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1. Executive Summary 

The design of high quality systems with a short time to market is becoming more prevalent. 
One part of the overall system quality assurance process is the testing of the manufactured system 
for design defects. A test development strategy to reveal faulty systems at the time of manufacture 
is required to assist the designer in demonstrating overall system quality. The test development pro- 
cess for digital systems/components is well established. The digital test development process can 

be subdivided into three stages: (1) Test Pattern Generation (TPG), (2) fault simulation, and (3) 
fault grading. The TPG process develops a set of test patterns which are applied to the Device 
Under Test (DUT) at the time of manufacture. Fault simulation is used to simulate faulty DUTs to 
determine if the test pattern set detects the faulty DUT. Conversely, fault grading takes the fault 
detection data provided by fault simulation to estimate the conditional probability of detecting a 

faulty device given that the device is faulty. 
The primary purpose of this report is to determine the state-of-the-art for fault simulators which 

are used to estimate the test coverage for the DUT. It is envisioned that the state-of-the-art survey 

will be used to assist in defining the fault simulation techniques which are applicable to VHDL 
models. The goal is to fully understand the current fault simulation state-of-the-art so that existing 
techniques can be used to assist in the design of a VHDL-based fault simulation tool. One attribute 
which defines a VHDL-based fault simulator is that a VHDL compliant simulator is used to simu- 
late the faulty device. Hierarchical serial fault simulation and hierarchical concurrent fault simula- 
tion are two techniques which can be used to develop a VHDL-based fault simulator. 

The state-of-the-art for fault grading techniques along with an overview of TPG methods is 
also provided in this report. While fault simulation is the main focus of this report, fault grading 
and TPG are included to completely describe the test generation, fault simulation, and fault grading 
process. It is important to realize that fault simulation is a means to assist TPG and estimate fault 
coverage via fault grading. The desired goal for a tool set is to contain a fault simulation technique 
which seamlessly augments the TPG process and performs fault grading in an efficient fashion. 

This report is organized into ten major sections. Following the Section 2 introduction, 
Section 3 provides background concerning fault simulation concepts. A high-level summary of the 
techniques covered in this report is presented in Section 4. Section 5 provides an overview of uni- 
processor based fault simulation techniques. Parallel processor fault simulation techniques are 
described in Section 6. A review of the use of hardware accelerators to achieve fast fault simulation 
is presented in Section 7. An overview of existing fault grading techniques is included as Section 8. 
Likewise, Section 9 provides a brief overview of test pattern generation techniques. An analysis of 

the applicability of the presented fault simulation methods for use in VHDL based fault simulation 

is described in Section 10. Concluding remarks are included in Section 11. 



2. Introduction 

The ever increasing complexity of digital designs makes the verification of the functional cor- 

rectness of a digital device a challenging endeavor. The verification process is divided into two 

major phases, design verification (functional testing) and manufacturing verification (fault testing). 

The technique used for design verification is highly dependent on the design methodology. A 

graphical representation of the design process with functional testing is included as Figure 2.1. The 

design process begins by performing a design improvement iteration on a given device. Once the 

designer completes a design improvement iteration then a model of the device is produced. The 

device model is then simulated to determine if the design has the desired functional attributes. If 

the device model passes the functional test then the design process is complete and the model is 

used to build the designed device. If the device model fails the functional test then another iteration 

of design improvement and functional testing is performed. The iterative design refinement process 

continues until the modeled device passes the functional test. 

The manufacturing verification process typically employs a well accepted technique referred 

to as the digital test paradigm. The paradigm consists of four major components: (1) selection of a 
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Figure 2.1.   Simplified design process diagram showing iterative refinement. 
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fault model, (2) generation of the fault list of interest, (3) generation of the test patterns to detect 

the faults contained in the fault list, and (4) estimation of the percentage of faults detected by the 

application of the test patterns. The four part paradigm, referred to as test construction, is per- 

formed after the device is designed but before the device is manufactured. The derived test patterns 

are then used to determine which manufactured DUTs are faulty. 

A block diagram of the test construction process is shown in Figure 2.2. The test construction 

process begins by applying a fault model to the Device Under Test (DUT) which generates a fault 

list of relevant faults. Typically, the designer assumes that the fault model is sufficient to represent 

all manufacturing defects. Thus, applying the fault model to DUT produces a list of all faults which 

are assumed to completely represent the set of possible manufacturing defects. A Test Pattern Gen- 

eration (TPG) process is performed next. There are three common categories of TPG: (1) Deter- 

ministic Automatic TPG (DATPG), (2) Random Automatic TPG (RATPG), and (3) Manual TPG 

(MTPG). The purpose of the test patterns is to detect each fault contained in the fault list. Concep- 

tually, if the fault list contains F faults then the fault list can be represented by F faulty DUTs. The 

Test Pattern 
Generation 

Test Pattern Set/ 
Undetected Fault Set 

No 

Undetected Set of 
Faults 

Fault Simulate 
Device Under Test 

Figure 2.2.   Simplified test pattern generation process. 
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purpose of the test pattern set is to have each of the F faulty DUTs produce one or more output 

errors. A faulty DUT is detected during testing by comparing the correct output to the DUT's out- 

put. If a miscompare occurs then the DUT is faulty. 

A fault simulator is used to determine which faults are detected for a given set of test patterns. 

Conceptually, a fault simulator inserts a fault into the DUT and then the faulty DUT is simulated. 

If the faulty DUT produces an erroneous output then the fault is detected by the test pattern set. At 

the end of the fault simulation process a new set of undetected faults is created for the current test 

pattern set. The designer must then decide if the size of the undetected fault set is acceptable. If the 

number of undetected faults is acceptable then the test pattern construction process ends, otherwise 

additional test patterns are produced via TPG and the test pattern evaluation process is repeated. 

The iterative addition of test patterns and evaluation via fault simulation continues until the number 

of undetected faults becomes acceptable [1, 174]. 

The manufacturing test is performed on the manufactured DUT by applying the test pattern set. 

The output of the manufactured DUT is then compared against the stored correct outputs. If a mis- 

compare occurs then the manufactured DUT is faulty and is repaired or discarded. 

The first decision that the designer must make during the test construction process is the selec- 

tion of a fault model. There are a wide variety of fault models described in literature. A brief 

description of the accepted faults models is presented next. The purpose of a fault model is to accu- 

rately represent the behavior of a faulty component. One possible fault scenario is a fault condition 

which adds extra delay to the signal propagation through a component. Delay fault models are used 

to represent faults which cause signal propagation delay [1, 94, 223]. Another common fault sce- 

nario is having two input signals shorted together. Bridging fault models are used to represent one 

signal corrupting another signal [1, 94, 223]. Specifically, a bridging fault occurs when the value 

of signal A sets the value of signal B. There are two fault models which are commonly used to 

represent transistor-level fault conditions: (1) stuck-on/off fault model, and (2) stuck-open fault 

model [1, 94, 223]. For most digital logic architectures a transistor is used as a switching element. 

The stuck-on/off fault model represents the behavior of transistors which are permanently stuck- 

on/off. The stuck-open fault model is used to represent a fault condition which is common to 

CMOS logic. A CMOS circuit has failure modes which cause a signal line to be held at a logic one/ 

zero value until a parasitic capacitor is discharged/charged. The signal value attached to the para- 

sitic capacitor will eventually discharge/charge and the signal value will assume the correct value. 

Additionally, functional fault models are employed to evaluated models which are represented at 

a high-level of abstraction [1, 94, 223]. The major problem with functional fault models is that is 

difficult to verify that a functional fault model accurately represents low-level physical defects in 

the DUT. For this reason, functional fault models have found limited acceptance. By far the most 



common fault model is the stuck-at fault model [67]. The stuck-at fault model represents a digital 

signal line being permanently stuck-at a logic one or stuck-at a logic zero value. 

Fault simulation is a key component of the test construction process. In general, fault simula- 

tors are used to generate data in three areas: (1) to assist in the generation of test patterns, (2) to 

estimate the test coverage of the DUT, and (3) to generate a fault dictionary [1, 174]. A brief 

description of the use of fault simulators to assist in test pattern generation was provided previously 

to explain Figure 2.2. The test coverage of a device is defined to be the probability of detecting a 

faulty device for a given test pattern set. An estimate for the test coverage is obtained by assuming: 

(1) the selected fault model is sufficient to represent the failure modes that the DUT can experience, 

(2) all faults in the fault list are equally likely to occur, and (3) the fault occurrence events associ- 

ated with faults in the fault list are independent. Using the three assumptions, the expression for 

the test coverage is derived and is given as 

C = -^- (2-1) 
a        u 

where C is the test coverage, nd is the number of detected faults for a given test pattern set, and 

n is the number of undetected faults for a given test pattern set. The estimation of test coverage 

is commonly referred to as fault grading. The generation of a fault dictionary is the third category 

of information which fault simulation can provide. A fault dictionary contains the erroneous 

response of the DUT for every fault in the fault list for each test pattern in the input set. Typically 

a fault dictionary is used to locate a fault in the DUT by comparing the erroneous output of the 

DUT to the erroneous behavior of each fault in the fault dictionary. The use of fault dictionaries is 

in decline with the increase in the gate count on Integrated Circuits (ICs). Specifically, the size of 

the fault dictionary for an IC which contains 105 gates is extremely large. Also, locating an internal 

fault on an IC is of little interest since it is typically not possible to repair the located fault. 

This report provides an overview of the state-of-the-art techniques used for fault simulation. 

The primary purpose of this report is to determine the state-of-the-art for fault simulators which 

are used to estimate the test coverage for the DUT. It is envisioned that the state-of-the-art survey 

will be used to assist in defining the fault simulation techniques which are applicable to VHDL 

models. An overview of fault grading techniques and TPG methods is also provided in this report. 

While fault simulation is the main focus of this report, fault grading and TPG are included to com- 

pletely describe the test generation, fault simulation, and fault grading process. It is important to 

realize that fault simulation is a means to assist TPG and estimate fault coverage via fault grading. 

The desired goal for a tool set is to contain a fault simulation technique which seamlessly augments 

the TPG process and performs fault grading in an efficient fashion. 
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This report is organized into ten major sections. Following this introduction, Section 3 provides 

background concerning fault simulation concepts. A high-level summary of the techniques cov- 

ered in this report is presented in Section 4. Section 5 provides an overview of uniprocessor based 

fault simulation techniques. Parallel processor fault simulation techniques are described in Section 

6. A review of the use of hardware accelerators to achieve fast fault simulation is presented in Sec- 

tion 7. An overview of existing fault grading techniques is included as Section 8. Likewise, 

Section 9 provides a brief overview of test pattern generation techniques. An analysis of the appli- 

cability of the presented fault simulation methods for use in VHDL based fault simulation is 

described in Section 10. Concluding remarks are included in Section 11. 

3. Fault Simulation Concepts 

The first step in this overview process is to describe the structure associated with a generic fault 

simulation tool. The structure of a generic fault simulation tool is important because it clearly 

shows what information is required to perform fault simulation and the basic components required 

for fault simulation. A graphical representation of the generic fault simulation structure is included 

as Figure 3.1. The information which must be provided by the designer is: (1) the set of test pat- 

terns, (2) the fault list, (3) a model of the DUT, and (4) a list of correct outputs for the DUT for the 
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Figure 3.1.   General structure of a fault simulator. 
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set of test patterns. The fault simulation engine reads in the DUT model, a test pattern from the set 

of test patterns, and then injects one or more faults from the fault list into the DUT. The faulty DUT 

is simulated, and outputs from the DUT are produced. The simulated outputs of the faulty DUT are 

compared to the correct stored outputs. The injected fault is detected if the simulated output differs 

from the stored output. The fault insertion mechanism associated with the fault simulator may be 

loosely or tightly coupled with the fault simulation engine. An example of a loosely coupled fault 

insertion method is a technique which uses an existing logic simulator to perform the fault simula- 

tion. The fault insertion in this example is achieved by modifying the DUT to incorporate the 

desired fault. Tightly coupled fault insertion techniques typically require a custom fault simulation 

engine which can only be used to execute a given fault simulation technique. 

For a fault simulator to be useful in assisting the test pattern construction process it must be 

computationally efficient. Theoretical analysis of a variety of fault simulation techniques indicates 

that the upper bound associated with the computational complexity of fault simulation is a qua- 

dratic function. Specifically, fault simulation requires O (G2) computational time, where G is the 

number of components in the device under test [91]. Further insight into the complexity of the fault 

simulation is obtained by viewing the problem graphically. The fault simulation process can be rep- 

resented in a three dimensional space with each dimension defined as: (1) the number of compo- 

nents in the device under test given as G, (2) the number of faults in the circuit given as F, and 

(3) the number of input vectors required to test a device is given as I. The number of faults in the 

Device Under Test (DUT) is directly proportional to G and is given as 

F = a(G) (3.1) 

Likewise, the number of test patterns for a general DUT is also a function of G 

7=ß(G) (3.2) 

The space which must be evaluated by fault simulation is a box shaped volume which is depicted 

graphically in Figure 3.2. The volume is referred to as a test volume which is proportional to 

0(G3) [161]. Various techniques are employed by fault simulation algorithms to reduce the 

O (G3) volume to an O (G2) computational time process [80]. For example, the dropping of 

detected faults from the fault list after each test pattern is evaluated is one way to reduce the number 

of fault simulations. The process of deleting detected faults from the fault list is referred to as fault 

dropping. 
All of the aforementioned computational costs assume that the DUT is a combinational circuit 

which contains no feed back loops. The fault simulation costs associated with evaluating finite state 

machines are higher than for combinational circuits. Unless otherwise stated throughout this report 

the computational costs associated with a fault simulation technique are for a combinational cir- 

cuit. Another factor which effects computational cost is the manner in which components in the 
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/= ß(G) 
(test patterns) 

Test Volume 
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Figure 3.2.   Space which is evaluated via fault simulation during test coverage estimation. 

DUT are evaluated. The two different generic component evaluation approaches are: (1) compiled 

simulation and (2) event driven simulation [33]. The first approach consists of evaluating all G 

gates for each fault simulation and is referred to as compiled parallel fault simulation [24, 33, 57, 

107, 118, 225, 226, 235]. An example gate-level circuit is included as Figure 3.3 to assist in 

describing the compiled fault simulation approach. The first step in evaluating the example DUT 

for the fault-free case to determine the correct output. A total of five gate evaluations are required 

for the fault-free simulation. The s-a-0 fault on the output of gate 2 is inserted into the DUT and 

the faulty circuit is simulated by evaluating all five gates. A compiled approach always evaluates 

every component in a DUT model for every simulation. Thus, ten gate evaluations are required to 

simulate the fault free DUT and on faulty DUT for a single input pattern. 

The second approach is referred to as event driven simulation. The first stage of event driven 

simulation is the evaluation of the fault free DUT and storing the signal values of the DUT. A single 

fault is injected at a signal location in the DUT. The erroneous value caused by the injected fault is 

propagated through the circuit by evaluating the gates attached to the erroneous signal. Each gate 

is evaluated in response to an event; that is, the propagation of the erroneous signal. If the output 

of a gate is erroneous then the gates which utilize the erroneous value as an input are scheduled for 

evaluation. The simulation of gates is complete when the evaluation list becomes empty. This type 

of fault simulation is referred to as event driven fault simulation [33, 36,42, 52, 86,103, 225, 226, 

227]. The evaluation list becomes empty when either the effect of the erroneous signal is masked 

and the fault is undetectable or the erroneous signal propagates to one or more outputs. 



Figure 3.3.   Example fault simulated circuit with a known input pattern. 

The example circuit depicted in Figure 3.3 is used to further describe event driven fault simu- 
lation. The simulation begins by adding gates 1,2, and 3 to the evaluation list. As each of the gates 
is evaluated it is removed from the evaluation list. If the output signal value of an evaluated gate 
changes then all gates which use the output signal as an input are added to the evaluation list. Once 

gates 1 and 2 are evaluated gate 4 is added to the evaluation list. Gate 5 is added to the evaluation 

list once gates 3 and 4 have been evaluated. The fault-free simulation ends when gate 5 is evalu- 
ated. The s-a-0 output fault on gate 2 is then inserted. The fault insertion causes gate 4 to be added 
to the evaluation list. Once gate 4 is evaluated then gate 5 is added to the evaluation list. The fault 
simulation is one step from completion for the inserted fault when gate 5 is evaluated. Also, for 
this particular example the inserted fault is detected by the test pattern because the output is erro- 
neous. The last step associated with event driven fault simulation is the restoration of the erroneous 

signal values to a fault-free value. The restoration is accomplished by copying a saved version of 
the correct signal values to replace the erroneous signal values. For the example circuit a one value 
is restored to the output of gates 2,4 and 5. Once the restoration step is complete then the simulated 
DUT is ready for another fault simulation. The total number of gate evaluations for the example is 

seven; that is, five gates are evaluated for the fault free circuit and two gates are evaluated for the 

faulty circuit. 
The primary advantage of event fault simulation is that only the gates which have erroneous 

inputs are evaluated. Most faults affect only a small percentage of the gates in a DUT, thus event 
driven fault simulation is more computationally efficient than compiled parallel fault simulation. 

In fact, event driven fault simulation has a computational cost of O (G2) [91,225, 226]. 
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4. Overview of Fault Simulation, TPG, and Fault Grading 

The objective of this report is to provide an overview of the state-of-the-art for fault simulation, 

test pattern generation, and fault grading. Special emphasis is placed on utilizing existing fault sim- 

ulation techniques for the evaluation of Very High Speed Integrated Circuit Hardware Description 

Language (VHDL) models. This state-of-the-art survey is used to assist in the development of a 

fault grading/fault simulation toolset. Specifically, the goal of this research effort is to develop a 

tool which performs fault grading via fault simulation of a VHDL model using a VHDL compliant 

simulator. This report surveys three major areas: (1) fault simulation, (2) fault grading, and (3) test 

pattern generation. A brief overview of the survey associated with each area is described in Sec- 

tions 4.1,4.2, and 4.3. 

4.1. Fault Simulation Overview 

Fault simulation is used to determine the effect of a given fault on a specific Device Under Test 

(DUT) for a set of input vectors. Typically, the designer specifies a fault model to assist in the fault 

grading process. The fault model is used to enumerate the set of faults associated with the DUT. If 

the designer assumes that the fault model is sufficient to represent all relevant DUT faults, then the 

set of faults derived by applying the fault model to the DUT is complete. There are a variety of 

fault models for the designer to consider. Delay, bridging, stuck open/stuck closed, and stuck-at are 

commonly used fault models. The stuck-at fault model is by far the most prevalent. Unless other- 

wise stated, this overview describes fault simulation techniques which can be used to evaluate 

stuck-at faults. The survey section of this report expands the discussion to describe extensions of 

the fault simulation methods presented in the overview which are used for other fault models. 

Conceptually, fault simulation is performed by inserting a fault into a DUT and then simulating 

the faulty DUT for a set of input vectors, commonly referred to as a set of test patterns. Fault sim- 

ulators have been used for many years to assist designers in developing digital systems. As the 

complexity of digital systems has increased the demand for fault simulators that handle larger 

designs has also grown. A time line which details the evolution of fault simulation techniques is 

included as Figure 4.1. The time line lists the introduction of key fault simulation techniques, the 

first known date of a published record describing the technique, and the reference which describes 

the technique. A brief description of each technique is presented in the following paragraphs. A 

more detailed description of the fault simulation methods is presented in Sections 5 and 6 of this 

report. The fault simulation techniques are introduced based upon the chronology of development; 

that is, the fault simulation technique that was developed first is described first. 

The most simplistic fault simulation technique is serial fault simulation. The first reported use 

is presented by Tsiang in 1962 [213]. Serial fault simulation is performed by inserting a single fault 

in the DUT, and then the faulty DUT is simulated by applying the test pattern set to the faulty DUT. 
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Figure 4.1.   Evolutionary time line for fault simulation techniques. 

A fault is declared detected if one or more outputs of the simulated faulty DUT do not match the 

correct DUT outputs. Each fault is evaluated one at a time with the serial fault simulation tech- 

nique. A list of references where serial fault simulation is utilized is included as Table 4.1. The first 

column of Table 4.1 lists the reference number, while the second and third columns contain the 

year of publication and the list of authors associated with the reference. For the references surveyed 

in this report serial fault simulation is described in papers spanning 1962 [213] to 1995 [64]. 

The parallel fault simulation technique is an extension of the serial fault simulation method. 

Serial fault simulation evaluates a single fault for a given input pattern per simulation. Parallel fault 

simulation evaluates a number of DUTs in parallel per simulation pass. The number of DUTs eval- 

uated in parallel is typically determined by the number of bits in the machine word of the host sys- 

tem which is performing the simulation. For example, if the host machine word width contains W 

bits, then W DUTs are evaluated in parallel. Specifically, each bit position in the machine word is 

assigned to a single DUT. Typically, parallel fault simulation is performed for gate-level DUT 

models. Transforming a gate-level model into a form which is readily simulated via the parallel 

method is a relatively straightforward process. For example, the evaluation of a two input gate in 

a DUT model maps to a single host machine instruction. When the instruction is evaluated, all W- 

bit positions in the input operands are used to calculate the W-bit output operand. Thus, for gate- 

level models parallel fault simulation is very efficient. Parallel fault simulation is a common 

method that was utilized in 1965 [190] and is still being used in 1993 [156]. The parallel technique 

can further be divided into two categories: (1) Parallel Fault (PF) simulation and (2) Parallel Pat- 
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Table 4.1.   Serial fault simulation reference table. 

Reference 
No. 

Year 
Published 

Author 

[5] 1985 Abramovici, M. and P. R. Menon 

[22] 1986 Barzilai, Z., D. K. Beece, L. M. Huisman, V. S. Iyengar, 
and G. M. Silberman 

[43] 1988 Caisso, J.-P. and B. Courtois 

[44] 1994 Research Triangle Institute 

[49] 1974 Chappell, S. G., C. H. Elmendorf, and L. D. Schmidt 

[60] 1984 Davidson, S 

[64] 1995a DeLong, T. A, B. W. Johnson, and J. A. Profeta, II 

[93] 1982 Hayes, J. P 

[110] 1994 Jenn, E., J. Arlat, M. Rimen, J. Ohlsson, and J. Karlsson 

[143] 1993 Meyer, W. and R. Camposano 

[164] 1988 Ozguner, F. and R. Daoud 

[180] 1985 Rogers, W. A. and J. A. Abraham 

[213] 1962 Tsiang, S. H. and W. Ulrich 

[215] 1967 Ulrich, E. G. 

a. Submitted for publication date 

tern (PP) simulation. The PF technique simulates one good DUT and W- 1 DUTs with different 

faults. Conversely, the PP technique evaluates W input patterns in parallel on one faulty DUT. A 

list of all references surveyed in this report which utilize parallel fault simulation is included as 

Table 4.2. The reference number, the year published, the list of authors, and the technique 

employed (PP or PF) is included in columns one, two, three, and four respectively in Table 4.2. 

Deductive fault simulation is a method which can evaluate all faults associated with a DUT in 

a single simulation pass. The deductive method is typically used only for gate-level models. The 

deductive technique evaluates the entire set of faults in a symbolic fashion by propagating fault 

lists through the DUT when a signal in the DUT is updated. A fault on the input of a component is 

propagated to the output of the component if the input fault causes an erroneous component output. 

The fault list propagation is performed by using set theory relationships to determine which input 

faults satisfy the error propagation requirement. The set theory relationships deduce which faults 

cause erroneous component outputs. A deductive fault simulation begins by adding input faults 

which produce an error to each input signal's fault list. The components which are attached to the 

inputs are evaluated next. The simulation proceeds by evaluating components whose inputs are 
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Table 4.2.  Parallel fault simulation reference table. 

Reference 
No. 

Year 
Published 

Author 
Simulation 

Method 

[1] 1990 Abramovici, M., M. A. Breuer, and A. D. Friedman PP,PF 

[48] 1974 Chang, H. Y.-P., S. G. Chappel, C. H. Elmendorf, 
and L. D. Schmidt 

PF 

[49] 1974 Chappell, S. G., C. H. Elmendorf, and L. D. 
Schmidt 

PF 

[52] 1990 Cheng, W., and J. H. Patel PF 

[70] 1980 Funatsu, S., M. Takahashi, and M. Shibata PF 

[82] 1984 Goel, P. and P. R. Moorby PF 

[84] 1980 Goel, P., H. Licha, T. E. Rosser, T. J. Stroh, and 
E. B. Eichelberger 

PF 

[89] 1966 Hardie, F. H and R. J. Suhocki PF 

[124] 1989 Larrabee, T. PP 

[128] 1980 Levendel, Y. H., and P. R. Menon PF 

[129] 1981 Levendel, Y. H., and P. R. Menon PF 

[142] 1978 Menon, P. R. and S. G. Chappel PF 

[156] 1993 Navabi, S., N. Cooray, and R. Liyanage PF 

[163] 1972 Ozguner, F., W. E. Donath, and C. W. Cha PF 

[180] 1985 Rogers, W. A. and J. A. Abraham PF 

[184] 1984 Saab, I. D. and N. Hajj PF 

[187] 1989 Schulz, M. H., and D. Pellkofer PP 

[190] 1965 Seshu, S. PF 

[201] 1987 Smith, S. and R. von Blucher PF 

[204] 1985 Son, K. PF 

[211] 1975 Thompson, E. W. and S. A. Szygenda PF 

[225] 1985 Waicukauski, J. A., E. B. Eichelberger, 
D. O. Forlenza, E. Lindbloom, and T. McCarthy 

PP 

[226] 1985 Waicukauski, J. A., E. B. Eichelberger, D. O. 
Forlenza, E. Lindbloom, and T. McCarthy 

PP 

[227] 1987 Waicukauski, J. A., V. P. Gupta, and S. T. Patel PP 

[229] 1987 Waicukauski, J. A., E. Lindbloom, B. K. Rosen, 
and V. S.Iyengar 

PP 

[235] 1968 Yetter, I. H PF 
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known but whose outputs need to be set. The deductive simulation ends when all signal values in 

the simulation reach a steady-state value. The set of detected faults provided by the simulation is 

obtained by performing a union of the fault list sets associated with each output signal of the DUT. 

