
NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA

j

THESIS

AUTONOMOUS AGENTS FOR DIGITAL NETWORK
MAXIMIZATION

by

Michael W. DaBose

September 1997

Thesis Advisor: Luqi
Co-Advisor: V. Berzins

Approved for public release; distribution is unlimited

19980223 126
[DUO QUALITY INSPECTED 3

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for mformation Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204. Arlington, VA 22202-4302 and to the Office of Management and Budget. Paperwork Reduction Project (07i>«-0188)
Washington. DC 20503.

1. AGENCY USE ONLY {Leave
blank)

REPORT DATE

September 1997

REPORT TYPE AND DATES COVERED
Master's Thesis

TITLE AND SUBTITLE

AUTONOMOUS AGENTS FOR DIGITAL NETWORK MAXIMIZATION

AUTHOR
DaBose, Michael W.

FUNDING NUMBERS

PERFORMING ORGANIZATION NAME AND ADDRESS PERFORMING ORGANIZATION
REPORT NUMBER

Naval Postgraduate School
Monterey, CA 93943-5000

9. SPONSOR/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Naval Science Assistance Program

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense of the U.S.
Government

12a DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

ABSTRACT (Maximum 200 words)

The advent of the computer age has brought about a plenitude of benefits to the human race. Included with these benefits has been the ever increasing demand to
transfer exponentially increasing amounts of information, and the associated problems of information sharing. The focus of this thesis. Naval Science Assistance
Program (NSAP). and Office of Naval Research (ONR) funded research effort, has been to best utilize available digital communications assets in the radio frequency
(RF) spectrum to allow sufficient transfer of information providing DOD assets flexible, rapid, and in-flight reprogramming, re-planning of strike and cruise missile
assets, to engage a high value, emergent target, in the shortest possible time. The postulated methods of utilizing autonomous agents to manage information flow
across network nodes has applicability to all digital networks.

Based, upon the pioneering work of Pattie Maes, at Massachusetts Institute of Technology (MIT), and previous examination of communications node management,
the implementation of independent processes, working on behalf of a host system, to optimize the effective meaningful throughput on a communications channel is
not only desirable, but necessary. The evolution of semi intelligent software, whether called Artificial Intelligence, Intelligent Agents, or Autonomous Agents, has
reached a level of sophistication allowing die insertion of meaningful articulated processes within existing, and future systems to maximize the network efficiency
systematically. Recent work by Michael Cohen on Sodabots, and the evolution of user interactive TinyMUDS of the Maas-Neotek family, a virtual type personality
environment, has demonstrated the ability of software to deal with dynamic and changing conditions. The exponential increase in micro-processor power has, for the
first time, made available the hardware for such agent implementations as compact, self contained, embedded systems, in direct support of larger existing systems.

14. SUBJECT TERMS
agents, networks, digital, cornmunications, maximization, Al, Software Engineering

15. NUMBER OF PAGES
188

16. PRICE CODE

SECURITY
CLASSIFICATION
REPORT

UNCLASSIFIED

OF
SECURITY
CLASSIFICATION OF THIS
PAGE

UNCLASSIFIED

SECURITY
CLASSIFICATION
ABSTRACT

UNCLASSIFIED

OF
LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Staxtert Form 298 (Rev 2-89)
Prescribed by ANSI Std 239-18

lIffICQTJAI^^SPE0TBD8

11

Approved for public release; distribution is unlimited

AUTONOMOUS AGENTS FOR DIGITAL NETWORK MAXIMIZATION

Michael W. DaBose
B.A., Miami University, Oxford, Ohio, 1978

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN SOFTWARE ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
September 1997

Author:

Approved by:

Michael W. DaBose

IA.
Luqi, Thesis Ad&sor

IIIML
V. Berzins, AdvisoivJ /

T. Lewis, Chairman, Department of Computer Science

m

IV

ABSTRACT

An important problem arising from the increased sharing of information across

networks is bandwidth constraint. Then limitations of communications channels in the

transmission of volumous information is the singular bottleneck dictating processing

capability and robustness of current and future distributed systems. Bandwidth utilization

with the goal of optimizing the actual information transmitted, has to date, been ignored.

Many of the current network strategies, both commercial, and tactical, rely on the

repeated broadcast of a standardized message. As a result, much available bandwidth is

wasted. The specific approach taken to maximize specific network node throughput on a

digital network is a three-layer paradigm, managed by an embedded autonomous

software agent located at each network node. The first layer consists of a network

specific strategy for reducing the message content. The second layer is a frame by frame

analysis of the reduced message content, to determine the best compression method to be

applied to the information itself (MPEG, etc.). Finally a packaging strategy is utilized to

maximize the compressed content for each specific network packet. The first phase of a

proof of concept prototype has been implemented. Initial results, via a network

simulation, have demonstrated a quantative 300% plus increase in effective information

throughput capability, utilizing the same bandwidth. Since this approach is an embedded

technique, existing network hardware, software, and standards remain uneffected. A side

benefit witnessed is increased network responsiveness, due to increased information flow

in a timely manner. In terms of processing time required, the cost is more than

compensated for by increased network efficiency. The net result is a more efficient and

responsive network capability. Future efforts will implement the entire node management

capability described in this thesis. It is anticipated this capability will be introduced to the

opporational fleet within the next five to seven years.

v

vx

TABLE OF CONTENTS

I. INTRODUCTION 1
A. GENERAL 1
B. PROBLEM STATEMENT 2

H. RISK ASSESSMENT FOUNDATION FOR DESIGN PRINCIPLES 5
A INTRODUCTION 5
B. PROBLEM STATEMENT 6
C GLOBAL REAL TIME RETARGETING REQUIREMENT 7
D. SCIENCE AND TECHNOLOGY SHORTFALL 8
E. TECHNICAL APPROACH 9

1. General Discussion 9
F. ASSUMPTIONS 10
G AGENTS FOR TRANSPARENT OPTIMIZATION OF INFORMATION

TRANSMISSION ' 10
H. LINK 16 GENERAL DISCRETION . 12

1. Link-16 Functional Description 12
2. Link-16 Operation 12
3. Link-16 Configuration 13

I. AGENT-BASED TECHNIQUES FOR REAL-TIME SYSTEMS 14
1. Introduction 14
2. Intelligent Real-Time Systems (Robotics) 15
3. Real-Time Expert Systems 19

J. OTHER CRITICAL TECHNOLOGIES 21
1. Information Theory: Mathematics of Communications 21

ffl. ENGINEERING DESIGN FOR ANODE AGENT 29
A CODESIGN: SOFTWARE ENGINEERING FOR REAL-TIME SYSTEMS 29
B. AN AGENT FOR LINK 16/22 32

1. A Concept 32
C. SOFTWARE REQUIREMENTS - A FUNCTIONAL DISECTION LEADING

TO APROPOSED DESIGN FOR IMPLEMENTATION 33
1. Functions & Operations 34

D. FUNCTIONAL REQUIREMENTS 35
E. KNOWLEDGE-BASED COMPONENTS 37

1. General 37
2. Semantic Networks 37

F. FACTS 40
1. General Forms 40
2. FactSets 41

G PRODUCTION RULES 41
1. General Forms-Antecedents and Consequents 41
2. Comparisons 41

vii

3. Antecedent format 42
4. Consequents 43
5. Sample Complete Rule 43

H. CONCATENATION IN THE RULES '44
I. ANY/THAT/THOSE CONSTRUCTIONS 46

1. General 45
2. Subsets 45
3. Evaluation Order 47

J. DIRECTIVES [[48

1. DEINSTANTIATE 48

2. LOCK/UNLOCK '' 48

3. NUMBEROF 49
4. NAMEOF 49
5. INFER 50

6. PARALLEL 50

K. SPECIAL TERMS \ .. . 50

1. NULL [[[[[[51

2. MINUS/PLUS/DIVIDED_BY (Slot Arithemetic) 51
3. FIELD 51

4. NCHARS 52
L. VALUE ARITHMETIC 53
M. CONCATENATION IN NAMES 54
N. VARIABLES, POINTERS, AND INDIRECTION 54
O. REASONING WITH UNCERTAINTY 55
P. THE AGENT ENGINE 55

1. Rule Order and the Academic Paradigm 56
2. Automatic Rule Sorting and Parallel Processing 57
3. Functions within Consequents 57
4. Nested Inferencing 58
5. Compiling 58
6. The WHILE Construction 59
7. BREAK .' 59

Q. SHARED MEMORY 59
R. META CONTROL AND METALANGUAGE 60

1. Meta Control Functions 61

IV. AGENT ARCHITECTURE 65

A. LINK MANAGER 65
B. SIMPLIFYING ASSUMPTIONS FOR THE PROTOTYPE 67

1. Left Input Process 68
2. Left Output Process . 71
3. Exception Handler 72

C. DELTA COMPONENTS '.['.'.S3
1. Encoder 84

viii

2. Decoder 87
D. SHARED COMPONENTS 90

V. AGENT METHODS FOR LINK 16 92
A. INTRODUCTION 92
B. ATOMIC DATA ELEMENT TRANSMISSION ("DELTA MESSAGES") 92
C. UPDATE BUNDLING 97
D. EXTRAPOLATION-DRIVEN UPDATES 98
E. TRADITIONAL COMPRESSION 101
F. EXTENSIONS 101

VI. SUMMARY . . . 103
A. WORK ACCOMPLISHMENTS 103
B. WORK TO BE DONE IN SUBSEQUENT PHASES 103

VH. FUTURE WORK .' 105

LIST OF REFERENCES . . . 108

APPENDLX 113
INITIAL DISTRIBUTION LIST 171

IX

LIST OF ACRONYMS

agent in the context of this thesis, a goal seeking, semi-intelligent, independent
program working on behalf of a host system to increase efficiency

RTR real time retargeting

C2P command control processor

JTIDS Joint Tactical Information Distribution System, the system name for a
spread spectrum, anti-jam, means of time synchronized, digital

communication

GDLMS Common Datalink Management System

RF radio frequency, as in RF transmissions

link herein referes to military specific digital communications networks operating
over a radio frequency spectrum (RF)

XI

Xll

ACKNOWLEDGEMENTS

I would like to express my gratitude to Professors Luqi, Berzins, and the entire Computer

Science Department staff for their guidance, support, and patience. Without their

teachings this work would not have been possible.

A special thanks to Naval Research, Development, Test & Evaluation (NRaD), San

Diego, specifically Mr. Rod Smith, and John Iaia, whose support for my acceptance into

this masters program, made this valuable effort possible. Thanks to the Office of Naval

Research (ONR), Naval Science Assistance Program (NSAP) for the funding necessary

to conduct this initial research.

I would like to acknowledge the support and insight of Lonnie Nessler and Jason

Durham, who labored long hours with me on the initial concepts formulating this

research project.

Finally, a fond thank you to my father, Walter DaBose, who encouraged me to pursue

this advanced degree program. He will not be forgotten ...

X11I

XXV

I. INTRODUCTION

A. GENERAL

The advent of the computer age has brought about a plenitude of benefits to the human

race. Included with these benefits has been the ever increasing demand to transfer exponentially

increasing amounts of information, and the associated problems of information sharing. The

focus of this thesis, associated Naval Science Assistance Program (NSAP), and Office of Naval

Research (ONR) funded research effort, has been to best utilize available digital communications

assets in the radio frequency (RF) spectrum to allow sufficient transfer of information providing

DOD assets flexible, rapid, and in-flight reprogramming, re-planning of strike and cruise missile

assets, to engage a high value, emergent target, in the shortest possible time. The postulated

methods of utilizing autonomous agents to manage information flow across network nodes has

applicability to all digital networks.

Based upon the pioneering work of Partie Maes, at Massachusetts Institute of Technology

(MIT) (4, 17, 31, 33, 53, 54), and previous examination of communications node management

(37, 38), the implementation of independent processes, working on behalf of a host system, to

optimize the effective meaningful throughput on a communications channel is not only

desirable, but necessary. The evolution of semi intelligent software, whether called Artificial

Intelligence, Intelligent Agents, or Autonomous Agents, has reached a level of sophistication

allowing the insertion of meaningful articulated processes within existing, and future systems

maximize the network efficiency systematically. Recent work by Michael Cohen on Sodabots

(8), and the evolution of user interactive TinyMUDs (Multiple User Dimension) of the Maas-

Neotek family (4), a virtual type personality environment, has demonstrated the ability of

software to deal with dynamic and changing conditions. The additional, and exponential increase

in micro-processor power has, for the first time, made available the hardware for such agent

implementations as compact, self contained, embedded systems, in direct support of larger

existing systems.

B. PROBLEM STATEMENT

At present, tactical command and control networks, such as Link 16, do not employ data

management techniques to maximize the utilization of the RF spectrum. With respect to the

surveillance Net Participation Group (NPG), information updates on platform tracks are

transmitted in full and at a high rate. This is true even when only a single data field (e.g., the

location) of the track information has changed. The rapid repetition of redundant information is

a characteristic of other NPGs as well. One of the reasons for this repetition is that a listener, if

he misses a message, can simply ignore it—another chance to receive the information will soon

follow. An important drawback of this passive design, however, is that the bandwidth needed to

support RTR requirements will not be available.

It is assumed that no new tactical networks (hereinafter referred to as "links") will be

available for the foreseeable future, and certainly not in time to meet the needs of the RTR

Cruise Missile demonstration and the RTR program that supports it.

Therefore every effort must be made to obtain more efficient use of bandwidth from

existing links. There are five methods, independent of efforts to handle network entry, and

passive synchronization, that this effort will explore: Atomic Data Element Transmission,

Update Bundling, Extrapolation-Driven Updates, Traditional Compression, and Active Network

Management. In FY96, message size reduction was demonstrated on a closed loop link

simulation, built upon existing assets. These initial achievement are leading toward benchmark

demonstrations utilizing NRaD's Systems Integration Facility (SIF) to establish best-case

effectiveness. In later years, benchmarks will be established for additional techniques.

The ultimate aim is to increase the available bandwidth, through efficient and more

formal management of existing tactical networks, without changing network operation rules or

message integrity assurance. This capability will result in a new way of handling information on

existing links, with the possibility of extending capability to a new message specification while

coexisting within the given operational network.

As demonstrated by the news presented every day, reactionism is ever increasing in

today's complicated world. The demise of the former Soviet Union has eased the potential for

armed exchanged by responsible parties, but has dramatically increased the potential of

hostilities with the slightest trigger event leading to potential larger exchanges, and loss of life.

A small trigger event

22sec reut.mov

can lead to aggression

leading to a response

leading to escalation

leading to a larger response

all within a very short period of time. One key point to bear in mind, even the smallest have not

organisations, or countries have access to weapons of mass destruction. The rational mindset

does not necessarily apply here, therefor the need for rapid response dictating efficient

communications throughput capacity.

II. RISK ASSESSMENT FOUNDATION FOR DESIGN PRINCIPLES

A. INTRODUCTION

This document describes the engineering design of an autonomous or knowledge-based

agent designed to increase effective throughput on tactical links. The agent itself is called

"Agent," and each instance of the agent is identical on all nodes in the network. The sole

assumption made by the architecture is that each node on the network will have an agent

associated with it able to intercept and manipulate both incoming and outgoing messages.

The architecture is knowledge-based in all other respects. Thus it is not specific to any

particular tactical link or digital network. To operate on some other network requires

modifications to the knowledge bases and facts, but no modifications to the agent itself.

This document is not intended to function as a tutorial for knowledge-based systems

concepts. It assumes a high level of sophistication in traditional concepts and addresses where

the engineering design departs from them. Neither is this document intended to be a tutorial

about Link-16 or other tactical communications networks.

The principal accomplishment was the design of an inference engine specifically tailored

for intelligent agents. The special features of this inference engine are described in depth so that

detailed designers can know what to do.

Each process in the system is controlled by meta rules and a special meta controller that

is part of the agent run-time environment. Although an elaborate meta language was designed,

adding sophistication to the inference engine reduced reliance on sophisticated meta rules. Very

few functions are involved at present.

The run-time environment for the agent was not designed. The assumption was that one

or more commercial agent-building tool kits, such as IBM's ABE (Agent Building Environment)

would be available to initialize and run the agent. Since these tool kits can be modified to use a

custom inference engine, and because the facts and rules used by the Agent system can in

general be translated to and from KIF, the assumption that a tool kit would be available at the

time of detailed design seems reasonable to the author. However, there is nothing in this system

that requires the use of such a tool kit. The run-time mechanisms necessary to control the

processes and inferencing are not complicated. This supports an implementation structure in

which the agent can run on its own machine inserted at each node between the node and the

network.

This document assumes Link-16 concepts but the methods of autonomous agents are not

specific to Link-16.

B. PROBLEM STATEMENT

At present, tactical command and control networks, such as Link 16, do not employ data

management techniques to maximize the utilization of the RF spectrum. With respect to the

surveillance Net Participation Group (NPG), information updates on platform tracks are

transmitted in full and at a high rate. This is true even when only a single data field (e.g., the

location) of the track information has changed. The rapid repetition of redundant information is

a characteristic of other NPGs as well. One of the reasons for this repetition is that a listener, if

he misses a message, can simply ignore it—another chance to receive the information will soon

follow. An important drawback of this passive design, however, is that the bandwidth needed to

support information exchange requirements will not be available.

It is assumed that no new tactical networks (hereinafter referred to as "links") will be

available for the foreseeable future.

Therefore every effort must be made to obtain more efficient use of bandwidth from

existing links. There are five methods, independent of efforts to handle network entry, and

passive synchronization, that this effort will explore: Atomic Data Element Transmission,

Update Bundling, Extrapolation-Driven Updates, Traditional Compression, and Active Network

Management. In FY96, message size reduction was demonstrated on a closed loop link

simulation, built upon existing assets. These initial achievements are leading toward benchmark

demonstrations utilizing Naval Research Development Test & Evaluation (NRaD) Systems

Integration Facility (SIF) to establish best-case effectiveness. In later years, benchmarks will be

established for additional techniques.

The ultimate aim is to increase the available bandwidth, through efficient and more

formal management of existing tactical networks, without changing network operation rules or

message integrity assurance. This capability will result in a new way of handling information on

existing links, with the possibility of extending capability to a new message specification while

coexisting within the given operational network.

C. GLOBAL REAL TIME RETARGETING REQUIREMENT

The basis for this thesis was guided by sponsor desires to support rapid mission re-

allocation of assets in support of emergent threats on a real time basis. FY96 Program Execution

Plan for Real-Time Retargeting (RTR) provides a good list of the general requirements for real-

time retargeting, and basis by which the concept and development of agents is being

accomplished:

The ONR Real-Time Retargeting (RTR) Accelerated Capability Initiative (ACI) is aimed
at providing the cruise missile and tactical aircraft warfighters a new capability to
redirect their strike forces in real-time to respond to current dynamics of the battlefield.
The focus of the ACI is on time-critical targets. To engage such targets, these
warfighters must plan/replan, control, and execute strikes in 5 to 30 minutes, instead of
the military's current operational capability of many hours. Current shortfalls that inhibit
these warfighters from responding in real-time are: (1) lack of automated real-time
mission (reclaiming capability, (2) lack of communications availability and capacity, (3)
lack of automated target detection and recognition, (4) lack of rapid mission management
and execution decision aids, (5) lack of real-time terminal targeting information
dissemination between surveillance assets and strike platforms, and potentially between
the strike platforms themselves, and (6) lack of necessary available bandwidth to support
robust rapid data transmission in support of RTR. This equates into a lack of real-time
threat awareness on board the strike platform.

Shortfalls two and six are addressed by this effort. Without requiring a change to the net

protocols or integrity assurance, this effort is developing methods for extending the effective

bandwidth of existing tactical networks. By utilizing algorithms and system structures which are

typically not associated with throughput optimization, substantial improvements can be realized

for extending the communications capabilities of existing networks. The technologies developed

by this research will support the capabilities of Tomahawk Block IV+ or TSTAR. It will also

apply to any digital network through optimization of available bandwidth. This effort is not a

cure-all for network bottlenecks, but rather a best use of what is available.

D- SCIENCE AND TECHNOLOGY SHORTFALL

Link 16 is predominately a passive system. This means that messages, such as track

updates, are transmitted so frequently that they need not be acknowledged by receiving

platforms. Therefore, if a platform misses a message, it need only wait a few seconds for an

update. The goal of the design within the surveillance NPG is to provide a complete tactical

picture in twelve seconds or less, for as many as two thousand tracks. Although the total load on

the link by the surveillance NPG is not as great as that produced by voice communications or

video conferencing, it is significant nevertheless.

In order to adapt the link to RTR requirements, both transmitting and receiving platforms

need to be smarter, reducing both the level of redundancy in the messages and the frequency

with which they are transmitted. The idea is to insert processor capability between the C2P and

the JTIDS terminal on all platforms to distribute network control and manage message content in

a smarter way.1 Because of the complexity of the rules of the network and the communications

between C2P and JTIDS, an agent based architecture is the ideal candidate: it is designed to

operate transparently, can take action on its own volition, is extensible and flexible, and is

capable of being included, and / or integrated, in future system upgrades, and will handle the

complexity of network entry / passive synchronization, while maintaining maximized throughput

capability of only "changed" information. Distributed control architectures in an object-oriented

environment can produce smart and complex behaviors that are not generally achievable with

traditional techniques.

The eventual target for this work is probably the CDLMS effort (Common Data Link Management System)
which will at some point produce a system replacing the current C2P. management bystem),

E. TECHNICAL APPROACH

1. General Discussion

Depending upon available resources, the approach to the FY96 tasks was to establish

performance objectives and baselines. Sanitized data from actual network operations were

acquired from the Systems Integration Facility (SIF). This data established baseline for

evaluating redundancies in network communications. From this data, a decrease in loading is

expected to result from the technique(s) being developed by this effort. Additional candidate

techniques are under development and will be tested separately.

The software written to date has employed reusable, object-oriented methods/techniques.

A need for a real-time object-oriented data base management system (OODBMS) is anticipated

as system capabilities are developed. The system architecture is designed to incorporate such

tools as they are needed and can be exploited. Also, a PMW 159 sponsored effort called the

Common Data Link Management System (CDLMS), will result in an object-oriented tactical

communication system. Thus, employing an object oriented style will reduce costs for future

integration efforts.

A number of commercial OODBMS's, such as ObjectStore, Versant, ONTOS, and

Polyhedra, are under consideration and are to be evaluated as the need arises. Their ability to

satisfy real-time demands of link messaging, is considered a critical feature. The ability to

manage storage and retrieval of temporal data, is also a critical factor.

Finally, objects are by definition, independently executing processes that are designed for

maintainability and reuse. From their hierarchical orientation, the levels of abstraction in object

oriented systems are more explicit and straightforward than traditional styles. As the initial

exploratory efforts are performed, and lower level object methods are created, developing more

abstract levels of processing is relatively fast, reliable, and adaptable toward new capabilities.

F. ASSUMPTIONS

The following assumptions are made with respect to the proposed modifications

suggested herein:

•Any modifications made between two C2P / JTIDS terminal linkages can be

accomplished, as long as the rules for the particular network in question are followed.

•Messages will have specific data elements recognizable to the C2P. As for transmission

methods are concerned, data is data, and can be manipulated as desired, so long as the

reconstituted message elements follow the assumption above and do not violate any link

integrity requirements.

•Link rules enforce standards. As long as the end results obey link rules, the proposed

modifications can be performed, given timeliness and robustness are maintained.

•Rules evolve as systems evolve, tactics change, and lessons are learned. Software

designed under this effort is flexible, allowing changes in rules without forcing system redesign.

J. AGENTS FOR TRANSPARENT OPTIMIZATION OF

INFORMATION TRANSMISSION

An "agent" is a relatively-independent software entity, or collection of such entities, that

performs tasks on behalf of human users but also can perform on behalf of other computer

applications or systems. There are two important features of software agents. First, they are

anthropomorphic processes. As much as possible, agents behave and communicate in ways that

are similar to and compatible with human behavior and communication. As such, they are not

necessarily "smart" or "intelligent," but like humans, they tend to be goal driven.

Resource management is a common task for software agents. In this capacity, they

operate at a higher level of abstraction than the user or system they oversee. Often they are

separate processes initiated prior to the initiation of the system they oversee. Like human

managers, they are able to "watch" user or system operations, detect problems, formulate

corrective plans, and carry them out. Some can study the effects of their interventions and

modify their behavior accordingly.

10

Distributed set of intelligent agents may provide the means and method for overseeing

the operations of an operational network such as Link-16. Present at each platform, observing

transmissions, received messages, and user interactions, agents can be designed to optimize link

performance and enhance operator efficiency.

In late 1996, a demonstration capability was developed and an initial evaluation of

network messages was performed. In 1997, an initial design of a software agent, hereinafter

called "Agent," was prototyped (proof of concept), while longer-range architectural ideas are

considered. In the out years, the final agent architecture will:

•Accommodate the differing needs of different platforms without recoding;

•Understand the rules of the links so that all its actions will conform to them;

•Be extensible, either directly or through cloning with different knowledge bases,

to other messages and functions;

When a message is sent from the C2P to the JTIDS, the agent determines, by checking its

type, whether or not it is of interest. If it is not, the message is simply reasserted on the outgoing

bus.

The design goal for Agent architectures is to be able to accommodate future functional

requirements by adding additional knowledge, leaving the engines and interpreters largely intact.

The result is a system that can be extended at minimal cost.

The key design issue is real-time performance. In general, the higher the level of

abstraction, the higher the overhead. Therefore, particular implementations, such as Link 16, are

driven by the time constraints of the links, available system resources, and scalability of the

agent-based architecture. Fortunately, agent-based architectures for Intelligent Real-Time

Systems and Real-Time Expert Systems, have addressed similar hard real-time constraints. This

work draws upon those results.

11

H. LINK 16 GENERAL DESCRIPTION

1. Link-16 Functional Description

Link-16, or TADIL J, uses the Joint Tactical Information Distribution System. JTIDS

refers to the communication component of Link-16 that encompasses the software, hardware, RF

equipment and the waveform that they generate. Among NATO subscribers, the equivalent term

for JTIDS is the Multifunctional Information Distribution System (MIDS). Link-16 employs

netted communication techniques and a standard message format for exchanging digital

information among airborne, land-based and shipboard tactical data systems. Link-16 does not

significantly change the basic concepts of tactical data link information exchange supported for

many years by Link-11 and Link-4A. Link-16 provides technical and operational improvements

to existing tactical data link capabilities. The improvements include nodelessness; electronic

countermeasure (ECM) resistance; flexibility of communication operations; separate

transmission and data security; increased number of participants; increased data capacity;

network navigation features; and secure voice. Link-16 also uses a Time Division Multiple

Access (TDMA) architecture, which provides multiple and simultaneous communication nets.

2. Link-16 Operation

Link-16 operates at L-band frequencies (969 - 1206 MHz) with 3 MHz channel spacing

and a power output of 200 - 1260. It transmits a frequency-hopping transmission pattern using

51 frequencies at 3 MHz intervals, excluding identification friend or foe (IFF) sub-bands.

Frequency-hopping and other spread-spectrum techniques make Link-16 resistant to jamming

and data encryption makes it secure. The Link-16 message standard consists of one or more 70-

bit words plus, error detection, correction bits, and symbols. The word formats are used to allow

a single message to convey position, track data, weapons control and command messages.

12

3. Link-16 Configuration

The major components of the Navy shipboard Link-16 system include the following:

Tactical Data System (TDS), Command and Control Processor (C2P), JTIDS terminal and

JTIDS antennas. The TDS and C2P provide the tactical data to be exchanged. The JTIDS

terminal and antennas provide the secure, anti-jam, increased capacity waveform. The JTIDS

terminal is composed of two major components: the receiver/transmitter (R/T) and the data

processor group (DPG). The R/T is common to all platforms. The DPG contains a digital data

processor and an interface unit (IU). The IU is tailored specifically to each type of platform.

There are two configurations of Link-16, known as Model 4 and Model 5. The Model 4

implementation of Link-16-also referred to as Block 0 on Advanced Combat Direction System

(ACDS) platforms-was designed as a transparent equipment upgrade to existing ship's tactical

systems. Model 5-also referred to as Block 1 on ACDS platforms-is the full and complete

implementation of Link-16 in accordance with OS5161.

Figure 1

13

JTIOS Terminal

^KP 31ä*C? M*L>

lodulation ■.

-—""•%>

/

R;T Uli NFA I

Figure 2

Figure 3

AGENT-BASED TECHNIQUES FOR REAL-TIME SYSTEMS

Introduction

The following summary is from Huang [63]:

George Saradis introduces a three-level hierarchy [Saradis, 1985]. Acar and Ozguner
present an alternative architecture that organizes the system into a multiresolution
hierarchy by identifying its components and examining the physical relationships among
them [Acer and Ozguner, 1990]. Antsaklis and Passino describe a hierarchical control
architecture that uses a hybrid approach to model systems with a high degree of

14

autonomy [Antsaklis and Passino, 1993]. Successive delegation of duties from higher to
lower levels is one of this hierarchy's important characteristics. In another chapter of
Antsaklis and Passino, Meystel describes a nested hierarchical control theory that
includes the concept of treating design and control as a continuum [Meystel, 1993].

