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RESISTIVE HOSE INSTABILITY IN A DICHROMATIC ELECTRON BEAM 

Han S. Unm 
"Naval Surface Weapons Center 

White Oak, Silver Spring, Maryland 20910 

Stability properties of the resistive hose instability are investigated 

for a self-pinched dichromatic electron beam propagating through a collisional 

plasma channel. The equilibrium and stability analysis is carried out for the 

electron distribution function in which beam electrons have two energy 

components. The beam density is assumed to be a Bennett profile. A closed 

algebraic dispersion relation of the resistive hose instability is obtained 

for a dichromatic beam, by making use of the energy group model. Numerical 

investigation of the dispersion relation is carried out for a ultra- 

relativistic electron beam. Unstable growth of the resistive hose instability 

along the beam frame coordinate is calculated. For an appropriate choice of 

the physical parameters, it is shown that the growth rate of instability in a 

dichromatic beam can be one third of that in a monochromatic beam, thereby 

tremendously increasing the beam pulse length for a stable propagation. 



I. INTRODUCTION 

In recent years, there is a large and growing literature on the resistive 

hose instability1"7 in an intense relativistic electron beam propagating 

through a collisional plasma channel. The resistive hose instability is a        f 
i 

growing lateral distortion of a self-pinched electron beam, severely limiting      [ 

the beam pulse length for a long range beam transport. Thus, we are often 

looking for appropriate physical parameters of the beam which may reduce the 

growth rate of instability, thereby enhancing the pulse length and propagation 

distance of the beam. In order to reduce the growth rate of instability, in 

this article we propose a new scheme which utilizes a dichromatic electron 

beam. The dichromatic electron beam consists of beam electrons with two 

energy components, so that the energy spectrum has double peaks. In this 

regard, this paper examines the resistive hose stability properties of a 

relativistic dichromatic electron beam. 

A brief description of the equilibrium properties is presented in Sec. II 

for the equilibrim distribution function in which beam electrons have two 

2 2 energy components, the primary energy Y_mc and the secondary energy y^mc . 

Stability analysis of the resistive hose instability in a dichromatic electron 

beam is carried out in Sec. IV, assuming that the electron beam has a Bennett      , 

profile. Making use of the energy group model6, the dispersion relation 
i 

[Eq. (29)] of the resistive hose instability in a dichromatic beam is 

obtained.    As a special  case,  numerical   investigation of this dispersion 

relation is carried out for a ultra-relativistic electron beam with y   > y„ »  1. 
p   s 

Unstable growth of the resistive hose instability along the beam frame 

coordinate ? = ct - z is calculated, where ? represents the axial coordinate 



from the head of the beam to the tail. One of the most important features in 

the stability analysis is that the maximum growth rate of the resistive hose 

instability can be considerably reduced for a dichromatic beam. For an 

appropriate choice of the various physical parameters, it is shown that the 

growth rate of instability in a dichromatic beam is about one third of that in 

a monochromatic beam, thereby increasing the beam pulse length three times of 

its original value. We therefore conclude that the resistive hose 

perturbations in a dichromatic beam can be substantially suppressed. 



II. EQUILIBRIUM DESCRIPTION 

The equilibrium configuration consists of a relativistic electron beam 

propagating through a collisional plasma channel. The energy of the beam has 

two major components; the primary and secondary energies denoted by 

2       2 Y mc and y mc » respectively, where m is electron rest mass and c is the 

speed of light in vacuum. Cylindrical polar coordinates (r, e, z) are 

introduced with the z-axis coinciding with the axis of symmetry, r is the 

radial distance from the z-axis and e is the polar angle in a plane 

perpendicular to the z-axis. All beam equilibrium properties are assumed to 

be azimuthally symmetric (3/30 = 0) and independent of axial coordinate 

(3/3Z = 0). In the present analysis, we investigate equilibrium and stability 

properties associated with the steady-state (3/3t = 0) beam distribution 

function, 

i(«> pe> p
z) 
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where n and n_ are the number densities of the primary and secondary energy 

components at r = 0, L and Ts are the corresponding temperatures, and a c and 

s c are the corresponding axial velocities of electrons with the primary and 

secondary energy components, respectively. In Eq. (1), the total energy 

H = ymc2 = (m2c4 + c2p2)2, (2) 



the axial canonical momentum 

Pz = pz - (e/c)A0(r), (3) 

and the canonical  angular momentum Pa =  rpQ are the three single-particle 

constants of the motion, p = (p . p., pi is the mechanical momentum, -e is 

the electron charge and AQ(T)  is the axial  component of the equilibrium vector 

potential. 