The list of references surveyed by this report which utilize deductive fault simulation is presented 

as Table 4.3. The use of the deductive method spans 1972 [19] to 1994 [208]. 

Table 4.3.  Deductive fault simulation reference table. 

Reference 
No. 

Year 
Published 

Author 

[1] 1990 Abramovici, M., M. A. Breuer, and A. D. Friedman 

[19] 1972 Armstrong, D. B 

[48] 1974 Chang, H. Y.-P., S. G. Chappel, C. H. Elmendorf, and 
L. D. Schmidt 

[82] 1984 Goel, P. and P. R. Moorby 

[84] 1980 Goel, P., H. Licha, T. E. Rosser, T. J. Stroh, and 
E. B. Eichelberger 

[117] 1977 Kjelkerud, E., and O. Thessen 

[128] 1980 Levendel, Y. H., and P. R. Menon 

[129] 1981 Levendel, Y. H., and P. R. Menon 

[142] 1978 Menon, P. R. and S. G. Chappel 

[163] 1972 Ozguner, F., W. E. Donath, and C. W. Cha 

[174] 1986 Pradhan, D. K. 

[180] 1985 Rogers, W. A. and J. A. Abraham 

[202] 1988 Smith, S. P. and M. R. Mercer 

[208] 1994 Takahashi, N., N. Ishiura, and S. Yajima 

The concurrent fault simulation technique is similar to the deductive method. The concurrent 

technique can evaluate all faults associated with the DUT in a single simulation pass. The faults 

associated with the DUT are symbolically processed with the concurrent method. Unlike the 

deductive method which stores the fault lists with each signal, the concurrent method stores the list 

of faults with each component. The fault list propagation for an unevaluated component begins by 

gathering the fault lists propagated by the components attached to the input signals of the uneval- 

uated component. The fault list associated with each input to a component is evaluated by applying 

the fault condition to the component input and evaluating the component. If the output of the com- 

ponent is erroneous then the fault is added to the component's fault list. The concurrent technique 

begins by evaluating the components attached to the inputs of the DUT which are referred to as 
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input components. The fault list propagation associated with an input component is performed by 

evaluating component input faults which cause input errors. Each input fault which causes a com- 

ponent output error is stored in the input component's fault list. The concurrent technique continues 

by evaluating components whose inputs are known but whose outputs are yet to be evaluated. The 

concurrent technique ends when all signals in the DUT reach a steady-state value. The set of faults 

detected by the concurrent simulation is determined by performing a union of all the fault sets asso- 

ciated with the outputs of the DUT. 
One of the primary benefits of the concurrent technique is that it can be applied to a model at 

any level of abstraction. In fact, the concurrent method can be used to evaluate DUT models which 

contain components at various levels of abstraction. The use of multiple levels of abstraction is the 

primary reason for the popularity of the concurrent method. The list of concurrent fault simulation 

references surveyed for this report is given as Table 4.4. Concurrent fault simulation was first intro- 

duced by Ulrich and Baker in 1973 [216] and is available today in the form of several commercial 

fault simulation tools offered by Attest [20], Ikos systems [104], and ZyCAD [236]. 

Hierarchical fault simulation is a method which exploits design hierarchy to speed the fault 

evaluation process. The design hierarchy is exploited by having each component in the DUT rep- 

resented at the highest level of abstraction, except the component which is at fault. The component 

which is being evaluated via fault simulation is represented by a low-level model, such as a gate- 

level model. Thus, hierarchical fault simulation creates a unique model of the DUT for each com- 

ponent which is evaluated via fault simulation. Once the evaluation of a given component is com- 

pleted then the fault simulator selects another unevaluated component for simulation and loads the 

appropriate hierarchical DUT model. A DUT model which contains design hierarchy requires less 

computational resources to simulate than a gate or transistor level DUT model. The more high- 

level components that a DUT contains the better the increase in efficiency obtained by hierarchical 

fault simulation. 
The simulation technique employed to evaluate the hierarchical model varies. Both serial and 

concurrent fault simulation methods have been used to evaluate hierarchical models. Hierarchical 

fault simulation has been in use since 1977 [2] and has been reported in the literature as recently 

as 1995 [99]. The list of references surveyed by this report which employ hierarchical simulation 

is included as Table 4.5. 
Serial, deductive, concurrent, and hierarchical fault simulation methods have one attribute in 

common; that is, the techniques are designed to execute on a uniprocessor host computer. One 

obvious way to increase speed during the solution of a computationally intensive problem is to use 

parallel processor architectures to increase the amount of computational resources. The parallel 

processing techniques are organized in this survey by parallel processor hardware architecture. The 

architecture of a parallel machine has a large impact on the types of problems that a given machine 
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Table 4.4.   Concurrent fault simulation reference table. 

Reference 
No. 

Year 
Published Author 

[1] 1990 Abramovici, M., M. A. Breuer, and A. D. Friedman 

[2] 1977 Abramovici, M., M. A. Breuer, and K. Kumar 

[20] 1995 Attest Software, Inc. 

[31] 1992 Bose, S. and P. Agrawal 

[32] 1982 Bose, A., P. Kozak, C.-Y. Lo, H. N. Nham, 
E. Pacas-Skewes, and K. Wu 

[39] 1983 Bryant, R. E. and M. D. Schuster 

[40] 1985 Bryant, R. E. and M. D. Shuster 

[46] 1986 Chan, T. and E. Law 

[55] 1980 d'Abreu, M. A., and E. W. Thompsond' Abreu, M. A., and 
E. W. Thompson 

[82] 1984 Goel, P. and P. R. Moorby 

[95] 1980 Henckels, L. P., K. M. Brown, and C. Lo 

[104] 1995 Ikos Systems, Inc. 

[125] 1992 Lee, D. H. and S. M. Reddy 

[128] 1980 Levendel, Y. H., and P. R. Menon 

[129] 1981 Levendel, Y. H., and P. R. Menon 

[132] 1987 Lo C. Y., H. N. Nham, and A. K. Bose 

[174] 1986 Pradhan, D. K 

[180] 1985 Rogers, W. A. and J. A. Abraham 

[186] 1977 Schüler, D. M and R. K. Cleghorn 

[189] 1984 Schuster, M. D. and R. E. Bryant 

[195] 1985 Shih, H. C, J. T. Rahmeh, and J. A. Abraham 

[196] 1986 Shih, H. C, J. T. Rahmeh, and J. A. Abraham 

[200] 1984 Smith, L. T. and R. R. Rezac 

[207] 1995 Synopsis 

[214] 1985 Ulrich, E 

[216] 1973 Ulrich, E. G. and T. Baker 

[217] 1980 Ulrich, E, D. Lacy, N. Phillips, J. Tellier, M. Kearney, 
T. Elkind, and R. Beaven 

[236] 1995 ZyCAD 
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Reference 
No. 

[2] 

[61] 

[72] 

[73] 

[74] 

[87] 

[99] 

[103] 

[137] 

[144] 

[147] 

[148] 

[159] 

[178] 

[179] 

[180] 

[185] 

Table 4.5.   Hierarchical fault simulation reference table. 

Year 
Published 

1977 

1987 

1986 

1988 

1988 

1986 

1986 

1995 

1990 

1988 

1993 

1991 

1988 

1988 

1987 

1985 

1985 

1979 

Author 

Abramovici, M., M. A. Breuer, and K. Kumar 

Chang, H. P. and J. A. Abraham 

Davidson, S. and J. L. Lewandowski 

Gai, S., P. L. Montessoro, and F. Somenzi 

Gai, S., P. L. Montessoro, and F. Somenzi 

Gai, S., F. Somenzi, and E. Ulrich 

Guzolek, J. F., W. A. Rogers, and J. A. Abraham 

Hsiao, M. S. and J. H. Patel 

Hwang, T.-S., C. L. Lee, W. Z. Shen, and C. P. Wu 

Machlin, D., D. Gross, S. Kadkade, and E. Ulrich 

Meyer, W. and R. Camposano 

Montessoro, P. L. and S. Gai 

Motohara, A. M. Murakami, M. Urano, Y. Masuda, and 
M. Sugano 

Nicholls, W. H. and M. Soma 

Rogers, W. A., J. F. Guzolek, and J. A. Abraham 

Rogers, W. A. and J. A. Abraham 

Rogers, W. A. and J. A. Abraham 

Schüler, D. M., T. E. Baker, R. S. Fisher, SS. Hirshhorn, 
M. B. Hommel, H. J. McGinness, and R.V. Bosslet 

is well suited to solve. For this reason more insight is to be gained by studying the parallelization 

techniques grouped by hardware architecture. 
The first reported parallel processor architecture employed for fault simulation is a distributed 

parallel processor. A parallel processor architecture is considered distributed if there is a large com- 

munication time penalty associated with interprocessor communication. The distributed parallel 

fault simulation techniques surveyed in this report center on partitioning the DUT into regions 

which can be evaluated independently. The independent regions are then assigned to independent 

processors. The number of independent regions into which a DUT can be partitioned is highly 

dependent on the structure of the DUT. The first published distributed parallel processing method 

is written by Goel in 1981 [76]. Conversely, Huisman et al has done the most recent work in this 
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area; that is 1990 [100- 102]. A listing of the references surveyed relating to parallel distributed 

fault simulation is included as Table 4.6. 
Table 4.6.  Distributed parallel fault simulation reference table. 

Reference 
No. 

Year 
Published 

Author 

[76] 1981 Goel, P 

[100] 1990 Huisman, L. M. and R. Daoud 

[101] 1990 Huisman, L., I. Nair, and R. Daoud 

[102] 1990 Huisman, L., I. Nair, and R. Daoud 

[130] 1983 Levendel, Y. H, P. R. Menon, and S. H. Patel 

[150] 1989 Mueller-Thuns, R. B., D. G. Saab, R. F. Damiano, and 
J. A. Abraham 

A pipelined processing architecture is another type employed to perform fault simulation. A 

pipelined architecture is optimized to perform a sequential algorithm by assigning a processing ele- 

ment to each step in the algorithm. As the sequential algorithm executes, data is passed down the 

array of processing elements with the last processing element producing the output of the sequen- 

tial algorithm. The pipeline approach is similar to the instruction pipelining which is employed on 

modern 32-bit microprocessors to increase performance. 

The first step in translating a sequential algorithm to a pipelined architecture is dividing the 

sequential algorithm into partitions which require approximately equal amounts of computational 

resources. The requirement of equal resources assures that one element of the pipeline does not 

cause the entire pipeline to stall. For pipelining to be efficient, the sequential algorithm has to have 

sufficient complexity to support partitioning. Both the aforementioned deductive and concurrent 

methods have sufficient algorithmic complexity to support pipelining. The list of references which 

employ pipelining is included as Table 4.7. 
Table 4.7.   Pipelined parallel fault simulation reference table. 

Reference 
No. 

Year 
Published 

Author 

[8] 1989 Agrawal, P., V. D. Agrawal, K.-T. Cheng, and 
R. Tutundjian 

[31] 1992 Bose, S. and P. Agrawal 

[131] 1995 Li., Y.-L. and C.-W. Wu 

[165] 1988 Ozguner, F., C. Aykanat, and O. Khalid 

[206] 1986 Stein, A. J., D. G. Saab, and I. N. Hajj 
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Vector-based parallel processor architectures are yet another type of parallel machine which is 

used to perform fault simulation. Vector-based machines are optimized to perform vector opera- 

tions such as matrix multiplication at a high level of throughput. Supercomputers typically employ 

a vector architecture to enhance the evaluation of computationally intensive scientific/engineering 

algorithms. Parallel fault simulation is ideally suited to execute on a vector-based machine. Spe- 

cifically, each component in the DUT is evaluated as W parallel machines using W-bit wide vector 

operations. Ishiura et al [106] in 1985 is the first known reported use of a vector based architecture 

to perform fault simulation. The list of references surveyed by this report which use vector based 

architectures is included as Table 4.8. 
Table 4.8.  Vector-based fault simulation reference table. 

Reference 
No. 

[25] 

[59] 

[105] 

[106] 

[152] 

Year 
Published 

1992 

1989 

1990 

1987 

1994 

Author 

Bataineh, A., F. Ozguner, and I. Szauter 

Daoud, R. and F. Ozguner 

Ishiura, N., M. Ito, and S. Yajima 

Ishiura, N., M. Ito, and S. Yajima 

Nagumo, T., M. Nagai, T. Nishida, M. Miyoshi, and 
S. Miyamoto 

Massively parallel architectures have also been employed to perform fault simulation. A par- 

allel architecture which contains more than 100 processing elements is defined to be a massively 

parallel machine. The connection machine which can contain up to 64K processors is a good exam- 

ple of a massively parallel machine. The serial and parallel fault simulation methods are techniques 

which are easy to implement on a massively parallel architecture. Parallelization of uniprocessor 

fault simulation algorithms is achieved in one of two ways. One method is to assign each compo- 

nent in the DUT to a processor. With the processor-per-component technique the number of steps 

required to evaluate the DUT is now a function of the number of component levels in the DUT and 

not the size of the DUT. The second approach is to divide the fault list associated with the DUT 

into n equal partitions. Each fault list partition is then evaluated with a separate processor which 

is executing a uniprocessor fault simulation technique. The list of references which are surveyed 

by this report and use a massively parallel machine is presented as Table 4.9. 

Another parallel architecture that can be used to perform fault simulation is a group of work- 

stations which are interconnected by a common network. The main benefit of this approach is that 

most engineering design centers contain a number of networked workstations. Thus, fault simula- 

tion on parallel workstations can be performed without having to buy custom parallel processing 
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Table 4.9.  Massively parallel fault simulation reference table. 

Reference 
No. 

Year 
Published 

Author 

[153] 1989 Narayanan, V. and V. Pitchumani 

[154] 1988 Narayanan, V. and V. Pitchumani 

[155] 1992 Narayanan, V. and V. Pitchumani 

[162] 1987 Ostapko, D. L., Z. Barzilai, and G. M. Silberman 

hardware. Also, the fault simulations can be run when the group of workstations is idle such as at 

night and on weekends. 

Fault simulation on parallel workstations is typically performed by partitioning the fault list 

associated with the DUT into n equal partitions. Each fault list partition is then evaluated on a sep- 

arate workstation using a uniprocessor fault simulation technique. Table 4.10 lists the references 

surveyed by this report which use parallel workstation fault simulation techniques. 

Table 4.10.   Parallel workstation fault simulation reference table. 

Reference 
No. 

Year 
Published Author 

[66] 1988 Duba, P. A., R. K. Roy, J. A. Abraham, and W. A. Rogers 

[139] 1990 Markas, T., M. Royals, and N. Kanopoulos 

The newest fault simulation technique surveyed by this report is differential fault simulation. 

The differential fault simulation method is primarily used to evaluate sequential gate-level models. 

The approach taken with differential fault simulation is to convert the sequential gate-level model 

into a combinational problem. The conversion occurs by adding controllability and observability 

to the state elements of the sequential model. The controllability feature allows the setting of the 

state of the DUT to any value, while the observability allows the reading of the current state value. 

The simulation technique begins by initializing the state of the DUT to some predefined value. The 

first test pattern is applied, and the DUT is simulated. The fault-free output and fault-free next state 

values are stored. The first fault is inserted into the DUT, and the faulty DUT is simulated. If the 

faulty DUT produces an output error then the fault is marked as detected, else the next state of the 

faulty DUT is stored. The evaluation of faults is continued until all of the undetected faults are eval- 

uated. The next test pattern is then applied to the fault-free DUT. The fault-free state of the DUT 

is restored and the circuit is simulated. The fault-free output and next state are then stored. The first 

undetected fault is then evaluated by restoring the stored state of the faulty DUT. If the fault is 

undetected, then the next state of the DUT is saved. The evaluation of undetected faults is contin- 

ued until all undetected faults are simulated. The differential method continues with the next test 
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pattern. The differential fault simulation ends when either all of the faults are detected or all of the 

test patterns have been evaluated. The references associated with the differential method are 

included as Table 4.11. 
Table 4.11.  Differential fault simulation reference table. 

Reference 
No. 

Year 
Published 

Author 

[51] 1989 Cheng, W.-T. and M.-L. Yu 

[220] 1991 Vandris, E., and G. Sobelman 

[221] 1990 Vandris, E., and G. Sobelman 
■  

4.2. Fault Grading Overview 
Fault simulation of the DUT provides information concerning the quality of the test pattern set 

for a given DUT. Specifically, fault simulation of the entire fault set for a given test pattern set 

determines which faults are detected by the test pattern set and which are not detected. The fault 

detection data is then used to determine the percentage of detected faults associated with the DUT 

when the test pattern set is applied to the DUT. The percentage of detected faults is referred to as 

fault coverage and the process of estimating fault coverage is referred to as fault grading. A graph- 

ical representation of the categories of existing fault grading methods is depicted as Figure 4.2. 

This section provides an overview of existing fault grading techniques which are surveyed by this 

report. The low-level details associated with the various fault grading techniques are presented in 

Section 8. 
Fault grading techniques can be subdivided into three major categories: (1) exhaustive meth- 

ods, (2) statistical methods, and (3) probabilistic methods. Exhaustive methods evaluate all mod- 

Fault Grading 
Techniques 

Exhaustive 
Statistical Probabilistic 

Single Sided 
Confidence Interval 

Figure 4.2.   Fault grading techniques organized by category. 

Double Sided 
Confidence Interval 
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eled faults associated with the DUT via fault simulation to perform fault grading. Specifically, the 

exhaustive approach estimates fault coverage by evaluating all faults in the list of faults via fault 

simulation. Conversely, the statistical approach entails randomly sampling the list of faults, evalu- 

ating the sample set of faults using fault simulation, and calculating a point estimate for fault cov- 

erage. A confidence interval is typically calculated to quantify the accuracy of the point estimate. 

One of two techniques is commonly employed to calculate the confidence interval of the point esti- 

mate: (1) a double sided confidence interval is employed, and (2) a single sided confidence interval 

is used. Typically the lower side of the confidence interval is used as the reported coverage esti- 

mate. The value of the lower-side confidence interval is always less than the point estimate, and as 

such, always provides a conservative estimate of the actual fault coverage. 

The Department of Defense (DoD) requires that fault grading be performed using a specific 

methodology; that is, MEL-STD-883 defines the fault grading methodology. Both exhaustive and 

statistical techniques are allowed under MIL-STD-883. Specifically, when a statistical fault grad- 

ing approach is used then the lower side of a double sided confidence interval is calculated. 

Probabilistic methods form the third fault grading category. The probabilistic fault grading 

methods are based on measuring the observability and controllability of signals in the DUT for a 

given set of test patterns. The controllability/observability values are then used to provide a quali- 

tative estimate of the fault coverage. The main benefit of probabilistic methods is that they are com- 

putationally inexpensive to perform. Due to the low computational cost, probabilistic methods can 

provide a fault coverage estimate in a fraction of the amount of time required to perform fault grad- 

ing using either traditional methods/MIL-STD-883. The main deficiency with probabilistic fault 

grading methods is that is difficult, if not impossible, to determine the accuracy of the fault cover- 

age estimate. The only known way to determine the accuracy of the probabilistic fault coverage 

estimate is to perform traditional/MIL-STD-883 fault grading to estimate fault coverage. The prob- 

abilistic fault coverage estimate is then compared with the fault simulated coverage estimate to 

measure the accuracy of the approximate estimate. Having to perform fault simulation coverage 

estimation to determine the accuracy of probabilistic fault grading techniques mitigates the com- 

putational cost savings associated with approximate methods. The inability to determine the accu- 

racy of probabilistic methods has limited their use by designers. 

4.3. Test Pattern Generation Overview 

The generation of the test pattern set which is used to evaluate the DUT is referred to as Test 

Pattern Generation (TPG). There are numerous TPG techniques, however, the techniques can be 

grouped into three major categories: (1) Deterministic Automatic Test Pattern Generation 

(DATPG), (2) Random Automatic Test Pattern Generation (RATPG), and (3) Manual Test Pattern 

Generation (MTPG). A graphical depiction of the three major TPG categories and several subcat- 
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egories is included as Figure 4.3. An overview of each TPG category depicted in Figure 4.3 is pro- 

vided in the following paragraphs, while the low-level details are presented in Section 9. 

RATPG is a technique where probabilities are used to select the next test pattern. The selection 

process is performed using a sampling with or without replacement strategy. Specifically, for the 

sampling without replacement case once a test pattern is selected it is removed from the set of 

available (unselected) test patterns [63]. The selected fault is then fault simulated to determine 

which currently undetected faults are detected with the new test pattern. If no undetected faults are 

detected, then the new test pattern is deleted. Conversely, if faults are detected, then the new test 

pattern is added to the test pattern set and fault grading is performed. The fault grading process is 

employed to determine the fault coverage estimate for the new test pattern set. If the coverage esti- 

mate meets or exceeds the specified fault coverage value, then the RATPG process ends, otherwise 

the next randomly generated test pattern is selected and the evaluation process is repeated. 

The sampling technique employed for RATPG can be divided into two categories: (1) uniform 

selection, and (2) weighted selection. The uniform selection method assumes that all available test 

patterns are equally likely and are sampled using a uniform probability density function. The 

weighted selection process modifies the uniform probability density function by analyzing the 

structure of the DUT. The objective of the weighted selection method is to increase the likelihood 

of selecting an input pattern which detects a random pattern resistant fault. A fault is considered to 

be random pattern resistant if there are very few input patterns which detect the fault. Thus, 

weighted selection modifies the selection probability density function to maximize the probability 

of selecting an input pattern which detects one or more faults. A list of references which utilize 

RATPG is included as Table 4.12. 
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Figure 4.3.   Types of test pattern generation techniques. 
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Table 4.12.   Random automatic test pattern generation reference table. 

Reference 
No. 

Year 
Published 

Author 

[35] 1985 Brglez, F., P. Pownall, and R. Hum 

[41] 1982 Carter, J. L., S. F. Dennis, V. S. Iyengar, and B. K. Rosen 

[63] 1986 Debany, W. H., P. K. Varshney, and C. R. P. Hartman 

[124] 1989 Larrabee, T. 

[192] 1989 Seth, S. C, V. D. Agrawal, and H. Farhat 

[228] 1989 Waicukauski, J. A., E. Lindbloom, E. B. Eichelberger, 
and 0. P. Forlenza 

The primary difference between DATPG and RATPG methods is that DATPG techniques use 

an algorithm which evaluates the internal structure of the DUT to determine a test pattern which 

detects a specific fault. Some DATPG techniques also provide information on other faults which 

are detected by the generated test pattern. For example, the D-algorithm uses fault collapsing to 
identify additional faults which are detected with a given input pattern [181]. In general fault sim- 
ulation is required to determine the complete set of faults detected by an DATPG produced test pat- 

tern. DATPG methods can be delineated into three categories: (1) path sensitized methods, (2) 
symbolic, and (3) fault independent techniques. 

The path sensitized category contains the majority of DATPG algorithms. The common 

attribute associated with the path sensitized approach is that an algorithm searches for a path 
through the DUT which activates a given fault and propagates the error associated with the acti- 
vated fault to one or more outputs of the DUT. Path sensitized methods search to find an input pat- 
tern that provides the desired fault activation and output error. Typically, the input pattern search 
process is exhaustive in nature with path sensitized techniques. Specifically, most path sensitized 
algorithms are guaranteed to find an input pattern which detects a given fault if the fault can be 
detected. For a complex DUT, the exhaustive search process can take an inordinate amount of time. 
Some path sensitization algorithms allow the designer to specify a maximum search space limit to 

bound the amount of time spent looking for a test pattern. The list of path sensitized DATPG meth- 
ods is included as Table 4.13. 

The symbolic DATPG category determines test patterns for gate-level designs by manipulating 
equations. A symbolic technique begins by converting a gate-level model to a set of Boolean 
expressions. The Boolean expressions are then manipulated using a predefined sequence of oper- 

ations to produce a final set of equations. Each resulting equation represents an input condition 
which when satisfied detects a given fault. Specifically, an input which causes a resulting equation 

to be a logical one produces a test pattern which detects a given fault. The primary limitation of 
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Table 4.13.  Path sensitized automatic test pattern generation reference table. 

Reference 
No. 

[14] 

[45] 

[69] 

[79] 

[83] 

[114] 

[151] 

[181] 

[182] 

[188] 

Year 
Published 

1976 

1978 

1983 

1981 

1981 

1987 

1976 

1966 

1967 

1988 

Author 

Akers, S. B. 

Cha, C. W., W. E. Donath, and F. Ozguner 

Fujiwara, H. and T. Shimono 

Goel, P. 

Goel, P. and B. C. Rosales 

Kirkland, T., and M. R. Mercer 

Muth, P. 

Roth, J. P. 

Roth, J. P., W. G. Bouricius, and P. R. Schneider 

Schulz, M. H., E. Trischler, and T. M. Sarfert 

symbolic DATPG methods is that the number of symbols required to represent any nontrivial DUT 

is quite large. Thus, the manipulation of the DUT equations is quite involved and for this reason 

symbolic DATPG is rarely used. A list of references which discuss symbolic TPG is presented as 

Table 4.14 
Table 4.14.  Symbolic automatic test pattern generation reference table. 

Reference 
No. 

[71] 

[119] 

[123] 

[140] 

[174] 

Year 
Published 

1986 

1978 

1992 

1986 

1986 

Author 

Gaede, R. K., M. R. Mercer, K. M. Butler, and D. E. Ross 

Kohavi, Z. 

Kung, C. and C. Lin 

McCluskey, E. J. 

Pradhan, D. K. 

The final DATPG category is fault independent methods. The key feature of fault independent 

methods is that the algorithm is not attempting to detect a specific fault but to determine a large 

fault set detected by the generated test pattern. Most fault independent methods require a gate-level 

model and begin by selecting an output value for the DUT. Each output value of the DUT is 

selected to satisfy a path sensitization criteria. Specifically, the gate which sets the output value 

must have a controlling input. An input is considered to be controlling if changing the input causes 

the output of the component to change value. For example, a two input AND gate with a 10 input 

pattern has the 0 input as a controlling input. The fault independent methods search for input com- 
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binations on gates which cause long sensitized paths. The sensitized path is determined by working 

backwards through the DUT and noting the continuous chain of controlling inputs. Changing the 

value of any of the controlling inputs on the continuous chain causes a DUT output error. The list 

of fault independent DATPG references is included as Table 4.15. 