Regarding implementation of intelligent control systems, research has focused on
software technologies and computer-aided software-engineering environments. Sweet
and his colleages identify key software technologies for the Aerospace Industries
Association [Sweet et al, 1989]. Simmons describes a Task Control Architecture
[Simmons 1990]. One limitation of TCA might be scalability because it is not intended
to model multiple-cooperating agents. Object-oriented paradigms are becoming popular
for handling the representation problems of software systems, but they are not suitable
for all problems. For example, Schneider and his colleagues developed a flexible, object-
oriented, real-time software implementation tool called ControlShell [Schneider et al.,
1994]. But this tool does not address the issue of architecture; perhaps a reference-model
architecture could complement its capabilities.

Huang is at the National Institute of Standards and Technology (NIST) where, for over

two decades, Jim Albus has been developing the Real-Time Control System (RCS) reference-

model architecture. A reference-model does not describe how system structures are represented

and implemented, but rather seek to conceptualize the high level functionality and process

interdependency. Object-oriented (OO) paradigms have become popular because they can

reflect the inherent structure of reference models. Given a reference model or system

architecture, the actual implementation, as driven by the model or architecture, is typically a

separate design effort. Intelligent real-time system architectures are discussed in more detail in

the next section.

2. Intelligent Real-Time Systems (Robotics)

An approach and methodology for engineering intelligent real-time systems is discussed

by Durham [44, 45, 46]. In terms of systems architectures, Durham considers intelligent real-

time systems functionally equivalent to intelligent robot systems. The two types of systems share

similar requirements and objectives, and only differ in terms of the "plant" or environment for

which they interact. When a robotic agent interacts with a subset of a system such that its "plant"

is restricted to system software, such agents have been called "softbots," i.e. software robots.

Softbot applications do not typically have hard real-time requirements and the real-time

15

limitations of softbots is an open issue. To address such issues, this effort capitalizes on the

recent advances in autonomous systems and telerobotics.

Figure 4, below is a diagram of a generic intelligent system architecture derived from

some early results in the ARPA Autonomous Land Vehicle (ALV) program. Figure 5 is from

Meystel's recent work in "Semiotic" system architectures [59]. These diagrams illustrate the

generic high level architecture of real-time intelligent systems.

CONTROL FLOW

Figure 4

1 H mUMIW.KW 1

I KNOWLEPCS RzntssenrATi»« |

\

//

CFACS

\

| , |
1 = !

*F.RrErnoN PLANNING/
».'UNTHtH. -«*«*£

±xmji*n .
1

»■^'■v ■

«TNSORS
n'«s

*im:\TORS

\
WO

 ,
KLU

 '

/

Figure 5

Figures 6 and 7 are two diagrams from an intelligent system architecture as described by

Valavanis and Saridis [60]. These diagrams further illustrate a functional organization and

16

layering. The highest level processes are similar to the executive level within a business

organization. Longer term organizational structures, such as strategies and mission statements,

are the types of objects and data structures to be processed. The coordination of day-to-day

operations is a lower level management function. Specification and design of specific tasks is a

critical "coordinator" function. Finally, the labor of humans and machines actually execute the

operations of the organizational entity. A "topology" of organizational structure has emerged

from previous efforts in real-time intelligent systems.

Bottom-up

Long-teim
Memory
Exchange

u

(Information from the
Coordination Level)

Compiled input commands

a- Tcp-dOWD

Machine Reasoning

Machine Decision
Making

(Final Plan to the
Count inatiuo LcveJ)

j KNOWLEDGE BASED
j ORGANIZER

DISPATCHER

_.^- -""~"~"/7;T\~~^~^
COORDINATOR j

I !

COORDINATOR!
n

, -T

HARDWARE
CONTROL

HARDWARE i
CONTROL I

i

i
I

] PROCESS ;

1 i

PROCESS

n

Figure 6

ORGANIZATION LEVEL

COORDINATION LEVEL

Dispatcher

Motion
Coordinator

1

Motion
Coordinator

| Vision
I Coordinator;

Force
Coordinator

Other |
Coordinators

EXE(:GU moN LEVEL

Motion
Controller 1

Motion
Controllern

Vision
! Controller

Force
Controller

Other
I Controllers

Figure 7

17

These diagrams illustrate an anthropomorphic model for intelligent real-time systems

design. This type of system architecture exhibits a number of properties. First, a hierarchy of

processes is defined. The "higher level" processes require more "abstract" processing such as

symbol creation and manipulation. "Lower level" processes directly interact with the

environment. For Agents, the environment is the message data stream. Secondly, timing

requirements tend to be inversely proportional to the level of a process. Low level processes

need to be highly responsive. High level processes are often very slow to respond. This layering

of timing requirements allows a system to maintain sufficient interaction with its environment

while working to improve its capabilities. The "scope" of systems processes tends to be layered

in a similar manner. Higher level processes incorporate system-wide and long range data

elements, i.e. they process the "big" picture. Low level processes have well defined and narrow

tasks tailored to specific increments of time. This leads to a third characteristic of intelligent

real-time systems. They are structured such that an "abstract" "high level" goal or set of goals

can be designed and understood without explicit attention to the numerous run-time or

operational details. The system is designed to map the high level goals into a set of lower levels

functions necessary to achieve the given goal(s). Lower level processes, such as control loops,

have their own low level goals, such as set points. The specific low level processes performed at

specific points in time are determined by, or at least influenced by, higher level processes.

Figure 8 is also from Valavanis and Saridis [60]. This diagram illustrates that intelligent

control is the intersection of three separate areas of work. The requirements and objectives of

Intelligent Control inherently overlap with Artificial Intelligence, Operations Research, and

Control Theory. Each one of these disciplines in turn interact with each other and define a

number of specialized subdisciplines. From this organizational perspective, a systems designer

can recognize that, if properly managed, a considerable amount of knowledge and talent can be

utilized for a real-time system application such as throughput optimization of communications

networks. The development and demonstration of this technology insertion capability is central

to the Agent concept. A mechanism for efficiently and effectively inserting new capabilities into

operational legacy systems is a primary objective and focal concern.

18

INFO, iy6%ESSING

FORH<L LANGUAGES

/lEURJSTICS \

v-.

Figure 8

3. Real-Time Expert Systems

Expert systems are not typically real-time systems in terms of their inherent architecture.

The heuristic search algorithms typically employed are not guaranteed to meet hard real-time

requirements. A number of intelligent control systems employ "Expert System" algorithms and

perform within their requirements. Expert systems have become an integral component of

intelligent systems, but their application tends to be best for "organizational" processes. Fuzzy

logic expert system techniques have been recently demonstrated and they may prove to be quite

valuable at the coordination and execution level of the Agent processes [61].

19

1
Explanation

Subsystem

c
c

i
i

1
OS

Natural
Language 1
Interface

Knowledge Base

Inference
; Rules
1

Facts

Workspace

Protilcn-.
Description

Knowledge
Acqiu&tjon
Subsystem

t '

j Problem
Status

(Expert or Knowledge En

Figure 9

' ewcutaole program K^ä^sa:;;^:]

Figure 10

20

OTHER CRITICAL TECHNOLOGIES

1. Information Theory: Mathematics of Communication

a. Definition of Information

The following is from Hamming [49];

Suppose that we have the source alphabet of q symbols s,, s2, ... , sq, each with its
probability p(S[) = p,, p(s2) = p2, ... , p(sq) = pq. When we receive one of these symbols,
how much information do we get ? For example, if p, = 1 (and, of course, all the other p;

= 0), then there is no "surprise," no information, since you know what the message must
be. On the other hand, if the probabilities are all very different, then when a symbol with
low probability arrives, you feel more surprised, get more information, than when a
symbol with a higher probability arrives. Thus information is somewhat inversely related
to the probability of occurrence.

From an information theoretic perspective, "surprise" is associated with the probability

of a communication event. Data can be transmitted but unless there is a lack of predictability,

there is no surprise and therefore no information content. Agent based communication links

capitalize on this understanding of information content. There are a number of ways that the

degree of "surprise" can be taken out of network messages. Traditional data compression

techniques capitalize on a relatively small number of possible approaches. Traditional data

compression, and coding theory in general, will be exploited and incorporated within the Agent

architecture, but this is not the technology being developed.

Agent based communications should not be confused with data compression

technologies. Through efficient management and accounting of what is known, or can be known

before messages are transmitted, agent based communication links share the knowledge in a

manner such that there is less "surprise" in the messages transmitted. Thus, Agents are able to

communicate such messages with fewer bits.

By incorporating engineering and design knowledge of the platform tracks, the behavior

of the tracks becomes predictable and, thus, less of a surprise from one message to the next.

Agent based communication also provides a mechanism for incorporating command and control

21

(C2) knowledge. For C2, different track types typically have different operational requirements

for position resolution and update rate resolution, the operational requirements for actual

message transmission times and resolutions can be known before messages are transmitted, and

therefore, the track messages can be communicated at a lower rate with fewer bits per message.

Also note that redundancy can be added when operationally required for increasing the

confidence that messages will be received.

Agents are network processes that have a primary goal of identifying and sharing system

knowledge that is not shared by the current communication links. One of the assumptions, as

stated earlier, is that with minimal impact, such a collection of processes can be inserted into an

existing communication network. With Agents, otherwise unutilized knowledge is then used to

take the "surprise" out of the messages as they were originally communicated. Agents exploit

knowledge within the scope and bounds of typical data compression methods, but data

compression is not the technology under development. Data compression related knowledge is

considered a relatively small portion of the system wide tactical knowledge available for

maximizing information throughput. By identifying and accounting for system wide knowledge,

more robust and effective communication is realized while increasing the effective throughput of

the tactical network. Agents, by design, are background network processes which continuously

work to identify and manage tactical network knowledge for achieving their own goal of

maximizing effective throughput.

b. Measures of Information, e.g. Entropy

Claude Shannon's paper in the 40's established a mathematical basis for the theory of

communication [56]. Shannon defined a mathematical function, called entropy, for measuring

information content. Shannon's entropy function is defined as

" f 1 #Z/>,!og —

22

where N is the number of symbols communicated, q is the number of possible symbols, and pi is

the probability that the / - th symbol is in the N length message. As noted in Hamming [49], "It

is important to realize that a remark like 'Consider the entropy of the source' can have no

meaning unless a model of the source is included. Your estimate of the entropy of a source of

symbols therefore depends on the model you adopt of the structure of the symbols."

A variety of metrics exist for defining and determining information content. Kapur [51,

52] provides a number of examples and references. There is no single absolute measure of

information. Entropy and working model of the source is necessary. A model is needed to

specify the symbol set and probabilities for the given symbols for all points in time. Usually, the

probability distributions are assumed to be "stationary." This means that the statistics of the

symbols do not change with time. Operationally, nonstationary data is quite common. Thus,

potential performance of "optimal" data compression schemes such as Huffman coding, cannot

be realized. Alternative schemes, such as Lempel-Ziv dynamic dictionary based approaches,

often demonstrate better operational performance. Thus, there is no one ideal technique or

underlying model for a given coding scheme.

Ideally, a more abstract "context dependent" network process would dynamically identify

and select the appropriate measures of information and their most appropriate models. Such

metrics and models can then be selected based on the degree of compression which can be

operationally realized at a given point in time. While managing and exploiting other types of

knowledge, such as "system design knowledge" and "C2 knowledge," Agent processes can also

manage "data compression knowledge." Thus, improved operational performance of traditional

data compression schemes is inherent in the Agent architecture.

c Universal Compression and Retrieval

The following summary note is from Krichevsky [50]:

The output of a source may be compressed up to its entropy, not more. It is the main fact
of the source coding theory, which has its origin in Shannon (1948). The first theoretical
compressing code is Shannon's. It happened to be very close to Morse's, which was
developed empirically a century earlier. Shannon's code is very simple, although not
optimal. An optimal code for a stochastic source was constructed by Huffman (1952). It
may be used to compress an individual word. The frequencies play the role of
probabilities. The encoding may be either two-pass or one-pass. In the first case the

23

frequencies of letters are counted beforehand, then a code is built. In the second case the
code is changed along with the word reading.

Output words of Shannon or Huffman's codes are of different lengths. There is a
compressing code, whose output words are of equal length. It was developed by first G.
L. Khodak (1969) and then by F. Jelinek and F. Schneider (1972).

A decipherable code for integers is constructed by V. Levenstein (1968) and P. Elias
(1975).

Hansel (1962) and Krichevski (1963) exploited the source coding to lower-bound the
length of threshold formulas.

The Kolmogorov complexity bridges the theory of algorithms and the information
theory. Any code, including Lempel-Ziv's, move to front, etc., is only a majorant of
Kolmogorov's.

In other words, majorants of Kolmogorov codes provide a theoretical framework for

compression algorithms. In this context, optimality is tied to computability, as well as,

compressibility. Computing cost is typically a critical operational parameter, but until recently, it

has not been an integral theoretical component.

Krichevsky also notes that "for many years the target of the source coding theory was the

estimation of the maximal degree of the data compression. This target is practically hit today.

The sought degree is now known for most of the sources. We believe that the next target must be

the estimation of the price of approaching that degree. So, we are concerned with the trade-off

between complexity and quality of coding." The reader may need to be reminded that in this

theoretical context, the sources are assumed to be known and well behaved..

Computing time is a critical factor for agent based communication links but until recently

it has not been a theoretical focus of concern. Accurate and robust source models are another

critical operational concern that is often overlooked by information theorists. Krichevsky's

analysis assumes that the sources are known and well behaved. Temporal variability is not

within the context of his work.

Within its own scope and context, coding theory provides a basis for determining

compressability. With full knowledge of their utility and limits, compression algorithms can be

identified and utilized at the most appropriate times. As the characteristics of data sources

change with different tactical situations, software agents can activate the most appropriate

24

compression algorithms and source models for the particular context. Agent's can operate on

knowledge within and beyond the scope of coding theory and data compression. How these

bodies of knowledge are coordinated is of particular concern for optimizing the operational

throughput of a network.

d Universal Prediction, e.g. Machine Learning, Generalized Approximation, etc

Universal prediction is another recent focus in coding theory. If a source is well behaved

and can be modeled, then the source should become known over time and the sequence of

symbols should be optimally predictable. Theoretically, if the symbols can be predicted, optimal

coding schemes should incorporate such predictability. Traditionally, predictability is not

assumed. For adaptive schemes, lack of predictability is the alternative focus.

Universal predictive coding schemes are rooted in the same mathematics as related areas,

such as machine learning, generalized approximation, pattern recognition, classification, and

adaptive filter theory. Probability and mathematical statistics are typically developed and applied

using the numerical methods of linear algebra. When possible, these techniques often combine

empirical and analytical modeling methodologies. Analytical models are preferred over

empirical "black box" approaches.

Just as the Krichevsky and others are interested in bridging complexity theory and coding

theory, those working in the area of universal prediction and interested in bridging the

mathematics of prediction and coding theory. The Agent approach under development is not

limited to coding theory, or those areas of coding theory most related to efficient network

communications. As previously noted, coding theory has its limitations and Agents address those

limitations while exploiting opportunities which are not within the scope of traditional coding

theory approaches.

Coding, complexity, and prediction can each be exploited by a more abstract system

process. At this level of abstraction, a spectrum of competing data compression algorithms can

be evaluated. This can be done alongside competing prediction algorithms. For real time

execution, algorithmic complexity is a critical factor for both coding and prediction. The Agent

architecture is designed to manage these traditional components, but these plug-in capabilities

could probably be managed by a number of other more traditional techniques. The ability to

25

identify and quickly utilize system wide knowledge, is the focus of agent based communication

links, i.e. Agents. The agent based architecture provides the mechanism for incorporating

additional bodies of knowledge for maximizing network throughput.

Figure 11 illustrates the relationship between pattern recognition and data compression.

In both cases, invariances are of special interest. The goal is to identify functions whereby

predictable and recognizable patterns can be identified and exploited. A number of "plug-in"

pattern recognition capabilities have recently become available. Agents are being designed such

that those capabilities can be managed and exploited. The design objective is to demonstrate

"coordination" and "organizational" network processes that manage C2, system design, data

compression, pattern recognition, and other bodies of knowledge for the purpose of maximizing

the effective throughput of tactical communication networks currently operating in the Fleet.

Feature
Extractor

Xl
•

xN .

i
Classifier [

\ -
i

decision

£*
Coder

XN X„ Decoder

-a
{

Figure 11

As mentioned earlier, universal predictive coding is inherently related to machine

learning. Intelligent real-time systems share a similar interest in machine learning. The objective

for hierarchical intelligent systems is to design systems such that they can learn to create optimal

tasks and coordinate their execution. The following is from Lima and Saridis [62] and discusses

work related to this objective:

A robot can learn from the data provided by its external sensors (such as cameras, ultra-
sound transducers, or proximity detectors) or internal alarms (such as a battery failure or
a time-out while a process runs). Often the goal is to learn how to recognize a scene or an
object in the scene, by either a statistical or a structural approach. The robot explores the
similarities of the scene or object with previously stored patterns. Some learning
programs record the strategy used to solve a particular problem so that they don't have to

26

search for a solution when the problem emerges again [Samuel 1963]. Other programs,
such as those based on neural networks, begin with a random network and continually
change the connections (or weights) among network nodes, to reflect a bad or good
performance as they try to accomplish their job [Hertz 1991]. This later type of learning
algorithm is usually classified as unsupervised if it receives no information about the
correctness of its output, and as supervised if the goal is available. We can improve the
algorithm's performance by measuring the error between its goal and its actual output. A
third category is reinforcement learning, where limited information is available about the
algorithm's instantaneous performance, typically in the form of success or failure signals.

Since the late sixties, various strategies based on reinforcement learning have emerged to
address the control of complex systems. Reinforcement learning is particularly
interesting for robotics, where it involves the exchange of small bandwidth information
(failure or success) between robotic subsystems. In typical applications, such as
unmanned space or underwater missions, the cost of large bandwidth for
communications between the central command (earth controller or main-vessel
controller) and the vehicle is prohibitive. Designers can reduce this cost by increasing the
autonomy of the machine involved in the mission.

Fu was perhaps the first to write about learning control systems and to define intelligent
control systems as systems of an interdisciplinary nature where artificial intelligence and
automatic control intersect [Fu 1986]. Moreover, he introduced the concepts of stochastic
automata and stochastic grammars. Narendra and his associates have also developed
work on stochastic automata [Narendra and Thathachar 1989]. In the last few years,
Sutton and his associates have explored reinforcement learning solutions that associate
these two views of stochastic automata [Sutton 1988].

A frequent limitation of reinforcement learning applications to robot problem's is the
problem's large state space. Lin attempted to tackle this problem by providing initial
knowledge to the robot and by endowing it with generalization capabilities via neural
nets [Lin 1994]. Sutton described an algorithm that learns from both virtual experiences
in an internal-world model and real-world experiences, to accelerate the learning process
[Sutton 1990]. Both of these authors used Watkins's Q-learning algorithm, which
includes a learning-performance function [Watkins and Dayan 1992].

Finally, Wang and Saridis used reinforcement learning to improve performance at the
intermediate level of the hierarchy [Wang and Saridis 1993]. And Mclnroy and Saridis
proposed reliability as a practical measure of primitive-task performance - but did not
consider the computational cost [Mclnroy and Saridis 1994].

The above discussion illustrates that neural nets are but one technique of machine

learning. In practice, neural nets are more accurately described as a family of regression

techniques utilized to generate empirical models. When there is limited communication

bandwidth between agent processes, e.g. mother ship and vehicle, agents can minimize

communication requirements. For purposes of the Agent architecture, agents with synchronized

27

models only need to communicate when one of the agents recognize a deviation from the "real

world," i.e. part of its environment not shared with the other agent. Furthermore, since the goal

is to minimize communication requirements between such agents, synchronized learning

algorithms are another body of knowledge to be exploited.

28

III. ENGINEERING DESIGN FOR A NODE AGENT

iKuCjnaft^ixo1

*a-;tr -■
 w . Seisiw OPC

i '
'•ä-istcn '... ''ancor JWWXö"

■|-w
-roi

 j— •.+ni,i;,M.<:.r*ri--i.tr>(-'zf-.<r:zr;

, if'«ma i^cnst D*X:I \ ,
■*•!«« ;. — Merxvk - * :f- 'u*r.»ot< - - Nerswe« I-«-

! _.- —

' ""* ir,k
— Caia i™ - ■ ■ — "„'au i«m — j ■« JiW .ti*. p^ir

>.VJlCa.
>i

-i ^rticai Pfirt«-U - j ■- P-,5.:„ , ?ii

r.-,-.: a

!(-
fcouB' Pi mli- J tost 3

 \a;ni>ni idyft''iL^-'fciir-Tir-r.'sii

Cäia Urn la'rt'fW^JK'ifWiM-

- ^ysical «rtf "öi''iÄ<ü» trol'jO

Application

layer

Session
layer

Transport
layer

N^iwprk
layer

Data ink
layer

Physical
layer

Figure 12

Application protocol

Prfts«n ration protocol

Sassort protsooi ——

Transport
protocol

NetwcK
prnior:ol

■•|NH

Actual data, transmission patn

Application
layer

PfOSüittiilioti
lave'

ÜtS&Sion
layer

Transpon
laygr

Network
layer

Piys-cal
layer

Figure 13

A. CODESIGN: SOFTWARE ENGINEERING FOR REAL-TIME SYSTEMS

Delays in communication are a primary concern for tactical networks; just as

transcontinental phone conversations were plagued with annoying delays due to the limitations

of hardwired signal transmission. The addition of any process in the path of C2 messages is an

even greater concern. Because Agents map messages and communications to more efficient

representations and transmission timing, they inherently introduce delays on a per transmission

29

basis. If Agent processes are introduces at the 1553B bus, very small latencies may be required.

This may be a significant constraint. If the Agent processes are designed into the CDLMS, much

flexibility will be gained, but message management will still delay message communications.

For any communications network, messages are typically delayed due to typical management

functions. The critical concern is that such delays be minimal. For time critical data compression

applications, data compression processors (DCP) are typically incorporated into the system

hardware. This is a "plug-in capability" that our agent-based approach can manage in the course

of minimizing message traffic while maximizing effective throughput. Other algorithm specific

application processors (ASIP's) are commercially available. Agent's provide an opportunity to

utilize those off-the-shelf plug-in capabilities, as well as.

Several domains such as embedded, real-time, and reactive systems are the application

areas for which hardware / software codesign techniques are most beneficial. They are beneficial

because the increasing complexity of advanced systems combined with technological

advancement requires new design methods and integrated tool environments.

Hardware / Software codesign is different from conventional approaches in that it

continuously relates the hardware development cycle to the software development cycle. Hence,

hardware decisions significantly affect software design activities and vice versa. In codesign, the

entire problem is treated as a whole. The "co" means primarily together. However, it also

expresses a design flow that is properly coordinated; a joint effort among designers from

different areas. The effort is inherently concurrent in that the majority of all design steps are

carried out in parallel by a team that guides, coaches, and supervises the design process. Ideally,

several teams of experts develop system components rapidly and resolve problems in a timely

manner.

30

/sis of Constraints I
*>J Requirements I

(sys-.
i

e-n saecificat

I
onj

rdware/r^oft»vare j
Parti ooninc

n-iaraware Descr-ption^

_ZZT
Ha-dware Synthesis

anc Configuration ^ s*
Interface Synthesi

fortwäre Description^

X
Software Generation
andParameter i?atior

Haroware X /*" Hv/ / Sw "S fSoftware "^w
^orriptwitrrr.H,^ l^ interfaces ^y y^ Modules J

z
. HW / Sv/ integration

anrt Q:-<J:mu:?):.ion

, i :
f integrated A
y^ System _y

Design Verification

Figure 14

Analysis of Constraints
and Hequiremeits

Figure 15

31

B. AN AGENT FOR LINK 16/22

1. A Concept

-MINOS ',

']k~d Worker ^!

tfV fix i

-\r
Monitor

MBSIsV— .

count,
canto:
HAUCEI

HOST

nun

/

■«to
wans

"SH-

_l«t!Ul««T ISM

UtW

L-J BOÖUS

-f- unmet
— eo»t c«m

laTEiuctn

»MUM

ISM «rid .. „
WHEI

0
Figure 11(a)

Figure 12

DD □ nincks

i», IK

uaia
■Ml

MDCH
IMMUN
IWtfSI

11*
uinuiM
itt 11

min
titm. Ok»<
IMTUIM

m t«

Figure 16

32

&
mmma.
Mt «neun

x ums

so»
V

HtSOL
awes»
BEHEB

-cf*
min
earama

V 90«

SWOWBB

40 _/
B5T B MIBNff

.JUCtlKMal
1 «ans 1

NEEHSHBI
-&

r-44

fM

Figure 17

Interprocessor Bus

32k « 16b
SRAM
Weigh!
Memory

IlS hil Weight ■ k S

' 1-H
16bx16D
Multipler
with 35b

Accumulator

35 bit Activation

Address COT-ID
Unit

16 bit Neuron Vilue

32kX16b
SRAM

Program
Memory

/'sL/"\

> ' I>og?»m Control
~~Y. Una

15 bit Address

Figure 18

1000
x 32b
FIFO

wttli Bus
Arb Logic

64kx16b
SRAM
Function
Memory

16kx16b
Dial Port
SRAM
Neuron
Memory

SOFTWARE REQUIREMENTS - A FUNCTIONAL DISECTION LEADING TO A
PROPOSED DESIGN FOR IMPLEMENTATION

• Agent will not be specific to any particular digital network, but will be
appropriate for any digital network where it can intercept and alter messages to
and from all nodes on the network.

33

Agent will be a software agent in structure.

Agent will be able to run under any common operating system.

Agent, in the engineering design, does not require any particular computer
language or programming style.

Design & Architecture must support modular concepts of engineering and be
adaptable to future enhancement / expansion.

The design of Agent should be as general as possible within the constraint of
performing within the tactical network environment and Link-16.

The software and design should be readily adaptable to major link component
upgrades, as well as future systems and technologies.

Agent control should be distributed rather than centralized.

The Agent must be instantiated on every node in the link.

The Agent must not require a special or central node for control or any other
purpose.

The Agent can continue to operate correctly with the loss of a number of
transmitters or receivers.

Functions & Operation

Agent will be able to perform all known heuristics (e.g., delta messaging, update
bundling, extrapolated updates, and so forth), and be extensible to other
analogous techniques as they are developed.

Agent must decouple its processing components from its knowledge of link rules
and operations, so that a simple substitution of link rules and operations can
enable it to work with other tactical links (e.g., Link-11, Link-4A, Link-22).

Instantiations of Agent will be able to communicate with each other in order to
optimize their operations.

Communications between instantiations of Agent should not be visible to host
processing systems and the C2P (JTIDS, of course, will be aware of these
transmissions).

Inter-agent communication should not in itself constitute a significant burden to
link operations (that is, should consume relatively little bandwidth or link

34

overhead).

D. FUNCTIONAL REQUIREMENTS

These requirements are specific to Link-16, but many may apply to other digital

networks.

1. Agent will increase the effective bandwidth of one or more Link-16 NPGs.

a) Agent will be able to measure the message loading within an NPG.

b) Agent will be able to detect when the message loading reaches, or is about to
reach, saturation.

c) Agent will be able to selectively employ an heuristic or combination of
heuristics to reducing the loading within an NPG (and, by so doing, increasing
the effective bandwidth).

d) Agent will rely on Time Slot Reallocation (TSR) to distribute the additional
effective bandwidth to other purposes, including RTR messages.

2. No "rules of the link" will be violated by Agent operations.

3. Agent operations will degrade operations within an NPG to the minimum extent
necessary to prevent or delay NPG saturation.

a) Agent will employ lossless techniques whenever possible.

b) Agent will employ lossy techniques only when necessary to avoid saturation.

c) Agent will explicitly manage NPG degradation due to its operations.

d) Agent will employ lossy techniques only when such losses are operationally
acceptable.

4. Agent will accommodate all current and planned users of J-Series information.

5. Agent will not delay the transmission of J-Series messages beyond the point of
military usefulness to the receivers within the tactical context.

6. Agent will be able to function transparently on the bus that leads to or comes from
the JTIDS terminal (when implemented in a JTIDS environment).

7. Agent shall work when implemented on Link-16 but not be specific to Link-16. It
should readily be reconfigurable to operate within other tactical links.

35

8. Agent will not fail or degrade if one or more nodes unexpectedly drop off the link.
There will be no main or central node.

9. Agent will be able to operate successfully in an environment with degraded
connectivity (that is, one or more receivers fail to receive a complete message stream,
probably due to loss of line of sight).

10. Agent will be able to measure its own effectiveness and dynamically alter its
operations in response to those measurements.

11. Under no circumstances will Agent operations cause an erroneous J-Series message
to be received at the host component.

12. Agent will provide a complete tactical picture within militarily-acceptable intervals,
which may be context sensitive.

a) To platforms recently entering the link.

b) To passive listeners.

36

E. KNOWLEDGE-BASED COMPONENTS

1. General

The knowledge-based components for Agent are especially designed for Agent

operations. Many changes from the usual knowledge-based paradigms were necessitated by the

need to do more than simply recognize situations, but also to perform actions in response to

those situations. Therefore, this section is designed to describe the special properties of the

knowledge-based components so that, during detailed design, appropriate tools can be properly

designed (e.g., translators from KIF to Agent form, translators from Agent form to semantic

networks, and the inference engine).