The equilibrium vector potential   associated with the self-generated 

azimuthal  magnetic field BQ(r)  is determined from Ampere's law 
0 

7W'h V> ' -7 3F [rB°,(r)] --^ (1 - f)«S<r>vJ(r) (4) 

where n/7r)  is the equilibrium beam density profile, V_V)  is the equilibrium 

axial  velocity and f is the fractional  current neutralization assuming that 

the equilibrium plasma return current has the same radial   profile as the beam 

current.    It is assumed that the beam is completely space charge neutralized 

by the background plasma.    In addition, we also assume that the motion of the 

2   2   2    2 
beam electrons is paraxial, i.e., p"" = pp + PQ « P , which requires 

V/YS «1, (5) 

2  2 
where v is Budker's parameter defined by v = Nbe /mc and Nb is the number of 

beam electrons per unit axial length. 



Using the paraxial approximation, it follows that the combinations 

2 2 H - Y mc    and H - Ysmc    can be approximated by 

.2        2 
p,„-    - Pi/^,p...  •  ^p~oy H - Y mc^ = P^/2Y m + eß AQ(r), 

H - Ysmc
2 = pf/2Ysm + eßsAQ(r), (6) 

2   2   2 
where p± = pp + pQ. Substituting Eq. (6) into Eq. (1) and carrying out the 

momentum integration give the beam density profile 

n eß An eß An 
n°(r) = n exp(- -f^) + n$ exp(- -f°). (7) 

K      p s 

For simplification  in the subsequent analysis, the beam temperature parameters 

Tp and Ts are restricted to 

Vs = *sV (8) 

thereby further simplifying Eq.  (7)  by 

n°(r)  = (np + ns)  exp(-eßpA0/Tp). (9) 

The condition in Eq. (8) can be easily satisfied for relativistic beams. 

Similarly, the axial component of the equilibrium beam current density profile 

is given by 

eß A 
j{|(r) - eng(r)V°z(r) = en ß c(l + n) exp(- -f^), (10) 

v p 



where the density ratio r\ is defined by 

n=nsßs/npßp. (11) 

Combining Eqs. (4)  and (10), we find that the axial  component of the 

equilibrium vector potential  Ag(r)  satisfies 

FoVriF Vr) = 4Tr<] " fVpO + n) exp(--^' (12) 

Therefore, once the vector potential Ag(r) is determined from the nonlinear 

differential equation (12), the equilibrium self magnetic field 

B (r)  = - 3An/3r can be calculated self-consistently from this vector 

potential and the beam current density profile Jb(r) from Eq. (10). Defining 

the Bennett radius a of the dichromatic beam by 

2                      2T
D 

a2 = —7 E-s , (13) 
*e n

p0  " OßpH + n) 

it is straightforward to find that the solution of Eq. (12)  is expressed as 

Ao(r) = Zifm^ + r2/a2)> (14) 

which gives the beam current density profile 

n en„3rtcfl  + n) 

b (1  + r2/a2) 



From Eqs. (13) and (15), we note that increase of the number (n) of beam 

electrons with secondary energy component not only increases the total beam 

current density but also reduces beam radius considerably. 

From Eq. (14), we obtain the equilibrium azimuthal field 

B°Q(r) - - 2«n (1 - f)ß (1 + n)  ^-x. (16) 
r K     1 + r /a 

For convenience in the subsequent analysis, we define the betatron frequency 

uß (r)  of the primary energy beam electrons by 

2                 eßB°(r)        <? 
(/ (r) = ß_§ = —30  

ßp Ypmr 1  + rW (17) 

where the maximum betatron frequency-squared &o2n is given by 
30 

> = ^VpO  " fX]  + n)/Ypm. (18) 

Similarly, the betatron  frequency wfl (r)  of the secondary energy beam 

electrons is given by 

^ir)"KT77J?- "9> 
where the mass  ratio 5 is defined by 

5 = Vs'Vp" (20) 



It is obvious from Eqs. (17) - (20) that the betatron frequency of the primary 

energy electrons is much less than that of the secondary energy electrons for 

Y » Y . Hugh difference between the betatron frequencies w0p(r) and 
P   s 

«I (r) provides a strong stabilizing influence on the resistive hose 
3s 

instability as will be seen in the next section. 