Table 4.15.  Fault independent automatic test pattern generation reference table. 

Reference 
No. 

Year 
Published 

Author 

[13] 1979 Airapetian, A. N, and J. F. McDonald 

[28] 1983 Benmehrez, C, and J. F. McDonald 

[209] 1971 Thomas, J. J. 

[230] 1975 Wang, D. T. 

The combined TPG technique attempts to exploit the best attributes associated with RATPG 

and DATPG. The combined technique begins by performing RATPG. The RATPG process is con- 

tinued until the rate at which faults are detected from the undetected fault set drops below a pre- 

defined threshold. The rate at which faults are detected from the undetected fault set slows as test 

patterns are added to the test pattern set with RATPG because the initial test patterns locate the easy 

to detect faults. Eventually the undetected fault set comprises only random pattern resistant faults. 

The idea with combined TPG is to have an DATPG technique determine test patterns for the 

remaining set of random pattern resistant faults. Thus, RATPG is used to generate test patterns to 

detect the set of easy to detect faults. RATPG is far more efficient than DATPG techniques at 

detecting nonrandom pattern resistant faults (easy to detect faults). Using RATPG to generate test 

patterns for the set of easy to detect faults decreases the computational resources required for TPG. 

Conversely, RATPG tends to become inefficient when used to detect random pattern resistant 

faults. DATPG techniques can locate a test pattern to detect a random pattern resistant fault more 

efficiently than RATPG. For these reasons, the combined technique exploits the best attributes of 

both RATPG and DATPG. A list of references which utilize combined TPG is presented as 

Table 4.16. 

Table 4.16.   Combined automatic test pattern generation reference table. 

Reference 
No. 

Year 
Published 

Author 

[4] 1986 Abramovici, M., J.J. Kulikowski, P. R. Menon, 
and D. T. Miller 

[35] 1985 Brglez, F., P. Pownall, and R. Hum 

[124] 1989 Larrabee, T. 
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The distinguishing characteristic of the MTPG technique is that the test patterns are selected 

manually by the designer. Typically, the first test patterns selected are also used by the designer to 

verify that the DUT has the correct functional mapping. Like RATPG, each new test pattern is eval- 

uated via fault simulation to determine if any faults from the undetected fault set are detected. If 

no faults are detected by the new test pattern then the test pattern is discarded, otherwise the new 

test pattern is added to the test pattern set. Fault grading is then employed to determine if the spec- 

ified level of fault coverage is achieved. If the test pattern set achieves or exceeds the fault coverage 

specification then the MTPG process is ended, else the MTPG process is continued. Subsequent 

test patterns are selected after the designer performs some analysis of the DUT. After each test pat- 
tern is selected a fault simulation is performed to determine if any undetected faults are detected. 
If no additional faults are detected then the new test pattern is discarded, else the new test pattern 
is added to the set of test patterns. The manual selection process continues until the number of 

undetected faults reaches an acceptable level. 

5. Uniprocessor Fault Simulation 

Fault simulation techniques have been implemented using a wide variety of diverse computer 
architectures. Typically, fault simulation techniques are first developed on uniprocessor architec- 
tures and then extended/modified to exploit other architectures such as parallel or pipelined. Thus, 
a thorough understanding of uniprocessor fault simulation techniques provides the necessary foun- 

dation required to understand fault simulation techniques for other architectures. There are a num- 

ber of fault simulation techniques based on the use of a uniprocessor. As with any technology, 
improvements in fault simulation have occurred over a large span of time as more stringent perfor- 
mance requirements surfaced. An overview of the specific uniprocessor fault simulation tech- 
niques surveyed by this report are presented in the following subsections. Each subsection 

describes one fault simulation method. 

5.1. Serial Fault Simulation 
The most fundamental fault simulation approach is referred to as serial fault simulation. The 

purpose of describing the serial fault simulation technique is to provide insight into the limitations 

of using the most straightforward solution to fault simulation. Also, a greater appreciation for the 
power of more complex fault simulation techniques is gained by understanding the limitations of 

serial fault simulation. 
Serial fault simulation consists of injecting one fault at a time in the DUT and simulating the 

faulty DUT for all input patterns [5, 22, 43, 49, 60, 93, 143, 164, 180, 213, 215]. With this 
approach, each fault simulation requires that G gates be evaluated for each input vector. If the fault 

is detected by the ith input vector then the fault simulation for the current fault can be stopped. 
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Stopping a fault simulation in this fashion is referred to as fault dropping. After the fault is detected 

or all / input patterns are evaluated the detection status of the fault is recorded and the fault is 

removed from the fault list. The next fault is selected, and the fault evaluation process is performed 

again. A high-level description of the serial fault simulation algorithm is included as Figure 5.1 to 

further illustrate the steps associated with serial fault simulation. The primary drawback to this 

approach is that G gates are evaluated for every input pattern applied during fault simulation even 

though the injected fault typically only affects only a small subset of G. The other important point 

to remember is that a fault-free simulation run is performed to generate the fault-free outputs of the 

DUT. The computational cost associated with the serial fault simulation technique for a single fault 

is 

c5ocG7. (5.1) 

where c is the computational cost of the serial fault simulation for the ith fault pattern, and /. is 

the number of input patterns required to fault simulate with fault dropping the ith fault. If fault 

dropping is employed then the number of test vectors per fault is between 1 and I. If fault dropping 

is not employed then /. = 7V {i e F} . The total computational cost for the serial fault simulation 

technique is obtained by summing cs over all faults. Performing this summation provides 

F+l F+l 

i=1        1=1 

where Kb is the total computational cost of the serial fault simulation technique. The number of 

evaluations in the summation is F + 1 because a fault free simulation is required before F fault 

simulations are performed. If fault dropping is not employed then Equation (5.2) reduces to 

Kfo-G(F+l)/ocG(a(G)) (ß(G)) -0(G3) (5.3) 

Thus, serial fault simulation without fault dropping requires that each point in the entire test vol- 

ume depicted in Figure 3.2 be evaluated. Adding fault dropping decreases the amount of compu- 

tation required by the serial fault simulation technique. The amount of reduction is highly 

dependent on the structure of the DUT and the order of evaluation of the test pattern set. 

The aforementioned derivation assumes: (1) the DUT is a combinational circuit, (2) a compiled 

simulation approach is employed. Thus, the computational cost of serial compiled fault simulation 

is O (G3) . Likewise, the computational cost of serial event driven fault simulation is O (G2) [91, 

225, 226]. 

Serial fault simulation can be performed at any abstraction level. The preceding discussion 

assumed a gate level model. Using a higher-level model to perform fault simulation reduces the 

computational cost of the fault simulation. High-level fault simulation, however, requires the use 

of functional fault models versus low-level fault models such as the stuck at fault model. Func- 
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Figure 5.1.   Serial fault simulation algorithm with fault dropping. 
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tional fault models are used to represent fault conditions which are difficult to represent with a sin- 

gle low-level fault. A serial fault simulation technique which utilizes high-levels of abstraction and 

a functional fault model is presented in [77]. Conversely, a switch-level serial fault simulation tech- 

nique which uses a stuck-on/stuck-open fault model is described in [112]. 

Several techniques are employed to reduce the computational complexity of fault simulation. 

Exploiting architectural features of the host machine that is executing a fault simulation algorithm 

is one approach. Parallel fault simulation is the primary technique which uses this approach and is 

presented in Section 5.2. Another technique is to minimize the amount of simulation required 

between a fault-free and a faulty DUT simulation. The foundation for this approach is that a fault 

in the DUT typically affects only a small percentage of the gates in the circuit. Thus, the simulation 

of a fault-free circuit and a faulty circuit is almost identical. 

A significant savings in the number of gate evaluations required for fault simulation is achieved 

if a method can be developed that requires only the portion of the circuit which is affected by a 

fault to be reevaluated. Deductive, concurrent, and differential fault simulation techniques use this 

approach and are presented in Sections 5.3, 5.4 and, 5.5, respectively. Decreasing the number of 

gate evaluations required for a fault simulation is another speedup technique. Incorporating hier- 

archy into the DUT so that only a minimum number of elements are evaluated per fault simulation 

is one approach to reducing the fault simulation computational complexity. The exploitation of 

hierarchy in the DUT for efficient fault simulation is referred to as hierarchical fault simulation and 

is presented in Section 5.6. The other general method for reducing the amount of gate level evalu- 

ations is achieved by exploiting the inherent structure of the DUT and is referred to as Circuit 

Structure Based (CSB) fault simulation. There are a wide variety of CSB fault simulation tech- 

niques and an overview is provided in Section 5.7. An overview of fault simulation techniques for 

finite state machines which have an undefined initial state is included as Section 5.8. Additionally, 

a variety of fault simulators have been constructed that use a combination of the aforementioned 

methods. Fault simulation using a mixture of techniques is referred to as hybrid fault simulation 

and is described in detail in Section 5.9. An overview of existing fault simulation techniques which 

utilize VHDL models in some form is presented in Section 5.10. 

5.2. Parallel Fault Simulation 

Parallel fault simulation is designed to exploit the parallel structure of the host uniprocessor 

which is executing the fault simulation. One fundamental constraint of parallel fault simulation is 

that the DUT is simulated at the gate level and that the circuit is combinational logic. Each gate is 

assumed to have zero delay and all signal values are either a digital 1 or 0. Simulations which 

adhere to this set of assumptions are referred to as two-value zero-delay simulations. The increase 

in fault simulation efficiency for parallel fault simulation is achieved by noting how Boolean gates 

30- 



map to the host machine. For example, each two-input, one-output gate, such as an AND, OR, and 

XOR, typically maps to a single host machine instruction. The instruction typically performs the 

desired Boolean operation using W-bit input and output operands; that is, W-bit memory loca- 

tions. Only one bit of the W-bit machine word is necessary to evaluate a single logic gate. Con- 

ceptually, the execution of the instruction can be envisioned as evaluating W gates in parallel. 

Parallel fault simulation exploits the machine word width to evaluate W DUT in parallel. 

The DUT typically requires G Boolean machine instructions to be evaluated for the circuit to 

be completely simulated, assuming each gate in the DUT has two inputs and one output. Only one- 

bit of the W-bit wide word is used to simulate a single DUT. Thus, one can simulate W DUTs in 

parallel at the same computational cost as simulating a single DUT. Using a full host machine word 

in this fashion is referred to as parallel fault simulation [1,48,49,52,70, 82, 84,89,124,128,129, 

142,163,180, 184, 187,190, 201, 204, 211, 225, 226, 227, 229, 235]. 
There are two different accepted techniques for parallel fault simulation. The techniques differ 

in how the parallelism of the simulation is exploited. Parallel Pattern Single Fault Propagation 

(PPSFP) fault simulation evaluates DUTs with W different test patterns [1, 124, 187, 225, 226, 

227, 229]. The second parallel technique simulates W- 1 faulty machines and one good machine 

inparallel[l,48,49,52,70,82,84,89,128,129,142,156,163,180,184,190,201,204,211,235]. 

The good machine is used as a reference to determine if any of the W - 1 faults are detected. This 

type of parallel fault simulation is referred to as Single Pattern Multiple Fault Propagation 

(SPMFP). The PPSFP and SPMFP techniques are described in detail in Sections 5.2.1 and 5.2.2. 

Extensions to the general parallel fault simulation techniques are presented in Section 5.2.3. 

5.2.1.  Parallel Pattern Single Fault Simulation 

Before PPSFP fault simulation is performed a fault-free simulation of W identical DUTs is per- 

formed with a unique test pattern applied to each DUT. The detected status of the injected fault is 

determined by comparing the fault-free parallel outputs to the PPSFP output. A discrepancy 

between the fault-free output and the PPSFP output indicates the injected fault is detected. A 

graphical example of a sample circuit which is evaluated with four parallel bit patterns is included 

as Figure 5.2. The example DUT has three inputs with the following parallel patterns 1101, 1011, 

and 1000. A single s-a-0 fault represented by an x is applied to the output of an AND gate in 

Figure 5.2. There are two input patterns which activate the fault and produce an error; that is, the 

first and last pattern. The erroneous signal values are indicated by a '*' symbol in Figure 5.2. The 

two errors produced by the fault are propagated to the output and are detected. In some applications 

W can be as large as 256 [227]. 
The low-level details associated with the typical PPSFP technique are described next. The first 

step consists of simulating the fault-free circuit with W parallel patterns and storing each W-bit 
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Figure 5.2.   Parallel Pattern Single Fault Propagation (PPSFP) example. 

signal value. A single fault is injected at a signal location in the DUT. The erroneous value caused 

by the injected fault is propagated through the circuit by evaluating the gates attached to the erro- 

neous signal. Each gate is evaluated in response to an event; that is, the propagation of the errone- 

ous signal. If the output of a gate is erroneous then the gates which utilize the erroneous value as 

an input are scheduled for evaluation. The simulation of gates is complete when the evaluation list 

becomes empty. This type of fault simulation is referred to as event driven parallel pattern fault 

simulation [36,42, 52, 86, 103,225, 226, 227]. The evaluation list becomes empty when either the 

effect of the erroneous signal is masked and the fault is undetectable or the erroneous signal prop- 

agates to one or more outputs. The primary advantage of event driven parallel pattern fault simu- 

lation is that only the gates which have erroneous inputs are evaluated. Most faults affect only a 

small percentage of the gates in a DUT, thus event driven parallel fault simulation is more compu- 

tationally efficient than compiled parallel fault simulation. In fact, event driven fault simulation has 

a computational cost of O (G2) [91,225,226]. Typically, PPSFP simulation is implemented using 

event driven simulation. One exception to the general trend is a technique developed by Daehn [58] 

where a compiled PPSFP fault simulation approach is described. 

Additionally, the width of the parallel fault simulation can be dynamically increased as the 

number of undetected faults decreases. More machine words are added to the parallel pattern to 

increase the probability of detecting a single fault. The increase in machine words only adds a small 

amount of overhead while increasing the detection probability associated with a single fault simu- 
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lation. The increase in detection probability is needed when the majority of undetected faults are 

random pattern resistant; that is, hard to detect faults [58]. 

5.2.2.   Single Pattern Multiple Fault Simulation 
The second parallel technique simulates W- 1 faulty machines and one good machine in par- 

allel [1,48,49,52,70,82,84,89, 128, 129,142,156,163, 180, 184,190, 201, 204,211,235]. The 

good machine is used as a reference to determine if any of the W- 1 faults are detected. This type 

of parallel fault simulation is referred to as Single Pattern Multiple Fault Propagation (SPMFP). 
An example DUT with W = 4 is included as Figure 5.3 to further illustrate this concept. The sin- 

gle test pattern for the example circuit is 110. Likewise, the three faults for the example are: s-a- 

0 fault on each input of a two input AND gate and a s-a-1 fault on the input of an XOR gate. Each 
faulty DUT is assigned a unique bit position in the 4-bit machine word. The fault-free value is 

assigned to the lowest bit position. The two s-a-0 AND gate faults are assigned to the middle two 
bit positions. Likewise, the s-a-1 XOR fault is assigned to the uppermost bit position as indicated 

by Figure 5.3. The erroneous signals produced by the faulty machines are indicated by the '*' sym- 
bol in Figure 5.3. Thus, with this example three faulty DUTs are simulated simultaneously with a 

fault-free DUT. Each faulty DUT contains one fault from the fault list. Also, for the example 

depicted in Figure 5.3 all three faulty DUTs are detected because each faulty DUT produces an 

erroneous output. 

Single 
Pattern 

Fault Free 
Value 

Figure 5.3.   Single Pattern Multiple Fault Propagation (SPMFP) example. 
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Typically SPMFP simulation uses a compiled simulation approach which consists of evaluat- 

ing all G gates for each SPMFP fault simulation and is referred to as compiled parallel fault sim- 

ulation [24, 57, 107, 118, 225, 226, 235]. The generally accepted computational cost of compiled 

SPMFP fault simulation is on the order of O (G3) given that every gate is evaluated when a new 

input pattern is applied during fault simulation [80, 178, 225, 226]. Thus, the cost associated with 

compiled SPMFP fault simulation is essentially equivalent to compiled serial fault simulation. In 

fact, compiled parallel fault simulation is at most a factor of W more efficient than serial fault sim- 

ulation. Reducing the computational cost of an O (G3) algorithm by a constant results in an 

0(G3) computational cost. Thus, compiled SPMFP fault simulation provides an incremental 

improvement in fault simulation efficiency. 

Typically, event driven SPMFP is not employed for fault simulation. The complexity involved 

with simulated asynchronous circuits with event driven SPMFP can be quite large. The cause for 

the large overhead is directly related to parallel faults being evaluated on an asynchronous circuit. 

Specifically, each fault condition can cause different gates in different parts of the DUT to propa- 

gate vastly different errors. Each error condition can in theory cause the number of state transitions 

for each faulty DUT to reach a steady-state condition to be different. While each bit position in the 

computer word stores the faulty behavior for each individual faults the asynchronous feed back 

present in asynchronous finite state machines introduces the additional overhead. For example, the 

fault associated with the ith bit position can cause an error to be produced which propagates to a 

feed back path. Considered the case where the fault free DUT requires three state transitions for 

the asynchronous finite state machine to reach steady-state. For the sake of discussion, assume that 

the fault which causes the feedback path to be erroneous causes five state transitions for the asyn- 

chronous finite state machine to reach steady state value. The overhead occurs when the fourth and 

fifth state transition of the asynchronous machine is evaluated for the faulty machine. The extra 

two evaluations can cause the state of the other faulty DUTs to be set to an incorrect value. Specif- 

ically, one fault can cause the feedback loop for all faulty machines to be evaluated five times ver- 

sus three times. Extra book keeping is required to assure that only the number of cycles required 

to reach steady-state for each of the parallel faulty DUT is performed. The book keeping required 

for the general case of asynchronous DUTs is quite large. Due to the large overhead the event 

driven SPMFP fault simulation technique is typically not used to evaluate asynchronous finite state 

machines. 

5.2.3.   Extensions to Parallel Fault Simulation 

The two-value zero-delay combinational circuit parallel fault simulation algorithm which uses 

the stuck-at fault model has been extended in several ways. One major extension to parallel fault 

simulation is the ability to simulate sequential circuits [86, 123]. The basic concept is to have the 
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State of the sequential circuit always start at an unknown state except for the first input vector. A 

graphical depiction of the technique is included as Figure 5.4 to facilitate discussion. The first test 

pattern is given as / [0] , while the initial state is given as S [0] in Figure 5.4. The initial state for 

S [0] is known while all other state values are not known. Thus, S [0] is initialized to some value 

before the DUT is evaluated. The additional parallel test patterns are stored in vectors / [ 1] to 

/ [ W - 1 ] . The / [ 1 ] to / [ W - 1 ] input vectors represent the 1 to W - 1 input patterns which are 

applied sequentially to the physical DUT. The state vector associated with the sequential circuit 

after / [0] is evaluated is S [ 1 ] . The value of 5" [ 1 ] is known after the first evaluation of the DUT 

However, the S [ 2] to S [ W - 1 ] state vectors are not completely known after the first evaluation 

because the initial value of S [ 1] to S [ W- 1] are unknown. Three-value logic is employed to 

initialize S [ 1] through S [ W- 1] to an all X value. Additionally, three-value logic is used to sim- 

ulate the DUT for all W input vectors in parallel. Using three value logic; that is, 1, 0, and X for 

unknown value, one is able to potentially determine a portion of the next state of the machine for 

each input vector; that is, the 5 [2] to S [ W- 1] state vectors are partially specified after the first 

evaluation. Conceptually, this parallel sequential technique is attempting to evaluate the next state 

and output of a sequential machine for W test patterns simultaneously. The state information from 

the first input vector (5 [ 1 ]) is used on a second pass to fully determine the state of the sequential 

circuit for the second input vector (S [2]) and to more fully define the remaining partial state vec- 

tors associated with the other input vectors (S [3] to S [ W- 1] ). Additional passes are made until 

either all states in the simulation are resolved or the inserted fault is detected [86, 123]. 

Lee presents a PPSFP parallel fault simulation algorithm which utilizes three value logic and 

preprocessing of the DUT to exploit the properties inherent in the DUT to speed fault 

simulation [127]. Utilization of the inherent structure of the DUT to speed simulation is referred to 

as circuit structure based techniques and an overview is provided in Section 5.7. 

The use of fault models other than the stuck-at fault model is another extension to parallel fault 

simulation. The use of a delay fault model with the parallel fault simulation technique is described 

in [42, 118]. Hwang incorporates switch-level and gate-level fault models into a single parallel 

fault simulation algorithm in [103]. Conversely, Mahlstedt presents a parallel fault simulation tech- 

nique which incorporates the following fault models: (1) stuck-at, (2) function conversion, (3) 

bridging, and (4) transition [138]. The fault simulation methodology allows for single faults of any 

of the four fault models and multiple faults using any combination of the four models. Waicukauski 

presents a PPSFP technique which utilizes a transition (delay) fault model [229]. Another exten- 

sion of the parallel fault simulation algorithm allows for the DUT to contain tristate devices and 

bidirectional circuits [219]. 
One of the primary advantages of parallel fault simulation is the low-level of overhead associ- 

ated with the technique. Most other fault simulation techniques are far more complex than parallel 
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Figure 5.4.   Example sequential circuit evaluated via PPSFP fault simulation. 

fault simulation. There is a large amount of debate on the optimal fault simulation technique. Some 

experts argue that event driven PPSFP fault simulation on a large fast host machine is the best fault 

simulation algorithm [3]. Additionally, since parallel fault simulation occurs at the gate level the 

use of special purpose hardware logic accelerators is a viable option to improve the performance 

of parallel fault simulation. Hardware accelerators are typically used to speed simulation times dur- 

ing the design of the DUT. An overview of hardware accelerators is provided in Section 7. 

5.3. Deductive Fault Simulation 
The deductive fault simulation technique simulates the behavior of the good circuit for a given 

input vector and deduces the behavior of faulty circuits. The deductive process implies a theoretical 

capability that may or may not be realized due to memory limitations of the host processor. Given 

that the host processor has enough resources then two items are produced at the end of a deductive 

fault simulation; that is, the correct outputs and the list of faults which are detectable. The deduc- 

tive technique requires that a fault list be associated with each signal line. Each fault list contains 
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the set of equivalent faults which causes the signal associated with the fault list to be erroneous. A 

conceptual diagram depicting a two-input AND gate and the associated fault lists is included as 

Figure 5.5. The input fault lists for a given gate are evaluated using set theory operations to produce 

a gate output fault list. Unlike parallel fault simulation the deductive method is capable of handling 

combinational, synchronous, and asynchronous circuits. Similarly, the deductive technique relies 

on a two-value zero-delay gate level simulation that uses the stuck-at fault model [1, 19, 48, 82, 

84,117,128,129,142,163, 174, 180, 202, 208]. 

The deductive fault list propagation technique uses the concept of a controlling input. An input 

is defined to be controlling if changing the value of the input causes the output value of the gate to 

change. For example, assume that the AND gate depicted in Figure 5.5 has A = 0, B = 1, and 

C = 0. For this example A is a controlling input while B is a noncontrolling input. A hypothetical 

fault list associated with A is given as 

LA =  {avpvq0,rl} (5.4) 

where LA is the set of faults associated with A,ax is a s-a-1 fault on A, px, q0, and r, are stuck- 

at faults on other signals in the DUT which cause A to be erroneous. Likewise, a hypothetical fault 

list for B is 

L
B = {^o><7o'''o} 

The output fault list associated with C is calculated by evaluating 

(5.5) 

• •• 

• •• 

• •• 

Figure 5.5.   Deductive fault simulation diagram. 

37- 



Lc =  {cx}KJ(LA-LB)  =  {cvavpvrx} (5.6) 

A graphical depiction of the set subtraction operation is included as Figure 5.6 to illustrate the eval- 

uation of Equation (5.6). The output fault list equation is derived by noting that faults associated 

with the controlling input which are not contained in the noncontrolling input fault list propagate 

to the output of the gate. The stuck-at fault associated with the output of the gate that produces an 

error is also added to the output fault list. 

The general form of the fault list propagation equation is derived by extending the concepts 

presented in the previous example. The derivation begins by assuming that a gate has n inputs 

which can be divided into two mutually exclusive sets, controlling and noncontrolling inputs. The 

controlling input set is referred to as / while the noncontrolling input set is called Inc. 

The controlling input sets comprise all single controlling inputs and multiple controlling input sets 

associated with a given component. For example, a four input OR gate with a 0110 input pattern 

has one set of multiple controlling inputs; that is, when the 11 inputs are changed to a 00 value. The 

input pattern to the component defines which controlling input set is applicable for a given evalu- 

ation. It is possible for a propagated fault to appear on any one or multiple inputs to a component. 

For a fault to propagate through a component it must appear only on the inputs which are in the 

controlling input set. If the fault appears on any member of the noncontrolling input set then the 

fault cannot propagate. The general form of the output fault list calculation is given by 

w—? 

Figure 5.6.   Graphical depiction of set subtraction operation specified by Equation (5.6). 
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L0=  (Ö,JU 
ULJV(/„c = 0) 

'e/- (5.7) 

where O is the output line of the gate, 0 is the null set, and Os_a_x is the output stuck-at fault 

which produces an error [1,142,174]. 
The fault simulation begins by placing one stuck-at fault in each fault list associated with the 

input to the DUT. Each gate in the circuit is evaluated using an event driven approach. Essentially, 

a gate is scheduled to be evaluated when any inputs to the gate are set to some value. The gate eval- 

uation process consists of three steps: (1) calculate the output, (2) determine the set of controlling 

and noncontrolling inputs, and (3) create the output fault list. A fault simulation is complete when 

there are no gates scheduled to be evaluated for the DUT. 

