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Chapter 1 

Summary 

This dissertation characterizes the influence that various parameters impose upon the 
structural dynamics of a floating ice sheet due to the initial impact of a large mass. A static 
formulation for an infinite plate supported by an elastic foundation was made based on the elastic 
theory of plates to represent the floating ice sheet and obtain a spring stiffness associated with 
bending. The Ritz method was employed to formulate a simple shape function to represent a 
solution of the plate equation. This simple shape function was then used to obtain the 
fundamental frequency of the plate-fluid system by the principle of minimum potential energy. 
The fluid inertia was incorporated in the kinetic energy of the system by assuming the mass of a 
hemispherical volume of fluid, associated with the effective radius of the displaced shape would 
be distributed as a function of the displaced shape of the plate. The effective mass of the entire 
plate-fluid system was then obtained by equating the fundamental frequency to the circular 
frequency of a single degree-of-freedom spring-mass system. 

A dynamic formulation of a two degree-of-freedom system was made with a simplification 
of the local contact subsystem. This simplification involved a linear approximation for the local 
crushing behavior of underside of the ice plate due to contact with an impact structure. The 
assumption that the fluid inertia influence will completely dominate the dynamic behavior of the 
ice plate, creating a huge disparity between the two masses, lead to effectively splitting the 
proposed 2 degree-of-freedom spring-mass system into two separate 1 degree-of-freedom 
systems. Each of these two separate systems provided solutions for different issues of the study. 

An inelastic collision between the effective plate-fluid mass and that of the impact 
structure, a submarine in this study, expressed the global impact loading that influences the 
general bending of the ice plate. The influence of the local crushing deformation on the 
underside of the ice plate was found by both a Hertz contact solution, the case of a spherical 
radius contacting a massive plane surface, and the linear approximation for the single degree-of- 
freedom spring-mass contact where the plate-fluid system is the ground. The linear 
approximation served a major role, primarily in facilitating a formulation for the 2 degree-of- 
freedom system, and, secondarily in providing a step in the indirect comparison ofthat system to 
the solitary local contact solution. The Hertz contact provides an effectively softer spring than 
does the linear approximation. Thus, leading to smaller impact loads and larger deformations. 
However, this effect would not overcome the extreme contrast in the submarine mass to the 
plate-fluid mass, especially in an ice thickness exceeding 1 ft. 

The global impact load on the ice plate was found to be twice the amount of net buoyancy 
realized to attain an upward velocity and will most likely be a relatively small value. In addition, 
the time between the impact and maximum response is on the order of hours for an ice thickness 
exceeding 2 ft. The global impact load on the ice plate would not appear to have an effect on the 
flexural failure mechanism that may define the requirements to penetrate a floating ice sheet. 
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The initial impact imparted on the submarine and the deformation to the underside of the 
ice plate are both influenced by five local parameters: 

• the initial velocity, 

• the submarine mass, 

• local Young's modulus, 

• the radius of contact, and 

• Poisson's ratio. 

The influence of both the initial velocity and submarine mass on the impact load is slightly more 
than on the deformation, for the Hertz contact, however both directly relate to the increase or 
decrease of these quantities. The local Young's modulus, £/, and spherical radius of contact, Rs, 
provide an opposite effect on the impact load as on the deformation. An increase in either one 
will increase the impact load, however, that same increase will decrease the deformation. Thus, 
for the initial impact to cause greater damage to the ice with less load imparted on the submarine, 
Ei and Rs should both decrease. A change of Poisson's ratio from a value of 0.33 to 0.5 provides 
a difference of less than 7% to either the impact force or the deformation. 

Quantitatively, the impact load appears to be substantial, where an increase in velocity will 
increase that load by a 6/5 power. The deformation imparted on the ice due to an initial impact 
does not appear to be substantial, especially when compared to an ice thickness that exceeds 2 ft. 
All in all, the relative advantage of an initial impact is not ascertained with respect to the range 
of values used in this study. 
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Chapter 2 

Submarine Ice Penetration 

The Arctic Ocean has always been a potentially strategic battleground in the eyes of 
geopoliticians and is also of great interest to most of the world for environmental and economic 
reasons. Under-ice submarine cruises in the Arctic offer the unique opportunity to collect data 
otherwise unobtainable and, in some cases, in areas generally inaccessible by other means 
[Welsh, et al., 1986]. The Arctic region is an ocean covered with plates of ice that vary greatly 
in size and thickness. Within this canopy of ice, there are occasional gaps of open water, called 
polynya, which offer the only surface access for a submarine, unless the capability to penetrate 
the ice surface exists.   Submarines can explore the nooks and crannies of the sea beneath the ice 
canopy and penetrate that canopy to access the upper surface. 

The act of surfacing a submarine through an ice sheet involves some amount of dynamic 
interaction between the two objects. Dane [1993] described "...a jab from below causes one 
point on the ice sheet to rise, fall and undulate for a moment like the surface of a shaken 
waterbed. There is a pause and it rises again, this time more powerfully, splits at the top and 
crumbles to expose the glistening black sail of the Puffer."  Or, as described by Gellman [1992], 
"It looked and felt a bit like an upside-down plane crash.... The ice pitched and heaved on 
impact and made unnerving sounds of buckling against the hull." Noted in both these accounts 
is a vertical rise of 30 feet per minute, and where the former description seems to indicate an 
elastic type collision and the latter suggests a more inelastic event. However, these are both 
subjective, anecdotal accounts of the surfacing operation, offering no particular quantification of 
the event. Whereas, establishing a rational, mathematically based account of the initial velocity 
effect would help to adjust current practice and assist in future design of Arctic capable 
submarines. 

The history of submarines operating in the Arctic region has produced several claimants on 
various levels for the title of the first under ice exploration and surfacing. As early as 1903, off 
Newport, Rhode Island, a lake submarine, Protector, was noted as the first to cruise under and 
surface through ice [McLaren, 1981].   As one would expect, pre-Revolutionary Russia 
conducted early investigations in winter sailing of submarines, a basic concern for a navy 
regularly faced with ice at most of its principal operating bases. The KafaV, a submarine 
designed by the U.S. inventor Simon Lake, was sold to the Russians and tested in December 
1908. As described by Lieutenant Merkushev, the boat "commenced the first and only sailing, 
in the entire world of a submarine beneath a solid ice field;" and further, "At surfacing punched 
through the ice field, bringing up ice on ourselves." In addition, he noted the demonstrated need 
for material improvements for these maneuvers, one of which was strengthening the conning 
tower. Additional Soviet literature, the book Severniy Flot {Northern Fleet), also contains a 
claim that, in 1937, the Dekabrist-class submarine Krasnogvardeyets was the first submarine that 
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"accomplished a successful under-ice sailing." The authors being apparently unaware of the 
prior claim of a Tsarist boat to this "first" [Babbitt, 1970]. 

Even western navies have felt the need to explore the Arctic with a submarine beginning in 
1930 when Sir Hubert Wilkins contracted to outfit an obsolete U.S. submarine, the 0-12, for a 
transpolar crossing [Wilkins, 1931]. However, after installing topside runners with plans to glide 
along the underside of the ice like an upside-down sled and surface in polynya, the submarine 
got stuck halfway beneath the ice edge and he was never able to complete his agenda. Despite 
this failed attempt; there was a continuation of interest in submarine operations in the Arctic 
Ocean. During World War II, a significant number of German submarines, called U-boats, 
successfully operated along the Soviet Northern Sea Route [ONI Review, 1951] apparently 
ducking in and out from under the ice as an evasion tactic. From 1946 to 1951 the U.S. Navy 
committed several submarines to Arctic and marginal sea ice zone operations [NUC, ASL, 
1974]. 

As noted by the Kefal' captain following that early ice cruise, hand in hand with this new 
operation was a need to address specific loads that occur during Arctic surfacing. The German 
submarines that operated in the Greenland and Kara Seas from 1942 to 1944 were not equipped 
to work under ice fields and some had returned to port with buckled bows and bent periscopes 
[Lyon, 1984]. Following the U.S. Navy's initial investigations, the USS Redfish (SS-395) was 
proposed as an experimental submarine for the study of sea-ice mechanics and Arctic warfare 
[Lyon, 1952]. As a result, the Bureau of Ships designed a hull modification that would permit 
collision against the underside of the ice canopy. Even though the submarine force commander 
did not consent to the modification at that time, in 1955 the Technical Assistant to the Chief of 
Naval Operations recommended that "a submarine be assigned for experimental under-ice 
operations, particularly as related to future modifications of submarines for ice operations." 

The USS Nautilus (SSN-571) was outfitted with special sonar and navigation equipment to 
operate in the Arctic; however, the sail and superstructure were constructed of aluminum and not 
designed for upward impact. In 1957 during an attempt to surface vertically into an open-water 
polynya between ice floes, the sail struck a small block of floating ice, which damaged the 
periscope and smashed down part of the sail's top surface [Lyon, 1984]. In 1958, modifications 
were made to make Nautilus more Arctic-capable including strengthening and hardening of the 
sail and deck to permit impact vertically against sea ice. The Nautilus crossed under the North 
Pole on 3 August 1958. 

Next, the USS Skate (SSN-578) was given a mission to "develop techniques for surfacing 
in pack ice areas.. .if nuclear submarines are to be useful in the Arctic they must have access to 
the surface" [Calvert, 1959]. While this mission was initially accomplished in the summertime, 
August 1958, and only through open-water polynya, the need to prove that a submarine could 
surface in the Arctic during any season drove the Skate back the following March. The ice has 
usually reached its maximum by March, after continued low temperatures in January and 
February. Even though open water leads may still form when the ice canopy breaks apart under 
the stress of wind, the exposed surface will freeze six inches thick the first 24 hours with an 
average winter temperature of about -30°F. However, it was noted that whales had been 
observed to break ice six or eight inches thick with their backs. With that example, the Skate's 
"sail" (or conning tower), the protective and streamlining structure surrounding the periscopes 
and radio masts, was strengthened, and the latest upward-looking fathometers were installed to 
measure the distance to the underside of the ice and to estimate its thickness [Rockwell, 1992]. 
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In lieu of the vertical-ascent procedure used in summer to surface in the open-water 
polynya, procedures were devised for locating an acceptably thin lead in the ice canopy, 
positioning the submarine, and vertically ascending at a controlled rate [Lyon, 1984]. With an 
externally mounted underwater camera, the first surfacing was observed as allowing "the nearly 
3,000-ton mass of the Skate to bump against the ice. We rebound gently away....bring her up 
again, this time a little faster." [Calvert, 1959]. During this winter deployment, the Skate 
attempted several more surfacing maneuvers and even experienced a few failures. As a result of 
this mission, "the art of routine surfacing through sea ice was devised ... by intuitive 
engineering, rudimentary knowledge of ice mechanics, and trial" [Lyon, 1992]. A routine 
surfacing has been described as a stationary, vertical ascent at a specified rate of rise in feet per 
minute that was calculated to exert a vertical impact force on the sail - assuming the boat did not 
break through the ice - within the submarine's design strength. However, the conclusions of 
recent literature implies that the "art" was developed more on trial than a rational basis, 
especially considering the stated need to "conduct momentum-exchange experiments and impact 
measurements" [Lyon, 1992]. 

The U.S. Navy interest in Arctic operations continued during the 1960's with incorporation 
of special ice-operation features in a submarine design, the Sturgeon (SSN-637)-class, beginning 
it's operations under the ice with Queenfish (SSN-651), February 1967. However, interest in 
these operations waned during the '70's and early '80's, although peaking again with the 
establishment, in May 1982, of an Arctic Program Steering Committee chaired by then Director 
of Naval Warfare (Op-95), Vice Admiral Lee Baggert, Jr., to coordinate the development of 
Arctic capabilities in the Fleet. The committee, at the three-star level, was formed following the 
initiation of several Arctic-related efforts by then Deputy CNO for Submarine Warfare, Vice 
Admiral N.R. Thunman, and strong recommendation by the then Oceanographer of the Navy, 
Rear Admiral Brad Mooney. The then Secretary of the Navy, John Lehman, saw the Arctic as a 
major area for U.S. naval activity, and called the frigid Kola Peninsula "the most valuable piece 
of real estate on earth." He said, "The only way you can really keep them [the former Soviet 
Union] above the GIUK (Greenland, Iceland, and United Kingdom) gap ... is to be up there ... 
forcing them onto the defensive initially because they know they will have to protect their 
assets" [Getier, 1983]. During that time period, it was noted that the Arctic was an important 
naval and maritime area for the Soviet Union, beyond ballistic missile submarines. Their 
building of nuclear icebreakers and reported construction of nuclear merchant ships for Arctic 
operation demonstrated the importance of the area [Zubrin, 1983]. 

Even with this renewed U.S. Naval interest in the Arctic, of the submarine classes currently 
operational by 1990, only the 637-class had conducted surfacings from below ice. The 
subsequent Los Angeles (SSN-688) submarines, the U.S. Navy's largest class of SSN's, do not 
have under-ice features, thus limiting their Arctic capabilities. However, a later version of this 
class, designated SSN-688I, was fitted with bow-mounted, retractable diving planes instead of 
sailplanes, as well as other ice-operation features to make an Arctic capable boat [Polmar, 1984]. 
The first of this later version, San Juan (SSN-751), demonstrated it's operational prowess in the 
Arctic during 1993 [Dane, 1993].   In addition, the limited edition Seawolf(SSN-2l) class is also 
reported as designed with Arctic capabilities. 

The former Soviet Union and the United Kingdom are the only other countries that are 
apparently still operating in the Arctic Ocean. The USSR submarine Leninskiy Komsomol made 
a cruise to the North Pole in June 1962; more recent Arctic cruises have not been publicly 
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described. However, the ballistic missile submarines of the Northern Fleet are among the few 
Soviet naval vehicles still operating. As such, the Soviet's most modern nuclear submarine 
classes, Typhoon and Delta IV, reportedly hide near and under the polar ice and are capable of 
punching through to fire their intercontinental ballistic missiles [Gellman, 1992]. Two 
submarines of the United Kingdom have made cruises to the North Pole, HMS Dreadnought 
(S-l01) in 1971 and HMS Sovereign (S-108) in 1976. However, the Trafalgar is apparently the 
only current Arctic capable U.K. boat. 

The ice thickness that these submarines surface through is not clearly defined. There are 
very few historical records that detail the state of the ice and those that do are quite vague, such 
as the description given during the 1908 Kefal' effort of the ice field "spreading out in the 
horizontal as far as one could see." The ice thickness was related as being only one inch and 
during part of the short journey the periscope was held three feet above the surface, cutting 
through the ice. However, a single flagstaff also was high enough to cut through the ice and at 
some point was bent over, demonstrating the strength of the ice [Babbitt, 1970]. One reported 
surfacing of the Skate was in an ice skylite about 1 ft thick - a narrow lead 100 yards wide lying 
between rugged, high hummocks [Lyon, 1984].  Sargo, of the same class of submarine as the 
Skate, was noted to have surfaced through ice, 3 ft thick at the North Pole. The remaining 
accounts are even more vague when relating the ice thickness, such as referring to "thick ice" 
surfacing as major accomplishments for the USS Whale and USS Pargo during cruises in April- 
May 1969 [McLaren, 1981]. More recent reports of Arctic operations [Dane, 1993] have 
indicated that a typical surfacing has evolved to include penetration of an "ice slab, several feet 
thick." As for the Russian Typhoon, conjecture has been made for a surfacing capability through 
ice of up to 3 m (9.8 ft.) thick due to the sail configuration [Jane, 1989/90]. 

Reports on ice forecasting have proved very useful in bracketing the ice thickness to be 
addressed in this study. The major source of ice thickness statistics available to date in the 
public domain for the entire Arctic Ocean and virtually the only source for the Siberian segment 
of the Arctic Ocean is from submarine sonar profiling. A detailed analysis of ice thickness 
distribution in the entire Arctic Ocean has been made based on 17 cruises of U.S. and British 
submarines between 1960 and 1982 [Bourke and Garrett, 1987]. A summary of several reports 
[Tunik, 1994] shows that the values of the mean ice thickness range from 3 to 13 feet, with large 
standard deviations that range from 41 to 91 percent. However, one study [McLaren, -1989] 
using submarine sonar under-ice thickness profiles, specifically categorized refrozen leads and/or 
polynya into "surfaceable areas" which involved up to and including 200 cm (approximately 6.5 
feet) thick ice. In the same study, the mean thickness of level ice, defined as areas that vary less 
than 1 ft within a 33 ft radius, was up to 9 ft with a standard deviation of 2 ft in some sections. 