III. HOSE STABILITY ANALYSIS 

In this section, we derive the dispersion relation of the resistive hose 

instability in a dichromatic beam by making use of the energy group model.6 

Adopting a normal mode approach, all perturbed quantities are assumed to vary     (' 

with e, z and t according to \ 

i|/(x,t) = *(r)exp{1(e + kz - ut)}, 

where k is the axial wavenumber and w is the frequency. It is further assumed 

that the perturbed beam space charge field is completely neutralized by the 

plasma, i.e., 4ua(r) » <o, where a(r) is the scalor conductivity of the 

plasma. We also consider long wavelength and low frequency perturbations 

satisfying |ka| « 1 and |ü>a| « c, where a is the Bennett radius of the beam 

defined in Eq. (13)., Thus, the transverse electric components of the 

perturbed field, Bz, Ep and E , can be neglected, and the perturbation can be 

represented in terms of the axial component of the perturbed vector 

potential A(r). After some algebraic manipulation, Ampere's law 

for A(r) is expressed as 

^^[rÄ(r)]+4ü^A(r)=-ilJb(r), (21) 

W 

where Ju(r) is the perturbed axial beam current density. 

It is worthwhile to identify portions of the equilibrium beam current 

density in Eq. (15), i.e., 

10 



jg(r)  = J°(r)  + J°(r),                                                                              (22) 

which originates from the primary {j ) and secondary (Js) energy electrons. 

Substituting Eq.  (11)  into Eq. (15), we recognize 

n               en ß c 
]°M  -         p p 

4 

(1 + r2/a2) 

1°(rO   -              S   S                                                                                                               (93) 

(1 + r2/a2) 

According to the energy group model6, the perturbed axial  current density 

jP(r)  is expressed as 

3  (r)  _     eßP       A(r)/r     d     0(p) 

°b(r)         Vfl2-«fl
2(r)^JP(  J K

      p       0pv  ' 

eßs      A(r)/r       d     0,  ,                                                              ,,,. 

■v^-^,^s<)' 

where the Doppler-shifted eigenfrequency Q    and n   of the primary and 

secondary energy electrons are defined by 

t 

a   = u - kß c,      a   = a> - ks.c.                                                      (25) p                p            s                s 

Consistent with the energy group model, the eigenfunction is approximated 

by 

A(r)  = fdRR [^J°(R)]  8A(r;R),                                                              (26) 
0 

11 



where the component eigenfunction  is given by 

I    r/R, 0 <■ r <• R, 
6A(r;R)  = 

R/r, r > R. 

Without loss of the generality, the component eigenfunction is normalized to 

unity at r = R. After a straightforward manipulation of Eq. (26), we obtain 

Mr) = a r-r-^i (27) 
1 + r*/a* 

where use has been made of Eq. (15) and a is an arbitrary constant. The 

plasma conductivity profile is assumed to be the Bennett profile 

A 

<x(r) =  Z ?, (28) 

(1 + r2/a2) 

which is a reasonable assumption, since the plasma channel is created by the 

ionization of air molecules by the beam electrons and this ionization profile 

may be the same as the beam density profile. 

We briefly summarize derivation of the dispersion relation of the 

resistive hose instability in a dichromatic beam. We substitute Eqs. (24) 

and (28) into the eigenvalue equation (21), and then multiply Eq. (21) by rA(r) 

[in Eq. (27)] and integrate over r from r = 0 to r =•». After a tedious 

algebraic calculation, it can be shown that the desired dispersion relation is 

expressed as 

12 



1ü)Td= ' T~^l + (i - f j(i + nj ^ysntys " I 
(29) 

+ ys0 - ys) w (y-^j) + yp [yp - 7+ yp0 - ypMj-!hO]. 
3 r 

^     where the parameter ys and yp are determined by 

(30) ys = ^s^30' yp = °p/u0O* 

and the dipole magnetic decay time T, is defined by 

td = Tra2a/2c2. (31) 

Equation (29) is one of the main results of this paper and can be used to 

investigate the resistive hose stability properties of a dichromatic beam for 

a broad range of the physical parameters. 