The deductive fault simulation has two types of activity, true value changes and fault list 

changes. A true value change results in the recalculation of fault lists. However, it is possible for 

fault lists to be updated without a value change. A gate is scheduled for evaluation when either the 

true value or the fault list associated with the gate's inputs are updated. Under certain conditions, 

it is possible for a deductive simulation to calculate an inordinate number of fault list updates. This 

type of behavior typically occurs in asynchronous circuit simulation and is analogous to an asyn- 

chronous circuit failing to reach a steady-state value. When this fault list or state settling problem 

occurs, the deductive fault simulation takes an inordinate amount of simulation time [1, 174]. 

Deductive fault simulation can also utilize three-value logic to facilitate the simulation of cir- 

cuits which contain state and are not initialized to a predefined state. Under certain fault conditions, 

the state initialization circuitry for the DUT may fail to initialize the device to a predefined state. 

Three-value deductive simulation is approximate in nature since it may fail to report some detect- 

able faults as detected [1, 174]. The details associated with three-value deductive simulation are 

not presented here due to space limitations. 

A recent development by Smith attempts to increase the efficiency of deductive simulation by 

eliminating the evaluation of gates which do not affect the output of the DUT [202]. The basic idea 

is to start the simulation at the output of the DUT. The gate which drives the output is evaluated by 

using a recursive procedure. The evaluation procedure determines that the inputs to the current gate 

are unknown, locates the gates which set the input value, and recursively calls the gate evaluation 

procedure to evaluate the gates which set the input value. The recursion ends when the inputs to 

the DUT are reached. This type of simulation is referred to as demand driven simulation [202]. 

Only the gates which affect the output are evaluated with the backward evaluation. Once all of the 

inputs are known for a particular gate then the deductive simulation algorithm is performed. Spe- 

cifically, each gate is evaluated using the following three steps: (1) calculate the output, (2) deter- 
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mine the set of controlling and noncontrolling inputs, and (3) create the output fault list. The 

demand driven deductive simulation is used to evaluate synchronous circuits [202]. Additionally, 

the gates in the simulation are assumed to have a unit delay propagation. 

Another extension to the deductive fault simulation technique is the ability to simulate multiple 

faults simultaneously. For multiple fault simulation via the deductive technique to be feasible the 

multiple fault conditions must be represented in a minimal fashion. Utilizing codeword concepts 

to store multiple fault conditions is one approach. Each fault scenario associated with a DUT is rep- 

resented by a unique codeword. The codeword generation process begins by listing all single and 

multiple faults associated with a DUT. The list of faults is given as 

F=   {/o-/l fn-vfn-l} <5-8) 

where n is the number of total faults. Each fault is assigned a distinct codeword which represents 

a Boolean function. A v -bit codeword given as 

ck = ckck---ck (5-9) ft ft()     ft, ftv_, 

is used to represent a fault, where v > log (n) .A characteristic function OF is used to generate the 

Boolean functions which represent the codewords and is given as 

***{/*} (*0'*1' •••'•xv-l)   = So ' Si ' •••Sy-l 

Js^ = VfCft,. = ° (5.10) 
where") 

l$. = x.ifcki = 1 

To further illustrate the codeword generation process consider the case where F = f0,f,, ...,f7. 

The codeword for each member of the fault set is represented by Boolean functions and is given as 

*{/„} =¥i%c,{/,} =hhxo>->*{/,} = x2x\xo (5-n) 

The set operations associated with single fault deductive simulation are modified to propagate 

the codeword fault representation appropriately. Specifically, the deductive technique requires 

numerous set union and intersection operations to be performed. With the Boolean function code- 

word representation the set union and intersection operations are performed using Boolean opera- 

tors. The union operation is given as 

Likewise, the intersection operation is defined as 

*4nB = <V<^ (5-13) 

The Boolean function representation of the faults allows for the multiple fault scenario to be com- 

pactly represented and also allows the set intersection and union operations required by deductive 

fault simulation to be performed efficiently [208]. 
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The computational cost of deductive fault simulation is O (G2) [91, 178]. Thus, deductive 

fault simulation has a similar computational complexity as event driven PPSFP fault simulation. 

The deductive technique requires significantly more memory to execute than PPSFP fault simula- 
tion. The increase in memory is due to the fault lists associated with the signal lines. Additionally, 

since the fault lists grow in size dynamically it is very difficult to determine the amount of memory 
required for deductive fault simulation for a given DUT and input pattern. The updating of the fault 
lists also introduces computational overhead which is not present with parallel fault simulation. 
Deductive fault simulation, however, requires only one simulation per input vector to locate all 

detectable faults. Thus, the increase in overhead associated with calculating and updating the fault 

lists is offset by the single evaluation of an input pattern for the deductive technique. 
The primary limitation of deductive fault simulation is the large amount of overhead associated 

with performing the set operations which are used to propagate the fault list [1,174]. The cost asso- 

ciated with the set operations becomes higher as the number of inputs to a component increase. 

Specifically, components which have a large number of inputs require a large number of set oper- 

ations to be performed to propagate the component fault list. For this reason, the deductive tech- 

nique is rarely used at abstraction levels higher than the gate-level. As designs become more 
complex it is desirable to have the ability to perform fault simulation on a model which has certain 
elements described using a high-level functional model while other portions of the DUT are repre- 
sented at the gate level. The concurrent fault simulation method, described in the next section, is a 

more efficient mixed level fault simulation technique as compared to the deductive method. 

5.4. Concurrent Fault Simulation 
Concurrent fault simulation exploits the fact that the signal activity for a good DUT and a faulty 

DUT is virtually identical. Like deductive fault simulation, concurrent fault simulation is theoret- 
ically capable of locating all detectable faults with a single simulation. The capability of locating 
all detectable faults is dependent on the resources of the host computer executing the concurrent 

fault simulation. The concurrent technique can require a large amount of memory for a given sim- 

ulation. It is difficult to determine the amount of memory required a priori for a given DUT and 
test pattern. The concurrent technique supports the simulation of combinational, asynchronous, 

and synchronous circuits. The stuck-at fault model with two-value logic is used with the concurrent 
fault simulation technique. The primary advantage of concurrent fault simulation versus deductive 

is the support of models which incorporate mixed levels of abstraction [1,2,31,32, 39,40,46,55, 

82, 95, 125, 128, 129, 132, 174, 180, 186, 189, 195, 196, 200, 214, 216, 217]. 
The concurrent technique stores the active fault list in the form of faulty components and each 

component can be at a different level of abstraction. The concurrent technique is defined by how 

the fault list associated with each component is calculated and propagated. A simple three gate 
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example is included as Figure 5.7 to illustrate the concurrent fault simulation algorithm. The inputs 

to the example circuit are A = 0, B = 1,C= \,D = 1. The fault list for the AND gate with the 
A and B inputs is evaluated first. The concurrent fault simulation algorithm constructs the fault 

list associated with the component. For the upper AND gate in Figure 5.7 the fault list consists of 

A s-a-1 (Aj) and B s-a-0 (Z?0) . The Aj fault causes the AND gate to produce an erroneous 1 

output and is propagated to all components which use the output signal as an input. The second 
step of the concurrent fault simulation algorithm is the evaluation of the AND gate which has the 

C and D inputs. The fault list for this component is then constructed. The fault list consists of CQ 

and D0 both of which cause the output signal of the AND gate to be erroneous. For this reason, 

both faults are propagated with the output value associated with the lower AND gate in Figure 5.7. 

The outputs of the upper and lower AND gates are given as E and F in Figure 5.7. The third com- 
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Figure 5.7.   Concurrent fault simulation algorithm circuit example. 
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ponent evaluated in this example is the OR gate on the right of Figure 5.7. The fault list construc- 
tion for the OR gate begins by adding the input faults associated with the OR gate to the fault list. 

For this example the input faults are El and FQ with the F0 fault causing G to be erroneous. The 
propagated faults are then added to the OR gate fault list. For this example, there are three propa- 

gated faults; that is, A,, C0, and D0. The CQ and D0 faults cause the output signal G to be erro- 
neous. The concurrent fault simulation algorithm ends by indicating that FQ, CQ, and DQ are 

detected for the current input vector depicted in Figure 5.7. 
A generic example component with a hypothetical fault list is included as Figure 5.8 to further 

assist in illustrating the concurrent fault simulation technique. The example component is a two 
input AND gate which has a 01 input vector applied. The fault-free output for this gate is calcu- 

lated first and results in a logical 0 being produced. The fault list construction for the example gate 
in Figure 5.8 begins by adding the faulty gates which are associated with the input signals. For this 

particular example there are two faults which propagate with the inputs and are referenced as a 
and ß. Each fault in the DUT is given a unique label. The input component faults which could 
potentially cause the output of the component to be in error are then added to the fault list. For this 

particular example, the component is an AND gate which has a zero output. The set of input faults 
which could cause the output to change are s-a-1 faults. The two s-a-1 input faults are added to the 

Effects of faults 
from preceding 
components 

Local component 
faults 

Fault list 
associated 
with component 

Effects of faults which 
propagate to the next 
component 

Figure 5.8.   Concurrent fault simulation example diagram. 
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example fault list in Figure 5.8 as ax and bx. The next step associated with the fault list construc- 

tion is the calculation of the output of the component for each fault in the fault list. For the example 

fault list a and ax faults produce an erroneous output, while the ß and b{ faults produce the cor- 

rect output. Only the faults which produce a component output error are propagated with the cor- 

rect component signal value. 

Comparing the concurrent fault list generation process with the deductive fault list generation 

method one notices that the concurrent fault list contains more faults than the deductive technique. 

For the example depicted in Figure 5.8 fault b{ would not be included with the deductive method. 

The concurrent technique utilizes fault lists which are a superset of the deductive fault lists [174]. 

The concurrent technique can be conceptually viewed as simulating all possible faulty DUTs 

that could produce an error at each component. The addition of a new faulty DUT to the set of 

faulty DUTs occurs when the fault under consideration causes the signal value of the good DUT to 

diverge from the correct value. For example, fault ax in Figure 5.8 causes divergence. Each faulty 

DUT is uniquely identified by the unique fault id associated with the fault list of the DUT. A faulty 

DUT is dropped from the list of faulty DUTs to evaluate whenever the faulty DUT's signal value 

matches the correct signal value. When this condition occurs the faulty DUT is said to converge to 

the good DUT. The divergence and convergence of faults causes the fault list associated with each 

component to have a dynamic size. Thus, concurrent fault simulation requires dynamic memory 

allocation and deallocation. Additionally, the computational cost associated with concurrent sim- 

ulation is O (G2) [91, 178]. Like deductive fault simulation, the concurrent technique has a sig- 

nificant overhead associated with generating and propagating the fault list for each component. 

However, the concurrent technique locates all detectable faults on a single simulation which more 

than compensates for the fault list overhead. 

The concurrent method has also been extended to use fault models other than the stuck-at fault 

model. Specifically, Shih presents a transistor-level concurrent simulator [195, 196]. This simula- 

tor utilizes the stuck-on/off and the stuck-open fault models. 

5.5. Differential Fault Simulation 

Differential fault simulation is a technique to evaluate sequential circuits by extending the 

serial fault simulation technique. The differential technique uses two-value zero-delay concepts for 

the simulation of the DUT. A structural diagram of the differential method is included as Figure 5.9 

to assist in describing the technique. The basic idea is to simulate the DUT with the first input vec- 

tor / [0] , store the next state of the DUT Sff[l] , and store the fault-free outputs O [0] . A fault 

(/0) is then inserted into the DUT and the effect of the fault is evaluated using an event driven 

simulation approach. Thus, only the gates which are affected by the fault are re-simulated. If the 

inserted fault causes an output change then the fault is detected and the fault is dropped from the 
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Figure 5.9.   Differential fault simulation method depicting all structural components. 

fault list. If the fault is not detected then the next state vector of the faulty DUT is saved as 50 [ 1] . 

The current fault is removed and the next fault is inserted in the DUT. Using traditional event 

driven fault simulation would require that all erroneous signals be removed from the DUT before 

the next fault is inserted into the DUT. Removing the erroneous signals is referred to as signal res- 

toration. The differential fault simulation technique does not perform the restoration step. The 

basic philosophy is to order the fault list such that adjacent faults are likely to cause nearly identical 

erroneous behavior. Thus, eliminating the restoration step eliminates unneeded simulation. 

The evaluation of faults continues until all the faults in the fault list are evaluated. The next 

input vector is applied, the stored fault-free next state value calculated with the previous input vec- 

tor is restored, and the next state and correct output is calculated and stored. The fault list for this 

evaluation contains only the faults that were not detected by the previous input vector. For the gen- 

eral evaluation of the jth fault with the ith input the differential fault simulation method reads the 

S[i] state value and the / [ i] test pattern, inserts the fault f., performs the simulation, and stores 

the next state vector Sj[i+\] if the fault does not cause an output error. Thus, the evaluation of 

the fault list for the /'* test pattern entails restoring the next state vector Sj [i] from the previous 

input for the jth fault [51]. 
The differential fault simulation technique requires substantially less memory than concurrent 

fault simulation. The only additional information required for storage with the differential fault 
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Simulation technique is the next state vectors for the good DUT and all faults in the fault list. Con- 

versely, concurrent fault simulation must store the fault list for every component in the DUT. 

The order in which the fault list is evaluated affects the performance of the differential fault 

simulation technique. If the fault list is ordered such that the faults which cause nearly equivalent 

erroneous events to occur then the amount of events processed by the event driven simulation is 

minimized. Cheng explored various orderings to determine that a depth first fault list which starts 

with the outputs and proceeds to the inputs provides the best performance [51]. Likewise the com- 

putational complexity of differential fault simulation differs from event driven parallel fault simu- 

lation by a factor of W. Thus, differential fault simulation is of O (G2) complexity. 

The differential technique was extended by Vandris to fault simulate switch-level 

DUTs [220, 221]. A stuck-on/off fault model is employed for the switch-level fault simulator. Van- 

dris demonstrates that the differential method is faster than the concurrent method for switch-level 

DUTs. 

5.6. Hierarchical Fault Simulation 

One method for improving fault simulation efficiency is achieved by using the partitioning and 

hierarchy which is inherent in the design of a complex device. Typically, the first step in the design 

of a complex device is partitioning the problem into smaller more manageable subdevices. The 

interface to each subdevice is defined so that each device can be designed independently. In theory, 

each subdevice can be designed in parallel by an independent design team. During the design pro- 

cess each subdevice is represented by a certain level of design abstraction. Commonly accepted 

terms for levels of design abstraction are: (1) functional level, (2) register transfer level, (3) gate 

level, and (4) switch (transistor) level. The previous list of abstraction levels starts at the highest 

level of abstraction (functional models) and ends with the lowest level of abstraction (switch level 

models). In general, the higher the level of abstraction the smaller the amount of computational 

cost to simulate the model. However, increased level of abstraction decreases the amount of infor- 

mation provided by the simulation. 

One way for exploiting the inherent design structure is to simulate all subdevices, except for 

the one subdevice which contains the fault, at the highest level of design abstraction. Exploiting 

the hierarchy of the design in this fashion is referred to as hierarchical fault simulation [2, 47, 61, 

72, 73, 74, 87, 103, 137, 144, 147, 148, 159, 178, 179, 180, 185]. Conceptually, using the design 

hierarchy in this fashion is equivalent to reducing the height of the test volume depicted in 

Figure 3.2 by some amount. Thus, the computational cost of each fault simulation is theoretically 

reduced with hierarchical fault simulation. To illustrate the reduction in computation cost consider 

the case where the DUT consists of 10 subdevices. Assume the computational cost of simulating 

each of the individual high-level subdevice models is equivalent to the computational cost associ- 
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ated with 50 logic gates. Conversely, assume that each subdevice gate level model contains 1,000 

gates. Performing a single simulation of the DUT at the gate level has a computational cost of 10 

subdevices times the simulation of 1,000 logic gates or 10,000. However, if only one subdevice is 

simulated at the gate level while all other subdevices are simulated at the high-level then the com- 

putation cost of one simulation is 1,000 + 9(50) = 1,450. Thus, the simulation which uses hierarchy 

requires approximately 6.9 times less computational resources than the low-level simulation 

approach. For this simple example, the height of the test volume depicted in Figure 3.2 is reduced 

by a factor of 6.9. 
The previous example can be generalized for the case where a DUT contains n components. 

Suppose each component has a gate-level model and a functional model. The computational cost 

measured as the number of gate evaluations for the ith component for the gate and functional 

model is represented as g. and Ä., respectively. The total time required to simulate the gate-level 

model of the DUT is 

Tg=i8iT (5-14) 
i = l 

where T is the time required to evaluate a gate and Tg is the total time required to simulate the 

gate-level DUT model. The time required to evaluate the hierarchical fault simulation model where 

one component is represented by a gate-level model and all other components are represented by 

functional models is given as 

Th = gjT+ £ h,T (5.15) 
is {1,2, ...,n} V(/*/) 

where Th is the time required for hierarchical fault simulation of the jth component. 

The speed up observed by exploiting hierarchy in this fashion is calculated by dividing the time 

required for gate level evaluation by the time required for hierarchical evaluation. Performing this 

division provides 
71 

r 5>i 
5   = -* =  ÜÜ  (5.16) 

"      Th 
8j+ X hi 

is {1,2, ...,n}V(i*/) 

where 5 is the speed up factor associated with evaluating the /* component. The average speed 

up factor is desired and is calculated by using the average computational cost for evaluating the 

gate-level and functional-level components. Using the average computational cost per component 

in Equation (5.16) provides 
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c   _ ng 
"      g+(n-l)h 

(5.17) 

where g is the average computational cost for a gate-level component model and h is the average 

computational cost for a functional-level component model. For large n the speed up function can 

be approximated as 

S   =g- (5.18) 

Thus, for large n, the speed up with hierarchical fault simulation reaches the theoretical maximum 

speed up possible for exploiting hierarchy to increase the efficiency of fault simulation 

An example circuit which utilizes design hierarchy is included as Figure 5.10 to illustrate the 

nature of hierarchical fault simulation. The example contains subdevices which are represented at 

the gate level and one functional level subdevice model. A s-a-0 fault is applied to one of the inputs 

of the functional level subdevice as shown in Figure 5.10. The mixed level model is then simulated 

to determine if the inserted fault produces an error on the output of the DUT; that is, the output of 

the right most AND gate. 

There are a variety of techniques which can be used to insert faults in a hierarchical model and 

perform a simulation. Unfortunately, both parallel and deductive simulation cannot be extended for 

use with hierarchical models. Very few high-level models map to a specific host processor instruc- 

tion which is the fundamental construct utilized by the parallel fault simulation technique. Also, 

the set theory fault propagation technique used for deductive becomes cumbersome for compo- 

nents which have a large input space. The most common approach to performing fault simulation 

on a hierarchical model is via the concurrent fault simulation technique [2, 47, 61, 72, 73, 74, 87, 

103,137,147, 148,159, 178,179]. The concurrent fault simulation technique can use any level of 

abstraction to propagate the fault list for a given device. Concurrent fault simulation performed on 

DUT Output 

Figure 5.10.   Typical hierarchical model used for hierarchical fault simulation. 
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a hierarchical model is referred to as hierarchical concurrent fault simulation. Another technique 
to fault simulate a hierarchal model is to use event driven serial fault simulation [144]. Symbolic 

fault simulation which is performed by evaluating Ordered Binary Decision Diagrams (OBDDs) 
is another technique which is used to perform the hierarchical technique [99]. The theory associ- 

ated with OBDDs is presented in [37, 38]. Due to space limitations the theory associated with 
OBDDs is not described in this report. Concurrent fault simulation is preferred over serial fault 

simulation because concurrent fault simulation can compute all of the detectable faults for the DUT 

for a given input vector in a single simulation. Throughout the remainder of this report the term 
hierarchical fault simulation will be used to refer to hierarchical concurrent fault simulation since 

it is the most prevalent fault simulation technique for a hierarchical model. 
A hierarchical fault simulator facilitates the development of test strategies during all phases of 

the design cycle. Specifically, test patterns can be developed and evaluated for each subdevice at 
each level of design abstraction [2,61,72,144,178,179]. The test pattern generation strategy can 
be divided into two areas, detecting subdevice interconnect faults and detecting internal subdevice 

faults. The interconnect faults are commonly referred to as pin level faults since subdevices are 
often designed to be standalone ICs. Test patterns derived to detect pin-level faults are not as accu- 
rate as test patterns that are designed to detect all single stuck-at faults in a DUT [61]. In fact, 
Davidson has shown that pin-level faults are a subset of the total set of gate-level faults associated 

with a subdevice [61]. 
The ability to simulate internal subdevice faults at various levels of design abstractions typi- 

cally requires a fault model associated with each level of design abstraction. Hierarchical fault sim- 
ulation is capable of using fault models associated with any level of design abstraction. For 
example, the hierarchical fault simulator presented in [179] uses a functional fault model. In theory, 
hierarchical fault simulation can simultaneously use multiple fault models during a single simula- 

tion. The bookkeeping associated with the multiple fault model scenario is quite involved. One 
way to eliminate the bookkeeping is to have the faulty behavior of each device in the simulation 

use a fault library [47, 87, 159, 178, 179]. A fault library contains the correct and erroneous 
response of each device for all fault conditions associated with the device. Thus, the fault model 
for devices described at different levels of abstraction is essentially hidden with the use of fault 

libraries. Additionally, the use of fault libraries allows all devices in a simulation, regardless of the 

level of design abstraction, to be treated in an identical fashion. 
Not all hierarchical fault simulators support multiple levels of fault model abstraction. Some 

hierarchical fault simulators require that the subdevice be represented at either the gate or switch 

level before internal faults can be inserted into the subdevice [72,73,144,148]. Thus, this type of 

hierarchical fault simulator can only inject pin-level faults for subdevices which are represented at 

a high-level of abstraction such as functional or register transfer models. 
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One interesting feature which is possible with hierarchical fault simulation is dynamic model 
reconfiguration. Essentially, hierarchical fault simulation allows for a subdevice model at a higher 

level of abstraction to be replaced with a model of lower level of abstraction in a dynamic fashion. 

The replacement of one subdevice model with another in an automated fashion is referred to as 

dynamic model reconfiguration [148,178]. An example of dynamic hierarchical model reconfigu- 
ration is included as Figure 5.11 to assist in illustrating this concept. The example diagram, 

Figure 5.11a, depicts a device which is comprises two subdevices, subdevice A and subdevice B. 

The outputs of the subdevice A are the inputs to subdevice B. The fault simulation technique 

begins by propagating the effects of all of the faults from the first device to the second device. For 

discussion purposes assume that both subdevices depicted in Figure 5.1 la are represented by func- 

tional models and that gate-level models exist for each subdevice. The propagation simulation of 

the first device begins by determining if any input pin faults propagate to the output pins of the 

DUT. For the included example, the iA input is faulty and causes the output pin A2 of subdevice 

A to be erroneous. The A2 error causes the output pin ox of subdevice B to be erroneous. If output 
DUT errors are observed during fault simulation then the functional model for the evaluated sub- 
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device (subdevice A) is replaced with the gate-level model. The gate-level model is then fault sim- 

ulated via the concurrent method to evaluate the gate-level fault list of the subdevice. The model 

replacement is performed to determine the internal gate-level signal faults which are detected for 

the given test vector. An example of the dynamic model reconfiguration is included as 

Figure 5.11b. The gate-level model has one internal fault which produces the same error effect as 

the i4 fault. 

Hierarchical fault simulation requires less computational resources than concurrent fault sim- 

ulation. The computational cost of concurrent hierarchical fault simulation is O (Glogk (G)). The 

base of the log is defined as 

G = kl (5.19) 

where / is the number of levels in the DUT and k is a branching factor which conceptually repre- 

sents the width of the DUT [87, 158, 178]. Thus, hierarchical fault simulation requires less com- 

putational resources than all other previously mentioned fault simulation techniques. 

5.7. Circuit Structure Based Techniques 
The primary goal of circuit abstraction methods is to decrease the amount of gate evaluations 

required for a single fault simulation. The reduction of computational complexity is achieved by 

exploiting the inherent structure present in the DUT. All of the known Circuit Structure Based 

(CSB) methods are applied to gate-level or switch-level models using the stuck-at or stuck-on/off 

fault models. Most CSB techniques exploit the fact that a circuit which contains no fanout can be 

evaluated via fault simulation as a linear function of the number of gates in the DUT (0(G)) 

[18,68]. Circuits which contain no fanout branches are referred to as fanout free circuits. The start- 

ing point for most CSB methods is to analyze the DUT to locate all of the Fanout Free Regions 

(FFRs) and the FanOut Stems (FOSs). An example circuit is included as Figure 5.12 to illustrate 

FFR and FOS. 

The FOS in a circuit increases the fault simulation complexity significantly. The worst case 

complexity increase is on the order of O (G2). The circuit structure which provides the worst case 

complexity is a FOS which reconverges to the inputs of a single gate. This type of circuit structure 

is referred to as reconvergent fanout. An example of reconvergent fanout is provided in 

Figure 5.12. The key point to keep in mind is that only the portions of the circuit which are part of 

a reconvergent fanout region have the increase in complexity. Thus, if the FFR and FOS areas of 

the circuit are handled by separate fault simulation techniques the overall computational cost of 

simulating the entire DUT should decrease [16,18,26,90,98,113,126,127,134,135,136]. There 

are two basic approaches to exploiting the computational efficiency associated with FFR: (1) sim- 

ulate the FFR to determine if the effect of FFR faults propagate to a FOS or Primary Output (PO) 

and then simulate the stem region if necessary [16, 18, 98, 126, 127, 134, 135, 136] and (2) simu- 
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late the FOS regions first and simulate the FFR if and only if an error from the FOS region propa- 

gates to the input of a FFR [90, 113, 187]. 
The fault simulation method to evaluate the FOS region is performed using any of the afore- 

mentioned fault simulation techniques; that is, serial, parallel, deductive, concurrent, differential, 

and hierarchical may be used. The methods to simulate the FFR in O (G) time are limited to Crit- 

ical Path Tracing (CPT) [6, 7] and event driven serial fault simulation. The CPT algorithm is 

described in Section 5.7.1. The details associated with serial fault simulation are provided at the 

beginning of Section 5. An overview of other existing CSB techniques is included as Section 5.7.2. 