Sea stories are entertaining and provide great fodder for historical lore; however, these 
anecdotal accounts do not accurately quantify ice and submarine characteristics and, 
consequently cannot provide a true basis for design guidelines. Assessing the structural 
dynamics of a floating ice sheet due to an initial impact will be useful in rationally quantifying 
the relative importance of a submarine ramming the ice during the surfacing maneuver. This part 
of the surfacing evolution is likely the most uncontrolled and thus undesirable portion, 
considering the inherent conservatism found in the nuclear navy. These dynamics also 
contribute another negative aspect in the additional forces occurring due to the inertial effects of 
water coupled with the ice sheet motion. 
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The following study will mathematically describe the structural dynamics of a floating ice 
sheet due to an initial impact. The main parameters appearing to affect these dynamics are the 
ice thickness, initial velocity, and impacting mass (submarine). Secondarily, it would seem that 
variation of the ice sheet material properties (most notably the Young's modulus, E) will affect 
the phenomena, although the inclusion is typically in the form of a fourth root value which 
would tend to lessen the effect. Using the closed-form solution of a simple spring-mass system, 
this study will determine how a range of initial velocity magnitudes affects the peak impact 
force, on both the ice sheet and the submarine, resulting from contact through a range of ice 
thickness. The effect that this initial impact has on the ice sheet will be quantified through 
observation of the maximum displacement relative to the ice thickness. 
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Chapter 3 

Theoretical Background 

This effort is intended to quantify the effect of the various parameters on the structural 
dynamics of a floating ice sheet due to a low-velocity, large-mass initial impact, specifically, that 
experienced during submarine Arctic surfacing maneuvers. To formulate a solution, it is prudent 
to understand previous work in this area. 

Theoretical treatment of submarine ice penetration operations, noted as a process based 
largely upon trial and error, was addressed in connection with the first successful U.S. Naval 
attempts to surface submarines through ice [Assur 1962]. One consideration within that 
treatment was whether the submarine applies a force "topping" at rest against the ice or whether 
it approaches the ice sheet with a vertical velocity. Both of these cases were addressed with a 
focus on the failure point of the ice sheet. The first case involved computing the force required 
to penetrate the ice sheet under static loading, whereas the energy required under impact load 
was computed for the second. 

The basic formulation for solutions in this early study involved a combination of both 
cylindrical bending of a plate with a finite line load, as well as circular bending at each end to 
represent the sail as a long, roughly elliptical load. Using a plastic moment, Mp = cr/z74 as the 
failure criteria, the maximum deflection, wmax, was derived. With the load formulated as a 
function of displacement, P(w), the work (or kinetic energy) to achieve failure was found by; 

"max 

W=  \P{w)dw (3-1) 
o 

The conclusions obtained concerning the kinetic energy required to break through the ice 
by impacting or "bouncing" were twofold: 

1. that the value "increased rapidly" with the ice thickness (h) apparently by a power of 
5/2, and 

2. it is proportional to the square of the flexural strength of the ice (cr). 

However, this early treatment does not take into account two very important aspects of the 
dynamic problem: 

1. the strain energy for both the plate and that owing to the deformation of the elastic 
foundation, and 

2. the inertial effects of each of the components (ice sheet, fluid foundation, and 
submarine). 

In the case of forced vibrations or dynamic loading, the water imparts an additional bottom- 
surface pressure as the water mass is accelerated. However, as noted about the aforementioned 
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study and earlier efforts [Holl, 1950], the consideration of forced vibrations of thin plates resting 
on elastic foundations does not include the inertial effects of the water. Additional literature 
[Ross, 1969][Likhomanov and Kheisin, 1971] [Kennedy and Iyengar, 1981][Timco and 
Frederking, 1993] is directed towards much higher velocities, on the order of 6 to 1000 times the 
rate of 30 fpm cited in the introduction literature. Each completely ignores the inertial effects of 
the foundation, as well as the ice. In most cases, the main concern was with contact pressures 
and shear plug expulsion. 

Treatment of the inertia due to the elastic foundation has been made by applying 
Lagrange's principle of virtual displacements within a generalized study of beams, plates, and 
shells on elastic foundations [Vlasov and Leont'ev, I960]. The assumptions are that no 
horizontal displacements occur in the elastic foundation and that the z-distribution of the vertical 
displacements is given by a known dimensionless linearly independent function, cp(z). This 
function is selected in such a way that cp(0) = 1. However, these formulations are geared mainly 
toward soil as the foundation and, as such, that layer is considered compressible. 

Incompressible potential flow theory has been used to treat the hydrodynamic reaction 
when analyzing the initial vertical motion of a floating ice sheet [Kheisin, 1967] along with 
assuming elastic plate behavior and small deflections. This approach was followed in later 
studies [Nevel, 1970] to provide solutions for the case of free vibration upon sudden removal of 
a static load and for forced sinusoidal vibration. A more recent finite element analysis 
[McGilvary et al., 1990] used incompressible potential flow to assess the validity of a coupled 
model to predict loads from a series of small-scale tests [Sodhi, 1989] involving constant 
velocity, vertical penetration of floating urea model ice sheets by cylindrical indentors. Even 
though the analysis required material property manipulation to agree with the experimental test 
data, the relative model results clearly demonstrated the predominance of fluid inertia over the 
ice inertia for the case studied. 

These small-scale tests also motivated another study [Dempsey and Zhao, 1992] in which 
the ice sheet is modeled as an infinite thin plate undergoing small deflections with the supporting 
fluid modeled using incompressible potential flow theory. Closed-form solutions are used and 
the conclusions are in complete agreement with the earlier finite element effort in that the 
inclusion of the hydrodynamic reaction is of major importance. Thin plate theory supported by a 
Winkler foundation, described later, has been shown by use of Mindlin plate theory [Reismann 
and Lee, 1968] to be highly accurate, even if the effects of shear deformation and rotatory inertia 
are excluded. Other comparisons have been made [Zhao and Dempsey, 1990][Dempsey et al., 
1991] between thin plate and layer solutions showing that the thin plate theory can accurately be 
used if the ratio of the characteristic length, /, (see equation 3-5), to layer depth is greater than 8. 
This will be evaluated within Chapter 6 of this study. Basically, these results indicate that the 
transverse deformation and shear deformation of the layer become less significant for ///z > 8. 
When specifically evaluating impact force, it was noted that, for relatively thick ice sheets, the 
influence of water depth, fluid inertia and characteristic length is unimportant, whereas, thinner 
ice sheet impact is significantly influenced by the bending deformation, as well as the dynamic 
water reaction. 

The theory of plates on a continuous elastic foundation [Winkler, 1867] was formulated by 
assuming that the intensity of the reaction of the elastic foundation at any point is proportional to 
the deflection of the plate, w, at that point. This formulation is referred to as a Winkler 
foundation. This intensity is then given by the expression kw, where the constant k, expressed in 
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force per area per deflection, is called the modulus of the foundation. The response of a 
homogeneous, isotropic, elastic plate that rests on an elastic foundation and is subjected to a 
static vertical load, q, is described by the partial differential equation; 

2 
where, V is the Laplace operator, which for axisymetric cases is 

DV2V2w+kw = q (3-2) 

'' d1 Id) J —y + -— ,and 
dr      r drj 

D = Eh3/[l2(\-v2)] (3-3) 

is the flexural rigidity of the plate, in which E is Young's modulus and v is Poisson's ratio. 

The specific problem of a floating plate loaded at the center with a concentrated load, P, 
was later addressed [Hertz, 1884] in which k is regarded as the unit weight of the liquid (64.1 
lb/ft3 for seawater at 32°F). Bessel functions have been used [Timoshenko and Woinowsky- 
Krieger, 1959] to obtain an expression for the general deflections of the plate. Where in the case 
of an infinite plate, the solution is in the form [Wyman, 1950]: 

PI2 

w = -—— keix (3-4) 
2nD 

where x is the distance from P, and / is the characteristic length of the plate is defined by 

(3-5) 

The modified Bessel function, kei, may be represented for small values as follows; 

keix = -(x2/4)lnx-x/4 + (l + ln2-y)x2/4+--- (3-6) 

In which y = 0.5772157- • • is Euler's constant. Thus, at the center kei x = - n/A where the 
deflection under the load becomes, 

PI2 

W«=8D (3"7) 

The behavior of floating ice sheets subjected to static and moving loads has been examined 
by several investigators through the decades, and a survey of these efforts [Kerr, 1976] has 
shown that most of those treatments have used plate theory. Concern about the bearing capacity 
of floating ice sheets which are subjected to static or quasi-static loads has focused on the static 
loads of platforms (for storage in logging operations, construction of river structures, or offshore 
drilling) or moving loads (for ice roads or aircraft runways). One of the basic revelations of 
earlier studies was that the plate response may be considered elastic up until failure for the case 
when a small and relatively heavy vehicle breaks through the ice immediately after placement. 
Note that the current study is aimed at characterizing the immediate response of the ice plate and 
is thus supported by consistent conclusions of early efforts in the sole use of elastic deformation. 

An aforementioned critical survey [Kerr, 1976] of the literature on the bearing capacity of 
floating ice plates was specifically aimed toward predictions of P//>) for both the magnitude of 
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the "break-through load", Pf, and the corresponding "time to failure", tf. This survey found that a 
majority of papers on the bearing capacity of ice plates deal with the determination of the special 
case of P/0), the load which is just sufficient to break through the ice immediately after it is 
placed on the ice cover. There were five different procedures cited for the determination of 
P/0); three were based on elasticity analyses and two were based on plasticity analyses. 

The three procedures found based on elasticity analyses were: 

1. An analogy method for determination of P„ the allowable load, based on the failure 

(TM1 

moment in cylindrical bending, M a = ——, which assumes a linear stress distribution 
6 

across the plate thickness. The final relationship, Pa = Ah2, requires determining the 

coefficient, A = P/h2 , empirically. 

2. Based on the elastic theory of plates and solutions for an infinite plate subjected to a 
load uniformly distributed over a circular area. The load at which the first crack occurs, 
Pcr, is determined with the criterion <rmax = as, where amm is found empirically. 

3. Using the elastic theory for the analysis of a cracked ice plate to determine P/0) 
directly by assuming that the value is reached when the radial cracked wedges break at 
the base. Again, c^is obtained empirically. 

The two approaches for the determination of P/0), based on plasticity theories, use the 
yield-line and limit-load analysis, respectively. These theories are conceptually related to the 
elastic-based approach that analyzes the cracked plate, using yield lines instead of cracks and 
plastic moments instead of wedge-in moments. It was noted, however, the assumption that the 
ice plate can resist a full plastic moment M without cracking may not be realistic, since its 
formation was not observed in the field. 

The consistent criticism for all the procedures examined in the survey was the use of a 
linear distribution of bending stresses to determine the maximum stress. The material parameters 
of a floating ice plate vary throughout the thickness [Kerr and Palmer, 1972], especially Young's 
modulus E. However, this survey cited that, according to several other papers [Newman and 
Forray, 1962] [Panfilov, 1966] [Assur, 1967], when E varies through the plate thickness h, and 
Poisson's ratio u is assumed to be constant, the homogeneous partial differential equation is still 
valid if the flexural rigidity is 

£> = —^  \z2E{z)dz (3-8) 
l \>    * 

and the position of the reference plane is determined from the condition 

\z2E{z)dz = 0 (3-9) J« 
"0 

Systematic formulation of this problem [Kerr and Palmer, 1972] using Hamilton's principle 
in conjunction with the three-dimensional theory of elasticity, has shown that using this 
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nonhomogeneous definition, E = E(z), still allows for the same corresponding boundary 
conditions as for homogeneous plates. 

Two very important items for the current study resulted from the study of the Kerr survey: 

1. As was surmised from field observations, the ice plate response to a loading of short 
duration may be considered elastic and as such formulation of solutions based on the 
elastic theory, including Kirchhoff s hypothesis, is justified. 

2. 2. A proposed failure criterion [Zubov, 1942] [Kobeko et al, 1946] resulting from test 
data, for loads of short and long duration, was found based on a critical deflection, wf. 
Specific empirical data [Panfilov, 1961], with ice plate thickness from 1 to 6 cm and 
temperatures form -3°C to -8.5°C, found the following relationship: 

wf = 2l4h 

This relationship indicates that the resulting ratio, w/V/z, may be used to compare the effect of 
the parameter variations. 

In the mid-1980's the current state and future needs of ice cover research was again 
addressed [Kerr and Frankenstein, 1986] with no new revelations bearing on this study. With the 
exception of a widely agreed upon failure criteria, use of the basic differential equation for 
homogeneous thin elastic plates, while incorporating a through thickness variable Young's 
modulus E, continues to be an acceptable method for analyzing floating ice covers. However, 
within another survey [Kerr, 1996] of analyses and tests of the bearing capacity of floating ice 
covers conducted another decade later, there is a note that for the determination of the deflection 
surface, bending moments, and shearing forces, the use of an averaged Young's modulus, E^, is 
admissible. This Em value is determined by equating the flexural rigidity expressions (3-3) and 
(3-8), which yields 

12 
h-zn 

E»=l? fa(z)dz (3-10) 
h 

In addition, this latest survey noted that an investigation [Hutter, 1974] of the effect of brine on 
Poisson's ratio found negligible results and, thus concluded that the assumption of v « constant 
is sufficient for many engineering ice cover analyses. 
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Chapter 4 

Static Formulation 

The dense ice cover floating on the ocean surface will be regarded as a plate supported by 
an elastic foundation. An acceptable formulation of the static solution for an axisymmetric plate 
with a concentrated load is required as an initial step in the overall study. Initial observations 
will be made with the simpler solutions for beams on elastic foundations to observe the effects of 
expanse and boundary conditions on the various aspects of the problem. The aim is to use only 
an infinite plate solution while addressing the more complex issues in the following dynamic 
formulation, with a caveat on the minimum expanse issues that arise in the finite beam 
observations. 

Classic plate theory will be briefly reviewed before making the next step into the specific 
formulation for an axisymmetric plate supported by an elastic foundation. The exact solution for 
the infinite plate on an elastic foundation involves functions that will be difficult to 
mathematically manage during the dynamic formulation. Therefore, the Ritz method, a 
convenient procedure for determining solutions by the principle of minimum potential energy, 
will be used to obtain an acceptable approximation of this solution. 

Beams on an Elastic Foundation 

Thorough observation of a simple beam supported by an elastic foundation will illustrate 
the effect of length expansion and boundary conditions on various aspects of the problem, such 
as, maximum deflection and moment. These results support the next step where an infinite 
axisymmetric plate will be used on an elastic foundation with the knowledge of the limiting 
length expansion. 

The support that an elastic foundation gives to a structure, beam or plate, is assumed to be 
proportional to the deflection due to loads [Winkler, 1867]. When a concentrated lateral load, P, 
causes the beam to deflect and displace the elastic foundation, the foundation's resistance to this 
displacement produces a laterally distributed force, q (force per unit length), on the beam. See 
Figure 4-1. When the x-axis coincides with the axis of the beam, and the v-axis is normal to the 
elastic foundation, this force may be described by q = ky, where k is the proportional constant of the 
supporting medium, referred to as the modulus of the foundation. When the foundation medium is 
a fluid, then k is simply the unit weight of the liquid [Hertz, 1884]. 
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Figure 4-1. Infinite Beam on an Elastic Foundation with Concentrated Load at Origin. 

There are certain regions where the deflection of the beam may be negative within the solution 
of this deflection problem. The basic formulation of a Winkler foundation assumes that the beam is 
attached to the foundation, which may, in certain regions, exert a tensile force on the beam. Note 
that in the case of a floating beam there is initial foundation pressure already on the beam resulting 
from beam weight which creates an initial constant deflection. This initial pressure is added to the 
laterally distributed force created by the loading. Thus, if a load is tending to lift the beam from the 
fluid, the combined laterally distributed force will be entirely compressive until the beam has been 
lifted clear of the fluid, at which point the foundation does not exist and this solution is no longer 
valid. 

