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Abstract 

The ability to predict the 3-dimensional structures of biopolymers is im- 

portant to AFOSR research. Current research applications include the de- 

sign of biopolymer support matrices for non-linear optical materials for laser- 

resistant optical systems. The special characteristics of the biopolymer struc- 

ture determination problem (where covalent bonding patterns are fixed) dis- 

tinguish it from chemical structure determination problems (where bond pat- 

terns change) and special methods for very high dimensionality minimization 

are needed. Fortunately, most important problems require simpler perturba- 

tive global minimization and only need to be able to predicting changes in 

3-dimensional conformations from a known initial conformation. This prob- 

lem will be much easier to solve than the full "protein folding problem", but 

is still complex because of the large number of dimensions (~ 104) involved. 

We have developed the fundamental theory and algorithms of the new 

Packet Annealing Method and tested it on small systems. We showed that 

the method provides a natural and powerful computational approximation to 

the stochastic description of biopolymer motions and encompasses other com- 

peting "potential smoothing" methods as special cases. Its main strength is 

that it uncovers and exploits the intrinsic "hidden structures" of biopolymer 

energy landscapes to efficiently perform global minimization using a hier- 

archical search procedure which concentrates parallel computing effort on a 

sequence of selected regions of decreasing size. Each search region corresponds 

to a metastable macrostate of the system, a region of conformation space that 

is isolated from the remainder of the space by effective energy barriers. The 

effective energy includes both energetic contributions from the energy poten- 

tial function and entropic contributions resulting from thermal fluctuations of 

the biopolymer.  It determines the thermodynamic macrostate free-energies 

u 



which (rather than the mean energies) determine biopolymer structures. 

In addition, new methods for computing macromolecular conformational 

transitions and for molecular dynamics simulation were developed. 

in 
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I. INTRODUCTION 

A. Motivation: AFOSR Need for Protein Structure Prediction 

The ability to predict the changes in the 3-dimensional (3-D) structures of biopolymers 

that are induced by changes in their covalent structures is important to AFOSR research. For 

example, research in the Laser Hardened Optical Materials Branch of the Electromagnetic 

Materials Division at Wright Laboratory, Wright Patterson AFB is aimed at developing 

synthetic biopolymers which, because of their well-defined 3-D structures, can provide a 

superior support matrix for orienting light-absorbing chromophores in non-linear optical 

materials for laser-resistant optical systems. Dr. Ruth Pachter, working on laser resistance 

technology at Wright Laboratory, concludes 

Peptide structure predictions and molecular dynamics simulations of these pep- 

tides are key in the interpretation of the results. 

and 

...the importance of novel developments for studying large molecular systems..., 

especially protein folding and design, illustrate the importance for advances in 

new optimization techniques for determining the global energy minimum of these 

compounds. Such a task will enable rapid advances in designing new laser resis- 

tant materials, (from R. Pachter, "Nano Architectures for Agile Optical Thresh- 

olds") 

Another typical application includes the development of new materials with exceptional 

properties modelled on naturally-ocurring proteins (e.g., exceptionally strong synthetic fibers 

based on the structure of spider silk). The computational needs of this research are essen- 

tially identical to those encountered in many other aspects of biotechnology—for example, 

in the study of the interactions between viral proteins and drugs designed to interact and in- 

terfere with them. Further, because similar chemical principles are involved, these methods 

should be applicable to a wide variety of other polymeric structure problems as well. 



Prediction of the folding of biopolymers into their stable 3-D structures (the "protein 

folding problem") is difficult because of the large numbers of atomic coordinates (and hence, 

mathematical degrees of freedom) to be determined. Typical problems involve 103 - 104 

degrees of freedom. Fortunately, in practice it is not necessary to predict structures de novo. 

New biopolymers are experimentally developed by iterations of a design cycle in which the 

covalent structure of a biopolymer having a 3-D structure with fairly good characteristics 

is modified to a new covalent structure which, according to computational predictions, will 

have a modified 3-D structure with even better properties. Typical alterations include amino 

acid substitution or the addition, by covalent or non-covalent linkage, of a small chemical 

group (e.g., a chromophore) to a biopolymer of known structure. Even when determining the 

structure of a new biopolymer, good approximate starting points can often be selected from 

extensive databases of known 3-D structures (which have been experimentally determined 

by X-ray crystallography or nuclear magnetic resonance). In all these cases it is the simpler 

perturbative structure prediction problem that is of primary interest. 

