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Abstract

Recombination mechanisms in mid-IR semiconductor lasers are strongly dependent
on the carrier density of the active region. Therefore, in order to determine the importance
of different recombination mechanisms, an accurate knowledge of the carrier density is
important. The objective of this research is to improve previous carrier density estimates
through the incorporation of spectral information. In the long run,( this will help
researchers to more accurately characterize the recombination mechanisms and improve
the efficiency of the lasers at these wavelengths.

One hundred photoluminescence (PL) spectra were calculated for a variety of
carrier densities. Calculations were made for an InAsSb/InAlAsSb multiple quantum well
laser sample assuming parabolic bands. In order to compare the results with experiment,
the calculated spectra were convolved with the measured pump beam spectrum to account
for broadening in the measurement process. The widths of the convolved calculated
spectral profiles were tabulated as a function of carrier density.

Actual spectra were measured using the Ultrafast Mid-Infrared Photoluminesce
System, which uses upconversion to measure the PL intensity in time steps smaller than 1
ps. PL spectra were obtained at 30 times, ranging from 100 ps to 3 ns. Spectral widths
were measured and tabulated as a function of time.

Combining the plot of convolved calculated spectral width vs. carrier density with
the plot of measured spectral width vs. time, we were able to describe the variation of

carrier density with time. The carrier density vs. time plot thus generated agreed with




earlier measurements by Cooley for low carrier densities. The discrepancy at higher carrier
densities could be due to changing experimental conditions or the break down of the

i parabolic band approximation at higher carrier densities.




TIME RESOLVED PHOTOLUMINESCENCE SPECTRA OF A MID-INFRARED

MULTIPLE QUANTUM WELL SEMICONDUCTOR LASER

1. Introduction

Background

Mid-infrared semiconductor lasers are being developed for infrared (IR)
countermeasures and chemical analysis. These lasers take advantage of the 2-5 um
transparency window in the atmosphere and have applications in remote sensing and
environmental monitoring. Past research has analyzed the nonradiative recombination
mechanisms in these structures in an attempt to minimize them. Auger recombination can
be a major contributor to loss of efficiency in these devices resulting in increased lasing
threshold currents at higher temperatures (Agrawal, 1993: 98-100). Techniques to study
the carrier dynamics of these devices will help find solutions to the Auger problem.

Capt William Cooley constructed the Ultrafast Mid-Infrared Photoluminescence
System (UMIPS) as part of his dissertation research. UMIPS uses sum frequency
generation (SFG), or upconversion, to examine the photoluminescence (PL) lifetime of
lasers emitting in the mid-IR (Cooley, 1996). We have extended his technique to measure
PL spectra at 0.1 picosecond intervals. Analysis of the resulting spectra can provide

insight into the carrier density at each time the PL is measured.




After the sample is optically pumped with a pulse the carrier density will decrease
over time as electrons and holes recombine. The typical model used to describe this
decrease for situations below threshold is a rate equation

on

gy = An+ Bn* +Cn’® (D
where 4, B, and C are the Shockley-Read-Hall, radiative, and Auger coefficients,
respectively and 7 is the carrier density (Agrawal, 1993: 38). It is assumed that the
number of electrons equals the number of holes. Each coefficient describes a type of
recombination where the power of # in each term depends on the number of electrons and
holes required for the type of recombination.

The types of recombination considered are illustrated in Figure 1. Shockley-Read-
Hall recombination occurs when a defect is present in the lattice. This defect has a
localized continuous density of states and the electron returns to the valence band through
these states (Agrawal, 1993: 119). Radiative recombination occurs when an electron
transitions to an empty state (a hole) in the valence band. The excess energy is released as
a photon which has a frequency equal to the energy difference between the two states.
Band-to-band Auger recombination occurs when the excess energy from a downward
transition is used to shift another electron into a higher energy state (Agrawal, 1993: 99).
In direct gap semiconductors there are three types of Auger recombination processes

which are differentiated by the bands involved (Agrawal, 1993: 99). These processes are

shown in Figure 2. We are primarily interested in the CCCH Auger process.
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Figure 1: Types of recombination in semiconductors.
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Figure 2: Types of Auger recombination for direct gap semiconductors (after Figure 3.3
in Agrawal, 1993: 99).




Approach

This effort used calculated and measured spectral data to find an estimate of the
carrier density as a function of time. PL spectra were calculated based on a given carrier
density. As the number of available carriers and holes decrease, fewer energy levels in the
quantum wells will be occupied and the width of the PL spectra becomes narrower. The
peak may also shift to slightly lower energies, depending on the range of carrier densities
observed, as more radiative recombination occurs between lower energy levels. These
calculated spectra had to be corrected for broadening that occurs in the experiment. To
correct the calculated data for this effect, the spectrum of the upconversion pump beam
used in the experiment was measured and convolved with the calculated PL sbectra. The
widths of the resulting convolved calculated spectra were obtained as a function of carrier
density as illustrated in Figure 3a.

The measured spectral data were provided by Capt Craig Largent of the
Engineering Physics Department at AFIT. He used the UMIPS to measure time-resolved
spectra from the sample at different delay times after the excitation of the sample. The
widths of these measured PL spectra were obtained as a function of time as illustrated in
Figure 3b.

In order to determine carrier density as a function of time, the measured widths
and convolved calculated widths were compared. This process is illustrated in Figure 3.
Each delay time has a measured width associated with it. This measured width can be
compared to the convolved calculated widths to find the one that matches it. The

matching convolved calculated width is associated with a carrier density. This process




Convolved Calculated Measured

Spectral Width Spectral Width
= £ .
g=: T
S = .
w1 ﬁ=®. . . ..
ny 6
Carrier Density Time
(a) (b)

Figure 3: Schematic showing how carrier density was linked to time. The plots are
illustrative and do not represent real data. (a) is a plot of the convolved calculated spectral
widths vs. carrier density, and (b) is a plot of the measured widths vs. time. First a width
w; is found for a given time #; using (b). Then w is associated with a carrier density »;
using (a). The result of this is a pair of values (¢, n;).

was repeated for each time to find the carrier density as a function of time. This relation
was then plotted and compared to Cooley’s results.
Overview

Chapter 2 will address the theoretical calculation of PL spectra for different carrier
densities. Chapter 3 will discuss the UMIPS and the measured data obtained by Capt
Largent. Chapter 4 will present the results of the spectral width calculation and discuss
the convolution of the calculated spectra with the measured pump beam. The carrier
density as a function of time results and conclusions from the analysis will be presented.
Chapter 5 is a summary of the research and recommendations for future research in this

area.




2. Theory

Overview

This chapter will address the theoretical aspects of the research. The goal of the
theoretical calculations is to determine the width of the PL spectra that are expected for
different carrier densities. The first step is to calculate the energy levels in the quantum
wells. This is the topic of the second section. The third section discusses how the
spontaneous emission spectra are calculated, and the fourth section discusses the
convolution of these spectra performed to account for intraband relaxation. The last
section is a summary of the calculation process.

It should be noted that a key assumption made in the calculations is that the band
structure of the sample is parabolic so that

thZ h2k2
Ee(ke)=Ec+ ) - s Eh(kh)zEv— zm: (2)

€

where E, and E; are the energies of an electron and hole, %, and k;, are the wave vectors
for the electron and hole, E. and E, are the conduction and valence band edges, and m,
and my, are the effective masses of the electrons and holes. The quality of the calculated
spectra will depend on the quality of this assumption.
Energy Levels in the Quantum Wells

The first step in the calculation is to find the energy levels for electrons in the
conduction band and for heavy and light holes in the valence band. The model used to
calculate the energy levels is a single finite potential well. This is a standard problem in

quantum mechanics texts and the results are well documented (Liboff, 1989: 256-65;
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L2 +L,J2

Barrier Well Barrier

Figure 4: Finite square well model of the quantum well used in energy level calculations.

Cohen-Tannoudji, 1977: 74-7). In this model the potential energy surface is modeled as a
squafe well in the z direction as shown in Figure 4. This model assumes a parabolic band
structure and, by applying it to the multiple quantum well structure, that each well is
isolated from neighboring wells.

The energy levels must be calculated for each band separately. Using the envelope
functions as the wavefunctions and setting the electron momentum to zero the
Schrédinger equation becomes

K d?
”ﬁ?dz—z-{»VFz = EF, (3)

where m is the effective mass, V is the potential, F; is the envelope function in the z
direction, and E' is the energy of the band. It should be noted that both m and ¥ have
different values in the well and barrier regions. The effective mass for electrons, heavy
holes, or light holes in each region is used when calculating the energy levels for the

conduction, heavy hole, or light hole band respectively. Also, for reasons to be described




later, the value for V) in Figure 4 will be different for the conduction, heavy hole, and
light hole bands. Plane wave solutions are assumed for the envelope functions and the

following boundary conditions are applied at the interfaces (Corzine, 1993: 59-60):

- 1 dF;.,bam’er (4)
dZ mbarrier dZ

F, 0 =F, and

z z,barrier

m

well
There are two classes of solutions for the envelope functions: even and odd. The even
solutions are cosines in the well and decay exponentially in the barrier; the odd solutions
are sines in the well and also decay exponentially in the barrier (Liboff, 1989: 260). Using

k?=2m,,E[/h* and a? = (Zmbam.er / hz)(V0 - E), the characteristic equations for

well

energy for even and odd solutions are

Lz My &, .
tan| k, — | =——— for even solutions
2 mbarn'er k z
&)
Lz mweII Clz .
cot| k, — | =——"—— for odd solutions
2 Myarrier kz

where L, is the width of the quantum well and 7V} is the depth of the well. These
characteristic equations can only be solved for discrete values of energy, E, (Corzine,
1993a: 60-1). The energy levels for the conduction, heavy hole, and light hole bands, E,,,
Eppn, and Eyp, respectively, are determined in this manner using the appropriate effective

masses and well depths.

The depth of the well is determined by the energy gaps of the well and barrier and
the band offsets. The offsets are a property of the material, but several factors can change
the gap for a given material. A major factor is the temperature of the system. The

temperature dependence will be assumed to follow the Varshni relation




aT? ©6)
p+T

E (T)=E,(0)-

where Eg(0) is the gap at 7=0 and « (in eV/K) and £ (in K) are constant parameters fit
to experimental data (Varshni, 1967: 149).

In addition to temperature, the energy gap for the well will be affected by strain.
Stress in quantum well structures occurs when the lattice parameter of the well material is
different than the lattice parameter of the substrate and the well layer is thinner than a
critical thickness. If the well is thicker than the critical thickness then the lattice will
crack to relieve the strain. If the well is thinner then the lattice will not crack and will be
under compressive or tensile strain as shown in Figure 5 (O’Reilly, 1989:122-4). Figure 6
shows the effect of compressive strain on the band structure of the well. There is little
affect on the conduction band, but the valence band changes drastically. The gap between
the conduction band and valence band increases and the degeneracy of the heavy and light
holes is removed. Assuming parabolic bands at zone center, for III-V compound

semiconductors under a strain given by

£ = aO, substrate ~ aO, well (7)
: Ay, well
the energy band shifts are given by

AE,,,, - —2a€: Cu ‘sz +b6‘s Cu +C12
Cy Cu ®

C,-C C,+2C

AE, = -2ae, 11C 12 —be, 1 . 12
1 1




(a) (b)

Figure 5: Strain in semiconductor layers. (a) Three unstrained layers where the middle
layer has a larger lattice parameter. (b) The middle layer distorts and is under compressive
strain when placed between the two outer layers.

/onduction Ban\/

~=
RN f R

Unstrained Strained

Figure 6: Effect of compressive strain on the band structure of a quantum well (after
Figure 6 in Coleman, 1993: 375).
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where a is the hydrostatic deformation potential, b is the shear deformation potential, and
the Cs are elastic stiffness coefficients (Coleman, 1993: 377). For a well under
compressive strain the energy gap is given by E, (T)+AE,,.

Thus when strain is present and the conduction band offset does not equal !4, three
separate well depths must be considered: one each for electrons (conduction band), heavy
holes, and light holes. Equation (5) must be applied to each band with the appropriate
effective masses and well depth, V. For a layer under compressive strain the well depths
are given by

Vcb =AE, [Eg barrier(T) g weII hh]
= [1 —-AE cb] [E g.barrier T) g, weII hh] (9)
Vi —[1 AEcb] [Egbarner T)_Eg,weII(T - hh]“AEzh

where AE,; is the conduction band offset expressed as a fraction of one. A comparison of

a strained and an unstrained well is shown in Figure 7.

cb cb

hh Ih
hh
Ih
Unstrained Strained

Figure 7: Effect of compressive strain on the well depths.
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Spontaneous Emission Spectrum

The total spontaneous emission rate per unit volume over a given energy range is
found by multiplying the transition rate per unit volume times the number of optical
modes in the energy range:

R, (h0) d(h0) =W, [V p,, (h0) d(ho)] (10)
where W._,y is the transition rate from the conduction band to the valence band, V is the
volume of the active region, and p,, is the optical density of states (Corzine, 1993:42).

The transition rate is found using Fermi’s Golden Rule, which is derived using
time-dependent perturbation theory to solve Schrédinger’s equation when the
Hamiltonian has the form H = H; + AH’(f) . In general the transition rate, W, from state a

to state b is given by
2 2
Wess =5 1| PE) an

where H, =(b|H'|a), H’is the perturbation term in the Hamiltonian and p (E) is the
density of states as a function of energy (Bransden, 1983: 111-6 and Liboff, 1989: 576-
84). Spontaneous emission involves the interaction of the electron in the conduction band
with an electromagnetic wave. The wave interaction term is treated as a perturbation to
the system so that

e

(12)

A(r)é-p and Hy, =(y,|H'(r)

_H’(r)s2 ://e)

my
where e and my are the charge and mass of an electron, 4 is the vector potential of the

spontaneous emission wave, € is the polarization unit vector of the wave, and p is the

12




momentum operator (Corzine, 1993: 28-9). y; are the wavefunctions of the electrons and
holes and are solutions to the Schrédinger equation when H = Hj. Using the envelope
function approximation,

v, = F,(r) u,(r) (13)
where F; is the envelope function and u; is the Bloch function. The key assumption is that
the Bloch functions are not a strong function of k (Corzine, 1993: 19). The Bloch
functions are periodic with the crystal lattice (McKelvey, 1993: 319) and the envelope
functions are normalized plane waves for unconfined directions in the crystal. The
envelope functions for the confined direction of the well were discussed on page 8
(Corzine, 1993: 20,59).

For momentum to be conserved in the transition, ky = ke + Kphoton must be valid.
Typically the wavelength of the light is much greater than the De Broglie wavelength of
the electron. If this is true then k, = k. and the transitions are said to obey k-selection
rules. This applies to band-to-band transitions, not localized transitions, where the
envelope functions of the initial and final states are plane waves (Corzine, 1993: 30).

For a quantum well the electrons and holes are confined along the growth
direction so the z direction envelope functions must be included in the wavefunctions. If
the wavelength of the light is much larger than the width of the well then the vector
potential is can be considered to be a constant, 4y, in the region of the well. Using these

assumptions and substituting Equation (13) into Equation (12) gives

4,)°
(Y e, il el )

)

-4

2|<Fh

H,, ép

13




where 'M r ’ * are the transition matrix elements which will be described below (Corzine,

1993: 30-1).
Equation (14) is substituted into Fermi’s Golden Rule (Equation (11)). The

transition rate per unit volume can be expressed as

_2x| ed, ’ 2 ey N 15
W =222 |, (0 - B1) 1.0 1) as)

where p,.q is the reduced density of states, E,; is the transition energy Zw, E M is the gap

between the subbands of the transition, and f. and f, are the Fermi-Dirac distributions for
electrons in the conduction and valence bands respectively (Corzine, 1993; 33-5). These
terms are discussed individually in the following sections.

Density of States

Fermi’s Golden Rule has the density of states as a factor. The density of states for
a quantum well is different than for a bulk semiconductor. A bulk crystal with dimensions
L, L,, and L, is modeled as a square well with infinitely high walls in each dimension
(the electrons are confined to the crystal). Requiring the wavefunctions to be zero at the
boundaries gives standing waves for the wavefunctions of the form

8 %, nzx|  [(n7Y}| (nnz (16)
(o(x,y,z)= 1 L1 s I sin| I sin I

¥

where n; are the quantum numbers in each direction (Cohen-Tannoudji, 1977: 199).

The wave vector has the form k =k, + k, + k. where k; = n;/L;. The k vector

sweeps out a sphere of volume ¥, =%z k* which contains a number of states, N;, given
by

14




LLL, an

N =V,
: g (27[)3

where spin has been neglected. Spin will be addressed with the transition matrix

elements. In general, if p(k) is the density of states then

[Ak)dk = N, v (18)
when integrating over Vj, so that
_ LN, (19)
A= dk

where V is the total volume of the crystal (Corzine, 1993: 23-4). We are interested in the
energy of the electron, not its wave vector. The density of states as a function of energy

can be found through the relation

_plk)_ (20)

AE)IE = p(k)dk — p(E) = JEJdk

which requires a knowledge of how the energy depends on the wave vector (Corzine,
1993: 24). For the parabolic band approximation dE/dk can be found easily from
Equation (2):

212 2
LA SN @1)

k)=
E(k) 2m dc m

This relationship applies to the conduction and valence bands when the appropriate
effective masses are used.
For a bulk semiconductor ¥y is a sphere as shown in Figure 8 and the density of

states is found by plugging Equation (17) into Equation (19)
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Figure 8: k space for an electron in a semiconductor. (a) k space for a bulk
semiconductor. (b) k space for a quantum well semiconductor. The levels along the z
(growth) direction have a larger spacing than the in-plane directions (after Figure 1 in

Corzine, 1993: 22).

A=t _1d)  Azk | 1 LLL4, L, B g
"V dk TV dk (2ﬂ)3/(LxLyLz) (27)° VvV 3 27*

Substituting Equations (21) and (22) into Equation (20) gives

JE ( Zm) % 23)

47* \p?.