The general solution for the deflection, >>, starts by obtaining the differential equation of the 
bending axis of the beam on an elastic foundation [Hentenyi, 1946]: 

EI—^ = -ky 
ax 

The general solution of (y) may be expressed as: 

y = eß'(A sinßx+B cos/?x) + e~ß (C sinßx+D cos/fr) 

where 

(4-1) 

(4-2) 

ß = AEI 
(4-3) 
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Note that ß includes the flexural rigidity of the beam as well as the elasticity of the supporting 
medium and this is referred to as the characteristic of the system. Since ßs dimension is 
length'1, the inverse, l/ß, is known as the characteristic length. This quantity is similar to the 
characteristic length defined previously in the background for a plate. Thus, the separate 
solutions, for beams and plates, may be addressed with respect to the characteristic length in 
general. 

The constants found in (4-2) are determined due to the boundary conditions, as well as, 
employing symmetry conditions where: 

1. the slope of the beam remains zero under the load, 

^ = 0@x = 0 (4-4) 
dx 

2. half of the load P must be supported by the elastic foundation under the half of the beam 
specified by positive values of x, 

oo 

l\kydx =P @x>0 ■ (4-5) 

For infinite beams, the deflection of the beam converges toward zero for large positive 

values of x. Consequently, since the positively powered exponential [e13*) continuously 
increases as x increases, the constants A and B must be set equal to zero and (4-2) reduces to: 

y = e~ ß (C sin ßx+D cos ßx) @x>0 (4-6) 

The remaining constants, C and D, are found by applying the symmetry conditions. First solving 
for the slope: 

— = ß e~ ^UC-D) cos ßc-(C+D)sinßc] (4-7) 
dx 

dy where@x = 0, — = 0 = ß(C-D)=> C = D.thus: 
dx 

v = Ce~ß(smß+cosßx) (4-8) 

Next equating the half of the load to half of the foundation support: 

oo 

P = 2 \kC e ~A (sin ßx + cos ßx)dx (4-9) 
o 

where integration results in the following: 
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P = 2kC 
■fl* 

_2ß2 

where applying the limits results in: 

(-/?sin/?x -/?cos/?x -ßcosßc + /?sin/?x) (4-10) 

2kC Pß 
 => C = - — 

ß 2k 
(4-11) 

The deflection of an infinite beam, supported by an elastic foundation with a concentrated load 
(P) applied at the origin, may be expressed as: 

y = 
Pß 

2k 
e~A(sinjSt+cos/5&t) (4-12) 

The resulting shape may be drawn with respect to ßx, as shown in Figure 4-2. Note that by 
the distance ßx = 2n the deflection is less than 0.2% of the central maximum deflection, hence 
essentially zero. Discussion on the implications of the distance ßx is found later within the 
observations of finite to infinite beam results. 

(Pß/2k) 

271 

Figure 4- 2. Deflection Shape of an Infinite Beam on an Elastic Foundation. 

A finite length beam on elastic foundation solution involves solving four simultaneous 
equations for the four unknowns. Two of the equations have already been given in all cases that 
involve symmetric loading and end conditions. These are the symmetry conditions addressed 
earlier in (4-4) and (4-5). However, the condition in (4-5) will be modified somewhat by addressing 
the following shear condition found at, just right of, the origin: 

d3y P 
El = -— @x = 0 

dx 3 2  °- 

where the negative sign is introduced because of the shear sign convention. 

(4-13) 
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The deflection equation was derived for three sets of finite length beams where the end 
conditions are (a) fixed-fixed, (b) simply supported, and (c) free-free. The beams were considered 
of length equal to 2L and the coordinate system, as with the infinite beam, has the origin at the 
center where the load is applied. The boundary conditions, at x - ±L, for each case of finite length 
beam considered are: 

dy 
1. Fixed-Fixed:  >> = 0and — = 0 

dx 

d2y 
2. Simple Supports: y = 0 and = 0 

dx 

d2y d'y 
3. Free - Free:  = 03 and = 0 

dx2 dx* 

The solution for each of these finite length beam cases is of the following form: 

y = —^-[eßx{Asmßx+Bcosßx) + e~ßc(Csmß+Dcosßx)] (4-14) 

The constants for each end condition are as follows; 

1. Fixed - Fixed: 

a = e4ßL + 2 e2ßL sin 2ßL -1 (4-15a) 

A = e
2ßL(cos2ßL+sm2ßL)-l (4-15b) 

B = e2pL (cos 2ßL - sin 2ßL -2) + \ (4-15c) 

C = e2ßL (e2ßL - cos 2ßL + sin 2ßL) (4-15d) 

D = e2ßL(e2ßL + cos2ßL + sin 2ßL -2) (4-15e) 

2. Simple Supports: 

a = e*ßL +2e2ßL cos 2ßL +1 (4-15f) 

A = e2pi(cos2ßL -sin 2ßL) + \ (4-15g) 

B = e2ßL(cos2ßL-sin2ßL)-\ (4-15h) 

C = e
2ßL (e2ßL + cos2ßL +sin 2ßL) (4-15i) 

D = e2ßL (e2ßL + cos 2ßL -sin 2ßl) (4-15j) 

3. Free - Free: 

a = e4ßI■ + 2 e2ßL sin 2ßL -1 (4-15k) 

A = e2ßL(cos2ßL+sin2ßL)-l (4-151) 
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B = e2ßL (cos 2ßL - sin 2ßL +2) + \ 

C = e2ßL (e 2ßl - cos 2ßL + sin 2ßL) 

D = e2ßL (e2ßL + cos2ßL + sin 2ßL + 2) 

(4-15m) 

(4-15n) 

(4-15o) 

Observations of the range at which the beam conditions may be approximated more easily by 
the infinite solution are made by comparing plots of the various results; deflection, moment, and 
shear. See Figures 4-3 through 4-7. These results are normalized by the particular value found for 
an infinite beam at the origin and plotted along a horizontal axis delineated by ßL, which correlates 
to a given finite beam expanse. Values, resulting at the origin for both deflection and moment are 
compared in Figures 4-3 and 4-5, respectively. Shear values are defined at the origin for all cases as 
-P/2, which, of course, leaves no comparison. Note that these plots of finite beam origin results are 
compared to unity, 1, because of the infinite beam normalization value, which defines the infinite 
beam as unity regardless of the finite beam expanse, ßL. Deflection, moment, and shear are all 
compared for values occurring at the end of the finite beam expanse, ßL. These plots, Figures 4-4, 
4-6, and 4-7 for deflection, moment, and shear respectively, are mapped against the continuous 
normalized infinite beam results, as found at a distance ßL from the origin. 
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Figure 4- 3. Maximum Central Deflections of Finite Beams. 
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Figure 4- 4. End Deflection for Finite Beams. 
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Figure 4- 5. Central Moments for Finite Beams. 
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Figure 4- 6. End Moments for Finite Beams. 
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Figure 4- 7. End Shear for Finite Beams. 
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Comparing these plots shows that the origin results for finite beams converge within almost 
half the distance it takes for the end conditions to converge to the infinite beam values. This trend is 
not surprising, since the end conditions are the differences to overcome in the finite beams and 
region furthest from these areas, the origin, will be the least affected by those conditions. 
Quantitative comparison of the beam expanse effect is as follows: 

1. origin results converge almost completely, within 1.1%, by the time ßL = n,as well as 
within 5.5% by the time ßL = 37i/4, and 

2. finite beam end results converge almost completely, within 0.7%, by the time ßL = 2n, as 
well as within 3.6% by the time ßL = 3TC/2. 

Classic Plate Theory 

A flat plate is often described as a structural element or member whose middle surface lies 
in a flat plane [Boresi, et al., 1978]. The dimension of a flat plate in a direction normal to the 
plane of its middle surface is called the thickness of the plate. A plate is characterized by the fact 
that its lateral dimension, the thickness, is relatively small compared to the plate dimensions in 
the plane of the middle surface. As a consequence, the bending behavior of a plate depends 
strongly on the plate thickness, as compared to the in-plane dimensions of the plate. 

The fundamental assumptions of the classic plate theory, or the small-deflection theory of 
bending for isotropic, homogeneous, elastic, thin plates, is based on the geometry of 
deformations [Ugural, 1981]. Known as the Kirchhoff hypotheses, these assumptions are 
analogous to those associated with the simple bending theory of beams and serve to reduce the 
three-dimensional problem to a more tractable two-dimensional problem. The following is a 
short description of these assumptions: 

1. The deflection of the midsurface is small compared with the thickness of the plate. The 
slope of the deflected surface is therefore very small and the square of the slope is a 
negligible quantity compared to unity. 

2. The midplane remains undeformed subsequent to bending. 

3. Plane sections initially normal to the midsurface remain plane and normal to that 
surface after the bending. The deflection of the plate is thus associated principally with 
bending strains. It is deduced therefore that the normal strain resulting from transverse 
loading may also be omitted. 

4. The stress normal to the midplane is small compared with the other stress components 
and may be ignored. 

The equations of equilibrium for a plate may be derived, using these assumptions, by 
several methods such as: 

1. considering the equilibrium requirements for an infinitesimal plate element [Marguerre 
and Woernle, 1969], 

2. by integrating the pointwise equilibrium equations through the plate thickness and 
employing the definitions for the stress resultants [Boresi, et al, 1978], or 

3. by a direct application of the principle of virtual work [Marguerre and Woernle, 1969]. 
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The combination of these equilibrium equations with the derivations for moments in terms 
of the curvatures and deflection, reveals one of the main results of classic plate theory, the plate 
equation: 

V2V2w = — 
D 

where: 

w is the transverse deflection of the plate, 

q is the lateral load per unit area, 

V2 is the Laplace operator, which for axisymmetric, polar coordinates is: 

(4-16) 

V2 = 
&     \_d_ 

cr2 + r dr 

D is the flexural rigidity of the plate, which is expressed as: 

Eh' 

12(1 -v2) 

h is the plate thickness. 

To determine w, (4-16) must be integrated where the resulting constants depend on the 
appropriate boundary conditions. 

(4-17) 

(4-18) 

Axisymmetric Plate Bending on an Elastic Foundation 

In the case of a plate supported continuously along its bottom surface by a foundation, the 
intensity of the foundation reaction is proportional to the deflection, w, of the plate. As 
described earlier in formulating the beam solutions, this intensity is given by the expression kw, 
where w is used to designate the transverse deflection for plates, as opposed to y for beams. As 
denoted earlier for beams, the constant k, expressed in pounds per square inch per inch of 
deflection, is called the modulus of the foundation. Which follows that for the specific problem 
of a floating plate [Hertz, 1884] £ is regarded as the unit weight of the liquid. 

Formulation of the solution for this case may be initiated by adding the load -kw, due to the 
foundation reaction, to the lateral load q [Timoshenko and Woinowsky-Krieger, 1959] of the 
plate equation. This results in the following differential equation for the bent plate: 

rd2 1 d 

\dr 
- +  2    r dr) 

d2 w    1 dw 
■ + ■ 

\dr2     r dr 

■kw 

D 
(4-19) 

In the particular case of a plate loaded at the center with a load P, q becomes zero over the entire 
surface of the plate except at the center. Thus (4-19) becomes: 

I4 
fd2 1 d 

\dr 2    r dr) 

dzw 

V dr2 

1 dw 

r dr. 
+ w (4-20) 
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where the following notation is introduced: 

/4   = 
D 

(4-21) 

Often referred to as the characteristic length of the plate, /, having dimensions of length, is 
comparable to the inverse of /?that was found in the beam cases. As an aside, a direct 
comparison of these two characteristic length terms reveals that the plate value is nearly 1.5 
times less than that of the beam, depending on Poisson's ratio. This is not surprising since the 
plate case involves bending in two dimensions and, hence, less flexible than a beam which 
involves only cylindrical bending. Continuing with the plate solution, dimensionless quantities 

w     _        r     _ 
are introduced to simplify the solution process, these are:  — = z and — = x . Using these 

substitutions (4-20) becomes: 

f d2 1  d 

dx     x dx, Vdx2 + ■ 
]_d£" 
x dx 

+ z=0 (4-22a) 

Using the symbol A for 
'd2 1 d 

_i + — - 
Vdx     x dx 

, (4-20) may be expressed finally as: 

AAz + z = 0 (4-22b) 

This is a linear differential equation of the fourth order and may be solved with a general 
solution of the form: 

z=cJi (x ) + c/2 (x) + c/3 (x) + cj4 (x) (4-23) 

where c\,..., CA are constants of integration and the functions fx (x),... ,/4 (x) are four 
independent solutions of (4-22). 

One successful manner of representing (4-23) to solve (4-22) is with the application of 
Bessel functions [Timoshenko and Woinowsky-Krieger, 1959]. In the particular case of an 
infinite plate with a central concentrated load, P, the complete solution is in the form 

PI2 

*>(r)=-——kei 
2nD 

{- (4-24) 

where kei(x) is a modified Bessel function of the form: 

kei(x) = ^lm[Y0{xe'*/4)]-^Re[jo(xei*/Aj\ (4-25) 

which is essentially the imaginary portion of K0[x V±7), a Bessel function of the second kind 

sometimes referred to as a Kelvin function. At the origin kei(0) = - —, which gives a 

maximum deflection of: 
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Wmax = ' 
PL (4-26) 

Using the form (4-24) will be mathematically cumbersome with the continuation of this 
study into the dynamic solutions. There are approximations for kei(x), however, these are 
dependent on whether x is small, x < 1, where the following may be used 

C.2\ 
/ \        x n    i \x 

keiOc)« - — lnx - —+ 1 +ln2-rI—- 
\4 J 4    v ' 4 

(4-27a) 

in which y is Euler's constant (0.5772157...). Where for larger values, the following asymptotic 
expression holds: 

kei(x) « - 
yflx/n 

sin 3 + 
It 

(4-27b) 

in which 9 = x/42 . Neither one of these approximations provides a valid continuous function 
that represents the overall displacement of the plate, see Figure 4-8. Thus another means of 
approximating the solution for an infinite plate supported by an elastic foundation with a central 
concentrated load is required. 

1 

0.8 kei (x) 

H^"j    0.6 

0.4 

0.2 

0 

-0.2 1 

(425) \ 
\ (4.27b) 

^xt 

(4.27a) \          ^V, 

Tt                                71   "■ 371 
71 

4                        2    \ 4 

Figure 4- 8. Approximations for kei(x). 
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Strain Energy Method Solutions 

The plate equation, (4-16) is solved for deflections with considerable difficulty, or, even for 
as simple a case as the axisymmetric loaded circular plate, results in unwieldy mathematical 
forms. As an alternative to the equilibrium methods, the analysis of deformation and stress in an 
elastic body can be accomplished by employing energy methods. These two techniques are, 
respectively, the Newtonian and Lagrangian approaches to mechanics. While the former is 
governed by the conditions of equilibrium of statics, the latter is predicated upon the fact that the 
governing equation of a deformed elastic body is derived by minimizing the energy associated 
with the deformation and loading. 

The Ritz method is a convenient procedure for determining solutions by the principle of 
minimum potential energy [Ugural, 1981]. This principle is based on the fact that, for stable 
equilibrium, the potential energy is a minimum. For all displacements satisfying given boundary 
conditions and the equilibrium conditions, the potential energy will assume a minimum value. 

To employ the Ritz method, a form of the solution for the deflection, w, is selected to 
satisfy the geometric boundary conditions. It is desirable, to assume an expression which is 
nearly identical to the true bent surface of the plate. Note that the static boundary conditions 
need not be fulfilled. This solution form will contain one or more undetermined parameters, C„ , 
which will govern the variation of the potential energy. 

The potential energy of a system is the difference between the strain energy that is stored in 
an elastic body and the work done by external loads. In the case of axisymmetric bending, with 
infinite boundaries, the expression for strain energy in the plate is: 

UP = nD\ 
2(l - v)dw d2w 

rdr (4-28) 
r       dr dr 

In addition, the strain energy owing to the deformation of the elastic foundation is: 

00 

Uf = nk \w2rdr (4-29) 
0 

The work done by the load is given by: 

W = P(w\__0 = Pw0 (4-30) 

The potential energy is a result of: 

Ep=Up+Uf-W (4-31) 

The constants in the chosen solution form are then found by the minimizing condition. 
This condition is defined by equating the partial derivative of the potential energy with respect to 
each individual constant to zero 

dEP 

jtr° (4-32) 
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The resulting system of algebraic equations is solved to yield the parameters, C„, which in turn 
are used in the originally assumed expression for calculating the deflection. 

