> False, Frame-> True, 
FrameLabel->  {"Density   (1017  cm"3)",  "(meV)",  "Convolved - Calculated",  ""}] 

Convolved -  Calculated 

Density   (1017  cm"3) 

- Graphics - 

Writes a tab delimited file of width vs. n data called "Fourier512WidthVsDensity.txt" 

outputB = OpenWrite["Fourier512WidthVsDensity. txt"] 

OutputStreamfFourier512WidthVsDensity.txt, 40] 

Do[WriteString[outputB, ToString[plotConvData[[i, 1]]], 

"\t", ToString[plotConvData[[i, 2]]], "\n"], {i, 1, Length[yData]}]; 
Close[outputB]; 

Convolve by summation. 

pumpLength = Length[xPump]; 

plLength = Length[xData]; 

xConv = Table [xPump[[-l]] +xData[[j]], {j, 1, plLength - pumpLength + 1}] ; 
pumpLength 

yConv = Table[Table[  J]  (yPump[[-i]] yData[[k, j+i- 1]]), 

{j, 1, plLength - pumpLength + 1}], {k, 1, Length [yData] }] ; 

Length[yConv] 

100 

Length[yConv[[l]]] 

535 
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testData = Transpose[{xConv, yConv[[l]]}]; 

ListPlotftestData, PlotRange -> All] 
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Find the widths of the convolved spectra. 

convSumWidth = { }; 

Do[dataPoint= fwhm[xConv, yConv[[i]]]; 

AppendTo[convSumWidth, dataPoint], 
{i, 1, Length[yConv]}] 

Length[convSumWidth] 

100 

plotConvSumData = Transpose[{N[density 10"17], 1000 convSumWidth}] ; 
plotConvSumData[[-1]] 

{10., 107.592} 
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convSumPlot = 

ListPlot[plotConvSumData, PlotRange-> {{0, 10}, {0, 110}}, Axes-> False, Frame-> True, 

FrameLabel -> {"Density (1017 cm-3)", "Width (meV)", "Convolved Widths", ""}] 
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- Graphics - 

Compare the widths of the calculated spectra with the corresponding convolved spectra. 

Show[calcPlot, convSumPlot, Graphics[Text["Convolved", {0.1, 40}, {-1, -0.1}]], 
Graphics[Text["Calculated", {2, 20}, {-1, 0}]], 

FrameLabel-> {"Density (1017 cm"3)", "Width (meV)", "Comparison", ""}] 
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- Graphics - 

diff = Table [ convSumWidth[ [i] ] - calcwidth[ [i] ], {i, 1, Length [density] }] ; 

plotDiffSumData = Transpose [{density 10"17, 1000 diff}] ; 
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ListPlot[plotDiffSumData, Axes->  False, Frame-> True, 
FrameLabel->  {"Density   (1017  cm"3)",  "(meV)",  "Convolved - Calculated",  ""}] 
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- Graphics - 

Writes a tab delimited file of width vs. n data called "ConvolvedWidthVsDensity.txt" 

outputB = OpenWrite["ConvolvedWidthVsDensity.txt"] 

OutputStream[ConvolvedWidthVsDensity.txt, 39] 

Do[WriteString[outputB, ToString[plotConvSumData[[i, 1]]], 

"\t", ToString[plotConvSumData[[i, 2]]], "\n"], {i, 1, Length[yData]}], 
Close[outputB]; 
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Appendix D: Carrier Density as a Function of Time 

This file maps the carrier density to the delay time using the convolved calculated widths and the measured widths. 

Off[General:i-spelll"] 

h= 6.626 1CT34;   c = 2.998 10e;   e = 1. 602 lCT19; 

Read in the convolved calculated spectral widths. Check the file name. Format is {density, width} where densities are in units 

of 1017 / cm3 and widths are in units of meV. 

calc = ReadList["c:\Tony\Thesis\Calculations\ 

DensityVsTime\ConvolvedWidthVsDensity.txt", {Number, Number}]; 

Length[calc] 

100 

Read in the measured spectral widths. Check the file name. Format is {time, low, high, FWHM} where time is in ps and 

everything else is in nm. 

measnm = ReadList["c:\Tony\Thesis\Calculations\DensityVsTime\WidthVsTimenm.txt", 
{Number, Number, Number, Number}]; 