AE) =

h 2
for a bulk semiconductor with parabolic bands, ignoring spin degeneracy (Corzine, 1993:
23-5).

For a quantum well with L, << L, and Ly, k, >> k, and k, and the distance between
consecutive levels of £, will be very large compared to the spacing between consecutive

levels of k, and %, as shown in Figure 8. The k vector will sweep out circles in each &,
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level so that ¥ = 7k* and one state occupies an area of (2 n)z/(LxLy). N; will equal 7y

divided by this area so the density of states is

z

p(k)=_1_d_Ni=l_d_ 227”‘2 _ lzLxLyzﬂkz_k__ 24)
vV dk ¥ dk|(27) /(Lxly) (27)° ¥ 27l

for a quantum well. Substituting Equations (21) and (24) into Equation (20) gives

AE) = 2;;1, @)

for each plane of k states in a two dimensional quantum well semiconductor with
parabolic bands, ignoring spin degeneracy. This form of the density of states is a step
function with the step size given in Equation (25). A new step occurs at each energy level

of the quantum well (Corzine, 1993: 23-5). The density of states functions for a bulk (3D)

and quantum well (2D) semiconductor are compared in Figure 9.

A
Energy
n,=3f------------
Quantum
Well Bulk
n,=2fF-----
n,=1
Density of States

Figure 9: Comparison of the density of states, p(E), for a quantum well and a bulk
semiconductor. As the width of the quantum well increases the step size decreases and
the quantum well case will approach the bulk case (after Figure 2 in Corzine, 1993: 25).
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The reduced density of states is defined as (Corzine, 1993: 34)

poy =28 26)
= JE_ Jdk

where E,; is the transition energy, A, given by

272 272
n'k +h k 7
2m, 2m

E,=E,-E,=E|+

v

for the parabolic bands, where E; is the gap between the subbands of the transition.

Taking the derivative of this results in

dE, h*k 1 1 1
— —, where —=—+— (28)
de  m m, m, m,

r

with m, defined as the reduced mass. The reduced density of states, pyeq, has the form of
Equation (25) with the mass replaced by the reduced mass and E by E,; - E;’(Corzine,
1993: 34).

Quasi-Fermi Functions

The transition rate given by Fermi’s Golden Rule is for a transition from one state
in the conduction band to one state in the valence band. The possibility that some states
may be occupied must be taken into account. The transition rate is multiplied by the
probability of having an electron present in the conduction band state and not having an
electron present in the corresponding valence band state (presence of having a hole).

When the laser impinges on the sample, electrons from the valence band are
excited into the conduction band. Intraband relaxation occurs on the order of picoseconds
while recombination takes tens of picoseconds or more. After intraband relaxation and

before the start of recombination, the electrons occupy the lowest energy states available
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Figure 10: Electron distributions after intraband relaxation has occurred. The electron
distribution, n, is equal to the product of the density of states, p, and the Fermi function, £,
with the appropriate quasi-Fermi level for each band.

according to the Fermi-Dirac distribution with an appropriate quasi-Fermi level. This
quasi-equilibrium condition is illustrated in Figure 10. The Fermi-Dirac distribution with

a corresponding quasi-Fermi level is

-

E -E\]"
“—’-"—) for the conduction band

f.= l+exp( T

- -- (29)

Eh B EFv 1

f, =|1+exp 7— for the valence band
B -

where E, is the electron energy, E}, is the hole energy, kp is Boltzmann’s constant, and T is
the temperature of the carriers. The quasi-Fermi levels, E, and Ef,, are the energies at
which the probability of an electron occupying a state in the band is % (Verdeyen, 1995:

450 and Kittel, 1980: 379).
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The total carrier density, N for the conduction band and P for the valence band,
can be calculated by integrating the product of the density of states (times two to account

for spin) and the quasi-Fermi function over the entire band. For parabolic bands this is

N=2[ p*(E-E,)f.dE

v (30)
P=2[ p*(E,-E)(1-f,)dE

where E and E, are the conduction and valence band edges and p°° is the two
dimensional density of states. Plugging Equations (25) and (29) into Equation (30) and

integrating gives, for the conduction band,

mhli TZ 1+eXP(—-—-————E°”k _fp”)il @31)
4 B

where the summation is over the energy levels in the conduction band. For a given total
carrier density a quasi-Fermi level can be calculated numerically (Corzine, 1993: 44). The
quasi-Fermi level for the valence band is found by replacing N with P and summing over
the energy levels in the heavy and light hole subbands.

Transition Matrix Elements

The transition matrix elements are defined in Equation (14). The envelope
function term will be close to unity when the conduction band and the valence band state

have the same quantum numbers and close to zero when they have different quantum

FY

e

numbers (Corzine, 1993: 31-2). It is assumed that KF,, is unity for these allowed

o " . 2
transitions (n. = n,) and zero for other transitions (». # »,). This reduces IM Tl to
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? (32)

u,)

and the Bloch functions must be now be considered.

‘MTIZ =|<“v

Semiconductor band structure is frequently modeled as shown in Figure 11. These
bands can be thought of as originating from atomic orbitals where the conduction band
corresponds to as s orbital and the valence bands correspond to the py, p,, and p; orbitals
(McKelvey, 1993: 365-6). The Bloch functions for these orbitals are labeled u;, u., u,, and
u,, respectively, and have the same symmetry properties of the corresponding atomic
orbitals. These symmetry relations combined with the momentum operator give the
following relations:

.lu.>=0 fori#j

w)=(u|p|u)=M )
7)=0

(wlp
(u

Conduction Band

A Heavy Hole Subband
/ Aso\

\'\ Light Hole Subband
Spin-Orbit Subband

Figure 11: Subband structure for an unstrained semiconductor. The subbands are
parabolic as represented by each bands’ effective mass. E, is the energy gap between the

conduction and valence bands. A, is the gap between the spin-orbit subband and the
heavy and light hole subbands (after Figure 7 in Corzine, 1993: 49)
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where i =x,y,z and u,, %, indicate spin-up and spin-down functions (Corzine, 1993: 45-
6). M is the orbital momentum matrix element and is a property of the material. The
valence band Bloch functions ups, us, and ug, can be written as linear combinations of the

orbital Bloch functions. For electron k vectors directed along the z direction
RS
V2
1
(7, +i7, -2u,), @, = —J—g—(u, ~iu, +27, ) (34)
1

where six equations are used to account for the spin-up and spin-down states (Corzine,
1993: 47). Including these spin states there are four possible transitions from the

conduction band to each valence band. Setting the overlap integral to unity as described

on page 20 gives

2

(35)

u,)

Expanding the dot product into its components, replacing u, in Equation (35) with the

2 ~
[w,} = 3 3l fe-p
ucruc“v,uv

appropriate relations for each band from (34) and using the selection rules in (33) gives

the relative transition strength with respect to |M|? for transitions to each valence band as

, 1= lﬁ . élz for the heavy hole band
M .
||MT|2v =14 lk . élz for the light hole band (36)
Z for the spin - orbit band

where Kk is the unit vector of the electron wave vector which was set to the z direction

(Corzine, 1993: 50-1).
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Conduction Band to
Heavy Hole

13 13
Conduction Band to Light Hole

Figure 12: Dependence of the transition strength on the angle, 6, between the electron’s k
vector and the wave’s polarization vector, e, for transitions to the heavy and light hole

subbands. The strengths labeled are in units of | M|’ (after Figure 9 in Corzine, 1993: 53).

By averaging over all of the possible directions of the k vector in the first
quadrant of k space it is seen that for a quantum well the average direction is the growth

or z direction. Because of the dot product in Equation (36), the transition strength is a
function of the angle between k and &. This angular dependence is plotted in Figure 12
for the heavy and light hole subbands. Setting k equal to ﬁm allows the transition
strengths to be found for three orthogonal & set in directions relative to the quantum well
as shown in Figure 13 (Corzine, 1993: 52-5). We are interested in all spontaneous

emission regardless of polarization so the |M le term in Equation (15) needs to be

? , defined as

replaced with an average over the three polarization directions, M,

(Corzine, 1993: 43)
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Figure 13: Relative band edge transition strengths (Figure 11b, Corzine, 1993: 55).

2

|| (37)

1
3 all three
polarizations

|M

ave

For the transitions in a quantum well, substituting Equation (36) into Equation (37) gives
(0+1+1) M|
2
(+4+9IMP =2 0P 68)
2
3

(3+3+3mr

2
ave

1
3
=41
=13
1
3

for transitions to all bands. The values for the heavy hole and light hole transitions came
from Figure 13. Equation (38) is used in Equation (15) in place of the |M le term.

| M]* must be determined for the sample to quantify the spontaneous emission
rate. Using the k-p technique for the four bands in Figure 11 an equation for the

approximate conduction band effective mass, m*, can be rearranged to solve for | M|

(Corzine, 1993: 48-9)

(39)
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E_+A
2 m, g 50
M 2(;"—_1) 2 ™oLy
2\E, +3A,,

It should be noted that m* is not the true effective mass because contributions from higher
and lower level bands will make the true effective mass heavier and lighter respectively.
The inaccuracy in Equation (39) depends on how large an effect these unaccounted for
bands have on the true effective mass (Corzine, 1993: 48-9 and Yan, 1990: 214-5).
Optical Density of States
The optical density of states in an energy range is found by using the 3D density

of states, p (k), found in Equation (22). For photons

N

2z
kopt =n, 7 =hn,

dk
_n o _ g 40
(ha)), d(ha)) : ( _)

N
1%

where 7, and ng are the index of refraction and the group index of refraction. Substituting
these relations into Equation (20) yields

1 nn, 2
P 10)= 500 @

in units of energy” cm™, where a factor of two has been multiplied to account for the two
polarization states (Corzine, 1993: 42).

Vector Potential

The vector potential is found by relating the energy in the field to the energy of a
photon. Solving for the vector potential gives

2hw
2
nn 0V

AL 42)

25




Substituting Equations, (15), (38), (41), and (42) into Equation (10) gives

Ryho)=-L TN Dy (BB p(h0)f (1-1) @)

hao n.n somo

in units of transitions per (s cm’ energy) (Corzine, 1993: 42-3). This is the equation used
to calculate the spontaneous emission spectrum.
Intraband Relaxation

The spectrum calculated by Equation (43) will have sharp peaks resulting from
the discrete density of states. In reality intraband relaxation will cause the peaks to
broaden. This is due to carrier-carrier scattering and carrier-phonon scattering. This
process can be described by convolving the spectrum calculated with Equation (43) with

a broadening function B:

r, (o) = j R, (E.,)B(ho - E,, )iE,, (44)

where rg(7%w) is the convolved spontaneous emission as a function of the photon energy,
7w and Ry,(E.y) is the unconvolved spontaneous emission as a function of the energy
difference between the electron and hole states (Asada, 1993: 99). The broadening
function used is derived in Asada, 1993. The lineshape used is non-Lorentzian and comes
from the Fourier transform of the response of the polarization to an impulse electric field
(Asada, 1993: 98).

It should be noted here that the intraband relaxation convolution is not the
convolution mentioned in the Introduction. The intraband relaxation convolution takes

into account a phenomenon that is inherent to the semiconductor structure. The
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convolution mentioned in the Introduction is performed to take into account a
phenomenon that is introduced in the measurement process. This phenomenon will be
described in the next Chapter. The terms “calculated spectrum” and “calculated widths”
used in this thesis refer to spectra calculated with Equation (44) and the width of these
spectra. The terms “convolved calculated spectra” and “convolved calculated widths”
refer to the spectra that have been corrected for the experimental broadening mentioned in
the Introduction and the widths of these spectra.
Summary of Calculation Procedure

The goal of the theoretical calculations is to determine the width of the PL spectra
that are expected for different carrier densities. The calculation involves several steps.
First the energy levels of the well region are calculated using Equations (5). Then
spontaneous emission spectra are calculated for a range of carrier densities using
Equation (43). The spectra are then convolved according to Equation (44) to account for
intraband relaxation. Plots of some of these spectra will be presented in Chapter 4.

As explained in the next chapter, these spectra have to be convolved again to
account for broadening that occurs in the experimental measurements before the widths
can be determined. Then the widths of the spectra can be plotted as a function of the

carrier density used to calculate each PL spectrum.
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3. Experiment

Overview

Capt Craig Largent of the Department of Engineering Physics at AFIT took the
experimental data used in this thesis using the UMIPS constructed by Capt Cooley. This
chapter will describe the experiment so the reader will understand what was measured
and how the data was taken. The goal of the measurements is to obtain the width of the
PL spectra at different delay times. The next section describes the configuration of the
UMIPS and the technique. The third section describes the upconversion process and the
fourth section describes efficiency and tuning considerations. The fifth section describes
the method used to measure the spectra and presents the results as a plot of measured
width as a function of delay time. The last section discusses the physical source of the
convolution discussed in the Introduction.

UMIPS Experiment

The quantum well sample is optically pumped by a pulse of laser light. Figure 14
shows a schematic of the UMIPS. Using a mode locked laser, short pulses can be
produced at high repetition rates (Verdeyen, 1995: 296-7). The pump beam is split so that
only one leg reaches the sample. The sample is excited and spontaneous emission occurs.
The emission is recombined with the second leg of the pump beam in a Potassium Titanyl
Arsenate (KTA) crystal. Sum frequency generation (SFG), or upconversion, occurs

producing a third wave at a different wavelength, which is measured by a spectrometer.
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Figure 14: Ultrafast Mid-Infrared Photoluminescence System (Cooley, 1996: 4-6).

Upconversion will take place in the crystal and produce a third beam of

upconverted photons such that

0, +0, =0, (45)
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Figure 15: Schematic of the light gate. SFG photons are only emitted when the delayed
pulse overlaps the PL (after Figurelb in Shah, 1988: 277).

where @,, wp;, and w,, are the frequencies of the pump beam, the PL wave, and the
upconverted wave, respectively. Upconversion will only take place when the pump and
PL waves overlap in space and time in the nonlinear optical crystal. As shown in Figure
15, the pump beam acts as a light gate. By varying the distance the upconversion pump
beam has to travel, the PL can be sampled at different delay times after the sample has
been pumped (Shah, 1988: 277).
Upconversion

Upconversion is a nonlinear optical phenomena. When an electromagnetic wave
interacts with a medium, the polarization induced in the medium can be expressed as a
series expansion

P =g ,E; +2d,E E, + - (46)

ifk
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where P; is the induced polarization vector, E; is the induced electric field, & is the
permeability of free space, yj is the linear susceptibility, and dj; is the second-order
susceptibility (Yariv, 1984: 504). Higher order terms in Equation (46) have been dropped.
Upconversion occurs when two waves mix in a crystal for which dj # 0 . The

waves are modeled as plane waves with frequencies @; and @,. Plugging these waves into
the second term on the right hand side of Equation (46) gives rise to a cross term with a
frequency w3, where @3 = @; + @;. The crystal is assumed to be homogeneous,
nonabsorbing, and magnetically isotropic (Yariv, 1984: 70). The crystal must be
transparent to the three frequencies of interest. The polarization of this new wave is given
by

P* =2d,

wEE (47)
The exact form of the susceptibility tensor, dj;, depends on the crystal symmetry (Yariv,
1984: 506-7).
Efficiency

The efficiency of the upconversion process affects the strength of the upconverted

signal. For the case of negligible pump depletion this is given as

2 7%d2. [*(P, /4
o) 2 e {7,/ 4) 48)

3
cgy Ap, /Lq,npn”nup

where 7(0) is the quantum efficiency, d,yis the effective nonlinear coefficient of the
crystal, L is the length of the interaction in the crystal, P, and 4 are the power and area of
the pump beam on the crystal, and n,, np;, and n,, are the indexes of refraction for the

pump, PL, and upconverted beams respectively (Shah, 1988: 278). The waves must be in
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phase with each other or they will interfere and the efficiency will be reduced. The wave
vectors are governed by

k, =k, +k, —Ak (49)
where phase matching is achieved when Ak = 0 and Equation (45) is valid (Midwinter,
1965: 1135). The quantum efficiency will decrease with increasing Ak as

sin’ (L Ak) (50)
(L AK)?

HAK) = 7(0) ———=—
where 7)(0) is the efficiency for the phase matched case and is defined in Equation (48)
(Shah, 1988: 278). The phase matching angle can be calculated for this interaction by

adding the pump and PL wave vectors according to Equation (49) as shown in Figure 16.

Using the law of cosines and & = 27m/A gives

2 2 2

Rp _Np My Np,
=Ly 2 2 B _Poos(n-y (51
'13;:_ ﬂ“i]. ’1; '1PL ﬂ'P S( )

where y is the angle between the pump and PL wave vectors in the crystal in radians
(Cooley, 1996: 2-22).

The KTA crystal is biaxial and is oriented so that phase matching will occur when
the ordinary polarization of the PL mixes with the extraordinary polarization of the pump

beam to produce an upconversion wave that is polarized in the ordinary direction. This is

pump

Figure 16: Applying the law of cosines with the wave vectors.

SFG
pump ;;

n radians - y
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called an “oeo” interaction and the index of refraction for the pump dépends on the angle
between the pump beam and the optic axis. Since 7, is a function of 6, this equation can
be solved for the angle that the pump beam will make with the optic axis so that Ak is
zero. This angle is the phase matching angle and will change as the wavelengths of the
pump and PL change. Thus by turning the crystal the upconversion can be tuned to a
speciﬁc‘wavelength. Also, for the oeo interaction d.5= ds; sinf,,, where ,, is the angle
between the upconverted wave vector and the optic axis and d3; comes from the nonlinear
susceptibility tensor (Dmitriev, 1991: 24).
Measured Spectral Widths

Capt Largent used the UMIPS to measure the upconversion spectra as a function
of delay time. Data can be taken by scanning in either wavelength or time. The
spectrometer can be scanned over a range of wavelengths for a set delay time. Then the
delay time is adjusted and the spectrometer scans over the wavelength range at the new
time delay. PL spectra can be measured at each time delay this way. As was mentioned
earlier in the Chapter, the crystal is tuned to a wavelength of interest by turning it to a
phase matching angle. If the spectrometer is scanned and the crystal is not tuned to the
wavelength the spectrometer is set for, the intensity of the signal will decrease for
wavelengths that are not near the wavelength the crystal is tuned to. Since the UMIPS
does not have a rotation stage that can turn in step with the spectrometer, the spectra were
measured by setfing the spectrometer to a wavelength of interest, tuning the crystal to that
wavelength, and scanning the delay stage over a range of time. By repeating this for
several wavelengths at the same delay times, a PL spectrum can be found by taking all of

the data for a particular delay time and plotting it as a function of wavelength.
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Data was taken at 77 K by setting the spectrometer to a set wavelength and
turning the KTA crystal to achieve the maximum signal. Thirty spectra were measured at
delay times ranging from 100 ps to 3 ns in steps of 100 ps. Some of the spectra for
different delay times are plotted in Figure 17.