Several assumed solutions were initially made for the deflection, w. These solutions are, 
ostensibly, in the form of a series, allowing improved approximation with retention of more 
terms. However, singular term functions may serve as good assumptions if the contents are 
chosen carefully to imitate the actual deflected shape. In addition, the typical series does not 
hold for infinite boundary conditions. 

Several singular term functions were therefore initially formulated with the Ritz method to 
estimate the deflected shape of an infinite, axisymmetric plate on an elastic foundation with a 
concentrated load, P. A partial list of the attempted functions is as follows: 

w0e
_cr[sin cr + cos cr] (4-33a) 

w0 e-
{cr]2 (4-33b) 

(4-33c) 
wo 

1 + (erf 

w0e'{cr)1 cos(crf (4-33d) 

^0 (4-33e) 

w0e"W 

1 + (erf 

sin(cr)  + cos(cr) (4-3 3 f) 

Note that several other combinations of the exponential, e, sine, and cosine functions were 
attempted, but complications arose when integrating the energy terms. Thus, these shape 
functions were not used. 

After minimizing the potential energy to complete the formulations of these shape 
functions (4-33) by obtaining the w o and c parameters, a graphic comparison was initially made 
to the Timoshenko Bessel function solution (4-24), see Figure 4-9. These functions have all 
been nondimensionalized by the maximum deflection (4-26) of (4-24). As a consequence of this 
view, the last three shape functions (4-33d-f) were eliminated from further evaluation. A 
comparison was then made of the maximum (origin) deflection, as well as, the effective radius 
for each of the three remaining shape functions (4-33a-c) and these values are listed in Table 4-1 
along with those found for (4-24). A glaring difference is found in the effective radius of the 
third shape function (4-33c) and, as such, this one is eliminated as well. 
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w 

(PPIZD) 

 (4.24) 
.... (4.33a) 
- - - (4.33b) 
-_ (4.33c) 
--- (4.33d) 
---- (4.33e) 
 (4.33f) 

r/l 

Figure 4- 9. Comparison of the Shape Functions. 

An uncluttered view of the two remaining shape functions is provided in Figure 4-10. 
Notice that the first shape (4-3 3 a) better approximates the maximum deflection, whereas the 
second shape (4-33b) provides a closer estimate in the region of the effective radius. Thus both 
shapes are carried on to the next step of evaluation. 

Table 4-1. Comparison of Various Shape Functions. 

Shape Function 

w(r) 
c 

Effective Radius* 

(r/l) 

P           r 

" 2nkl2 kC1 / 
1 — 3.915 

w0e~^ sin(cr/) + cos(cr/) 0.95 
V 4(1+2 In 2) 

3.147 

w0 e~^ 0.90 
V8 

3.609 

wo 
0.87 

V32 
>+("/)' 

12.025 

*    The effective radius for the first two functions is the distance to the first instance where the deflection is zero 
and for the last two it is where the radius is a deflection of 1% w0. 
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1 

* ^.\ 
 (4.24) 

.... (4.33a) 

w          0.8  (4.33b) 

(PP/8D) 
0.6 

0.4 

0.2 

0 

V 
"vs. 

71 

7 2 271 

r/l 

Figure 4-10. Best Two Shape Functions. 
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Chapter 5 

Dynamic Formulation 

The dynamic phenomena of a submarine impacting the underside of an ice floe will be 
modeled as a simple spring-mass system, see Figure 5-1. The components within this system are 
as follows: 

v=v, 

c=> 

"■± & *K 

Figure 5-1. Spring-Mass System Representation of Impact. 

a - local crushing deformation at the contact point, 

Fb - buoyancy force of impact structure, 

ki - spring stiffness associated with the local crushing deformation, 

kpf- spring stiffness associated with the plate and fluid together, 

ks - spring stiffness associated with the impacting structure, 

■Mpf - mass of the plate and fluid together, 

Ms - mass of the impacting structure, 

Vi - initial velocity of the impacting structure at contact with, the plate 

w0- maximum plate deformation at the origin, 

yp - displacement of the plate-fluid system, and 

ys - displacement of the impact structure. 

Damping, due to fluid interaction or otherwise, is ignored in this model. Observation of the 
system for this study will be limited to the time required to achieve the maximum force. This 
event should occur within a relatively short time. This study will only address the initial velocity 
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and buoyancy force as the external forcing functions applied to obtain a maximum deflection, 
thus the long-term effect of damping does not come into play. 

The spring stiffness associated with the combined plate and fluid is determined from the 
origin deflection, w0, due to a concentrated load, P. This component has already been resolved 
from the static formulation and may be found in Table 4-1. The value in the second column may 
be multiplied by (P/8D) and inverted to determine kpf for the particular shape function. 

The other two springs found in series, k; and ks, must be determined and combined into one 
effective stiffness value using the following: 

h=~,—1—r- (54) \/kl+l/ks 

The stiffnesses of each of these two springs are likely to be vastly different in magnitude. It is 
assumed that ki« ks, and, as such, the \lks term on the left hand side of (5-1) will essentially 
equal zero with respect to 1/&/. This being the case, the spring stiffness between the two masses, 
kis = ki, will depend on the local crushing due to contact between the impacting structure and the 
underside of the plate. 

The effective mass of the plate and fluid together, Mpf, will be determined via the 
fundamental, or natural frequency, ©„, of the axisymmetric plate on elastic foundation solutions. 
The fundamental frequency will be found from the principle of conservation of energy. The 
mass of the impacting vehicle, Ms, as well as an initial velocity, v„ are both values that will be 
given. The effects of both may be observed through a range of expected magnitudes. 

The buoyancy force, i% may be determined in general as the fraction of the submarine's 
displacement required to achieve a typical terminal velocity within a typical rise height. This 
fraction may be found by using the following basic physics relationship for velocity of a dropped 
object from a height, ht: 

V = figh, (5-2) 

Where a description of the Arctic surfacing evolution [Dane, 1993] has noted that the submarine 
was "...80 ft down and rising at 30 ft per minute." The 30 fpm was achieved after having risen 
20 ft. Thus, (5-2) may be used by replacing the acceleration due to gravity, g, by acceleration in 
general, which, in turn, may be equated to the initial buoyant force per mass of the entire 
structure: 

8 =* IT (5_3) 

Then, h may be replaced by the 20 ft cited as the distance traveled to achieve the velocity of 30 
fpm. After rearranging (5-2) and substituting (5-3) and these values for V, g, and h,, the initial 
buoyant force may be equated to a fraction of the mass as follows: 

Fb = 0.00625M, (5-4a) 

However, (5-4) is specific to a gravity acceleration of 32.174 ft/s2. A nondimensional form may 
be achieved by the following: 

Fh = 0.000l94gM x (5-4b) 
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Note that this formulation neglects the friction of the fluid against the structure. Calculations 
that include friction have been made [Bedel and Feldman, 1991] for the net buoyancy required 
for the USS San Juan to achieve a vertical velocity of 30 fpm over a given distance. Utilizing 
6927 tons as the submerged displacement [Polmar, 1993] and 3 tons net buoyancy over a 21 ft 
distance, the fraction becomes: 

Fb = 0.000433gM, (5-5) 

where friction is included. This value is 2.23 times (5-4). However, the buoyancy force is still a 
very small fraction of the entire mass of the impact structure. It shall be denoted in most 
equations as Ft, unless a comparison with Ms is required. 

The dynamic formulation will produce equations for the system displacements, yp and ys or 
a, which, in turn, will be used with the appropriate spring stiffness to determine the impact load 
imparted on both the plate in general and the impact structure. These formulations will be used 
in the next chapter to illustrate the effect that given parameter ranges will have on both impact 
loads. 

Fundamental Frequency of the Plate-Fluid System 
Obtaining the fundamental or natural frequency for an axisymmetric plate on an elastic 

foundation will not only assist in further evaluation of the two remaining shape functions (4- 
33a&b), but also provide the effective mass, Mpj, of the system. The energy method will be used 
to obtain the natural frequency [Thomson, 1981]. 

In a conservative system, the total energy is constant. The free vibration of an undamped 
system has a total energy that is a combination of kinetic and potential. The kinetic energy, EK, is 
stored in the mass by virtue of its velocity; whereas, the potential energy, Ep, is stored in the 
form of strain energy in elastic deformation or work done in a force field such as gravity. Since 
the total energy is constant, the change with respect to time is zero as demonstrated by the 
following: 

EK +EP= constant    .\    — [EK+EP) = 0 (5-6) 

Due to the principle of conservation of energy, the total energy from two instances of time 
may be equated. These two specific times will be chosen as follows: 

1. when the mass is passing through its static equilibrium position which is where EK, is 
maximum and Ep, is zero, and 

2. corresponding to the maximum displacement of the mass which is also where the 
velocity of the mass is zero and, as such, where EK, is zero and Ep, is maximum. 

Therefore, equating these two instances of time it follows that: 

E K(max)  = Ep(max) (^"^) 

In distributed mass systems such as a plate on an elastic foundation, knowledge of the 
distribution of the vibration amplitude is necessary to formulate the kinetic energy. Rayleigh 
showed that with a reasonable assumption for the shape of the vibration amplitude, it is possible 
to take into account previously ignored masses and arrive at a better estimate for the fundamental 
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frequency [Strutt, 1937]. Rayleigh also observed that, for undamped free vibration, the motion 
may be represented as a simple harmonic shape [Craig, 1981], therefore, the fundamental system 
dynamics of an axisymmetric plate may be defined by the following: 

w(r,t) = wcos(o)Rnt) (5-8) 

where ©#, designates the Rayleigh approximation to the fundamental frequency, and w = w(r) is 
the same assumed shape function found for the static solution. 

The maximum potential energy, EP(max), occurs at t = 0 and, as such, from (5-8) the 
transient term, cos(coA„0 = 1, is maximized. Note that this static strain energy has already been 
established during the previous effort in the static formulation of the shape functions using the 
Ritz method. Therefore, combining (4-28) and (4-29) may produce an expression for the 
maximum potential energy from the previous chapter, which gives the following: 

p{max) jc[ D 
d w    \ dw 
 r- +  

Kdr      r dr ) 

2(l - v)dw d2w 
+ kw ■rdr (5-9) 

The maximum kinetic energy, E 

r      dr dr2 

, occurs when the system velocity, the first derivative 
Kimax) 

of (5-8) with respect to time, denoted by the following: 

w(r,t) = -wü)R„sin((aRnt) (5-10) 

is maximum. The maximum velocity occurs when the transient term of (5-10) is maximized, or 
sin(coÄn0 = 1. Given the basic expression for kinetic energy as: 

EK=\mv1 (5-11) 

where m is mass and v is velocity. The maximum kinetic energy for the plate is formulated as: 

2/rco 

EKp(max) = h \\{pph){a>R„™)2rdrde (5-12a) 
0 0 

which may be simplified as: 
ou 

EKp(max) = Pphxcoln \w'''rdr (5-12b) 

where pp is the mass density and h is the thickness, each associated with the plate. 

To make a quick comparison of the two remaining shape functions (4-33a&b), the 
fundamental frequency was determined initially without considering the additional foundation 
kinetic energy, essentially assuming the foundation to be without mass. However, no 
comparison was available, since the fundamental frequency evaluated for both shape functions 
was exactly the same as follows: 

2k 

'pph 
(5-13) 
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where co'Rn is designated as neglecting the additional foundation kinetic energy. This 
phenomena was determined to exist because of the basic manner in which the shape functions 
were chosen. The function, w(r) may be more accurately thought of in the form w(cr), in that the 
parameter c and the variable r do not appear in w except together as (cr). As a result of this 
form, three situations occur: 

1. The kinetic energy of the plate (5-12) is related to the strain energy due to the 

foundation (4-29) by a factor of (p h (o\„ I k), or basically: 

Expimax) = [pph co\„ I kftj (5-14) 

2. Obtaining c on the basis of minimum potential energy achieves a result that equates the 
strain energy of the plate to that due to the foundation, or Up = Uy, by default. 

3. Using the principle of conservation of energy to choose ©/^ from Ep(max) = EKP(max) with 
these last two relationships will automatically give (5-13) when the foundation kinetic 
energy is neglected. 

Nonetheless, this frequency will be an accurate gauge to compare the influence that the 
foundation has on the system dynamics. 

Fluid coupling under dynamic conditions creates an additional field of pressure in the 
foundation beyond the buoyancy or stiffness that was already taken into account for the static 
solution. This additional pressure can be thought of as an inertial effect due to the additional 
mass of fluid essentially riding the dynamic wave action of the plate. The structural motion at 
any point accelerates the entire fluid mass, thus developing a pressure field at all locations along 
the structure/fluid interface. 

This additional fluid "mass" always decreases the natural frequency of the structure from 
that which would be measured in a vacuum. The importance of this additional "mass" in the 
dynamic analysis of a structure can be estimated from the ratio of the density of the surrounding 
fluid to the average density of the structure. When this ratio is small, such as most structures in 
air, the additional "mass" effects are ordinarily negligible in the dynamic results. However, the 
density ratio of seawater to the floating ice is very close to 1:1, thus, the additional "mass" plays 
a large role in the dynamic analysis. 

The additional "mass" can either be measured experimentally or calculated theoretically. 
Experiments have generally shown that the added mass of a structure vibrating in a still fluid is a 
function of: 

1. the geometry of the surface of the structure, including the location of the free surface, 

2. the amplitude and direction of vibration, and 

3. a Reynolds-number-like parameter. 

This additional "mass", unlike fluid drag or fluid damping, can exist in an incompressible, 
inviscid, irrotational fluid (i.e., density is constant and kinematic viscosity is zero). With this 
assumption, the third parameter may be dropped and the added mass may be expressed as 
follows: 
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Mf=P/¥ geometry,— 
V reJjJ 

(5-15) 

where pj is the density of the fluid, A is the amplitude of vibration in a given direction relative to 
the structure, and r^is an effective radius. 

It is possible to evaluate this additional "mass" through the application of potential flow 
theory. When predicted by potential flow theory, the additional "mass" is depends only on the 
geometry of the surface of the structure. Comparison of experimental and theoretical results 
[McConnell and Young, 1965] [Ackermann and Arbhabhirama, 1964] suggests that the potential 
flow theory prediction is within about 10% of the experimentally measured value when the 
following conditions are found: 

1. The vibration frequency is much smaller than the speed of sound in the fluid. 

2. The amplitude of vibration is small compared with a characteristic diameter of the 
structure. 

3. The Reynolds-number-like parameter is large. 

Potential flow theory has been used by many authors [Lamb, 1921] [Kheisin, 1967] [Zhao 
and Dempsey, 1990] for this particular problem as well. However, application of this theory 
essentially requires that the potential function of the fluid, <f>, must satisfy the Laplace equation: 

VV = 0 (5-16) 

as well as, the appropriate boundary conditions. The hydrodynamic pressure is then found by 
Bernoulli's equation [Streeter and Wylie, 1979]: 

Pf = Pjgw -TPpW2 -Pf-J (5"1?) 

Note here that pjg is equivalent to k for the fluid. 

However, the solution for the potential function requires the same sort of complicated 
mathematics (Bessel functions, Fourier transforms, etc.) that was avoided earlier in the static 
solution. Thus, this approach would defeat the purpose of using the earlier static product, which 
also could not be used within the potential function, since none of these earlier solutions satisfied 
the Laplace equation. 

It has been shown that, if a body moves at a velocity, v, in an ideal, incompressible fluid, of 
infinite extent, and in irrotational motion, the total kinetic energy of the fluid, Efc/,is: 

EKf = \cw2 (5-18) 

where c is a constant that depends only on the density of the fluid, the size and shape of the body, 
and the direction of motion [Birkhoff, 1950]. Results of experiments [Stelson and Mavis, 1955] 
conducted to measure added masses of various shaped and sized bodies have shown that 
rectangular plates with length to width ratios of infinite extent will have added masses that are 
nearly equivalent to a cylindrical mass of fluid with diameter equal to the width of the plate. 
This same type of phenomena is found in at least two other places: 
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1. [Wendel, 1959] analytical results of ellipses of different aspect ratios, a:b, with motion 
in the direction of a varying axis, a, where the other axis, b, is held constant. The 
hydrodynamic mass for each ellipse is found to be equivalent to the fluid density times 
a circular area with radius b/2. 