B. Global optimization, free-energies, and biopolymer structure prediction 

The structure of a biopolymer is governed by its potential energy function V(R), a com- 

plicated function of all the atomic coordinates R = {fj; i = 1... N}, where N is the number 

of atoms. In principle, it must be derived from quantum mechanics, but since biopolymer 

3-D structures are governed by non-covalent bonding (covalent bonding is invariant in most 

problems), classical approximations appear to be adequate. However, the very high dimen- 

sionality of the problem [N is typically ~ O(104)] makes the structure prediction problem 

particularly difficult and, with current algorithms, many orders-of-magnitude beyond the 

capabilities of even the largest parallel computers. New algorithms are needed. 

Simulated annealing,1 in which the biopolymer thermal fluctuations are simulated at 

a sequence of decreasing temperatures, is one of the most powerful approaches available 

at the present time. Although simulated annealing is inadequate for biopolymer structure 



prediction, it has demonstrated the value of annealing approaches in general. However, most 

current methods attempt to predict structure by searching for the global minimum of V, 

arguing that this corresponds to the most energetically stable conformation. Such purely 

energetic approaches ignore the entropic effects that result from conformational fluctuations 

and will only be accurate at very low temperatures near absolute zero, not at the working 

temperatures of practical importance. At working temperatures, biopolymers thermally 

fluctuate through many conformations according to the Gibbs-Boltzmann probability density 

PB- 

pB(ß;R)cxe-^^/Z(ß) 

ß = {kBTYl 

where kB is Boltzmann's constant, T is the temperature, ß is the "inverse temperature", 

and Z(ß) is a normalizing constant (the "partition function," see Ref. 2 for review). During 

the course of these rapid fluctuations, the protein rapidly traverses hundreds or thousands 

of local minima3 of V within an extended region of conformation space that we call a 

macrostate. Over longer time periods, particularly at higher temperatures, the biopolymer 

will occasionally make transitions to other extended macrostate regions. The probability of 

being in each macrostate is given by its free-energy, which is the integral of pB{ß;R) over 

the macrostate region2 and which depends both on V within the macrostate and on the 

size of the macrostate. Thus, it is the free-energy that must be globally minimized during 

annealing to predict biopolymer structure. 

Each macrostate is separated from the others by energy barriers that must be large 

compared to the thermal energy kBT, so conformational fluctuations within a macrostate 

are rapid while conformational fluctuations between macrostates are slow. Furthermore, the 

size and free-energy of each macrostate depends on the temperature. Even the number of 

macrostates varies with temperature: small "child" macrostates that exist at low tempera- 

tures will merge into unified "parent" macrostates at higher temperatures when the energy 

barriers between them become small compared to kBT. In principle, the properties of the 



individual macrostates (e.g., mean conformation, enthalpy, entropy, etc.) and the connec- 

tions between them can be computed and traced in macrostate trajectory diagrams. These 

relationships and diagrams can provide a hierarchical description of conformation space that 

reflects the underlying kinetic properties of the biopolymer. The macrostates constitute a 

"hidden structure"4 that strongly influences algorithmic performance and can be used to 

advantage once uncovered. 

C. A physical analogy 

To illustrate, consider the 2-dimensional problem of finding the lowest region on the 

surface of the earth. Simulated annealing corresponds to tracking the position of a very 

small test-object as it migrates while the earth is shaken with progressively lower intensities 

(temperatures). The process is inefficient because after each jump the test-object samples 

the height (energy) over a region that is too small compared with the sizes of the jumps. 

Because of this, the test-object is too sensitive to small-scale local fluctuations in the fractal- 

like energy surface that tend to mask the more important large-scale global structures of 

the surface. A more efficient procedure would be to start with large "soft" test-objects 

with diameters matched to the sizes of the oceans (e.g., a 10,000 km beach-ball) and to 

iteratively minimize their positions as temperature was progressively reduced. The sizes of 

the beach-balls should be matched to the landscape in a self-consistent manner so that the 

balls are roughly of the same size as the temperature-dependent confining regions that they 

are searching, i.e., the macrostates of the system. The search trajectory of each ball will 

be governed by the effective energy, an integral of the height over a region self-consistently 

chosen to match the size of the ball. At high temperature the macrostates are the oceans. As 

temperature (shaking) is decreased, the ridges separating smaller depressions in the bottom 

of the oceans become important and the oceanic macrostates divide (branch) into smaller 

child macrostates. For an efficient parallel search, a separate ball should initially be used 

to search each ocean and, as temperature is reduced, each ball should be replaced with an 



appropriate set of smaller balls to search each child macrostate region. This process continues 

recursively as children have children and the macrostates get smaller and smaller. Since we 

expect their number to increase rapidly with decreasing temperature, all macrostates can 

not be searched and it is necessary to select only the most promising for investigation. 