To find the width of the spectra, each point was converted from wavelength to
energy space. Capt Largent fit the data in each time slice with a sixth order polynomial
and the FWHM of the fit was calculated. The results are shown in Figure 18. As expected
the widths decrease with time. This indicates the carrier density is dropping due to
recombination as time passes.

Broadening Due To Upconversion

When the pump and PL waves mix in the KTA crystal, no broadening of the

upconversion wave will occur if the pump beam is a delta function. By design the pump

laser has been set up to emit short pulses to maintain the temporal resolution of the
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Figure 17: Upconversion spectra for different time delays.

34




Width (meV)

[{o]
o

[o:]
o
.

~
o
4

2]
o
.

(4]
o
L

H
o

w
o

+
Plataatats

+
+F

o

0.5

1, 1j5
Time (ns)

25

Figure 18: Measured widths as a function of time.

upconversion spectra. This means that the spectrum in frequency space is large and the

upconversion spectrum will be the convolution of the pump and PL spectra. This is

because the entire pump spectrum can add with the first energy of the PL spectrum and

with the second energy in the pump spectrum and so on. To account for this effect, the

calculated spectra were convolved with a measured spectrum of the pump beam so that an

accurate comparison of the calculated and measured widths could be performed.
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4. Results

Overview

This chapter presents the results of the calculations and compares them to
previously measured data. First the sample is described and the material parameters for
the well and barrier discussed. The third section discusses the calculation of the
spontaneous emission spectral widths as a function of total carrier density. The fourth
section explains the convolution procedure used to adjust the calculated spectral widths
for broadening that occurs in the measurement process. The last section shows the carrier
density as a function of time and compares this result to Cooley’s result.

Sample Description

The sample was a multiple quantum well structure consisting of ten
InAsg.935Sbooss well layers ten nm thick interspersed between 11 Ing gsAlg 15As0,9Sbg 1
barrier layers that are 20 nm thick. The sample was grown by Molecular Beam Epitaxy on
an InAs substrate at the Massachusetts Institute of Technology/Lincoln Laboratory
(MIT/LL). The sample has been thoroughly described in a previous publication (wafer B
in Choi, 1996). Details of the growth process have also been published previously
(Turner, 1995). Figure 19 shows an energy diagram of the laser structure. A conduction
band offset of 0.75 was used in the calculations. This number came from Cooley who got
it from Turner.

Several parameters are needed for the calculations that depend on the type of
materials used in the laser structure. The well material is the most important in terms of

its effect on the calculations. This sample has a ternary structure of the form InAs;.Sby
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Figure 19: Quantum well structure for Laser B (after Figure 4-1 in Cooley, 1996: 4-2).

which has not been thoroughly characterized. Where values for the ternary have not been
published, linear interpolation between the values for InAs and InSb was used to find a
value for the sample. Table 1 lists the parameters for the binary compounds used and the
interpolated values found for the well.

Several sources listed empirical relations or data for the energy gap of InAs;.xSby
as a function of antimony mole fraction for a given temperature (Woolley, 1964: 1883;
Stringfellow, 1971: 805; Osbourn, 1984: 176; Yen, 1987: 928; Fang, 1990: 7038). A
relationship for the energy gap as a function of antimony mole fraction and temperature
initially published by Wieder and Clawson (Wieder, 1973: 220) and reprinted in
Rogalski, 1989: 37, that fits these empirical relations well is

34x107 72

-0. 0.70x? + 3. ~ - (52
04T 0876x + 0.70x* + 34 x 10 xT (1 - x) (52)

E,(x,T)=0411-
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Table 1: Material parameters for binary compounds and interpolated values for the well

and barrier. Values that were not calculated or used are left blank.

Parameter InAs InSb  AlAs  AlSb Well Barrier
ap (A) 6.0583  6.47937 6.0857
Ci1 (10" dynes/cm?) | 8329  6.669 8.2211
C12 (10" dynes/cm?) | 4.526  3.645 4.469
a(eV) -6.0° 1.7 -5.9
b (eV) -1.8° 2.0° -1.8
me (mo) 0.0239 0.01359 0.15 0259 | 0.0232 0.044
Mpnz (o) 0.35 034  0.409 0.336 0.35 0.36
Minz (o) 0.026  0.0158 0.153  0.123 0.025 0.044
My (Mo) 0.35 0.42 0.35
Miny (o) 0.026  0.0158 0.025
n, 3.714°  4.418° 2875° 3.182 | 3.760 3.730
£(0) 15.15 16.8 15.2

All values are from Madelung, 1991, except

a) Blacha, 1984
b) Aspnes, 1983
¢) Fern, 1971

where x is the antimony mole fraction, T is in Kelvin, and E, is in eV. The spontaneous

emission spectrum calculated using an energy gap predicted by this relation showed that

the gap was to large for this sample as shown in Figure 20.

Major Michael Marciniak studied several InAs;.,Sby, samples with varying x and

found smaller eﬁergy gaps for his samples (Marciniak, 1995). His samples were bulk

samples grown by MIT/LL using Molecular Beam Epitaxy on GaSb substrates. Marciniak

fit the temperature dependence of the energy gap for his samples using the Varshni

relation (Equation 6). Using his data from the samples with x = 0.059 and x = 0.071, I

38




interpolated point by point to find the temperature dependence for the sample I studied (x
= (.065). The interpolated data was fit to the Varshni relation to find E¢(0), o, and S for
wafer B and resulted in

3.79)(10-4 T2 (53)
346+T

Eg(T) =0327-
for x = 0.065 and E, in eV. Figure 20 shows a comparison between a time integrated
spectrum of the sample and the spectra calculated with Equations (52) and (53) for 7= 77
K. Equation (53) was used to calculate the well energy gap since it matched the
experimental data from the sample better. Marciniak found inconclusive evidence of
phase separation in his samples (Marciniak, 1995: 7-47 - 7-48). Since wafer B was grown
by the same researchers using the same technique it may suffer from the same problems
as Marciniak’s samples.

The split-off energy band separation, A;,, was calculated with
A, (x)=117x* - 0.75x + 0.39 (54)

for x = 0.065 and A;, in eV (Rogalski, 1989: 37). This relation is used in Equation (39) to

calculate | M| ? for the well material.

Table 2 lists the calculated parameters for the system under strain at 7= 77 K. The
unstrained well energy gap was found using Equation (53). The strain and energy band
shifts were calculated with Equations (7) and (8). The spin-orbit splitting and |M|* were

calculated as described in the last paragraph.
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0.36 0.38 0.4 0.42 0.44
hv (eV)
(b)
0.36 0. 0.42 0.44

38 0.4
hv (eV)

(c)

Figure 20: Comparison of a measured time integrated spectrum with calculated spectra.
(a) Measured time integrated spectrum. (b) Spectrum calculated using Equation (52).
(c) Spectrum calculated using Equation (53) which was derived from Marciniak’s data.

N =3x10¢ for (b) and (c).
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Table 2: Calculated well parameters. Values are in
meV unless stated otherwise.

& (percent) 0.450
Well E; 334
AEw 11.7

AEy, 41.3
hh-lh separation 29.6
Aso 346

IM? (2 eV/mg) 16.9

The barrier material is a quarternary of the form In;.yAlyAs;xSby. Values for most

of the barrier parameters 4 (except a and f) were interpolated with

4 = (1-x) A(InSb) + (1 - x)(1 - y) A(InAs) + xpA(AISD) + x(1 - y) 4(AlAs)  (55)
using the values for InAs, InSb, AlAs, and AlISb, where x is the mole fraction of antimony
and y is the mole fraction of aluminum (Madelung, 1991: 156). Table 1 lists the values
for the binaries used to interpolate the values for the barrier.

The energy gap for the barrier was calculated at a given temperature by calculating
the gap for each of the four binary compounds using Equation (6). The Varshni
parameters used are listed in Table 3 along with the resulting energy gaps calculated for T’
=77 K. These four energy gaps were then interpolated using Equation (55) to find the
barrier band gap listed in the table. The fit parameters a and S were not calculated for the
barrier because these parameters are derived from the fit to the Varshni relation. Their
values are not related to the mole fractions and so cannot be interpolated (Marciniak,

1995:6-42 to 6-45 discusses this).
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Table 3: Barrier energy gap calculation. The Varshni parameters were used to find the
energy gap at 7= 77 K for each binary compound. These energy gaps were interpolated
using Equation (55) to find the barrier gap.

Varshni InAs® InSb* AlAs® AISH® Barrier
Parameter
a (10 eV/K) 2.76 2.7 15.35 4.68
B(K) 83 106 1018 190
EL0K) (eV) 0.415 0.235 3.133 2.384
EL(77K) (meV) 405 226 3125 2374 641
a) Fang, 1990

b) from fit of data in figure from Monemar, 1973
¢) from fit of data in figure from Joullie, 1982

Spectral Width Calculation

The first step in a calculation of the spectral widths is to calculate the energy
levels in the quantum well. The depths of the wells were found using Equations (9) with
the values in Table 2 and Table 3 and the conduction band offset listed on page 36. These
well depths, listed in Table 4, were used in Equation (5) to calculate the energy levels for
the conduction, heavy hole, and light hole bands (E.,, Expn, and Ej,,) numerically. The
energy levels are listed -in Table 5 and plotted with the wells in Figure 21. The

Mathematica code used in this calculation is listed in Appendix A.

Table 4: Well depths in meV at 7= 77 K. Table 5: Energy levels in meV at 7= 77 K.

Veo 231 CB Level 1 55.1

Veh 76.8 CB Level 2 210.7

Vi 47.2 HH Level 1 7.0
HH Level 2 27.2
HH Level 3 582
LH Level 1 54.0
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Figure 21: Energy levels in the quantum well. The light hole level is dashed.

The unconvolved spontaneous emission spectrum is calculated next. The well
energies are used to define where the steps in the density of states occur (see Figure 9 on
page 17). The quasi-Fermi levels Er, and Er, were found by solving Equation (31)

numerically for the conduction band and the valence band for a given carrier density. The

well energies, quasi-Fermi levels, and IMI2 were then used to calculate the spontaneous
emission spectrum for a given temperature and total carrier density with Equation (43).
The spectra were convolved using Equation (44), which finishes the computation of the
calculated spectra. The MatLab files used to calculate the spectra are listed in Appendix
B. They are based on code written by Chia-Fu Hsu, a Ph.D. student of Peter Zory at the
University of Florida. Figure 22 shows a plot of some calculated spectra for different
carrier densities.

The widths of the spectra were calculated using the Mathematica code in

Appendix C. One hundred spectra were calculated with carrier densities ranging from 1 x
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N=2x10"
1x

N=1x1017
2x

N=1x101
100x

Intensity (Arbitrary Units)

0.34 0.36 0.38 0.40 0.42 0.44 0.46
Energy (eV)

Figure 22: Calculated PL spectra for different carrier densities. The carrier densities are in
units of cm™ and were multiplied by the factors shown to fit them on the plot.

10" cm™ to 1 x 10'® cm™. Each calculated spectrum is composed of 625 discrete points.
The energy spacing (along the x axis) between these points is 1 meV. Decreasing this
spacing increased calculation time dramatically, so the FWHM of the spectra was found
by linearly interpolating between the two points nearest to the half maximum value at
each side of the peak in order to gain more resolution. Each of these 100 spectra were
calculated for a total carrier density, so the FWHM of these emission spectra can be
plotted vs. carrier density.
Convolution With Upconversion Pump Beam

As described in Chapter 3, the upconversion process occurs when the second leg
of the pump beam mixes with the PL from the sample in the KTA crystal. The resulting
upconversion spectrum is broadened due to the convolution of the two electromagnetic
waves. In order to compare the widths of the calculated spectra with the widths of the

measured spectra, this effect must be taken into account. This is done by convolving the
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calculated spectra with the measured spectrum of the pump beam. The code used to
perform the convolutions is listed in Appendix C.

The first step was to measure the spectrum of the Ti:Sapphire pump beam while it
was mode locked. Rick Patton, a technician with the Engineering Physics Department,
performed this measurement by routing the beam into an EG&G model 1471 optical
multichannel analyzer using an EG&G model 1453 silicon photodiode detector. The
spectrum was converted from wavelength to energy and is shown in Figure 23. The
FWHM of the peak is 15.39 meV. The spectrum was fit with a 30™ order polynomial so
that the spectrum could be regenerated with the same energy spacing as the calculated PL
spectra.

Convolution is represented by ® and 7 =f® g is defined as (Jansson, 1984: 6)

- 56
W)= | £(x-x gl ¢

)
=
>
by
ju
o FWHM = 15.4 meV
<
2>
®
[
9
£
E,=1.557 eV
1.52 1.53 1.54 1.55 1.56 1.57 1.58 1.59
Energy (eV)

Figure 23: Spectrum of Ti: Sapphire pump laser.

45




It is well known that the product of the Fourier Transform of two functions, fand g, is the

Fourier Transform of the convolution of fand g:
3(f)3(g)=3(r®8)=3(N) (57)

where
3 (@) =5 [F(@)edo=1() (58)

is the Fourier transform of /(@) (Jansson, 1991: 11). The convolution, 4, can be found by
taking the inverse Fourier transform of the right hand side of Equation (57).

The convolution was performed using two methods. The first method used Fourier
transforms with Equation (57). The high energy end of the calculated PL spectra was
dropped to make the list of data 512 elements long. The values of the dropped elements
were essentially zero and would have no effect on the convolution. The pump spectrum
was regenerated with an energy spacing of 1 meV and zeros were added to each end of
the list to make it 512 elements long (an equal number of points was required to use
Mathematica’s “Fourier” function). The transforms of the pump and calculated PL spectra
were multiplied together and the inverse transform of the product taken with
Mathematica’s “InverseFourier” function. The widths were determined as described in
the previous section on page 44.

The second method used Equation (56) to compute the convolution. The PL
spectra were nof truncated and no extra zeros were added to the pump spectrum. The
pump spectrum data list was reversed and lined up with the left side of the calculated PL
spectrum. Since the energy spacing of the two spectra is the same, the sum of the energy

values (x coordinate) of each pair of lined up data points will be the same. This sum of

46




the energy values is the energy (x coordinate) for the first point in the convolved spectra.
Each intensity data point (y coordinate) from the reversed pump spectrum was multiplied
with the intensity data point (y coordinate) from the PL spectrum that was lined up with
it. These products were summed and this was the value of the intensity (y coordinate) of
the first data point of the convolved spectrum. The reversed pump was moved one
element to the right and the process repeated until the end of the PL spectrum was
reached. The end result is the convolved spectrum which corresponds to the upconversion
spectra. The widths were determined as described in the previous section on page 44.
Both methods of convolution yielded the same widths for the convolved spectra.
Since each of the PL spectra were calculated with a specific carrier density, these new
convolved calculated widths can be plotted as a function of the carrier density of the PL
spectrum used in the convolution. The calculated widths and convolved calculated widths

are plotted as a function of carrier density in Figure 24. The effect of the convolution is
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0 2 4 6 8 10
Carrier Density (x1017 cm3)

Figure 24: Calculated widths and convolved calculated widths as a function of carrier
density.
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greatest when the PL widths are smaller. As the PL widths widen, the pump beam width

becomes narrower in comparison and broadens the PL less.

Carrier Density as a Function of Time

Since the convolved calculated widths were determined for specific carrier
densities and the measured widths for specific times it should be possible to map the
carrier densities to time. Each point in Figure 18 was measured at a specific time. The
width measured at that time can be compared with the convolved widths calculated in
Figure 24. Each of these convolved widths was calculated with a specific carrier density,
so the a plot of carrier density as a function of time can be created. This plot is shown in
Figure 25 and the code used to calculate the data is in Appendix D.
Capt Cooley calculated the carrier density as a function of time using a different

method (Cooley, 1996: 5-1 to 5-7). He measured the luminescence from the sample at

one wavelength for different delay times and then plotted the luminescence as a function
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Figure 25: Carrier density as a function of time
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of time. Using the absorption of the material, he calculated the two dimensional carrier
density created by different pump beam powers. He measured the luminescence over a
range of times for each of these pump power levels and associated the first data point at
each power with his calculated value of two dimensional carrier density. This gave him
the luminescence as a function of carrier density. He connected the carrier density to the
times through the luminescence and converted from a two dimensional carrier density to a

three dimensional carrier density using

n
np=rp (59)

where N is the number of quantum wells and L, is the thickness of a quantum well. This
relationship assumes that the carriers are confined to the well regions.

A comparison of Cooley’s results and the results from this thesis are shown in
Figure 26. The data is close at lower carrier densities but does not agree with Cooley’s

results at higher carrier densities. This discrepancy could be due to a slight change in the
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Figure 26: Comparison of carrier density vs. time results with Cooley’s results
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experimental conditions. For example, the spot size of the pump beam on the sample
could have changed slightly between the times the measurements were taken. This will
affect the number of carriers created and Cooley’s absorption calculation. Also the model
I used to calculate the PL spectra assumes parabolic bands. This assumption is good near
the band edge and becomes less accurate the farther the carriers are from the edge. At
higher carrier densities higher levels of the band will be occupied and the applicability of

the parabolic band assumption is reduced.
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5. Conclusion

Summary

The objective of this research is to study the temporal behavior of the carrier
density in a mid-IR quantum well laser. This will help researchers make more efficient
lasers that emit at these wavelengths. PL spectra can be calculated for a given carrier
density and measured at different times. The calculated spectra can be compared with the
measured spectra to associate a specific carrier density with a specific time. The width of
the PL spectra was the parameter chosen to compare spectra.