As a special case, subsequent analysis of the dispersion relation in 

Eq. (29) is restricted to a ultra-relativistic electron beam characterized by 

Ys » 1. (32) 

Within the context of Eq. (32), the Doppler-shifted eigenfrequencies as and a 

are approximated by 

n = ü) - kc » Q   « n , (33) 

and the dispersion relation in Eq. (29)   is simplified to 

13 



iüJTd - - T-TT + U -fjfi +nj  ^[& - \ 
(34) 

+ 5x(l  - 5x)Än(I-%T)] + x -i+ x (1  - x)*n(-A-)}, 

where the parameter x is defined by 

x = QZ/»lQ. (35) 

The resistive hose stability properties of a dichromatic beam can be 

numerically investigated from Eq. (34), assuming either one of the frequencies 

ü) and a as a explicitly given  real  value. 

It is instructive to examine the present results in the three limiting 

cases.    The dispersion relation in Eq. (34)  is further simplified to 

1WT -T-rT + rrr f* "I+ x0 - x)*n(rfT)], (36) 

for n = 0 corresponding to the case of no secondary energy electrons or for 

5 = 1  corresponding to the case when the primary and secondary energies are 

the same.    For the case when there are no primary energy electrons,  Eq. (34) 

can also be simplified to 

iü)Td = 'T-TT + TTT^x -1+ 5x0  - 5x)Än(-!|
x-T)J. (37) 

Equations  (36)   and  (37)  are identical   in forms to the result obtained by Lee1** 

14 
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III.A. Instability along the Beam Frame Coordinate 

In this subsection, we investigate unstable growth of the resistive hose 

instability along the beam frame coordinate x,  defined by 

C - ct - z, (38) 

which represents the axial coordinate from the head of the beam to tail. The 

corresponding eigenfrequency to this coordinate is identified by u>. 

Therefore, the growth rate wj and real oscillation frequency up are determined 

from the dispersion relation by numerically solving Eq. (34) for o> = Mp + it^. 

Shown in Fig. 1 is plots of (a) the normalized growth rate ^ xd and (b) real 
A 

oscillation frequency u> td versus n/u»Q  obtained from Eq. (34) for f = 0, 

I  = 0.1 and Ti = 3. The presentation in Fig. 1 is one of the typical plots of 

the growth rate and real frequency of the resistive hose instability in a 

dichromatic beam. Several points are noteworthy from Fig. 1. First, the 

growth rate of instability has two local maximum values. These local maximum 

growth rates occur at ßA>ßQ - 0.525 corresponding to the maximum resonance 
A 

value x = 0.276 for primary energy electrons and at fl/wß0 - 1.66 corresponding 

to the maximum resonance value x = 0.276/C for secondary energy electrons. 

Second, the maximum growth rate of instability reduces considerably with 

dichromatic energies.    Stabilizing influence of dichromatic energies is very 

obvious in the following physical  consideration.    Without secondary energy 

electrons, the maximum growth rate UJ^ = 0.69 occurs at the resonance 

frequency corresponding to x = 0.276.    Presence of the secondary energy 

*2 electrons increases the betatron frequency-squared a,^ of the primary energy 

electrons [Eq.  (18)], thereby also enhancing the beam rigidity and eventually 

15 



reducing the growth rate of instability. On the other hand, the perturbations 

with the resonance frequency corresponding to x = 0.276/C have maximum 

unstable interactions with the secondary energy electrons. However, the 

presence of the primary energy electrons with very low betatron frequency 

provides a strong damping mechanism for high resonance frequency. Third, the 

real oscillation frequency also has very different profile in comparison with 

that of the resistive hose instability in a monochromatic beam. The 

presentation in Fig. 1 clearly indicates that the instability nature is a 

mixture of the resistive hose instability of two monochromatic beams with 

different energies. 

In order to illustrate the importance of the secondary energy electrons, 

Fig. 2 shows plots of the normalized growth rate cu. x, versus ß/<uon obtained 

from Eq. (34) for f = 0, 5 = 0.1 and several different values of n. The local 

maximum growth rate of instability associated with the resonance frequency of 

the primary energy electrons decreases from w.x. = 0.69 to zero with 

increasing value of n. On the other hand, the local maximum growth rate of 

instability associated with the resonance frequency of the secondary energy 

electrons increases from u>.x. = 0 to u.x. = 0.69 when n increases from zero to id id 

infinity.    Therefore for specified value of 5, there is one optimum value 

of n for stability.    Figure 3 presents plots of the normalized maximum growth 

rate M..^ versus n obtained from Eq.  (34)   for f = 0, and several  different 

values of 5.    For the case when the primary and secondary energies are the 

same (5 = 1), the normalized maximum growth  rate is <D. X, = 0.69 for an 

arbitrary value of n[Eq.  (36)].    On the other hand for 5 * 1, the stability 

properties are very dependent of n.    For example,  for 5 = 0.1, the lowest 

maximum growth rate u.xrf = 0.235 of instability occurs at n = 3.2.    The growth 