Success requires that the number of macrostates does not grow rapidly in comparison with 

our ability to discard unprofitable search trajectories. We call this approach the Packet 

Annealing Method (see Church et al., 1996). 

The Packet Annealing Method is particularly suited to the fractal-like structure of the 

surface of the Earth: because it has been formed by the action of a large number of quasi- 

independent forces, the surface contains structure at multiple spatial scales. Biopolymer 

energy functions probably have similar properties since they are sums of very large numbers 

of quasi-independent interactions dominated by two-body terms. Note that this algorithm 

will not find anomalous minima-deep but very narrow holes (e.g., oil wells). It is the fact 

that the algorithm is explicitly designed to ignore such anomalous minima that makes it 

highly efficient. This is not a disadvantage since anomalous minima of the energy function 

are not usually minima of the free-energy at practical temperatures and, in any case, would 

not be expected to be found by the physical system itself. 

D. Packet Annealing Method 

During the project we developed most of the formalism and algorithms needed to imple- 

ment the Packet Annealing Method. The central tool is the effective energy: 

HK(ß;R) = -2ß-1\og iw)j det-i [ J_]   [e-iv(#)e-lQ*-«>K&-K)dR, (1) 

which depends on the integral oip\{ß\R) over a Gaussian-weighted region parameterized 

by a fluctuation tensor A = (2ßK)~?. As A —► 0, HK reduces to V. For non-zero A, HK is 

a smoothed transform of V that suppresses all fluctuations on size-scales < A. Because it is 

smoothed, HK can be minimized much more rapidly than V. 



We have shown (Oresic and Shalloway, 1994; Shalloway,1996) that HKo(ß; J?°) provides 

a good approximation to the free-energy of macrostate a when Ä° is set to the centroid of 

the macrostate and K^ is properly matched to the size of the macrostate. Each macrostate 

probability distribution can be approximated by a Gaussian characteristic packet (fPa: 

fljß. R) = e-£{v°(ß)+[R-R0
a(ß)]K°a(ß)[R-Rl(ß)}}/z?(ß) (2) 

which is described by the characteristic parameters FQ, K°, and an amplitude-fixing scalar 

Vj. These parameters are determined by solving the 

Characteristic Packet Equations 

Integral form Differential form 

(j>i\Ri\€) dHKo(ß;B?) 
\^a)i ~ I QDO 

<pB\€) dm 

{Jij~ (ÄWk) dB%dB% 

= 0 (3a) 
R°=R°a 

= (*2)« (3b) 
R°=R° 

and 

V£(ß) = HKo(ß;R°a) - 2/T1 logdet-^ y^j (4) 

Eqs. (3) are a non-linear coupled set of equations that, in effect, perform pattern- 

recognition to identify the dominant structures of the energy landscape at each temperature. 

Each solution corresponds to a macrostate. For example, Fig. 1 displays PB at a sequence 

of decreasing temperatures for a model two-dimensional potential V (panel a). The sup- 

port of pB is dispersed at high temperature and converges at low temperature to a small 

region centered about the global minimizer of V. While PB is complicated at intermediate 

temperatures (panel b), the behavior of the macrostates at different temperatures can be 

simply modeled by following the appearance, movement and disappearance of regions of 

concentrated probability density with temperature. At every temperature, each region a 

is characterized by the characteristic parameters (panel d) and corresponding characteristic 

packets (panel c). As T decreases, the characteristic packets and corresponding macrostates 

6 
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FIG. 1. Annealing using metastables states, (a) A model two-dimensional potential V(ri,r2). 