2. Semantic Networks

Facts are truth assertions used either to create or edit a semantic net, or provide the input

to inferencing. They are also used by the metarule functions. It is assumed that the reader has a

general knowledge of semantic networks, facts, production rules, inference engines, and other

related terms used in artificial intelligence.

a. The Semantic Network

Underlying the facts and rules of Agent is the concept of the semantic network. This

network is created within global memory available to any of the processes (and processors) of a

single instance of Agent. The semantic network is created at agent initialization by the use of

facts with an expanded grammar. For example,

A message is_a nullclass
The value facet of the maxdelay slot of the message is 25 ms

The first statement creates a object called "message" and assigns it with an "isa"

relationship to the null class or object (which is created automatically in shared memory). The

37

second statement creates a slot called "max_delay" within the message object. A component of

the initialization process creates this semantic network in persistent store (using IBM's ABE

terminology).

In the present design, this network cannot be added to during agent operations. Although

"is_a" statements during initialization create classes, "is_a" statements in rule consequents create

instantiations (or objects).

The inference engine "looks up" values in the semantic net when antecedents reference

slots in the semantic network, and "sets" values in the semantic net when consequents fire.

Null Class

Message History
Record

Housekeeping
Message

AgentLink
Messages

Formatted
(J-Series)

Agent-to-Agent

Output
Message

Temporary
Message

AgentLink
(Status)

Raw
Stream

Encoded
Stream

J3.2
Air Track

J2.2
AirPPLI

J3.3
Surface Track

Figure 19, Agent Semantic Network

b. Slots and Objects

(1) NULL slots and the NULL object.

A special object is always present at the top of the semantic network, the null frame (or null

class or null object). All classes and instantiations are subclasses of the null frame. It has many

uses.

It is awkward to always have to explicitly refer to a slot reference in the rules:

38

The <slot name> of the <object name> is <value>
To simplify where possible, the <object name> always defaults to the null object. For

example,

The rules below use this construction often:

IF Agent is operating

This usage refers to the "Agent" slot of the null object, whose value might be

"operating." On the other hand, "The mode of Agent is operating" refers to the mode slot of the

Agent object.

(2) Slot References

A slot reference is of the following formats:

<frame>
<slot> [<frame>]
<slot> [of ANY <frame>]
<slot> [in ANY <frame>]
[THAT] <frame>
[THOSE] <frame>

If the name of the slot is omitted, then the default slot of the named frame is referenced.

If the name of the frame is omitted, then the null object is assumed. So the following are slot

references:

1. The door
2. The door of the house
3. The door of ANY house
4. THAT | THOSE door

In the first case, since the name is omitted, the slot is part of the null object. In the second

reference, the slot is part of the house frame. If both are used they reference different values. In

the third form, the slot reference is to the set of all slots of all instantiated houses. In the last

form, which is always paired with one or more ANY constructions, the reference is to all slots

referred to by the matching ANY constructions.

(3) Dynamic object and slot creation

Note that these constructions do not create slots or objects in antecedents, but do create

slots and objects in consequents. If there has been no statement such as

THEN Agent is operating

39

there is no "Agent" slot in the null object when

IF Agent is operating
is encountered by the inference engine. Therefore the test fails and the slot is not created.

(However, the slot could have been predefined and initialized during Agent initialization—the

point is that it doesn't have to be.) This kind of dynamic object and slot creation makes it much

easier to write rules where perishable knowledge is involved, and, in fact, is the preferred way of

writing such a rule.

FACTS

General Forms

Facts in Agent are references to a semantic network. Facts consists of the following

forms:

<slot > [of <frame>] declarative operation> <value>
<slot > [of <frame>] <relationship> <frame reference>
[<facet >]of <slot > [<frame>] declarative operation> <value>

The <frame> refers to the class or object itself, the <slot > is the name of a slot within

that frame. The <facet> refers to a facet within a slot. Items within square brackets are

optional—when omitted, the reference defaults to the null object. Facet references are only used

in building the semantic network, which takes place at Agent initialization time.

Sample declarative operation:

is

Sample relationships:

isa
has a

Below are a set of sample facts, with their forms in parentheses:

The default_facet of the weight slot of the airplane frame is 32,000 lbs (3)
The house is green n)
A house isa building (2)
A building hasa door (2)

40

Note that there are a number of words used for readability that are completely ignored by

Agent, such as "the" and "a."

In a later section of this report, the use of facts in rules is explained and differences in

syntax and semantics are noted. This section does not explain how the various forms of facts are

used. It is often helpful to have plural forms of slot or frame names. When defining a semantic

net, for example, the following form can be used:

The house(s) isa building(s)

This creates a house frame with a synonym for house being houses. There is no meaning

associated with plural forms—they are used precisely as singular forms.

2. FactSets

FactSets are collections of facts referenced by name. See under MetaLanguage.

G. PRODUCTION RULES

1. General Forms—Antecedents and Consequents

The general forms of Agent production rules are as follows:

1 • <Slot reference> <operation> (<value> [<units>]) [ONLY | ALSO]
2- <sl<>t reference> <comparison> <value [<units>]) [ONLY | ALSO]
3- <Slot reference> <comparison> <slot reference> [ONLY | ALSO]
4- <directive> <slot reference> I <frame reference>

2. Comparisons

The following comparisons are defined in Agent:

is - a positive statement of truth
isn't - a negative statement of truth
is_greater_than - >
is_greater_than_or_equal_to - >=
is less than - <

41

islessthanorequalto - <=
isequalto - numeric equality
isnot - logical negatation
isidenticalto - non-numeric equivalence
isthesameas - non-numeric equivalence, less forceful than equality
is_different_from - non-numeric non-equivalence, less forceful than is_not

These all have meanings which are applied on a concete, and abstract formulation of

comparisons.

3. Antecedent format

An antecedent appears in the following format:

1 • <slot reference> <comparison> <value> | <slot reference>
2. There is <object >

The following are examples of antecedents of the first form:

IF The color of the house is green
The color of the house isthesameas the color of the barn
The mode is delta_messaging
THAT message isa J3.2

These antecedents, when referenced, find the appropriate slot reference, perform the

comparison, and return a truth value. It is important to note that they change nothing. In the last

antecedent shown above, the "isa" checks to see if any message signified by the THAT

construction is instantiated as a J3.2 message (or instantiated from one of its subclasses). An

object can have an "is_a" relationship to any number of classes.

Each antecedent is implicitly connected by logical conjunction. However, an OR

construction can be used when parentheses are added:

IF (The color of the house is green OR
The color of the house is red)
The color of the house is_the_same_as the color of the barn
The mode is delta_messaging

This form, when compiled, results in two separate rules with no OR construction.

Antecedents of the second form are special. The parser, upon seeing "There is" beginning

an antecedent, checks to see if there have been any instantiations of the object references, and

42

returns TRUE if there have been, FALSE otherwise. In addition, there is an implicit ANY

involved, in that subsequent uses of THAT will refer to the instantiated objects.

4. Consequents

<slot reference> <operation> <slot reference> | (<value> [<units>])
The operations in consequents change the values of slots or create new relationships. The

defined operations are as follows:

is
isa
hasa

Consequents are executed in the order given.

5. Sample Complete Rule

IF (The color of the house is green OR
The color of the house is red)
The color of the house isthesameas the color of the barn

THEN The house is desirable
The price of the house is unknown ONLY

This rule is provided to illustrate many of the bad things one can write in rules. For

example, no specific house is referred to. Therefore they will fail since the do not refer to

instantiations. The rule should have been written as follows:

IF There is a house
There is a barn
(The color of THAT house is green OR
The color of THAT house is red)
The color of THAT house isthesameas the color of the barn

THEN The house is desirable
The price of the house is unknown ONLY

In this version of the rule, the consequents are vague. Since, in the first consequent, we

refer not to "THAT house" but, simply, "house," the value "desirable" is concatenated (see

below) with other values in the default slot of the house frame, if there is one. Since this is a

43

modification to declarative knowledge, all houses would default to "desirable" as a result.

Similarly in the second consequent. Here's another try:

IF There is a house
There is a barn
(The color of THAT house is green OR
The color of THAT house is red)
The color of THAT house is_the_same_as the color of barn

THEN The appeal of THAT house is desirable
The price of THAT house is interesting ONLY

Note that the first two antecedents identify the set of instantiated houses and instantiated

barns. But the "color of the barn" reference will probably cause a problem since what we are

probably interested in is the set of houses that have barns of the same color. So, finally, here is

the form that seems correct:

IF There is a house
THAT house hasa barn
(The color of THAT house is green OR
The color of THAT house is red)
The color of the barn of THAT house isthesameas the color of

THAT house2

THEN The appeal of THAT house is desirable
The price of THAT house is interesting ONLY

Note that "has_a" relationships amount to a special type of slot reference (special in that

all of the slots and other linkages of the barn frame are now part of the house frame).

H. CONCATENATION IN THE RULES

Multiple values can be assigned to the same slot simultaneously.

THEN The house is green
does not refer to any house in particular (it isn't "THAT house is green") and there is no

object reference. Therefore a slot is created in the null object called "house" and its value is

assigned to be "green". (Slots are automatically created when referenced—they do not all have

to be predefined in the semantic net creation step of agent initialization. They are never

removed.)

- Two uses of THAT in the same antecedent cause a pair-wise comparison.

44

THEN The house is green
The house is big

The above concatenates two values in the house slot of the null object, "green" and "big."

Therefore,

IF The house is green
succeeds, because "green" is one of the slot values.

IF X
THEN The track of that message is xxxxx

The track ofthat message is yyyyy

In this construction, the message referred to as "that" message now carries both track

IDs. This is because the slots of the object3 concatenate values assigned to them rather than

replacing them by default. A query as to the track ID will match as long as one of the

concatenated values match.

If it is desired that only one value be present in a slot, there is a directive for that in the

production grammar: ONLY. It looks like this:

IF X
THEN The track of that message is xxxxx

The track ofthat message is yyyyy ONLY

Of course, the assignment of xxxxx wouldn't actually be in the real rule if ONLY was

meant. When a consequent ends in ONLY then all concatenations are removed and the single

value is assigned to the slot.

The temporary message is where all operating processes/processors assemble a batched

message. There needs to be only one of these, as each process/processor will contribute to a

single output message. They only need to lock that message while they add to it. Also, if the

message is long enough, or the oldest update has aged enough, the message becomes an output

message and is deinstantiated as a temporary message. Any process with the authority of adding

to the temporary message can make this switch. Also, this is how the exception handler outputs a

message when it senses and exception condition.

1 An "object" can either be a class (frame) or an instantiation of a class (frame) in this document.

45

I. ANY/THAT/THOSE CONSTRUCTIONS

1. General

When ANY appears in an antecedent, the inference engine creates a list of all objects that

satisfy the specified conditions (if any). Thus,

IF The status of ANY message is late
will create a list of the internal identifiers of all late messages. The THAT (or THOSE)

construction then refers to all items in that list. Therefore,

IF The status of ANY message is late
THEN The status of THAT message is output

changes the status of every instantiation of message with "late" status to "output" status.

If there are no objects (instantiations), then ANY fails.

2. Subsets

IF The status of ANY message is late
The type of ANY of THOSE message is video
The time of ANY of THOSE message is today

RULE THOSE messages are no good

In this instance, the THOSE in the consequent refers only to "late video messages

generated today." In this construction, the antecedents have order (each subsequent ANY creates

a subset of the previous ANY). However, in the consequent, only the smallest subset is referred

to. This is the only instance in the grammar where the antecedents must be ordered. Therefore it

may take several rules to inference properly.

46

3. Evaluation Order

A slot has one or more facets. Every slot has the value facet, which, unless initialized

when the semantic net is initialized, is initially empty. However, the convention in Agent is that

there are two other facets in every slot: the default slot and the ifneeded slot.

The default facet contains a value that is used if the value facet is empty. In general, rule

bases to do alter the default facet. There is a value in the value facet and a rule causes that value

to become empty, the inference engine will use the default value at its next opportunity, if there

is a default value.

Finally, an "ifneeded" function belongs to the third standard facet. If the first two facets

are empty, and there is a function in the if needed facet, that function will return a value. So

when referencing a slot, the following order is used:

1. value
2. default
3. ifneeded function

If the rules writer knows that the if needed function need only be called once, the

following construct can be used:

The temporaryvalue is the cost of THAT message

where the "cost" is calculated with an if needed function. Then "temporaryvalue" can

be used until the cost needs to be recalculated. Using ifneeded functions is best when the value

returned must be measured from a constantly changing world model.

IF The distancefromlanding of the aircraft is_greater_than 20 miles

In this case, each time the distancefromlanding slot is accessed, the ifneeded function

provides the current answer.

47

J. DIRECTIVES

Directives are special words which perform special actions in consequents of rules. They

have a different syntax that ordinary consequents. Examples are DEINSTANTIATE, LOCK

UNLOCK, MOVE, INFER, etc.

IF ANY message is late
THEN DEINSTANTIATE THAT message FROM <frame>

1. DEINSTANTIATE

DEINSTANTIATE <object> [FROM <frame>] performs the opposite action of "is_a" in

a rule consequent. Instead of creating an instance or object, it deletes it. I know of no standard

inference engine which allows deinstantiation, but we have to have it in order to get rid of

messages that no longer have any value to Agent processing.

The part of the consequent that follows the DEINSTANTIATE is parsed according to the

normal grammar. So that, in the above case, "THAT message" refers to the subset created by the

antecedent use of ANY.

If no FROM clause appears, the object is removed from all of its is_a links. If a FROM

clause appears, the object removed only from the listed frame. Thus an object, such as a

message, can be instantiated in a temporary manner to a class, instantiated to one or more

additional classes, and then removed from the instantiation list of the original "is_a" assignment.

2. LOCK/UNLOCK

LOCK <shared memory> | <class> | <object> | <variable>
prevents all access to a sub-tree within shared memory, or to a named variable. Although

LOCK can apply to any sub-tree, it generally applies to the whole of shared memory (which is a

sub-tree of the null object) or to the instantiations of one or more messages. When other

processes use a construction that accesses or changes a locked sub-tree, they can either hang

48

until unlock or fail. Hanging until unlock is easier to handle and understand than failure, so the

design will cause the other processes to pause until unlock.

One tricky part of LOCK/UNLOCK not shown in the rules below is that after the lock

succeeds the rule has to be repeated because the lock of some other process could have

succeeded before any given lock takes place. Thus the conditions that prompted the lock could

no longer apply. Thus, if I locked an aged entry message, I could very well find out that some

other process had marked it for encoding (so it was no longer an entry message). In practice that

means that those messages identified by the ANY in an antecedent are no longer part of the

THAT/THOSE of the consequents after locking. Which is why, after locking, the rule has to be

repeated. These repeats are not shown in the rule sets developed for the engineering design for

the sake of simplicity, but will be part of the detailed design.

3. NUMBEROF

NUMBEROF <frame> returns the number of instantiations (not classes) associated with

that frame or any of its decendents. Thus

NUMBEROF messages
returns all of the messages that have been instantiated in the semantic network below the

"message" frame.

NUMBEROF THOSE messages
will return the number of message as subsetted by previous ANY clauses.

4. NAMEOF

NAMEOF is used to return the name(s) of instantiated object(s). There are times when it

is important to refer to specific instantiations whose names may have been assigned and not

stored.

NAMEOF THAT message

returns the true message name. NAMEOF is generally useful in conjunction with

variables, as in

name is NAMEOF THAT message

49

The status of $name is empty

If NAMEOF matches multiple names, then all are returned.

5. INFER

A rule base can initiate inferencing on another rule base, pausing until the inference

engine concludes. This not only makes the rules easier to read, but also eliminates inferencing

when it isn't needed. When INFER is completed, the facts instantiated by the call become part of

the facts available to subsequent rules in the calling knowledge base. It looks like this:

IF X
THEN INFER knowledge-base

It is assumed that the facts needed for the named knowledge base are the ones available

to the calling data base (although the named knowledge base can trigger a function that generates

additional facts, if it needs to). The resulting facts simply become available to subsequent rules

and are returned to the calling base (or to the metarule level) as the results of the inferencing

process.

6. PARALLEL

The PARALLEL directive allows certain rules to fire concurrently with other rules if the

system has multiple processors available to it. The use of PARALLEL is discussed in the section

below concerning automatic rule sorting.

K. SPECIAL TERMS

There are other terms, such as NULL, MINUS, TIME/ and FIELD that are like

directives except that they are part of the normal rule syntax.

50

NULL

NULL is used in facts and rules to erase any values assigned to a slot.

The color of the house is NULL ONLY
resets the value to the empty set. This usage is completely different and distinct from the

null class to which all objects and instantiations are related. In general, if NULL follows "isa,"

it refers to the null frame. In all other forms it refers to an empty value.

Implementation is automatic in that if no value is assigned to a slot called "null" in the

null frame, the result will be to return a null value. Expressions that would set a value into a slot

called "null" are disallowed.

2. MINUS/PLUS/DIVIDED_BY (Slot Arithmetic)

For example, in the construction,

IF The status of ANY message is entry4

The TIME/ minus the time of THAT message is_greater_than the
message_processing_time_limit

a slot reference appears on either side and a numeric value of the slot is expected. If the

values in the slots are not numeric the antecedent simply fails. If they are numeric, then

subtraction takes place and a value results. This value can be stored explicitly, as follows:

The TIME/ minus the time of THAT message is the
delaytime

This expression puts the difference into the delaytime slot.

The idea works for other embedded arithmetic operations on slots. There is however a

different form of arithmetic in the rules, which is described below.

FIELD

FIELD (source or destination string, starting position, number of characters)

4 These rules cover the problem of an entry message (left or right) that has sat too long without being processed
(encoded or decoded).

51

FIELD represents a substring delimited by a starting position and a number of characters.

The source can be an input buffer or a slot value. The starting position starts at 1. If the number

of characters field is set to zero, then the all available characters from the starting position to the

end are matched and the number of such characters is returned in the third parameter. If the

number of characters is set to a positive value, that number of characters is matched. Thus

NCHARS = 0
string of message is FIELD (left_input_buffer,l,nchars)

transfers the entire contents of the input buffer to the string slot of the message frame,

and returns the number of such characters to the nchars parameter.

In Agent initialization, the following statements might appear:

A messageformat is_a NULLCLASS
A J3.2 isa message_format
The track-position of a J3.2 = is 14
The track-length of a J3.2 is 22 characters

This declarative knowledge, stored in KIF format, is persistent knowledge. That is, it is

not normally changed by consequents of rules as they are fired by the inference engine. They are

usually part of the invariant part of the semantic net in shared memory. (The inference engine

has the capability of dynamically changing persistent knowledge, which means that it is capable

of learning, although Agent does not employ this feature.)

In this way, with the use of field, any message can be decoded from its character string

format (raw format) to a set of slot values within an instantiated object. The knowledge of how

to do this is external to the agent, so that the agent can operate on any set of messages without

changing its internals. The only assumption is that the message is in string format and the field

positions are fixed. However, a version of Agent can be built that can deal with variable format

messages as well as long as sufficient information is present in the message to be able to

determine field starting positions (and, possibly, lengths).

4. NCHARS

NCHARS, which takes no arguments, returns the number of characters in the left or right

input buffer.

52

L. VALUE ARITHMETIC

Simple arithmetic is allowed when setting slot values. For example, sometimes a counter

needs to be incremented. For example,

THEN The time of the message is the time of the message + 1

takes the time of the message, adds one to it, and stores it back in the time slot. However,

in this case the default is ONLY. There is another directive, called ALSO, which performs slot

concatenation. This can be rather interesting if misused. If I write

THEN The time of the message is the time of the message + 1
The time of the message is 23 hrs5

Then I will have a single value for the time of the message, 23 hrs, because the parser

interpreted these consequents as follows:

THEN The time of the message is the time of the message + 1 ONLY
The time of the message is 23 hrs6 ONLY

The second use replaced the first. If I had written

then

THEN The time of the message is 22 hrs ONLY
The time of the message is 23 hrs + 1 ALSO

IF The time of the message is 23 hrs
The time of the message is 23 hrs + 1

would succeed! Recall that in non-numeric value assignments the grammar defaults to

ALSO.

A special but important variation of value arithmetic takes the following forms:

<slot> = <slot> <arithmetic operator> <value> | <slot>
<slot> = <arithmetic expression>

The following are examples of this form of arithmetic:

C = C+1

5 The units after a value are stored but ignored. If the right-hand side of a consequent is can be interpreted as a
numeric operation, it will be. Any characters after the numeric are considered to be something like units, stored
but unevaluated.
6 The units after a value are stored but ignored. If the right-hand side of a consequent is can be interpreted as a
numeric operation, it will be. Any characters after the numeric are considered to be something like units, stored
but unevaluated.

53

C= 23.5/1

Thus counters can be employed as needed. Note that the slot reference is in the null

object or frame, and that ONLY is implied. As written, these counters are global.

M. CONCATENATION IN NAMES

The use of square brackets denotes concatenation. In Agent, concatenation is used to

produce an unique identifier for an object. Thus,

n =n+ 1
message[n] isa update

increments the counter, concatenates the value of that counter to the string "message,"

and instantiates the object under the concatenated name. This is more of a bookkeeping facility

than a necessary one, in that one could design the semantic network to have multiple objects of

identical names, but it results in a difficult design with no advantage. Once the message has been

instantiated as message[n], other rule sets will pick it up or ignore it on the basis of the values in

its slots rather than by its name.

N. VARIABLES, POINTERS, AND INDIRECTION

Although the use of slots in the null frame is rather helpful, coordinating asynchronous

processes requires some kind of local variables in the rules. For example, in the example in the

section above, n is a slot of the null frame. However, if two identical processes are operating,

they will not be able to use this mechanism easily. Therefore any identifier that begins with an

ampersand becomes a local variable available only to the rule base in which it appears.

&n = &n + 1
message[&n] isa update

In this case, local space, space not in global shared memory, is allocated for n, and that

allocation is only available within the scope of the process that defines it. Within the operations

of that process, n is global. That is, it retains its value once assigned. In some sense it is a

permanent variable outside of the scope of the semantic network.

54

Any structure can be stored in such a variable, including messages. The inference engine

evaluates the variable to a structure or a value and substitutes that structure or value in the rules.

If, however, I assign a complex structure, such as a message, to a variable, a copy of the original

is created. The original itself is untouched.

The pound sign is used for pointer variables. One can write, for example,

#n is message[n]

In this case the pointer refers to the original message and not to a copy of it.

The dollar sign ("$") is used to indicate indirection. For example, if I use a slot in the

null frame to store the name of an object I have no way of getting to the contents ofthat object.

THEN n is messagefm]
The status of n is idle

The first use of n is as the "n" slot of the null frame. The problem here is that in the

second line "n" is meant to be the value of the n slot of the null frame (which is a message). A

slot cannot have a slot. Therefore, to indicate that I want n to be evaluated before the rest of the

expression, I use a dollar sign:

THEN n is messagefm]
The status of $n is idle

The inference engine effectively substitutes "messagefm]" for "n" in this case, since

"messagefm]" is the value of n.

O. REASONING WITH UNCERTAINTY

Although there are many forms of reasoning with uncertainty that can be explicitly added

to the consequents of production rules, none are required in this application.

P. THE AGENT ENGINE

The inference engine must be custom built for this project. In addition to the

constructions documented in other parts of this document, it will have other components

55

important to real-time efficiency and embedded applications (in this case, operating to support

an intelligent agent).

1. Rule Order and the Academic Paradigm

The tradition has been that rules can be added to knowledge bases as they are constructed

without regard to the concepts we normally think about in "structured programming." In fact,

relatively arbitrary rule ordering and entry (via rule editor) is often seen as a virtue. To make this

feature possible, inferences engines repeatedly cycle through the rules until one complete pass is

made in which no new inferences are made. Given a pathological rule ordering, this strategy can

make inferencing very slow, which cannot be tolerated'in a real-time application.

Nor is it necessary. The rules in the Agent Inference Engine are ordered (normalized) so

that a slot in an antecedent never appears before its uses as a consequent. Thus the rule order is

always

and never the reverse:

IF A
B

THEN C

IF C
THEN D

IF C
THEN D

IF A
B

THEN C

In the first case the inference engine examines the two rules and quits. In the second case

it has to process the rules three times: the first time fires the second rule, the second time fires

the first rule, and the third time fires no rule (and, so, terminates inferencing). A complex

knowledge base can therefore be either expensive or cheap depending upon the ordering of the

rules. Other than tradition, there is no argument in favor of arbitrary rule ordering. It is simply a

bad idea.

56

Secondly, ordered rules are much easier to read. There is no reason why rules cannot be

read from top to bottom in a single pass—which is the well-proven idea behind structured

programming. Easy to read, easy to maintain, less apt to have bugs. Importantly, it is much

easier to tell when a rule set is complete when it is normalized.

2. Automatic Rule Sorting and Parallel Processing

Note that recursion can span over many rules making it difficult to spot. For this reason,

in the final implementation, the rule editor associated with Agent will automatically sort the

rules, in normalized order, and detect any circularities in the process. This is not a trivial thing in

that rules can recursively activate the inference engine on other rule bases that can instantiate

facts that create recursions (or affect the rule ordering).

A certain subset of the rules being sorted must occur in normalized order. On the other

hand, there can be rules between elements of the subset in which the order is irrelevant. These

rules may be tested for firing concurrently if multiple processors are available. The rule sorting

mechanism can insert the directive PARALLEL before a group of such rules, and END

PARALLEL after them. The inference engine can then send each of the rules between the two

directives to special instantiations of itself operating on different processors. The END

PARALLEL directive pauses if not all of the rules in a parallel section have been examined. The

result is a much faster engine, better suited to real-time applications. In general a long rule base

will have many such opportunities for parallel processing. The sorter makes them automatic.

3. Functions Within Consequents

Another great benefit of normalizing rule bases is that effector functions can be used in

the consequents of ordinary rule bases, knowing that they will take action predictably (that is, a

function in a rule will be invoked before a function in a subsequent rule). Thus the Agent

inference engine can not only recognize situations, but it can also safely take action to alter

things outside of itself.

57

4. Nested Inferencing

As mentioned in the description of the INFER directive, knowledge bases can call other

knowledge bases. This nesting can be taken to any depth, as needed. The idea is to partition

knowledge bases for clarity and efficiency. For example, a call to INFER presumes various

facts, so that the rules being activated to not have to test for their truth. They simply assume that

if they are being activated, certain conditions hold. This makes for much simpler rules. For

example, within the confines of a Link 16 network, bandwidth availability, as dictated by the

spread spectrum architecture of a given network configuration, places limitations upon the

volume of data, and periods of transmission and receipt. To that end, the INFER in this instance

is that the Agent is to process all information, and forward, without regard to the Link 16

constraints. Another portion of the Link, is available to carry out the required network

transmission / receipt functions.

5. Compiling

Rule sets can be compiled in the Agent system or they can be run interpretively. The

reason rules can be compiled is that slot references for all dynamic objects are fixed (or can be,

if modifications to the class structure of the semantic network during run time are disallowed).

Without compilation, in order to find a message instance it is necessary to search through the net

starting with the null object. Once compiled, however, the inference engine can go directly to the

instantiations. Any null object slots that are predefined can also be referenced in this way. Slot

items that are defined during run time require dynamic look up.

The advantage of interpreting the rules is that a standard validation mechanisms can be

used, such as automatic rule tracing and query (e.g., "Why did Agent force transmission ofthat

message when it did?"). The compiled version has no such features and is designed solely for

efficiency. Thus the interpreted version is used for building and debugging, while the compiled

version is used in the fielded versions of Agent.

58

6. The WHILE Construction

There are times when it becomes necessary to have the inference engine iterate over a set

of rules in a knowledge base. The WHILE construction allows this. Its form is as follows:

WHILE <truth expression>
BEGIN [name]

<rules>
END [name]

While the expression remains true (e.g., "The house is red", "The value is_greater_than_

10"), the rules between BEGIN and END are iterated. An EXIT appearing within the scope of

BEGIN and END causes the WHILE to be retested—it does not exit to the meta controller.

The WHILE construction can be nested indefinitely for complex processing. In Agent,

where many updates can be bundled within a single Agent message, the WHILE construction

enables a single set of rules to decode all of the updates without having to return to the meta

language level.

The name on BEGIN or END is entirely optional. Its use enhances readability. However,

if a name is given on the BEGIN the identical name must be given on the corresponding END.

7. BREAK

BREAK [string] causes a jump to the test of a WHILE statement, or an exit from a

knowledge base to the meta level if not within a WHILE statement. The string is optional (for

readability).

Q. SHARED MEMORY

Shared memory references that common memory utilized by an Agent on a singular

node. The processes of an Agent communicate through global, shared memory (RAM). Both

persistent and perishable knowledge is stored in shared memory. Persistent knowledge is created

at initialization with a special form of facts, while perishable knowledge is created by the firing

of rules during inferencing.

59

There are many uses of shared memory. For example, shared components of the

architecture maintains the operating mode, network loading factors, and encoding scheme in use

in shared memory. The Shared Component is the only process that sets these slot values within

shared memory. All other components simply reference them.

Also, if there are multiple processors operating, any available processor in the delta

components can take responsibility for processing a given entry message simply by locking it

and changing its status.