2. [Blevins, 1979] tabulated theoretical results of a floating plate in a channel, resulting in 
an added mass per unit length equivalent to a semi-circular area times the fluid density. 

This suggests that the magnitude of added mass for axisymmetric plates in the fundamental 
mode is of the same order as the fluid contained by the volume which is generated by rotating the 
plate about the axis of symmetry, giving a spherical volume when surrounded by fluid and a 
hemispherical volume when only one side of the plate is exposed. However, note that these 
results have been for rigid plates, where theoretical results show that the added mass is a function 
of the plate boundary conditions and generally declines with increasing mode number. 

Tabulated formulas [Blevins, 1979] for the added masses of circular plates with one side 
exposed to a fluid have been collected from various sources [Lamb, 1921] [McLachlan, 1932] 
[Peake and Thurston, 1954]. For a plate with radius a, the following added mass formulas have 
been found for the specific boundary conditions and mode listed: 

1. Free edges with one nodal circle (see Figure 5-2): 

%pfa
3 «0.6857p/*3 (5-19) 

2. Free edges with central point support and in axisymmetric mode: 

^-pfa^ 1.905 pfa
3 (5-20) 

3. Simply supported edges in fundamental mode: 

1.045xpfa
3 «3.283/^a3 (5-21) 

4. Fixed edges in fundamental mode: 

0.6689;rp/a
3 «2.101/^a3 (5-22) 

where a hemispherical volume with radius a is equivalent to: 

\nc? «2.09a3 (5-23) 

cross-section A-A 

Figure 5-2. Example of Mode with One Nodal Circle. 
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The greatest deviation from a basic hemispherical volume occurs in two of these cases, 
where there are free edges with one nodal circle (5-19) and with simply supported edges (5-21). 
The first case involves essentially a circle within a circle due to the mode shape, where the radius 
of the inner circle is r = 0.68a. When this inner circle radius is used to calculate the hemisphere 
volume, a value is found equivalent to 0.6585a3 which is less than 4% from the analytical value 
(5-19) listed. The difference found for the simply supported edges (5-21) is most likely due to 
the difference in displaced shape from the other cases. Considering the inner circle of the free 
edge case and the fixed edge case, the shapes are most likely comparable, since the inner circle 
of the free edge case actually has the outer ring as a boundary condition that will be more rigid 
(like a fixed edge) than a simple support. Thus, on the whole, considering a finite radius, a, the 
displaced shape of the simply supported case creates a greater displaced volume than that of the 
fixed edge and, relatively, the inner circle of the free edge case. This observation leads to the 
assumption that the volume due to the displace shape is directly related to the added mass. 

Considering the infinite axisymmetric plate, the resulting displaced shape, shown in the 
previous chapter in Figure 4-10, may be interpreted as a free edge case in a mode with one nodal 
circle that has a radius equivalent to the effective radius listed in Table 4-1. This leads to the 
assumption that the fluid inertia will essentially contribute an added mass equivalent to: 

m, 

This assumption takes care of the total magnitude of this mass but distribution has not been 
addressed. The most likely application would be to distribute this mass in kind with the 
displaced shape, especially since this relates directly to the relative amount of fluid being moved 
at any one place. 

The volume distributed by the shape function will be equivalent to that associated with a 
hemisphere of radius, reff. Thus, the unit shape function volume must be multiplied by an 
amplitude which will equate the total volume to the hemisphere as follows: 

2ff «o 

Asre/f\[ 
W{r\drd9 = \nr]ff (5-25) 

0  0    wo 

where Asreff is the amplitude required. Solving the above integral for both remaining shapes 
(4-33 a&b) gives the following definition for ,4: 

As = 2jyr?ff (5-26) 

where c, as well as re//, is defined for each shape function in Table 4-1. The amplitude, Asre/f, to 
apply for the shape functions individually is for (4-33a): 

_9_ 
32 ■x'lij^r21 «11.65/ (5-27a) 

and for (4-33b): 

f (- In 0.0 l)3/2/V8 «11.08/ (5-27b) 

Note that this amplitude is a function of the characteristic length of the plate. Distribution 
of the added mass due to the fluid inertia, Mf, with respect to the plate mass, Mp, for both shape 
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functions is demonstrated in Figure 5-3 with a range of plots covering the possible span of llh 
values. Also note that, as mentioned earlier, the density ratio of seawater to floating ice is very 
near 1:1, thus, the multiplier pf/pp « 1 and may essentially be ignored for comparative 
purposes. 

5n 
2 

271 1? 
2 

Figure 5-3. Distribution of the Mass Ratio (fluid to plate) for Two Shape Functions. 

It is significant to note at this point that additional inertia from fluid interaction will also be 
applied to the impacting structure. Assuming a strict cylindrical cross section, the additional 
mass would be essentially equal to the actual mass, therefore giving an effective mass of 2MS. 
However, the point of impact is rarely at the mass center of the structure, depending on the 
location of the sail. Therefore, this new effective mass, 2MS, will be lessened because of the 
rotational effect of an eccentric loading. The acceleration at the impact point is equal to the 
tranlational plus rotational effect on the central mass, as follows: 

acceleration = 
M eff 2M s   V 

(5-28) 

Where, ec is the distance from the mass center to the impact point, which varies from submarine 
to submarine. However, for the purpose of this study, it appears that this distance can be 
estimated between 1/6 to 1/4 of the total length. Now rp is the rotational radius of the submarine 
and is equivalent to 1/4 of the total length. Thus, with these two values, (5-28) gives an effective 
mass at the impact point of: 

M eff 

2M. 

1 + 

Meff =1.38M, toM, (5-29) 

Therefore, the effective mass of the submarine is essentially equal to the original mass, Ms, and 
will thus be used as such for the remainder of the study. 

5-9 



NSWCCD-TR-65-97/37 

The kinetic energy due to the foundation may be obtained with the use of (5-11) and the 
assumptions made for the added mass due to fluid inertia. Therefore, the foundation kinetic 
energy may be expressed as follows: 

2;r°o - 

which may be simplified as: 

w(r) 

0 0^ 0   ' 

(5-3 0a) 

Ar 
EKj(max) = pfK—^coln JV(r)rdr (5-3 Ob) 

A comparison of the kinetic energy due to the fluid inertia, EKJ, and the plate inertia, EKP, is 
shown in Figure 5-4 for both shape functions (4-33a&b) with respect to the possible span of//ft 
values. Although there is a noticeable difference in the mass magnitude and distribution for each 
shape function, very little difference is found in the kinetic energy comparison. Thus, the effect 
of the specific application of the added mass is lessened when integrated over the infinite 
expanse of the plate. 

'Kp 

150 

100 

50 

(4.33a) ..>•••" 

#.:>
%V(4.33b) 

..S 

^s 
t ■   I 1— 
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Pf 

Pi 
■l/h 

Figure 5-4. Comparison of the Kinetic Energy Contribution (fluid to plate). 

The system fundamental frequency can now be obtained by using the principle of 
conservation of energy (5-7) and equating the maximum potential energy (5-9) to the maximum 
kinetic energy, found by combining both (5-12) and (5-30). This results in the following: 

2k 
®Rn = 

\pph+BsPfl) 
(5-31) 
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where Bs is a constant determined by the amplitude, (5-27), applied individually for each of the 
shape functions within the integration of (5-30). However, the difference in Bs between the two 
shape functions is found to be negligible, where, for (4-33a), Bs « 7.385 , and, for (4-33b), 

Bs « 7.387 . Thus, the fundamental frequency values found, with incorporation of the fluid 
inertia for each of the shape functions, are essentially equal. 

A comparison of the total system fundamental frequency (5-31) to that found without 
considering the inertial effects of the fluid (5-13), is shown in Figure 5-5 with respect to the 
range of llh. As expected, the fluid inertia lowers the fundamental frequency considerably, 
where larger llh values correspond to a larger disparity between the mass contribution of the 
fluid and that of the plate. 

l 
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0.5 \ 

0.4 t ' 
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0 8      10     12     14     16     18     20 

Pf 

Figure 5-5. Comparison of Fundamental Frequency with and without Fluid Inertia. 

Spring-Mass System Representation 

The fundamental frequency (5-31) of the plate-fluid system obtained with the principle of 
conservation of energy may be equated to the circular frequency, a>„, of the upper spring and 
mass found in Figure 5-1. This circular frequency, con, may be defined by the equation [Craig, 
1981]: 

CO., 
lp/ 

M 
(5-32) 

pf 

Where kpf may be defined by the static deformation as follows: 

P 
Ki = 

Wn 
(5-33) 
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Since the plate-fluid system has mass distributed along the radius, the effective mass value 
designated by Mpfwi\\ most likely be different than the total mass of the system. This value may 
be found by incorporating the fundamental frequency (5-31) and static spring stiffness (5-33) 
into the circular frequency equation (5-32), thus giving: 

pf     (öl 2kwn 
(5-34) 

However, for comparative purposes, the effective mass may also be assumed equal to the 
mass of the hemispherical volume of fluid that was used as the added mass value for the kinetic 
energy. Thus equating Mp/to w/from (5-20) and neglecting the plate mass because of its 
relatively small contribution. A comparison is shown in Figure 5-6 between the effective mass 
(5-34) found knowing stiffness and frequency and the fluid mass from the hemispherical volume 
(5-24). 

100 

Mpf 

Pfl3 

80 
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40 

20 

MpI = mf=\ 7tpr3 
(5.24) 

(4.33b) 

(4.33a) 

_(433b)_ 

'(4"33a)"" 
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Pf 
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Figure 5-6. Comparison of Two Definitions for the Effective Plate-fluid Mass. 

The mass, A/^/has been nondimensionalized with respect to the quantity pß to facilitate the 
comparison. The figure also includes values found for both shape functions (4-33a&b). Use of 
these two different shape functions illustrates the sensitivity that exists between the two possible 
definitions for the effective mass. There exists a great disparity between the values when the 
lumped hemispherical fluid volume mass is used. This big contrast is due to the variance of the 
effective radius between the two shape functions. However, when this volume is distributed for 
the kinetic energy and then found with the resulting natural frequency, the values are much more 
consistent regardless of the shape function. There is less than a 6% difference between the 
effective mass for each of the shape functions found from the circular frequency. The 
consistency between these shape functions supports the argument that the static solution from 
(4-24) would be within a 10% range of these two shape functions. 
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A comparison may also be made between two methods of defining the stiffness, kp/, for the 
plate-fluid system. The stiffness will most likely be defined as in (5-33). However, if the mass 
were assumed to be lumped and equal to the value of (5-24), then the stiffness could be found 
from the circular frequency equation (5-32) with that mass and the system natural frequency 
(5-31). These two definitions for stiffness are shown in Figure 5-7, where Ä^/is 
nondimensionalized by the value kl2. With the use of both shape functions (4-33a&b), the effect 
of lumping the mass from a hemispherical volume of fluid is again found to create a much 
greater disparity. The static stiffness values (5-33) for each shape function (4-33a&b) are only 
5% and 11% different from that found for static solution (4-24). 

30 

*     25 Kpf 

M2 20 

15 

10 

5 \ 

(4.33b) 

k
Pr

mRnm! 

(4.33a) 

(4.33b)_ 

"(4333) 
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Figure 5-7. Comparison of Two Definitions for the Plate-fluid Stiffness. 

A comparison similar to that for mass and stiffness may also be shown for the natural 
frequency, © ^, of the plate-fluid system. The frequency found by the principle of conservation 
of energy (5-31) may be compared to values found using the circular frequency equation (5-32) 
incorporating the static stiffness (5-33) and lumped mass (5-24). The comparison of these two 

definitions is shown in Figure 5-8. The square of the system natural frequency, co ^, is 
nondimensionalized by the value, 2gll, in which g denotes the acceleration due to gravity. The 
effect of the lumped mass is again clearly demonstrated by a wide margin between the results of 
the two different shape functions. The values found from (5-31) for each shape function are 
indistinguishable. 
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Figure 5-8. Comparison of Two Definitions for the Plate-fluid Fundamental Frequency. 

These extensive comparisons for the plate-fluid elements of the spring-mass system lead 
firmly to the conclusion that (5-33) and (5-34) should define the stiffness, kp/, and mass, MPf 
respectively. Recall that the stiffness, ks, shown in Figure 5-1 associated with the impact 
structure, will be neglected as a result of the quick assessment made early in this chapter. 
Essentially, the series combination (5-1) of the two springs, ki and ks, may be estimated with kis« 
ki, because of the assumption that ki« ks. Thus, the remaining element of the spring-mass 
system to be determined is the stiffness, ki, associated with the local plate deformation. 

The impact force, P, and contact deformation, a, relationship during impact of two bodies 
of revolution is given by the Hertz law [Goldsmith, I960]: 

P = rja 3/2 (5-35) 

where r\ is the contact stiffness parameter, which depends on material and geometrical properties 
of the plate and the impact structure. The expression for r\, for a spherical isotropic impact 
structure and isotropic plate is given by [Conway, 1956]: 

4^7 
77    2>TT(KS+K) 

(5-36) 

where 

K = 
\-v2 

nE 
(5-37) 

and Rs is the radius of the spherical contact area of the impact structure. The equation for K in 
(5-37) corresponds to the impact structure, Ks, and the local plate area, K,, with incorporation of 
their respective constants E and v. 
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The contact stiffness parameter, r|, may be simplified further by comparing the two values 
for K. Since the Poisson's ratio values will be essentially the same for both participants, the 
comparison falls to that of the Young's modulus, where lvalues for the bottom of the plate will 
be on the order of 200 times less than that found for the potential impact material. As such, Ki 
» Ks, which allows the impact structure value, Ks, to be neglected in (5-36). 

With a nonlinear local displacement relationship (5-35), the solution for the displacement 
as a function of time with coupled equations of motion will be difficult. A numerical integration 
technique, such as Adam's, will be required; as well as actual values for most, if not all, of the 
parameters involved. Thus, a simple nondimensional parametric view will be impossible. Two 
alternatives to the current situation are: 

1. approximate the local deformation with a linear relationship and continue with the two 
degree of freedom spring-mass system, or 

2. determine the maximum displacement response with an energy-balance method that 
maintains the nonlinear local displacement relationship [Shivakumar et al., 1985]. 

Each of these alternatives will be performed such that the effect of the linear approximation 
utilized in the first may be compared to the accepted nonlinear relationship of the second. 

An approximate linear relationship for local deformation may be borrowed from the 
example of an absolutely rigid die in the form of a circular cylinder pressed against the plane 
boundary of a semi-infinite elastic solid [Timoshenko and Goodier, 1970]. In such a case, the 
displacement, w, is constant over the circular base of the die and is given by: 

P(l-v2) 
w =    ;    _  ' (5-38) 

2adE, 

in which P is the total load on the die, a</ is the radius of the die, and E\ is the local modulus of 
the plate. Using this behavior, the local stiffness, k, may be obtained from the ratio of the total 
load to displacement as follows: 

k _ 2adE> (-5.3m 
k'-(\-o2) C       } 

With this linear relationship, the couple equations of motion for the plate-impact structure 
system may be solved very simply. 
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Figure 5-9. Force Equilibrium of Masses for a Two Degree-of-Freedom System. 