Length[measnm] 

30 

Convert measured widths to meV and times to ns. 

mTomeV = 1000 hc/e; 
meas = Table[{N[measnm[[i, 1]] /1000], 

mTomeV mTomeV . 
 },  {i, Length[measnm]}1; 
measnm[[i, 2]] 10~9      measnm[[i, 3]] 10"9 

Length[meas] 

30 
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TableForm[meas, TableHeadings-> {{}, {"Time (ns)", "Width (meV)"}}] 

Time (ns) Width (meV) 

0.1 81.0064 

0.2 77.1179 
0.3 74.534 

0.4 70.3492 

0.5 63.4071 

0.6 61.811 
0.7 57.7276 
0.8 53.9536 

0.9 54.9048 

1. 52.9698 

1.1 50.8694 

1.2 53.9536 

1.3 47.7102 

1.4 47.7102 

1.5 44.5611 

1.6 46.0618 
1.7 42.4294 

1.8 43.0309 

1.9 42.0887 

2. 42.0887 

2.1 42.9903 
2.2 42.4294 

2.3 43.9601 
2.4 42.9903 

2.5 39.8561 

2.6 38.353 
2.7 33.7234 
2.8 35.2288 

2.9 33.7234 

3. 33.6704 
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ListPlot[meas, Axes -> False, Frame -> True, 
FrameLabel-> {"Time (ns)", "Width (meV)", "Measured", ""}] 
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Time (ns) 

- Graphics - 

This module finds an X value for a Y value equal to A using interpolation on the X,Y list of data. 

int[a_, x_, y_] : = Module[{i, count, xa}, 

For[i = 1; count = 1, y[[i]] <= a, count = i; i = i + 1] ; 
(y[[count+1]] - a) (x[[count+1]] - x[[count]]) , 

xa = x[[count]]  

Calculate a table of n vs. t. 

y[[count + 1]] - y[[count]] 

xData=Table[calc[[i, 1]], {i, Lengthfcalc]}]; 
yData=Table[calc[[i, 2]], {i, Length[calc]}]; 
nt=Table[{meas[[i, 1]], int[meas[[i, 2]], xData, yData]}, {i, Length[meas]>]; 
Length[nt] 

30 
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TableForm[nt, TableHeadings-> {{}, {"Time (ns)", "n (1017 cm-3)"}}] 

Time (ns) n (1017 cm 

0.1 7.38127 
0.2 7.00538 
0.3 6.75402 
0.4 6.34424 

0.5 5.65386 
0.6 5.49289 
0.7 5.07474 
0.8 4.67895 
0.9 4.77991 
1. 4.57415 

1.1 4.34777 

1.2 4.67895 
1.3 3.99695 
1.4 3.99695 

1.5 3.63213 
1.6 3.8081 
1.7 3.37363 
1.8 3.44734 
1.9 3.33156 
2. 3.33156 
2.1 3.44238 
2.2 3.37363 
2.3 3.56022 
2.4 3.44238 
2.5 3.04655 
2.6 2.84505 
2.7 2.15773 
2.8 2.39615 
2.9 2.15773 
3. 2.1492 
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ListPlot[nt, Axes-> False, Frame-> True, 

FrameLabel-> {"Time (ns)", "n (1017 cm-3)", "n vs. t", ""}] 

n vs. t 

- Graphics - 

Writes a tab delimited file of carrier density vs. time called "DensityVs.Time.txt" 

outputA = OpenWrite["DensityVsTime.txt"] 

OutputStream[DensityVsTime.txt, 5] 

Do[WriteString[outputA, 

ToString[nt[[i, 1]]], "\t", ToString[nt[[i, 2]]], "\n"], {i, 1, Length[nt]>]; 
Close[outputA]; 

Writes a tab delimited file of meassured width vs. time called "WidthVsTimemeV.txt" 

outputB = OpenWritef"WidthVsTimemeV.txt"] 

OutputStreamfWidthVsTimemeV.txt, 6] 

Do[WriteString[outputB, ToString[meas[[i, 1]]], 
"\t", ToString[meas[[i, 2]]], "\n"], {i, 1, Length[meas]}]; 

Close[outputB] ; 
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