Since output messages to the terminal must be batched (since the terminal normally sends

three or six word transmissions), there exists a single output message object that all processors

share. Each contributes a delta update until the message is long enough for effective

transmission.

Various locking mechanisms, described above, make this sharing possible through a

crude form of synchronization. Shared memory resembles a blackboard structure when multiple

processors are involved, because each scans shared memory to determine what to do.

Far example, an output process constantly looks for messages with status "output."

(There is one output process for each direction (to terminal, to host).) Two antecedents are

enough. In the following case, the right output processor selects its messages:

IF The status of ANY message is output
The direction of THAT message is right

THEN LOCK that message
THAT message is_a outputmessage
DEINSTANTIATE that message FROM temporarymessage

R. META CONTROL AND META LANGUAGE

As will be shown in the detailed descriptions below, the meta language is generally rather

simple in implementation. Agent has been designed to minimize the complexity of the meta

language needed to drive it.

The metalanguage is interpreted and is loaded into Agent at initialization time.

A small run-time kernel for each process is needed to interpret and execute the meta rules

for that process.

60

1. Meta Control Functions

a. LOOP

(LOOP (<fact>) (<factset>) (<scope>))

Repeatedly executes the scope as long as the fact is true in the factset.

b. EVENT

(EVENT (<fact>) (<scope>))

EVENT executes the scope whenever the fact is true in the default or global factset. This

is a way that system events (such as "shut down") can affect running processes. EVENT differs

from LOOP, in that EVENT is triggered by "true" condition in the default, or global factset.

LOOP is a directed (program) statement, which will execute when directed, and continue

execution as long as the determining fact is true.

c INFER

(INFER (<knowledge base>) (<input facts>) (<output facts>))

INFER causes the knowledge base specified to be processed using the input facts. The

result of the inferencing process is the set of output facts.

d. EXIT

(EXIT) causes the process to terminate.

c. CREATE

(CREATE (<factset>) (<factsetname>))

CREATE explicitly creates a factset with the name supplied. Factsets are also created

implicitly be reference.

61

/ RELEASE

(RELEASE (<factset>))

This deletes the named factset.

g. ADDFACT

(ADDFACT (<fact>) (<factset>))

Adds a fact to a factset.

h. DELFACT

(DELFACT (<fact>) (<factset>))

Removes a fact from a factset.

L IS_TRUE

(IS_TRUE (<fact>) (<factset>))

Returns TRUE if the fact is true in the factset.

j. IS_FALSE

(IS_FALSE (<fact>) (<factset>))

Opposite of TRUE.

k. IF

(IF (<truth function>) (<scope>))

IF executes the scope when the truth function evaluates to true. Generally, this will be

seen as follows:

(IF (TRUE (<fact>) (<factset)) (<scope>))

62

L MERGE

(MERGE (<factsetl>) (<factset2>) (<factset3>))

Causes the facts from factsetl to be combined with the facts in factset2 to form factset3

(which can be the same name as either of the first two sets). If a fact is true in either factsetl or

factset2 then the true fact is in the output factset3. If both factsetl and factset2 are true, both

truths are added to the output factset3. If neither factsetl or factset2 are true, then this instance

of the merge produces a null output, or no merge for this fact only.

m. EFFECT

(EFFECT (<function>) (<parameter list>))

EFFECT calls the function given with the parameter list given. This is a catch-all for

any function that is useful.

n. NOTIFY

(NOTIFY (<string>))

Sends a string to the operator console.

63

64

IV. AGENT ARCHITECTURE

"Left" side
TIMs
Host.

Scalable Global Memoty
I I I I I I I I I I I

Shared Message Structure
"Right" side

TOMs
Transmitter

Qateway Gateway

Figure 20, Agent Architecture

LINK MANAGER

The Link Manager enforces the time rules of the network, as well as performing

housekeeping functions for Agent. If only the Shared Message Structure and the Link

Manager existed, the network into which Agent was inserted would function normally.

Messages would be intercepted from the left (host) or right (terminal), be placed into the

structure, age, and then be asserted on the output network or bus in the correct direction

(that is, to the host or to the terminal).

65

Scalable Global Memory

1 7
! S
t 2 Shared Message Structure

"Right" side
TOMs

Transmitter

Gateway Gateway

Figure 21, Link Manager

Agent, at the physical level, is a severance implementation. That is, the network

or bus between the host and the terminal are physically severed, and the Agent hardware

is inserted at the severance point. The software functions by interception. Messages

coming in either direction are intercepted by Agent, processed, and then asserted back on

the network or bus. The messages may be asserted in their original form or in Agent

format. If repetition rate reduction is in effect, outgoing messages (that is, messages from

the host to the terminal) can be deleted by Agent.

Each of the components of the Link Manager is a separate process. They may

very well be implemented on separate processors, in order to meet run time requirements.

They all operate asynchronously, communicating indirectly through the Shared Message

Structure.

66

B. SIMPLIFYING ASSUMPTIONS FOR THE PROTOTYPE

It is assumed that J-Series messages of types 3.2 (air track), 3.3 (surface track),

and 2.2 (Air PPLI) are of interest—all others are not. This assumption, as, indeed, all

other assumptions, is entirely rule or fact driven and not internal to Agent.

It is assumed that there is a fixed-length message header in all outgoing messages.

It is assumed that the type of message is in this header as well as in the message itself.

The time the message was originated is presumed to be in the header. There is

also a field in the header that indicates that an outgoing message must be acknowledged.

However, this field is ignored at this time because none of the types processed require

acknowledgment. If a type is at some point handled that does require acknowledgment, it

can simply be passed through as is (it is presumed that such messages are a rare

occurrence).

For simplification, each J-Series message is presumed to be the same length. Each

contains the following fixed-length fields:

•Message Type

•Track Number

•Update Time

•Latitude

•Longitude

Of course, real messages have considerably more fields than this. However, they

would be handled in precisely the same way as the identified fields. It is presumed that

the field positions within the three update types of interest are identical.

The "Update Time" field refers to the time of the observation or update, not the

time the message was originated or the current time. It is also presumed that the time in a

series of these updates is predictable plus or minus a small delta. Therefore an Agent,

looking at the last few update messages, can determine if it has a complete recent

sequence from these times.

67

1. Left Input Process

The left input process is alerted to the arrival from the host of a message. It has

the following responsibilities:

•Receives event notification from system I/O handler (left side)

•Determines message type

•Instantiates the message in shared memory

•If of an interesting type (e.g., one that will eventually be transmitted in raw or

Agent

form by the terminal) it sends it to the Message Store

•Sets the direction to "left"

Sets the status slot to "entry"

a. Production Rules

This knowledge base is identified as "Leftlnput." It requires no facts except the

event type (it doesn't actually need the event type either, if the only event type it handles

is new message).

IF Event is newmessage
THEN LOCKn7

n = n+l
UNLOCK n
messagefn] isa message8

&nchars = 0
The string of messagefn] is FIELD

(left_input_buffer, 1 ,&nchars)9

Type of messagefn] is FIELD (string of messagefn],
position of type, size of type)

ELSE EXIT

7 There are three processes that can create new messages, and all must use unique names to do so.
Therefore they all use the global slot "n" to do this. If the variable is already locked the process hangs
until the variable is unlocked by the locking process.
8 Until we know what type of message we're handling, it will be instantiated simply as a "message."
Later, it will be instantiated properly (using multiple instantiation), then deinstantiated from message (so
that we won't have multiple links to the same message in the same subtree of the semantic network.
*When the third argument to FIELD is null or zero, this is a signal for FIELD to return the number of
characters transferred from a system routine. When the third argument is positive, it specifies the number
of characters FIELD will return. In this case we are interested in the entire message, so nchars is set to
zero before the call, insuring that all of the input data will be transferred.

68

IF
THEN
ELSE

The FIELD (type of message[n], 1, 1) is "J"10

The class of message[n] is interesting ONLY
The class of message[n] is uninteresting ONLY
The type of messagefn] is housekeeping
Message[n] isa outputmessage
The direction of message[n] is right
The status of message[n] is output
DEINSTANTIATE11 messagefn] FROM message12

IF

THEN
ELSE

(The type of messagefn] is J3.2 OR
The type of messagefn] is J3.3 OR
The type of messagefn] isJ2.2)
The interest of messagefn] is targeted ONLY
The interest of messagefn] is nottargeted ONLY

IF The interest of messagefn] is targeted
THEN Messagefn] isa track_update13

DEINSTANTATIATE messagefn] FROM message
The messagetime14 of messagefn] is FIELD (string of

messagefn], position of messagetime, size of
message_time)

The updatetime15 of messagefn] is FIELD (string of
messagefn], start of time, size of updatetime)

The track of messagefn] is FIELD (string of messagefn],
positionoftrack, size of track)

The lat of messagefn] is FIELD (string of messagefn], start
of latitude, size of latitude)

The Ion of messagefn] is FIELD (string of messagefn],
start of longitude, size of longitude)

The header of messagefn] is FIELD (string of
messagefn],!, size of header)

10 Using quote marks ensures that the comparison will be to the character J. Otherwise the comparison
would be to the value found in the J slot of the null frame.
11 Recall that this DEINSTANTIATE removes the message only from the class message. It has also been
instantiated as a track update message and is not removed from class track update. IF there had not been
multiple instantiations, the message would have been deleted by DEINSTANTIATE.
12 Note that we did not instantiate this message as a "housekeeping message" because, unless the actual
implementation gets into buffer management, housekeeping messages mean nothing to Agent
13 Although we could retrieve the message type using FIELD, we already know it has to be "update"
because of the J-series type.
14 The "message time" is the time in the message header used for host-terminal bookkeeping and
checking.
15 The "update time" is the time of the sighting, as produced by surveillance processing. It is separate and
distinct from the message time. "At update time X vehicle Y was at position Z, and the mssage was
created/sent/originated at message time A" may demonstrate the difference in meaning.

69

The direction of message[n] is left
LOCKJ16

J = J+1
UNLOCKJ
messagejj]17 isa raw_stream
The size of messagejj] is &nchars - headersizeout18

The messagetime ofmessagefj] is the messagetime of
message[n]

The status of messagefn] is entry19

EXIT

IF The class of messagefn] is interesting
The value of messagefn] is not_targeted

THEN Messagefn] is_a output_message
DEINSTANTIATE messagefn] FROM message
The direction of messagefn] is right
LOCKJ
J = J+1
UNLOCKJ
messagefj] isa rawstream
The size of messagefj] is &nchars - headersize_out
The message_time ofmessageO] is the messagetime of

messagefn]
The status of messagefn] is output

b. Meta Rules

(LOOP (EVENT20 ("Left Input Message"))
(

(INFER ("Event is newjnessage") ("Leftlnput")
("OutFacts"))

)

16 J has to be locked because the right input process and the decoding processes create such objects and
all have to be unique. Naturally, all processes that create history records use J.
17 Case is ignored in Agent. Case can be used in the facts and rules to make them easier to read.
18 J-Series messages can be of several different lengths. The header is of fixed length for all host-to-
terminal messages. If the trigger is supplied by operating system elements or Gateway, and the number of
characters in the input buffer can be known, then Agent does not have to keep track of the size of each
message type. On the other hand, if the input components do not tell the size of the message, then input
facts must supply the length in characters of each formatted message.
19 All other processes are concerned primarily with the status of a message. Until the status slot is set, no
other process will touch the message being built. As soon as that status is set the rule bases of other
processes may operate on the message.

EVENT waits until triggered by a system process, Gateway, or other process.

70

20

2. Left Output Process

The left output process asserts messages on the network connection leading to the

host computer system. For Link-16, these are known as TOMs (Terminal Output

Messages). Agent messages can also be sent to the host by this process. For other digital

networks where a severance implementation is appropriate, these are messages

originating from the right side.

a. Production Rules

IF

THEN

IF

THEN

ELSE

The status of ANY message is output
The direction of THAT message is left
&pos = 1

The message of THAT message is tobeconstructed
The type of THAT message is J-Series
The string of THAT message is NULL
The string of THAT message is FIELD (the string of

THAT message, &pos, MAKEHEADER())21

&pos = &pos + size of rightheader
The FIELD (the string of THAT message, &pos, the track

ofthat message)
&pos = &pos + size of track
The FIELD (the string of THAT message, &pos, the lat of

that message)
&pos = &pos + size of lat
The FIELD (the string of THAT message, &pos, the Ion of

that message)
&pos = &pos + size of Ion
The FIELD (the string of THAT message, &pos, the

updatetime ofthat message)
The status of THAT message is old
The message of THAT message is constructed ONLY
EXIT "Error—Can only construct update messsages"

IF The message of THAT message is constructed

21 In Link-16, there is a five word header on TOMs, or Terminal Output Messages. MAKEHEADER
creates this legal header. Since the contents of the headers of both TIMs and TOMs is classified, this
function, or, most probably, knowledge base, has been omitted.

71

The type of THAT message isnot J-Series22

THEN FIELD (left_output_buffer, 1, size of THAT message)23

TRIGGER (left_output_buffer, &pos)24

EXIT

IF The message of THAT message is constructed
THEN LOCK J

J = J+1
UNLOCKJ
messagefj] is_a rawstream
The size of raw_stream[j] is SIZE (string of THAT

message)25 - headersize_in26

The messagetime of raw_stream[j] is the messagetime of
THAT message

FIELD (left_output_buffer, 1, size of THAT message)27

TRIGGER (left_output_buffer, &pos)28

3. Exception Handler

The exception handler has several responsibilities. First, it must see that messages

that have been delayed too long by Agent (too long as defined in the facts) are properly

22 Therefore it has to be an housekeeping message.
23 The FIELD function now moves the message string, which will look to the host as if it were a standard
message, to the system (or Gateway) output buffer.
24 TRIGGER tells the system that the buffer specified by the argument is ready for insertion on the bus or
network connection on either side of Agent. The second argument is the size of the message. These
arguments are notional in that the specific steps and forms will be determined for Agent during detailed
design for a particular installation.
^SIZE returns the number of characters found in its argument. SIZE must be used carefully where values
are subject to concatenation. In general, if there are multiple values, SIZE returns the length of only the
first value.
26The header of an "in" message refers to the header of a message from terminal to host. The header of an
"out" message refers to the header of a message going to the terminal. J-Series messages can be of
several different lengths. The header is of fixed length for all host-to-terminal messages (currently 10
words) and terminal to host message (currently 5 words). If the trigger is supplied by operating system
elements or Gateway, and the number of characters in the input buffer can be known, then Agent does not
have to keep track of the size of each message type. On the other hand, if the input components do not
tell the size of the message, then input facts must supply the length in characters of each formatted
message.
27 The FIELD function now moves the message string, which will look to the host as if it were a standard
message, to the system (or Gateway) output buffer.
28 TRIGGER tells the system that the buffer specified by the argument is ready for insertion on the bus or
network connection on either side of Agent. The second argument is the size of the message. These
arguments are notional in that the specific steps and forms will be determined for Agent during detailed
design for a particular installation.

72

forwarded within allowable time limits. Second, it looks for "collisions," which occur

when an update on a track is received before a pending update has reached output status.

A collision forces the pending message to be sent immediately (with all of the other

messages thus far batched with it). Finally, it "prunes" the shared message structure of

message so old as to no longer be of interest.

a. Production Rules

Rules for the exception handler are central to the overall design of the rule bases.

The first is a message whose status has stayed "entry" too long (the "Aged Entry

Message"). Because its status is "entry" it is not either now or soon to become a

component of the temporarymessage or the output_message. Therefore it is instantiated

as an outputmessage and otherwise deinstantiated.

If the status of a message is "encoding," then some process has either already

added it to the temporarymessage or will soon do so. The exception handler will output

the temporary message if the ID is there. Otherwise it does nothing at this point because

one of the processes will soon add the ID to the temporary message. If the entry is idle

for too lond a period of time, as determined by network rules of operation, the message,

upon updating of the temporary storage buffer, will have the appropriate ID established,

and transmitted. This is not an arbitrary process, but rather a trade off between the desire

to maximize thje fill of each transmitted packet, v.s. the time constrains of transmission.

At a subsequent inferencing, that rule base will find the ID in the temporary message and

force that message to be sent.

The third exception has to do with an update arriving for the same track that is

currently being processed. In this version of the rules, the base forces the output of the

temporary message and allow the new update to be processed normally.

Old messages that are no longer of value to Agent are pruned so that the space

can be made available for additional messages. This store of old message is used by

various heuristics to construct or deconstruct Agent reduced messages.

Finally, objects which are used to determine network and NPG loading are

purged after they are no longer useful in determining net and node saturation levels.

73

(1) Aged Entry Message

IF The status of ANY message is entry29

The direction of THAT message is left
The type of THAT message is trackupdate
The TIME/30 minus the messagetime of THAT message

isgreaterthan the update_processing_limit
THEN LOCK THAT message

The status of THAT message is output
The direction of THAT message is right
The status of THAT message is old
The message of THAT message is constructed ONLY
UNLOCK THAT message

IF The status of ANY message is entry
The direction of THAT message is right
The type of THAT message is trackupdate
The TIME/ minus the time of THAT message

is_greater_than the update_processing_limit
THEN LOCK THAT message

The status of THAT message is output
The direction of THAT message is left
The status of THAT message is old
The message of THAT message is constructed ONLY
UNLOCK THAT message

IF The status of ANY message is entry
The direction of THAT message is right
The type of THAT message is housekeeping
The TIME/ minus the time of THAT message

is_greater_than the housekeeping_processing_limit
THEN LOCK THAT message

The status of THAT message is output
The direction of THAT message is left
The status of THAT message is old
The message of THAT message is constructed ONLY
UNLOCK THAT message

IF The status of ANY message is entry
The direction of THAT message is right
The TIME/ minus the time of THAT message

29 These rules cover the problem of an entry message (left or right) that has sat too long without being
processed (encoded or decoded).

This is the current system time (or other appropriate time reference).

74

is_greater_than the generaljrocessinglimit31

THEN LOCK THAT message
The status of THAT message is output
The direction of THAT message is left
The status of THAT message is old
The message of THAT message is constructed ONLY
UNLOCK THAT message

(2) Aged message being encoded32

IF The status of ANY message is encoding33,34

The TIME/ minus the time of THAT message
is_jreater_than the generaljsrocessmglimit35

THEN LOCK THAT message
LOCK the temporarymessage
The status of THAT message is late

IF The status of ANY message is late
The track of THAT message is_the_same_as the track of

the temporary message
THEN LOCK shared memory

The status of THAT message is old
The temporarymessage isa outputmessage
gpos = tf6

DEINSTANTIATE THAT message from

31 The processing time limits have not been determined. It is probable that all J-Series messages will have
the same time limit, and, perhaps, the housekeeping messages as well. On the other hand, they could be
different. If so, each message type may have a time limit associated with it and these rules must be
expanded accordingly.
32 Note that aging messages being decoded cannot be handled as exceptions because there is nothing
Agent can do but continue to decode them. Until it decodes the message it cannot even be aware of which
tracks are involved, and therefore cannot sense track collision (new update arriving before old update is
processed). On the other hand, decoding is one of the fastest processes. The processor must be specified
so that all messages are decoded fast enough so as not to be considered late.
33 These rules handle the case where it is taking too long to batch various messages for output. What will
happen is that the temporary message, which is where all processes assemble batched messages, will be
output as is and the original messages that are part ofthat temporary messages will be deleted from
shared memory. This will result in a message with fewer updates than is possible, but ends any further
delays.
34 If the status is "encoding," and it is true that the message originated from the left (host) side, and Agent
is presently operating with reduction, compression, or both. Since all reduced updates must be batched,
the results of this encoding appear in the temporary message.
35 Additional rules may be needed if the processing times are different, as explained in a previous
footnote.
36 Gpos is a global counter used by the encoding heuristics to mark the next available place in the string
of the Agent message being constructed. When a message is deinstantiated from the temporary message
class, then this counter must be reset. Since the whole of shared memory is locked at this point, no
special lock is required.

75

IF

THEN

temporary_message
UNLOCK shared memory
UNLOCK THAT message

The status of ANY message is late
The track of THAT message isnot the track of the

temporary message
CONTINUE37

(3)
IF

THEN

IF
THEN

IF

THEN

Collision

The status of ANY message is entry
The track of THAT message isthesameas the track of

the temporarymessage
The direction of THAT message is left
LOCK THAT message
LOCK the temporary message38

The direction of the temporary message is right
The temporarymessage is_a output_message
The status of THAT message is old
gpos = 0
UNLOCK THAT message
DEINSTANTIATE the temporary_message

The status of ANY message is entry
The &track is the track of THAT message

The status of ANY message is encoding
The track of THAT message is the track of the

temporarymessage39

The track of THAT message is &track40 '
LOCK the temporary message41

The direction of the temporary message is right
The temporarymessage isa outputmessage
gpos = 0

37 If the track ID isn't in the temporary message now, it will be shortly. The problem will be caught on a
subsequent iteration of the rules.
38 The temporary message class is only used for messages being encoded. Therefore the direction will
always be right.
39 Added last deliberately for the purpose of having this test work.
40 We're looking here for an update to a track that is already being encoded. We can detect this because
the track number is in the temporary message. This means that the track number is also in a message
labelled encoding. And a new update has arrived. Therefore the action is to force out the temporary
message before processing the new update.
41 The temporary message class is only used for messages being encoded. Therefore the direction will
always be right.

76

The status of THAT message is old
UNLOCK THAT message
DEINSTANTIATE the temporarymessage

(4) Message Pruning

IF The status of ANY message is old
THAT message isa trackupdate42

The NUMBEROF43(THOSE messages) is_greater_than
44 one

The TIME/ of ANY message minus the time of THAT
message is_greater_than the persistencelimit45

THEN DEINSTANTIATE THAT message46

(5) History Record Pruning

IF If the TIME/ minus the time of ANY historyrecord
is_greater_than 2 * netframetime

THEN DEINSTANTIATE THAT history_record

b. Exception Handler Meta Rules

Metarules are designed to be simple, and, in the case of the Exception Handler,

they are very simple indeed. There is one knowledge base, called "exceptions," detailed

in the section above. All the meta rules do is loop on this knowledge base.

(LOOP ()
(

(INFER 0 ("exceptions") ("OutFacts"))
)

This data base is interesting because it requires no input fact list (it merely needs

access to Shared Memory), and that it has no use for the output facts it produces. The fact

that the input FactSet is null means that each time it is executed the old facts generated

through inferencing are gone.The purpose of the data base, in this instance, is to provide

the unique knowledge reservoir of the associated network(s) principles of operation. In

42 Other types of messages (e.g., housekeeping, Agent) are pruned when decoded or encoded.
43 NUMBER returns the number of objects instantiated to the class mentioned.
44 The first ten numbers are defined as their value in the null class for readability.
45 The persistance limit is how long we need to keep old messages before they no longer have value. At
this point a function could be added to archive the messages about to be deinstantiated.
46 This is an example of subsetting. The set of messages identified by the first use of ANY is further
subsetted by the second ANY, so that the DEINSTANTIATE directive only applies to the smallest subset

77

IF
THEN

this way the Exception Handler can be designed in such a manner as to be independent of

specifics, with respect to a particular network's rules of operation, while providing

unique capability in each instance.

Of course, other actions can be added, such as logging functions, as desired.

c Right Input Process

The right input process accepts messages from the terminal or right side. If they

are standard messages they are simply marked for output after keeping track of the

implied network loading. If they are Agent message they are marked for decoding after

keeping track of the amount of data (bits) that were transmitted over the RF network.

(1) Production Rules

The name of this knowledge base is "InputRight."

Event is new_message
LOCKm
m = m+ 1
UNLOCK m
message[m] isa message
The type of message[m] is FIELD (typejposition of

rightjieader, size_of_type of rightheader)

The type of message[m] is housekeeping
The string of message[m] is FIELD (rightJuiput_buffer, 1,

updatesize)
The direction of message[m] is left
The message of message[m] is constructed
The form of message[m] is raw
The status of message[m] is output
EXIT

The FIELD(type of message[m],l,l) is'T
The type of messagefm] is J-Series47

(The type of message[m] is J3.2 OR
The type of message[m] is J3.3 OR
The type of message[m] is J2.2 OR)
Message is interesting ONLY

IF
THEN

IF
THEN

IF

THEN

47 Recall that slot assignment implies concatenation for non-numeric values. Thus the message type is
both "J-Series" and its original type (e.g., J3.2, J3.3, or J2.2).

78

ELSE

IF
THEN

IF
THEN

Message is uninteresting ONLY
The form of message[m] is raw

The type of message[m] is Agent
Message is interesting ONLY
The form of messagefm] is encoded

Message is uninteresting
The direction of messagefm] is left
LOCKJ
J = J+1
UNLOCK J
message[j] is_a rawstream
The rawsize of messagefm] is (SIZEOF (string of

messagefm]) r headersizeout)
The time of messagefm] is FIELD (string of messagefm],

start of updatetime, length of updatetime)
The message of messagefm] is constructed
The form of messagefm] is raw
Status of messagefm] is output
EXIT

IF Message is interesting
Type of messagefm] is Agent

THEN Messagefm] isa Agentmessage
DEINSTANTIATE messagefm] FROM message
The string of messagefm] is FIELD (right_input_buffer, 1,

update_size)
The encoding_scheme48 of messagefm] is FIELD

(right_input_buffer, position of scheme, size of
scheme)

The message_time of messagefm] is FIELD
(rightinputbuffer, position of messagetime, size
of message_time)

The direction of messagefm] is right
The form of messagefm] is encoded
The status of messagefm] is entry
LOCKJ
J = J+1
UNLOCKJ

48 The Agent encoding scheme appears either in the message header, if possible, or in the encoded
message itself. If the latter, then the first part of the message information is not incoded. This enables the
receiving node to decode Agent-encoded messages without have to be syncronized with the sending node
as to what scheme is being employed.

79

messagefj] is_a encodedstream
rawsize of message[j] is SIZEOF (string of messagefm]) -

headerin
time of message[j] is messagetime of messagefm]
EXIT

IF Message is interesting
Type of messagefm] is J-Series

THEN The type of messagefm] is_a trackupdate
DEINSTANTIATE message[m] FROM message
The string of messagefm] is FIELD (right_input_buffer, 1,

updatesize49)
The messagetime of messagefm] is FIELD

(right_input_buffer, position of messagetime, size
ofmessagetime)

The track of messagefm] is FIELD (rightinputbuffer,
positionoftrack, size of track)

The lat of messagefm] is FIELD (rightinputbuffer, start
of latitude, size of latitude)

The Ion of messagefm] is FIELD (right_input_buffer, start
of longitude, size of longitude)

The updatetime of messagefm] is FIELD
(right_input_buffer, start of updatetime, size of
updatetime)

The header of messagefm] is FIELD (right_input_buffer,
start of header, size of header)

The direction of messagefm] is right
The status of messagefm] is output
The form of messagefm] is raw
LOCKJ
J = J+1
UNLOCKJ
messagefj] isa rawstream
rawsize of messagefj] is SIZEOF (string of messagefm]) -

headerin
time of messagefj] is message_time of messagefm]
EXIT

(2) Meta Rules

(LOOP (EVENT ("Right input message"))
(

49 This assumes that all three update types of interest are the same length. If they are of different lengths
then there has to be a rule for each message type and a specific update size assigned to each type.

80

(INFER ("Event is new_message") ("InputRight")
("OutFacts"))

)

d. Right Output Process

The right output process takes messages of any class whose status is "output" and

whose direction is "right" and asserts them on the bus or network to the terminal. It also

keeps instantiates the necessary loading measurement objects.

With respect to loading, left input process has kept track of the size of raw

messages from the host. The left output process keeps track of the size of raw messages

from the terminal. This process keeps track of the size of messages as they will actually

be transmitted.

When an Agent message is decoded, the left output process will kept track of the

size of messages as received (and, therefore, take credit for the size reduction of Agent

operations). When messages are encoded, the size of the unencoded versions is recorded

by the encoding heuristics in the temporary message. Therefore, when it gets instantiated

as an output message, the size that would have been transmitted is known as well as the

size actually transmitted.

(1) Production Rules

This knowledge base is called "rightout."

IF The status of ANY message is output
The direction of THAT message is right
The class of THAT message is interesting
(The form of THAT message is raw OR
The message of THAT message is constructed)50

THEN FIELD (string of THAT message, position of
message_time, size of messagetime) is TIME/51

FIELD (right_output_buffer, 1, SIZEOF(THAT message))
TRIGGER (right_output_buffer, &pos)52

50 This message already has a header
51 Time if a function of message input output, plus processing differential.
52 TRIGGER tells the system that the buffer specified by the argument is ready for insertion on the bus or
network connection on either side of Agent. The second argument is the size of the message. These
arguments are notional in that the specific steps and forms will be determined for Agent during detailed
design for a particular installation.