The quasi-Fermi levels in a semiconductor can be related to the carrier density. As
the carrier density increases the PL spectrum will become wider and shift slightly toward
higher energies as the higher energy levels become more populated. The energy levels
were calculated for an InAsg 935Sbg g65/Ing gsAlg 15A509Sbg ; multiple quantum well sample
at a temperature of 77 K assuming parabolic bands. Using these energy levels 100 spectra
were calculated for different carrier densities.

The UMIPS can measure spectra with a time resolution of the width of the pump
pulse by measuring the upconversion spectra at different delay times. The PL spectrum of
the sample was measured at 30 times using this technique. Because the pulse width of the
pump is narrow, its spectrum is wide and the upconversion spectrum will be a
convolution of the pump and the PL. The calculated spectra were convolved with the
measured upconversion pump beam spectrum. The widths of these convolved calculated
spectra were compared to the measured spectral widths to find the carrier density as

function of time. These results agree with Cooley’s results at low carrier densities and
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disagree at higher carrier densities. This discrepancy could be due to changing
experimental conditions or the break down of the parabolic band model at higher carrier
densities.

Future Research

Two things can be done to improve the results of this research. The first would be
to calculate the band structure of the material more accurately by using, for example, the
kep method. This would increase the accuracy of the spontaneous emission spectra
calculation and provide a better relation between width and carrier density. This would
also help determine the carrier densities at which the parabolic band approximation is
applicable.

A second improvement would be to slave the rotation stage of the KTA crystal to the
spectrometer controller. As the spectrometer is scanned the stage would rotate so the
optimum phase matching angle was used for each wavelength. This would allow a
complete spectrum over wavelength to be taken at once which would provide more data
in each time slice. This would improve the accuracy of the fits and provide a better
relation between the measured widths and time. If the improvements are significant it
could allow entire spectra to be compared instead of just the widths of the spectra. These
improvements would allow better estimates of the carrier density as a function of time to

be made.
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Appendices

Appendix A: Energy Level Calculation

Last Modified: 3 Oct 97

This file calculates the energy levels in a quantum well. The method follows the MatLab code written by Chia-Fu Hsu, a
Ph.D. student of Peter Zory at the University of Florida. This code uses Newton's Method instead of the Bisection Method to
numerically solve for the eigenenergies. The equations used are equations 68a and 68b on p. 60 of "Quantum Well Lasers",
edited by Peter Zory. This model assumes parabolic bands with a single, finite square well.

The first part of the code is used to define the material parameters for the well and barrier materials. The conduction band
offset is used to determine the well depths. The second part calculates the energies for a given well width. The well width is
listed two places so make sure the appropriate value is current in the Kernel. The third part displays the results.

Off[General: :"spelll”]

m Parameters
T = 77; (* temperature of solid in K =)

Universal constants

m0 = 9.109107%; (% electron mass in kg *
g
c = 2.99810%; (» speed of light in m/s #)
h = 6.626107%; (* Planck's constant in J-s #)
h
= —:;’
27
kb = 1.3811072%; (% Boltzmann's Constant in J/K *)
e = 1.60210°°; (% charge of electron =)

€0 = 8.854107!%; (% permitivity of free space )
Varshni formula and quarternary alloy interpolation formula

a T?
T+B8
int[AlAs_, AlSb_, InAs_, InSb_, y_, x_] :=
(1-x) yInSb + (1-x) (1-y) InAs + xyAlSb + x (1 -y) AlAs;

’

egT[a_, B_, €g0_, T_] := &g0 -

€ stands for energy in this notebook.

n Well Parameters

The well width is also listed below in the code to make calculations easier.
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1z = 100107%%; (% well width in m =)

= Material: InAs;_,Sb,
The well in composed of InAs;_,Sb, on an InAs substrate. Laser B has an Antimony concentration of 6.5%.

x = 0.065; (* Antimony concentration fraction =)

(* Weider, Clawson heavy hole energy bandgap in eV =)

(vegxT[x_,t_] = 0.411 - 2420 _ 0,876 x + 0.70 x2 + 3.4 10" t x (1-x);

ggNoStrain = egxT[x,T];*)
(+ energy gap from Marciniak' s data «)
3.79476107 T2
T +346.193
(* lattice parameter in Angstroms =)
a0InAs = 6.0583; a0InSb = 6.47937;
a0 = xal0InSb + (1 ~x) a0InAs;
(*» substrate lattice parameter in Angstroms =)
al0s = a0InAs;
(* elastic stiffness coefficients in 10! dyne/cm? *)
cllInAs = 8.329; cllInSb = 6.669;
cll = xcllInSb + (1-x) cllInAs;
cl2InAs = 4.526; cl2InSb = 3.645;
cl2 = xcl2InSb + (1 -x) cl2InAs;
(» hydrostatic deformation potential in eV «)
alnAs = -5.8; aInSb = -7.7; a = xaInSb + (1-x) alnAs;
(» shear deformation potential in eV «)
bInAs = -1.8; bInSb = ~2.0; b = xbInSb + (1 -x) bInAs;
(* strain, positive for compression %)
es = (a0 - als) /a0;
(*» change in heavy hole energy gap =)

ggNoStrain=0.327479 -

cll -cl2 cll+cl2
Aehh = -2aes —— + bes ——;
cll cll
(* change in light hole energy gap =*)
cll -cl2 cll+2cl2
Aelh = -2 a€es ————— - b€ —m——;
cll cll

eg = egNoStrain + Aghh;

(* hh - 1h gap *)

s = Aglh - Aehh;

(* electron effective mass in kg =)

meInAs = 0.0239m0; meInSb = 0.01359m0;

me = xmeInSb + (1 -x) meInAs;

(* growth direction heavy hole effective mass in kg =)
mhhzInAs = 0.35m0; mhhzInSb = 0.34m0;

mhhz = xmhhzInSb + (1 - x) mhhzInAs;

(* growth direction light hole effective mass in kg =)
mlhzInAs = 0.026m0; mlhzInSb = 0.0158m0;

mlhz = xmlhzInSb + (1 - x) mlhzInAs;

(» in plane direction heavy hole effective mass in kg =)
mhhxInAs = 0.35m0; mhhxInSb = 0.42m0;

mhhx = xmhhxInSb + (1 - x) mhhxInAs;

(* in plane direction light hole effective mass in kg =)
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mlhxInAs = 0.026m0; mlhxInSb = 0.0158 mO0;
mlhx = xmlhxInSb + (1 -~ x) mlhxInAs;

(*» index of refraction «)

nInAs = 3.714; nInSb = 4.418;

n = xnInSb + (1 - x) nInAs;

(* static dielectric coefficient =*)
€InAs = 15.15; €InSb = 16.8;

€ = xeInSb + (1 - x) eInAs;

(# spin orbit splitting energy in eV )
Aso = 1.17x% - 0.75x + 0.39;

(* transition matrix elements in eV =)

m0 gg + Aso
m2 = (——--1) mo £g;
me 2 (eg+As02/3)
Print{"For the well:"]
Print[" &g (no strain) = ", egNoStrain]
Print[" strain corrections: €s = ", es]
Print[" a0 for well = ", a0, " A, a0 for substrate = ", als, " A"]
Print[" eg =", €9, " eV, s =", 5, " eV"]

Print[" me = ", me/m0, " m0O"]
Print[" mhhz = ", mhhz/m0, " m0, mhhx = ", mhhx/m0, " m0"]
Print[" mlhz = ", mlhz/m0, " m0, mlhx = ", mlhx/m0, " m0"]

2
Print[" n = n, n,",e=",¢ ", M2 =", Emzl " m0/2n]

For the well:

eg (no strain) = 0.322162

strain corrections: e€s = 0.00449738
a0 for well = 6.08567 A, a0 for substrate = 6.0583 A
€g = 0.333895 eV, s = 0.0296039 eV

me = 0.0232299 m0

mhhz 0.34935 m0, mhhx = 0.35455 mO

mlhz 0.025337 m0, mlhx = 0.025337 m0

n = 3.75976, € = 15.2572, M? = 16.9087 m0/2

= Barrier Parameters

1zb = 200107'%; (% barrier width in m *)

m Material: In;_ Al As;_,Sb,

The concentrations are also listed in the well section to calculate the strain on the well.

Xb
yb

0.1; (* Antimony concentration fraction «)
0.15; (* Aluminum concentration fraction =)

1]
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(* barrier lattice parameter in Angstroms w)

aOAlAs = 5.660; a0AlSb = 6.1355;

alb = int[aOAlAs, a0AlSb, a0InAs, a0InSb, yb, xb]; (* heavy hole energy bandgap in eV =x)
alnAs = 2.76107%; BInAs = 83; eg0InAs = 0.415;

egInAs = egT[aInAs, BInAs, €g0InAs, T]:

aInSb = 2.70107*; BInSb = 106; &g0InSb = 0.235;

€gInSb = egT[aInSb, BInSb, €g0InSb, T]:

aAlAs = 15.347107%; BAlAs = 1018; egOAlAs = 3.133;

egAlAs = egT[aRAlAs, BAlAs, egOAlAs, T]:

ahlSb = 4.684107%; BAl1Sb = 190; egOAlSb = 2.384;

€gAlSb = egT[aAlSb, BAlSb, eg0AlSb, T]:

egb = int[egAlAs, egAlSb, egInAs, egInSb, yb, xb};

(» electron effective mass in kg =*)

meAlSb = 0.259m0; meAlAs = 0.15m0; meInAs = 0.0239m0; meInSb = 0.01359m0;

meb = int[meAlAs, meAlSb, meInAs, meInSb, xb, yb];

(*» heavy hole effective mass in kg =)

mhhzAlSb = 0.336m0; mhhzAlAs = 0.409m0; mhhzInAs = 0.35m0; mhhzInSb = 0.34m0;
mhhb = int[mhhzAlAs, mhhzAlSb, mhhzInAs, mhhzInSb, xb, yb]:

(* light hole effective mass in kg =)
mlhzAlSb = 0.123m0; mlhzAlAs = 0.153m0; mlhzInAs = 0.026m0; mlhzInSb = 0.0158 m0;

mlhb = int[mlhzAlAs, mlhzAlSb, mlhzInAs, mlhzInSb, xb, yb]};

Print["For the barrier:"]

Print[" a0 = ", a0Ob, " A"]

Print[" eg ", egb, " eV"]

Print[" me = ", meb/m0, " m0, mhh = ", mhhb/m0, " m0, mlh = ", mlhb/m0, " m0"]

For the barrier:

a0 = 6.08245 A
eg = 0.641398 eV
me = 0.0435737 m0, mhh = 0.356905 m0, mlh = 0.043733 m0

= Depths of conduction band and valence band wells

ecOffset = 0.75; (» conduction band offset for materials =)

ech = ecOffset (egb - €g); (* conduction band well depth in eV =)
evh = (1 - ecOffset) (egb - £g); (* valence band well height in eV «)
Print["conduction band well depth = ", ech, " eV"]

Print["valence band well height = ", gvh, " eV"]

conduction band well depth = 0.230627 eV

valence band well height = 0.0768755 eV
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s List Parameters

Print{"temperature = ", T, " K"]
Print["For the well:"]

Print[" eg (no strain) = ", egNoStrain]

Print[" strain corrections: €s = ", €s]

Print[" a0 for well = ", a0, " A, a0 for substrate = ", als, " A"]
Print[" a0 for barrier = ", aOb, " A"] '
Print[" e€g =", &g, " eV, s =", s, " eV"]

Print[" me = ", me/m0, " m0"]

Print[" mhhz = ", mhhz/m0, " m0, mhhx = ", mhhx/m0, " m0"]
Print[" mlhz = ", mlhz/m0, " m0, mlhx = ", mlhx/m0, " m0"]

2
Print[" n="n, n, € =",¢, ", MZ = n, _Om2' " mo/2"
m

Print["For the barrier:"]

Print[" &g ", egb, " ev"]

Print[" me = ", meb/m0, " m0, mhh = ", mhhb/m0, " m0, mlh = ", mlhb/m0, " m0"]
Print["conduction band well depth = ", ech, " eV"]

Print["valence band well height = ", gvh, " eV"]

temperature = 77 K
For the well:
£g (no strain) = 0.322162
strain corrections: €s = 0.00449738
a0 for well = 6.08567 A, a0 for substrate = 6.0583 A
a0 for barrier = 6.08245 A
€g = 0.333895 eV, s = 0.0296039 eV
me = 0.0232299 mO
mhhz = 0.34935 m0, mhhx = 0.35455 m0
mlhz = 0.025337 m0, mlhx = 0.025337 m0
n = 3.75976, € = 15.2572, M? = 16.9087 m0/2
For the barrier:

0.641398 ev

£9

me

0.0435737 m0, mhh = 0.356905 m0, mlh = 0.043733 m0
conduction band well depth = 0.230627 eV

valence band well height = 0.0768755 eV

m Energy Levels of a single quantum well

For ease of recomputing the well width is listed here so it can be changed.
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lz = 100107'% (% well width in m %)

Set up equations 68a and 68b for electrons, heavy holes, and light holes. The equations come from solving Schrédinger's
equation and applying boundary conditions. The energy, &, is in meV. The strain separation, s, for the light hole solutions is
corrected for in the kzlh expression. The energies used by the light hole equations are really &+s from s to the valence band
height. This accounts for the compressive strain that pushes the light holes away from the gap.

Clear([e]
2 me € 2 meb €
kze = ) e; aze = (sch———-—)e;
B2 1000 .2 1000
1z me aze 1z me aze
evene = Tan[kze —] - — Odde = Cot[kze —] + —
2 meb kze 2 meb kze
2 mhhz € 2 mhhb £
kzhh = — e g ; azhh = ——(evh-—)e;
K2 1000 B2 1000
1lz mhhz azhh 1z mhhz azhh
evenhh = Tan[kzhh —] - ———— oddhh = Cot[kzhh —] + ————;
2 mhhb kzhh 2 mhhb kzhh
2mlhz € 2mlhb €
kzlh = —( -s)e; azlh = —_— svh-—)e;
B2 1000 h2 1000
1z mlhz azlh lz mlhz azlh
evenlh = Tan[kzlh -——] - — oddlh = Cot[kzlh —] + —
2 mlhb kzlh 2 mlhb kzlh

Plot the even and odd solutions to find guesses for the root finding. If the plots have too few points to make a good guess,
increment the appropriate PlotData table to calculate more points. This is especially helpful for the heavy hole plots. It is
easier to see if a plot crosses the axis if the plots are temporarily made larger by draging the frame. The plotrange can also be
varied so the plots will show more points in the lines. The xxPlotData tables are used to plot the functions with discrete points.
This avoids having intersections with the energy axis at the assymptotes of the trigonometric functions. The lower limit for

the light holes is s meV + 1 meV to prevent kzlh = V0. This occurs when £ =s.
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plotrange = 5;
Clear[evenePlotData, oddePlotData,

evenhhPlotData, oddhhPlotData, evenlhPlotData, oddlhPlotData]
evenePlotData = Table[{g, evene}, {e, 1, 1000 ech}];
oddePlotData = Table[{e, odde}, {e, 1, 1000 ech}];
evenhhPlotData = Table[{e, evenhh}, {e, 1, 1000 evh, 0.5}]:
oddhhPlotData = Table[{e, oddhh}, {e, 1, 1000 evh}];
evenlhPlotData = Table[{e, evenlh}, {e, 1000s+1, 1000 evh}];
oddlhPlotData = Table[{e, oddlh}, {e, 1000s+ 1, 1000 evh}];
oddePlot = ListPlot[oddePlotData,

PlotRange - {-plotrange, plotrange}, AxesLabel - {"mev", "0dd"},

PlotLabel - FontForm["Electrons", {"Arial", 12}], DisplayFunction - Identity];
evenePlot = ListPlot[evenePlotData,

PlotRange = {-plotrange, plotrange}, AxesLabel - {"mev", "Even"},

PlotLabel - FontForm["Electrons”, {"Arial", 12}], DisplayFunction - Identity];
oddhhPlot = ListPlot[oddhhPlotData,

PlotRange = {~plotrange, plotrange}, AxesLabel - {"meV", "0dd"},

PlotLabel - FontForm["Heavy Hole", {"Arial", 12}], DisplayFunction - Identity];
evenhhPlot = ListPlot[evenhhPlotData,

PlotRange - {-plotrange, plotrange}, AxesLabel - {"meV", "Even"},

PlotLabel - FontForm["Heavy Hole", {"Arial", 12}], DisplayFunction - Identity];
oddlhPlot = ListPlot[oddlhPlotData,

PlotRange - {-plotrange, plotrange}, AxesLabel - {"meV", "0dd"},

PlotLabel - FontForm["Light Hole", {"Arial", 12}], DisplayFunction - Identity];
evenlhPlot = ListPlot[evenlhPlotData,

PlotRange = {-plotrange, plotrange}, AxesLabel - {"meV", "Even"},

PlotLabel - FontForm["Light Hole", {"Arial", 12}], DisplayFunction - Identity];
Print["Well Width = ", 12/107°, " &, T = ", T, " K"]
Show([GraphicsArray[ v

{{oddePlot, evenePlot}, {oddhhPlot, evenhhPlot}, {oddlhPlot, evenlhPlot}}],
DisplayFunction - $DisplayFunction]

Well Width = 100 A, T = 77 K
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- GraphicsArray =

The equations are solved when & equals the values of the x-intercepts. Plug the guesses from the plots into the respective lists
below. Surround the values with curly brackets { } and separate multiple guesses with a comma. If there is no solution set the

value equal to {}.