(b) The corresponding Gibbs/Boltzmann probability distribution pB at three temperatures, 

Thi > Tmed > Tlo- (c) Superposition of the (squared) characteristic packets (<£° )2 that are solutions 

to the packet equations at the three temperatures. (A large number of characteristic packets, 

corresponding to the very small-scale fluctuations of V, will appear at lower temperatures.) (d) 

The characteristic packets are parametrized by the positions of their center-of-masses (Ä°) and 

by their root-mean-square fluctuations tensors (A0), represented here by ellipses, (e) Free-energy 

vs temperature trajectory diagram for this temperature range. Solid lines represent metastable 

state trajectories and dotted lines represent transitions. The discontinuities in the trajectories 

correspond to branch points at which packets bifurcate. Solid arrowheads indicate "escape" or 

preferred "capture" transitions. Open arrowheads indicate unpreferred transitions that can be 

detected by the missing-mass procedure. (From Church et al., 1996). 



continuously decrease in size and divide into children. This process is reported by the tra- 

jectory diagram (panel e) which provides hierarchical description of the energy landscape 

which displays its intrinsic structure in a manner that is not obvious from inspection of 

V itself. At each temperature the most stable macrostate of the system is the one having 

lowest free-energy (i.e., macrostate a, ß or 6, depending on T). 

E. Trajectory diagrams and scaling properties 

It is frequently speculated that protein energy landscapes have an overall structure that 

naturally "funnels" the macromolecules towards their native folded state.5 This could explain 

the fact that natural proteins fold very rapidly compared to the rate that would be expected 

if they performed a random search for the native state.6 However, it has not previously been 

possible to computationally determine whether this was true except for highly idealized 

model systems. The trajectory diagrams enable us, for the first time, to do this. 

Consider the two potentials V(R) shown in Fig. 2. The one on the left will funnel systems 

to the lowest energy state; the one on the right will not. This is reflected in the variation 

of HK with A (plotted above): a sequence of local minimizations of HK as A is reduced 

converges to the global minimum in the funneling case but not in the non-funneling case. 

We call the former case strong scaling and the latter case weak scaling to emphasize the role 

of the scaling parameter A. 

While the scaling properties of these simple one-dimensional cases can be determined by 

graphical examination of V" and HK, this is not possible in high dimensionality problems. 

However, the scaling properties can be determined from the trajectory diagrams in any 

number of dimensions. The critical point is that in the strong scaling case the trajectory that 

leads to the low-temperature global minimum is the lowest trajectory at all temperatures. 

Thus it is very easy to trace. In contrast, there is trajectory crossing in the weak scaling 

case and it is not sufficient to trace just the lowest-lying trajectory at each temperature. 

The weaker the scaling, the more low-lying trajectories must be traced to be certain that 

8 
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FIG. 2. Strong and weak scaling properties. Each upper panel shows a sequence of effec- 

tive-energy functions obtained by convolution with Gaussians having widths Ahj > Amod > Ai0 

according to Eq. (1). (The paths of searches using local minimization of the effective-energies is 

shown.) The lower panels roughly indicate the free-energy vs temperature trajectory diagrams 

that correspond to these potentials, (a) A "strong scaling" case where the search is "funneled" to 

the global minimum, (b) A "weak" scaling case where a single sequence of downhill searches does 

not find the global minimum. (From Shalloway, 1997.) 



the free-energy global minimum will be found at the working temperature. Clearly, it will 

be important to determine the scaling properties of the energy landscapes of biopolymers of 

interest. 

F. Overview 

The fact that biopolymers fold on time-scales much shorter than those needed for a 

random search of conformation space suggests that they utilize specific, kinetically-favorable 

folding pathways to accelerate the process. Each pathway corresponds to a specific path 

down a macrostate trajectory diagram. The Packet Annealing Method is designed to mimic 

this efficient behavior by identifying and following the high-probability macrostates. The 

changes in macrostate position, size and number are traced using the characteristic packet 

equations. This is efficient because the effective-energy function is usually smooth within a 

single macrostate region. The approach has a number of unique features including: 

1. Physically appropriate: it traces the free-energies of macrostates, not the energies of 

individual conformations. Thus, it accounts for not only the mean conformation, but 

also of the conformational fluctuations. 

2. Potential smoothing by the effective-energy: the small fluctuations in the energy land- 

scape are removed by the spatial averaging of Eq. (1). Therefore, minimization using 

HK proceeds much more rapidly than minimization using V. 

3. Macrostate trajectory diagrams: this novel description of the energy landscape uncov- 

ers its qualitative "hidden" structure and provides a "road-map" for organizing an 

efficient parallel search to the stable structure. 