81

/53

The status of THAT message is OLD
LOCKJ
J = J+1
UNLOCK J
message[j] isa rawstream
rawsize of message[j] is SIZEOF (string of THAT

message) - headerin
time of message[j] is messagetime of THAT message

IF The status of ANY message is output
The direction of THAT message is right
The class of THAT message is interesting
The form of THAT message is encoded

THEN FIELD (string of THAT message, position of
messagetime, size of messagetime) is TIME/5

FIELD (right_output_buffer, 1, size of THAT message)
TRIGGER (right_output_buffer, &pos)
The status of THAT message is OLD
LOCKJ
J = J+1
UNLOCK J
message[j] isa encoded_stream
rawsize of message[j] is SIZEOF (string of message[m]) -

headerin
time of message[j] is messagetime of messagefm]

object[&m] isa encodedstream
The explodedsize of message[j]]54 is the explodedsize of

THAT message

(2) Meta Rules

(LOOP (FALSE(EVENT ("terminate")))
(

(INFER 0 ("rightout") ("OutFacts"))
)

53 Since this is an encoded message, Agent created it from one or more other formatted messages. Or it
could be an internal Agent-to-Agent message. In any case, it must be assigned a message time that the
terminal will consider to be legal. In this example, the current system time is used as the message time.
During detailed design the timing problems will be fully resolved.
54 The "exploded size" is simply the size of the messages that would have had to have been transmitted
had Agent not been operating. This value is calculated as the temporary message is constructed, update
by update.

82

DELTA COMPONENTS

There are two processes (minimum) of the delta components—an encoding

process and a decoding process. They operate asynchronously of each other. There must

be at least one of each but there can be as many of each as needed to keep up with the

loading. Thus a platform with no reporting responsibilities within the Surveillance NPG

may have a single encoder process and as many decoders as are needed to keep up with

the flow of messages. A node with reporting responsibilities may have additional

encoders in order to keep up with the encoding load. A multiprocessor environment is

best for this type of architecture. Figure 22 shows the parts of the architecture discussed

below.

n , L

1 f Scalable Global Memory 1 '
i Shared Message Structure

Figure 22, Delta Components and the Shared Component

The creation of new encoding/decoding components is performed by the load

analyzer, which has rules to determine the optimal number of components for the current

situation.

83

1. Encoder

a. "Simple " Delta Messaging

The original and simplest form of delta messaging transmits only the fields that

have changed from the previous update, and transmits them in their original form. Thus,

if only the position and message time have changed, only these two fields will be

transmitted. The agent on the receiving side will find the previous message, supply the

missing fields, and pass it on to the host.

The complication is that the terminal always sends out three or six word messages

regardless of how much data is actually put into the message. Therefore updates must be

"batched" as well, so that each Agent message will be transformed into many regular (or

"raw") update messages on the receiving end.

If multiple processors are working simultaneously, therefore, they work to build

the same update message (which is why, as each update is added, the so-called

"temporary message" is locked).

(1) Production Rules
This rule base is called "deltaencode."

IF The mode of Agent is simpledelta
The status of ANY message is entry
The direction of THAT message is left

THEN LOCK_ONE of THOSE messages55

The encode-message of THAT message is NAME (THAT
message)56

The status of THAT encode_message is encoding
UNLOCK THAT message

IF The track of ANY message isthesameas the track of

55 LOCK ONE is a special version of LOCK. Only one of the messages of the set identified in the
antecedents is locked. Which one is locked is entirely arbitrary. It is assumed that the implementation of
the semantic network will cause the eldest message marked "entry" to be selected. Just as nested
specifiers reduce the set referred to by THAT or THOSE, so does LOCK. After LOCK, THAT or THOSE
refer only to the locked objects—in this case the message we wish to handle.
56 NAME is a function that returns the name of the object. The name was given by concatenation when
the object was first instantiated. Thus subsequent rules can refer to that message by name.

84

THEN

Sencodemessage57

The type of THOSE messages is old
The message_time of the $encode_message minus the

message time of ANY of THOSE messages
islessthanorequalto the update frequency of
the $encode_message58 + timedelta59

The oldencodemessage is "empty" ONLY60

The old_encode_message is the NAME (THAT message)
ONLY

IF The oldencodemessage is "empty"
THEN The direction of the $encode_message is right

The Sencodemessage isa outputmessage
The status of Sencodemessage is output
EXIT

IF NUMBEROF (temporarymessage) isgreaterthan zero
THEN CONTINUE61

ELSE LOCK temporarymessage
LOCK e62

e = e+l
UNLOCK e
rmessage[e] isa temporary_message
gpos=l
FIELD (string of temporary_message,gpos,) is the code

for63 simpledelta
gpos = gpos + size of simpledeltacode

IF TRUE
THEN FIELD (string of temporarymessage, gpos,) is "XX"64

57 Note that the dollar sign, or evaluation symbol, tells the engine to substitute the contents of
encode_message in the antecedent before evaluating further. Since the name of a message is stored in
"encode_message," the name ofthat message is used in the evaluation.
58 This value is assigned when the semantic network is built as a slot associated with the message type.
Thus a J3.2 may have one update rate and a J3.3 have another. Therefore new targeted messages are
assigned to the appropriate type of message rather than, simply, to "message."
59 If update times do not form a completely accurate sequence, then perhaps a small delta will be needed
to make sure that the correct earlier message was located. If no previous update is found the message will
simply be transmitted in raw format.
60 Agent cannot use simple delta encoding on a message for which it has no immediate predecessor.
61 CONTINUE is a no-op.
62 Must be global if there are multiple instances of the encoding process operating.
63 "Of' and "for" mean precisely the same.
64 XX is an arbitrary field code that indicates that what follows is a new message. The format of the
batched message is in general a field code followed by the field itself. Thus field code 1 means update

85

IF
THEN
ELSE

IF
THEN
ELSE

gpos = gpos + 2
FIELD (string of temporarymessage, gpos,) is "01"65

gpos = gpos + 2
FIELD (string of temporarymessage, gpos, size of type) is

type of message[e]
FIELD (string of temporarymessage, gpos,) is "02"
gpos = gpos + 2
FIELD (string of temporary_message,e) is the track of

messagefe]
gpos = gpos + size of track
FIELD (string of temporary message,e) is the updatetime

of messagefe]66

gpos = gpos + size of updatetime

The lat of messagefe} *s me lat of oldencode
Continue
FIELD (string of temporarymessage, gpos, size of lat) is

the lat of messagefe]
gpos = gpos + size of lat

The Ion of message[e] is the Ion of oldencode
Continue
FIELD (string of temporarymessage,, size of Ion) is the

Ion of messagefe]
gpos = gpos + size of Ion
The explodedsize of messagefe] is the explodedsize of

messagefe] plus the size of updatemessage
UNLOCK temporarymessage
EXIT

b. Meta Rules

There is only one set of meta rules for the encode delta components). This set is

as follows:

time, which all messages have, field code 2 means track number, and so on. The special code of XX
means that this is the beginning of a new message, so that the decoding algorithm will start looking for a
sequence of field codes and fields for the new message. If no known field code is encountered, then the
message end has been found. Since outgoing messages can be of almost any length, modulo three words,
Agent keeps adding updates to the temporary word until the exception handler forces it to be output.

The code for simple delta messaging. In the real implementation, "code of type" should be used. It is
given explicitly here to remind the reader that such codes are arbitrary.
66 All delta messages begin with the trio of type, track, and updatejime. The type is needed to know
what fields to look for, the track is needed to match up with previous tracks, and the update time will
always be different. Other fields are added only if different from the previous update.

86

(LOOP (FALSE(EVENT ("terminate")))
(

(GETFACTS ("Agent Status") (Status_facts))
(IF (TRUE ("strategy of Agent is simple_delta"))
(

(INFER 0 ("deltaencode") ("OutFacts"))
))
(IF (TRUE ("strategy of Agent is extrapolation"))
(

(INFER 0 ("extrapencode") ("OutFacts"))
))

)

Any additional encoding schemes can be added in the same fashion to this meta

rule base.

2. Decoder

a. Production Rules—Routing Messages

IF If the status of ANY message is entry
The direction of THOSE messages is right
The form of THOSE messages is encoded

THEN Action is NULL
ELSE EXIT

IF The encodingscheme of ANY message is simpledelta
THEN Action is process delta message

IF The encodingscheme of ANY message is extrapolation
THEN Action is process extrapolation67

b. Production Rules—decoding delta messages

The following will decode any number of messages encoded with so-called

'simple" delta messaging. The name of the base is "decodedelta"

IF If the status of ANY message is entry
The direction of THOSE messages is right
The form of THOSE messages is encoded

67 Note that ONLY is not specified in these cases. We are checking to see if messages of either or both
schemes are ready for decoding.

87

THEN

ELSE

LOCK_ONE of THOSE messages
The status of THAT message is decoding
&Name is NAME (THAT message) ONLY
EXIT68

IF FIELD (string of $&name, &dpos,2) is "XX"
THEN &pos = &pos + 2

LOCKm
m = m+ 1
UNLOCK m
message[m] isa message
The type of message[m] is FIELD (string of &$name69,

&pos, size of message type)
&pos = &pos + size of message type

IF The type of messagefm] is J3.2
THEN message[&m] isa J3.2

DEINSTANTIATE message[m] FROM message
&interval is updateinterval of J3.2 ONLY

IF The type of messagefm] is J3.3
THEN message[&m] isa J3.3

DEINSTANTIATE message[m] FROM message
Äinterval is updateinterval of J3.3 ONLY

IF The type of message[m] is J2.2
THEN message[&m] is_a J2.2

DEINSTANTIATE message[&m] FROM message
Äinterval is update_interval of J2.2 ONLY

WHILE FIELD (string of $&name, &pos, 2) not_equal_to NULL
BEGIN Decoding

IF TRUE
THEN The type of messagefm] is FIELD (string of message[&m],

&pos,2)
&pos = &pos + 2
The updatetime of messagefm] is FIELD (string of

messagef&m], &pos, size of updatetime)
&pos = &pos + size of updatetime

68 If a message to process isn't found that doesn't mean there was an error. A parallel process could have
picked up the message for decoding before this process was able to find it.
69 Evaluation is from right to left. So that first the parser knows that it is a local variable, second, it knows
to perform substitution on it.

88

IF

THEN
ELSE

The track of messagefm] is FIELD (string of message[m],
&pos, size of track)

&pos = & pos + size of track

The track of ANY message is the track of messagefm]
The updatetime of THAT message is the updatetime of

messagefm] - &interval
#old_message = NAME (THAT message)
DEINSTANTIATE message[m]
EXIT70

IF
THEN

ELSE

IF
THEN

ELSE

IF
THEN

END

FIELD (string of message, &pos,2) is lattype
&pos = &pos + 2
Lat of messagefm] is FIELD (string of messagefm}, &pos

+ size of lat, size of lat)
&pos = &pos + size of lat
Lat of message[m] is lat of #old_message

FIELD (string of message, &pos,2) is lontype
&pos = &pos + 2
Lat of messagefm] is FIELD (string of messagefm}, &pos

+ size of Ion, size of Ion)
&pos = &pos + size of Ion
Lat of messagefm] is lat of #old_message

TRUE
Direction of messagefm] is left
Status of messagefm} is output
LOCK J7'
J = J+1
UNLOCKJ
Messagefj] isa rawstream
The rawsize of messagefj] is size of update
The time of messagefj] is the updatetime of messagefm]

Decoding

70 This is an error exit, in that the previous update message for this track could not be found. Therefore
we can only drop the message at this point.
71 We're going to create an history record for each message decoded. This will be used in calculating the
effective bandwidth.

89

c Meta Rules

The following meta rules for decoding call knowledge base

"checkingformessages" to determine if there are entry messages from the right that

need to be decoded, and then calls the knowledge base appropriate for the decoding. Any

number of knowledge bases can be included here. Only one is actually documented at

this point (simple delta messaging).

(LOOP (FALSE(EVENT ('terminate")))
(

(INFER () (checking_for_messages) (out facts))
(IF (TRUE ("Action is process delta message")

(out_facts))
(

(INFER 0 ("deltadecode") ())
))
(IF (TRUE ("Action is process extrapolation")

(outfacts))
(

))
(INFER 0 ("extrapdecode") ("OutFacts"))

D. SHARED COMPONENTS

This process analyzes net loading and adjusts the strategy of Agent accordingly.

Every time a message is sent or received a history record is created for that transmission.

If the message was encoded, the raw message size as well as the encoded message size is

included.

The first step is to prune the history records of all information older than one

frame. The next step is to determine the total number of characters (or bits) that are being

transmitted within the NPG. If this number is higher than the upper trigger level (which

is set as a result of laboratory experiments), delta messaging kicks in. When it falls below

the lower trigger level, delta messaging kicks out. These changes have an effect only on

encoding. Whenever an encoded message is received it is decoded regardless of the status

of Agent.

90

As written, Agent kicks in or out based on NPG loading. It is possible to include

node loading as well, with an appropriate exchange of TIMs and TOMs to determine the

transmission slots available to the node. This would be compared with its output loading

to determine if node saturate were either occurring or close to occurring. If so, a

reduction strategy would be enacted for this node (the others would continue to operate

according to their information about the NPG and themselves). This could include update

rate reduction (which would be handled by the left input process, which would simply

discard updates at some adjustable rate so that the transmit requirements would match the

transmit capability).

91

V. AGENT METHODS FOR LINK 16

A. INTRODUCTION

For this project, several techniques are under development for reducing 1) the

length of frequently-transmitted messages and, 2) the frequency of transmissions. These

techniques are lossless in that there is no concomitant reduction in content or user

situation understanding. These techniques are under development for initial evaluation

and demonstration, to be later verified in the NRaD Systems Integration Facility (SIF). In

the SEF, the primary purpose of establishing key benchmarks is to assist in deciding

between alternative object-oriented (00) implementations. Object-oriented technology

will be employed as much as practicable in this demonstration. Irrespective of

programming style, benchmarks will establish the best possible methods. Therefore, the

prototypes may contain a mix of 00 and procedural components. The benchmarks will

reveal, for each technique, the best possible gain in virtual bandwidth.

Simultaneously, a software agent will be designed to further reduce bandwidth by

adding intelligent, distributed link control, as well as to enhance the message length-

reduction strategies with such techniques as transmission frequency reduction. As stated

earlier, the name for this agent is "Agent." Software agents have been shown to be

especially useful for network management in other contexts. The rules of the link will be

instantiated in Agent, which, along with an automated transmission planning capability,

can provide substantial gains in virtual bandwidth.

B. ATOMIC DATA ELEMENT TRANSMISSION ("DELTA MESSAGES")

In this technique, redundant elements of messages (e.g., track update messages)

will be reduced to a minimum. In general, only the elements of a message that have

changed since the last update will be transmitted, together with identifying information.

The goal is to provide a decrease of one-third to two-thirds bandwidth requirements for

track messages, in addition to only transmitting such Delta Messages when new

92

information deviates outside expected parameters as determined by relative navigation

models, see Extrapolation-Driven Updates, below. The effective reductions would make

much needed bandwidth available for other purposes, plus increase the links overall track

handling capabilities through being able to identify and update a greater number of

tracks.

If the OODBMS chosen by other parts of the RTR program becomes the

bottleneck in the process, message objects with strong real-time requirements will be

cached in RAM, or other strategies developed, to enable the system to keep up with the

link requirements.

Figure 23, Physical Implementation, describes how the smart agent will fit into

the existing system. Details of the operations of Agent are described in a previous

section.

93

DATA BUS ACTIVE INTERFACE......_

C2P

JTIDS / Link
Terminal X

SmartLink
i§ Intelligent Agent;

TAC "X"
TACTICAL PICTURE

Time
Synchronization

Generator

Large, High-Speed
Storage

Figure 23, Physical Implementation

Figure 24 shows a conceptual view of delta message reduction. Figure 24 shows

the type of information a delta message may contain. Although the TADIL message type

is "Free Text," a message type local to Agent will be within the message, for each type of

message it transmits. Following the message type is an indicator of the number of fields

present for that particular message type. After that is a variable number of fields with

field types (i.e. integer, character, binary, etc.) associated with the message type.

94

Although most fields are fixed-length, some will be variable. For example, with respect

to latitude, although a full update message has new data, probably only a very few of the

least significant bits from the previous update have changed. Agent will identify and

insert the changed bits, and the field length will be the number of them. The receiving

Agent will know to replace the lower order bits from the previous message with the new

ones. Of course, if the whole field changes, then the whole field will be sent. It is

understood that if there is significant change in the original TADIL message, the delta

message could be significantly longer than the original message. The implication is that

the delta message is checked agianst the original message size. Only the shorter of the

two is sent.

That this kind of severance system can be introduced has already been proven

with the Link 16 virtual gateway, which today provides both a passive tap, for relaying

the tactical picture to other systems, and the ability to insert messages directly. Agent

will build upon the structure of Galaxy.

tester (Indttoral)

-*| Deli of track (*>(* L
| nfonnabon. J

*

Figure 24, Conceptual Implementation

95

Free-Text Message

Figure 25

Some types of messages internal to Agent will be control messages not directly

related to existing message types.

The many different link messages will be surveyed for their applicability to this

type of length-reduction technique.

One challenge is that, at present, track update messages belong to the surveillance

NPG, which is connected to one of only three existing JTIDS buffers. The buffer is there

to ensure that all messages of the surveillance type will be transmitted (in overload

conditions, a message not buffered can be tacitly dropped from the system).The C2P

manages itself based upon the available buffer size. At present, free-text messages do not

belong to the surveillance NPG. The poses no problem for the benchmark demonstrations

because there is an operator-assignable buffer that can be used. For the long term, a plan

will be created for either 1) including the free-text message in the surveillance NPG, 2)

assigning a buffer to the free-text messages, or 3) simulating buffer operations within

Agent.

96

From what is known at the time of this writing, the best answer is to have free-

text messages included in the surveillance NPG, which would cause a small modification

to the C2P's buffer size prediction algorithms (JTIDS would look more efficient to the

C2P than it does today).

C. UPDATE BUNDLING

Not all frequently-transmitted messages are of high priority. Also, the priority of

a given type of message may vary with the situation. Delta messages, or other types of

messages, can be bundled into a single transmission using the free-text message format.

This would make, for example, the transmission of historical track data feasible (by

encapsulating a full message and all of the subsequent updates into a single free-text

message). Because all of the information is in a single message, rather than in many

messages, the system may be able to process the information more efficiently (that is, the

total package of information is received more quickly, and less administrative load on the

system).

To minimize this overhead, another function might be to "bundle" a historical

message with all its subsequent delta messages, so that a platform entering the network

could be updated on all of the data concerning a particular track in a single, free-form

transmission of minimal size.

In today's system, it is a goal that all track updates be sent within twelve seconds.

This is true for slowly-moving objects, such as ships, and faster-moving objects, such as

airplanes. Resources permitting, delta messages from slower-moving objects would be

"packed" as in figure 4 above, for transmission in a single message after a fixed interval

(TBD). At the receiving end, all of the updates would be applied with Agent, with the

resulting full update message being sent on to the C2P.

It is important to validate bundling as a concept. This means that in the SIF, the

total network loading of sending multiple small messages must be compared to the

loading from sending one, larger message. Network performance-measuring tools

currently being developed by others will be used to measure the expected gain. Since it is

97

estimated that network bookkeeping amounts to some twenty percent of net loading, the

gain promises to be significant.

This task will be coordinated with task 4.2.5, Active Network Management, in

order to implement variable packing. For example, packing parameters can be altered, or

packing completely eliminated, as the tactical picture changes.

D. EXTRAPOLATION-DRIVEN UPDATES

In this technique, each type of vehicle being tracked is modeled on every

platform, utilizing a flat Earth 3-D model (dead reckoning). Each platform makes a

projection of the tracked-vehicle's position at its next-scheduled update cycle, based on

observed behavior. If the predicted position is close enough to the actual position, then

either no transmission is made and the individual Agents generate the update locally, or a

very small transmission is made confirming that the prediction is accurate. If too great a

deviation has occurred, then a full update message or a delta message is actually

transmitted. Since most tracked vehicles behave predictably over short intervals, this

technique promises to greatly reduce network loading—with no loss of information at the

receiving platforms.

At any given time, one platform has the reporting responsibility for a given track

(based on track quality). The concept of extrapolation-driven updates is to have a set of

vehicle simulations at each platform that predict the position of the tracked vehicle at the

next scheduled update. If the prediction of the update matches the reported "true"

position, within an appropriate tolerance (calculation based upon range and sensor

resolution), no update would be sent. Instead, Agent would internally generate an update

message based on its prediction and send that update to the C2P. The concept is

illustrated in Figure 26.

98

Figure 26

The shape and size of the error tolerance is determined by the vehicle type,

elapsed time, and the accuracy of the sighting information. For example, if the gaussian

circular-error-probable (CEP) of the sighting is known, the circular coverage function

can be used to determine if the sighting is within a particular level of assurance of a

circular tolerance shape. See Figure 27. In the process, the total probability distribution

within the circle is integrated. If, say, a ninety percent assurance is required, then ninety

percent of the distribution must lie within the circle. If so, no message is sent. The

99

automatic curve fitting mechanism then adjusts to the new position, recalculates the error

shape, and continues. If not, the actual position is sent and the curve fitting adjusted.

A

GAUSSIAN
with

Jmall Si^

TOLERANCE

A = actual sighting
P = predicted sighting

Figure 27, Assurance Calculations

The problem of predicting a location based on historical track information is non-

trivial. Agent, for example, will have to know when a sighting is clearly improbable, and

thus in error, so that it can be tacitly discarded. While for short intervals a linear

prediction may be useful, for longer intervals a more complex prediction algorithm must

be employed. One important study to be performed in the out years will be to determine

the best prediction algorithms to employ. A fixed circle will be used as the error

tolerance, along with a linear curve fit with zero uncertainty. However, this will by no

means demonstrate the potential effectiveness of the extrapolation technique.

100

E. TRADITIONAL COMPRESSION

If the targeted processor can keep up with the data rate, a loss-less compression

technique, such as Lempel-Ziv, can be applied to lengthy messages. The messages will

be examined for good candidates for this type of compression, and estimates of the time

necessary for the various algorithms to perform the compression will be estimated. When

resources permit, an attempt to establish a benchmark for this type of compression will

be made in the SIF.

With respect to video and voice, at this point it is believed that hardware

assistance will be required for compression/decompression. This task is therefore limited

to identifying all of the platform types that can be connected to the link, and determining,

to the extent information is available, if COTS compression boards are available for these

platforms, or will be available within a reasonable time span.

F. EXTENSIONS

The immediate application is to reduce the amount of redundant information

transmitted over the link (see individual tasks below). However, additional autonomous

agent functions could help to better manage the tactical links by detecting problems and

taking steps to alleviate the consequent load on the net, when possible and acceptable.

The initial analysis and design of the intelligent agent architecture will also be

directed towards meeting the system requirements for robustness in the face of

communications gaps or failures. The architecture provides significant opportunity for

extension. Out year tasks will develop agents that manage other types of messages,

support recognition, routing and processing of new RTR message types, and call

attention to messages requiring quick reaction.

Over the course of this work and subsequent efforts, all message types will be

examined for ways in which a intelligent agent could optimize network operations.

101

This effort will include interviews of expert users of the system in an effort to

collect additional cases or functions that are appropriate to intelligent agent action, and

where appropriate seek to incorporate this in the current network schema.

102

VI. SUMMARY

A. WORK ACCOMPLISHMENTS

1. The engineering design of Agent has been documented to the point where

detailed design can use it as a guide.

2. All of the software and functional requirements of Agent are satisfied by this

design.

3. The Agent engineering design is not specific to Link-16 or any other tactical

network.

4. Agent is compatible with a multi-processor implementation, but can run on a

single-processor machine.

5. Agent has its own inference engine, the special features of which are

described in detail.

6. Agent is otherwise compatible with IBM's Agent Building Environment

(ABE). During detailed design, another took kit can be substituted if found to

be more appropriate.

B. WORK TO BE DONE IN SUBSEQUENT PHASES

1. Make sure that the rule bases are thoroughly debugged, especially with

respect to NPG loading calculations. Construct a test bed in SNOBOL for

this purpose.

2. Add rules for calculating node loading.

3. A low-level briefing on the engineering design should be written.

4. The low-level briefing should provide the basis for a conference to discuss

the engineering design among the interested parties.

5. Add formal BNF to describe the facts and rules. Formalize the otherwise

informal notations used in this document.

6. Create rules for passive net normalization.

103

7. Create rules for agent-to-agent "update me" messages for active

normalization.

8. Insert sequence numbers into encoded messages (quasi token ring scheme) so

that receiving nodes can detect missing updates.

9. Agent as written does not compare actual net loading with predicted net

loading in order to do a kind of "sanity check" on its own operations. This

can be added.

10. Encode and Decode rule bases for other heuristics need to be written.

11. A high-level briefing on the engineering design should be written.

12. A low-level briefing on the engineering design should be written.

13. A command-level briefing on Agent should be written.

14. At some point before detailed design, a survey of inference engines should be

made to see if any are close enough to Agent requirements to be used as a

point of departure.

15. At some point before detailed design, a survey of agent-building toolkits

should be made.

104

VII. FUTURE WORK

Today's Link 16 is passive, for the most part requiring acknowledgments only for

certain types of messages, such as military orders. However, with Agent in place, and

Agent-to-Agent communications demonstrated, more complex ways of fme-tuning

network operation are possible. In an example mentioned above, a platform could request

complete historical information on a specific track, and receive that information in an

efficient manner. Also, the frequency of updates could be controlled by the individual

needs of the receiving platforms, with the platform requiring the most urgency receiving

priority. Network optimization, while nevertheless working within today's rules and

restraints, can be an operational reality.

In the out years, an attempt will be made to quantify the gain expected from

allowing the Agents to communicate with each other, whereby they adjust network

parameters in real time. For an example involving considerable intelligence, update rates

could be dynamically adjusted by the situational assessment of the importance of a track

relative to the tactical situation. This is a significant step towards more autonomous

functionality based on an agent's own situation assessment.

Additional, more specialized agents may contain user-specific knowledge. For

example, Agent could passively notify the special agent of events as they occur, and the

special agent could provide various types of amplifying information to the console user

based upon the operator's needs. The specialized agent may be capable of a range of

responses, from simple alert messages to action sequences.

In the case of urgency-driven updates, the receiving platforms would examine the

current rate at which a given track was being updated, and, if satisfactory, do nothing. If

a higher rate of update is desirable, a Agent to Agent message is generated that increases

the update rate. In this way, update rates could be drive up or down based upon the

perceived tactical situation. A very intelligent and platform-specific Agent could do this

function transparently.

Ideally, Agents would utilize a CORBA-compliant object-request broker (ORB),

such as Iona's ORBIX, or possibly incorporate the JAVA applet to application

105

architecture, to transparently manage track updates (and, indeed, all message objects).

Each C2P would, under an ORB, appear to have all track objects present in its own

address space, regardless of where on the link they actually resided. Then, rather than

transmit at fixed intervals, platforms could simply examine the track objects at whatever

frequency is thought to be important. This would reverse the idea of the link—from

fixed-interval transmission to as-needed query. The ORB would ensure that the data was

current. Figure 7 shows a layered view of a component-based architecture.

Agent Domain Classes

Orb Services

Namina Events QU'^Y Tradefl.ife C^q9»--t!fiSn«e SecuritfllTC Collection^,,».«« •
t^enidCzlffliüousliifconcunenivi'ransactions Manascment Persistence^ öt0£UCenslU"

Data Repository

Figure 28, Orb-Based Architecture

106

As attractive as the use of an ORB-based system is, the current overhead of an

ORB constitutes a significant chunk of bandwidth and may, with today's technology,

slow down real-time processing, precluding its use in this context. The key to the

analysis is at the system level, not at the link level.

Beyond the applicability to military communications, such technology has

obvious implications with respect to commercial communications networks

(INTERNET, or any other digital communications network). While it is acknowledged

that the development of an agent architecture is not "the solution", it has the potential to

alleviate already crowded communications lines, while not sacrificing accuracy. The

robustness of such an approach has not yet been adequately determined. However, it is

felt by the author that such an approach will provide for more optimized network

utilization of available assets (bandwidth), ultimately resulting more efficient and overall

faster network operations.

107

REFERENCES

[1] Virdhagriswaran, Sankar, Heterogeneous Information Systems Integration.

Crystaliz Inc. paper September 29, 1994

[2] Foner, Leonard N, Clustering and Information Sharing in an Ecology of

Cooperating Agents Agents Group, MIT Media Lab. E15-305, 20 Ames St.,

Cambridge, MA 02139. paper 1994-5.

[3] Coriat, Michel, Formal Specification Using Agents Conceptualization

Laboratoire MASI, Institut Blaise Pascal / CNRS-UA 818, Universite de PARIS

VI, 4 place Jussieu 75252 Paris cedex 05, France, paper 1995.

[4] Foner, Leonard N., What's an Agent Anyway? A sociological Case Study.

Agents Group, MIT Media Lab, paper Agent Memo 93-01,1993.

[5] Beymer, David, Pose-Invariant Face Recognition Using Real and Virtual Views.

A.I. Technical Report No. 1574, Massachusetts Institute of Technology, Artificial

Intelligence Labatory, paper March 1996.

[6] Maes, Partie, Modeling Adaptive Autonomous Agents. MIT Media-Labatory, 20

Ames Street, Rm 305, Cambridge, MA. paper 1994.

[7] Leitman, Robert, Integrating HTTP with ATM. Master's Thesis Mathematics,

University of Waterloo, Ontario, Canada, paper 1995.