oddeGuess = {210}; eveneGuess = {60}; oddhhGuess = {27}; evenhhGuess = {7, 60};
oddlhGuess = {}; evenlhGuess = {57};

The eigenvalues are found using Newton's Method for each guess.
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maxOddE = Length[oddeGuess]; maxEvenE = Length[eveneGuess];
max0ddHH = Length[oddhhGuess]; maxEvenHH = Length[evenhhGuess];
max0ddLH = Length[oddlhGuess]; maxEvenLH = Length[evenlhGuess];
oddee = {}; evenee = {}; oddhhe = {}; evenhhe = {}; oddlhe = {}; evenlhe = {};
Do[solution = FindRoot[odde == 0, {&, oddeGuess[[i]]}]:

€ = € /. solution; AppendTo[oddeeg, €], {i, 1, maxOddE}];
Do[solution = FindRoot[evene == 0, {e&, eveneGuess[[i]]}]:

€ = € /. solution; AppendTo[evenee, €], {i, 1, maxEvenE}];
Do[solution = FindRoot[oddhh == 0, {&, oddhhGuess[[i]]}]:

€ = € /. solution; AppendTo[oddhhe, €], {i, 1, maxOddHH}];
Do[solution = FindRoot[evenhh == 0, {e&, evenhhGuess[[i]]}]:

€ = € /. solution; AppendTo[evenhhe, €], {i, 1, maxEvenHH}];

Do[solution = FindRoot[oddlh == 0, {g, oddlhGuess[[i]]}]:
€ = € /. solution; AppendTo[oddlhe, €], {i, 1, maxOddLH}];
Do[solution = FindRoot[evenlh == 0, {e&, evenlhGuess[[i]]1}]:;

€ = € /. solution; AppendTo[evenlhe, €], {i, 1, maxEvenLH}];
ee = Sort[Join[oddeg, evenee]];
hhe = Sort[Join[oddhhe, evenhhe]]; lhe = Sort[Join[oddlhe, evenlhe]];
Print["Electron Energies: ", ee]
Print["Heavy Hole Energies: ", hhe]
Print["Light Hole Energies: ", lhe]

Electron Energies: {55.0927, 210.669}
Heavy Hole Energies: {6.95165, 27.2429, 58.2015}

Light Hole Energies: {53.9502}

m Display Results

This displays the results.
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Print["Well Width
Show[GraphicsArray|[

{{oddePlot, evenePlot}, {oddhhPlo
DisplayFunction = $DisplayFunctio
Print["Electron Energy Guesses: ",
Print["Heavy Hole Energy Guesses:
Print["Light Hole Energy Guesses:

Print["Electron Energies: ", eg]
Print["Heavy Hole Energies: ", hhe]
Print["Light Hole Energies: ", lheg]
Well Width = 100 A, T = 77 K
0dd Electrons
4 %
2
50 100 150 200 ™V
odd  Heavy Hole
4| g
28 e
e " mev
10 20 30 40 50 60 70
_2 ‘.
-4
0dd Light Hole
4
2t e
20 50 60 70 MV
-2
-4
Electron Energy Guesses: {60, 210}

Heavy Hole Energy Guesses: {7, 27, 60}
Light Hole Energy Guesses: {57}
Electron Energies: {55.0927, 210.669}
Heavy Hole Energies: {6.95165, 27.2429,

Light Hole Energies: {53.9502}
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t, evenhhPlot}, {oddlhPlot, evenlhPlot}}],
n] ;

Sort[Join[oddeGuess, eveneGuess]]]

", Sort[Join[oddhhGuess, evenhhGuess]]]

", Sort[Join[oddlhGuess, evenlhGuess]]]
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m Well Plot

s Energy Levels

This plots a diagram of the well and the energy levels.

Needs["Graphics 'MultipleListPlot "]

cBandl = {{-100, 1000 (ech + €g)}, {-49.9, 1000 (ech + &€g)}};
cBand2 = Table[{-50+ 100i, 1000 €eg}, {i, 0, 1}1:
cBand3 = Table[{50.1+49.91i, 1000 (ech + €g)}, {i, 0, 1}]:

conductionBand = Join[cBandl, cBand2, cBand3];

vBandl = Table[{-100+49.91i, -1000 evh}, {i, 0, 1}];
vBand2 = Table[{-50+1001i, 0}, {i, 0, 1}]):

vBand3 = Table[{50.1+49.9i, -1000evh}, {i, 0, 1}]:
valenceBand = Join[vBandl, vBand2, vBand3];

cbLevell = Table[{-50+1001i, ee[[1]] +1000&g}, {i, 0, 1}};
cbLevel2 = Table[{-50+1001i, ee[[2]] + 1000 &g}, {i, O, 1}]:
hhlLevell = Table[{-50+100i, -hhe[[1]]}, {i, O, 1}];
hhlLevel2 = Table[{-50+1001i, -hhe[[2]1}, {i, O, 1}]:
hhLevel3 = Table[{-50+100i, -hhe[[3]])}, {i, 0, 1}};
lhLevell = Table[{-50+100i, -1he[[1]}}, {i, O, 1}];

1]

t

Print["temperature = ", T, " K"]
MultipleListPlot[
conductionBand, valenceBand, cblLevell, cbLevel2, hhLevell, hhLevel2, hhlevel3,
lhLevell, PlotJoined- True, PlotStyle -» {AbsoluteThickness[2], AbsoluteThickness[2],
AbsoluteThickness[1l], AbsoluteThickness[1], AbsoluteThickness[1],
AbsoluteThickness[l], AbsoluteThickness[1l], AbsoluteDashing[{2, 2}]},
SymbolShape - None, AspectRatio-= 1.2,
Axes » False, Frame -» True, FrameLabel - {"A", "meV", "", ""}];

Print["well eg = ", &g, " eV, barrier &g = ", egb, " eV"]
Print["conduction band well depth = ", gch, " eV"]
Print["valence band well height = ", evh, " eV"]

Print["Electron Energies: ", eg, " meV"]
Print["Heavy Hole Energies: ", hhe, " meV"]
Print["Light Hole Energies: ", lhe, " meV"]

temperature = 77 K
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well eg = 0.333895 eV, barrier e€g = 0.641398 eV
conduction band well depth = 0.230627 eV

valence band well height = 0.0768755 eV

Electron Energies: {55.0927, 210.669} meV

Heavy Hole Energies: {6.95165, 27.2429, 58.2015} meV

Light Hole Energies: {53.9502} meV

= Wavefunctions

This calculates the k=0 wavefunctions for the single quantum well. Define a function for k.

2m (e-v)
kfim , e , v ] := _—
- - - A2 1000

Calculate wavefunctions and load them into tables. The factor of 50 enlarges the scale of the wavefunctions.
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Cos[k[me, ee[[1]], 0] (-50107'%)]
2

cblyl = Table[{d=-100 + i, 50

‘Exp[-1 k[meb, ee[[1]], 1000 ech] d 1071%]
Exp[-i k[meb, ee[[1]], 1000 ech] (-50107*%)]
cbly2 =

+lOOOeg+ee[[l]]}, {i, 0, 50, 1}],-

Cos[k[me, es[[1]1], 0] d1071%]
2

Cos[k[me, es[[1]], 0] 50 107'°]
2

Table[{d =-50+1i, 50 +1000 eg+ec[[11]}, {i, O, 100, 1}];

cbly3 = Table[{d =50 + i, 50

Exp[i k[meb, ee[[1]], 1000 ech] d 107%°)

Exp[i k[meb, ee[[1]], 1000 ech] 50 107*°]

Sin[k[me, ee[[2]], 0] (-50107%)]
2

+1000 eg+ec[[111}, {i, 0, 50, 1}]:

cb2y§l = Table[{d=-100 + i, 50

Exp[-& k[meb, ee[[2]], 1000 ech] d 1071°]
Exp[-i k[meb, ee[[2]], 1000 ech] (-50107*%)]
cb2y2 =

+1000 eg +ee[[2]11}, {i, 0, 50, 1}];

Sin[k[me, ee[[2]], 0] d107!°]
2

Sin[k[me, ee[[2]], 0] 50107°]
2

+1000eg+ec[[2]1}, {i, 0, 100, 1}];

Table[{d =-50+41, 50

cb2y3 = Table[{d =50 + i, 50

Exp[& k[meb, ee[[2]], 1000 ech] d10'1°]

Exp[i k[meb, eg[[2]], 1000 ech] 50 107'°]

Cos[k[mhhz, hhe[[1]], 0] (-50107%)]
2

+1000eg+ee[[2]1}, {i, 0, 50, 1}];

hhlyl = Table[{d=-100 + i, 50

Exp[-i k[mhhb, hhe[[1]], 1000 evh] d 107'°]
Exp[-4 k[mhhb, hhe[[1]], 1000 evh] {-50 107%)]
hhly2 =

-hhe[[1]1}, {i, 0, 50, 1}];

Cos[k[mhhz, hhe[[1]], 0] d107'°]
2
Cos[k[mhhz, hhe[[1]], 0] 50 107%}
2
Exp[& k[mhhb, hhe[[1]], 1000 evh] d 107%°]
Exp[d k[mhhb, hhe[[1]], 1000 evh] 50 107!°]
Sin[k[mhhz, hhe[[2]], 0] (-50107%%)]
2

-hhe[[111}, {i, 0, 100, 1}];

Table[{d =-50+1i, 50

hh1y3 = Table[{d =50 + i, 50

-hhe[[1]1]}, {i, 0, 50, 1}];

hh2yl = Table[{d: -100 + i, 50

Exp[~i k[mhhb, hhe[[2]], 1000 evh] d 1071°]
Exp[-i k[mhhb, hhe[[2]], 1000 evh] (-501071%)]
hh2y2 =

-hhe[[2]1}, {i, 0, 50, 1}];

Sin[k[mhhz, hhe[[2]], 0] d107%°]
2
Sin[k[mhhz, hhe[[2]], 0] 50 107°]
2
Exp[i k[mhhb, hhe[[2]], 1000 evh] d 107'°]
Exp[# k[mhhb, hhe[[2]], 1000 evh] 50 10°%°]
Cos[k[mhhz, hhe[[3]], 0] (-50107%%)]
2

Table[{d=-56+i, 50 -hhe[[2]]1}, {i, 0, 100, 1}];

hh2¢3 = Table[{d =50 + i, 50

-hhe[[2]1}, {i, 0, 50, 1}];

hh3yl = Table[{d: -100 + i, 50
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Exp[-i k[mhhb, hhe[[3]], 1000 evh] d 107%°]

Exp[-i k[mhhb, hhe[[3]], 1000 evh] (-50107%°)]
hh3y2 =

-hhe[[3]1}, {i, 0, 50, 1}]:

Cos[k[mhhz, hhe[[3]], 0] d1071°]
2
Cos[k[mhhz, hhe[[3]}], 0] 50 107'°]
2
Exp[& k[mhhb, hhe[[3]], 1000 evh] d 10717}
Exp[i k[mhhb, hhe[[3]], 1000 evh] 50 1071°]
Cos[k[mlhz, 1he[[1]], O] (-501071%)]
2

Table[{d = -50+ i, 50 -hhe[[311}, {i, 0, 100, 1}];

hh3y3 = Table[{d: 50 + i, 50

-hhe[[311}, (i, 0, 50, 1}]:

1lhlyl = Table[{d: -100 + i, 50

Exp[-1 k{mlhb, lhe[[1]], 1000 evh] d 1071°]

Exp[-i k[mlhb, l1he[[1]], 1000 evh] (~50107°)]
1hly2 =

-lhE[[l]]}, {i, 0, 50, 1}];

Cos[k[mlhz, lhe[[1]], 0] d107*°]
2

Cos[k[mlhz, 1he[[1]], 0] 50 107°]

2

Exp[i k[mlhb, lhe[[1]], 1000 evh] d 107%]

Exp[& k[mlhb, lhe[[1]], 1000 evh] 50 10°%°]
cbly = Join[cblyl, cbly2, cbly3];
cb2y = Join[cb2yl, cb2y2, cb2¢3]; hhly = Join[hhlyl, hhly2, hh1y3];
hh2¢ = Join[hh2¢1, hh2¢2, hh2¢3]; hh3¢ = Join[hh3¢1, hh3¢2, hh3y3];
1hly = Join{lhlgl, lhly2, 1h1y3];

Table[{d = -50+i, 50 -1lhe[[1]11}, {i, O, 100, 1}];

1h1y3 = Table[{d =50 + i, 50

- lhe[[111}, {i, 0, 50, 1}];

Plot wavefunctions.

Print["temperature = ", T, " K"]
MultipleListPlot[conductionBand, valenceBand, cblLevell, cbLevel2, hhLevell, hhlLevel2,
hhLevel3, lhLevell, cbly, cb2y¢, hhly, hh2y, hh3y, 1hly, PlotJoined - True,

PlotStyle » {AbsoluteThickness[2], AbsoluteThickness[2], AbsoluteThickness[1],
AbsoluteThickness[1l], AbsoluteThickness[1l], AbsoluteThickness[1],
AbsoluteThickness[1l], AbsoluteDashing[{2, 2}], AbsoluteThickness[1],
AbsoluteThickness[1l], AbsoluteThickness[1], AbsoluteThickness[1],
AbsoluteThickness[1], AbsoluteDashing[{2, 2}]}, SymbolShape - None,

AspectRatio- 1.2, Axes - False, Frame - True, FramelLabel - {"A", "meV", "", ""}]

Print["well &g = ", &g, " eV, barrier eg = ", egb, " eV"]
Print["conduction band well depth = ", ech, " eV"]
Print["valence band well height = ", evh, " eV"]

Print["Electron Energies: ", eg, " meV"]
Print["Heavy Hole Energies: ", hheg, " meV"]
Print["Light Hole Energies: ", lhg, " meV"]

temperature = 77 K
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well eg = 0.333895 eV, barrier €g = 0.641398 eV
conduction band well depth = 0.230627 eV

valence band well height = 0.0768755 eV

Electron Energies: {55.0927, 210.669} meV

Heavy Hole Energies: {6.95165, 27.2429, 58.2015} meV

Light Hole Energies: {53.9502} meVv
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Appendix B: Spontaneous Emission Spectra Calculation

Sponlasb.m is the main program used to calculate the spectra. It calls P_InAsSb.m and P_BarB.m to input
the material parameters for the well and the barrier. It also calls efc.m and efv.m to help with the quasi-
Fermi level calculations.

SponlasB.m

o\°

This program is to calculate gain and spontaneous emission
spectrum for a QW laser structure.

o\°

o\°

assumptions: (1) parabolic band model (finite well)

(2) large strain regime in-plane effective mass
(ansiotropic mass) (?7?7?)
(3) non-Lorentzian line-shape function (Ch2,

o\®

o\°

o\°

OWL)

o\®

o\°

written by by C.F. Hsu 08/05/96

o\°

% modified for Laser B 08/01/97 by Anthony Franz

% last modified 08/26/97

% 1. specify well/barrier materials for p <materials.m
% 2. specify mole fractions of the materials

% 3. specify Gamma, alpha

% 4. choose QB=1 for QW, QB=2 for bulk

% 5. temperature T in K

% 6. conduction band offset ratio, Ec_off, in percent
% 7. Run Mathematica code to find energy levels

o\°

9. specify Ni(initial carrier density) & Nf (final
carrier density)

o

% 10. specify tau(scattering time)

clear

universal constant

o\°

c =2.998%107"8;

h =6.626%10" (-34) ;

h_=h/2/pi;

k =1.381%10"(-23);

m0=9.109*10" (-31) ;

e =1.602%10"(-19);

e0=8.854%10"(-12) ; $ permittivity

68




% condition parameters

T=input ('Enter temperature (K) --- '); % enter temperature
in K

x=0.065; % Sb concentration in well

xb=0.1; % Sb concentration in barrier

Al concentration in barrier

o\®

yb=0.15;
% material parameter (call function pr_ .m)

mp=p_inassb(T,x); % active layer region

Eg a=mp(1) ; % Energy band gap (eV)
Nr_a=mp(2) ; % refractive index

rl_a=mp(3); % gammal

r2_a=mp(4); % gamma?2

r3_a=mp(5) ; % gamma3

Me_a=mp(6) ; % electron effective mass (m0)
Mhz _a=mp(7) ; % z-direction HH effective mass (m0)
Mlz_a=mp(8) ; % z-direction LH effective mass (m0)
Mhx a=mp(9) ; % in-plane HH effective mass (m0)
Mlx a=mp(10) ; % in-plane LH effective mass (mO0)
S=mp (11) ; % splitting energy Eg(LH)-Eg(HH) (eV)
M 2=mp(12); % transition coefficient M*2
ee=mp(13) ; % static dielectric constant (e0)
mp=p_barB(T,xb,yb) ; % barrier layer region

Eg b=mp (1) ; % Energy band gap (eV)
Nr_b=mp(2) ; % refractive index

rl b=mp(3); % gamal

r2 _b=mp(4); % gama2

r3_b=mp(5); % gama3

Me_b=mp (6) ; % effective mass of e

Mh_b=mp (7) ; % of hh

M1 b=mp(8) ; % of 1h

% device parameters, kept from Jeff Hsu's code
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MT=M_2; % basis function momentum matrix
element M*2

Gama=0.01; % confinement factor, from Choi et
al, Apl.Phys.Lett.68,2936, (1996)

alfa=1.7; % internal loss 1/cm

eta_i=0.67; % injection efficiency

% potential profile, offset from Bill's thesis
Ec_off=0.75; % conduction band offset
dEc=Ec_off* (Eg _b-Eg_a);
dEv=(1-Ec_off) * (Eg_b-Eg_a);

% variable limits

o\°

initial Eeh-Eg

hv £=0.8; final Eeh-Eg

hv_step=0.001; step in photon energy
dhv=hv_i:hv_step:hv_f; % photon energy vector
dhvl=-1*hv_f:hv_step:2*hv_f; % photon energy vector

hv_i=0.001;

o\°

o\°

o\°

Data files generated at the very end of the code are named
after the carrier density so update these as well -
%

o\°

o\®
o\°

0.0.0.0.0.0.0.0.0.0.0.0.0.0
TR ESS

o\®

°
)

o\°

Ni=201*10"15; % initial carrier density (cm™-3)
Nf=250%10"15; % final carier density (cm™-3)