10 



II. PROGRESS 

A. Packet Annealing with Anisotropie Averaging Tensors 

Our studies before the project had only used isotropic averaging tensors A° in which 

all fluctuations were assumed to be equal. However, the order-of-magnitude differences 

between the actual magnitudes of the fluctuations of different atom-pair distances in a 

macromolecule must be matched with anisotropic fluctuation tensors. We tested anisotropic 

averaging using the 6, 7 and 8 atom argon microclusters as test cases. Computational 

methods for iteratively solving the characteristic packet equations (3) and identifying the 

appearance of children at branch points (i.e., subsearch branching) were developed. This 

enabled us to compute macrostate trajectory diagrams for these systems, the first time that 

this has been done for non-trivial problems. For example, the 7-atom microcluster has 4 

conformational isoforms (Fig. 3a) corresponding to local minima of the potential. While the 

15 (= 3 x 7—6)-dimensional potential V(R) can not be visualized, the free-energy and mean- 

energy trajectory diagrams (Fig. 3b) reveal the hierarchical organization of the macrostates 

and associated isoforms. The critical temperatures (at the positions of the dotted lines) give 

the magnitudes of the effective energy barriers between these states. These studies, which 

demonstrated our ability to compute macrostates and trajectory diagrams for non-covalently 

linked systems, are discussed in more detail in Oresic and Shalloway (1994). 

B. Packet Annealing in covalent systems 

The effective-energy method was originally developed in Cartesian coordinates, but 

this is inefficient for biopolymer calculations because of the highly non-linear constraints 

imposed by the interatomic covalent bonds. Higher efficiency can be obtained using "internal 

coordinates", a combination of bond-length, bond-angle and torsion-angle variables. A 

major goal (and accomplishment) of the project was to implement the method for covalently 

bonded biopolymers using internal coordinates. 

11 
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FIG. 3. Trajectory diagrams for 7-atom argon microclusters. (a) Isomers at T = 0. (b) 

Mean-energy (E) and free-energy (F) trajectory diagrams. The connections between trajectories 

(dotted lines and arrows) indicate transition temperatures where child macrostates merge with the 

parental states. The hierarchical organization of the landscape is apparent: isomers ti and t$ are 

children of o\ which itself is a child of t\. (From Oresic and Shalloway, 1994.) 
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1. Multivariate twapped- Gaussian distribution for biopolymers 

We were surprised to find that a basic component of required mathematical theory, an 

accurate analog of the Cartesian coordinate Gaussian distribution for internal coordinates, 

had not yet been developed. (Most workers used the quasi-harmonic approximation even 

though this was very inaccurate for this application.) Thus, our first step was to develop 

the appropriate analog, the "multivariate wrapped-Gaussian distribution". A comparision 

of the performance of this method with the older quasi-harmonic method is shown in Fig. 

4. This is a general-purpose tool which should find application in other biopolymer studies 

in addition to our own. See Church and Shalloway (1995, 1996). 

2. Macrostate branching in distance-geometry variables 

A major difficulty in analyzing biopolymers is that there are large differences between 

the effects of different torsion angles on conformation. Small changes in backbone angles 

near the center of a chain greatly affect conformation while changes in distal side-chains 

have little effect. This results in large matrix condition numbers that reduce efficiency. We 

showed that we could bypass this difficulty by describing the packets using pair-wise inter- 

atomic distance variables, i.e., distance-geometry coordinates. This representation works 

well because most metastable states can be distinguished using only a few distance variables 

so it is not necessary to consider all of the 0(N2) variables (e.g., see Fig. 5). The description 

involves projecting the system probability density pa(R) from torsion-angle variables 6 to 

the distance variables d: 

P%(d) = Jpa[R(e)} |Vdy[Ä(6)]| 6(d - dy[Ä(9)]) det*[/(0)] d9 (5) 

where 

'<*)--£§£§■ W 
The division of a macrostate into child macrostates is readily identified algorithmically by 

13 
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FIG. 4. Scatter plots of two-dimensional datasets having various amounts of correlation and 

fluctuation. The panels on the left (b and d) are shaded to show the e~2 regions generated by 

the angular quasiharmonic distribution; the panels on the right show the corresponding regions 

generated by the multivariate wrapped-Gaussian distribution. The significantly improved cor- 

respondence between the scatter plot and the shaded region reflects the higher accuracy of the 

wrapped-Gaussian distribution. (From Church and Shalloway, 1996.) 
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FIG. 5. Pairwise distances differentiate two conformations of Met-enkephalin. (From Church 

et al., 1996.) 
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inspecting the p^ distributions (e.g., see Fig. 6). See Church et al. (1996a) and Church et 

al. (1998). 