5.7.1.   Critical Path Tracing 

Critical path tracing consists of simulating the fault-free circuit and using the simulated signal 

values for tracing backwards from the Primary Outputs (POs) towards the Primary Inputs (Pis). 

The fault-free simulation is required in all fault simulations to determine the correct value of the 

POs. The correct PO values are then used to determine if injected faults are detected. Thus, the only 

additional processing step involved with CPT is the backward propagation phase. In subsequent 

material, a signal line / in the DUT for a given test pattern t has a critical value v if and only if t 

detects the fault / s-a-v [6, 7]. 
The first stage of the CPT algorithm is the fault-free simulation of the DUT. During the fault- 

free simulation the gate inputs which are sensitive are recorded. A gate input is considered sensitive 

if complementing the input causes the output of the gate to change value [6, 7]. For example, all 

inputs to an OR gate are sensitive if all inputs are 0. Conversely, if the output of an OR gate is 1 

then an input is sensitive if and only if all other inputs are 0. The second phase of the CPT involves 

tracing the sensitive inputs backwards from the POs to the Pis. The tracing process begins by deter- 
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mining if the gate which drives a PO has any sensitive inputs. If the output gate has one or more 
sensitive inputs then the gate which set the sensitive input is evaluated to determine if it contains 

any sensitive inputs. The backwards traversal through the circuit continues until a PI is reached or 
a gate is reached which does not contain any sensitive inputs. An example circuit which is evalu- 

ated by the CPT process is included as Figure 5.13. The gate inputs which are sensitive are marked 
by a • symbol. The back tracing begins at the output of gate 7 in Figure 5.13. The gate has a single 
sensitive input. Gate 6 which has two sensitive inputs sets the sensitive input to gate 8. Gates 1 and 

2 set the value of the two sensitive inputs to gate 6. Gate 2 has one sensitive input which is a PI. At 
this point the CPT algorithm ends. The critical path traced by the CPT algorithm is indicated by 

bold signal lines in Figure 5.13. Each critical signal line / which has a value v detects an / s-a-v 

fault. [6,7, 115]. 
The CPT technique locates all detectable stuck-at faults in the DUT if the DUT contains no 

reconvergent FOS. However, the CPT can be used with a DUT that contains reconvergent fanout 
gates. The CPT algorithm is considered to be an approximate algorithm for reconvergent fanout 

circuits because it does not locate all detectable faults in reconvergent fanout region. CPT does not 
detect the condition where multiple inputs of a reconvergent gate must be sensitized before a FOS 
fault is propagated to an input. A good illustration of a multiple sensitization requirement is 

included as Figure 5.14. In this example the output is set by a two-input OR gate whose fault-free 
input value is 11 (gate 4 in Figure 5.14). The inputs to gate 4 result from the FOS associated with 
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Figure 5.14.   Fanout stem example where CPT fails to locate a fanout stem fault. 

gate 1 reconverging. The outputs of gates 2 and 3 are controlled by the output of gate 1 so long as 

the other input to gates 2 and 3 are zero; that is, a 1 or 0 value at the output of gate 1 results in a 1 

or 0 value on the outputs of gates 2 and 3, respectively. For discussion purposes assume that the 

FOS has a s-a-0 fault which affects the input to gates 2 and 3. The FOS fault causes the output of 

the circuit to produce an erroneous 0 output. This scenario is an example of a multiple input sensi- 

tization requirement that CPT does not handle. Specifically, neither input to gate 4 is a controlling 

input. The backward propagation phase of the CPT algorithm will stop at the output of gate 4 

because gate 4 does not possess a controlling input. The inability to locate all faults in a reconver- 

gent fanout region causes fault coverage estimates obtained by CPT to be pessimistic in nature [6, 

7]. CPT is exact for all circuits which do not contain reconvergent fanout. Kitamura presents an 

exact critical path tracing technique that accounts for the multiple sensitized path scenario [115]. 

The downside to the exact CPT technique is that the computational cost is greater than 0(G). 

Several extensions have been made to the original CPT algorithm. One technique is to use 

event driven PPSFP simulation to speed the evaluation of the DUT [17, 133, 205]. Likewise, Dal- 

passo presents a CPT technique for switch level models in [56]. The technique locates critical tran- 

sistors based on the stuck-on/off fault model. A technique for using CPT on sequential 

synchronous circuits is described in [116,141]. Additionally, Ramakrishnan extends the efficiency 

of CPT by using a more detailed analysis of the signals. CPT uses two categories of signal line clas- 

sification, critical and noncritical. The Improved Critical Path Tracing (ICPT) uses six signal cat- 

egories to improve the performance of the basic CPT algorithm. The six categories are: 

c_inhibitors, nc_inhibitors, non-inhibitor, propagator, absorber, and blocker. The purpose of the 

additional categories is to assist in determining if the FFR will propagate faults when an input is 

changed. Thus, ICPT provides a means to determine if a FFR will propagate faults when an input 

change occurs in a more computationally efficient manner than CPT [175]. 
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5.7.2.   Other Circuit Structure Based Techniques 

There are several additional CSB methods which are used to exploit various circuit structure to 

minimize fault simulation computational cost. The additional CSB techniques can be divided into 

three categories: (1) determining fault sets that produce the same output error for a given input, (2) 

analysis of the FOS to determine error propagation behavior, and (3) determining the set of unde- 

tected nonlatent faults for a given input pattern. Each of these topics is described in the following 

paragraphs. 
One technique for reducing fault simulation is to perform an analysis of the DUT to determine 

sets of faults which produce the same DUT output error for a given input. One accepted technique 

for determining the fault set information is to use fault collapsing. Roth in [181] introduced the 

concept of fault collapsing with the D algorithm. Conversely, Chen introduces a technique to per- 

form fault collapsing on sequential synchronous DUTs [50]. Likewise, a Fault Information Tracing 

(FIT) technique that is used for fault simulation is presented in [116]. The FIT begins by simulating 

a fault-free DUT. Fault simulation is performed on sequential synchronous circuits by determining 

the faults which produce an error on a PO. The faults which produce an erroneous PO are deter- 

mined in a fashion similar to CPT The inputs to the gate which drives the PO are analyzed to deter- 

mine which inputs produce the desired error. The input errors are then analyzed in a similar fashion 

as the erroneous output of the next level of gates in the DUT. The fault tracing ends when either a 

PI is reached or there exists no gate input fault which produces the desired error [116]. The faults 

associated with the corruption of a single PO belong to a fault set. 

The second CSB method involves the analysis of the FOSs in the DUT. Specifically, if all gates 

attached to a FOS are unable to propagate a FOS error then there is no need to analyze the FFR 

attached to the FOS. One easy way to determine if the successor gates of a FOS can propagate an 

error is to analyze the set of inputs applied to each successor gate. Under certain inputs the error 

condition caused by the FOS will always be masked. Gates which exhibit this behavior are referred 

to as blocking gates [161]. For example, a two-input AND gate with a 00 input is a blocking gate 

for either input having a s-a-1 fault. A FOS which is attached to blocking gates prevents the prop- 

agation of a FOS signal error to a PO. Thus, a faulty FOS which is blocked is undetectable. All 

faults whose error must propagate through a blocked FOS to be detected are also blocked. Thus, 

the evaluation via fault simulation of the FFR which sets the FOS value is not required since all 

FFR faults are undetectable. The end result of the stem analysis is the location of DUT regions 

which contain undetectable, nonlatent faults for a given input vector. The undetectable faults are 

not evaluated by fault simulation for the current input vector. The stem analysis eliminates unnec- 

essary fault simulations and therefore increases the efficiency of evaluating a fault list via fault sim- 

ulation [161]. 
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Another way to improve simulation efficiency is to eliminate all nonlatent faults which are 
undetectable for a given input vector from the list of faults to simulate. For a FFR, all nonlatent 

faults on nonsensitive gate inputs produce an error but are undetectable for the current input vector. 

Conceptually, this type of fault analysis is the inverse of the CPT. Akers [15] and Rudnick [183] 

present algorithms to locate a subset of the nonlatent undetectable faults for a given DUT and input 

vector. Both techniques rely on locating nonsensitive gate inputs to build the undetected fault list. 

The set of undetected faults identified by both algorithms is a subset of the total undetected fault 

set associated with the current input vector. Fault simulation is required to determine which 

remaining faults in the fault list are detected by the given input. Additionally, the technique pre- 
sented in [15] is of linear computational complexity (0(G)) . 

5.8. State Initialization Simulation 

There exists a class of synchronous sequential circuits where a state reset is not feasible. Test- 
ing this class of synchronous sequential circuits requires one to assume that the initial state of the 

DUT is unspecified. The use of three-value logic to place all memory elements in an initial X state 
is one common solution to this problem. However, the use of three-value logic with all states ini- 
tialized to X results in overly pessimistic fault simulation results. Specifically, the fault coverage 
estimate of the uninitialized synchronous sequential circuit obtained using fault simulation with 
three-value logic is overly pessimistic [120, 121, 172]. There are several techniques available to 

increase the fault simulation accuracy. One technique entails comparing the output of the DUT 
after each input vector is applied. The multiple observation approach is referred to as Multiple Out- 

put Test (MOT). The use of MOT increases the coverage estimate but still results in a pessimistic 
coverage estimate [120, 121, 172]. The disadvantage of MOT is that it requires more output com- 
parisons which increases the cost associated with testing a device. 

Another approach to solve the state initialization problem is to use a multiple-pass simulation 
pass strategy. The first simulation pass uses traditional three-value logic with all state elements ini- 

tialized to X. All faults detected during this first pass are dropped from the fault list. The second 

pass entails using partially specified states as the initial state of the DUT. Fault simulation is per- 
formed for each partially specified state to determine which faults are detected. For example, con- 
sider the case where the device under test has two flip flops. A set of partially specified states is 
given as IX and OX. The third simulation pass involves complete state enumeration and evalua- 
tion. The evaluation of the complete state space can be performed in two ways: (1) enumerate all 

initial states in the DUT and perform fault simulation for each initial state, or (2) perform symbolic 
simulation. For a fault to be declared detected with the state enumeration approach the fault must 

be detected for all starting states [172]. The symbolic approach uses Ordered Binary Decision Dia- 
grams (OBDDs) to symbolically simulate the faulty finite state machine [53, 120, 121]. Symbolic 
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Simulation determines the output of the finite state machine for all possible starting states in a single 

simulation. The downside to symbolic simulation is that it is very memory intensive and as such 

only moderately sized circuits can be simulated with this approach [172]. The downside to the state 

enumeration approach is that state explosion can result in an inordinate number of initial states 

which results in an inordinate amount of simulation. Additionally, the low-level fault simulation 

technique employed by [120, 121,172] is three-value serial fault simulation. 

5.9. Hybrid Fault Simulation 
Hybrid fault simulation combines multiple fault simulation techniques into a single fault sim- 

ulator. The objective of hybrid fault simulation is to use the best features of each included tech- 

nique to increase fault simulation efficiency. For example, the PROOFS fault simulator combines 

attributes from differential, serial, and parallel fault simulation techniques for the evaluation of 

sequential synchronous circuits [160]. The PROOFS fault simulation begins by simulating each 

gate in the DUT in an event driven fashion and storing each signal value. The initial fault-free sim- 

ulation evaluates 32 good DUTs in parallel using the same input pattern. Also, the simulation uses 

four value logic; that is, 0, 1, X, and Z. The X and Z values represent unknown signal value and 

high impedance signal values, respectively. 

Faults are inserted into the model in parallel. Thus, the PROOFS fault simulator uses a SPMFP 

technique. The effects of the inserted faults are propagated using an event driven simulation. All 

detected faults are dropped from the fault list. The state associated with each undetected fault is 

saved for the simulation of the next input vector. Like differential fault simulation, PROOFS does 

not restore the simulation to fault-free signal values before simulating the next set of 32 faults in 

parallel. Instead, the set of faults previously simulated is removed, the new set of 32 faults is 

applied, the state of the 32 faulty DUTs is restored to the appropriate value, and the DUT is simu- 

lated using an event driven approach. Once the entire set of faults in the fault list is evaluated then 

the next input vector is applied to the DUT. The state of the DUT is updated to contain the fault- 

free state calculated from the previous input vector. The DUT is simulated and the fault-free next 

state is saved along with the fault-free PO. Fault simulation begins by grouping 32 faults together, 

restoring the state associated with each fault to the DUT, and performing the event driven simula- 

tion. The detected faults are dropped from the fault list while the next state is saved for each unde- 

tected fault. The selection of 32 faults, restoration of the state associated with each fault, the event 

driven simulation, and the dropping of detected faults and saving the state of the undetected faults 

is continued until all faults in the fault list are evaluated. The evaluation of the remaining test pat- 

terns proceeds in a similar fashion [160]. 

The ordering of the fault list has a significant impact on the performance of PROOFS. The 

number of events to evaluate is minimized when adjacent faults in the fault list are similar. The 
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ordering requirement for the fault list is a byproduct of using a differential fault simulation 

approach in PROOFS. Like differential fault simulation PROOFS obtains the best performance 

when the fault list is ordered in a depth first organization starting at the POs and working towards 

the Pis [160]. 

5.10. VHDL-Based Fault Simulation 

This section provides an overview on existing VHDL-based fault simulation techniques. There 

are essentially two categories of information provided in this overview: (1) techniques described 

in literature, and (2) commercial products. The following two subsections describe the literature 

and product surveys, respectively. 

5.10.1. Literature Survey 

Very little research has been focused on performing VHDL-based fault simulation. There are 

essentially seven different VHDL-based fault injection techniques described in the literature. Each 

of the seven techniques are described in the following paragraphs. 

The first VHDL fault simulation approach uses an event driven SPMFP parallel fault simula- 

tion technique [156]. The authors note that the mapping of gate level evaluations to single machine 

instructions is lost when high-level data structures are used to store signal values. Since VHDL sig- 

nals are represented by complex data structures during simulation, it is typically not possible to 

evaluate W parallel gates with a single host processor instruction. No data is presented to indicate 

the increase in efficiency which results in using VHDL SPMFP fault simulation versus VHDL 

serial fault simulation [156]. Additionally, this technique requires that the VHDL model be modi- 

fied in a significant fashion. For this technique to be used in a tool the modification of the VHDL 

model must be automated. It is unclear the amount of effort which is required for the automated 

model modification. 

The second approach adapts critical path tracing for use with VHDL gate-level models [194]. 

The major drawback of critical path tracing VHDL fault simulation is that a reverse propagation 

phase is required to determine the critical signal lines. The reverse propagation conceptually entails 

sending information from the outputs of the DUT to the inputs of the DUT; that is, information 

flows in the reverse direction as the normal gate level signal propagation [194]. Thus, all signal 

values in the DUT are bidirectional. The bidirectional information flow required of gate level sig- 

nals is undesirable since the addition of bidirectionality can be viewed as changing the basic struc- 

ture of the VHDL model. 

The third technique entails the use of a behavioral VHDL fault model to derive the fault list of 

interest. The faults are injected into the DUT by modifying the VHDL source code [224]. There 

are two fundamental problems with this approach: (1) the compile time associated with each 

injected fault produces an unacceptable amount of overhead for large circuits, and (2) no attempt 
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is made to justify the completeness of the VHDL functional fault model. Specifically, no attempt 

is made to connect physical faults to the corruption of high-level behavioral VHDL statements. For 

this reason it is difficult to use this technique to estimate the test coverage of the device for stuck- 

at fault models. 
The fourth approach involves translating the VHDL model to a C program which is then used 

to propagate the effect of a fault forwards and backwards through the DUT. A functional fault 

model is used to derive the fault list. The primary problem with this approach is that a VHDL sim- 

ulation is not used to simulate the injected fault [168, 169, 170]. 

During the design of the fifth technique a theoretical analysis is performed to determine the fun- 

damental fault injection methods for VHDL models. The authors state that there are three funda- 

mental techniques for performing VHDL-based fault simulation: (1) using bus resolution functions 

to corrupt the signal value and a fault insertion process to control when the bus resolution function 

injects a fault (referred to as saboteurs), (2) modifying the VHDL source code to introduce faults 

(referred to as mutation), and (3) using simulator specific features to change the value of signals 

and variables during a simulation [110,175]. Both the saboteur and mutation methods require the 

modification of VHDL source code and a recompile before fault simulation can occur. The recom- 

pile of the VHDL model is needed every time the location of the fault is moved. The overhead asso- 

ciated with the model recompilation is one major problem with this approach. The saboteur bus 

resolution function also introduces overhead. The amount of overhead caused by the bus resolution 

function is both simulator dependent and related to the amount of activity associated with the sig- 

nal. The simulator specific fault insertion techniques do not require recompilation or any additional 

simulation overhead. However, to corrupt signals/variables with simulator specific features typi- 

cally requires that the simulation of the DUT be halted, the desired fault condition is inserted, and 

the simulation restarted [110,175]. Thus, simulator specific fault insertion has overhead associated 

with stopping and restarting the simulation to insert a fault. The other problem with simulator- 

based fault insertion is that the fault insertion is tied to a specific VHDL simulator. 

The end result of the analysis is the development of the Multi-level Error/Fault Injection Sim- 

ulation TOol (MEFISTO) [110]. The objective of MEFISTO is to provide a capability to perform 

fault grading during the design process. All three of the aforementioned fault insertion methods are 

used by MEFISTO. A 32-bit processor VHDL model is evaluated in [110] to demonstrate the fea- 

sibility of MEFISTO. The example fault simulation is performed on both a behavioral and struc- 

tural VHDL model of a 32-bit microprocessor. 

The sixth VHDL-based fault simulation technique relies on using a fault injection process to 

control a Bus Resolution Function (BRF) which injects a fault in a given signal [64]. One key 

advantage of this technique is that it can be used at any level of design abstraction. The fault injec- 

tion technique allows for the fault simulation process to be readily automated so that the fault grad- 
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ing of a given DUT can be performed in a completely automated fashion. A second advantage of 

this approach is that the changes to the VHDL model required to insert the BRF and the controlling 

process can be performed in an automated fashion. The modified model is then recompiled once 

and any fault simulation where faults corrupt signals can then be performed. The presented fault 

simulation technique is simulator independent so any VHDL compliant simulator can be used. 

Another advantage is that the fault simulation technique allows for a mixed-level of modeling to 

exist in a given DUT. For example, consider the case where the DUT consists of 4 subcomponents. 

Assume that one subcomponent is represented by an algorithmic model which contains an approx- 

imate functional mapping but does not contain accurate timing information. The second compo- 

nent is modeled at a behavioral level and contains the correct functional mapping with approximate 

timing information, and the third component is a behavioral VHDL model before synthesis. The 

fourth component is represented by a structural VHDL model after synthesis. The presented fault 

simulation technique allows for all signal values in the example DUT to be corrupted by stuck-at 

faults starting at any time and lasting any duration. Thus, the technique presented by DeLong over- 

comes many of the limitations associated with the MEFISTO technique [64]. Specifically, the pre- 

sented technique is simulator independent, requires only one model modification and 

recompilation cycle, and any signal in the model can be corrupted with a fault at any time for any 

duration. 

The seventh VHDL fault simulation technique uses the concept of a super entity to insert faults 

into the VHDL model [44]. A graphical representation of a generic super entity is included as 

Figure 5.15 to facilitate discussion. A super entity is constructed by adding a data modulator to an 

existing VHDL entity. The purpose of the data modulator is to apply a mask vector to the output 

port of the super entity. The mask vector stores the type of fault corruption which is applied to the 

output port. The enable signal associated with the data modulator controls when the data modulator 

is active. The super entity approach allows for either permanent or transient faults to be inserted 

into the VHDL simulation [44]. 

The primary disadvantage with this technique is that the fault insertion technique only allows 

for the insertion of faults into the output port of a VHDL entity. Supporting only output port fault 

insertion is problematic because a designer may want to corrupt the internal signals contained in a 

given entity. If a given entity does not comprise low-level components then internal faults can only 

be inserted after the designer has redesigned the entity to incorporate low-level components. Hav- 

ing a fault simulation method which forces the designer to adhere to a given modeling methodol- 

ogy is undesirable. For example, consider the case where the designer wishes to procure 

commercially available models of components to speed the design process. If the commercial mod- 

els do not adhere to the required modeling methodology then the designer is unable to fault simu- 

late the design until the commercially available components are redesigned to adhere to the 
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Figure 5.15.   Super entity fault insertion model. 

required methodology. Having the designer rework off the shelf models adds time back to the 

design cycle. 

5.10.2. Commercially Available Products 

There are a number of vendors that provide commercially available products to perform fault 

injection on gate level circuits described by a VHDL model. Specifically, Attest, Ikos, Synopsis, 

and ZyCAD produce fault simulators which accept VHDL gate level models [20, 104, 207, 236]. 

All four of the commercial products perform fault simulation using the same approach, concurrent 

fault simulation. The main drawback to the commercial products is that the fault simulation is not 

performed using a VHDL simulator. Each product uses the VHDL model as an input file format 

which defines the DUT. After the VHDL model is read then fault simulation is performed by exe- 

cuting a concurrent fault simulation program which is written in a high-level language such as C. 

The basic problem with this approach is that a VHDL simulator is not used to perform the fault 

simulation. 
Another product that provides fault simulation information is VHDL Cover produced by 

TransEDA limited. VHDL Cover uses accepted software test paradigms to determine several soft- 

ware test coverage parameters. The basic idea is that a high-level VHDL model is essentially iden- 

tical in structure to the source code of a high-level language program. The test strategies used for 

software should therefore be directly transferable to high-level VHDL models. The test metrics 

measured by VHDL Cover are: (1) percentage of statements evaluated, (2) percentage of branches 
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evaluated, (3) percentage of paths exercises, (4) percentage of processes triggered, and (5) percent- 

age of state space evaluated. This type of information provides information on the completeness of 

the input set used to test the behavioral VHDL model. VHDL Cover also identifies redundant code 

which is never executed. The redundant code can then be removed from the model to eliminate 

unused hardware from the final design [212]. The main problem with this approach is that it is dif- 

ficult to determine the fault coverage of the DUT with the information provided by VHDL Cover. 

6. Parallel Processor Fault Simulation 

One technique for increasing the performance of fault simulation is to use multiple processors 

to increase the available computational resources. Using multiple processors in this fashion is 

referred to as parallel processor fault simulation. The implementation of a given parallel processor 

fault simulation technique is influenced by three primary factors: (1) the architecture of the parallel 

processor host, (2) the uniprocessor fault simulation technique that is to be mapped to the parallel 

processor, and (3) the type of DUT to be evaluated. The types of host parallel processors available 

for fault simulation range from massively parallel machines such as the connection machine to 

supercomputers such as the Cray X-MP to a group of engineering workstations such as a cluster of 

SPARC Workstations. All of the uniprocessor fault simulation techniques described in Section 5 

can, in theory, be ported to a parallel processor environment. The third attribute which affects the 

implementation is the type of DUT to be evaluated. Specifically, the level of design abstraction, the 

type of fault model used, and whether the DUT is combinational, synchronous sequential, or asyn- 

chronous sequential machines affect the implementation of the parallel processor fault simulator. 

This section provides an overview of existing parallel processor fault simulation techniques. 

The overview is organized based upon the architecture of the host parallel processor. For example, 

Section 6.1 provides an overview of parallel processor fault simulators which use vector based 

machines. Fault simulators which use massively parallel machines are described in Section 6.2. 

Likewise, fault simulators that require pipelined parallel processors are presented in Section 6.3. 

An overview of fault simulators that require loosely coupled parallel processor architectures is 

included in Section 6.4. Conversely, fault simulators that execute on a cluster of workstations are 
presented in Section 6.5. 

6.1. Vector-Based Approaches 

A vector machine is optimized to perform vector operations at a maximum rate. The optimiza- 

tion is performed by noting that the individual operations associated with a vector operation can be 

evaluated in an independent parallel fashion. For example, adding two n element arrays together 

1. SPARC is a registered trademark of SPARC International, Inc. 
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requires n independent additions which can be performed in parallel. Vector-based fault simulation 

exploits the parallelism provided by the vector machine. The exploitation of the parallelism is best 

illustrated by example. For discussion purposes assume that the DUT is a combinational gate-level 

circuit. The DUT can be thought of as containing m levels of gates. A conceptual diagram of the 

j'A level of a hypothetical combinational circuit is included as Figure 6.1. Since each gate can be 
evaluated independently then each gate in a given circuit level can be calculated in parallel. 

Bataineh presents a level oriented vector-based fault simulation approach which is simulated on a 
Cray Y-MP supercomputer. To fully exploit the Y-MP architecture, each 64-bit machine word is 
used to perform event driven SPMFP fault simulation. The 0 bit position stores the good value 

while bits 1-63 store the values associated with 63 faulty DUTs [25]. This technique is used to eval- 
uate two-value zero-delay combinational circuit models. A similar technique is presented in [152] 
to fault simulate two-value zero-delay synchronous sequential on a vector-based supercomputer. 

jth circuit level 

••• 

••• 

••• 

••• 
••• 

1 

Figure 6.1.   The jth level of a hypothetical combinational circuit. 
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Vector machines are also well suited to event driven PPSFP fault simulation. The one difficulty 

with vector-based PPSFP fault simulation is that the efficiency of the simulator drops after all the 

easy to detect faults have been detected. The remaining undetected faults are typically referred to 

as hard to detect faults or random pattern resistant faults. The reason for the drop in efficiency is 

that hard to detect faults have a high probability of either remaining latent or not propagating very 

far before the effect of the fault is masked. One way to overcome this limitation is to combine the 

SPMFP technique with the PPSFP technique to produce a Parallel Pattern Multiple Fault Propaga- 

tion (PPMFP) method. The objective of PPMFP is to increase the likelihood of detecting at least 

one hard to detect fault when evaluated with parallel input patterns. Thus, PPMFP evaluates par- 

allel patterns for multiple faulty circuits in one fault simulation pass. Each faulty circuit contains 

one single stuck-at fault. As the size of the fault list decreases with PPMFP the number of parallel 

patterns is decreased while the number of multiple faulty circuits is increased. A Cray X-MP [59] 

and a Fujitsu FACOM VP-200 [105, 106] supercomputer have been used to execute the PPMFP 
algorithm. 