16 
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rate U.Td = 0.235 is approximately one third of the maximum growth rate of 

instability in a monochromatic beam. Finally, in Fig. 4, we also present 

plots of the normalized growth rate versus fl/«eQ for f = 0.2 and parameters 

otherwise identical to Fig. 2. The stability behavior for a non-zero 

fractional current neutralization is similar to that for the f = 0 case, 

although the overall growth rate of instability for f * 0 is larger than that 

for f = 0 as expected. 

Ill.B. Instability along the Laboratory Frame Coordinate z 

For completeness of the stability analysis, in this section we briefly 

investigate unstable growth of the resistive hose instbility along the 

laboratory frame coordinate z (propagation range), i.e., we regard u in 

Eq. (34) as a fixed real quantity and solve the dispersion relation for 

ß = ß + iß. where ß and ß, are the real frequency and growth rate, 

respectively, of instability. It is worthwhile to note that the dispersion 

relation in Eq. (34) is an even function of ß. Therefore, if ß = ßp + ißi 

is a solution to Eq. (34), then ß = - ßp - ißi is also one of the solutions to 

Eq. (34) for a specified value of mx^.    Figure 5 presents plots of (a) the 

normalized growth rate ß^^Q and (b) real oscillation frequency ßr/wg0 

versus COT, obtained from Eq. (34) for f = 0, n = 3, and E,  = 0.1 and 5 = 1. 

We remind the reader that the case of I  = 1 corresponds to the resistive hose 

instability in a monochromatic beam [Eq. (36)]. In the laboratory frame, 

stability properties of the resistive hose instability in a dichromatic beam 

are similar to those in a monochromatic beam. However, the maximum growth 

rate of instability occurs at small value of u^ for a dichromatic beam. 

17 



IV. CONCLUSIONS 

This paper has examined stability properties of the resistive hose 

instbility in a relativistic dichromatic electron beam propagating through a 

collision-dominated plasma channel. A brief description of the equilibrium       ( 

properties has been presented in Sec. II for the equilibrium distribution 

function in which beam electrons have two energy components. Stability 

analysis of the resistive hose instability in a dichromatic electron beam was 

carried out in Sec. Ill, assuming that the electron beam has a Bennett density 

profile. The dispersion relation of the resistive hose instability in a 

dichromatic beam was obtained by making use of the energy group model. 

Numerical investigation of this dispersion relation was carried out for a 

ultra-relativistic electron beam. Unstable growth of the resistive hose 

instability along the beam frame coordinate c has been calculated. One of the 

most important features in this analysis is that the maximum growth rate of 

instability can be considerably reduced for a dichromatic beam. For an 

appropriate choice of the physical parameters, it has been shown that the 

growth rate of instability in a dichromatic beam can be one third of that in a 

monochromatic beam, thereby tremendously increasing the beam pulse length for 

a stable long range propagation. 

k 
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FIGURE CAPTIONS 

Figure 1 Plots of (a)  normalized growth rate w.x^ and  (b)  real 

frequency u x. versus fl/wgQ obtained from Eq.  (34)   for 

f = 0, c = 0.1  and n = 3. 

A 

Figure 2 Plots of normalized growth rate w^ versus ß/f^Q 

obtained from Eq.  (34)   for f = 0,  £ = 0.1  and several 

different values of n. 

(r-jgUre 3 Plots of normalized maximum growth rate a*. rd versus n 

obtained from Eq.  (34)  for f = 0, and several  different 

values of 5. 

A 

Figure 4 Plots of normalized growth rate 01^ versus fl/w^ obtained 

from Eq. (34)  for f = 0.2 and parameters otherwise 

identical  to Fig. 2. 

A 

Figure 5        Plots of (a) normalized growth rate ß^/u^Q and 
A 

(b) real oscillation frequency ßr/wß0 versus wcd 

obtained from Eq. (34) for f = 0, n = 3, and 5 = 0.1 

and C = 1. 
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