3. Trajectory diagram analysis of peptides 

The methods described above enabled us to begin testing the method on the pentapeptide 

Met-enkephalin which has been used as a test-case for many theoretical studies. Our goal 

was to compute its trajectory diagram and to determine its scaling properties. The intrin- 

sic parallelism of the effective-energy method provides an excellent opportunity for coarse- 

grained parallel computing. These studies were conducted using both the 16-processor Sili- 

con Graphics Onyx and 512-processor IBM SP2 parallel computers available at the Cornell 

Theory Center. An algorithm was developed for automatically detecting the macrostate 

division points and assigning processors to the tracing of the low-lying trajectories. The 

Met-enkephalin probability and mean-energy trajectory diagrams are shown in Figs. 7 and 

8. The probability trajectory diagram (Fig. 7) displays the Met-enkephalin macrostates hav- 

ing the highest probability (lowest free-energy) at each temperature as well as the trajectory 

which leads to the global energy minimum. It displays some features that will be common 

to all biopolymers: (1) At high temperature there is only one macrostate which fluctuates 

throughout all of conformation space (the peptide is denatured). (2) As temperature de- 

creases, the total probability is distributed amongst an increasing number of macrostates. 

(3) At very low temperatures, all of the probability becomes concentrated in the macrostate 

containing the global energy minimum. It is important to note that the trajectory that 

leads to the global minimum at 300°K (logT « —0.22 in the units used in Fig. 7) is not 

the highest probability trajectory at intermediate temperatures (e.g., —0.1 < logT < 0.1), 

indicating that Met-enkephalin has weak-scaling in free-energy. However, an important dis- 

covery was that it has strong scaling in mean-energy: as seen in Fig. 8 the global minimum 

trajectory remains near the bottom of the mean-energy trajectory diagram for all temper- 

atures. Furthermore, there is a gap between the global minimum trajectory and the other 
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FIG. 6. Projected probability distribution p
1N<2CA at high temperature (a) and at low temper- 

ature (b). At the low temperature the distribution satisfies the criteria for bifurcation into two 

macrostates: one with dm^cA < <& and one witn diN,2CA > &■ (From Church et al., 1996.) 
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trajectories over a significant temperature range. This means that one can easily find the 

Met-enkephalin global minimum by just tracking a small number of macrostate trajectories 

having the low mean-energy. 

We have performed similar studies with other peptides to test the generality of this 

phenomenon. Interestingly, the mean-energy trajectory diagram of Leu-enkephalin, which 

differs from Met-enkephalin by a single amino acid substitution, displays only weak scaling 

and does not have the energy gap. This implies that global minimization of Leu-enkephalin 

should be more difficult than minimization of Met-enkephalin. This prediction has been 

verified by comparing the simulated annealing of the two molecules. See Church et al. 

(1996) and Church et al. (1998). 

Most recently, we have developed code to implement the modified image electrostatics 

(MIMEL)7 approach to empirical solvation and incorporate it into our model. 

C. Dynamical basis for effective-energy global optimization 

We showed how the characteristic packet equations emerge from stochastic analysis of 

macromolecular motions using the Smoluchowski (Fokker-Planck) equation. This leads to 

a time-dependent description of the system conformational probability distribution that 

is analogous to the wave-function description of the Schrodinger equation. These studies 

showed how the Packet Annealing Method is related to the macromolecular dynamics and led 

to a new, efficient variational method for computing transition rates between macromolec- 

ular conformational states (see below). This provides an important extension to the global 

minimization problem by allowing us to compute the rates of folding and conformational 

change. See Shalloway (1996). 