[8] Coen, Michael H., SodaBot: Agent Environment and Construction System. MIT

Artificial Intelligence Labatory, Cambridge, MA. paper September 14,1994.

[9] Tambe, Milind, et al. Building Believable Agents for Simulation Environments:

Extended Abstract. Information Sciences Institute, University of Southern

California and Artificial Intelligence Laboratory, University of Michigan, paper

1994.

[10] Kotay, Keith D., et al. Transportable Agents. Department of Computer Science,

Dartmouth College, paper November 10, 1994.

108

[11] Gruber, Thomas R., The Role of Common Ontology in Achieving Sharable,

Reusable Knowledge Bases. Knowledge Systems Laboratory, Stanford

University, paper January 31,1991.

[12] Hayes-Roth, Barbara, et al. A Satisficing Cycle for Real-Time Reasoning in

Intelligent Agents; Expert Systems with Applications. Knowledge Systems

Laboratory, Stanford University, paper 1993.

[13] Finin, Tim, et al. DRAFT Specification of the KQML Agent-Communication

Language. The DARPA Knowledge Sharing Initiative External Interfaces

Working Group, paper June 15, 1993.

[14] Moukas, Alexandras, Amalthaea: Information Discovery and Filtering using a

Multiagent Evolving Ecosystem. MIT Media Laboratory, Cambridge, MA, paper

1995.

[15] Thirunavukkarasu, Chelliah, et al. Secret Agents - A Security Architecture for the

KQML Agent Communication Language. Enterprise Integration Technologies,

Computer Science and Electrical Engineering, University of Maryland, paper

December 1995.

[16] Genesereth, Michael R, et al. A Distributed and Anonymous Knowledge Sharing

Approach to Software Interoperation. Computer Science Department, Stanford

University, paper November 15, 1994.

[17] Maes, Partie, et al. Kasbah: An Agent Marketplace for Buying and Selling Goods.

MIT Media Lab, paper 1996.

[18] Tambe, Milindi et al. Constraints and Design Choices in Building Intelligent

Pilots for Simulated Aircraft: Extended Aircraft. Information Systems Institute,

University of Southern California, paper 1996.

[19] Mayfield, James, et al. Desiderata for Agent Communication Languages.

Computer Science Department, University of Maryland, paper 1995.

[20] Finin, Tim, et aL A Language and Protocol to Support Intelligent Agent

Interoperability. University of Maryland, paper April 1992.

[21] Foner, Leonard N., Clustering and Information Sharing in an Ecology of

Cooperating Agents. Agents Group, MIT Media Lab, paper 1995.

109

[22] Bocionek, Siegfried, et al. Dialog-Based Learning (DBL) for Adaptive Interface

Agents and Programming-by-Demonstration Systems. School of Computer

Science, Carnegie Mellon University, paper July 1993.

[23] McKay, Donald P, et al. An Architecture for Information Agents. Loral Defense

Systems and Computer Sciences and Electrical Engineering, University of

Maryland, paper 1995.

[24] Pitt, Jeremy, et al. Autonomous Agents in Inter-Organization Project

Management. Department of Computing, Imperial College of Science,

Technology, and Medicine, UK, paper 1995.

[25] Beymer, David James, Pose-Invariant Face Recognition Using Real and Virtual

Views. Department of Electrical Engineering and Computer Science,

Massachusetts Institute of Technology, Dissertation September 1995.

[26] Kunz, Thomas, Abstract Behavior of Distributed Executions with Applications to

Visualization. Vom Fachbereich Informatik, der Technischen Hochschule

Darmstadt, Dissertation May 6 1994.

[27] Voorhees, Ellen M., Agent Collaboration as a Resource Discovery Technique.

Siemens Corporate Research Inc., paper 1993.

[28] Ooi Joo Li, Access Control for an Object-Oriented Distribution Platform. 1993.

Thesis submitted University of Dublin, Trinity College for the degree of Master

of Science (Computer Science)

[29] Brunsting Raymond J., Quality of Service Issues in Wireless Networks. 1995.

Thesis submitted University of Waterloo, Ontario, Canada, for the degree of

Master of Mathematics (Computer Science)

[30] Beale Andrew and Wood Andrew, Agent Based Interaction. People and

Computers DC Proceedings of HCP94, Glasgow, UK, pp239-245

[31] Maes, Partie, Intelligent Software; Programs that can act independently will ease

the burdens that computers put on people, paper 1995. Massachusetts Institute of

Technology

110

[32] Franklin Stan and Graesser Art, Is it an Agent, or just a Program? A taxonomy

for Autonomous Agents. 1996. Proceedings of the Third International Workshop

on Agent Theories Architectures, and Languages, Springer-Verlag, 1996

[33] Maes Partie, Artificial Life Entertainment: Lifelike Autonomous Agents, paper

1996. Massachusetts Institute of Technology

[34] Hayes-Roth Barbara, et. al. A Domain-Specific Software Architecture for

Adaptive Intelligent Systems. April 1995. IEEE Transactions on Software

Engineering, Vol. 21, No. 4, pp288-301

[35] Featherstone Roy, Robot Dynamics Algorithms. Kluwer Academic Publishers

1987.

[36] Valavanis Kimon P. and Saridis George N., Intelligent Robotic Systems: Theory,

Design, and Applications. Kluwer Academic Publishers 1992.

[37] DaBose, Michael W., Tactical Link Object Oriented Technology Insertion, paper

1995. Naval Research Development Test and Evaluation NRaD

[38] DaBose, Michael W., Tactical Link Object Oriented Technology Insertion, paper

1996.

[39] Chavez, Anthony, et al. Challenger: A Multi-agent System for Distributed

Resource Allocation. Autonomous Agents Group, MIT Lab, paper 1996.

[40] Vreeswijk, Gerard A. W., Self-government in multi-agent systems: experiments

and thought experiments. University of Limburg, Department of Computer

Science (FdAW), The Netherlands, paper April 7,1995.

[41] Vreeswijk, Gerard A. W., Open Protocol in Multi-agent Systems. University of

Limburg, Department of Computer Science (FdAW), The Netherlands, paper

January 1995.

[42] Genesereth, Michael R and Fikes, Richard E., et al. Knowledge Interchange

Format Version 3.0 Reference Manual. Computer Science Department, Stanford

University, paper June 1992.

[43] Beale, Russell and Wood, Andrew, Agent-Based Interaction, in People and

Computers LX: Proceedings of HCI'94, Glasgow, UK, pp. 239-245.

Ill

[44] Durham, Jayson and Torrez, William, A Neuron Model Using Cumulative

Distribution Functions, Proc. Of The World Congress on Neural Networks,

Portland, OR.

[45] Durham, Jayson, Gillcrist, Brenda, and Heckman, Paul, A Testbed Processor for

Embedded Multi-Computing, Proc. Of The 6th International Symposium on

Unmanned Untethered Submersible Technology, Washington, DC.

[46] Durham, Jayson, Engineering Intelligent Undersea Vehicles, Proc. of

OCEANS*89, September 18-21.

[47] Durham, Jayson, Heckman, Paul, Bryan, Dale, and Riech, Ron, EA VE- West: A

Testbed for Plan Execution, Proc. Of 5m International Symposium on Unmanned

Untethered Submersible Technology, Univ. of New Hampshire, Durham, NH.

[48] Franklin, Stan and Graesser, Art, Is it and Agent, or just a Program?: A

Taxonomy for Autonomous Agents, Proc. of the Third International Workshop on

Agent Theories, Architectures, and Languages, Springer-Verlag.

[49] Hamming, Richard W., Coding and Information Theory, Prentice Hall, 1996

[50] Krichevsky, Rafail, Universal Compression and Retrieval, Kluwer Academic

Publishers, 1994

[51] Kapur, J. N., Measures of Information and Their Applications, John Wiley &

Sons, 1994

[52] Kapur, J. N., Maximum-Entropy Models in Science and Engineering, John Wiley

& Sons, 1989

[53] Maes, Pattie, Intelligent Software, Scientific American, 1995

[54] Maes, Pattie, Artificial Life Meets Entertainment: Lifelike A utonomous Agents,

CACM, 1995

[55] Nelson, Mark, and Gailly, Jean-Loup, The Data Compression Book, 2nd Edition,

M&T Books, 1996

[56] Shannon, Claude, Mathematical Theory of Communication, 1948

[57] Tenenbaum, Andrew S., Computer Networks, 3rd Edition, Prentice Hall, 1996

112

[58] Torres, William and Durham, Jayson, On Fitting Transformed Distributions to

Empirical Data, INTERFACE 1993.

[59] Meystel, A., Autonomous Mobil Robots, World Scientific, 1991

[60] Valavanis, Kimon P., Saridis, George N., Intelligent Robotic Systems: Theory,

Design, and Applications, Kluwer Academic Publishers, 1992

[61] de Silva, Clarence W., Intelligent Control Fuzzy Logic Applications, CRC Press

Inc., 1995

[62] Lima, P U, Saridis, G N., Design of Intelligent Control Systems Based on

Hierarchical Stochastic Automata, Rensselaer Poly Institute, 1996

[63] Huang, Hui-Min, An Operator Experience with a Heirarchical Real-Time Control

System (RCS}, National Institute of Standards and Technology, 1996

APPENDIX

CONCEPTUAL PROTOTYPE SOURCE CODE

Note - This prototype was developed utilizing:

• Intel Pentium 166Mhz processor
• Windows 95 OS
• Rogue Software gui builder and TCP/IP
sockets development packages
• Borland C++ version 4.51 compiler

Copyright material (header files included with the above build packages) are

omitted.

typedef void (* ENTRYXvoid *);

class CScrvicej

private:
LPSTR m ServiceName;

HANDLE mJExitEvent;
SERVICE STATUS HANDLE m ServiceStatusHandle

BOOL m PauseService;
BOOL m_RunningService;

HANDLE m_ThreadHandIe;

113

ENTRY m_EntiyFunction;

int m_StartTimeOut;
int mJStopTimeOut;
int m_PauseTimeOut;
int mJResumeTimeOut;

void OnPauseServiceO;
void OnResumeServiceO;
void OnStopServiceO;
long OnStartServiceO;

static VOID ServiceMain(DWORD arge, LPTSTR *argv);

BOOL SCMStatus (DWORD dwCurrentStateJJWORD dwWin32ExitCode,
DWORD dwServiceSpecificExitCodeJDWORD dwCheckPointJ)WORD dwWaitHint);

static VOID ServiceCtrlHandler (DWORD controlCode);

VOID Exit(DWORD error);

//install variables
DWORD m_dwDesiredAccess;
DWORD m_dwServiceType;
DWORD m_dwStartType;
DWORD m_dwErrorControl;

LPSTR m_szLoadOrderGroup;
LPDWORD mJpdwTagID;

LPSTR m_szDependencies;

public:
CServiceO;
-CServiceO;

//service entry point
long InitService(LPCSTR name,void * EntryFunction);

//service timeout settings
int SetStartTimeOut(int milisec);
int SetStopTimeOut(int milisec);
int SetPauseTimeOut(int milisec);
int SetResumeTimeOut(int milisec);

//service install / un-install
int SetInstallOptions(DWORD dwDesiredAccess, DWORD dwServiceType,

DWORD dwStartTypeJJWORD dwErrorControl);
int SetInstallOptions(LPSTR szLoadOrderGroupJLPDWORD lpdwTagJD,

LPSTR szDependencies);
int InstaUService(LPCSTR szlntemName J.PCSTR szDispIayName J.PCSTR szFullPath);
int InstallService(LPCSTR szIntemNameXPCSTR szDisplayName,LPCSTR szFullPath,

LPCSTR szAccountName J.PCSTR szPassword);
int RemoveService(LPCSTR szlntemName);

#include "zappJipp"
«include "mdiappJipp" // Main App Class Definitions & Includes

ZAPP_IMPL_ASSERTS

// zpb_begin GlobalVars

114

HWNDstatusJiWnd;
char stufffXBUFSZ];

char *DxBuf[DXBUFSZ];
int DxBuflnp;
int DxBufNdx;

//
// SlpQ is an object which allows independent execution of member
// functions.
//

class SlpQ {
#define NTASKS 50
unsigned long SlTm[NTASKS];
unsigned long WkTm[NTASKS];
zMDIChildFrame *sq[NTASKS];

public:
sipQO;
-SlpQO;
unsigned long systime;
int Slp(zMDIChildFrame *, unsigned long);
int CkQO;
int Rm(zMDIChiIdFrame *);

}y/end SlpQ

DWORD WINAPI ThreadFunc(LPVOID lpvThreadParm); //forward reference
SlpQ *pSQ; //pointer to the sleep queue

// end sleep queue parameters

// *»«»**»»»»«•»•**»»*»»*»***»
// Track Class Declaration
// ***************************
»define MXTKMS 10000
«define MXTKPTS 24
#define HOSTILE_AIR 0
«define HOSTILE_SUB 1
«define HOSTILE_SURFACE 2
«define UNKNOWNAIR 3
«define UNKNOWN_SUB 4
«define UNKNOWN_SURFACE 5
«define FRENDLY_AIR 6
«define FRIENDLY_SUB 7
«define FRIENDLY SURFACE 8

class Trie {
puuuw.

TrkO;
-TricO;
intupdO; //update die track info for display purposes
intdmsgO; //delta message method
int type; //type of track
intnum; //track number
intxpos; //current x location for display on track window
intypos; // " y
intxvec; // x location of track vector endpoint
intyvec; a y
float ahRaw; // raw altitude value directly converted
float xRaw; // raw coordinate value
float yRaw; // raw coordinate value
float sp Raw; // raw speed value directly converted
float xdRaw; // raw delta of coordinate value
float ydRaw; // raw delta of coordinate value
zColor clr. //color of display is initially white
chartimStr[16]; //timestamp is the string directly from the msg
chartypStr[8]; //type of track
char strStr[32]; //undefined characters

115

charnumStr[8]; //track number
char romStr[LBUFSZ]; //rest of message string
char OIdMsg[LBUFSZ]; //Old Message as copied directly out of buffer
charCurMsg[LBUFSZ]; //New " " " " " " "
int 01dDel[LBUFSZ]; //Changed symbols for old message
int CurDel[LBUFSZ]; //Changed symbols for current message
intMQndx; //index to the latest entry in MQ
char *MQ[MXTKMS]; //message buffer for this track
int cCnt[MXTKMS]; //symbol count per message, i.e. length
int dCntfMXTKMS]; //diff value count between messages
float csRatio[MXTKMS]; //ratio of diff/total count
WDatAn *AnWn; //Analysis window for Track Txt window
WTrkTxt »TxWn; //this is a text window for the message buffer
intdistype; //this is a unknown of display bitmap
char dTypStr[64]; //string for the type of displayed icon
};//endTrk

II ***************************

II Track Queue Class Declaration
II ***************************

#defineMAXTRKS400 //Maximum number of tracks per Q
class TrkQ {
public:

Trk *TQ[MAXTRKS]; //Array of Pointers to Tracks
Trk *newTrk; //reserve track
int nTrks; //number of tracks in the queue
int DTindx; //index for the track information dialog
int newTrkTxt; //index for text message display for tracks
intxdTrkTxt; //x offset for new TrkTxt window
intydTrkTxt; //y offset for new TrkTxt window
int newTrkAn; //index for the track analysis window
TrkQO;
-TrkQO;
int upd(char *);

float minlg; //this is for display coordinates
float maxlg;
float dellg;
float minlt;
float maxlt;
float dellt;
int rmv(zString *); //removes the track in the message string
int rescaleO; //resets the display coordinates

//Trk •pctrk; //global (common) ptr to a current DTInfo Trk
};//endTrkQ

// •••••»*»»»****»•****«*••**»
// Code Book Class Declaration
// •••**••••••••**********•••*
«define MAXFMTS 32
«define MAXFLDS 32
class CdBk {
public:

CdBkO;
-CdBkO;
int fintfMAXFMTS];
zString *flds[MAXFLDS];

}^/end CdBk Class Declaration

//Track Methods

Trk::TrkO{
type = 0; //type of track
num =0; //track number

116

xpos = 0; //current x location for display on track win
ypos = 0; // " y " " " " " "
clr = WHITE; //color of display is initially white
distype = UNKNOWN.SURFACE; //intialized of bitmap is unknowtype
strcpy(dTypStr,"Unknown Surface"); //string for the type of icon displayed
strcpy(timStr,""); //timestamp is the string directly from the msg
strcpy(typStr,""); //type of track
strcpy(strStr,""); //undefined characters
strcpy(numStr,""); //track number
strcpy(romStr,""); //rest of message string
strcpy(OldMsg,""); //Old Message as copied directly out of buffer
strcpy(CurMsg,""); //New
MQndx = 0; //index to the latest entry in MQ
int ndx; //tmp index for for-loop
for(ndx=03»dx<MXTKMS3idx++) {

MQ[ndx] = NULL; //message buffer for this track
}//endfor
TxWn = NULL; //the text display window is initially NULL

}//end Trk constructor

Trk::~TrkO{
}//end Trk destructor

int Tifc:upd(){ //update the particular track
return 0;

}//end Trk update

int Trk::dmsgO {
//local constants

#defineN TKMSGS 24 // total number of messages

//local variables
int tmp_ndx;
int lbufNdx;
//int r_curr = MQndx;

//temporary index

//actual index into the buffer of messages

char*ptcl;
char *ptcO;

char'ptcml;
int numchrs;
int ndx;
intdsum;
intscntfLBUFSZ];
char netbuf{LBUFSZ];

if(MQndx>2) { //we need three messages for delta messaging
ptcl =MQ[MQndx-l]; //get pointer to message
ptcO = MQ[MQndx-2];
numchrs = strlen(ptcl);
dsum =0;

int cent;
for(ccnt=0;(ccnt<numchrs)&&(ccnt<LBUFSZ);ccnt++) {

if«*ptcl)!=(»ptcO)){
scnt{ccnt] » 1;
CurDel[ccnt) = l;
dsum-H-; //mis counts number of chars not same

}else{
scnt[ccnt] =0;
CurDel[ccnt] = 0;

}//endif
ptcl++;
ptc(H4-;

}//endfor

ptcO = MQ[MQndx-2]; //reset pointer to line buffers

117

ptcml =MQ[MQndx-3];
for(ccnt=0;(ccnt<numchrs)&&(ccnt<LBUFSZ);ccnt-H-){

if((*ptcO)!=(*ptcml)){
01dDel[ccnt] = l;

}else{
OldDel[ccnt] = 0;

}//endif
ptcO++;
ptcml++;

}//endfor

//following section of code is an initial preliminary coding
//for run length encoded "delta messages"
//note that the major problem for this is that the overhead
//greatly reduces the number of symbols saved,

//run-length encoding is currently turned off.
#define MXCHGS 10
«define MXRN 16
int dmsg[MXCHGS]; // = {0,0,0,0,0,0,0,0,0,0};
int dmsgndx = 0; // test to see if we have a delta message
int tmde! = strlen(timStr) + 1;
int oldccnt;
for(ccnr=tmdel;

((ccnt<numchrs)&&(ccnt<LBUFSZ));
ccnt++){

if((CurDelfccnt] = 1) //we have a new char
&&(01dDel[ccnt] = 0)) { //no delta message

oldccnt = dmsgfdmsgndx];
dmsgfdmsgndx] = cent;
if(dmsgndx<MXCHGS){

dmsgndx++;
}//endif

}//endif
}//endfor

ptel =MQ[MQndx-l]; //reset pointer to curr buffer
ptel +=tmdel;
Lf(dmsgndx <= 0){ //we have a delta message

intntbfhdx = 0;
inttndx;
for(tndx=0;tndx<dmsgndx,-mdx-H-) {
netbuf[ntbfhdx]= (*{ptcl+dmsg[tndx]));

ntbfhdx-H-;

}//endfor

nrofhdx-H-;
netbuffntbfhdx] ='!';

for(ccnt=tmdel;
(ccnt<numchrs)&&(ccnt<LBUFSZ);
ccntw-){

if(01dDel[ccnt] = 1){ //delta char
netbuffntbmdx] = *ptc 1;
ntbfhdx++;

}//endif
ptcl++;

}//endfor
netbuf[ntbfiidx] = "W;

//the following for loops are here because extraneous characters
//were in the resultant string if the strxxxO routines are used
//also, if stmcpyO is used instead of strcpyO, very strange

//looking oversized strings were created. ??? library or compiler ???
char dmbuffLBUFSZ] = " ";

//strcpy(dmbuf,timStr);
int tmpndx;
for(tmpndx=0,-tmpndx<12^mpndx-H-){

118

(*(dmbuf+tmpndx)) = (*(timStr+tmpndx));
}//endfor
//strcat(dmbuf,numStr);
for(tmpndx=0;tmpndx<3;tmpndx++){
(*(dmbuf+12+tmpndx)) = (*(numSU+tmpndx));

}//endfor
//strcat(dmbuf,netbuf);
for(tmpndx=0;tmpndx<=ntbfiidx;tmpndx-H-) {
(*(dmbuf+l 5+tmpndx)) = (*(netbuf+tmpndx));

}//endfor

//the following sends a track update message to the other machine
C_WSClient client; //create the object RTRclient
if (clientConnect(79,"128.49.133.12") != WSC.SUCCESS)

MessageBox(NULL,"Connection Fail"," ",MB_OK);
//endif
clientSend(dmbuf);
clientSend("\r\n");
clientCloseConnectionO;

} else { //send raw message

//the following sends a track update message to the other machine
C_WSClient client; //create the object RTRclient
if (clientConnect(79,"128.49.133.12") != WSC.SUCCESS)
MessageBox(NULL,"Connecuon Fail"," '\MB_OK.);

//endif
//strncpy(netbuf, MQ[MQndx-l],90);
clientSend(MQ[MQndx-l]); //netbuf);
cIientSend("\r\n");
clientCloseConnectionO;

}//endif

}else{ //first two messages pass through

//the following sends a track update message to the other machine
C_WSClient client; //create the object RTRclient
if (clientConnect(79,"128.49.133.12") != WSC_SUCCESS)

MessageBox(NULL,"Connection Fail"," ",MB_OK);
//endif

//stmcpy(netbuf, MQ[MQndx-l],90);
clienLSend(MQ[MQndx-l]); //netbuf);
clienLSend("\r\n");
clientCloseConnectionO;

}//endif

return 1;

TrkQ::TrkCX){
intndx;
for(ndx=Omdx<MAXTRKSmdx++){ /Amitialize the track array
TQ[ndx]=^aILL;

}//endfor
newTrk = new Trk;
nTrks = 0;
minlt=19.0;
maxlt = 23.0;
minlg = -162.0; //this is for op area field of view
maxlg =-158.0;
dellt = maxlt - minlt;

119

dellg = maxig - minig;
newTrkTxt = 0; //default for null number of TrkTxt windows
xdTrkTxt =0; //initialize to no delta for TrkTxt windows
ydTrkTxt = 0;

}//end TrkQ constructor

TrkQ::~TrkQO{
intndx;
for(ndx=0^dx<MAXTRKS;ndx-H-){ //delete the track array
if(TQ[ndx]!=NULL) {delete TQ[ndx];}

}//endfor
nTrks = 0;

}//end TrkQ destructor

int TrkQ:nipd(char *pTstr){

if((*(pTstr + 16)) = '2'){ //verify valid message type
strncpy(newTrk->typStr,pTstr+15, 4); //type of track
strncpy(newTrk->numStr,pTstr + 40, 3); //track number
int tmpnum;
tmpnum = atoi(newTrk->numStr);
int ndx = 0;
while((ndx < MAXTRKS) //search for existing track

&&(TQ[ndx] != NULL)){
if(TQ[ndx]->num = tmpnum){break;}//endif this track exists
ndx++; //note problem with testing NULL ptr
}//endwhile

uTTQ[ndx] = NULL){
TQ[ndx] = newTrk; //we are adding a new track
TQ[ndx]->num = tmpnum;
nTrks++; //need to add error handling for case of MAXTRKS
newTrk = new Trie;
}else{

strcpy(TQ[ndx]->01dMsg,TQ[ndx]->CurMsg);
}//endif

strncpy(TQ[ndx]->timStr,pTstr ,12); //timestamp of track message
//strcat(TQ[ndx]->timStr,"\0"); //end-of-string
stmcpy(TQ[ndx]->typStr,pTstr+15, 4); //type of track
stmcpy(TQ[ndxi->strStr,pTstr + 21, 8); //undefined characters
strncpy(TQ[ndx]->numStr,pTstr + 40, 3); //track number
strcpy(TQ[ndx]->romStr,pTstr + 43); //rest of message string
chartmpstr[64];
ifl;strcmp(TQ[ndx]->rypStr,"02J")=0){

strncpy(tmpstr, pTstr + 50,10);
TQ[ndx]->altRaw = atofljtmpstr);
}else{

TQ[ndx]->altRaw = 0.0;
}//endif
float tmpx = TQ[ndx]->xRaw;
float tmpy = TQ[ndx]->yRaw;
stmcpy(tmpstr, pTstr + 62,7);
TQ[ndx]->xRaw = atof(tmpstr);
TQ[ndx]->xdRaw = TQ[ndx]->xRaw - tmpx;
stmcpy(tmpstr, pTstr + 70,9);
TQ[ndx]->yRaw = atof(tmpstr);
TQ[ndxj->ydRaw = TQ[ndx]->yRaw - tmpy;
stmcpy(tmpstr, pTstr + 80,9);
TQ[ndx]->spRaw = atof(tmpstr);
strcpy(TQ[ndx]->CurMsg,pTstr);
ifrrQ[ndx]->MQndx<MXTKMS) {

TQ[ndx]->MQ[TQ[ndx]->MQndx] = pTstr,
TQ[ndxi->MQndx++;
>//endif

TQ[ndx]->dmsg0; //send the message via delta messaging

120

}
else
{

>//endif
return 0;

}//end TrkQ update

int TrkQ::rescaleO{
if(nTrks>l){

}//endif

return 0;
}//end rescaleO

TrkQ *pTQ;//pointer to the track queue

//the following sends a track update message to the other machine
C_WSClient client; //create the object RTRclient
if (clienLConnect(79,"128.49.133.12") != WSC_SUCCESS)

MessageBox(NULL,"Connection Fail"," \MB_OK);
//endif
clientSend(pTstr);
clientSend("\r\n");
clientCloseConnectionO;

minlt=TQ[0]->xRaw;
maxlt=TQ[0]->xRaw,
minlg=TQ[0]->yRaw;
maxlg=TQ[0]->yRaw;
int ndxOO;
for(ndx00=Omdx00<nTrks3idx00++){
if(minlt > TQ[ndxOO]->xRaw){minlt=TQ[ndxOO]->xRaw;}//endif
if(maxlt < TQ[ndxOO]->xRaw){maxlt=TQ[ndxOO]->xRaw;}//endif
if(minlg > TQ[ndxOO]->yRaw){minlg=TQ[ndxOO]->yRaw;}//endif
if(maxlg < TQ[ndxOO]->yRaw){maxlg=TQ[ndxOO]->yRaw;}//endif

}//endfor
dellt = maxlt - minlt;
dellg = maxlg - minlg;
#define SCFAC 0.5
if(dellt>0.0){
minlt-= (SCFAC* dellt);
maxlt += (SCFAC * deUt);

} else {
minlt -= (SCFAC * minlt);
maxlt += (SCFAC * maxlt);

}//endif
if(dellg>0.0){
minlg -= (SCFAC * dellg);
maxlg += (SCFAC * dellg);

} else {
minlg — (SCFAC * minlg);
maxlg += (SCFAC * maxlg);

}//endif
dellt = maxlt - minlt;
dellg = maxlg - minlg;

// zpbend

// ToolBar Member Functions - MainTools
rbMamMamTook::tbMainMamTools(zMDIMarginFrame *w, zSizer *sz, zBitmap *bmp)

: zToolbar(w, sz) {
theBmp = bmp;
(ZNEW zToolButton(this, ZNEW zSizer(zPoint(l 12), zDimension(24^2)),
0, IDM_HELPCONTENTS, rheBmp, zRect(l 12,0,128,15)))
->show();

(23SIEW zToolButton(mis, ZNEW zSizer(zPoint(48,2), zDimension(24^2)),
0, IDM_RTRDXTEXT, theBmp, zRect(0,0,16,15)))

121

->show();
// zpb_begin tbMainMainToolsConstructor
//zpb_end

}

tbMainMainTools::~tbMainMainToolsO {
// zpb_begin tbMainMainToolsDestructor
//zpb_end
if(theBmp)
delete theBmp;