6.2. Massively Parallel Processor Based Approaches 

A variety of approaches have been used to perform fault simulation on massively parallel pro- 

cessors. A massively parallel machine is defined to be a multiprocessor which contains more than 

100 Processing Elements (PEs). A connection machine with 65,536 PEs [153, 154] and an IBM 

RP3 with 512 PEs [154] have been used to perform fault simulation. One technique for performing 

massively parallel processor fault simulation is to map each gate in the DUT to a PE. To minimize 

communication overhead, the output of each gate is also assigned a PE to propagate the output sig- 

nal to the appropriate PEs. Each level of the circuit is evaluated in parallel. Likewise, each gate 

evaluation is performed using PPSFP fault simulation [153, 154, 155] 

Another optimization step is achieved by noting that the next set of parallel patterns can begin 

evaluation before the POs are calculated for the current input vector. Evaluations performed in this 

fashion are equivalent to changing the inputs after all the gates which are attached to the inputs are 

evaluated but before the POs are set. The aforementioned evaluation process is analogous to a pipe- 

line instruction execution architecture on a microprocessor. For this reason this type of input eval- 

uation is referred to as pipelined simulation. The objective of pipelining is to minimize the amount 

of time required to evaluate the DUT for multiple parallel patterns. If the DUT contains n circuit 

levels then the earliest that two parallel patterns can be evaluated without pipelining is the time 

required to evaluate In circuit levels. With pipelining, the number of level evaluations is typically 
less than In. 

The key attribute associated with this type of pipelined evaluation is determining the number 

of simulation level evaluations which must be performed to assure the correct output is produced, 
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at least momentarily, regardless of whether the input is changed. The minimum number of gate 

evaluations is determined by analyzing the structure of the DUT. The purpose of the analysis is to 

determine the minimum and maximum propagation paths through the DUT. For the levelized eval- 

uation approach the propagation path timing is calculated by simply counting the number of gates 

that an input signal must traverse before setting an output. The maximum and minimum delays are 

referred to as / and / . , respectively. The maximum time that it takes a signal to propagate 

from the output of one gate to the input of another gate is / .-/.. max      min 
. Thus, the next input pattern 

can be evaluated after I     - lmin + 1 gate levels are evaluated. The optimum amount of pipelining 

occurs when lmax = lmin [153, 154, 155]. A circuit example is included as Figure 6.2 to assist in 

illustrating this concept. The maximum gate delay for this circuit is five while the minimum delay 

is two. Thus, for this example lmax = 5 and lmin = 2. The next input pattern can be applied to 

this circuit after 4 gate levels have been evaluated. Using pipelining to evaluate this example circuit 

eliminates the time associated with one gate simulation for the evaluation of each test pattern 

applied after the first test pattern. The first test pattern evaluation requires the simulation time 

required for five gate levels. 
Another fault simulation approach is to assign a PE to each fault and one PE for the good cir- 

cuit. Each PE then performs PPSFP fault simulation. This approach requires that the parallel 

machine contain F + 1 PEs for all faults to be evaluated in a single pass. The result of each PE 

which performs PPSFP is collected and the detected faults are then dropped from the fault list. 

Only the PEs which contain undetected faults perform PPSFP fault simulation for the next set of 

rx)r>pn>^E>^D- 

/      = 5 max 

I   ■   = 2 min 

Figure 6.2.   Example circuit depicting maximum and minimum delay calculation. 
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input patterns. The process is continued until all input vectors are evaluated or all faults are 

detected [153, 155, 162]. 

6.3. Pipelined Parallel Processor Techniques 
The use of pipelining is one technique which is employed to map a uniprocessor fault simula- 

tion algorithm to a parallel processor environment. There are two fundamental techniques 

employed to incorporate pipelining into a fault simulation technique: (1) exploit the structure of 

the DUT, and (2) pipeline the sequential steps associated with a uniprocessor fault simulation algo- 

rithm. The following paragraphs describe the two fundamental approaches. 

The first pipelining method described involves exploiting the structure of the DUT. The first 

step involved is the analysis of the DUT to create a Task Precedence Graph (TPG). A TPG deter- 

mines the set of components in the DUT which can be evaluated independently. Specifically, each 

task maps to a given level of the DUT. Figure 6.1 provides an example DUT circuit level. Once the 

TPG is created then each task is assigned to a specific PE. Thus, the depth of the pipeline is deter- 

mined by the number of tasks in the TPG. The fault simulation strategy employed at each stage of 

the pipeline for the technique presented in [165] is SPMFP parallel fault simulation. However, Li 

maps the DUT into a cellular automata paradigm to determine the independent levels of the pipe- 

line [131]. The fault simulation is performed on each stage of the pipeline using a PPSFP fault sim- 

ulation approach [131]. 

The second pipelining technique involves mapping the sequential steps associated with each 

component simulation to a sequence of steps that fits the pipeline paradigm. Typically, this cate- 

gory of pipelined fault simulation is applicable to uniprocessor fault simulation techniques which 

require a large number of processing steps to evaluate a component. Deductive and concurrent fault 

simulation are two uniprocessor techniques that require a large number of steps to evaluate a single 

component. Specifically, both concurrent and deductive use computationally intensive mecha- 

nisms to propagate the fault list for a given component. For example, in concurrent fault list prop- 

agation the following five major steps are performed: (1) calculate the correct component output, 

(2) add the propagated input fault list to the component fault list, (3) add the component faults 

which may produce an incorrect output to the fault list, (4) prune the fault list to contain only faults 

which produce a component output error, and (5) produce the output signal which contains the cor- 

rect output and pruned component fault list. At a minimum, the concurrent fault list algorithm can 

use a 5-stage pipeline to optimize the fault simulation of each component. A technique developed 

by Stein uses a 5-stage pipelined approach [206]. Further low-level analysis of a given concurrent 

fault simulator implementation can result in a longer pipeline. Bose [31] and Agrawal [8] present 

pipelined concurrent fault simulation which uses a 14 and 12 stage pipeline, respectively. 
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6.4. Distributed Parallel Processors 
A parallel processor architecture is considered distributed if there is a large time penalty asso- 

ciated with interprocessor communication. The design of a fault simulator which executes on a dis- 

tributed parallel processor should minimize the amount of interprocessor communication to 

maximize fault simulation performance. One approach is to partition the DUT into clusters of com- 

ponents. Once the inputs are determined for each cluster then fault simulation can be performed on 

the cluster independent of all other clusters. One partitioning strategy is to group m levels of the 

DUT together to form circuit regions. Each circuit region is mutually exclusive of all other circuit 

regions. Each circuit region is then divided into p clusters each containing approximately the same 

number of components. The cluster partitioning is performed such that each cluster's inputs do not 

depend on the output of any other cluster in a circuit region. Thus, each cluster associated with a 

circuit region can be evaluated independently and in parallel. The structure of the DUT has a sig- 

nificant impact on the ability to produce independent partitions which can be fault simulated in par- 

allel. 
One way to achieve independent partitioning is to analyze the DUT and locate regions in the 

circuit that possess no interconnection. Conceptually, regions which are not interconnected are 

equivalent to sets that are mutually exclusive. Huisman presents a mechanism for determining 

mutually exclusive regions in the DUT based on a concept referred to as downcone 

independence [100, 101, 102]. A downcone is a circuit region which contains multiple inputs 

which are evaluated to produce one or more outputs. A downcone also contains no feedback loops. 

The technique presented in [100,101,102] partitions the circuit based on fan-in cones which drive 

latches. The DUT is partitioned in an automated fashion during a preprocessing step. Levendel 

[130] also presents a partitioning technique to divide the DUT into independent segments which 

span the depth of the DUT. Unfortunately, very little information is provided in [130] to describe 

how the partitioning process is performed. Conversely, the technique presented in [76] partitions 

the circuit by hand. Each cluster is then fault simulated using either the concurrent fault simulation 

technique [76, 100, 101, 102, 150] or the event driven SPMFP parallel fault simulation technique 

[130]. 
Another approach for parallelization of fault simulation is based on partitioning the fault list. 

Each fault list portion is assigned to a unique processor and a uniprocessor fault simulation algo- 

rithm is executed independently on each processor. Goel [81] and Motohara [149] present a tech- 

nique which partitions the fault list among a pool of PEs. Each PE performs concurrent fault 

simulation to determine the fault detection status of each fault associated with a PE's fault list. 

One of the key attributes for maintaining optimum efficiency on a distributed parallel machine 

is assuring that each processor is busy doing useful work for the entire fault simulation. Assuring 

that all processors are not idle is referred to as load balancing. The optimum technique used for 
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load balancing consists of two parts: (1) a static assignment of clusters to PEs, and (2) a dynamic 

reassignment of clusters if a PE becomes idle during the fault simulation. The static assignment is 

done prior to fault simulation, while the dynamic reconfiguration is done during fault simulation. 

The distributed processor fault simulation technique described in [100,101] supports the static and 

dynamic features of optimum load balancing. Conversely, the technique presented by Ghosh relies 

on static partitioning to achieve load balancing [76]. 

6.5. Parallel Workstation Based Approaches 
One technique for increasing the efficiency of fault simulation is to use a cluster of worksta- 

tions to perform the fault simulation is parallel. This type of fault simulation is referred to as par- 

allel workstation fault simulation. The use of parallel workstations in this fashion also fits the 

distributed parallel processor paradigm. However, the parallel workstation approach is placed in a 

separate category because most engineering design environments already contain a large number 

of workstations. For this reason, it is possible to implement a parallel fault simulation technique 

without having to procure an expensive multiprocessing platform; that is, simply use the existing 

cluster of workstations. 

There are two basic strategies used to parallelize a uniprocessor fault simulation algorithm on 

a cluster of workstations. The first approach involves partitioning the fault list into n groups and 

running a uniprocessor fault simulation on n workstations independently. Markas presents an 

event driven SPMFP fault simulation approach which partitions the fault list into n groups [139]. 

Each workstation is given a fault list partition to simulate independently of all other workstations. 

The partitioning of the fault list has a dramatic effect on the performance of the fault simulation. 

Three different static partitioning schemes were explored in [139] including random, depth first, 

and topological cluster. The random approach randomly sampled the fault list without replacement 

to generate n fault partitions. The depth first technique orders the fault list from PO to PI. The 

ordered fault list is then partitioned into n fault lists. The clustered technique divides the fault list 

into topological clusters, and this technique provides the best performance. Also, a dynamic recon- 

figuration technique is used to move faults from a busy workstation to an idle workstation [139]. 

The second approach used to parallelize a uniprocessor fault simulation involves exploiting the 

hierarchy of the DUT. A technique for simulating multiple representations of a DUT in parallel 

using hierarchical concurrent fault simulation is given in [66]. The basic approach is to create mul- 

tiple representations of the DUT with different subdevices represented at different levels of 

abstraction. Specifically, a DUT model which incorporates a gate-level model for only one subde- 

vice with all other subdevices represented at a high-level of abstraction is created. Each DUT 

model is evaluated to determine if the faults contained in the gate-level portion of the DUT are 

detected by the set of input vectors. Each unique representation is given an identification number. 
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A total of n unique representations are evaluated in parallel on n workstations. Whenever a work- 

station completes the fault simulation for a given representation the results are saved and another 

unevaluated DUT representation is selected for evaluation. This process is continued until all DUT 

representations are evaluated for all input vectors [66]. 

7. Hardware Accelerator Fault Simulation 

Another technique for reducing the fault simulation time associated with a given DUT is to 

incorporate a hardware accelerator into the fault simulator. A hardware accelerator is a specialized 

device whose purpose is to reduce the simulation time of a component model during the design 

process. A hardware accelerator is typically attached to an engineering workstation that is used to 

design the DUT. The simulation of a device on the hardware accelerator begins by compiling the 

device model into a format that is appropriate for the hardware accelerator. The compiled model is 

then transferred to the hardware accelerator. The hardware accelerator simulates the model and 

transfers results back to the workstation. Often, the time required to compile a model in conjunc- 

tion with the transfer time of data to and from the hardware accelerator is greater than the time 

required for the hardware accelerator to simulate the model. In fact, the compile and transfer time 

can often negate any simulation speedup provided by the hardware accelerator [146]. 

The internal structure of a hardware accelerator typically contains multiple PEs with local 

memory and a high speed global interconnect mechanism. For example, the Simulation Processor 

(SP) contains 64 PEs each of which can simulate 64 K of primitives. Each PE is connected to a 

crossbar switch. The SP hardware accelerator is an event driven gate-level simulation engine [97]. 

The Yorktown Simulation Engine (YSE) is another hardware accelerator which contains 25 PEs 

which are interconnected by a crossbar switch. Each PE can simulate up to 8 K of gates. The YSE 

is a gate-level simulator [65, 166, 167]. The Microprogrammable Accelerator for Rapid Simula- 

tions (MARS) is another accelerator which can contain up to 256 clusters. Each MARS cluster can 

contain up to 16 PEs. The PEs in a cluster are connected via a 16 X 16 crossbar switch. Each cluster 

is connected to a binary 8-cube global interconnection network. Additionally, MARS is an event 

driven gate and transistor level simulator [9]. More detail on the historical evolution of hardware 

fault simulators and the low-level details associated with the internal structure of the hardware sim- 

ulators is provided in [30]. Likewise, an overview of the use of hardware accelerators in the design 

process along with a list of commercially available hardware simulators is described in [146]. 

Hardware accelerators can be used with any fault simulation technique that maps directly to 

some type of hardware model. Unfortunately concurrent, deductive, and hierarchical fault simula- 

tion techniques all require a fault list propagation technique that does not map directly to a static 

hardware model. Typically, hardware accelerators are used to speed the evaluation of event driven 

parallel fault simulation [3]. 
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8. Fault Grading Techniques 

Fault simulation of the DUT provides information concerning the quality of the test pattern set 

for a given DUT. Specifically, simulating the entire fault set for a given test pattern set determines 

which faults are detected by the test pattern set and which are not detected. The fault detection data 

is then used to determine the percentage of detected faults when the test pattern set is applied to the 

DUT. The percentage of detected faults is referred to as fault coverage and the process of estimat- 

ing fault coverage is referred to as fault grading. 

There are several different accepted fault grading methods. An overview of the different fault 

grading techniques is provided in this section. One feature which is commonly used during the 

fault grading process is the concept of fault equivalence in the DUT. An overview of fault equiva- 

lence as it relates to fault grading is provided in Section 8.1. The various fault grading techniques 

are then introduced. Traditional fault grading techniques are described in Section 8.2. Likewise, 

the fault grading technique used by the United States Department Of Defense (DOD) is defined in 

MIL-STD 883 and an overview of this method is provided in Section 8.3. The relationship between 

fault coverage and test quality is described in Section 8.4. Finally, nontraditional fault grading 

methods which do not use traditional fault simulation data are described in Section 8.5. 

8.1. Fault Equivalence 

One technique which is commonly used to reduce the amount of fault simulation required is to 

exploit the fault equivalence of the DUT. The type of fault equivalence commonly used in fault 

grading is referred to as device-level fault equivalence. The set of device-level equivalent faults is 

derived from the fault model used to construct the fault list and the structure of the device itself. 

The concept of device-level fault equivalency is best illustrated by example. As a starting point 

consider an n -input AND gate as the device and the stuck-at fault model is used to evaluate the 

DUT. The fault list for the n -input AND consists of two stuck-at faults for each input and two 

stuck-at faults for the output. For this particular example, a single stuck-at 0 fault on the output of 

the AND gate is equivalent to a single stuck-at 0 fault on any input to the AND gate. For this reason 

the stuck-at 0 output fault on the AND gate can be eliminated from the fault list. Further analysis 

can be performed for each type of device to determine the equivalent faults. The information pro- 

vided using device-level fault equivalency can be used during the fault grading process. An over- 

view of the traditional fault grading approach is provided in the next subsection. 

8.2. Traditional Fault Grading Approaches 

The traditional fault grading methodology can be divided into two broad categories, exhaustive 

fault simulation techniques and fault sampling with statistical estimation of fault coverage 

approaches. The exhaustive method requires that all faults in the fault list of the DUT be evaluated 
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using fault simulation/fault equivalency techniques. The fault coverage is estimated from the 

knowledge of the complete fault set. 
The derivation for the coverage estimate begins by noting that fault coverage is a percentage 

which is given as 

C = Per(D,F) (8.1) 

where D is the fault detection event, F is the fault space of the DUT, and PerQ determines the 

percentage of detected faults over the entire fault space F. The fault grading derivation continues 

by showing how the detection event associated with the individual faults contribute to C. The fol- 

lowing expression is used to continue the derivation 
n 

Per(D,F)  = ^ £ P (D,.) (8-2) 
i= 1 

where P (£>•) is the detection probability of the ith fault in the fault space F and n is the number 

of faults in the fault space. 
The results provided by the fault simulation/fault equivalency analysis measures the detection 

probabilities for each fault in the fault list. The measured data is binomial in nature; that is, a 

detected fault has a conditional probability of 1.0 and an undetected fault has conditional probabil- 

ity of 0.0. Stating this concept in mathematical terms 

P(D)  = |  lVdetected (8.3) 
' I OVundetected 

With the knowledge gained from the fault simulation/fault equivalence analysis Equation (8.2) can 

be simplified to 

C = Per(D,F)  = - Y P (D.)  =^ (8.4) 
n ^ n 

i = 

where nd is the number of detected faults. 
The exhaustive fault grading process described previously ignores one fundamental issue 

which causes fault grading to be problematic for some DUT. Specifically, the occurrence of redun- 

dant faults was ignored during the previous derivation. A redundant fault is a fault that can not be 

detected if the entire input space of the DUT is evaluated. Typically, a redundant fault is caused 

when the input or output of a redundant gate in the DUT is faulty. The most common reason to 

leave redundant gates in a circuit is to eliminate static and dynamic hazards from the circuit [140]. 

For a designer to claim that a fault is redundant then the designer must show that the fault can not 

produce an erroneous output for any input applied to the DUT. Typically, a designer uses an 

DATPG program which exhaustively searches the input space of the DUT to prove that a given 

fault is redundant. 
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The only modification required to incorporate redundant faults in the aforementioned fault 

grading process is redefining n in Equation (8.4). Essentially, the total fault set is reduced by elim- 

inating the redundant faults. The removal of redundant faults is described mathematically as 

n  =  nT~n redundant (8-5) 

where nT is the number of faults contained in the complete fault list and nredundant is the number 

of redundant faults contained in the total fault list. Equation (8.4) is then evaluated on the reduced 

fault set which contains no redundant faults. 

The second fault grading technique is the use of random sampling to obtain a statistical esti- 

mate of the fault coverage associated with an input vector set for a given DUT. The basic premise 

is that evaluating the entire fault set to estimate the fault coverage is too costly in time and com- 

puter resources. Thus, a small random sample of faults is selected and evaluated. A coverage point 

estimate is calculated from the fault simulation results. One typical point estimate is given as 

nd 
C = — (8.6) 

n 

where C is the point estimate, n is the number of samples, and nd is the number of sampled faults 

which are detected. Traditional statistical analysis is performed to calculate a confidence interval 

at a given confidence level [75]. Either a double-sided [11] or single-sided [232] confidence inter- 

val is calculated. The double-sided confidence interval calculation is derived from the central limit 

theorem. Conversely, the single-sided confidence interval is derived from a Bernoulli distribution 

which is approximated by a Poisson distribution. The end result of the confidence interval calcula- 

tion is a statistically valid estimate of fault coverage which is obtained in a computationally effi- 

cient fashion. 

Typically, a reduced fault list is used when statistical fault grading is employed. The reduced 

fault list contains only one fault from each device-level equivalent fault class. Also, all redundant 

faults are eliminated from the reduced fault set. Sampling the reduced fault set in a random fashion 

provides the best representative sample of the fault population. Thus, using the reduced fault set 

provides the most accurate statistical fault coverage estimate. 

8.3. MIL-STD883D 

A group of fault grading techniques are described in MIL-STD 883D method 5012 [145]. The 

first step in the MIL-STD fault grading process is partitioning the DUT into m regions. Each region 

falls in one of two categories, Gate-logic (G-logic) partitions and Block-logic (B-logic) partitions. 

A G-logic partition consists entirely of logic gate components which are connected by signal lines. 

Conversely, a B-logic partition contains functional elements such as RAM, ROM, and ALU. The 

fault model associated with G-logic is the single stuck-at fault model. B-logic partitions, on the 

other hand, use a designer specified test strategy. The designer is responsible for supplying the 
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faults necessary to evaluate the test strategy. The sufficiency of the selected test strategy and the 

faults used to evaluate the test strategy must be justified by the designer. 

The fault coverage estimation process begins by constructing the fault list for each DUT parti- 

tion. The fault list for each G-block is constructed by selecting one fault from each device-level 

equivalent fault class. MIL-STD 883D provides a list of representative faults for each equivalence 

class associated with a specific logic gate type as shown in Table 8.1. The fault list associated with 

each B-logic partition is constructed to fully exercise the test algorithm selected by the designer. 
Table 8.1.  Representative faults for the equivalence classes [145]. 

Stuck-at Faults Type of logic line in logic model 

s-a-1 Every input of a multiple-input AND or NAND gate 

s-a-0 Every input of multiple-input OR or NOR gate 

s-a-0, s-a-1 Every input of multiple-input components that are not AND, 
OR, NAND, or NOR gate 

s-a-0, s-a-1 Every logic line that is a fan-out origin 

s-a-0, s-a-1 Every logic line that is a primary output 

The 

techniqi 

Section 

in the fa 

fault grading pro< 

les. The first meth 

8.2. The fault cov 

ult list. The collec 

;ess associated with each DUT block is accomplished by one of three 

od is analogous to the exhaustive fault grading technique described in 

erage is estimated by first determining the detection status of each fault 

ted fault detection data is then used to evaluate 

c = (8.7) 

where n is the number of faults contained in the fault list and nd is the number of detected faults. A 

fault associated with a partition is considered to be detected if the fault causes an error to occur at 

some output or test point on the DUT. Equation (8.7) is used to estimate coverage for both G- 

blocks and B-blocks. 
The designer is allowed to eliminate undetectable (redundant) faults from the fault list. The 

burden of proof is on the designer to demonstrate that a given fault does not produce a primary out- 

put error for all possible input vectors applied to the DUT before the fault can be categorized as 

undetectable. 
The second acceptable fault grading process is to randomly sample n faults from the fault list. 

The designer specifies and justifies the distribution used to generate the set of sampled faults. The 
n selected faults are then evaluated via fault simulation. A point estimate for the fault coverage 

estimate is calculated by evaluating 
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nd c = — 
n 

(8.8) 

A confidence interval based on a 95% confidence level is calculated. MIL-STD 883D provides a 

table containing the penalty parameter r and is duplicated in this document as Table 8.2. The pen- 

alty parameter is subtracted from the coverage point estimate to determine the lower side of the 

coverage confidence interval. Performing this operation provides 

n. 
Clow r 

n 
(8.9) 

where r is a penalty parameter and Clow is the lower side of the confidence interval. The lower 

side of the confidence interval is used as the coverage estimate since it provides the most conser- 

vative estimate at a 95% confidence level. 

Table 8.2.  Fault coverage lower bound sample size using procedure 2. 

r n 

0.010 6,860 

0.015 3,070 

0.020 1,740 

0.030 790 

0.040 450 

0.050 290 

The third accepted technique for fault grading technique is to first determine the minimum cov- 

erage value which is acceptable. The designer then refers to a table to determine the minimum 

number of fault simulations to show that the lower side of a confidence interval with 95% confi- 

dence is achieved assuming that all simulated faults are detected. The table is reproduced in this 

document and is included as Table 8.3. For example, if a 90% coverage estimate is desired then a 

minimum of 29 randomly selected faults must be simulated and must be detected. 

Once each G-block and B-block is fault graded by one of the three methods then the overall 

fault coverage estimate for the DUT is calculated. The calculation begins by estimating the tran- 

sistor fraction associated with each G-logic and B-logic partition. The coverage estimate for the 

DUT is obtained by summing the product of the transistor fraction and the coverage estimate for 

each partition. Performing this operation provides 

C =  I CtTt (8.10) 
i= l 
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Table 8.3.  Fault coverage lower bound sample size using procedure 3. 

F n 

50.0% 5 

55.0% 6 

60.0% 6 

65.0% 7 

70.0% 9 

75.0% 11 

76.0% 11 

77.0% 12 

78.0% 13 

79.0% 13 

80.0% 14 

81.0% 15 

82.0% 16 

83.0% 17 

84.0% 18 

85.0% 19 

86.0% 20 

87.0% 22 

88.0% 24 

89.0% 26 

90.0% 29 

91.0% 32 

92.0% 36 

93.0% 42 

94.0% 49 

95.0% 59 

96.0% 74 

97.0% 99 

98.0% 149 

99.0% 299 
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where T{ is the per unit transistor area associated with the i'h partition and C is the coverage esti- 

mate associated with the ith partition. 

8.4. Test Quality as a Function of Test Coverage 

The objective of fault grading is to determine the quality of the test pattern set to detect all mod- 

eled faults in the DUT. The fault grading process provides a quantitative method to measure test 

pattern quality. The estimated fault coverage value also provides a qualitative measure on the qual- 

ity of the manufactured DUT. The ultimate goal of any testing strategy is to increase the quality of 

the manufactured DUT by eliminating defective components. The quality of the DUT is a function 

of two parameters: (1) fault coverage and (2) manufacturing yield. Both parameters are probabili- 

ties. The fault coverage estimate obtained via fault grading is converted from a percentage to a 

probability for the test quality calculations. Three assumptions are required for the percentages to 

probability conversion: (1) the fault model used represents all faults that the DUT can encounter, 

(2) all faults in the fault list are equally likely to occur, and (3) the fault occurrence events are inde- 

pendent. 