(5-40) 

Equations of motion for a two degree-of-freedom spring-mass system may now be 
derived and solved with the linear local deflection stiffness (5-39). To obtain the solution for 
free vibrations, the force equilibrium of masses, as shown in Figure 5-9, must be satisfied. The 
applicable coupled equations of motion are: 

Msys+k,(ys-yp) = 0 

With an assumed harmonic solution of the form: 

yp=Ypcoipt-Q) 

ys = Ysco4pt-Q) 

and substitution of (5-41) into (5-40) gives the algebraic eigenvalue problem: 

-a^M, +7,^ -k,(Y,-Y,) = 0 

-a2YtMM+k,(Yt-Yp) = 0 

These coupled equations may also be arranged in matrix form: 

(5-41) 

(5-42a) 

-®2Mpf+kpf+k, -k, 

-k, -co2Ms + k, 
(5-42b) 

The only nontrivial solution of this set of homogeneous linear algebraic equations 
corresponds to the values of co2, which satisfy the characteristic equation; that is, for which the 
determinant of the first matrix is equal to zero. Therefore, the resulting two roots of this 
polynomial equation of order two in co2 determines the squares of the plate-impact structure 
system natural frequencies: 

a> 
k,Mpf + Ms(k, + kp/)± <J(k,Mpf + Ms(k, + kp/)f -4klkp/MpfMs 

1&2 2MpfMs 

(5-43) 
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The natural mode, or mode shape, corresponding to each value of (5-43) may be found by 
substitution of these values back into the original equations (5-42) and solving for the ratio of the 
deflections: 

P 

1 + V M pf 

k,      Ms 
+ J1+2 

M 
pf 

M. 
+ 

^*   r 
+ 

'M \2 
Pf 

M. 
ZsL 
k, ) 

(5-44) 

(5-45) 

Where this is the basic result, note that mode shapes are highly dependent on the ratios of the 
participant stiffnesses and masses. It will be shown in the next chapter that the extremes, zero 
and infinity, of these ratios greatly simplified the results. 

The general solution for the plate-impact structure system is a linear combination of the 
free vibrations that occur at the two natural frequencies (5-43) with each respective mode shape 
ratio (5-44). Using an alternate form of the general solution: 

yp=Ax cos a\t + Bx sin a)lt + A2 cos co2t + B2 sin co2t + C 

ys = AA\ cos(o^t + ß^B^ sin0)^+^2 cosü)2t + /31B2smco2t + Cs 

The initial conditions of the system determine the constants; A\,B\,A2, B2. A system with an 
initial velocity acting on the impact structure, where all other aspects are zero, have initial 
conditions that correspond to: 

yP(o) = o ys(o) = o 

yP(o) = o ys(o)=vi (5-46) 

yP(o) = o y.<f» = Tr 

The solution of the resulting four equations from these initial conditions (5-46) gives the 
following values for the constants of the general equation (5-45): 

Ax     Mrffa-fi) 

A    =  2J>  2     M^-ß) 

B, = 
V; 

CP = 

Fh(co2
2-(o2) 

B2 = 

C  = 

(A~A) 

Fh{a>2
2fr-<ux

2&) 

(5-47) 

The displacements of each mass may now be defined as a function of time: 

y, 

ys 

M. 
+ V; 

M. 

a>2 (l - cos a\t) - a>2 (l - cos a>2tj 

a)2ßl (l - cos a\t) - a>2ß_ (l - cos a>2t) 

(A-A) 

a>, sin a>J -a>, sin a>J 

a>xa>2 (A-A) 

a>W 
+ V, 

a)2ß sin a\t - 6>,/2, sin co2t 

a>la>2 {A-A) 

(5-48) 

5-17 



NSWCCD-TR-65-97/37 

The impact force that is imparted globally on the plate-fluid system and the local force on the 
impact structure may each be found through the following relationships: 

.   PPI = kP/yP 

„   ,(      \ (5_49) 

However, this formulation ignores the nonlinear effect of the local crushing, which should be 
evaluated in some manner to check the feasibility of using the linear approximation. 

An energy-balance method is an alternate straightforward approach to determine the 
maximum displacement response for the given system with an initial velocity. Based on the 
principle of conservation of total energy of the plate-impact structure system, the kinetic and 
potential energy of the impacting mass is equated to the sum of the energies due to contact and 
bending deformations. Shear and membrane deformations will be neglected, as well as, the 
energy losses from material damping, surface friction, and higher mode vibrations [Rayleigh, 
1906]. 

The maximum kinetic energy of the impact structure before contact, at t = 0, is: 

EKM=±M,VI
2 (5-50) 

The initial potential energy corresponds to the buoyant force of impact structure and the 
maximum distance traveled to the peak plate deflection, ym: 

EPs=Fb{ypm+a) (5-51a) 

Substitution for Fb as a fraction of Ms (5-5), as well as, a as a function of P from (5-35), gives: 

£„= 0.00043 3 gM, yPn,+ 
V Tj) 

(5-5 lb) 

After t = 0, the plate-impact structure system undergoes contact and bending deformations, 
where the corresponding stored deformation energies are Ec and Eb, respectively. The contact 
energy, Ec, is the integral of the product of the impact force and contact deformation: 

a 

Ec = \Pda (5-52a) 
o 

The impact force, P, is replaced by the function a from (5-35). Following integration and 
simplification, the contact energy, Ec, becomes: 

2p5/3 

Ee=j^r (5-52b) 

The energy due to bending deformation is the integral of the impact force with respect to the 
plate deflection: 

y pin 

Eb = \Pdyp (5-53a) 
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where P may be substituted with kpjyp. Integration then leads to the following expression for 
bending energy: 

_ l 
2 ""pfs pm (5-53b) 

Applying the principle of conservation of total energy, the energy-balance equation of the 
plate-impact structure system equates the sum of (5-50) and (5-51) with (5-52) and (5-53). 
When the impact load, P, is replaced with kpjypm in all places, the energy-balance equation 
becomes: 

-MY,2 +0.00625M. yPn, + 
kp/y pm 

2/3' 
LKpfS pm 

sn (2/3 
+ ?kP/y 

2 
pm (5-54) 

The deflection, ypm, may be found by solving (5-52), using a numerical technique like Newton- 
Raphson [Carnahan et al., 1969]. Then the impact force, P, is calculated by multiplying the 
value of ypm by the stiffness of the plate-fluid system. 

However, this solution method assumes that both the masses are in phase with each other 
until the maximum displacement is obtained and also ignores the inertial effects of the plate and 
fluid. In an attempt to rectify the inertial omission, a completely inelastic impact may be 
assumed, wherein both the impact structure and the plate-fluid system impulsively attain the 
same velocity immediately after contact. This will give a global impact force for the plate-fluid 
system. 

This inelastic collision will, however, ignore the local crushing that occurs. Where the 
inertial effects will highly influence the maximum force on the plate-fluid system, the effect of 
local crushing will likely define the impact load applied to the impact structure. This will 
specifically be the case when there is a large discrepancy between the two masses, as will be 
shown in chapter five. Thus, this particular problem may be split into the two separate one- 
degree-of-freedom systems, shown in Figure 5-10, as follows: 

1. Inelastic collision, addressing the maximum force applied to the plate-fluid system, and 

2. Local crushing, addressing the maximum force applied to the impact structure. 

pf)  A vn <^ 

a. Inelastic collision 

NNNNNWVs 

'l|l< 

\\\\\\\\\ 

77 or k. 

d> 

b. Local crushing 

Figure 5-10. Separation into: a. Inelastic Collision and b. Local Crushing. 
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An inelastic collision occurs when the impacting bodies stick together and move as a unit 
after contact, Figure 5-10a. This occurrence is one extreme of a process based on the 
conservation of momentum, Newton's third law. This principle maintains that whenever there is 
a force of interaction between two particles, the momentum of each particle is changed as a 
result of the force exerted on it by the other. The vector change in momentum of either particle 
is equal in magnitude and opposite in direction to the vector change in momentum of the other. 
Hence, the net change in momentum of the system is zero. As such, the conservation of 
momentum is given as: 

™ aVa\ + m AVM  = I» aV a2 + ™ bVt,2 (5-55) 

In the extreme case of an inelastic collision, the effective mass becomes a sum of the two 
colliding bodies, Mp/+ Ms, and the resulting velocities, va2 and v«, of (5-55) are equal. For the 
additional special circumstance in which one mass, Mp/, is initially at rest, the resulting velocity 
is defined as follows: 

MSV, 
v° = TT77T (5"56) 

Mpf + Ms 

This will be used as the initial velocity condition for the inelastic formulation. 

The equation of motion for the inelastic system is as follows: 

(Mpf+Ms)yp+kp/yp=0 (5-57) 

The solution of (5-57) forj^ is accomplished by assuming the following form: 

yPs =C]+C2 cos a>pfat + C3 sin copJst (5-58) 

where the system fundamental frequency, (£>p/s, may be defined by: 

and applying the initial conditions: 

°* - Js^: (5-59) 

>v(0) = o 

defines the constants, C\, Cj, and C3 as follows: 

F 
r  =-r   =^- 

Kpf 

r  _vo _ V,MS 
(5-61) 

CO Jkpf(Mp/+Ms) 
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Thus, the inelastic formulation foryp is achieved from incorporating the definitions for the 
constants (5-61), as well as, the fundamental frequency (5-59) into (5-58), giving: 

/ 

yos 
ip/ 

1 - cos. >/ 
lMpf+Ms ) 

+ 
V.M. 

fiÄ Mpf+Ms) 
sin V 

]Mp/+Ms 
(5-62) 

The impact force, Ppfs, imparted on the inelastic system may be obtained by multiplying this 
formulation by kpf. 

Local crushing effects may be addressed by assuming the plate-fluid system is so massive 
compared to the impact structure that it essentially acts as the fixed ground. See Figure 5-10b. 
There are two cases that may be addressed for this scenario with respect to the crushing stiffness; 
Hertz contact (5-35&36) and linear approximation (5-38&39). 

The Hertz contact case of a sphere against a massive plane of contact has been solved 
[Goldsmith, 1960] where the maximum deflection, a//(max), is defined as: 

f..  ~2~ - - V/5 

a, H(max) 

15*rF,%M, 

16jff J 
(5-63) 

The maximum impact force can then be formulated by substituting (5-63) into (5-35), which 
gives: 

rl25V,6M3RVß 

sH(max) (5-64) 

Note that this formulation neglects the buoyant force of the impacting structure. 

The linear approximation for local deformation (5-38&39) used in the earlier two degree-of- 
freedom system may be applied for this one degree-of-freedom system as well. The solution of 
this local crushing one degree-of-freedom system follows the same general steps as for the 
inelastic collision. The equation of motion for the system in Figure 5-10b may be expressed as: 

Mxä, +k,a, = 0 

The assumed form for a/ is the same as for^ in (5-60) as follows: 

a, = C, + C2 cos colct + C3 sin colct 

where the local crushing system's fundamental frequency is defined by: 

W/c   = M. 

(5-65) 

(5-66) 

(5-67) 

The constants in (5-66) are determined by the initial conditions, which are: 

a,(0) = 0 

F„ 

(5-68) 

ä,(0) = 
M. 
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Thus the constants for (5-66) become: 

F. V. M 

k, colc \ k, 

Therefore, assembling the following definition for et/ assuming linear deformation: 

«-^(■-""Jf^Jf-^JS*        <5"70) 

where the force imparted on the impact structure may be found by the following: 

Psl = ha =Fb\- cos J-j-t + ViVM^sin   -j-t (5-71) 

The maximum values for both the linear deformation (5-70) and impact force (5-71) may then be 
compared to the respective values found by the nonlinear Hertz contact solution (5-63&4) to 
evaluate the effect that this linear approximation has on the two degree-of-freedom system. 

The conclusion of the dynamic formulation is highlighted by proposing two separate sets 
of equations to model a submarine impacting the underside of an ice floe. The first set of 
equations is the result of a two degree-of-freedom spring-mass system that incorporates an 
approximation for linear local deformation. The maximum impact forces will be found from 
(5-49) with the appropriate substitution for the displacements (5-48), which in turn requires the 
natural frequencies (5-43) and mode shapes (5-44). 

The second set of equations evolved from splitting the original spring-mass system into two 
separate one degree-of-freedom systems as shown in Figure 5-10, with the caveat that there will 
be a huge disparity between the masses and springs of the system. One of these separate systems 
models the impact force imparted globally upon the plate-fluid system as an inelastic collision 
with the impact structure. The deflection of this inelastic system is found with (5-62), which 
may be multiplied by the plate-fluid stiffness, kp/, to obtain the global impact force. 

The other one degree-of-freedom system assumes the plate-fluid system is so massive that 
it becomes the ground against which the local crushing completely influences the impact force 
imparted upon the impact structure. This local crushing is modeled by both a nonlinear Hertzian 
contact, which ignores the buoyancy force of the impacting structure, and by using the linear 
local deformation approximation incorporated in the two degree-of-freedom spring-mass system 
which does include the buoyancy force. The maximum impact force acting on the impact 
structure may be found from both these models and compared to evaluate the difference between 
the Hertz contact solution (5-64) and the linear approximation (5-71). The maximum 
deformation imparted on the underside of the ice plate may also be compared between the Hertz 
contact solution (5-63) and the linear approximation (5-70). 
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Chapter 6 

Parametric Effects 

The formulations that have been made in the past two chapters have included a number of 
parameters that vary a great deal. The significance of the variation for each of these parameters 
is important to note, such that future attention to detail may be placed in the appropriate 
channels. This chapter begins with a review of the formulations to extract the system 
components, each of which will then be broken down into the most basic parameters to study. 

After listing the range for each basic parameter, another review of the formulations will be 
required to discern how the basic interaction and/or comparison of each of these parameters may 
simplify the proceedings. Following simplification, each formulation will be broken down into 
the various sinusoidal parts. The amplitude and frequency of each of these parts will be 
observed to distinguish the leading contributor and determine the maximum impact force from 
each set of equations. 

The parameters contributing to this maximum impact force will be highlighted and the 
effect that the range of variation for each will be quantified. This quantification will help to 
qualify the significance of each of the parameters to the maximum impact force, such that future 
design or maneuvers may be adjusted accordingly. 

Parametric Breakdown of the Proposed Formulations 
The two separate sets of dynamic formulations that have been proposed for modeling a 

submarine impacting the underside of an ice floe are listed in Table 6-1. The first set is the result 
of modeling the entire phenomena by a two degree-of-freedom spring-mass system. Expressions 
are listed for both impact forces imparted each on a separate spring-mass subsystem. These 
forces represent the global loading on the plate-fluid subsystem, Pp/, and the general loading on 
the impact structure, Ps, which may also be thought of as a localized load on the underside of the 
plate. Each of these forces is a simple function of the applicable spring stiffness and a 
deflection. The two different springs are represented; one by the stiffness of the infinite plate on 
an elastic foundation, kpf, and the other associated with crushing due to contact, ki, which is a 
stiffness obtained by a linear approximation for this model. 
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Table 6-1. Formulations for the Impact Model. 
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There is a separate transient expression for the deflection of each spring-mass combination. 
The central deflection of the infinite plate on an elastic foundation is represented by yp and the 
vertical movement of the impact structure with respect to the initial contact point in space is 
represented by ys. The local deformation into the bottom of the plate is represented by the 
difference between^ andyp. It is important to note that the expression for^, and subsequently 
Ps, is limited to the time required to achieve the maximum deformation due to crushing, since ki 

is only valid for the initial crushing action. 

The two natural frequencies of the system, co\ and co2, are basic components of the transient 
deflection expressions. The squares of each of these two values are linked by the same general 
expression with the difference being the addition or subtraction of the term found within the 
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square root. The addition of this term is associated with ©i and the subtraction with ©2. It is 
important to keep this association straight since the shape functions, ßi and ß2, are tied directly to 
a particular frequency. These values are also linked in the same general fashion of the 
frequencies. However, in this instance, ßi is calculated by subtracting the associated square root 
term. The addition of the square root term determines the value for ß2. 

The second set of equations evolved from splitting the original spring-mass system into two 
separate one degree-of-freedom systems with the caveat that there will be a huge disparity 
between the masses and springs within the model. One of these separate systems obtains the 
impact force imparted globally upon the plate-fluid system through an inelastic collision with the 
impact structure, thus ignoring the local contact effect on this global load. This force, Pp/S, is 
determined in the same general fashion as Pp/from the two degree-of-freedom system. 
However, while the spring stiffness, kpf, is the same quantity, the deflection of the plate- 
submarine mass amalgam, yps, has a different expression. There is only one natural frequency 
associated with this system, thus simplifying the equation for the deflection. 

The other one degree-of-freedom system assumes the plate-fluid subsystem is so massive 
that it becomes the ground against which the local crushing completely influences the impact 
force imparted upon the impact structure. Two sets of results are found for this system, 
representing two separate models of the local crushing phenomena. One set incorporates a 
nonlinear Hertzian contact representation of the local crushing effect. An expression is given for 
the maximum value of the impact force, PSH(max), as well as the maximum local deformation, 
oc//(max), due to the contact. The local contact was also modeled again by assuming a linear 
stiffness, ki, associated with the local deformation. The force imparted on the impact structure, 
Psi, obtained by the local deformation, a/, and &/for this model, may be more directly compared 
to the result of the two degree-of-freedom system, as well as the Hertz contact, thus, providing 
the link for an indirect comparison of the Hertz contact and the two degree-of-freedom system. 