1. Variational calculation of conformational transition rates 

At the present time conformational reaction rates are generally approximated by tran- 

sition state and reactive flux methods (Ref. 8, for review).   These methods require the 
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FIG. 7. Peptide trajectory diagrams. The high-probability trajectories in the probability tra- 

jectory diagram of Met-enkephalin. The trajectory which leads to the global minimum (marked 

with an x) is also shown. The fact that its probability goes down to ~ 10~4 at logT ~ 0.1 implies 

that the scaling is very weak in probability (or, equivalently, free energy). (From Church and 

Shalloway, 1998.) 
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FIG. 8. Low mean-energy trajectories for Met-enkephalin. The trajectory which leads to the 

global minimum has the lowest, or close to lowest, mean-energy at all temperatures—an example 

of strong scaling. Note also the mean-energy gap between this and the other trajectories in the 

complicated logT ~ —0.2 region. (From Church and Shalloway, 1998.) 
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specification of one-dimensional "reaction coordinates" that can describe the progression of 

the system from one conformational macrostate to another. However, there is no general 

method for identifying appropriate reaction coordinates, and it is very difficult, if not impos- 

sible, to find them for complex multidimensional systems like macromolecules. Even when 

they can be found, rate computations are exceedingly expensive and often inaccurate. 

The Smoluchowski formulation mentioned above leads to a reaction path-independent 

method for computing transition rates that can avoid these difficulties. Based on the 

quantum-mechanical analogy, we have shown that transition rates can be efficiently de- 

termined by using the Rayleigh-Ritz variational principle to compute the eigenvalues of the 

first excited states of the Smoluchowski "hamiltonian". 

We have developed and tested this variational method using model potentials and the 

argon microcluster system as test cases. Computational methods for iteratively solving the 

variational equations were developed and tested, and showed that the method was about two 

orders-of-magnitude more efficient than Brownian dynamics for equal accuracy. (Ulitsky and 

Shalloway, 1998). As part of this project we have developed a new "contangency" method 

for finding saddle points of effective energy landscapes (Ulitsky and Shalloway, 1997) which 

can be used by other transition rate computation methods as well. 

D. Relationship between the Packet Annealing, Diffusion Equation, and Gaussian 

Density Annealing methods 

Our effective-energy method and the competing Diffusion Equation9'10 and Adiabatic 

Gaussian Density Annealing11'12 methods all use Gaussian convolutions to smooth the 

macromolecular potential. However, the relationship bvetween these methods has not pre- 

viously been understood. We have now shown that they are hierarchically related: the 

Diffusion Equation Method is a special case of the Gaussian Density Annealing method 

(restriction to isotropic averaging), and the Gaussian Density Annealing method is in turn 

a special case of the Packet Annealing Method (restriction to anisotropies along fixed axes, 
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single packets, and high temperature).   Thus, the Packet Annealing Method provides a 

general formulation for this entire class of models. See Shalloway (1997). 

E. Additional progress 

1. Spatial interpolation integrators for molecular dynamics simulation 

Molecular dynamics simulations are much less efficient than the effective-energy tech- 

niques discussed above but are useful for studying the details of fast conformational transi- 

tions. They are most commonly performed using the Verlet algorithm to integrate Newton's 

equation. However, this is a general-purpose integrating algorithm which does not exploit 

an important special property of Newton's equation for biopolymers—that the force is the 

gradient of a scalar potential. We have shown that a new class of spatial interpolation algo- 

rithms, which do exploit this property, can enhance efficiency by factors of 4-5. See Gueron 

and Shalloway (1996). 

2. Benchmark for molecular dynamics simulations 

In developing the spatial interpolation method we recognized that the existing methods 

for evaluating the accuracy of molecular dynamics simulations were inadequate. While 

energy-conservation is often used, this is a crude measure that does not accurately reflect 

performance. To solve this problem we developed a new method which uses the "residual 

force" W(R) +md2R/dt2 (where V is the is the potential and R is the computed trajectory) 

as a measure of accuracy. A software package supporting this benchmark is being prepared 

for general release. See Gans et al.  1998. 

3. Correlation between codon usage and protein secondary structure 

Biopolymer production in most cases involves expression of modified genes in heterol- 

ogous bacterial or plant expression systems.  Genes are constructed assuming that it does 

22 



not matter which of the synonymous codons that encode a specific amino acid are used. 

While evidence indicates that this assumption is usually true, it may not always be true, 

and specific synonymous codon choices might be important for directing protein folding. 

This (controversial) hypothesis might explain the inability of some genes to be expressed in 

heterologous sources. We statistically analyzed protein and nucleic acid databases to test 

this hypothesis and found strong evidence for correlation between some synonymous codons 

and protein structures. See Oresic et al., 1998. 
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