The yield of a manufacturing process is the probability of a given DUT being fault-free for a 

given part population. A yield of 1.00 indicates that the manufacturing process is perfect and no 

defective parts are manufactured. Likewise a yield of 0.1 indicates one part in ten is fault-free. The 

yield of a manufacturing process can be estimated either through statistical estimation or analytical 

modeling [111]. Yield and test coverage are used as parameters to determine test quality. Concep- 

tually, this relationship is given as 

Z, = F(C,W (8.11) 

where £' is the quality of the manufactured device, C is test coverage, and <|> is the yield. A sim- 

plistic quality measure is derived by noting that for a defective part to be sent to the field requires 

that a faulty part must erroneously pass the testing methodology [222]. The probability of a faulty 

part being manufactured is given as 

P(F)  =  (l-4>) (8.12) 

The probability of not detecting a faulty device is 

P(U\F)  = \-P{D\F)  = 1-C (8.13) 

where P (U\F) is the conditional probability of not detecting a fault given there is a fault in the 

DUT, and P (D\F) is the conditional probability of detecting a fault given that there is a fault in 

the DUT. The probability of having a faulty component not be detected is 

(1-0(1-»  = 1-S (8.14) 

Rearranging Equation (8.14) and solving for ^ provides 

£ = l-(l-0(l-4>) (8.15) 
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There are numerous quality models which use fault coverage and yield as parameters [12, 54, 

191, 210, 222, 233]. The analytical calculation of quality has one major problem which limits its 

usefulness; that is, the yield of the manufacturing process must be known. Unfortunately, it is dif- 

ficult if not impossible to obtain yield information from a manufacturer. Companies typically con- 

sider the manufacturing yield information to be proprietary in nature. If the yield of a 

manufacturing process is known then it is relatively straight forward to determine the actual prof- 

itability of the manufacturing process. Having individuals external from a company know the prof- 

itability of the company's manufacturing process places a company in a bad position. Thus, the 

quality models can be used as an metric by the manufacturer of the DUT. For this reason, quality 

models have found limited use. 

8.5. Other Nontraditional Fault Grading Techniques 
All of the fault simulation techniques described in the previous sections describe exact meth- 

ods; that is, fault simulation techniques which present exact results. While fault simulation can be 

used to estimate various DUT criteria, this report focuses on using fault simulation to estimate cov- 

erage. The coverage estimate obtained via exact fault simulation is accurate so long as the fault 

model used represents all faults that the DUT can encounter. Given the three criteria are satisfied 

then coverage estimation via exact fault simulation can be considered an accurate estimate of the 

probability that a fault will be detected in the DUT for the given input test pattern set. 

The downside of exact fault simulation is the high computational cost associated with evaluat- 

ing complex DUTs. One technique for overcoming this limitation is to use probabilistic fault eval- 

uation techniques. The end goal of probabilistic methods is to provide an approximate coverage 

estimate which provides the desired level of accuracy at a significantly lower computational cost 

than exact fault simulation. Approximate fault simulation techniques use probabilistic fault detec- 

tion techniques. 
Probabilistic fault detection uses the concepts of controllability and observability to estimate 

the probability of detecting a stuck-at fault on a signal line. The controllability of a signal / repre- 

sents the ability of a given input vector to set / to a value v. Conversely, the observability of a sig- 

nal / represents the ability of a PO to determine that / is set to a value v [85]. Probabilistic fault 

detection places a probability on the controllability and observability of each signal line contained 

in the DUT. For sake of discussion the one and zero controllability probability of line I is referred 

to as C (/)   and C0(l) , respectively. Likewise the one and zero observability probability is 

denoted by Ox(l) and 0O(Z). 
The probability of detecting a s-a-1 fault on signal line / is obtained by taking the product of 

the zero controllability and observability probabilities of /. Performing this operation provides 

DX{1) = C0(/)O0(/) (8-16) 
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where Dx (I) is the probability of detection for a s-a-1 fault on I. Likewise, the probability of 

detecting a s-a-0 fault on / is obtained by taking the product of the one controllability and observ- 

ability probabilities associated with /. This product operation provides 

D0(l) = q (/)<?!(/) (8.17) 

where DQ (I) is the probability of detection of a s-a-0 fault on / [34, 108, 109]. 

The observability and controllability probabilities are obtained by simulating the fault-free cir- 

cuit for each input vector and gathering data concerning the signal activity of the DUT. The signal 

activity along with the structure of the DUT is used to calculate a probability estimate for the con- 

trollability and observability of each signal line [108, 109]. The detectability of stuck-at faults on 

each signal line is then determined by evaluating Equation (8.16) and Equation (8.17) 

The coverage estimation begins by using the approximate fault detection probabilities given by 

Equation (8.16) and Equation (8.17) to calculate the probability of detecting a given fault over the 

entire input vector set /. The derivation of the single fault detection begins by calculating the prob- 

ability of undetection of a fault for n input vectors. If the probability of detecting a single fault is 

given as x then the probability of undetection after n input vectors are applied is 

U(n)  =  (\-x)n (8.18) 

where U(n) is the probability of undetection. Equation (8.18) is derived by assuming that the 

probability of detection is independent for each input vector. The independence assumption is valid 

for combinational circuits but is probably questionable for sequential circuits. The probability of 

detection for a given fault is given as 

X(n)  = l-U(n)  = 1- (1-JC)" (8.19) 

where X (n) represents the probability of detecting a given fault over a given input vector set [109, 

108]. The fault coverage estimation is obtained by summing the individual detection probabilities 

and dividing by the total number of faults contained in the fault list. Performing this summation 

and division operation provides 

m 

C=-Tx.(n) (8.20) 
m"    ' 

i = l 

where m is the number of faults in the fault list. Jain notes that the estimate provided by 

Equation (8.20) is biased in nature and presents a technique for eliminating the bias [109]. The 

unbiased coverage estimate equation is very similar in form to Equation (8.20). 

The major limitation of probabilistic techniques is that the coverage estimate is approximate in 

nature and it is difficult to determine the accuracy of the estimate. The only technique available for 

gaging the accuracy of approximate coverage estimates based on probabilistic fault detection is to 

estimate the fault coverage via exact methods. Specifically, fault simulation must be performed to 
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estimate the fault coverage. Several example circuits are evaluated via probabilistic and exact 

methods in [109]. The results of this study indicate that probabilistic coverage estimates are within 

four percent of coverage estimates obtained via exact fault simulation. However, it is difficult to 

conclude that all DUTs which are evaluated using probabilistic fault detection will provide a cov- 

erage estimate that is accurate to ±4%. In fact, it is impossible to say how accurate probabilistic 

fault detection will be in general. 
Another use for probabilistic fault detection is as a guide to select faults which have a high 

probability of being detected for evaluation via fault simulation. The purpose of combining 

approximate and exact fault simulation techniques is to minimize the amount of fault simulations 

for faults which have a low probability of being detected for the current input vector. This com- 

bined technique is computationally efficient since approximate fault evaluation has a significantly 

lower computational cost than exact fault simulation. 
The combined approximate and exact fault evaluation process begins by simulating the fault- 

free DUT to generate the required signal activity data. The estimate on the controllability and 

observability probability is then calculated. The detection probability of each fault in the fault list 

is calculated next. All faults which have a detection probability greater than a threshold value such 

as 0.5 are grouped together for fault simulation. The primary advantage of the combined method 

is that the approximate fault detection mechanism has a low computational cost. The approximate 

information can then be used to eliminate from consideration the faults which have a low proba- 

bility of being detected. A significant savings in fault simulation resources is obtained by eliminat- 

ing the faults from the fault list which have a low probability of detection. This combined technique 

is used to evaluate an Ultra Large Scale Integrated (ULSI) circuit in [75]. Additionally, a hardware 

accelerator is employed to speed the fault simulation of the ULSI DUT. 

9. Test Pattern Generation Overview 

The generation of the test pattern set which is used to evaluate the DUT is referred to as Test 

Pattern Generation (TPG). There are numerous TPG techniques, however, the techniques can be 

grouped into three major categories: (1) Deterministic Automatic Test Pattern Generation 

(DATPG), (2) Random Automatic Test Pattern Generation (RATPG), and (3) Manual Test Pattern 

Generation (MTPG). A graphical depiction of the three major TPG categories and several subcat- 

egories is included as Figure 9.1. The fault grading process is impacted by the structure of the DUT, 

the fault model employed, and the size and quality of the test pattern set. The structure of the DUT 

is determined by the function that the DUT performs, the design for test strategy employed by the 

designer, and the technology employed to implement the DUT. The fault model employed to rep- 

resent DUT faults is either selected by the designer or is specified by the end user of the DUT. The 

selection of the input vectors which test the DUT is a topic which has received a large amount of 
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Figure 9.1.   Types of test pattern generation techniques 

attention. The survey of ATPG is included as Section 9.1 while the RATPG survey is presented in 

Section 9.2. The Combined TPG technique is described in Section 9.3. Likewise, the MTPG sur- 

vey is presented in Section 9.4. 

The TPG survey does not exhaustively cover the literature. Space and time constraints prevent 

an exhaustive overview of the TPG state-of-the-art. However, the TPG overview is complete in the 

sense that all major techniques of TPG are presented in this report. Numerous incremental 

improvements to major TPG techniques are not described in this report. 

9.1. Automatic Test Pattern Generation 

ATPG techniques determine a test pattern and provide a set of faults detected by the test pattern. 

The set of detected faults determined by ATPG typically is not complete. Specifically, fault simu- 

lation is required to determine the complete set of faults detected by an ATPG produced test pat- 

tern. ATPG methods can be delineated into three categories: (1) path sensitized methods, (2) 

symbolic, and (3) fault independent techniques. The following three subsections describe the var- 

ious types of ATPG techniques. 

9.1.1.   Path Sensitization Methods 

The primary purpose of an ATPG algorithm is to determine an input vector which detects a 

given fault in a DUT. In general, the path sensitized ATPG process can be envisioned as a three 

step algorithm: (1) activate the fault by setting the inputs of an internal component to the appropri- 

ate values, (2) justify the internal signal values to primary inputs, and (3) propagate the error caused 

by the activated fault to one or more primary outputs. The accomplishment of each one of these 

steps varies based on the implementation of a particular path sensitized ATPG algorithm. Concep- 
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tually, an ATPG algorithm is performing a search of the input space of the DUT to locate an input 
vector which detects a particular fault. Most, if not all, path sensitized ATPG methods are complete 
in the sense that they will prove through an exhaustive search that either no input vector exists that 

detects a given fault, or the technique will locate an input vector that detects the fault. The input 

space to be explored grows exponentially as the number of inputs to the DUT are increased. The 

time required to exhaustively search a large input space for a DUT can become excessive for even 
the most efficient ATPG algorithm. For this reason, most path sensitized ATPG algorithms allow 

the designer to specify the amount of input space evaluation which is allowed before the path sen- 

sitized ATPG algorithm declares a fault hard to detect and stops the input search process. A brief 

overview of the evolution of path sensitized ATPG algorithms is described next. 
One of the first ATPG techniques was developed by Roth and is referred to as the D-algorithm 

[181]. The D-algorithm is based upon the notion of a 5 valued logic which is referred to by Roth 

as D calculus. The five values used by D calculus are 0, 1, D, D, and x. The D and D symbols 
represent signal values which are erroneously 0 and 1, respectively. The D-algorithm first attempts 
to justify the inputs to the component that activates the fault. The current status of the justification 
process is represented in the D-algorithm by the J frontier. Once the inputs to the faulty component 

are justified then the effect of the fault is propagated to one or more primary outputs. The current 
status of the propagation is stored and is referred to as the D frontier. Once the entire J frontier 
reaches the primary inputs and the D frontier contains one primary output with either a D or D 

value then the D-algorithm has found a test pattern that detects the fault of interest. 
The justify and propagate steps are sufficient for all DUTs that do not contain reconvergent 

fanout. If the DUT does not contain reconvergent fanout then each input of the DUT can be justi- 
fied independent of all other inputs. However, when a DUT contains reconvergent fanout then the 
inputs to the DUT cannot be justified independently. When reconvergent fanout is present then the 
justification and propagation steps require a decision process. Whenever there are multiple alter- 
natives to justifying a signal or propagating an error then the decision process selects an alternative 
to try. If the selected alternative is not successful then the decision process selects another untried 

alternative and the process is repeated. The selection of an alternative and the evaluation process 
is continued until either an alternative is found which provides the desired solution or all alterna- 

tives are considered. The retry mechanism is referred to as backtracking. The D-algorithm uses a 
form of backtracking to handle reconvergent fanout. Additionally, the D-algorithm is complete; 

that is, the D-algorithm will exhaustively search the input space of the DUT to determine that either 

no test pattern exists to detect the fault or locate a specific test pattern which detects the fault. 
One of the problems associated with the D-algorithm is how the internal signal search space is 

explored. For example, consider the case where an error has k possible propagation paths. The D- 

algorithm will search all 2k - 1 different combinations of paths before it can determine that the 
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error cannot propagate to an output. The major drawback to the D-algorithm search process is the 

amount of computer resources required to evaluate all error propagation permutations to demon- 

strate that the error will not reach a primary output. Figure 9.2 is included to illustrate this concept. 

The example diagram depicts a D-frontier which contains k elements. The D-algorithm attempts 

to propagate each of the elements in the D-frontier individually. If the individual element propaga- 

tion is unsuccessful then the D-algorithm attempts to propagate all combinations of two elements 

in the D-frontier. This search process is continued until one element of the D-frontier propagates 

to an output or until all possible 2k - 1 propagation permutations are evaluated. 

The 9-V algorithm extends the D-algorithm by using nine signal values versus five to minimize 

the number of evaluations required to determine if error propagation is possible[45]. The nine sig- 

nal values used by the 9-V algorithm are: 0,1, D, D, 0/D, 0/D, \ID, 1/D, and x. The dual value 

signals such as 0/D represent that a signal can have either a correct value or an erroneous value. 

For the signal value 0/D the correct value is 0 while the erroneous value is D. The additional four 

signal values are used to assist the decision process to minimize the number of evaluations. For 

example, if an error has k possible propagation paths then the 9-V algorithm evaluates only k pos- 

sible paths where the D-algorithm requires the evaluation of 2k - 1 permutations of error propa- 

gation paths. The additional signal information associated with the 9-V algorithm allows the search 

process to be performed in a much more efficient fashion than the D-algorithm. Conceptually, all 

D Frontier 
with k 
elements 

Primary 
Outputs 

Figure 9.2.   D algorithm example demonstrating the D frontier. 
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possible permutations of the D-frontier for a single error propagation path depicted in Figure 9.2 

are evaluated with a single pass. The additional signal information associated with the 9-V algo- 

rithm allows the certain permutations of the D-frontier which cannot propagate the error to an out- 

put to be eliminated from consideration. 

Conceptually, the D-algorithm and 9-V search process explores all possible internal signal val- 

ues in the attempt to determine an input vector which detects a given fault. The search process 

entails making decisions about internal signal values which then must be propagated and justified. 

A more intuitive search process entails making decisions about possible DUT input values. If the 

decision process is moved to the circuit inputs then much of the overhead associated with making 

decisions concerning internal signal values can be eliminated. The Path Oriented Decision Making 

(PODEM) algorithm performs decisions on the primary inputs. The propagation of the D frontier 

in PODEM is performed in a similar fashion as the D-algorithm. The justification process for 

PODEM uses a direct search based on sensitizing paths from the primary input to the internal signal 

which requires justification. The path sensitization process is performed in a recursive fashion 

starting with the internal signal which must be justified. The gate which sets the signal to be justi- 

fied is then evaluated to determine a possible input value required to produce the desired justified 

signal value. The selected input to the gate is then evaluated in a recursive fashion until a primary 

input is reached. The first primary input value is set to the appropriate value and the DUT is then 

simulated to determine if the test generation process is complete. If the test generation is not com- 

plete then the propagation of the D frontier is performed next. A signal is selected for justification 

to propagate the D frontier and another recursive backtrace operation is performed to set another 

primary input value. The DUT is then simulated with the two primary input values. The process of 

backtracing to set a primary input and simulating the DUT with the set of defined primary inputs 

is repeated until the test generation process is completed. The test generation process is complete 

when the D frontier contains a primary output signal which has either a D or D value [79, 83]. 

PODEM has several advantages over the D-algorithm. Specifically, PODEM does not need: (1) 

a consistency check since conflicts can never occur, (2) a J frontier since there are no values which 

require justification, and (3) backward implication because values are only propagated forward [1]. 

Another key advantage of PODEM is the implicit state restoration process. In the D-algorithm 

when a decision is made and is found to be incorrect then the state of the DUT must be restored to 

the value which existed before the decision was made. For large circuits the state restoration gen- 

erates a large amount of overhead. With PODEM, when an incorrect decision is made the incorrect 

input is removed and a new input value is applied. The DUT is then simulated. Thus, PODEM 

requires no explicit state restoration because the internal signal values of the DUT are determined 

by the simulation. Additionally, the decision space explored by PODEM is stored in the form of a 

decision tree. The decision tree is used as a bookkeeping measure to keep track of the input space 
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that has been explored by PODEM. Thus, the decision tree allows all input vectors which could 

detect the fault to be explored. 

The Fanout-Oriented TPG (FAN) algorithm [69] extends the PODEM algorithm with two 

improvements: (1) backtracing in FAN may stop at internal lines, and (2) a multiple backtracing 

strategy is used to attempt to satisfy a set of signal objectives simultaneously [1]. The internal lines 

where FAN stops the backtracing process are the outputs of a FFR and are referred to as head lines. 

A final postprocessing step is employed with FAN to determine the values on the primary inputs 

of the FFR based on the values of the head lines through a reverse implication process. The multi- 

ple backtracing process speeds the input search process by minimizing, in general, the number of 

backtracing passes. 

The Structure-Oriented Cost-Reducing Automatic TESt pattern generation system 

(SOCRATES) improves upon the FAN algorithm in several ways [188]. The first enhancement 

deals with increasing the effectiveness of the FAN multiple backtracing method. Heuristics derived 

from the structure of the DUT are used to improve the efficiency of the multiple backtracing pro- 

cess by eliminating needless backtracing attempts. The second improvement is achieved through 

using an implication procedure to determine the logic value of as many signals as possible. The 

third improvement involves using a unique sensitization procedure when the D frontier contains a 

single signal. 

9.1.2.   Fault Independent Methods 

The key feature of fault independent methods is that the algorithm is not attempting to detect a 

specific fault but to determine a large fault set detected by the generated test pattern. Most fault 

independent methods require a gate-level model and begin by selecting an output value for the 

DUT. Each output value of the DUT is selected to satisfy a path sensitization criteria. Specifically, 

the gate which sets the output value must have a controlling input. An input is considered to be 

controlling if changing the input causes the output of the component to change value. For example, 

a two input AND gate with a 10 input pattern has the 0 input as a controlling input. The fault inde- 

pendent methods search for input combinations on gates which cause long sensitized paths. The 

sensitized path is determined by working backwards through the DUT and noting the continuous 

chain of controlling inputs. Changing the value of any of the controlling inputs on the continuous 

chain causes a DUT output error [13, 28, 209, 230]. 

The fault independent methods share several characteristics with Circuit Structure Based 

(CSB) techniques. Specifically, the concept of critical signals which is used with the CPT tech- 

nique is employed with most fault independent TPG techniques. The general algorithm associated 

with fault independent test pattern generation is a two step process [1]: 

1. Select a primary output and assign it a critical 1 or 0 value 
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2. Recursively justify the primary output by justifying any critical gate outputs with 

critical values on the gate inputs 
The recursive justification process is aided via the use of tables referred to as critical cubes. A crit- 

ical cube table lists all of the critical input combinations associated with a given component type. 

The critical cube associated with a three- input AND gate [1] is included as Table 9.1 to facilitate 

discussion. The three inputs to the AND gate are given as A, B, and C and are represented by the 

first three columns of Table 9.1. Likewise, the output of the AND gate is given as O and is repre- 

sented by the fourth column of Table 9.1. The critical values associated with a given input pattern 

which is represented by a row in Table 9.1 are denoted by bold face type. For example, the critical 

input value associated with a 011 input pattern is the zero input. 
Table 9.1.   Three input AND gate critical cubes 

A B c o 
1 1 1 1 

0 1 1 0 

1 0 1 0 

1 1 0 0 

During the recursive evaluation process of a given component in the DUT the critical cube 

table is reference numerous times. Specifically, each row in the critical cube table for a given com- 

ponent which contains the necessary critical output value is evaluated to determine a set of test pat- 

terns which have one or more critical paths which span from one primary output to at least one 

primary input. For example, a three-input AND gate which requires a zero critical output is evalu- 

ated for three critical input patterns; that is, the second to forth rows of Table 9.1 are used. 

The workings of the generic fault independent TPG technique are best illustrated by example. 

A simple four-input circuit shown in Figure 9.3a is used to illustrate the process. The example TPG 

process begins by selecting the output G to have a 0 critical output value. The critical cube table 

associated with a two input AND gate is referenced, and the first row which contains a zero output 

is selected to specify the critical input value. After performing this table look up operation E is set 

to 1 which is a noncritical input while F is set to 0 which is a critical input. Another critical cube 

look up operation is performed to determine the critical input on the two input XNOR gate which 

satisfies F = 0. The first entry in the two input XNOR critical cube table which has a zero output 

is selected which results in C being set to a 0 noncritical value while D is set to a 1 critical value. 

The A and B gate input values are selected next to assure the value of E = 1. A reverse implica- 

tion procedure is used to determine that A = 0 and that B can have any value; that is, B = x. The 

reverse implication procedure is performed by using the inverse functional mapping of a compo- 
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Figure 9.3.   Example of fault independent test pattern generation. 

nent to determine the input patterns which satisfy a given output condition. The critical path spec- 
ified by the example test pattern is denoted by a bold line in Figure 9.3b. Any fault which is on the 

critical path and produces an error is detected. Another example is included as Figure 9.3c to illus- 
trate the independent fault TPG when the critical output value is set to one; that is, G = 1. 

For a DUT which does not contain reconvergent fanout the aforementioned algorithm is suffi- 
cient. Several additional issues must be addressed fora general DUT which contains reconvergent 
fanout. Specifically, reconvergent fanout introduces three additional problems which must be 

addressed: (1) signal value conflicts, (2) self-masking of fault effects, and (3) multiple path sensi- 
tization. The solution to these issues requires that an algorithm be developed which searches the 

internal signal space of the DUT. The algorithm exploits numerous features of the justification pro- 
cess used by path sensitive ATPG algorithms. For this reason, a discussion of the internal search 
algorithms employed by fault independent TPG is not presented in this report. 
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9.1.3.   Symbolic Techniques 
The symbolic ATPG category determines test patterns for gate-level designs by manipulating 

equations. A symbolic technique begins by converting a gate-level model to a set of Boolean 

expressions. The Boolean expressions are then manipulated using a predefined sequence of oper- 

ations to produce a final set of equations. Each resulting equation represents an input condition 

which when satisfied detects a given fault. Specifically, an input which causes a resulting equation 

to be logical one produces a test pattern which detects a given fault. 

Typically symbolic TPG is performed using Boolean difference methods. The Boolean differ- 

ence of a Boolean function can be used to determine the test pattern necessary to test for faults asso- 

ciated with an input to the Boolean function. The Boolean difference for a general Boolean 

function is defined as 

4-f(xvX2, ...,*„)   = /(*,, ...,*,-_,, 0,*i+1, ...,*„) ©/(*!> .■•.*,■_,, l.*,-+l. -.*»>     (9-1} 

dxi 

where 8 represents an XOR operation [119, 140]. To illustrate the Boolean difference concept 

consider [140] 
/= yz + y(w + x) (9-2) 

To detect a fault on w requires the generation of f9 and fw, where /_ and fw are Equation (9.2) 

with w = 0 and w = 1, respectively. Performing this evaluation yields 

The Boolean difference to detect faults with w in the function represented by Equation (9.2) is 

obtained by XORing /_ and fw. Performing this operation provides 

<£. = xy (9-4) 
dw 

Thus, a faulty w is detected by setting x and y to 0. 
The test vector for stuck-at faults is easily derived using the Boolean difference concept [119, 

140]. Specifically, a test pattern which detects a stuck-at zero fault for *. is generated by solving 

XA-f(x   x x)  = 1 (9-5) l'dx'.     l   v'" 

Likewise, a test pattern which detects a stuck-at one fault for xt must satisfy 

-d_ 
ldx 

xA-f(x   x        x )  = 1 (9-6> 

Using the aforementioned example for the Boolean difference of w  which is given by 

Equation (9.6) the stuck-at zero test pattern is given as 
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w~r- = wxy = 1 (9.7) 
aw 

Likewise the stuck-at one test pattern for w is given as 

w& = wxy = 1 (9.8) 
aw 

A major problem with using the Boolean difference technique is that it is an equation based 

technique that requires a large amount of symbolic manipulation. The symbolic manipulations are 

difficult to implement in an efficient algorithm that can readily handle large circuits. One method 

for overcoming this limitation is to compute /_ and f . The XOR operation to complete the Bool- 

ean difference is not performed. Instead, the two partial equations /_ and / are used to assist the 

input search process. The ATPG algorithm presented in [124] uses this approach. The CATAPULT 

ATPG algorithm, conversely, uses Boolean difference information to measure the observability of 

signal locations in the DUT. The observability information is then used in conjunction with con- 

trollability information to determine the input test pattern. The CATPULT algorithm is designed 

for use with hard to detect faults [71]. 

This section provides a brief overview of ATPG techniques. ATPG is currently and has been 

an active area of research for many years. The overview covers the salient points of ATPG but does 

not provide a detail about every ATPG algorithm described in literature. For a more detailed over- 

view of ATPG the reader is encouraged to read Chapter 6 of [1]. 

9.2. Random Automatic Test Pattern Generation 
The RATPG process begins by selecting an input pattern at random. The selected input pattern 

is evaluated using fault simulation to determine the faults which are detected by the input pattern. 

The detected faults are removed from the fault list. The next input pattern is selected at random, 

and the fault simulation and fault dropping process is repeated. The addition of vectors to the test 

pattern set is completed when the number of undetected faults drops below a certain threshold [35, 

41, 124, 192]. 