Table 6-2. Formulation Components. 

k r — oJCkl Mpf=AXl2{pph+Bpfl) 

1 - v1 

K> ~ KE, 

A 
Ms=- 

g 

V, = 0 => 30fpm 0 \20fpm 

Fh =0.00043 3 gMs I     .1      Eh' l-il2k{\-v2) 

jro=yV3Ö+21n2) = 1.05 -^vrul 

107^ J4(l+21n2)     „„or B   = i—  = 7.385 
600   V         3 

Bb =23/4-(-ln0.0l)3/2 =7.387 
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The components of the formulations include the four basic items that compose the 
systems, two masses and the stiffness of each of the two springs, as well as the two externally 
acting components, the initial velocity and the buoyancy force of the impacting structure. These 
components are listed in Table 6-2 along with their equivalent parametric composition. 

Both kpf and Mpj contain the parameter X, which is representative of a constant associated 
with a specific shape function obtained in the static formulation. The composition of MPf dlso 
includes B, which is another constant associated with a specific shape function. The constant 
quantities connected to the two shape functions that provided the best representation (3.33a&b), 
are both listed for each function with a subscript of a or b to indicate the appropriate association. 
Notice that there is vary little difference in each of the constants between the two functions. 
Therefore, the value associated with (3.33b) was used in the numerical evaluation to provide a 
simple and consistent approach in the upcoming comparisons. 

Note that, since two different local crushing schemes were addressed, there is a difference 
between the Ki of the Hertz contact and ki of the linear approximation. Each incorporates a 
localized value for Young's modulus, Ei, and the general Poisson's ratio, v. However, where k; 
is a stiffness, the value for Ki is associated only as a portion of the Hertz contact formulation. 

The mass associated with a submarine, Ms, is not given directly. Thus, this component is 
obtained by the displacement value, A, given for a particular platform. The buoyancy force, Fb, 
may then be found either indirectly through Ms or directly from A. 

The initial velocity component is a basic parameter by itself. The only specific value that 
has been found in open literature is 30 feet per minute. There is no indication how representative 
this particular value is for any specific platform, or for Arctic surfacing maneuvers in general. 
Therefore, some liberty will be taken, with this value in mind, to provide a more comprehensive 
comparison of the effect that an initial velocity has on the resulting loads and displacements. 
Thus, a range will be used in the upcoming comparison, beginning with essentially no initial 
velocity up to 120 fpm. 

The characteristic length, /, is another parameter found in both £p/and Mpf. However, this 
parameter is an item that represents the plate-fluid system in general, disregarding any specific 
shape function. The composition of this constituent may be further broken down into more basic 
parameters, as shown in Table 6-2. 

The parameters that form the basis for the components, and in turn the formulations, are 
listed in Table 6-3. These specific values have been extracted from a variety of sources. A few 
of these parameters may be practically thought of as constants and have been assigned one value 
for the continued evaluation. There may exist some variation associated with these parameters, 
however the range is so small and/or the application insensitive enough that these particular 
quantities have been assigned just one value in this study. Two of these parameters are the 
foundation bulk modulus, k, which is represented in this study as the fluid specific weight, and 
the fluid density, p/, each given values associated with seawater at 10°C and 3.3% salinity 
[Roberson and Crowe, 1980]. The value used for acceleration due to gravity is associated with 
the standard station [Sears, et al., 1977]. The plate density, pp, is an average value used for sea 
ice that is found in many different sources and was also computed from available ice core data 
[Garrison, et al, 1987] [Wen, et al, 1989] [Wen, et al, 1992]. 
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Table 6-3. Parameter Ranges. 

k = 64.1 lbf/ft3 g = 32.174 ft/s2 

#=1.991bf/(ft3-ft/s2) p^USlbf/fft'-ft/s2) 

Eef/ = lGPa o 5GPa E, =lGPa »O.OlGPa 

h = lftolOft v = 0.33, 0.5 
A = 5,10, or 26kton Beam =31,40, or 79 ft 

Rs = jBeam=>15,20, or 40 ft ad = ^Beam => 3,4, or 8ft 
lkton =22401bf lGPa= 20.866x106 lbf/ft2 

Parametric values that are assigned ranges in the continued evaluation, relating specifically 
to the ice plate, are two different Young's moduli, E and ^thickness, h, and Poisson's ratio, v. 
In situ seismic determinations of E have been found [Weeks and Assur, 1967] to vary from 1.7 to 
6-7 GPa when measured by flexural waves and from 1.7 to 9.1 GPa when determined by in situ 
body wave velocities. The smaller range measured by flexural waves are more applicable to this 
study, since the measurement style is controlled by the overall properties of the ice and the static 
formulation is based on the flexural deformation of the infinite plate in general. 

There is variation in E throughout the thickness of ice. Although it has been determined 
acceptable to use an averaged value for the determination of the deflection surface, the value 
used for the general overall behavior of the plate does not do justice to the localized underside 
crushing that dominates the contact formulation. Profile properties of first-year sea ice [Cox and 
Weeks, 1986], as well as core sample measurements [Wen, et al, 1989], show distinctly that the 
last small percent of thickness, on the order of 10%, has drastically decreased property values. 
This is due to the occurrence of brine drainage channels [Lake and Lewis, 1970] [Niedrauer and 
Martin, 1979] that have been found on a horizontal spacing of 15 to 20 cm with a diameter of 
approximately 1 cm near the bottom of thick annual ice. Such features obviously affect the 
mechanical properties of the ice, as they are gross macroscopic flaws. Thus, a local Young's 
modulus, Ei, is used for the contact stiffness with values ranging from 1 GPa to 0.01 GPa. 

Reports on ice forecasting have proved very useful in bracketing the ice thickness 
addressed in this study. The major source of ice thickness statistics available to date in the 
public domain for the entire Arctic Ocean and virtually the only source for the Siberian segment 
of the Arctic Ocean are from submarine sonar profiling. A detailed analysis of ice thickness 
distribution in the entire Arctic Ocean has been made based on 17 cruises of U.S. and British 
submarines between 1960 and 1982 [Bourke and Garrett, 1987]. A summary of several reports 
[Tunik, 1994] shows that the values of the mean ice thickness range from 3 to 13 feet with large 
standard deviations that range from 41 to 91 percent. 

One particular study which used submarine sonar under-ice thickness profiles [McLaren, 
1989], specifically categorized refrozen leads and/or polynya into "surfaceable areas" which 
involved up to and included 200 cm (approximately 6.5 ft) thick ice. In the same study, the 
mean thickness of level ice, defined as areas that vary less than 1 ft within a 33 ft radius, was up 
to 9 ft with a standard deviation of 2 ft in some sections. On the basis of these reports, a neat 
range of 0 to 10 ft was chosen for this study. However, when the thickness is plotted against a 
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log scale, the low end is limited to 1 ft, since values below that are most likely trivial in the 
interest of this study. 

The specific range of the ratio of the plate characteristic length, /, to thickness, h, is an 
important quantity in qualifying the accurate application of thin plate theory, as mentioned in 
Chapter 2. The limitation was set for llh > 8, where smaller values would suggest the need to 
include transverse and shear deformation when evaluating the plate reactions to transverse loads. 
Figure 6-1 shows the span of llh with respect to the proposed ranges for both h and E. The 
Figure clearly shows that thin plate theory cannot be used for h > 3 ft. The effect on the results 
of this study will be addressed in the next chapter. 

The effective Poisson's ratio, v, for sea ice [Murat and Lainey, 1982] has been found to 
decrease with increasing stress rate and decreasing temperature. At very low stress rates the ratio 
tended to be the expected limit of 0.5 and at high stress rates the ratio tended to be 0.33, the 
dynamic or seismic value of Poisson's ratio for sea ice. A detailed examination of the theoretical 
effects of the vertical variation of v through floating ice on the mechanical response of the sheet 
[Hutter, 1975] has indicated that, for many real problems, it is not necessary to consider such 
variations. Therefore, 0.33 will be used throughout the evaluation with an aside relating the 
percentage effect that a value of 0.5 would have on those results. 
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Figure 6-1. Ratio of the Plate's Characteristic Length to Thickness. 

The impact structure, specifically a submarine in this study, has a few parameters that are 
associated with more discrete values. These values come from the various classes of submarines 
that have been cited in the literature as operating in the Arctic region. Of the specific classes 
cited as Arctic operational, three are from the U.S. Navy [Polmar, 1993], two are Russian 
[Jordan, 1989], and one is British [Jane, 1989-90]. The quantities for the displacement, beam, 
and overall length are listed in Table 6-4. 

The Russian submarine, Typhoon, stands out distinctly within this group as the largest. The 
specific quantities for this particular submarine are therefore used to represent the high end of 
discrete values. Two other sets of discrete values are used in the ensuing evaluation, where each 
set generally represents a subgroup of the five remaining submarines. The low end of the 
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spectrum represents the improved Los Angeles, Sturgeon, and Trafalgar.    The third set is geared 
more toward representation of the Seawolfand Delta TV. 

Each submarine parameter is divided into small, medium, and large value that are also 
directly associated with each other. For example, the small A is associated with the small beam 
value that is used to estimate values for the local contact. Where the representative spherical 
radius for the Hertz contact solution, Rs, is estimated by a value associated with one-half of the 
beam quantity. The beam is a measure of the width of the submarine and, for most, is the 
diameter of the main cylindrical portion. Thus, the radius associated with this cylinder was used 
for Rs. The radius value, aj, associated with k for the linear approximation is associated with the 
beam in an entirely different sense. This radius represents a flat circular area of contact, which is 
dependent on the width and length of the sail. These structures generally appear to be about a 
fifth of the overall beam; thus ad was assigned the value of a tenth of the beam for each set of 
submarine parameters. 

Table 6-4. Descriptive Quantities of Arctic Operational Submarines. 

Submarine Class Displacement (ton) Beam (ft.) Overall length (ft.) 
Seawolf 9150 40 350 
Los Angeles (improved) 6927 33 360 
Sturgeon 4780 & 4960 31 292 & 302 
Typhoon 26000 79 558 
Delta IV 13500 39 538 
Trafalgar 5208 32 280 

Note that the use of ton in all values in this study is associated with a "long" ton that is 
equivalent to 2240 lbs. Although it is inconsistent, the range of both E values for the ice are 
designated in metric units, GPa, because these are the units used in the community that studies 
these values. Therefore, it is more cognizant to represent the range in metric units, although all 
the calculations were done in foot-ton-second units. 

Simplification of the Proposed Formulations 

Comparison of actual values associated with the four basic items that compose the two 
degree-of-freedom system, kp/, Mpj, k, and Ms, will demonstrate that the specific quantities of the 
particular application within this study turn it into a special case. The result of being a special 
case, where there are vast differences between the comparative components, is the extreme 
simplification of the fundamental frequencies, as well as the mode shapes. 

The stiffness associated with the plate-fluid system, kp/, is influenced by the ice thickness, 
h, to the 1.5 power and only by the square root of E, see Figure 6-2. The comparison of this 
stiffness to the local contact, h, shows a large contrast in values at the lower range of ice 
thickness, where, kpfis less than 10% of k for h < 4 ft. See Figure 6-3. The largest value for this 

ratio is a little over \. Note that this comparison is for a local value of Young's modulus, Ei, of 
0.1 GPa, which is slightly on the conservative end of the range available. Where E\ = 1 GPa, the 
values in Figure 6-3 would all be lowered by a factor often. 
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Figure 6-2. Stiffness Range for the Plate-fluid System. 

0.001 

Figure 6-3. Comparison of the Plate-fluid Stiffness to that of Local Crushing. 
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The effective mass, Mp/, associated with the plate-fluid system is extremely large due to the 
"added mass" of the fluid inertia. The influences on Mpf are from the same sources as the 
aforementioned stiffness. See Figure 6-4.   However, h has an even greater effect on Mp/ with a 
power of more than 2, and the E influence is still under a power of 1, although more than a 
square root. 

An extreme contrast is found when comparing the mass of a given submarine to the 
effective plate-fluid mass, Mp/, see Figure 6-5. Where this particular comparison is limited to a 
A = 10 kton, these particular numbers need only be multiplied by the ratio of a given 
displacement to 10 kton to ascertain the specific values. However, there doesn't appear to be a 
submarine on earth that would overcome the odds that exist between Mpf and a given impact 
structure. 

This extreme contrast between the masses of the two degree-of-freedom system, as well as 
the slightly large contrast between the stiffness values for both of the springs, vastly separates the 
reactions for each of the subsystems. As such, there are essentially two separate systems, as 
alluded during the last portion of Chapter 5. 

The influence of the contrast between the system components is reflected fully in the 
resulting fundamental frequency values: 

(6-1) 

Note that the first frequency, ©i, is influenced only by the plate-fluid subsystem. The 
impact mass has no effect on ©i. Whereas, the second frequency, ©2, is affected only by the 
impact mass and the local contact conditions. There is no influence from the ice thickness or 
global E value on ©2- These particular influences may be visually observed in Figures 6-6 and 
6-7 for ©1 and ©2, respectively. Note that there is also an extreme difference in these two 
frequency ranges. Where one cycle of ©i will take multiple minutes to hours for completion, a 
cycle of ©2 is complete within a fraction of a second. 

The mode shapes also reflect the influence of these contrasts: 

Mpf (6-2) 
Ä=- M. 
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Figure 6-4. The Effective Mass Range for the Plate-fluid System. 
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Figure 6-5. Comparison of a Potential Submarine Mass to the Plate-fluid Mass. 
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Figure 6-6. The Range of the First Fundamental Frequency. 
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Figure 6-7. The Range of the Second Fundamental Frequency. 
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The simplifications of ©i, ©2, ßi, and ß2, as a result of these component contrasts, lead to 
more compact expressions for the impact forces as follows: 

^,0-cos.,,)-^-^- cos co2i) 

+ r*.^™«<)-v**jfcffi™°*) (6-3) 

Ps = Fb(l - cosco2tj + V^k/Ms[sm a>2t) 

These equations have been presented in the manner above, such that a certain interpretation 
could be made of the transient terms and their respective load amplitudes. Note that there are 
four different transient terms in total, these are: 

1. (1 -cos a\t) 

2. (1 - cos co2t) 

3. (sin a\t) 

4. (sin co2t) 

Since there is such a marked difference between ©1 and C02, the influence of these particular 
transient terms will also be different, as shown in Figure 6-8. 

A=3ft. 
£ = 3GPa 
£, = 0.1 Gpa 
A = 10 kton 

1 - cos CO 

1 10 100 

time (sec) 

1000    ip,0oo 100,000 

Figure 6-8. One Cycle of Each of the Transient Terms. 
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Associated with each of the transient terms is a load amplitude as noted. These factors will 
dictate the effect that each of the transient terms will have on the maximum value of each 
perspective impact force. The notation Axn will be assigned to each of the amplitudes, where x 
refers to either/» or s symbolizing the perspective impact force, and n refers to 1, 2, 3, or 4 
indicating the specific transient term. 

The effect that each of the 4 transients has on the impact load imparted globally on the 
plate-fluid system may be observed by the amplitude that is associated with each, as shown in 
Figure 6-9. Each of the amplitudes in the figure is nondimensional due to the buoyancy force. It 
is obvious from the respective ranges that the only influence on Pp/is the buoyancy force of the 
impacting submarine. Thus, the expression for Pp/may be simplified to: 

P
PI =Fb{\-coso)xt) 

This expression eventually returns a maximum value for P^max)= 2F^. 

(6-4) 
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Figure 6-9. Load Amplitude Ranges for PPf. 

The same comparison may be made for the load amplitudes that influence the impact force 
directly imparted on the submarine. However, where the amplitudes for Pp/ were influenced by 
the range of ice thickness, the load amplitudes effecting the transient terms remaining in the 
expression for Ps are influenced by the local Young's modulus, Ei, the mass of the submarine, 
Ms, and the impact velocity, Vt. Figure 6-10 illustrates the influence of these two load 
amplitudes. 