}

//
// Frame Member Functions - Main
//
// Window Constructor
WMain::WMain(const char »title)
: zMDIAppFrame(0rZNEWzSizerO^STDFRAME,

title, ZNEWzMenu(zResId(IDM_MDIWindowMenu))) {
int MDIWindowPos = 1;
// zpb_begin WMainConstructor2
//zpb_end
menu(ZNEW zMenu(this, zResId(IDM_MainMnMenu)));
if (MDIWindowPos >= 0)

menuO>insertDropDown(MDImenuO, zString(zResId(IDS_MDIWINDOWMENU)), MDIWindowPos);
else

menu(>>appendDropDown(MDImenuO,zStrmg(zResId(IDS_MDIWINDOWMENU)));
menu()->setCommand(this, (CommandProc^WMain-cmdMDIWindow, IDM_CASCADE, IDM_ARRANGEICONS);
menuO->setCommand(this, (CommandProc)&WMain::cmdRTRDxDel, IDM_RTRDXDEL);
menuO->setCommand(this, (CommandProc)&WMain::cmdRTRDxText, IDM_RTRDXTEXT);
menuO>setCommand(this, (CommandProc)&WMain::cmdRTRDxSym, IDM_RTRDXSYM);
menuO>setCommand(this, (CommandProc)&WMain::cmdRTRDxTrck, DDM_RTRDXTRCK);
menuO->setCommand(this, (CommandProc)&WMain::cmdHelpContents, IDM_HELPCONTENTS);
menuO>setCommand(this, (CommandProc)&WMain::cmdHelpAbout, IDM_HELPABOUT);
//Create Tool Bar Margin Frame
zMDIMarginFrame *ToolFrame = ZNEW zMDIMarginFrame(this,
ZNEW zGrowToFitSizer(ZGRAV_TOP, sizerO));
ToolFrame->showO;
pTB = ZNEW tbMainMainToolsfToolFrame, ZNEW zGravSizer(ZGRAV_TOP, 30, ToolFrame->sizerO), ZNEW
zBirmap(zResId(IDB_MainMainTools)));
pTB->showO;
2MDIMarginFrame *sf=ZNEW zMDIMarginFrame(this3^EW zGrowToFitSizer(ZGRAV_BOTTOMsizerO));
zStatusLineEZ* pSB = ZNEW zStatusLineEZ(sf, ZNEW zGravSizer(ZGRAV_BOTTOM0, sf->sizerO), ZSL STANDARDITEM)-
sf->showO;
pSB->showO;

ZNEW Wjtidssld((zMDIAppFrame*)zAppGetAppVar(app)->rootWindowO, zString(zResId(IDS_JTIDSSLD)));
// zpb_begin WMainConstructorl
//zpb_end
// zpb_begin WMainConstructor

pSQ= new SlpQ; //creates the sleep queue for periodic execution of
//member functions.

pTQ = new TrkQ; //creates the track queue for this window

int x = 0;
DWORD dwResult = 0;
DWORD dwThreadld;
HANDLE hThread;

hThread = CreateThread(NULL, 0, ThreadFunc, (LPVOID) &x,
0, &dwThreadId);

SetThreadPriority(hThread,THREAD_PRIORrrY_ABOVE_NORMAL);

//zpbjend
show(SW_MAXIMIZE);

122

}

WMain::~WMain() {
// zpb_begta WMainDestructorl
// zpb_end

)

II
II Menu Item Selection Handlers
//
int WMam::cmdMDIWmdow(zCommandEvt* ev) {

// zpb_begin WMainMDICmds
switch (ev->cmdO) {
case IDM_CASCADE:
cascadeO;

break;
case IDMJTILE:

tUeO;
break;

case IDM_ARRANGEICONS:
arrangelconsO;

break;
}
// zpb_end
return 0;

}

int WMain::cmdRTRDxDel(2CommandEvt* ev) {
ZNEW WDelWin((zMDIAppFrame*)zAppGetAppVar(app)->rootWndowO, zString(zResId(IDS_DELWIN)));
// zpb_begin WMainRTRDxDel
// zpb_end
return 0;

}

int WMain::cmdRTRDxText(zCommandEvt* ev) {
ZNEW WDxWk((zh^IAppFrame*)zAppGetAppVar(app)->rootWindowO, 25tring(zResId(IDS_DXWIN)));
// zpb_begin WMainRTRDxText
// zpb_end
return 0;

>

int WMain::crndRTRDxSym(zCommandEvt* ev) {
ZNEW WSymWin((zMDLAppFrame*)zAppGetAppVar(app)->rootWindowO, zString(2ResId(IDS_SYMWIN)));
// zpb_begin WMainRTRDxSym
// zpb_end
return 0;

>

int WMain::cm(lRTRftcTrck(zCoinniandEvt* ev) {
ZNEW WTrkWirj((zMDlArjpFnune*)2^jpGetAppVar(app)->rootWindow0, zString(zResId(IDS_TRKWIN)));
// zpb_begin WMainRTRDxTrck
// zpb_end
return 0;

}

int WMain::cmdHelpContents(rCommandEvr* ev) {
//zpb_begin WMaincmdHelpContents
// zpb_end
return 0;

}

int WMain::cmdHelpAbout(2CornmandEvt* ev) {
DAbout* p=ZNEW DAbout(this, zResId(IDD_About));
p->modal0;
if (p->completed0) {
// zpb_begin WMainHelpAbout
// zpb_end

123

} else {
// zpb_begin WMainHelpAboutCancel
// zpb_end
}
delete p;
return 0;

>

// zpb_begin WMainMemberFunctions
// zpb_end

// Pane Member Functions - DxWinDxTxtPane
DxWinDxTxtPane::DxWinDxTxtPane(zWindow *w, zSizer *sz): zPane(w, sz, WS_CHLLD) {

// zpb_begin pDxWinDxTxtPaneConstructorl
// zpb_end
showO;

}

int DxWinDxTxtPane::size(zSizeEvt *ev) {
setDirtyO;
// zpb_begin Dx WinDxTxtPaneSize
//zpb_end
return zWindow::size(ev);

}

int DxWinDxTxtPane::draw(zDrawEvt* ev) {

canvasO>lock();
// zpb_begin DxTxtPaneDraw

//local constants
#define N_DXMSGS 18 // total number of messages displayed on the pane
#define x_head 3 //x coordinate for the header row
#define y_head 10 //y coordinate for the header row
#define x_mbase 3 // x coordinate for base (first row) of display messages
#define y_mbasel0 // y coordinate for base (first row) of display messages
#define m_strt 0 // starting message number
#define r_offset 15 //offset for spacing between rows

//local variables
int tmp_ndx; //temporary index
int lbufNdx;
int r_ndx; //row index for looping through the active messages currently displayed
int r_curr; //actual index into the buffer of messages

char *msg_curr[N_DXMSGS];

//set up the display parameters
canvasO->pushFont(newzFont("Helv"^PrPoint(12^5,canvasO),000)fiI)ontCare));

//clear the window pane
zRect DxTxtArea;
canvasO->getVisibIe(DxTxtArea);
//canvasO>pushPen(new zPen(zColor(GREEN), Solid, 5));
canvasO->pushBrush(new zBrush(zColor(255,128,128)));
canvasO->Tectangle(DxTxtArea);
//delete canvas()->popPenO;
delete canvasO->popBrush();

//set up the display parameters
// — select a newly created font
canvas()->backCoIor(GRAY);
canvas(>->setTextBackMode(ZTEXT_TRANSPARENT);

r_ndx= DxBufNdx;

for(tmp_ndx=0;tmp_ndx<N_DXMSGS;tmp_ndx-H-) //loop through the number of

124

{ //lines displayed in the window
r_curr = r_ndx-tmp_ndx; //from most current to past
if((r_curr<=DxBuflnp)
&&(r_curr >=0)){

msg_curr[tmp_ndx] = DxBuf[r_curr];
}else{

msg_curr[tmp_ndx] = NULL;
}//endif

}//endfor

for(tmp_ndx=0;tmp_ndx<N_DXMSGS,lmp_ndx-H-) //loop through the number of
{ //lines displayed in the window
// the following outputs a message to die DXFile window
if(msg_CTirr[tmp_ndx] !=NULL)
{

canvasO->text(x_mbase,
(y_mbase+(tmp_ndx*r_or&et)),
msg_curr[tmp_ndx]);

}//endif
}//endfor

delete canvas()->popFont();
//zpb_end
canvasO->unlockO;
return l;

//
// Frame Member Functions - DxWin
//
// Window Constructor
WDxWin::WDxWin(zMDIAppFrame *w, const char *title)
: zMDIChildFrameCw^ZNEWzSizerCzDialogUnitCO.O),

zDialogUnit(3l0430)),WS_CHILD|WS_TfflCKFRAME|WS_SYSMENU|WS_MINIMIZEBOX|WS_CAP^ title) {
// zpb_begin WDx WinConstructor2
drwRt=lOOOL;
drwTm=OL;
msgRt=255L;
msgTm=0L;
#deflne DXSR 8L // this object wakes up at the fastest message freq.

// zpb_end
deleteOnClosefTRUE);
backgroundColor(zColor(255,l28,l28));
menu(ZNEW zMenu(this, zResId(IDM_DxWinDxMenu)));
menuO->setCommand(this, (CommandProc)&WDxWin::cmdControlRefresh, IDM_CONTROLREFRESH);
menu(>>setCommand(this, (CommandProc)&WDxWin::cmdControlMsgRate, IDM_CONTROLMSGRATE);
pDxTxtPane = ZNEW I^WinDxTxtPane(this, ZNEW zGravSizer(ZGRAV_MIDDLE,0^izerO));
pDxTxtPane->showO;
sizerO->updateO;
// zpb_begin WDxWüiConstructorlOpenDlg
char *types[6];
typesfO] = "All FUes (*.*)", typesfl] = "*.•";
types[2] = "Text Files (•.txt)", types[3] = "*.txt";
types[4] = types[5] = 0;

zFileOpenForm *p = ZNEW zFileOpenForm(this,"Open File", 0, types);
if (p->completedO) {
// Use p->name0 to retrieve filename

char *mame;
char *line;
fstream fin;
fhame = p->name0;
fin.open(thame,ios::in);
DxBuflnp=0;
line = new char[LBUFSZ+l];

125

fin.getline(line,LBUFSZ);
while(((line[2] !=':')

fin.getline(line,LBUFSZ);
DxBuflnp++;
}//endwhi!e
DxBuflnp=0;
DxBuf[DxBuflnp] = line;
DxBuflnp++;
line = new char[LBUFSZ+l];
chartbuf[64];
while((fin.getline(line,LBUFSZ)

||(line[5] !=':')
||(line[8] !='.'))

&&(DxBuflnp < 20)){

)

//strncpy(tbuf,line+ 15, 4);
//inttbufiidx;
//foi(tbufiidx=0^bufiidx<4;tbufiidx-H-) {

//
//}//endfor
if((*(line+16)) = ,2'){

&&(DxBuflnp < DXBUFSZ)){
//type of track

tbuf[tbumdx] = (*(line+15));

//verify valid message type
DxBuffDxBuflnp] = line;
DxBuflnp++;
line = new char[LBUFSZ+l];

}//endif
}//endwhile
fin.closeO;
DxBufNdx=0; //Set buffer index to beginning of buffer

}
delete p;
//zpb_end

//zpb_begin WDxWinConstructorl

// this block of code finds a previous message that is "closest" to
// the current message. The index of mis message is saved. Note that
// the previous message has an index to a previous message that it
// was closest to. Those two messages will be used to generate a
// "delta message" format This block of code links the messages
// before the demo starts. After the algorithm is tested and verified
// the code will be moved to the location where it will run in realtime.
// inttmpndx;
// #define CCMAX 20 // compare last CCMAX messages from current
// for(tmpndx=CCMAX3mpndx<DxBuflnp^mpndx-H-) {//start comparing after CCMAX
// char *lnptr = DxBufftmpndx]; //current line pointer
// int lnsz = strlen(lnptr); //size of current line
// int ccndx; //index into the messages
// for(ccndx=CCMAX;ccndx>0;ccndx-){ //last CCMAX messages to be compared
//
//
//
//
//
//
//
//
//
// int slndx;
//
//
//
//
//
//
//
// }//endfor
// }//endfor

char »strptr = DxBufltmpndx-CCMAX]; //previous message
int strsz = strlen(strptr); //size of previous message
int strmin; //min message length
if(lnsz<strsz){

stnnin=lnsz; //current line is shortest
} else {
strmin=strsz; //previous line is shortest

}//endif
int strdel = absflnsz - strsz); //diff is counted as diff chars

for(smdx^;stadx<stnnin;slndx-H-){ //compare char for char
if((*strptr)!=(*lnptr)){ //if diff men inc delta

strdel++;
>//endif
strptr++;
lnptr++;

}//endfor

//inc char location in each str

126

}

// zpb_end
// zpb_begin WDxWinConstructor

//Create the track display for this message stream
ZNEW WTrk\\Tn((zMDIAppFrame*)zAppGetAppVar(app)->rootWmdow(), zString(zResId(IDS_TRKWIN)));
pSQ->Slp(this, DXSR); //wake window every x ticks

// zpb_end
showO;

WDxWin::~WDxWinO {
// zpb_begin WDxWinDestructorl
pSQ->Rm(this); //Remove this window from the sleep queue
// zpb_end

Menu Item Selection Handlers

int WDxWin::cmdControlRefresh(zCommandEvr* ev) {
DMsgRfsh* p=ZNEW DMsgRfsh(this, zResId(IDD_MsgRfsh));
p->modalO;
if (p->completed0) {
//zpbjoegjn WDxWinControlRefresh
drwRt = (unsigned long) atol(p->_DRt);
// zpb_end
} else{
// zpb_begin WDx WinControlRefreshCancel
// zpb_end
>
delete p;
return 0;

}

int WDxWin::cmdControlMsgRate(2CommandEvt* ev) {
DMsgRate* p=ZNEW DMsgRate(this, zResId(IDD_MsgRate));
p->modalO;
if (p->completedO) {
// zpb_begin WDxWinControlMsgRate
msgRt = (unsigned long) atol(p->_Mrt);
// zpb_end
} else{
// zpb_begin WDxWinControlMsgRateCancel
// zpb_end
}
delete p;
return 0;

}

// zpbbegin WDxWinMemberFunctions

int WDxWinrnvakeO {
zDrawEvt »trnpEv;
if(pSQ->systime >= drwTm){
if(pTQ!=NULL){
il(pTQ->TQ!=NULL){
intupdndx;
for(updndx=03ipdndx<pTQ->nTrks;updndx-H-){ //Refresh txt window

iflJ5TQ->TQ[updndx]->TxWn != NULL){

pTQ->TQ[updndx]->TxWn->rtrdrwO;
>//endif
injjTQ->TQ[updndx]->AnWn != NULL){

pTQ->TQ[updndx]->AnWn->rtrdrw();

127

}//endif
}//endfor
}//endif
}//endif

pDxTxtPane->draw(tmpEv);
drwTm = pSQ->systime + drwRt;
}//endif
if(pSQ->systime >= msgTm){
DxBufNdx++;
iflX)xBufNdx>=DxBuflnp){ //not end of buffer, i.e. index less than inputs
DxBufNdx = 0; //loop back to beginning of message buffer
}//endif

pTQ->upd((char *)DxBuf[DxBufNdx]); //update the track display queue
//with the new message

msgTm = pSQ->systime + msgRt;
}//endif
return 0;

//
// Sleep Queue Member Functions
//
// constructor
SlpQ::SlpQO{

systime = GetCurrentTimeO;
intndx;
for(ndx=0;ndx<NTASKS;ndx-H-) {
sq[ndx] =NULL;
SlTm[ndx]=0;
}//endfor ndx

}//end SlpQO
//
// destructor
SlpQ::-SlpQO{
}//end -SlpQO
//
// Periodic Execution Every Specified Number of Ticks
int SlpQ:Slp(zMDIChildFrame »wptr, unsigned long tcks){

intndx;
for(ndx=0;ndx<NTASKS;ndx++){
if((sqfndx] = NULL)){

sq[ndx] =wptr;
SlTm[ndx]=teks;
WkTm[ndx]=systime+tcks;
return 0;

}//endif
}//endfor ndx
return 0;

}//endSlpO
//
// Check the Sleep Queue for Any Member Functions
int SlpQ::CkQ0 {

systime = GetCurrentTimeO;
intsndx;
for(sndx=0-.sndx<NTASKS;sndx-H-) {
if((sqfsndx] != NULL)

WkTm[sndx}=systime+SITm[sndx];

}//endif
}//endfor ndx
return 0;

}//end CkQO
//
// Remove window from the queue

&&(WkTm[sndx] <= systime)){

sq[sndx]->wake0;
return 0;

128

int SlpQ::Rm(zMDIChildFrame *wptr){
intndx;
for(ndx=0;ndx<NTASKS;ndx++){
if((sq[ndx] =wptr)){

sq[ndx] =NULL;
SlTm[ndx]=0;
WkTm[ndx]=0;
return 0;

}//endif
}//endfor ndx
return 0;

}//endRmO
//
// End Sleep Queue Member Functions
//
//
// The Following is a Single Thread Used for Application Multitasking
//

DWORD WINAPI ThreadFunc(LPVOID lpvThreadPann){
DWORD dwResult = 0;

#define SlpQRt 1L //this is the fastest rate any method can run
int done = 0;
while(done = 0) {
done = pSQ->CkQ0;
Sleep(SlpQRt);

}//endforever

return(dwResult);
}//end_ThreadFuncO

// zpb_end

// Pane Member Functions - TrkWinTrkPane
TrkWinTrkPane::TrkWinTrkPane(zWindow *w, zSizer *sz): zPane(w, sz, WS_CJflLD|WS_BORDER) {

// zpb_begin pTrkWinTrkPaneConstructorl

//this is where we determine which track to display
bmpha = new zBitmap(canvasO. "sym/diamup.bmp");
bmphs = new zBitmap(canvasO. "sym/diamdwn.bmp");
bmphsf =newzBitmap(canvasO, "sym/diam.bmp");
bmpukna = new zBitmap(canvasO, "sym/sqrup.bmp");
bmpukns = new zBitmap(canvasO> "sym/sqrdwn.bmp");
bmpuknsf = new zBitmap(canvasO, "sym/sqr.bmp");
bmpfe = new zBitmap(canvasO, "sym/circleup.bmp");
bmpfe = new zBitmap(canvasO. "svm/circledwn.bmp");
bmpfef = new zBitmap(canvasO, "sym/circle.bmp");
// zpb_end
showQ;

}

int TrkWinTrkPane:nnouseButtonDown(zMouseClick£vt* ev) {
if (ev->isButton(l)) { // Left Button Pressed
// zpb_begin TrkWinTrkPaneLButtonDown
intDTndx = 0;
zPoint mpos;
mpos = ev->pos0; //gives us the position when clicked
int mousex = mpos JC();

int mousey = mpos.y0;
int closex = pTQ->TQ[DTndx]->xpos;
int closey = pTQ->TQ[DTndx]->ypos;
pTQ->DTindx - DTndx;
for(DTndx=l;DTndx<pTQ->nTrks;DTndx++){

129

if((abs(pTQ->TQ[DTndx]->xpos - mousex)
< abs(closex - mousex))

&&(abs(pTQ->TQ[DTndx]->ypos - mousey)
< abs(closey - mousey))) {

closex = pTQ->TQ[DTndx]->xpos;
closey = pTQ->TQ[DTndx]->ypos;
pTQ->DTindx = DTndx; //update the DTInfo() ndx
>//endif

}//endfor

DTInfo* p=ZNEW DTInfo(this, zResId(IDD_TInfo));
p->modalO;
if (p->completedO) {
// hook for later code

PTQ->TQ[pTQ->Drindx]->distype = p->UpdAtt(pTQ->TQ[pTQ->DTindx]->dTypStr);
}//endif
delete p;

// zpb_end
}
else
if (ev->isButton(2)) {// Right Button Pressed
// zpb_begin TrkWinTrkPaneRButtoriDown
intNTndx = 0;
zPoint mpos;
mpos = ev->posO; //gives us the position when clicked
int mousex = mpos.xO;
int mousey = mpos.yO;
int closex = pTQ->TQ[0]->xpos;
int closey = pTQ->TQ[0]->ypos;
pTQ->newTrkTxt = 0;
for(NTndx=l ;NTndx<pTQ->nTrks;NTndx-H-){

if): (abs(pTQ->TQ[NTndx]->xpos-mousex)
< abs(closex - mousex))

&&(abs(pTQ->TQtNTndx]->ypos - mousey)
< abs(closey - mousey))) {

closex = pTQ->TQ[NTndx]->xpos;
closey = pTQ->TQ[NTndx]->ypos;
pTQ->newTrkTxt = NTndx; //update the TrkTxtO ndx
>//endif

}//endfor

const char trkmsg[256] = "Track Analysis";
//strcatftrkmsg, pTQ->TQ[NTndx]->numStr);
ifij)TQ->TQ[pTQ->newTrkTxt] != NULL){ //Track must exist
iflpTQ->TQ[pTQ->newTrkTxt]->TxWn = NULL) { //Only one window per track
ZNEW WTrkTx<(zMDIAppFrame*)zAppGetAppVar(app)->rootWindowO, trkmsg);

}//endif
}//endif

llzph end
}
return 0;

}

int TrkWinTrkPane::size(zSizeEvt *ev) {
setDirtyO;
// zpb_begin TrkWinTrkPaneSize
// zpb_end
return zWindow::si2e(ev);

}

int Trk^mTrkPane::draw(zDrawEvt* ev) {
canvasO->lockO;
// zpb_begin TrkPaneDraw
//local constants

130

//local variables

//clear the window pane
zRect DxTxtArea;
canvasO>getVisible(DxTxtArea);
canvasO->pushPen(new zPen(zColor(GREEN), Solid, 5));
canvasO>pushBrush(new zBrush(DarkGrayBrush));
canvasO->pushBrush(new zBrush(zColor(0,0,0)));
canvas()->rectangle(DxTxtArea);
delete canvasO>popPenO;
delete canvas()->popBrushO;

//set up the display parameters
//—select a newly created font
//canvasO->backColor(zColor(0,0)0));
canvasO->setTextBackMode(ZTEXT_TRANSPARENT);
canvasO->pushFont(newzFont("Helv"^PrPoint(12^5,canvasO),900,fiDontCare));

//draw a line - will use the pen
intndx;
for(ndx=0?idx<pTQ->nTrks3idx-H-){

canvasO->textColor(pTQ->TQ[ndx]->clr);
canvasO->pushPen(new zPen(pTQ->TQ[ndx]->clr,Solid,l));
float xtmp.ytmp;
intx,y;
#defineWINDLT3

* ((pTQ->TQ[ndx]->xRaw - pTQ->minlt)/pTQ->dellt);
xtmp= ((float)DxTxtArea.widthO)

x = DxTxtArea-leftO + (int)xtmp;
if(x<={DxTxtArea.leftO + WINDLT)){

x=DxTxtArea.leftO + WINDLT;
}//endif check lower bound
ifl[x>=(DxTxtAreajightO-WINDLT)) {

x=DxTxtAreajightO - WINDLT;
}//check upper bound

ytmp= ((float)DxTxtAreaJieightO)
* ((pTQ->TQ[ndx]->yRaw - pTQ->minlg)/pTQ->dellg);

y = DxTxtArea.topO + (int)ytmp; //new y for display
if[y<=<DxTxtArea.topO + WTMDLT)){

y=DxTxtArea.topO + WINDLT; //clip to top of window
}//endif check lower bound
if(y>=(DxTxtArea.bottomO-WINDLT)){

y=DxTxtArea.bottomO - WINDLT; //clip to bottom of window
}//check upper bound
switch(pTQ->TQ[ndx]->distype) {

case HOSTILE_AIR:
canvasQ->bitmap(bmpha^Point(x-10,y-20), SRCCOPY);
canvasO->textColor(zColor(255,0,0));
canvasO->text(x-l 1, y,pTQ->TQ[ndx]->numStr);
if((pTQ->TQ[ndx]->xpos != 0)

||(pTQ->TQ[ndx]->ypos != 0)){
canvasO->moveTo(x,y);
canvasO>lineTo(pTQ->TQ[ndx]->xpos,pTQ->TQ[ndx]->ypos);
}//endif
pTQ->TQ[ndx]->xpos = x;
pTQ->TQ[ndx]->ypos = y;
break;

case HOSTHJE_SUB:
canvasO>bitmap(bmphs^Point(x-10,y), SRCCOPY);
canvasO->textColor(zColor(255,0,0));
canvasO->text(x-l 1, y+20,pTQ->TQ[ndx]->numStr);
if((pTQ->TQ[ndx]->xpos != 0)

||(pTQ->TQ[ndx]->ypos != 0)){
canvasO>moveTo(x,y);
canvasO->lineTo(pTQ->TQ[ndx]->xpos,pTQ->TQ[ndx]->ypos);

131

}//endif
pTQ->TQ[ndx]->xpos = x;
pTQ->TQ[ndx]->ypos = y;
break;

case HOSTILE_SURFACE:
canvas(>>bitmap(bmphsf^oint(x-12,y-12), SRCCOPY);
canvas()->textColor(zColor(255,0,0));
canvas()->text(x-12, y+1 l,pTQ->TQ[ndx]->numStr);
iff (pTQ->TQ[ndx]->xpos != 0)

||(pTQ->TQ[ndx]->ypos != 0)){
canvas()->moveTo{x,y);
canvasO->IineTo(pTQ->TQ[ndx]->xpos,pTQ->TQ[ndx]->ypos);
}//endif
pTQ->TQ[ndx]->xpos = x;
pTQ->TQ[ndx]->ypos = y;
break;

case UNKNOWN_AIR:
canvas(>>bitmap(bmpiikna^Point(x-10)y-20), SRCCOPY);
canvasO->textColor(zColor(255>255^55));
canvas()->text(x-12, y,pTQ->TQ[ndx]->numStr);
iff (pTQ->TQ[ndx]->xpos != 0)

||(pTQ->TQ[ndx]->ypos != 0)){
canvasO->moveTo(x>y); •
canvasO->lineTo(pTQ->TQ[ndx]->xpos,pTQ->TQ[ndx]->ypos);
}//endif
pTQ->TQ[ndx]->xpos = x;
pTQ->TQ[ndxj->ypos = y;
break;

case UNKNOWN.SUB:
canvasO>bitmap(bmpukns^Point(x-10,y),SRCCOPY);
canvas(>>textColor(zColor(255,255,255));
canvasO->text(x-12,y+20,pTQ->TQ[ndx]->nunjStr);
iff (pTQ->TQ[ndx]->xpos != 0)

||(pTQ->TQ[ndx]->ypos != 0)){
canvasO>moveTo(x,y);
canvasO->lineTo(pTQ->TQ[ndx]->xpos,pTQ->TQ[ndx]->ypos);
}//endif
pTQ->TQ[ndx]->xpos = x;
pTQ->TQ[ndx]->ypos = y;
break;

case UNKNOWN_SURFACE:
canvasO>bitmap(bmpuknsf>Point(x-10,y-10), SRCCOPY);
canvasO->textColor(zColor(255,255,255));
canvasO->text(x-l 1, y+10,pTQ->TQ[ndx]->numStr);
iff (pTQ->TQ[ndx]->xpos!=0)

||{pTQ->TQ[ndx]->ypos != 0)){
canvas()->moveTo(x,y);
canvasO->lineTo(pTQ->TQ[ndx]->xpos,pTQ->TQ[ndx]->ypos);
}//endif
pTQ->TQ[ndx]->xpos = x;
pTQ->TQ[ndx]->ypos = y;
break;

case FRENDLYJUR:
canvasO->bitmap(bmpfavzPoint(x-8,y-17), SRCCOPY);
canvasO->textColor(zColor(0^55^55));
canvasO>text(x-9, y+l,pTQ->TQ[ndx]->numStr);
iff (pTQ->TQ[ndx]->xpos!=0)

||(pTQ->TQ[ndx]->ypos != 0)){
canvasO->moveTo(x,y);
canvasO>IineTo(pTQ->TQ[ndx]->xpos>pTQ->TQ[ndx]->ypos);
}//endif
pTQ->TQ[ndx]->xpos = x;
pTQ->TQ[ndx]->ypos = y;
break;

case FRENDLY_SUB:
canvasO->bitmap(bmpfs^Point(x-8,y), SRCCOPY);
canvas(>>texColorfzColor(0,255,255));

132

canvas()->text(x-9,y+18,pTQ->TQ[ndx]->numStr);
iff (pTQ->TQ[ndx]->xpos != 0)

||(pTQ->TQ[ndx]->ypos !=0)){
canvas()->nioveTo(x,y);
canvas()->lineTo(pTQ->TQ[ndx]->xpos,pTQ->TQ[ndx]->ypos);
}//endif
pTQ->TQ[ndx]->xpos = x;
pTQ->TQ[ndx]->ypos = y;
break;

case FRIENDLY_SURFACE:
canvas()->bitmap(bmpfsf,zPoint(x-l l,y-l 1), SRCCOPY);
canvasO->textColor(zColor(0,255,255));
canvasO>text(x-l 1, y+12,pTQ->TQ[ndx]->numStr);
if((pTQ->TQ[ndx]->xpos!=0)

||(pTQ->TQ[ndx]->ypos != 0)){
canvasO->moveTo(x,y);
canvasO>lineTo(pTQ->TQ[ndx]->xpos,pTQ->TQ[ndx]->ypos);
}//endif
pTQ->TQ[ndx]->xpos = x;
pTQ->TQ[ndx]->ypos = y;
break;

}; //end case statement
//pTQ->TQ[ndx]->distype++;
//if (pTQ->TQ[ndx]->distype > 8)pTQ->TQ[ndx]->distype = 0;

//canvasO->text(x, y,pTQ->TQ[ndx]->numStr);
delete canvas()->popPenO;
}//endfor ndx

//canvasO->textColor(BLACK);
delete canvas()->popFontO;

// zpb_end
canvasO>unlock0;
return 1;