For RATPG to be feasible, a fast computationally efficient fault simulator is required. However, 

RATPG has one fundamental problem which is, the decreasing number of detected faults for each 

additional test pattern. At the beginning of the RATPG process, each test pattern detects a large 

number of faults. As additional test patterns are evaluated, the number of detected faults begins to 

decrease. The decrease in the number of faults detected by each additional test pattern is attributed 

to two factors: (1) the size of the undetected fault set is smaller with each additional test pattern, 

and (2) the remaining undetected faults are random pattern resistant. A fault is random pattern 

resistant if there exists only a small number of input vectors which detect the fault. In the general 

case, a DUT with n inputs has 2" possible input vectors. For the sake of discussion assume that a 



given fault is detected by m input vectors. If we assume that the input vectors are selected using a 

uniform distribution then the probability of selecting one of the m input patterns which detect the 

fault is 

m 
P = —- (9.9) 

where p is the probability of selecting an input pattern which detects the fault. Equation (9.9) 

applies to the case where sampling with replacement is employed. Sampling without replacement 

has a selection probability that decreases as the number of test patterns in the test set increase [63]. 

A random pattern resistant fault is defined mathematically as 

m 
2" 

«10 ,-4 (9.10) 

Specifically, the probability of selecting an input pattern which detects a random pattern resistant 

fault is very close to zero. The worst case scenario is a random pattern resistant fault which is 

detected by only one input vector; that is, m = 1. 
A graphical representation of a hypothetical random pattern resistant fault scenario is shown in 

Figure 9.4. The example figure indicates the relationship of m for each fault f.. Specifically, the v 

axis of Figure 9.4 represents m while the JC axis represents f.. There are three random pattern resis- 

tant faults and one redundant fault depicted in Figure 9.4. 

9.2.1.  Uniform Input Selection 

The random selection of input vectors requires some type of random number generator. In soft- 

ware, an acceptable random number generator is provided by the math libraries associated with 
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Figure 9.4.   Histogram of number of inputs which detect faults. 
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high-level languages. For example, the rand() function in the C programming language can be used 

to generate the random patterns. In hardware, a Linear Feedback Shift Register (LFSR) is typically 

employed to generate the random vectors [140]. Typically, a uniform distribution is used to gener- 

ate the random test patterns; that is, all test patterns are equally likely. One problem with the uni- 

form distribution is that the resulting test pattern set can become quite large. 

A graphical depiction of the probability mass function (pmf) associated with selecting an input 

pattern which detects a general fault/, is included as Figure 9.4. Specifically, the pmf for selecting 

a test pattern which detects /. is calculated by dividing m. by n when uniform input sampling is 

employed. A large number of randomly sampled inputs are required to detect random pattern faults 

because the probability of selecting a test pattern which detects the random pattern resistant fault 

is very small. 

9.2.2.  Weighted Input Selection 

Analyzing the structure of the DUT to determine a better input distribution is one way to over- 

come the random pattern resistant problem. Three different techniques are used to select the input 

weights [21, 62, 228]. The details associated with the three techniques are introduced after a gen- 

eral description of weighted input selection is provided. The basic concept is to adjust the input 

distribution by weighting each input bit based on the structure of the DUT. The approach is to 

change the sampling distribution so that the probability of selecting an input pattern which detects 

a random pattern resistant fault is increased. Figure 9.5 represents the pmf which results from 

applying weighted input selection for selecting an input pattern that detects a given fault /.. Spe- 

cifically, p{st) represents the probability of selecting an input pattern which detects ft. The end 

result of applying weighted input pattern selection is the flattening of uniform selection pmf. An 

example of the pmf flattening can be observed by comparing the uniform pmf depicted in 

Figure 9.4 to the weighted pmf shown as Figure 9.5. Also, the probability associated with detect- 

ing a redundant fault is not increased with weighted selection because there exists no input pattern 

which will detect redundant fault. Thus, no amount of input weighting will cause the probability 

of detecting a redundant fault to increase from zero. 

The three weighted input selection techniques are very similar in the manner in which the input 

weights are calculated. The first algorithm presented is based on one fundamental premise; that is, 

the probability of detecting a faulty DUT is maximized when the output entropy of the DUT is 

maximized [10]. The term premise is used because the relationship between maximum output 

entropy and maximizing the probability of detecting a fault has never been proven. This technique 

is referred to as the Maximum Output Entropy (MOE) method. The output entropy of a DUT is 

maximized if the inputs are selected such that the probability of a DUT output being either a 1 or 

0 is 0.5. The problem is reduced to calculating the input pmf which maximize the output DUT 
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Figure 9.5.   Example of weighted input selection probability mass function. 

entropy. A two input AND gate is considered as an example to illustrate this concept. If all inputs 

to a two input AND gate are equally likely then the probability of producing a 1 output is 0.25; that 

is, only one input out of four possible inputs causes a one to be produced. The entropy of the output 

is maximized if the probability of producing a 1 output is 0.5. If the two inputs to the AND gate 

are assumed to be independent then the entropy is maximized when 

P{IX = l)P(/2= 1) = 0.5 (9.11) 

where P (I{ = 1) is the probability that the Ix input is a logic one, and P (72 = 1) is the proba- 

bility that the I2 input is a logic one. The simplest scenario to consider is when 

P(/1 = l)  = P(I2=l) (9-12) 

Using Equation (9.12) to simplify Equation (9.11) provides 

pu-n-j. (9.13) 

The generic problem of determining the input pmf for a single output fanout free DUT is now 

considered. A simple three gate example is used to illustrate this concept and is included as 

Figure 9.6. The approach is to start at the gate which produces the primary output and calculate the 

input probabilities necessary to maximize output entropy. For the example circuit shown in 

Figure 9.6 the output gate is the two input AND gate labeled as 1. The input probabilities for gate 

1 are specified by Equation (9.13). 
The input probabilities for the gates which set the inputs to gate 1 are calculated next. For the 

sake of discussion the input probabilities for gate 2 are derived. Gate 2 is a two input OR gate. The 
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Figure 9.6.   Test pattern generation example for a hypothetical XOR tree. 

P(/=l)   = 

output of a two input OR gate is zero if and only if both inputs are logic zero. The input to output 

probability relationship for a two input OR gate is 

P(Out = 0)  = l-P(Out= 1)  =  (P(/=0))2 =  (l-P(/= l))2 (9.14) 

The output probability for gate 2 is 

P(Out= 1) = 4= 
J2 

(9.15) 

Equation (9.15) is used to eliminate one unknown from Equation (9.14) and the resulting equation 

is solved which provides 

P(/=l)  = 1- 
72-1 

'   72 
(9.16) 

The input probabilities for gate 3 are derived by noting that a two input NAND gate produces 

a logical one output if and only if both inputs are logical zero. The input to output probability rela- 

tionship for gate 3 is given as 

P(Out=l)  =  (P(/ = 0))2=  (1-P(/=1))2 (9.17) 

The output probability for gate 3 is 

1 P(Out= 1)  = 
72 

(9.18) 

Using the result provided by Equation (9.18) to eliminate a variable from Equation (9.17) and solv- 

ing for P (/ = 1) yields 

PiIml) = ti (9.19) 
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The previous example demonstrates how input probabilities which maximize the output 

entropy of a single output fanout free circuit are calculated. Maximizing DUT output entropy by 

applying random inputs is based on the premise that the probability of detecting a fault in the DUT 

is also maximized if the output entropy is maximized. No mathematical proof exists which sub- 

stantiates the maximum output entropy/maximum detection probability relationship. Specifically, 

Debany presents experimental results which indicate that the maximizing output entropy does not 

cause the probability of detecting a faulty DUT to be maximized [62]. Thus, the fundamental 

premise used to construct the MOE technique is questionable. 
The general DUT can contain: multiple outputs, signal fanout, and reconvergent fanout. The 

single output fanout free technique must be extended to consider the general case. Unfortunately, 

properly handling signal fanout to calculate component input probabilities is a difficult problem. 

Each fanout signal will more than likely require a different probability to maximize output entropy. 

Unfortunately, there is no known closed form solution on how different fanout probabilities should 

be merged. The MOE technique does not address how to select the input weights for the general 

case. The technique presented in [10] provides the mathematical argument for using maximum 

entropy. Several example circuits are included and results are shown but no generic algorithm is 

presented by Agrawal. Debany in [62] notes the difficulty of using the MOE approach for nontriv- 

ial DUTs. 
The second weighted input selection technique developed by Bardell, McAnney, and Savir 

uses approximate techniques to handle the fanout problem [21]. This technique is referred to as the 

weighted input selection 1 (WIS1) algorithm in this document. Instead of trying to maximize the 

output entropy the WIS1 technique uses a relationship which is proven mathematically as the start- 

ing point for the algorithm. Specifically, for AND and NAND gates the optimal input probability 

for infinitely long input streams is given as 

P(I=l)  =  ("-1) (9.20) 
n 

where n is the number of inputs to the gate [21]. Likewise, for NOR and OR gates the optimal input 

probability for infinitely long input streams is 

P(I=l) = l- (9-21) 
n 

The WIS1 algorithm is very similar to the MOE. Specifically, a reverse traversal from the out- 

put of the DUT to the inputs of the DUT is performed in a depth first evaluation. The algorithm 

consists of an initialization phase and three step evaluation process. The initialization phase con- 

sists of assigning the input probabilities given by Equation (9.20) and Equation (9.21) to the inputs 

of the components which drive the primary outputs. The backward traversal process begins by cal- 
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culating the input probabilities for the components which drive the signals where the probabilities 

are known. The input probabilities for a k -input AND gate is 

P(/=l)  =  (P(0Kf=l))i'* (9.22) 

Likewise, for a k -input OR gate the input probabilities is given as 

P(/=l)  = l-(l-P(0Mf=l))i/* (9.23) 

For an INVERTER the input probability is 

P{I=\)  = l-P{Out=\) (9.24) 

For a k -input NAND gate the input probability is 

P(/=l) = (1-P(0«f=i))i/* (9.25) 

For a k -input NOR gate the input probability is 

P(/=l) = l-(/>(0Mf=i))i/* (9.26) 

For a fan-out with branch signal probabilities P (Out =1).Vie { 1, 2,..., *}  the stem signal 
probability is 

k 

PV=U  = \^P{Out=\)i (9.27) 
i= 1 

The reverse traversal of the DUT continues until all components in the DUT are evaluated and the 

probabilities associated with the primary inputs are known. 

The second step of the algorithm consists of recording the calculated primary input signal prob- 

abilities. The calculated primary input probabilities may or may not sum to one if the DUT contains 

reconvergent fanout. The third step of the algorithm calculates the weights needed to select the ran- 

dom input vectors to be applied to the DUT. The input weight for the ;'* primary input is given as 

P(/=l). 
W(/=l). = _rl >J_ (9-28) 

i= 1 

where W(I= l)y is the input weight for the jth input [21]. 

The WIS1 technique handles the fanout problem by averaging the fanout branch probabilities 

to calculate the fanout stem probabilities as given by Equation (9.27). Likewise, the starting point 

of the WIS1 is based on two relationships which are proven to be correct mathematically. Thus, the 

WIS1 technique has a firmer theoretical foundation than the MOE technique and the WIS1 tech- 

nique can be used for nontrivial circuits which contain fanout. 

The third weighted input technique developed by Waicukauski [228] is similar to WIS1. The 

Waicukauski algorithm is referred to as Weighted Input Selection 2 (WIS2). One primary differ- 

ence between the WIS1 and WIS2 techniques is that WIS2 employs integer based calculations to 
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calculated gate input probabilities. Both the WIS1 and MOE techniques use k* root evaluation to 

calculate input probabilities. The manner in which fanout stem probabilities are handled also dif- 

fers between the two techniques. Specifically, the WIS1 algorithm uses an averaging function 

(Equation (9.27)) to calculated the fanout stem while the WIS2 algorithm uses the largest fanout 

branch probability as the fanout stem probability [228]. The selection of the largest probability pro- 
vides an approximate solution to determining input probabilities which maximize output 

entropy [228]. An overview of the low-level details of the approximate algorithm are omitted in 

this report due to space constraints. 
A comparison of the three weighted input techniques is performed by Debany to determine the 

best weighted input selection technique in [62]. The comparison is performed using experimental 

techniques. Specifically, the experiment consists of evaluating a number of circuits to determine 
two factors: (1) if the three techniques provide equivalent results, and (2) which technique provides 
the best performance. The equivalent performance factor is determined using statistical based 

hypothesis testing. Likewise, the rank ordering is performed based on the number of randomly 
selected test vectors required to achieve a given test coverage. The technique which generated the 

fewest test vectors is considered best. For the circuits evaluated the MOE technique never gener- 

ated the best results. For all cases where the coverage is 98% or greater either WIS1 or WIS2 tech- 

nique provided the best performance [62]. 

9.3. Combined Test Pattern Generation 
One method for overcoming the problem associated with random pattern resistant faults is to 

combine the RATPG and DATPG techniques [4, 35, 124]. RATPG is used until the number of 

faults detected for a new input pattern drops below a predefined threshold. DATPG is then 
employed to detect the remaining faults. The benefit of this combined technique is that RATPG is 
very computationally efficient for the initial test patterns. As the fault set becomes smaller and the 
number of detected faults per additional input vector becomes small the computational cost of 

RATPG increases dramatically. When the computational cost starts to become excessive with 
RATPG then DATPG is employed to detect the remaining random pattern resistant faults. The rate 

at which faults are detected from the undetected fault set slows as test patterns are added to the test 
pattern set with RATPG because the initial test patterns locate the easy to detect faults. Eventually 

the undetected fault set comprises only of random pattern resistant faults. The idea with combined 
TPG is to have an ATPG technique determine test patterns for the remaining set of random pattern 

resistant faults. Thus, RATPG is used to generate test patterns to detect the set of easy to detect 
faults. RATPG is far more efficient than DATPG techniques at detecting nonrandom pattern resis- 
tant faults (easy to detect faults). Using RATPG to generate test patterns for the set of easy to detect 
faults decreases the computational resources required for TPG. Conversely, RATPG tends to 
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become inefficient when used to detect random pattern resistant faults. DATPG techniques can 

locate a test pattern to detect a random pattern resistant fault more efficiently than RATPG. For 

these reasons, the combined technique exploits the best attributes of both RATPG and DATPG. 

9.4. Manual Test Pattern Generation 

The distinguishing characteristic of the MTPG technique is that the test patterns are selected 

manually by the designer. Typically, the first test patterns selected are also used by the designer to 

verify that the DUT has the correct functional mapping. Like RATPG, each new test pattern is eval- 

uated via fault simulation to determine if any faults from the undetected fault set are detected. If 

no faults are detected by the new test pattern then the test pattern is discarded; otherwise, the new 

test pattern is added to the test pattern set. Fault grading is then employed to determine if the spec- 

ified level of fault coverage is achieved. If the test pattern set achieves or exceeds the fault coverage 

specification then the MTPG process is ended, else the MTPG process is continued. Subsequent 

test patterns are selected after the designer performs some analysis of the DUT After each test pat- 

tern is selected a fault simulation is performed to determine if any undetected faults are detected. 

If no additional faults are detected then the new test pattern is discarded, else the new test pattern 

is added to the set of test patterns. The manual selection process continues until the number of 
undetected faults reaches an acceptable level. 

10. Applicability of Existing Techniques for VHDL Fault Simulation 

This section provides an analysis of existing fault simulation techniques described in Sections 

5 and 6 to determine their applicability to VHDL-based fault simulation. Before the analysis is per- 

formed the concept of what is meant by VHDL fault simulation is defined. After this concept is 
fully defined then the analysis is performed. 

There are several attributes associated with VHDL-based fault simulation. The first of these 

attributes is the ability to perform fault simulation on a VHDL model with any compliant VHDL 

simulator. The simulator independent property implies that the fault insertion methodology must 

use features associated with the VHDL language and not VHDL simulator specific features. The 

second attribute deals with adding fault insertion to existing VHDL models. The fault insertion 

technique must be performed in such a fashion where there are a minimum or zero changes 

required to the VHDL model. The VHDL fault insertion technique developed by DeLong satisfies 

this model modification attribute [64]. The third attribute of VHDL-based fault simulation is that 

the fault insertion must be performed in a consistent fashion across all levels of modeling abstrac- 

tion. The method presented by DeLong in [64] satisfies the fault insertion consistency attribute. 

The aforementioned three attributes define what is meant by the term VHDL fault simulation. 
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The analysis of the attributes associated with existing fault simulation techniques described in 

Sections 5 and 6 is performed to determine which fault simulation methods can be employed for 

VHDL-based fault simulation. The attributes of fault simulation methods are divided into two cat- 

egories. The first category is whether the fault simulation technique supports multiple levels of 

design abstraction. Specifically, the fault simulation technique must be able to insert faults at all 

levels of design abstraction to satisfy this attribute category. The second category is related to the 

type of simulation performed; that is, value corruption via fault insertion or symbolic fault simula- 

tion. A common attribute of symbolic fault simulation is that faults are stored in a data structures. 

The stored faults are then manipulated when a component is evaluated to determine which faults 

produce a component output error. For example, concurrent fault simulation requires a custom data 

structure to represent each component in the DUT and dynamic memory allocation to store the 

fault list associated with each component. 
An overview of whether a fault simulation technique satisfies each attribute category is 

included as Table 10.1. The columns of Table 10.1 represent each attribute category while the rows 

are associated with a specific fault simulation technique. A / symbol in a table cell denotes that a 

given fault simulation method has a given attribute. For example, the first row of Table 10.1 rep- 

resents serial fault simulation which has the attribute of supporting multiple levels of design 

abstraction denoted by a / symbol in the second column. Additionally, Table 10.1 represents a 

summary of requirements for the manner in which the existing set of fault simulators described in 

literature have been implemented. In theory, future developments in fault simulation could change 

the results presented in Table 10.1. Thus, Table 10.1 represents the attributes associated with the 

current state-of-the-art for fault simulation. 
PPSFP/SPMFP fault simulation is typically used to evaluate gate-level models. Models with 

higher levels of abstraction such as algorithmic-level models or behavioral microprocessor models 

are typically not evaluated using parallel fault simulation. High-level models do not map efficiently 

to the parallel fault simulation paradigm. Specifically, for parallel fault simulation to be practical 

the W parallel DUTs must be simulated using W-bit computer words where each bit represents a 

different DUT. The parallelization process for gate-level models is relatively straight forward. The 

DUT is transformed into a model comprised of one input NOT gates and two input AND, OR, 

NOR, NAND and XOR gates. The modified model is then translated to machine instructions that 

execute on a host processor. Each machine instruction has W-bit input and output operands. The 

level of effort required to implement a VHDL-based fault simulation tool using a parallel fault sim- 

ulation technique for gate-level models is small. However, the level of effort required to implement 

VHDL-based parallel fault simulation for models with higher levels of abstraction is quite high. 

The primary difficulty is determining an efficient mechanism for translating behavioral VHDL 

models such as a microprocessor models into W parallel behavioral models. Specifically, signifi- 
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Table 10.1.  Features and requirements of existing fault simulation techniques 

Features 
and Req./ 
Simulation 
Technique 

Multiple 
Levels of 
Design 

Abstraction 

Symbolic 
Fault 

Simulation 

Serial / 

Parallel 
Pattern 

Parallel 
Fault 

Deductive / 

Concurrent / / 

Differential 

Hierarchical 
Concurrent 

/ / 

Hierarchical 
Serial 

/ 

cant amounts of research and development would be required to implement VHDL-based parallel 

fault simulation which can be used at all levels of design abstraction. Also, the behavior of an event 

driven SPMFP fault simulation requires a significant amount of book keeping for the simulation to 

be performed correctly. For this reason the overhead associated with event driven SPMFP fault 
simulation is quite large. For this reason PPSFP and SPMFP fault simulation is not a preferred 

technique for VHDL-based fault simulation. 
Deductive and concurrent fault simulation techniques suffer a similar problem. Both concur- 

rent and deductive fault simulation methods propagate fault lists when the internal signals in the 
DUT are updated. The size of the fault list associated with each signal varies based on the input 
applied to the DUT and the location of the signal in the DUT. For this reason the fault list associated 
with each signal is typically stored in a data structure where the memory is dynamically allocated 

during fault simulation. Specifically, the dynamic memory allocation/deallocation occurs when a 

signal value is updated during the fault simulation of the DUT. The individual faults in the fault list 

are typically stored in data structures. The fault list propagation attributes associated with the con- 
current and deductive simulation techniques require special simulator features; that is, all existing 

concurrent and deductive simulators are implemented using a custom simulator. A large amount of 
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research and development effort would be required to determine a VHDL implementation of either 

the concurrent or deductive fault simulation techniques. For this reason both concurrent and deduc- 

tive techniqi  > are not a preferred method for VHDL-based fault simulation. 

Differential fault simulation also has some fundamental limitations. Specifically, differential 

fault simulation is primarily used for sequential circuits modeled at the gate-level. The simulation 

technique is based on evaluating the combinational portion of the DUT for each undetected fault. 

Each simulation requires that the state of the sequential circuit be restored before the next fault is 

evaluated. A significant amount of research and development is required for VHDL-based differ- 

ential fault simulation to determine: (1) a technique to perform state restoration, and (2) a method 

to extend the differential technique for use with high-level behavioral models. The difficulty asso- 

ciated with solving the aforementioned two issues makes differential fault simulation an undesir- 

able method for VHDL-based fault simulation. 
Existing hierarchical fault simulators use one of two different fault simulation techniques to 

inject faults: (1) concurrent fault simulation, and (2) serial fault simulation. Concurrent based hier- 

archical fault simulation has the same problems associated with concurrent fault simulation. Spe- 

cifically, the fault list propagation requires the dynamic allocation/deallocation of memory for the 

fault list data structures. Hierarchical concurrent fault simulation is difficult to implement as a 

VHDL-based technique because of the development effort associated with the fault list propaga- 

tion attribute. For this reason, hierarchical concurrent fault simulation is not a preferred technique 

for VHDL-based fault simulation. Thus, serial based hierarchical fault simulation is the only exist- 

ing fault simulation technique which requires a reasonable amount of effort to implement in a 

VHDL-based fault simulator. 
One possible way to overcome the difficulty associated with implementing hierarchical con- 

current fault simulation is to use a standard high-level language to perform the fault list manage- 

ment functions. For example, having a C program to perform the fault list propagation algorithm 

is one possible solution. The C fault list propagation algorithm interfaces to a VHDL model via a 

Program Language Interface (PLI). Unfortunately, the PLI is presently not standardized. A PLI 

standardization effort is currently in progress by an IEEE working group. The lack of a PLI stan- 

dard means that any C based approach to perform fault list propagation is VHDL simulator spe- 

cific. More research is required to determine the feasibility of using a high-level language to 

perform fault list propagation. 
The basic high-level structure of VHDL-based fault simulation is introduced to conclude the 

discussion on VHDL-based fault simulation. A structural diagram of VHDL-based fault simulation 

is included as Figure 10.1. There are several pieces of information which must be provided by the 

designer before fault simulation can be performed. The designer supplied information is as fol- 

lows: (1) VHDL model of the DUT, (2) fault list associated with DUT, (3) the inputs, and (4) the 
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known outputs associated with each input. A VHDL-based standard known as the Waveform And 

Vector Exchange Specification (WAVES) can be used to store the inputs and outputs for the DUT 

[88]. The VHDL simulator and fault injector blocks in Figure 10.1 are responsible for fault simu- 

lating the DUT. The simulated outputs are then compared with the stored outputs with a comparator 

to determine if the injected fault is detected. The output of the comparison is stored as a result. Post 

and pre processing blocks are included in Figure 10.1 to represent the use of fault equivalency. The 

preprocessing step entails the determination of device-level equivalent faults. The device-level 

equivalent fault information is then used to reduce the size of the fault list before fault simulation 

is begun. The post processing block represents the use of partial circuit fault equivalency with tech- 

niques such as CPT. The partial circuit fault equivalence information is then used to remove equiv- 
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Figure 10.1.   Block diagram of a VHDL-based fault simulator. 
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alent detected faults from the fault list to reduce the remaining number of required fault 

simulations. 

11. Conclusion 

Fault simulation is currently an integral part of the design process for digital components. The 

primary purpose of fault simulation is to evaluate the effectiveness of the design for test method- 

ology for a given device. One metric which is used to measure the effectiveness of a given test strat- 

egy is the fault coverage of the DUT. The data provided by fault simulation is used to generate the 

fault coverage estimate. The closer the fault coverage estimate is to 1.0 the better the test strategy 

and the higher the probability that manufacturing defects in the DUT will be detected when eval- 

uated by the test strategy. 
This report provides a survey of fault simulation techniques. An overview of uniprocessor fault 

simulation techniques is presented in Section 5. The overview describes nine different uniproces- 

sor fault simulation techniques along with a survey on VHDL-based fault simulation. Parallel pro- 

cessor fault simulation techniques are presented in Section 6. A description of hardware 

accelerators and their use in fault simulation is provided in Section 7. An overview of fault grading 

techniques is included as Section 8. Likewise, an overview of test pattern generation techniques is 

presented in Section 9. The applicability of existing fault simulation techniques described in Sec- 

tions 5 and 6 for VHDL-based fault simulation is described in Section 10. 

The end use of this report is to provide a starting point for the development of new and novel 

VHDL-based fault simulation techniques. The ultimate objective is to develop a VHDL fault sim- 

ulation technique that can use any existing VHDL model. Ideally, the fault simulation technique 

would treat the VHDL model as a black box. Specifically, there would be no constraint placed on 

the designer in constructing a VHDL model so long as the model adhered to the VHDL standard. 

The fault simulation is performed by injecting a fault into the VHDL model and using any compli- 

ant VHDL simulator to simulate the faulty DUT. The data generated by the fault simulation is then 

analyzed by an external program to perform bookkeeping functions such as: (1) fault dropping, (2) 

fault collapsing due to fault equivalence, and (3) fault coverage estimation. The ideal fault simula- 

tion technique would allow for fault simulation of both structural and behavioral VHDL models 

using a unified methodology. 
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