N step=1*107"15; % step (cm™-3)

% Entering quantum well width in A for Laser B
da=100; % QW thickness in A

% Entering conduction band and valence band for
eigenenergies at kt=0

Ecm=input ('Enter C subband energies (meV) --- ')/1000;
Ehm=input ('Enter HH subband energies (meV) --- ')/1000;
Elm=input ('Enter LH subband energies (mev) --- ')/1000;
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o\®

N _C: # of conduction subbands
N HH: # of HH subbands
N LH: # of LH subbands

N _C=length (Ecm) ;
N_HH=length (Ehm) ;
N _LH=length (Elm) ;

o\®

o\®

Ehl=Ehm(1) ;
in ch=min(N_C,N_HH); % # of C-HH transitions, k selection
rule

in cl=min(N_C,N_LH); % # of C-LH transitions, k selection
rule

% material parameter

dz=da; % QW thickness

Me=Me_a; % electron effective mass
Mhz=Mhz_a; % z-direction HH effective mass
Mlz=Mlz a; % z-direction LH effective mass
Mhx=Mhx a; % in-plane HH effective mass
Mlx=Mlx a; % in-plane LH effective mass

Mrh=Me*Mhx/ (Me+Mhx) ;% in-plane reduced C-HH effective mass
Mrl=Me*Mlx/ (Me+M1x) ;% in-plane reduced C-LH effective mass
Mrhz=Me*Mhz/ (Me+Mhz)% z-direction reduced C-HH effective
mass

Mrlz=Me*Mlz/ (Me+M1lz) ;% z-direction reduced C-LH effective
mass

nr=Nr_a; % refractive index

Ro=(nr-1) "2/ (nr+1)"2;% facet reflectivity

Rb=Ro; facet reflectivity

ee=ee*el; static dielectric constant

eel=nr"2*e0; optical dielectric constant

o\® o\°

o\®

Eg=Eg_a;

% initial conditions
iN=0;

% start of N loops

for N=Ni:N_step:Nf
iN=iN+1
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Eyc=0.15;% initial guess of electron fermi level Eyc=Efc-

Ec
Eyv=-0.01;% initial guess of hole fermi level Eyv=Ev-Efv
P=N;
Nm (iN) =N;

find fermi level Fc,Fv
dE=0.00001; % differential Energy (eV)
tol=0.00001; % tolerance

o\°

% using Newton method to find the solution of fermi level
Fcc=1; % assumed former initial guess

while abs (Eyc-Fcc) > tol
% if the difference between two consequent initial
guesses 1is greater than tolerance

yfc=efc (N,Eyc,Me, T,dz,Ecm) ; % initial guess as input
yfc_=(efc(N,Eyc+dE,Me, T,dz,Ecm) -yfc) /dE; % slope
Fcc=Eyc; % initial guess becomes
former inital guess
Eyc=Eyc-yfc/yfc_; % new initial guess
end
Fcm (iN) =Fcc; % Efc-Ec
Fvv=1; % assumed former initial guess

while abs(Eyv-Fvv) > tol

yfc=efv (P, Eyv,Mhx,M1x,T,dz, Ehm, Elm) ; % N in cm
yfc =(efv (N, Eyv+dE,Mhx,M1lx,T,dz,Ehm, Elm) -yfc) /dE;
Fvv=EyVv;
Eyv=Eyv-yfc/yfc_;

end

Fvm (iN) =Fvv; % Ev-Efv

Phm=Mhx*m0*k*T/ (pi*h_*2*dz*10" (-10)) *log (1+exp (e* (Fvv-
Ehm) / (k*T))) ;
Plm=M1x*m0O*k*T/ (pi*h_ "2*dz*10" (-10)) *log (1+exp (e* (Fvv-

Elm) / (k*T))) ;

gc=MT*e”2*h/2/ (e0*nr*c*m0”2) ; % B(hv) /hv/MT2
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rdh=Mrh*m0/2/pi/h *2/(dz*10" (-10)); % reduce density of
states for C-HH transition
rdl=Mrl*m0/2/pi/h *2/(dz*10%(-10)); % reduce density of

states for C-LH transition
ro=(4*pi*e”2*nr) / (e0*h"2*c*3*m0™2) *MT;% eqg.44, p.43 of QWL
gE_sum=dhv.*0;
gM_sum=dhv.*0;
rh_sum=dhv.*0;

rl sum=dhv.*0;

for ii=1:1:in ch % C_ii to HH_ii transition

fchl=(dhv-Ecm(ii) -Ehm(ii)) . *e*Mrh/Me; % Ee-Ecnz
in eq.29,p.34 QWL

fch2=(Ecm(ii) -Fcc) *e; % Ecnz-Efc

fch=1./(1+exp((fchl+fch2)./k/T)); % eq.28,
Fermi-Dirac distribution

fvhl=(dhv-Ecm(ii) -Ehm(ii)) . *e*Mrh/Mhx; % Ehnz-Eh

fvh2=(Ehm(ii) -Fvv) *e; % Efv-Ehnz

fvh=1./(1+exp ((fvhli+£fvh2)./k/T)); % (1-fv)
eqg.28,p.34 QWL

iic=0;

for iil=hv _i:hv_step:hv_£
iic=iic+1;
if fchl(iic) < O

gnh(iic)=0; % normalization
factor=0 when hv<Eg+Ecnz+Ehnz
elseif fchl(iic) == 0
gnh(iic)=1;
else
gnh(iic)=1;
end

end

cos2=(Ecm(ii) +Ehm(ii) ) * (Mrhz/Mrh) ./ ((dhv-Ecm(ii) -
Ehm(ii) )+ (Ecm(ii)+Ehm(ii) ) *Mrhz/Mrh) ; % cos”2(Theta_nz)

sh TE=0.5*% (1+cos2) ; % transition
strength S TE for HH, p.22 Kenny's thesis
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sh_TM=1-cos2; % transition strength
S _TM for HH, p.22 Kenny's thesis

gh_TE(ii,:)=((((dhv+Eg) .*e) .\ (gc*rdh)).*sh TE).* (fch -
(1-fvh))*0.01;
gE_sum=gE_sum+gh TE(ii, :).*gnh;

o\®

C-HH TE gain

gh_T™M(ii, :)=((((dhv+Eg) .*e) .\ (gc*rdh)).*sh TM).* (fch -
(1-fvh))*0.01;

gM_sum=gM_sum+gh_ TM(ii, :).*gnh; % C-HH TM gain

sh_avg=(2*sh TE+l1*sh TM)/3; % e average for
C-HH

X

rh=((( (dhv+Eg) . *e*rc) .*sh_avg) .*rdh) .* (£ch.*fvh); % C-HH
e average spontaneous

rh sum=rh_sum+rh. *gnh; % C-HH e average
spontaneous

end

for ii=1:1:in_cl % C_ii to LH_ii transition

fcli=(dhv-Ecm(ii) -Elm(ii)) .*e*Mrl/Me; % Ee-Ec in
eqg.29,p.34 QWL

fcl2=(Ecm(ii) -Fcc) *e; % Ec-Efc

fel=1./(1+exp((fcli+fcl2)./k/T)); % eq.28, Fermi-

Dirac distribution

fvlli=(dhv-Ecm(ii)-Elm(ii)) .*e*Mrl/Mlx; % Ev-Eh
fvl2=(Elm(ii) -Fvv) *e; % Efv-Ev
fvl=1./(l+exp((fvl1i+£fv12)./k/T)); $ (1-fv)

eq.28,p.34 QWL
iic=0;
for iil=hv_i:hv_step:hv_f

iic=iic+1;
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normalization

o\°

if fcll(iic) < O
factor=0 when hv<Eg+Ecnz+Elnz
gnl (iic)=0;
elseif fcll(iic) == 0

gnl (iic)=1;
else

gnl (iic)=1;
end

end

cos2=(Ecm(ii)+Elm(ii) ) * (Mrlz/Mrl) ./ ((dhv-Ecm(ii) -

Elm(ii) )+ (Ecm(ii)+Elm(ii) ) *Mxrlz/Mrl) ; % cos*2(Theta_nz)
sl TE=1/6*(5-3*cos2); % transition
strength S_TE for LH
sl _TM=1/3+cos2; % transition strength

S T™ for LH

gl _TE(ii, :)=((((dhv+Eg) .*e) .\ (gc*rdl)).*sl_TE).* (fcl -
(1-£fv1l))*0.01;

gE_sum=gE_sum+gl TE(ii,:).*gnl; $ + C-LH TE
gain

gl _TM(ii, :)=((((dhv+Eg).*e) .\ (gc*rdl)).*sl _TM).* (fcl -
(1-fv1))*0.01;

gM_sum=gM_sum+gl TM(ii, :).*gnl; % + C-LH T™
gain

sl _avg=(2*sl_TE+1*sl TM)/3; % e average for
C-LH

rl=((((dhv+Eg) .*e*rc) .*sl_avg) .*rdl) .* (fcl.*fvl);

rl_sum=rl_sum+rl.*gnl; % + C-LH e average
spontaneous
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end

% parameters used in the non-Lorentzian lineshape function
% Broadening factors

BFv=12+0.3*(N-1.5%10"18) /(0.2*10718) ; % broadening factor
(meV)

BFc=8+0.3*(N-1.5*10"18) /(0.2*10%18); % broadening factor
(meV)

BFFv (iN) =BFv;

BFFc (iN) =BFc;

o\®

tau_v=h_*1000/BFv/e;
time

tau_c=h_*1000/BFc/e;
time

t v (iN)=tau_v;

t_c(iN)=tau_c;

intraband scattering

o\P°

intraband scattering

% effective well widths, modified eq.38, p.112, QWL

A\

Le=[1:1:N_Cl*pi*h_./sqrt (2*Me*m0*Ecm*e) ; > effective
well width for e, eq.38, p.112, QWL

Lh=[1:1:N_HH] *pi*h_./sqrt (2*Mhz*mO0*Ehm*e) ; % effective
well width for HH, eqg.38, p.112, QWL '

Ll={1:1:N_LH] *pi*h_./sqrt (2*Mlz*m0*Elm*e); % effective
well width for LH, eq.38, p.1l12, QWL

\O

\O

o

% equivalent z component wavevectors, eg.38, p.112, QWL
kvit=pi/Lh(1) ; % equivalent z component wavevector,
kvl perpendicular, eq.38, p.112, QWL
kclt=pi/Lc (1) ; % equivalent z component wavevector,

kcl perpendicular, eq.38, p.112, QWL

% minimum of the effective well widths, in eq.41, p.113,
QWL

Leh=Lh (1) ;
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Lec=Lc (1) ;
% inverse screeing length

a_c=Me*m0*1./(1l+exp((Ecm-Fcc)*e/k/T)) ./Lec; % mcfc(Ec]) /Lcj

a_h=Mhx*m0*1./ (1+exp ( (Ehm-Fvv) *e/k/T)) . /Lh; %
mvfv(Evj)/Lvj for HH
a_1=Mlx*m0*1./(l+exp ( (Elm-Fvv)*e/k/T)) ./Ll; %
for LH
a_L=e”2/pi/h_"2/ee*(sum([a_c a_h a_1])); % eq.39, p.1l12,
QWL

o\®

T(0,kvlit,kvit), in eqg.64, p.124, QWL

T 1v=2/a_L+1/(a_L+4*kv1t"2);
T 2v=2/Leh/sqgrt(a_L) *(1-exp(-Leh*sqgrt(a_L)));
T 3v=1l/a_L-(a_L+8*kvlt”®2)/(a_L+4*kvlt™2)"2;
T_4v=Leh*kvlt*(Leh*kvlt-pi) * (a_L-
4*kvit”2) /4/ (a_L+4*kvlit™2) *2/ (exp (Leh*sqrt (a_L))-1) ;

T Lv=(T_1v-T 2v*(T_3v+T_4v))”"2; % eq.42, p.113, QWL

o\°

T(0,kclt,keclt), in eqg.64, p.124, QWL

T lc=2/a L+1/(a L+4*kclt™2);
T _2c=2/Lec/sqgrt(a_L) *(l-exp(-Lec*sqgrt(a_L)));
T 3c=1/a_L-(a_L+8*kclt”2)/(a_L+4*kclt”2)"2;
T _4c=Lec*kclt* (Lec*kclt-pi) *(a_L-
4*kclt”2) /4/ (a_L+4*kclt”2) "2/ (exp (Lec*sqrt (a_L))-1);

T Le=(T_1lc-T_2c*(T_3c+T_4c¢))™2; % eq.42, p.113, QWL
% big K, eqg.64, p.124, QWL

k_v=e”4/(48*pi*ee”2*h_ *Lh(1)"2)* (2*Mhx*m0/h_"2) "2*k*T;
% eq.64, p.124, constant in the front
k_c=e”4/(48*pi*ee”2*h *Lc (1) *2)* (2*Me*m0/h_"2) “2*k*T;
% eqg.64, p.124, constant in the front
Kv=k_v*tau v*T Lv/(l+exp(-Fvv*e/k/T));
eq.64, p.124, QWL
Kc=k_c*tau_c*T_Lv/(l+exp(-Fcc*e/k/T));
eq.64, p.124, QWL

o\°

o\°
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o

BGR

N_2D=N*10"6* (dz*10" (-10)) ; n2D 1/m"2
d L=0*(-1)*e”2/4/ee/Lh (1) *sqrt (T_Lv) * (N_2D) ; %
delta vl, eqg.63, p.123, QWL

o\°

[

% lineshape normalization factor

G _vf=h_/2/tau_v*(l+exp((Eg- (Eg+dhvl) -
Fvv) .*e/k/T)) ./ (l+exp (-Fvv*e/k/T)) ;
G _v1=G_vf.*exp((-Kv*e*abs (Eg- (Eg+dhvl))) ./k/T); %
G_v1k11l(E), eqg.62, p.123, QWL
G_cf=h _/2/tau_c* (1+exp((Eg- (Eg+dhvl) -
Fcc) .*e/k/T)) ./ (1+exp (-Fcc*e/k/T)) ;
G_c1=G_cf.*exp((-Kc*e*abs (Eg- (Eg+dhvl))) ./k/T);
G c1kl1l(E), eq.62, p.123, QWL

o\

Ln=e*1/pi* (G v1+G cl1)./(((Eg- (Eg+dhvl)) .*e-
d_L)."2+(G_v1+G_cl)."2).*(1-i*((dhvl+Eg-
Eg)+d _L/e) ./ (G_v1+G_cl) *e);

sum_L=sum(real (real (Ln)) ) *hv_step; % normalization
factor

ic=0;
chv=Eg-0.08*hv_f:hv_step:Eg+0.7*hv_f;
for oj=1:length(chv)

ic=ic+1;

Q

% non-Lorentzian lineshape

G _vE=h_/2/tau_v* (l+exp((chv(oj) - (Eg+dhv) -
Fvv) .*e/k/T)) ./ (l+exp (-Fvv*e/k/T)) ;
G v1=G vf.*exp((-Kv*e*abs(chv(oj) - (Eg+dhv)))./k/T);
% G_vl1kl1l(E), eq.62, p.123, QWL

G _cf=h _/2/tau_c* (1+exp((chv(oj) - (Eg+dhv) -
Fcc) .*e/k/T)) ./ (l+exp(-Fcc*e/k/T)) ;
G_cl=G cf.*exp((-Kc*e*abs (chv(oj) - (Eg+dhv))) ./k/T);
% G_clk1l1(E), eqg.62, p.123, QWL
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G _L=G_v1+G _cl;

L=e*1/pi*G_L./(((chv(oj) - (Eg+dhv)) .*e-
d_L)."2+G_L."2) .*(1-i* ((dhv+Eg-chv(oj))+d_L/e)./G L*e);

L=L/sum_L;
gEc (iN, ic) =sum(L.*gE_sum) *hv_step;
rch_sum(iN, ic) =sum (L. *rh_sum) *hv_step;

rcl_sum(iN, ic)=sum(L.*rl_sum) *hv_step;

end % end of ic

gEu (iN, :) =gE_sum; % unconvolved gain spectra

Rspu (iN, :) =rh_sum+rl_ sum; % unconvolved spontaneous
emission

[gc_max (iN) iMAX (iN)]=max (real (gEc(iN, :)));

L_cav(iN)=0.5*1log(1/(Ro*Rb)) /(Gama*gc max (iN) -alfa); %
cavity length

hv_lasing (iN) =chv (iMAX (iN) ) ; % lasing
energy

o\°

lamda_lasing (iN)=h*c/e/hv_lasing(iN) ;
wavelength

o\°

Rspc (iN, :)=rch_sum(iN, :) +rcl_sum(iN, :);
convolved spontaneous emission

jrad (iN)=real (sum(Rspc (iN, :)) * (hv_step*e) *e/10"4*dz*10" (-
10)); % Jrad in A/ (cm™2)

end % end of N loops

79




jth=jrad/eta_i; % Jth in A/cm”2

% plot unconvolved TE gain
$figure (1)

%$plot (dhv+Eg, gEu)

% plot convolved TE gain
$figure (2)

%$plot (chv, real (gEc))

% plot unconvolved spontaneous emission
$figure (3)

%plot (dhv+Eg, Rspu)

% plot convolved spontaneous emission
$figure (4)

%plot (chv, real (Rspc))

% plots I added

$figure (5)

%¥plot (dhv+Eg,Rspu(l, :),chv, real (Rspc(1,:)))

$xlabel ('Energy (eV)!')