6-13 



NSWCCD-TR-65-97/37 

(ton) 

0,000 

^—-- 

A = 26jcton 

 '      _10U£22. 

____ "      5kum 

1000 

100 

As7 = Fh A = 26 kton 
10 

10 kton 
5kton 

1 
0.01 0.1 

£,(GPa) 

Figure 6-10. Load Amplitude Ranges for Ps. 

The effect of the impact velocity is linear on the upper curves, where the lower curves are 
simply the buoyancy force of the submarine. However, the vast difference between these two 
sets of load amplitude ranges clearly indicates that the expression for Ps may also be simplified. 
Figure 6-11 further emphasizes the difference found between the two transient terms in Ps. 
Therefore, Ps may now be found by: 

P, = V,JkM(sma>2t) (6-5) 

This expression returns a maximum value for PJ(max) = Vl^k,Ms . 
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Figure 6-11. Example of the Time-load History for the Impact Structure. 
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A comparison may now be made of the simplified 2 degree-of-freedom formulation to 
those from the inelastic collision and to the local crushing incorporating the linear 
approximation. After incorporating all the same simplifications to the two one degree-of- 
freedom systems, the formulations are identical to the respective two degree-of-freedom systems. 
Thus, the only remaining comparison to be made is between the two different local crushing 
solutions. 

Comparison of the Local Crushing Formulations 

A comparison of the maximum value obtained for the impact load imparted on both the 
submarine and locally on the ice plate is shown in Figure 6-12. This Figure shows that, although 
the same sort of trends appear in both the linear approximation and the Hertz contact solution, 
the load is consistently less for the Hertz value. 

The influence of this local crushing on the underside of the ice plate, itself, is more 
concisely shown with the maximum deformation, a(maS), occurring into the plate, as shown in 
Figure 6-13. In this figure, the Hertz contact values are much larger than those found with the 
linear approximation. However, the deformations are still extremely low in consideration of a 
multiple foot ice thickness. 
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Figure 6-12. Comparison the Maximum Impact Load Obtained by Hertz Contact vs 
Linear Approximation. 
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Figure 6-13. Comparison of the Maximum Plate Deformation Obtained by Hertz 
Contact vs. Linear Approximation. 

A final comparison with the fundamental frequency, ©/, for each of these two formulations 
will be made to indirectly ascertain the possible influence that the Hertz contact would have on a 
two degree-of-freedom system. Note that, for the linear approximation, ©/ = ©2. A visual 
comparison is provided in Figure 6-14, showing a range of the frequency with respect to £/. The 
frequency associated with the Hertz solution is lower than ©2. However, the action takes place 
in a fraction of a second, which is extremely faster than coi. 
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Figure 6-14. Comparison of the Fundamental Frequency Obtained by Hertz Contact 
vs. Linear Approximation. 
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The Hertz contact provides an effectively softer spring than does the linear approximation, 
thus leading to smaller impact loads and larger deformations. However, this effect would not 
overcome the extreme contrast in the submarine mass to the plate-fluid mass, especially in an ice 
thickness exceeding 1 ft. Therefore, the effective expression for Pp/(6-4) remains valid despite 
the disparity found between the two methods of modeling the local crushing effect. 

Parametric Conclusions 

The only influence on the impact force imparted globally on the plate-fluid subsystem, Pp/, 
is the buoyancy force of the impacting submarine. However, the maximum value for the both 
the impact load imparted directly to the submarine and the ice plate deformation is influenced by 
the 5 parameters listed in Table 6-5. This list indicates the effective power that is associated with 
each of the parameters within the determination of either the impact load or local deformation. 
There is not a specific power of influence associated with v, however, the difference between 
using a value of 0.5 as opposed to 0.33 is less than 10%. 

Table 6-5. Effective Power Associated with the Local Contact Parameters. 

Parameter jP//(max) 0C#(max) 

vt 6/5 4/5 
Ms 3/5 2/5 
Ei 2/5 -2/5 
Rs 1/5 -1/5 
V N/A N/A 

Both the initial velocity and submarine mass influence the impact load slightly more than 
the deformation; however, both directly relate to an increase or decrease. The initial velocity 
influence is slightly more than linear upon the impact load and slightly less than linear in 
determining the deformation. The submarine mass effect is slightly greater than a square root on 
the impact load and slightly less than a square root on the deformation. 

Both Ei and /^-provide opposite effects on the impact load as on the deformation. An 
increase in either one will increase the impact load, however, that same increase will decrease 
the deformation. Thus, for the initial impact to cause greater damage to the ice with less load 
imparted on the submarine, Ei and Rs should both be decreased. 

The Young's modulus values that are found on the underside of the ice plate are not 
constant. There is a huge variation of E; in this area and an "effective" value may not do justice 
to the accuracy of obtaining either an impact load on the submarine or deformation the underside 
of the ice. The typical value used in all the numerical calculations probably provides a very 
conservative result for both the impact load and the ice plate deformation. A more accurately 
modeled value for this parameter would most likely soften the local crushing effect, thus, 
providing a smaller impact load on the submarine with greater deformation imparted on the 
underside of the ice. 
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Chapter 7 

Conclusions 

This dissertation has characterized the influence of various parameters on the structural 
dynamics of a floating ice sheet due to the initial impact of a large mass. The most obvious 
conclusion is that the fluid inertia influence completely dominates the dynamic behavior of the 
ice plate. The huge disparity between the two masses, due entirely to the "added mass" of the 
fluid inertia, effectively splits the two degree-of-freedom spring-mass system into two separate 
one degree-of-freedom systems. Each of these systems provides solutions for different issues of 
the study. 

An inelastic collision between the effective plate-fluid mass and that of the impact 
structure, a submarine, expresses the global impact loading that will effect the general bending of 
the ice plate; whereas, the influence of the local crushing deformation on the underside of the ice 
plate defines the impact load that will be imparted on the submarine. Note that this local 
deformation may also help define the amount of initial damage that is imparted on the ice due to 
the impact. Both of these results are valuable in generally characterizing the effect that an initial 
impact has upon both the submarine and the ice plate. 

The global impact load on the ice plate was found to be 2 Ft, regardless of any other factor. 
This is twice the amount of net buoyancy realized to attain an upward velocity and will most 
likely be a relatively small value. In addition, the time between the impact and maximum 
response is on the order of hours for an ice thickness exceeding 2 ft. Note that this load is 
basically the equivalent of a static load that would bring about the maximum displacement. This 
load is directly associated with the pure bending behavior of the plate as a result of the impact. 
Where the failure mechanism of the ice plate during an ice-surfacing maneuver is governed by 
bending, the initial impact will most likely have little effect on the result. Therefore, the general 
conclusion is that, with regard to the global impact result, an initial impact has no influence oh 
the eventual penetration of the ice plate, especially for an ice thickness exceeding 2 ft. 

The impact load that is imparted directly on the submarine is also a localized load on the 
underside of the ice plate. Thus, two specific results need to be considered when reviewing this 
loading: the magnitude of the impact load on the submarine and the amount of deformation 
imparted on the underside of the ice plate. 

The results addressed will be solely those associated with the Hertz contact solution in the 
interest of clarity. The linear approximation served a major role in primarily facilitating a 
formulation for the two degree-of-freedom system and secondarily providing a step in the 
indirect comparison ofthat system to the solitary local contact solution. The Hertz contact 
provides an effectively softer spring than does the linear approximation, thus, leading to smaller 
impact loads and larger deformations. However, this effect would not overcome the extreme 
contrast in the submarine mass to the plate-fluid mass, especially in an ice thickness exceeding 
lft. 
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Both the initial velocity and submarine mass influence the impact load slightly more than 
the deformation; however, both directly relate to an increase or decrease. The initial velocity 
influence is slightly more than linear upon the impact load and slightly less than linear in 
determining the deformation. The submarine mass effect is slightly greater than a square root on 
the impact load and slightly less than a square root on the deformation. 

Both the local Young's modulus, £/, and spherical radius of contact, Rs, provide an 
opposite effect on the impact load as on the deformation. An increase in either one will increase 
the impact load, however, that same increase will decrease the deformation. Thus, for the initial 
impact to cause greater damage to the ice with less load imparted on the submarine, Ei and Rs 

should both be decreased. 

Impact load magnitudes on the submarine appear to be substantial with respect to the 
parametric ranges provided for this study, especially considering that there may be no benefit 
toward final penetration. The specific values for an initial impact velocity of 30 fpm range from 
320 ton to 1046 ton for submarines with displacements of 5 to 26 kton, respectively. These 
amounts were obtained with E, = 0.1, where a tenth of this value would lessen the impact load 
by 0.4 or an increase of 10 times would increase the values by a factor of 2.5. Another aside is 
that a sharper or smaller Rs will decrease these impact loads while increasing the deformation 
imparted on the underside of the ice plate. 

The amount of deformation into the plate will serve to indicate how much this loading will 
influence the eventual penetration. The deformation values that obtained in this study are only in 
the range of a couple of inches. Compared to an ice plate with a thickness greater than 2 ft, this 
deformation range is less than 10% of the total and may not affect the overall ice strength. A 
more detailed study involving the shear effects of the plate would be required at the very least to 
ascertain the actual effect this magnitude of deformation would have toward complete 
penetration. 

The Young's modulus values that are found on the underside of the ice plate are not 
constant. There is a huge variation of Ei in this area and an "effective" value may not do justice 
to the accuracy of obtaining either an impact load on the submarine or deformation the underside 
of the ice. The typical value used in all the numerical calculations probably provides a very 
conservative result for both the impact load and the ice plate deformation. A more accurately 
modeled value for this parameter would most likely soften the local crushing effect, thus, 
providing a smaller impact load on the submarine with greater deformation imparted on the 
underside of the ice. 

The final conclusions of this study are that the global impact load on the ice plate is not 
going to have an effect on the flexural failure mechanism that may define the requirements to 
penetrate a floating ice sheet. The initial impact imparted on the submarine could be seen as a 
substantial load to that structure, where an increase in velocity will only increase that load by a 
6/5 power. The deformation imparted on the ice due to an initial impact does not appear to be 
substantial, especially when compared to an ice thickness that exceeds 2 ft. All in all, the 
relative advantage of an initial impact is not ascertained with respect to the range of values used 
in this study. 
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Nomenclature 

a Radius of an finite plate 

ad Radius of the circular contact area for a linear approximation to contact stiffness 

Ap„ Load amplitude for transient terms (n = 1,2, 3, 4) of Ppf expression (5.3) 

Asn Load amplitude for transient terms (n = 2, 4) of Ps expression (5.3) 

As Amplitude of re^to distribute hemispherical volume of fluid mass by each individual 

shape function 

Av Amplitude of vibration in given direction relative to the plate 

Bs Amplitude constant of / for inclusion of the added mass due to fluid inertia 

determined for each individual shape function 

cos(x) Trigonometric function cosine of x 

D Flexural rigidity of the ice plate 

e Base of the natural system of logarithms (2.71828...) 

ec Eccentric distance from the mass center to the impact point 

E Young's modulus of sea ice 

Em Averaged Young's modulus of sea ice 

Eb Energy due to bending deformation of the plate 

Ec Energy due to contact deformation of the plate underside 

Eeff Effective Young's modulus of sea ice 

EK Kinetic energy 

EKJ Kinetic energy of the fluid 

EKP Kinetic energy of the ice plate 

EKS Kinetic energy of the impact structure 

Ei Local Young's modulus from the underside of the ice plate 

Ep Potential energy 

EpS Potential energy of the impact structure 

E[z) Young's modulus as a function of the transverse axis z 

Fb Buoyancy force of impact structure 

g Acceleration due to gravity 
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Nomenclature (continued) 

h Thickness of the ice plate 

Im(x) Imaginary portion of x 

i square root of-1 

J0(x) Bessel function of x 

k Modulus of the foundation 

kei(x) Kelvin function of x, a modified Bessel function 

ki Spring stiffness associated with the local crushing deformation 

kis Effective spring stiffness of the impact structure and local contact 

kpf Spring stiffness associated with the plate and fluid together 

ks Spring stiffness associated with the impacting structure 

K Hertz material parameter incorporated in the stiffness parameter 

K; K value for plate underside material properties 

Ks K value for impact structure contact area. 

/ Characteristic length of the floating ice plate 

L Half length of a finite beam 

nif Equivalent mass magnitude added due to fluid inertia 

Ma Failure moment 

Me„d Moment at the end of a finite beam 

Meff Effective mass 

Mf Added mass due to the fluid inertia 

M0 Moment at the origin of the beam 

Mp Plastic moment 

MPf Effective mass of the plate and fluid together 

Ms Mass of the impacting structure 

P Concentrated lateral load 

Pa Allowable load 

Per Load at which the first crack occurs in the ice plate 

Pj "break-through load" for the ice plate 

Ppf Impact force imparted globally on the plate-fluid system 

Ps Impact force imparted on the impact structure 

PsH(max) Maximum impact force imparted on the impact structure found by Hertz contact 

Psi Impact force imparted on the impact structure found by a linear approximation of the 

local contact deformation 

P(w) Load as a function of transverse displacement 
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Nomenclature (continued) 

q Laterally distributed force 

r Radial (horizontal) distance from the center of an infinite plate 

reff Effective radius of the infinite plate 

rp Rotational radius of a submarine 

Rs Spherical radius of contact associated with the impact structure 

Re(x) Real portion of x 

sin(x) Trigonometric function sine of x 

t Time 

tf "time to failure" for Pf 

Uf Strain energy owing to the deformation of the elastic foundation 

Up Strain energy in the plate 

Vd Velocity of a dropped object 

Vend Shear at the end of a finite beam 

Vt initial velocity of the impacting structure at contact with the plate 

V0 Velocity resulting from an inelastic collision 

w Transverse deflection of the ice plate 

w/ Critical deflection 

w0 Maximum vertical plate deformation at the origin 

w(r) Vertical plate deformation as function of radius 

w(r,i) Vertical plate deformation as function of r and t' 

w(r,t) First time derivative of w(r,t) 

W Work 

x Horizontal distance from the center of an infinite beam 

Xa Constant multiplier for ^,/and Jl^/when considering shape function (3.33a) 

Xb Constant multiplier for kpj and Mp/ when considering shape function (3.33b) 

v Vertical deflection 

yend Vertical deflection at the end of a finite beam 

ymax Maximum vertical deflection at the center of beams 

yp Displacement of the plate-fluid system 

ypm Maximum displacement of the plate 

yP First time derivative of yp 

yp Second time derivative of yp 

yps Displacement of the plate-impact structure amalgam 
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Nomenclature (continued) 

yps       First time derivative of yps 

yps        Second time derivative of yps 

ys        Displacement of the impact structure 

ys First time derivative of ys 

y\        Second time derivative of ys 

Y0(x) Weber's function of x 

Yp Amplitude of the assumed harmonic solution for yp 

Ys Amplitude of the assumed harmonic solution for ys 

z Vertical distance from the origin of a floating plate 

a Deformation at the contact point of the underside of the ice plate 

ot//(max) Maximum deformation defined by a Hertz contact solution at the contact point of the 

underside of the ice plate 

a/ Local contact deformation defined by a linear approximation of the ice plate 

underside crushing 

cc, First time derivative of a/ 

a, Second time derivative of a/ 

ß Characteristic of the beam on elastic foundation system 

ßi Mode shape associated with mi 

ß2 Mode shape associated with ©2 

A Weight displacement of a submarine 

<J> Potential function of the fluid 

y Euler's constant (0.5772157) 

r| Hertz contact stiffness parameter 

cp(z) Dimensionless linearly independent function for z-distribution of the vertical 

displacements 

v Poisson's ratio 

7i 3.14159... 

p/ Mass density of the fluid foundation 

pp Mass density of the ice plate 

cif Flexural strength of ice 

<7max Maximum strength of ice 

co 1 First fundamental frequency of a system 

C02 Second fundamental frequency of a system 
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Nomenclature (continued) 

co/        Frequency associated with the local contact deformation 

co„        Natural frequency of the axisymmetric plate on an elastic foundation 

COR„       Fundamental frequency approximation found by Rayleigh method 
* 

(oRn       Fundamental frequency approximation found by Rayleigh method neglecting 

additional foundation kinetic energy 

V Laplace operator 
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