%title(['Spontanoceus Emission, N=', num2str(Ni)])

$figure (6)

%$plot (dhv+Eg,Rspu(2, :),chv,real (Rspc(2,:)))
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$xlabel ('Energy (eV)')
$title(['Spontanoceus Emission, N=', num2str (Ni+N_step)])

$figure (7)

$plot (dhv+Eg,Rspu(3, :) ,chv,real (Rspc(3,:)))
%xlabel ('Energy (eV)')

$title(['Spontanoceus Emission, N=', num2str(Nf)])

$figure (8)

$plot (dhv+Eg,gEu(l, :),chv,real (gEc(1,:)))
$xlabel ('Energy (eV)')

$ylabel ('cm™-1")

$title(['TE Gain, N=',num2str(Ni)])

$figure (9)

$plot (dhv+Eg,gEu(2, :) ,chv,real (gEc(2,:)))
¥xlabel ("Energy (eV)')

$ylabel ('cm™-1")

%title(['TE Gain, N=',num2str (Ni+N step)])

$figure (10)

$plot (dhv+Eg,gEu (3, :),chv,real (gEc(3,:)))
%$xlabel ('Energy (eV)')

$ylabel (‘cm™-1")

$title(['TE Gain, N=',num2str(Nf)])

)

%save 150testx.txt chv -ascii; % me##x.txt: x data for 107##

$export=real (Rspc(l,:));

Q

%save 150testl.txt export -ascii; % mife##f.txt: y data for #

x 1074#4#

yexport=real (Rspc(2,:));

%save 150test2.txt export -ascii;
%$export=real (Rspc(3,:));

%¥save 150test3.txt export -ascii;

save all2x1l7x.txt chv -ascii;

export=real (Rspc) /10%49;
save all2xl17.txt export -ascii;

P_InAsSb.m

function mt=p inassb (T, x)
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last modified by Anthony Franz on 7 Aug 97

well material for laser B

material parameters for InAs(l-x)Sb(x) at temp T K

output mt=[Eg Nr gamal gama2 gama3 Me Mhz Mlz Mhx Mlx S M2 ee]

o of o of

strain effect on energy gap is included
% matrix elements approximated from k.p model

e

m0=9.109%10" (-31) ;
e =1.602*10"(-19) ;

% Luttinger parameters

gamalInAs = 20.4; % LB, vol 22a, p 118
gamalInSb = 36.13; % LB, vol 22a, p 126
gamal = x*gamalInSb + (1 - X)*gamallnAs;
gama2InAs = 8.3; % LB, vol 22a, p 118
gama2InSb = 16.24; % LB, vol 22a, p 126
gama2 = x*gama2InSb + (1 - x)*gama2InAs;
gama3InAs = 9.1; % LB, vol 22a, p 118
gama3InSb = 17.34; % LB, vol 22a, p 126
gama3 = x*gama3InSb + (1 - Xx)*gama3InAs;

% energy gap with no strain, from Rogalski, Infrared Phys., vol 29, no
1, p 35, 1989

$egNoStrain=0.411-(3.4*%10"(-4) *T*2) /(T+210) -0.876*x+0.7*x" 2+ (3.4*10" (-
4) *T*x* (1-x)) ;

% strain correction to energy gap

a0InAs = 6.0583; % LB1991, p 136

a0InSb = 6.47937; % LB1991, p 144 }
a0 = x*a0InSb + (1 - x)*a0InAs; % well lattice parameter in Angstroms
al0s = a0InAs; % substrate lattice parameter

cllInAs = 8.329; % LB1991, p 137

cllInSb = 6.669; % LB1991, p 147

cll = xX*cllInSb + (1 - x)*cllInAs; % elastic stiffness coefficients in
10°11 dyne/cm”2

cl2InAs = 4.526; % LB1991, p 137

cl2InSb = 3.645; % LB1991, p 147

cl2 = x*cl2InSb + (1 - x)*cl2InAs;

alnAs = -6.0; % Blacha, Phys Stat Sol b, voll26, p 11, table 2

aInSb = -7.7; % Blacha, Phys Stat Sol b, voll2é6, p 11, table 2
a = x*aInSb + (1 - x)*alInAs; % hydrostatic deformation potential in eV
bInAs = -1.8; % Blacha, Phys Stat Sol b, voll26, p 11, table 3

bInSb = -2.0; % Blacha, Phys Stat Sol b, voll2s, p 11, table 3
b = x*bInSb + (1 - x)*bInAs; % shear deformation potential in eV

es = (a0 - a0s)/a0; % compressive strain (positive) from eq 9, p. 377 of
Zory, QWL
delehh = -2*a*es*(cll - cl12)/cll + b*es*(cll + cl12)/cll; % change in hh

position relative to cb, eq7,p377,QWL
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delelh = -2*a*es*(cll - cl2)/cll - b*es*(cll + 2*cl2)/cll; % change in
hh position relative to cb, eq8,p377,QWL

egNoStrain = 0.327479 - (3.79476*10°(-4)*T"2) /(T + 346.193);

Eg = egNoStrain + delehh; % strain corrected energy gap in eV

S = delelh - delehh; % strain induced hh-1lh gap in eV

% effective masses

meInAs = 0.0239; % LB1991, p 134

meInSb = 0.01359; % LB1991, p 142

Me = x*meInSb + (1 - x)*meInAs; % electron effective mass

mhhzInAs = 0.35; % LB1991, p 134

mhhzInSb = 0.34; % LB1991, p 142

Mhz = x*mhhzInSb + (1 - x)*mhhzInAs; % z-direction hh effective mass
mlhzInAs 0.026; % LB1991, p 134

mlhzInSb 0.0158; % LB1991, p 142

Mlz = x*mlhzInSb + (1 - x)*mlhzInAs; % z-direction lh effective mass
mhhxInAs = 0.35; % LB1991, p 134

mhhxInSb = 0.42; % LB1991, p 142

Mhx = x*mhhxInSb + (1 - x)*mhhxInAs; % in-plane hh effective mass
mlhxInAs = 0.026; % LB1991, p 134

mlhxInSb = 0.0158; % LB1991, p 142

Mlx = x*mlhxInSb + (1 - x)*mlhxInAs; % in-plane lh effective mass

nInAs = 3.714; % LB1991, p 138
nInSb = 4.418; % LB1991, p 148
Nr = x*nInSb + (1 - X)*nInAs; % index of refraction

elnAs 15.15; % LB1991, p 138
eInSb = 16.8; % LB1991, p 147
ee = x*eInSb + (1 - x)*elInAs; % static dielectric constant coefficient

delso = 1.17*x"2 - 0.75*x + 0.39; % spin-orbit splitting in eV, from
Rogalski, 1989
M2 = (1/Me - 1)*((Eg + delso)/(2*(Eg + delso*(2/3))))*Eg*mO*e; %
momentum matrix elements, eqg54,p49, QWL

mt=[Eg Nr gamal gama2 gama3 Me Mhz Mlz Mhx Mlx S M2 ee];

P_BarB.m

function mt=p_barB(T,x,y)

% last modified by Anthony Franz on 7 Aug 97

% barrier material for laser B

% material parameter for In(1l-y)Al(y)As(1-x)Sb{x) at temp T K
% output mt=[Eg Nr gamal gama2 gama3 Me Mh M1]

m0=9.109*%10" (-31) ;
e =1.602*10"(-19);
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% final values are interpolated using formula from LB, vol 22a, p 151
% strain in the barrier layer has not been considered

% Luttinger parameters

gamalInAs 20.4; % LB, vol 22a, p 118

gamalInSb = 36.13; % LB, vol 22a, p 126

gamalAlAs = 4.04; % P. Lawaetz, Phys Rev B, vol 4, p 3460
gamalAlSb = 4.15; % Lawaetz

gamal = (1-x)*y*gamalInSb + (1-x)*(1l-y)*gamalInAs + x*y*gamalAlSb +
x* (1-y) *gamalAlAs;

gama2InAs = 8.3; % LB, vol 22a, p 118

gama2InSb = 16.24; % LB, vol 22a, p 126

gama2AlAs = 0.78; % Lawaetz

gama2AlsSb = 1.01; % Lawaetz

gama2 = (1-x)*y*gama2InSb + (1-x)*(1l-y)*gama2InAs + x*y*gama2AlSb +
x* (1-y) *gama2AlAs;

gama3InAs = 9.1; % LB, vol 22a, p 118

gama3InSb = 17.34; % LB, vol 22a, p 126

gama3AlAs 1.57; % Lawaetz

gama3Alsb 1.75; % Lawaetz
gama3 = (1-x)*y*gama3InSb + (1-x)*(1l-y)*gama3InAs + x*y*gama3AlSb +
x* (1-y) *gama3AlAs;

% energy gaps in eV from Varshni's relation (Physica, vol 34, p 149,
1967)

alphalInAs = 2.76*10" (-4);
betaInAs = 83;
eg0InAs = 0.415; % parameters from Fang, J Appl Phys, vol 67, p 7034,
1990
egInAs = eg0InAs - alphaInAs*T" 2/ (T+betalInas);
alphaInSb = 2.7*%10"(-4);
betalInSb = 106;
eg0InSb = 0.235; % parameters from Fang, J Appl Phys, vol 67, p 7034,
1990
egInSb = eg0InSb - alphaInSb*T*2/(T+betaInSb);
alphaBAlAs = 15.35*%10%(-4); % calculated from data from:
betaAlAs = 1018; % Monemar, Phys Rev B, vol 8, p 5711, 1973
eg0AlAs = 3.133; % LB vol 22a, p 63
egAlAs = egOAlAs - alphaAlAs*T"2/(T+betalAlAs);
alphaAlSb = 4.68*10%(-4); % calculated from data from:
betaRAlSb = 190; % Joullie, Phys Rev B, vol 25, p 7830, 1982
eg0AlSb = 2.384; $ LB vol 22a, p 67
egAlSb = eg0AlSb - alphaAlSb*T"2/(T+betaAlsb) ;
Eg = (1-x)*y*egInSb + (1-x)*(l-y)*egInAs + x*y*egAlSb + x*(1-y)*egAlAs;

% barrier lattice parameter in case I need to add in strain later
% a0InAs = 6.0583; % LB1991, p 136

% a0InSb = 6.47937; % LB1991, p 144

% aOAlAs = 5.660; % LB1991, p
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% a0OAlsb = 6.1355; % LB1991, p
%al0b = (1-x)*y*a0InSb + (1-x)*(1-y)*a0InAs + x*y*aOAlSb + x*(1-

y) *aOAlAs;

% effective masses

meAlSb = 0.259;
meAlAs = 0.15;
meInAs = 0.0239; % LB1991, p 134

meInSb = 0.01359; % LB1991, p 142

Me = (1l-x)*y*melInSb + (1-x)*(1-y)*meInAs + x*y*meAlSb + x* (l-y)*meAlAs;
mhhzAlSb 0.336;

mhhzAlAs 0.409;

mhhzInAs = 0.35; %, LB1991, p 134

mhhzInSb = 0.34; % LB1991, p 142

Mh = (1-x)*y*mhhzInSb + (1-x)*(1-y)*mhhzInAs + x*y*mhhzAlSb + x*(1-
y) *mhhzAlAs;

mlhzAlSb 0.123;

mlhzAlAs = 0.153;

mlhzInAs = 0.026; % LB1991, p 134

mlhzInSb 0.0158; % LB1991, p 134
Ml = (1-x)*y*mlhzInSb + (1-x)*(1-y)*mlhzInAs + x*y*mlhzAlSb + x* (1-
y) *mlhzAlAs;

]

% index of refraction

ninAs 3.714; % LB1991, p 138

nInsSb 4.418; % LB1991, p 148

nAlAs = 2.875; % RE Fern, A Onton, J Appl Phys, vol 42, p.3499, 1971
nAlsb = 3.182; % LB1991, p 85

Nr = (1-x)*y*nInSb + (1-x)*(1-y)*nInAs + x*y*nAlSb + x*(1l-y)*nAlAs;

mt=[Eg Nr gamal gama2 gama3 Me Mh M1];

efc.m

function yf=Efc(N,E,Me,T,d, Ecm)

%
%

% This subroutine is to calculate the Fermi level of conduction band
% N = carrier density (1/cm™3)

% Me= conduction band effective mass
% T = temperature (K)

% d = active layer thickness (A)

% Ecm= eigenvalue of Ecl,Ec2..

%

% universal constants

c =2.998*%10"8;

h =6.626%10" (-34) ;

h_=h/2/pi;
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k =1.381%10"(-23);

m0=9.109%10" (-31) ;

e =1.602*10"(-19);

%

c1=Me*mO*k*T/(pi*h_AZ*d*loA(—IO));

%

ym=cl*log(l+exp( e/k/T* (E-Ecm) ));

yf=sum(ym) ; % sum of N(subbands)

yE=yE-N*10"6; % [sum of N(subbands)]-([N(given)]. if yf=0, we get the
solution

efv.m

function yf=Efv(N,E,Mh,M1,T,d,Ehm,Elm)

This subroutine is to calculate the Fermi level of conduction band
N = carrier density (1/cm”3)

Mh= heavy hole effective mass

Ml= light hole effective mass

T = temperature (K)

d = active layer thickness (A)

universal constant

=2.998*10"8;
=6.626%10" (-34) ;
_=h/2/pi;
k =1.381%10"(-23);
m0=9.109%10"(-31) ;
e =1.602*10"(-19);
%
ch=Mh*m0*k*T/ (pi*h_"2*d*10*(-10)) ;
cl=M1*mO0*k*T/ (pi*h_*2*d*10*(-10));

%

vhm=ch*log (1+exp( e/k/T* (E-Ehm) ));
ylm=cl*log(l+exp( e/k/T* (E-Elm) ));
yf=sum (yhm) +sum(ylm) ;

yf=yf-N*10"6;

00 0 0P 0P o o0 o o O o P o o of
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Appendix C: Width Calculations and Convolution of Calculated Spectra

This files convolves the calculated spontaneous emission spectra with the measured pump spectra and creates a file of the
results.

Off[General::"spelll"]
This module calculates the FWHM of a set of x,y data. The x-data should be in one list and the y-data in another list.

fwhm[x_, y_] :=Module[{max, i, count, xlow, xhigh}, max = Max[y];
For[i=1; count=1, y[[i]] <= 0.5max, count=1i; i =1i+1];

(x[[count +1]] - x[[count]]) (0.5max - y[[count]])
xlow = + x[[countl]:
y[[count +1]] -~ y[[count]]

For[i = Flatten[Position[y, max]][[1]]; count =1, y[[i]] >= 0.5max, count=i; i=1i+1];
(x[[count +1]] - x[{count]]) (0.5max - y[[count]])

xhigh = y[[count +1]] -y[[count]] + x[[count]];

xhigh - xlow]
Read in calculated spectra. Check the file names. The magnitudes have been divided by 10*°.

xData = ReadList["c:\Tony\Thesis\Calculations\SpectralData\unconvx.txt", Number];
yData = ReadList["c:\Tony\Thesis\Calculations\SpectralData\unconv. txt",
Number, RecordLists -> True];

Length[yData]
Length[yData[[1]]]

100

625
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testPlotData = Transpose[{xData, yData[[1]]}];
testPlotData2 = Transpose[{xData, yData[[100]]}]1;
ListPlot[testPlotData, PlotRange -> All]
ListPlot[testPlotData2, PlotRange -> All]
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= Graphics =
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- Graphics =

List of the carrier densities associated with each spectrum.
density = Table[i 10®, {i, 100}];
Find the widths before convolution.

calcwidth = {};

Do[dataPoint = fwhm[xData, yData[[i]]]:
AppendTo[calcwidth, dataPoint],
{i, 1, Length[yData]}]
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Length[calcwidth]

100

plotData = Transpose[{N[density 107*7], N[1000 calcwidth]}]:

calcPlot =
ListPlot[plotData, PlotRange -> {{0, 10}, {O, 110}}, Axes -> False, Frame -> True,
FrameLabel -> {"Density (10'7 cm™3)", "Width (meV)", "Calculated Widths", ""}]
Calculated Widths
100 ...__.....
—~ 80
>
~ 60 *
5
o 40
= o
20 ..... o

2 4 6 8 10
Density (10'7 cm3)

=~ Graphics =
Writes a tab delimited file of width vs. n data called "CalculatvedWidthVsDensity.txt"

outputl = OpenWrite["CalculatedWidthVsDensity.txt"]

OutputStream[CalculatedWidthVsDensity.txt, 5]
Do[WriteString[outputA, ToString[plotData[[i, 1]] 1,

"\t", ToString[plotDataf[[i, 2]]], "\n"], {i, 1, Length [plotDatal}]:;
Close[outputa];

Load the measured pump spectrum. Subtract the background and normalize it before fitting. The fit is with a 30" order
polynomial.

Needs["NumericalMath'PolynomialFit "]
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pumpData =
ReadList["c:\Tony\Thesis\Calculations\DensityVsTime\pumpdata.txt"”, {Number, Number}];
xpumpData = Table[pumpData[[i, 1]], {i, 1, Length[pumpDatal]}];
ypumpDataBG = Table [pumpData[[i, 2]], {i, 1, Length{pumpData]}]:
ypumpDataBG2 = Table[ypumpDataBG[[i]] - 4000, {i, 1, Length[xpumpData]}}:
ypumpData =
Table[If[ypumpDataBG2[[i]] <0, 0, ypumpDataBG2[[i]]], {i, 1, Length[xpumpData]}];
pumpNormalization = Sum[ypumpData[[i]], {i, 1, Length[ypumpData]}]:
ypumpData = Table[ypumpData[[i]] / pumpNormalization, {i, 1, Length[xpumpDatal}];
pumpFitData = Table[{xpumpData[[i]], ypumpData[[i]]}, {i, 1, Length[xpumpData] }];
Clear([e];
pumpFit = PolynomialFit[pumpFitData, 30];
Length[xpumpData]

1021

xpumpData[[1]]
xpumpData[[-1]]

1.48904

1.60857

dataPlot = ListPlot[pumpFitData, DisplayFunction -> Identity];

fitPlot = Plot[pumpFit[e], {e, 1.489, 1.609}, DisplayFunction -> Identity];

Show[dataPlot, fitPlot, DisplayFunction -> $DisplayFunction, PlotRange -> {0, 0.0005}]
0.0005 [
0.0004¢
0.0003¢

0.0002¢

0.0001

e

- Graphics =

1.52 1.54 1.56 1.58 1.6

Data for pump with same x spacing as the spectra (1 meV).

XPump = Table[1.51+4i, {i, 0, 1.6-1.51, 0.001}];

yPump = Table[pumpFit[xPump[[i]]], {i, 1, Length[xPump] }1:
pumpPlotData = Transpose[{xPump, yPump}];
Length[pumpPlotData]

91
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1

ListPlot[pumpPlotData, PlotRange -> {0, 0.001}]
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= Graphics =
Set up pump with 512 data points for Fourier transform.

buffer = Table[0, {i, (512 - Length[xPump] - 1) /2}];
largeYPump = Flatten[Prepend[yPump, buffer]];
largeYPump = Flatten[Prepend[largeYPump, {0}1];
largeYPump = Flatten[Append[largeYPump, buffer]];
Length[largeYPump]

512
Drop end elements of the spectra so they are 512 elements long.
shortYData = Table[Drop[yData[[i]], - (Length[xData] - 512)], {i, Length[yData)}];

Length[shortYData]
Length[shortYData[[1]]]

100
512
Set up an x data list with the same spacing between points as the other lists (1 meV).
xConv = Table[0+0.0011i, {i, 1, Length{xData]}];:
Convolve using Fourier transforms.
conv = Table [R;tateRight [InverseFourier[Fourier[RotateLeft| shortYData[[i]], 256]]}

Fourier[RotateLeft[largeYPump, 256]]], 256],
{i, 1, Length[yData]}];
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ListPlot[Abs[conv[[10]]], PlotRange ~> All]
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0.15¢
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- Graphics =

Find the widths of the convolved spectra.

convwidth = {};

Do[dataPoint = fwhm[xConv, Abs[conv[[i]]]];
AppendTo[convwidth, dataPoint],
{i, 1, Length[yData]l}]
Length[convwidth]

100
plotConvData = Transpose[{N[density 107*7], 1000 convwidth}};
plotConvData[[-1]]

{10., 107.592})

Printed by Mathematica for Students 92




convPlot =
ListPlot[plotConvData, PlotRange -> {{0, 10}, {0, 110}}, Axes -> False, Frame -» True,

FrameLabel -> {"Density (10'7 em™3)", "Width (meV)", "Convolved Widths", ""}]
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Density (10%7 cm3)
= Graphics =
Compare the widths of the calculated spectra with the corresponding convolved spectra.
Show[calcPlot, convPlot, Graphics{Text["Convolved", {0.1, 40}, {-1, -0. 1311,

Graphics[Text["Calculated", {2, 20}, {-1, 0}11],
FrameLabel -> {"Density (107 em™3)", "Width (meV) ", "Comparison", ""}]

Comparison
100
- 8 O .‘.‘.cu ]
> .l'..
qﬁ) .-"...
= 6 0 "'.ll

Width

2 4 6 8 10
Density (107 cm™?)

= Graphics =

diff = Table[ convwidth[[i]] - calcwidth[[i]], {i, 1, Length[density]}]:
plotDiffData = Transpose[{density 1077, 1000 diff}];
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ListPlot[plotDiffData, Axes -» False, Frame -> True,
FrameLabel -> {"Density (10" cm™)", "(meV)", "Convolved - Calculated”, ""}]
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= Graphics =
Writes a tab delimited file of width vs. n data called "Fourier5 12WidthVsDensity. txt"

outputB = OpenWrite["Fourier512WidthVsDensity. txt"]

OutputStream[Fourier512WidthVsDensity. txt, 40]

Do[WriteString[outputB, ToString [plotConvData[[i, 1]1].
"\t", ToString[plotConvData[[i, 2]]1], "\n"], {i, 1, Length[yData]}];
Close[outputB];

Convolve by summation.

pumpLength = Length[xPump] ;
pllength = Length[xData};
xConv = Table[xPump[[-1]] + xData[[3]1], {j, 1, pllength - pumpLength + 1}];
pumpLength
yConv = Table [Table[ Z (yPump[[-i]] yData[[k, j+i-1]]),
izl
{j, 1, plLength - pumpLength + 1}] + {k, 1, Length[yData] }] ;
Length[yConv]

100

Length[yConv[[1]]]

535
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testData = Transpose[{xConv, yConv[[1]]}]:
ListPlot[testData, PlotRange ~-> All]
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= Graphics =

Find the widths of the convolved spectra.

convSumWidth = {};
Do[dataPoint = fwhm[xConv, yConv[{[i]]];
AppendTo[convSumWidth, dataPoint],
{i, 1, Length[yConv]}]
Length[convSumWidth]

100

plotConvSumData = Transpose[{N[density 10°!7], 1000 convSuraWidth}];
plotConvSumData[[-1]]

{10., 107.592}
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convSumPlot =
ListPlot[plotConvSumData, PlotRange -> {{0, 10}, {0, 110}}, Axes -> False, Frame -> True,

FrameLabel -> {"Density (1017 cm3) ", "Width (meV)", "Convolved Widths", ""}]
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= Graphics =
Compare the widths of the calculated spectra with the corresponding convolved spectra.
Show[calcPlot, convSumPlot, Graphics[Text["Convolved", {0.1, 40}, {-1, -0.1}]1,
Graphics[Text["Calculated", {2, 20}, {-1, 0}]],

FrameLabel -> {"Density (107 em3)", "Width (mev)", "Comparison", ""}]
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= Graphics =

diff = Table[ convSumWidth[[i]] - calcwidth[{[i]], {i, 1, Length[density]}]:
plotDiffSumData = Transpose[{density 1077, 1000 diff}];
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ListPlot[plotDiffSumData, Axes -> False, Frame -> True,
FrameLabel -> {"Density (10’ em3)", "(meV)", "Convolved - Calculated", ""1]
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= Graphics =
Writes a tab delimited file of width vs. n data called "ConvolvedWidthVsDensity.txt"

outputB = OpenWrite["ConvolvedWidthVsDensity.txt"]

OutputStream[ConvolvedWidthVsDensity. txt, 39]
Do[WriteString[outputB, ToString[plotConvSumDatal[[i, 1]]],

"\t", ToString[plotConvSumData[[i, 2]]], "\n"], {i, 1, Length[yData]}]:
Close[outputB];
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Appendix D: Carrier Density as a Function of Time

This file maps the carrier density to the delay time using the convolved calculated widths and the measured widths.

Off[General::"spelll"]
h=6.62610"%; c=2.99810%; e=1.60210"%%;

Read in the convolved calculated spectral widths. Check the file name. Format is {density, width} where densities are in units
of 10'7 / cm® and widths are in units of meV.

calc = ReadList["c:\Tony\Thesis\Calculations\
DensityVsTime\ConvolvedWidthVsDensity.txt", {Number, Number}];
Length[calc]

100

Read in the measured spectral widths. Check the file name. Format is {time, low, high, FWHM} where time is in ps and
everything else is in nm.

measnm = ReadList["c:\Tony\Thesis\Calculations\DensityVsTime\WidthVsTimenm. txt",
{Numbexr, Number, Number, Number}]:;
Length[measnm]

30

Convert measured widths to meV and times to ns.

mTomeV = 1000hc/e;
meas = Table[{N[measnm[[i, 1]]/1000],

mTomeV mTomeV
- }» {i, Length[measnm]}];
measnm{[i, 2]] 10°® measnm[[i, 3]] 10~°
Length[meas]

30
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TableForm[meas, TableHeadings -> {{}, {"Time (ns)", "Width (meV)"}}]

Time (ns) Width (meV)
81.0064
77.1179
74.534
70.3492
63.4071
61.811
57.7276
53.9536
54.9048
52.9698
50.8694
53.9536
47.7102
47.7102
44.5611
46.0618
42.4294
43.0309
42.0887
42.0887
42.9903
42.4294
43.9601
42.9903
39.8561
38.353
33.7234
35.2288
33.7234
33.6704
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ListPlot[meas, Axes -> False, Frame ->» True,
FrameLabel -> {"Time (ns)", "Width (meV)", "Measured", ""}]
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= Graphics =
This module finds an X value for a Y value equal to A using interpolation on the X,Y list of data.
intfa_, x_, y_] :=Module [{i, count, xa},
For[i=1; count =1, y[[i]]l <=a, count=1i; i=1+1};

(y[[count +1]] ~a) (x[[count +1]] - x[[count]])
xa = x[[count]] - ]
y[[count +1]] - y[[count]]

Calculate a table of n vs. t.

xData = Table[calc[[i, 1]], {i, Length[calcl}]:
' yData = Table[calc[[i, 2]], {i, Length[calc]}]};
nt = Table[{meas[[i, 1]], int[meas[[i, 2]], xData, yDatal}, {i, Length[meas]}]:

Length[nt]

30
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TableForm[nt, TableHeadings -> {{}, {"Time (ns)", "n (1017 cm™3)"}}]

Time (ns) n (10Y7 cm3)
.1 7.38127
7.00538
6.75402
6.34424
5.65386
5.49289
5.07474
4.67895
4.77991
4.57415
4.,34777
4.67895
3.99695
3.99695
3.63213
3.8081
3
3
3
3
3
3
3
3
3
2
2
2
2
2

W o dJov b Wi

.37363
.44734
.33156
.33156
.44238
.37363
.56022
.44238
.04655
.84505
.15773
.39615
.15773
.1492
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ListPlot[nt, Axes -> False, Frame -> True,

FrameLabel -> {"Time (ns)", "n (1017 em™)", "n vs. t", ""}]
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= Graphics =
Writes a tab delimited file of carrier density vs. time called "DensityVs.Time.txt"

outputA = OpenWrite["DensityVsTime.txt"]

OutputStream[DensityVsTime.txt, 5]

Do[WriteString[outputa,
ToString[nt[[i, 1]]], "\t", ToString[nt[[i, 21]1], "\n"], {i, 1, Length[nt]}]:

Close[outputA];
Writes a tab delimited file of meassured width vs. time called "WidthVsTimemeV.txt"
outputB = OpenWrite["WidthVsTimemeV.txt"]

OutputStream[WidthVsTimemeV. txt, 6]

Do[WriteString[outputB, ToString[meas[[i, 1]]1],
"\t", ToString[meas[[i, 2]]1], "\n"], {i, 1, Length[meas]}];

Close[outputB];

Printed by Mathematica for Students 102




Bibliography

Agrawal, G.P. and N.K. Dutta. Semiconductor Lasers, 2™ ed. New York: Van Nostrand
Reinhold, (1993).

Asada, M. “Intraband Relaxation Effect on Optical Spectra,” in Quantum Well Lasers, ed.
P.S. Zory. San Diego: Academic, (1993).

Aspnes, D.E., and A.A. Studna. Phys. Rev. B 27, 985, (1983).
Blacha, A., H. Presting, and M. Cardona. Phys. Status Solidi B 126, 11, (1984).

Bransden, B.H. and C.J. Joachain. Physics of Atoms and Molecules. Essex, England:
Longman Scientific & Technical, (1983).

Choi, HK., G.W. Turner, M.J. Manfra, and M.K. Connors. 4ppl. Phys. Lett. 68, 2936,
(1996).

Cohen-Tannoudji, C., B. Diu, and F. Lalo&. Quantum Mechanics. New York: Wiley,
(1977).

Coleman, J.J. “Strained Layer Quantum Well Heterostructure Lasers,” in Quantum Well
Lasers, ed. P.S. Zory. San Diego: Academic, (1993).

Cooley, W.T., Private Communication, (1996).

Corzine, S.W., R.H. Yan, and L.A. Coldren. “Optical Gain in IlI-V Bulk and Quantum
Well Semiconductors,” in Quantum Well Lasers, ed. P.S. Zory. San Diego:
Academic, (1993).

Dmitriev, V.G., G.G. Gurzadyan, and D.N. Nikogosyan. Handbook of Nonlinear Optical
Crystals. Berlin: Springer-Verlag, (1991).

Fang, ZM., K.Y. Ma, D.H. Jaw, R M. Cohen, and G.B. Stringfellow. J. Appl. Phys. 67,
7034, (1990).

Fern, R.E. and A. Onton. J. Appl. Phys. 42, 3499, (1971).

Jansson, P.A. “Convolution and Related Concepts,” in Deconvolution with Applications
in Spectroscopy, ed. P.A. Jansson. Orlando: Academic, (1984).

Joullie, A., B. Girault, A.M. Joullie, A. Zien-Eddine. Phys. Rev. B 25,7830, (1982).

Kittel, C. and H. Kroemer. Thermal Physics, 2™ ed. New York: W.H. Freeman, (1980).

103




Liboff, R.L. Introductory Quantum Mechanics, 1% ed. Reading, MA: Addison-Wesley,
(1989).

Madelung, O. Semiconductors: Group 1V Elements and III-V Compounds. Berlin:
Springer-Verlag, (1991).

Marciniak, M.A. Optical Characterization of Indium Arsenide Antimonide
Semiconductors Grown by Molecular Beam Epitaxy. Dissertation. Air Force
Institute of Technology (AU), Wright-Patterson AFB OH, AFIT/DS/ENP/95-03,
(1995).

McKelvey, J.P. Solid State Physics for Engineering and Materials Science. Malabar, FL:
Krieger, (1993).

Midwinter, J.E. and J. Warner. Br. J. Appl. Phys. 16, 1135, (1965).

Monemar, B. Phys. Rev. B8, 5711, (1973).

O’Reilly, E.P. Semicond. Sci. Technol. 4, 121, (1989).

Osbourn, G.C. J. Vac. Sci. Technol. B 2, 176, (1984).

Rogalski, A. and K. J6zwikowski. Infrared Phys. 29, 35, (1989).

Shah, J. IEEE J. Quantum Electron. 24,276, (1988).

Stringfellow, G.B. and P.E. Greene. J. Electrochem. Soc. 118, 805, (1971).

Turner, G.W., HK. Choi, and H.Q. Le. J. Vac. Sci. Technol. B 13, 699, (1995).
Varshni, Y.P. Physica 34, 149, (1967).

Vérdeyen, J.T. Laser Electronics, 3" ed. Englewood Cliffs, NJ: Prentice-Hall, (1995).
Wieder, H.H. and A.R. Clawson. Thin Solid Films 15, 217, (1973).

Woolley, J.C. and J. Warner. Can. J. Phys. 42, 1879, (1964).

Yariv, A. and P. Yeh. Optical Waves in Crystals. New York: John Wiley & Sons, (1984).

Yen, M.Y., B.F. Levine, C.G. Bethea, H.K. Choi, and A.Y. Cho. Appl. Phys. Lett. 50,
927, (1987).

104




Vita

Anthony L. Franz was born on 11 July 1970 in Morgantown, WV. He graduated
from St. Francis High School in 1988. He studied Space Physics at the U.S. Air F orcé
Academy and earned a Bachelor of Science degree in Physics in 1992. He was
commissioned in the U.S. Air Force upon graduation. His first assignment was to the Air
Force Technical Applications Center, Patrick AFB, FL, where he served as a Nuclear
Systems Evaluator and later as the Advanced Nuclear Detection Program Manéger. He
was assigned to the Air Force Institute of Technology, Wright-Patterson AFB, OH, in
1996 and received a Master of Science degree in December, 1997. His next assignment

was with the Air Force Information Warfare Center, Kelly AFB, TX.

Permanent Address: 913 Hawthome Ave.
Morgantown, WV 26505

105




REPORT DOCUMENTATION PAGE OB mApproved

ublic rting burden for this collection of information is estimated to average 1 hour per responss, including the time for reviewing instructions, searching existing data sources, jatherin
:nd m;?npt:hing the data needed, and completing and reviewing the coli ge_ of inft jon. Send cx Tegarding this burden estimate or any other aspect of this Lotlaction of
information, including suggestions for reducing this burden, to Washinc?ton Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
December 1997 Master's Thesis
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

TIME RESOLVED PHOTOLUMINESCENCE SPECTRA OF A MID-INFRARED
MULTIPLE QUANTUM WELL SEMICONDUCTOR LASER

6. AUTHOR]S)
Anthony L. Franz, Captain, USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Air Force Force Institute of Technology REPORT NUMBER
2750 P Street

WPAFB, OH 45433-7765 AFIT/GAP/ENP/STD-04

9." SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

PL/LIDA AGENCY REPORT NUMBER
3550 Aberdeen Ave SE
Bldg. 416

Kirtland AFB, NM 87117-5776

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution unlimited

13, ABSTRACT (Maximum 200 Words) "
Recombination mechanisms in mid-IR semiconductor lasers are strongly dependent on the carrier density of the active region.
The objective of this research is to improve previous carrier density estimates through the incorporation of spectral
information. One hundred photoluminescence (PL) spectra were calculated for a variety of carrier densities. Calculations were
made for an InAsSb/InAlAsSb multiple quantum well laser sample assuming parabolic bands. The widths of the calculated
spectral profiles were tabulated as a function of carrier density. Actual spectra were measured using the Ultrafast Mid-Infrared
Photoluminescence System, which uses upconversion to measure the PL intensity in time steps smaller than 1 ps. PL; spectra
were obtained at 30 times, ranging from 100 ps to 3 ns. Spectral widths were measured and tabulated as a function Jf tine,
Combining the plot of calculated spectral width vs. carrier density with the plot of measured spectral width vs. time, we were
able to describe the variation of carrier density with time. The carrier density vs. time plot thus generated agreed with earlier
measurements by Cooley for low carrier densities. The discrepancy at higher carrier densities could be due to changing
experimental conditions or the break down of the parabolic band approximation.

14. SUBJECT TERMS 15. NUMBER OF PAGFS
Infrared Lasers, Semiconductor Lasers, Photoluminescence, Sum Frequency Generation, Carrier 118
Density, Indium Arsenide Antimonide, InAsSb 16. PRICE CODE

OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified

17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION [ 19. SECURITY CLASSIFICATION [20. LIMITATION OF ABSTRACT

UL
andard Form 298 (Rev. 2-60) (EG)
S )

'
b