//
// Frame Member Functions - TrkWin
//
// Window Constructor
WTrkWm:: wTrkWm(zMDIAppFrame *w, const char »title)
: zMDIOiildFranie(w,ZNEW zSizer(zDialogUnit(310,0), zDialogUmt(200,155)),zSTDFRAME, title) {

// zpb_begin WTrkWinConstructor2

drwRt=500L;
drwTm=0L;
#define TRSR10L // mis object wakes up at the fastest message freq.
// zpb_end
deleteOnClose(TRUE);
menu(ZNEW zMenu(this, zResIdCTOMJTrkWinTrkMenu)));
menu()->setCommand(this, (CommandProc)&WTrkWin::cmdControlAutoSet, IDM_CONTROLAUTOSET);
menuO->setCommand(this, (CommandProc)&WTrkWin::cmdControlRefresh, IDM_CONTROLREFRESH);
menuO->setCommand(mis, (CommandProc)&WTrkWin::cmdControlSetup, IDM_CONTROLSETUP);
menuQ->setComniand(tiiis, (CommandProc)&WTrkWin::cmdDisplayTrack, IDM_DISPLAYTRACK);
pTrkPane = ZNEW TrkWinTrkPane(this, ZNEW 2GravSizer<ZGRAV_MIDDLE,0^i2erO));
pTrkPane->showO;
sizer()->updateO;
// zpb_begin WTrk WinConstructor
//pStaticte>nl->backgroundColor(zColor(64,64,64));
pSQ->Slp(this, TRSR); //wake window every x ticks
// zpb_end
showO;

}

WTrkWin::~WTrkWinO {
// zpb_begin WTrkWinDestructorl

133

pSQ->Rm(this); //Remove this window from the sleep queue
PTQ->~TrkQ();
// zpb_end

Menu Item Selection Handlers

int WTrkWin::cmdControlAutoSet(2CommandEvt* ev) {
// zpb_begin WTrkWinControlAutoSet
pTQ->rescaleO;
// zpb_end
return 0;

}

int WTrkWin::cmdControlRefresh(zCommandEvt* ev) {
DTrkRfsh* p=ZNE W DTrkRfsh(this, zResId(IDD_TrkRfsh));
p->modal0;
if (p->completedO) {
// zpb_begin WTrkWinControlRefresh
drwRt = (unsigned long) atol(p->_DRt);
// zpb_end
} else {
// q>b_begin WTrkWinControlRefreshCancel
// zpb_end
}
delete p;
return 0;

}

int WTrkWin::cmdControlSetup(zCommandEvt* ev) {
DTkSet* p=ZNEW DTkSet(this, zResId(IDD_TkSet));
p->modal0;
if (p->completedO) {
//zpb_begin WTricWinControlSetup
pTQ->minlt = p->_laMn; //this is for op area field of view
pTQ->maxlt = p->_laMx;
pTQ->minlg = p->_lgMn;
pTQ->maxlg = p->_lgMx;
pTQ->dellt = pTQ->maxlt - pTQ->minlt;
pTQ->deUg = pTQ->maxlg - pTQ->minlg;
//zpb_end
} else {
// zpb_begin WTrkWinControlSetupCancel
// zpb_end
}
delete p;
return 0;

}

int WTrkWin::cmdDispIayTrack(zCommandEvt* ev) {
ZNEW WTrkTxt((zMDIAppFrame*)2AppGetAppVar(app)->rootv^ndowO, zString(zResId(IDS_TRKTXT)));
// zpb_begin WTrk WinDisplayTrack
// zpb_end
return 0;

}

// zpb_begin WTrk WinMemberFunctions
int WTrkWin::wakeO{

zDrawEvt *tmpEv;
if(pSQ->systime >= drwTm){
pTrkPane->draw(tmpEv);
drwTm = pSQ->systime + drwRt;
}//endif

return 0;
}//end wakeO

134

// zpb_end

// Pane Member Functions - SymWinSymPane
SymWinSymPane::SymWinSymPane(zWindow *w, zSizer *sz): zPane(w, sz, WS_CMLD) {

// zpb_begin pSymWinSymPaneConstructorl
// zpb_end
showO;

}

int SymWinSymPane::size(zSizeEvt *ev) {
setDirtyO;
// zpb_begin Sym WinSymPaneSize
//zpb_end
return zWindow::size(ev);

}

int SymWinSymPane::draw(zI>rawEvt* ev) {

canvas()->IockO;
// zpb_begin SymPaneDraw
//set up the display parameters
canvasO>pushFont(newzFont("Helv"^PrPoint(12^5,canvasO),900,fiDonteare));

//clear the window pane
zRect DxTxtArea;
canvasO->getVisible(DxTxtArea);
canvas()->rectangle(DxTxtArea);

can vasO>text(10,
10,
"hello world");

delete canvas()->popFontO;
// zpb_end
canvasO->unlockO;
return 1;

//
// Frame Member Functions - Sym Win
//
// Window Constructor
WSymWin::WSymWin(zMDIAppFrame *w, const char *title)
: zMDIChildFrame(w,ZNEW zSizer(zDialogUmt(310,0),

zKalogUIÜt(2CK)^55)),WS_CHIIJ^|WS_THICKFRAME|WS_SYSME^W|WS_M^NIMIZEBOX|WS_CAPTION, title) {
// zpb_begin WSymWinConstructor2

// zpbend
deleteOnCloseCniUE);
menu(ZNEW zMenu(this, zResId(IDM_SymWinSymMenu)));
menu()^>setCoinmafid(this, (C«imiandPTOc)&WSymWin::cmdControlRefresh, IDM_CONTROLREFRESH);
pSymPane = ZNEW SymWinSymPane(mis, ZNEW zGravSizer(ZGRAV_Mri>DLE,0^izerO));
pSymPane->showO;
sizerO->updateO;
// zpbbegin WSymWinConstructor
// zpb_end
showO;

>

WSymWm::~WSymWinO {
// zpb_begin WSymWinDestructorl
// zpb_end

>

//

135

// Menu Item Selection Handlers
//

int WSymWin::cmdControlRefresh(zCommandEvt* ev) {
DSymRfsh* p=ZNEW DSymRfsh(this, zResId(IDD_SymRfsh));
p->modaI0;
if (p->completed()) {
//zpb_begin WSymWinControlRefresh
// zpb_end
} else {
//zpb_begin WSymWinControlRefreshCancel
// zpb_end
}
delete p;
return 0;

}

// zpb_begin WSymWinMemberFunctions
//zpb_end

// Pane Member Functions - Del WinSymPane
DelWinSymPane::DelWinSymPane(zWindow *w, zSizer *sz): zPane(w, sz, WS_CHILD) {

// zpb_begin pDelWinSymPaneConstructorl
// zpb_end
showO;

}

int DelWinSymPane::size(zSizeEvt *ev) {
setDirtyO;
// zpb_begin DelWinSymPaneSize
// zpb_end
return zWindow::size(ev);

}

int DelWinSymPane::draw(zDrawEvt* ev) {
canvasO->lockO;
// zpb_begin SymPaneDraw
//set up the display parameters
canvas(>>pushFont(newzFont("Helv"^PrPoint(12^5,canvasO),900,ffDontCare));

//clear me window pane
zRect DxTxtArea;
canvasO>getVisible(DxTxtArea);
canvasO->rectangle(DxTxtArea);

canvasO>text(10,
10,
"hello world");

delete canvas(>>popFontO;
// zpb_end
canvasO>unlockO;
return 1:

//
// Frame Member Functions - Del Win
//
// Window Constructor
WDelWin::WDelWin(zMDIAppFrame *w, const char »title)
: zMDIChildFrame(w,ZNEW zSizer(zDialogUnit(310,255),

zDialogUnit(200,l 12)),WS_CHILD|WS_THICKFRAME|WS_SYSMENU|WS_MINIMIZEBOX|WS_CAPTION, title) {
//zpb_begin WDelWinConstructor2
// zpb_end

136

deIeteOnClose(TRUE);
menu(ZNEW zMenu(this, zResId(IDM_Del WinSymMenu)));
menuO>setCommand(this, (CommandProc)&WDelWin::cmdControlRefiesh, IDM_CONTROLREFRESH);
pSymPane = ZNEW DelWinSymPane(this, ZNEW zGravSizer(ZGRAV_MIDDLE,0,sizei<)));
pSymPane->show();
sizerO->updateO;
// zpb_begin WDel WinConstructor
// apb_end
showQ;

}

WDeIWin::~WDelWinO {
// zpb_begiii WDel WinDestructorl
//zpb_end

}

//
// Menu Item Selection Handlers
//

int WDelWin::cmdControlRefresh(zCommandEvt* ev) {
DSymRfsh» p=ZNEW DSymRfsh(this, zResId(IDD_SymRfsh));
p->modalO;
if (p->completedO) {
//zpb_begin WDelWinControlRefiesh
// zpb_end
} else {
//zpb_begin WDelWinControlRefieshCancel
//zpb_end
}
delete p;
return 0;

}

// zpb_begin WDelWinMemberFunctions
// zpb_end

// Pane Member Functions - TrkTxtTkTxPane
TrkTxtTkTxPane::TrkTxtTkTxPane(zWindow *w, zSizer *sz): zPane(w, sz, WS_CHILD) {

// zpb_begin pTrkTxtTkTxPaneConstructorl
TrkNdx = pTQ->newTrkTxt; //set the track pointer to the New Track
//zpb_end
showO;

}

mtTrkTxtTkTxPane::size(zSizeEvt*ev) {
setDirtyO;
// zpb_begin TrkTxtTkTxPaneSize
// zpb_end
return zWindow::size(ev);

}

int TikTxtTkTxPane::draw(zDrawEvt* ev) {
canvas()->lockO;
// zpb_begin TkTxPaneDraw

//local constants
#define N_TKMSGS 24 //total number of messages displayed on the pane
#define X_MB 3 // x coordinate for base (first row) of display messages
#define Y_MB 10 II y coordinate for base (first row) of display messages
#define R_OFF 15 //offset for spacing between rows

//local variables
int tmp_ndx; //temporary index
intlbufNdx;
int r_ndx; //row index for looping through the active messages currently displayed

137

intr_curr; //actual index into the buffer of messages

//char *msg_curr[N_TKMSGS];

//set up the display parameters
//canvas()->pushFont(newzFont("HeIv"^PrPoint(12^5,canvas()),900,ffDontCare));
canvasO->pushFont(newzFont("Helv"^PrPoint(12^5,canvasO),900,ffDontCare));

//clear the window pane
zRectDxTxtArea;
canvasO->getVisible(DxTxtArea);
//canvasO->pushPen(new zPen(zColor(GREEN), Solid, 5));
canvasO>pushBrush(newzBnjsh(zColor(255,255,255)));
canvasO>rectangle(DxTxtArea);
//delete canvas(>>popPenO;
delete canvas()->popBrushO;

//set up the display parameters
// - select a newly created font
//canvasO->backColor(GRAY);
canvasO>setTextBackMode(ZTEXT_TRANSPARENT);

int nMsgs;
if(pTQ->TQ[TrkNdx]->MQndx < N_TKMSGS){
nMsgs = pTQ->TQ[TrkNdx]->MQndx;
r_ndx = 0;

} else {
nMsgs = N_TKMSGS;
r_ndx = pTQ->TQ[TrkNdx]->MQndx - NJKMSGS;

}//endif

zDimension txtDim; //used to move the draw origin as chars output
int xdelta; //number of pixels for chars draw on a line
canvasO->textColor(zColor(0,0,0)); //black text
char*ptcl;
char *ptc0;

char*ptcml;
int numchrs;
intndx;
intdsum;
for(tmp_ndx=(nMsgs-l);tmp_ndx>=0,tmp_ndx—) //loop through the number of
{ //lines displayed in the window
r_curr = r_ndx+tmp_ndx;

zPointp(X_MB,
(Y_MB+(((nMsgs-l)-tmp_ndx)*R_OFF)));

int scnt[LBUFSZ];
xdelta = 0;
if((nMsgs>l)&&(r_curr>0)){

ptcl =pTQ->TQfTrkNdx}->MQ[r_curr]; //get pointer to line buffers
ptcO =pTQ->TQITrkNdx]->MQ[r_curT-l];
numchrs = strlen(ptcl);
dsum = 0;
int cent;

for(ccnt=0;(ccnt<numchrs)&&(ccnt<LBUFSZ);ccnr++) {
iff. ((»ptcl)!=(*ptc0))){

sentfeent] = 1;
pTQ->TQ[TrkNdx]->CurDeltccnt] = 1;
dsum++; //thb counts number of chars not same

}else{
scnt[ccnt] =0;
pTQ->TQ[TrlcNdx]->CurDel[ccnt] = 0;

}//endif
ptcl++;
ptc(H-+;

}//endfor
if((nMsgs>2)&&(r_curr>l)){ //test for "delta messaging"

138

ptcO = pTQ->TQ[TrkNdx]->MQ[r_cuiT-1]; //reset pointer to line buffers
ptcml = pTQ->TQ[TrkNdx]->MQ[r_curr-2];
for(ccnt=0;(ccnt<numchrs)&&(ccnt<LBUFSZ);ccnt++){
if((*ptcO)!=(*ptcml)){

pTQ->TQ[TrkNdx]->01dDel[ccnt] = 1;
}else{

pTQ->TQ[TrkNdx]->01dDel[ccnt] = 0;
}//endif
ptc&H-;
ptcml ++;

}//endfor
}//endif

ptcl = pTQ->TQ[TrkNdx]->MQ[r_curr]; //reset pointer to line buffer
int pent;
ccnt=0;

while((ccnt<numchrs)&&(ccnt<LBUFSZ)){
pcnt = 0;
while(scnt[ccnt]=0){

pcnt-H-;ccnt++;
}//endwhile
if((pcnt>0)&&(ccnt<=numchrs)){
canvas()->textColor(2Color(0,0,0)); //black text if same
zPoint dc(p.x0 + xdelta,p.yO); •
can vas()->text(dc,ptc 1 ,pcnt);
txtDim = canvasO^getTextDimCptcl.pcnt);
xdelta += (txtDim.widthO-1);
ptcl += pent;

}//endif

i£[ccnt<numchrs) {
canvas()->textColor(zColor(255,0,0)); //red text if different
zPoint ddc(p JCO + xdeltajs.yO);
canvas()->text(ddc,ptc 1,1);
txtDim = canvasO->getTextDim(ptcl,l);
xdelta += (txtDim.widthO-1);
ccnt++;
ptcl++;

}//endif
}//endwhile

int dmsg = 0; // test to see if we have a delta message
int tmdel = strlen(pTQ->TQrTrkNdx]->timStr) + 1;
for(ccnt=tmdel;

((ccnt<numchrs)&&(ccnt<LBUFSZ));
ccnt++){

ifl; (pTQ->TQ[TrkNdx]->CurDel[ccnt] = 1) //we have a new char
&&(pTQ->TQ[TrkNdx]->01dDel[ccnt] = 0)){//no delta message

dmsg++;
}//endif

}//endfor

xdelta = 700;
ptcl = pTQ->TQ[TrkNdx]->MQ[r_curr]; //reset pointer to curr buffer
ptcl +^ tmdel;
if(dmsg — 0) {//we have a delta message

cnardm[8] = "!!!";
canvasO->textColor(zColor(0,0,255)); //blue text
zPoint ddc(p JC() + xdelta,p.yO);
canvasO>text(ddc,dm, 1);
txtDim = canvasO->getTextDim(dm,l);
xdelta += (txtDim.widmO-1);
for(ccnt=tmdel;

(ccnKnumchrs)&&(ccnt<LBUFSZ);
ccnt++){

if(pTQ->TQ[TrkNdx]->01dDel[ccnt] = 1){ //print the delta char
iflccnt<numchrs) {

canvasO>textColor(zColor(0,0^55)); //blue text

139

zPoint ddc(p.x() + xdelta,p.y());
canvas()->text(ddc,ptcl,l);
txtDim = canvasO->getTextDim(ptcl,l);
xdelta += (txtDim.width()-1);

}//endif
}//endif
ptcl++;

}//endfor

} else \

char dm[8] = "???";
canvasO>textColoi(zColor(0,0,0)); //black text
zPoint ddc(p.x() + xdelta,p.y());
canvasO>text(ddc,dm, 1);
txtDim = canvasO->getTextDim(dm,l);
xdelta += (txtDim.wlddiO-1);

}//endif

//the following calculates values needed for the analysis window
numchrs — 100; //this adjusts for extra constant chars in the strings
if(numchrs<0) {numchrs=0;}
if(numchrs<dsum){dsum=numchrs;}
pTQ->TQ[TrkNdx]->cCnt[r_curr] = numchrs; //store total number of chars
pTQ->TQ[TrkNdx]->dCnt[r_curr] = dsum;
if(numchrs>0){

pTQ->TQ[TrkNdx]->csRatio[r_curr] = ((float)dsum/(float)numchrs);
}else{

pTQ->TQ[TrkNdx]->csRatio[r curr] = 0.0;
}//endif

}else{

canvasO->textColor(zColor(255,0,0)); //red text if first message
canvas()->text(p,

pTQ->TQ[TrkNdx]->MQ[r curr]);
}//endif
canvasO>textColor(zColor(0,0,0)); //black text is default

}//endfor

delete canvasO->popFontO;

//zpb_end
canvas0->unlock0;
return 1;

//
// Frame Member Functions - TrkTxt
//
// Window Constructor
WTrkTxt:WTrkTxt(zMDIAppFrame »w, const char »title)
: zMDIChildFrame(w^NEWzSi2er(zDialogUnit(-2,97),

zDialogUnit(310J67)),WS_anU>|WSJIHICKFRAME|W^ title) {
//zpb_begin WTrkTxtConstructor2
if(pTQ->nTrks>0){
zRectwsz;
zCoOrdxd;
zCoOrdyd;
getExterior(wsz);
xd = pTQ->xdTrkTxt;
yd = pTQ->ydTrkTxt;
zPoint tmppt(xd,yd);
wsz+=tmppt;
move(wsz);
pTQ->xdTrkTxt-=5;

140

pTQ->ydTrkTxt += 50;

}//endif
// zpb_end
deleteOnClose(TRUE);
backgroundColo^zColo^O^SS^SS));
menu(ZNEW zMenu(this, zResId(IDM_TrlcTxtTkTxMenu)));
menu(>>settommand(mis,(CommandProc)&WTrkTxt::cm^
menuO->setCommand(this, (CoinmandProc)&WTrkTxt::cmdControlRefresh, IDM_CONTROLREFRESH);
pTkTxPane = ZNEW TrkTxtTkTxPane(this, ZNEW zGravSizer(ZGRAV_MIDDLE,0,sizei<)));
pTkTxPane->show();
sizer()->updateO;
// zpb_begin WTrkTxtConstructor
pTQ->TQ[pTQ->newTrkTxt]->TxWn = this; //this is a message text display window
pTQ->newTrkAn = pTkTxPane->TrkNdx;
ZNEW WDatAn((zMDIAppFrame*)2AppGetAppVar(app)->rootWindowO, zString(zResId(IDS_DATAN)));
//zpb_end
showQ;

}

WTrkTxt:~WTrkTxt() {
// zpb_begin WTrkTxtDestructorl
pTQ->TQ[pTkTxPane->TrkNdx]->TxWn = NULL; //this is a message text display window
pTkTxPane->TrkNdx = 0;
// zpb_end

}

//
// Menu Item Selection Handlers
//

int WTrkTxE:radAnalysisThroughput(zCommandEvt* ev) {
ZNEW WDatAn((zMDIAppFrame*)zAppGetAppVar(app)->rootWindowO, zString(zResId(IDS_DATAN)));
// zpb_begin WTrkTxtAnalysisThroughput
//pTQpnewTrkAn = pTkTxPane->TrkNdx;
//zpb_end
return 0;

}

int WTrkTxC:cmdControlRef>esh(zCommandEvt* ev) {
DSymRfeh* p=ZNEW DSymRfsh(this, zResId(TOD_SymRfsh));
p->modal0;
if (p->completedO) {
//zpb_begin WTrkTxtControlRefresh
//zpb end
} else~{
//zpb_begin WTrkTxtControlRefreshCancel
//zpb end
}
delete p;
return 0;

>

// zpb_begin WTrkTxtMemberFunctions

int WTrkTxtatrdrwO {
zDrawEvt •dummyEv;
pTkTxPane->draw(dummyEv); //the draw routine does not use this input param

// zApp uses this as an event token for its
// own dispatching,

return 0;
}//end rtrdrwO

// zpb_end

// Pane Member Functions - DatAnDatAnPane

141

DatAnDatAnPane::DatAiiDatAnPane(zWindow *w, zSizer *sz): zPane(w, sz, WS_CHBLD) {

// zpb_begin pDatAnDatAnPaneConstructorl
TrkNdx = pTQ->newTrkAn;
// zpb_end
showO;

>

int DatAnDatAnPane::size(zSizeEvt *ev) {
setDirtyO;
// zpb_begin DatAnDatAnPaneSize
// zpb_end
return zWindow::size(ev);

}

int DatAnDatAnPane::draw(zDrawEvt* ev) {

canvas()->lockO;
// zpb_begin DatAnPaneDraw

//local constants

#define N_TKMSGS 24 // total number of messages displayed on the pane
«define X_MB 3 // x coordinate for base (first row) of display messages
#define Y_MB 10 // y coordinate for base (first row) of display messages
#defineR_OFF 15 //offset for spacing between rows

//local variables
int tmp_ndx; //temporary index
int lbufNdx;
int r_ndx; //row index for looping through the active messages currently displayed
int r_curr; //actual index into the buffer of messages

//char *msg_curr[N_TKMSGS];

//set up the display parameters
//canvasO->pushFont(newzFont("Helv"^PrPoint(12^5,canvasO),900,fBDontCare));
<anvas()->pushFont(newzFont("Helv"^PrPoint(12^5,canvasO),900,ffDontCare));

//clear the window pane
zRect DxAnArea;
canvasO>getVisible(DxAnArea);
//canvasO->pushPen(new zPen(zColor(GREEN), Solid, 5));
canvasO>pushBrush(new zBrush(LiteGrayBrush));
canvasO->rectangle(PxAnArea);
//delete canvas()->popPenO;
delete canvasO>popBrushO;

canvasO->setTextBackMode(ZrEXr_TRANSPARENT);

intnMsgs;
il(pTQ->TQrrrkNdx]->MQndx < N_TKMSGS){
nMsgs = pTQ->TQ[TrkNdx]->MQndx;
r_ndx = 0;

}else{
nMsgs = N_TKMSGS;
r ndx = pTQ->TQ[TrkNdx]->MQndx - NJTKMSGS;

}//endif

chartbui[256];
chartmp[16];
ostrstream tmpstr(tbuf.strlen(tbuf));

int x_margin;
x_margin = int (0.05*((float)DxAnArea.widthO));
inty_margin;
y_margin = int (0.125*((float)DxAnAreaJ>eightO));
int c_off;
c_off= int (0.9*((float)DxAnArea.widthO)/N_TKMSGS);
int maxchrs = 30;

142

int y_unit;
y_unit = (DxAnArea-heightO (2*y_margin))/maxchrs;
canvas()->text(5,

5,
pTQ->TQ[TrkNdx]->numStr);

canvas0->text(50,
5,
pTQ->TQ[TrkNdx]->timStr);

fot(tmp_ndx=(nMsgs-l);tmp_ndx>=0;tmp_ndx-) //loop through the number of
{ //lines displayed in the window
r_curr = r_ndx+tmp_ndx;

if((nMsgs>l)&&(r_curr>0)){
canvas()->pushPen(newzPen(zColor(GREEN), Solid, 5));
canvas()->moveTo(x_inargin+((((nMsgs-l)-tmp_ndx)*c_ofI)),

//taipstr « dec « pT(^>TQ[Trld^dx]->dCnt[rj:urr]<<"\0";
//strcpy(tmp,tbuf);
//int tbufiidx = strlen(tmp)-1;
//tmp[tbufhdx]=W;

canvas(>>lineTo(x_inargin+((((nMsgs-l)-tmp_ndx)*c_ofF)),

delete canvas()->popPenO;
canvasO->pushPen(new zPen(zColor(RED), Solid, 5));
canvas()->moveTo(x_margin+((((nMsgs-l)-tinp_ndx)*c_off)),

canvas(>>lmeTo(x_margin+((((nMsgs-l)-tnip_ndx)*c_off)),

delete canvas()->popPenO;

DxAnArea-bottomO - y_margin

((DxAnArea-bottomO - y_margin)
Ky_unit * pTQ->TQ[TrkNdx]->cCnt[r_curr])));

DxAnArea-bottomO - y_margin);

((DxAnArea-bottomO - y_margin)
-(y_unit*pTQ->TQ[TrkNdx]->dCnt[r_curr])));

//pTQ->TQ[TrkNdx]->cCnt[r_cuiT]; //store total number of chars
//pTQ->TQ[TrkNdx]->dCnt[r_curr] = dsum;
//if(numchrs>0){

//pTQ->TQ[TrkNdx]->csRatio[r_curr] = ((float)dsum/(float)numchrs);
//}else{

// pTQ->TQ[TrkNdx]->csRatio[r_curr] = 0.0;
//}//endif
}else{ //this is me last message

//canvasO->textColor(zColor(255,0,0)); //red text if first message
//canvasO->text(p,

// "Insufficient Data for Analysis");
}//endif
canvasO->textColor(zColor(0,0,0)); //black text is defeult

}//endfor

delete canvasO->popFontO;
// zpb_end
canvas0->unlock0;
return 1;

//
// Frame Member Functions - DatAn
//
// Window Constructor
WDatAn::WDatAn(zMDIAppFrame *w, const char *tMe)
: zMDIChUdFrame(w,ZNEW zSizer{zDialogUnit(310,155),

zDialogUmt(100,100)),WS_CHILD|WS_TfflCKITt^^ title) {
// zpb_begin WDatAnConstructor2
//zpb_end
deleteOnClose(TRUE);
backgroundColor(zColor(0^55^55));

143

}

menu(ZNEW zMenu(this, zResId(IDM_DatAnDatAnMenu)));
menu()->setCommand(this,(CommandProc)&WDatAn::cmdControlRefresh,IDM_CONTROLREFRESH);
pDatAnPane = ZNEW DatAnDatAnPane(this, ZNEW zGravSizer(ZGRAV_MIDDLE,0,sizer()));
pDatAnPane->show();
sizer()->update();
// zpb_begin WDatAnConstructor
pTQ->TQ[pTQ->newTrlcAn]->AnWn = this; //this is a track analysis window
// zpb_end
show();

WDatAn::~WDatAnO {
//zpb_begin WDatAnDestructorl
pTQ->TQ[pDatAnPane->TrkNdx]->AnWn = NULL;
//zpb_end

}

//
// Menu Item Selection Handlers
//

int WDatAn::cmdControlRefresh(zCommandEvt* ev) {
DSymRfsh* p=ZNEW DSymRfsh(this, zResId(IDD_SymRfsh));
p->modalO;
if (p->completed()) {
//zpb_begin WDatAnControlRefresh
// zpb_end
} else {
//zpb_begin WDatAnControtRefreshCancel
// zpb_end
}
delete p;
return 0;

}

// zpb_begin WDatAnMemberFunctions
int WDatAn-rtrdrwO {

zDrawEvt *dummyEv;
pDatAnPane->draw(dummyEv); //the draw routine does not use this input param

// zApp uses this as an event token for its
// own dispatching

return 0;
}//end rtrdrwO

// zpb_end

// Pane Member Functions - jtidssldjpane
jtidssldjpane::jtidssldjpane(zWindow *w, zSizer *sz): zPane(w, sz, WS_CHILD) {

// zpb_begin pjtidssldjpaneConstructorl
pjimg = new zBitmap(canvasO, "bgroundOO.bmp");
// zpb_end
showO;

}

intju"dssldjpane::size(zSizeEvt*ev) {
setDirtyO;
// zpb_begin jtidssldjpaneSize
// zpb_end
return zWindow::size(ev);

}

int jtidssldjpane::draw(zDrawEvt* ev) {
canvas()->lockO;
// zpb_begin jpaneDraw
canvasO->bitmap(pjimg^Point(0,0), SRCCOPY);

144

// zpb_end
canvasO->unlock();
return 1;

//
// Frame Member Functions - jtidssld
//
// Window Constructor
Wjtidssld::Wjtidssld(zMDIAppFrame *w, const char *title)
: zMDIChildFrame(w^NEWzSizer(zDiaIogUnin:0,0), zDialogUnit(517,412)),WS_CHILD, title) {

// zpb_begin WjtidssldConstructor2
// zpb_end
deleteOnClose(TRUE);
menu(ZNEW zMenu(this, zResId(IDMJudssldjmenu)));
menuO->setCommand(this, (CommandProc)&WjtidssId::cmdInfoDInfo, IDM_INFODINFO);
menuO->setCommand(this, (CommandProc)&Wjtidssld::cmdInfoDIInfo, IDMJNFODIINFO);
pjpane = ZNEW jtidssldjpane(this, ZNEW zSizer(zDialogUnit(0,0)^DiaIogUmt(517,412)));
pjpane->showO;
// zpb_begin WjtidssIdConstructor
//zpb_end
showO;

}

Wjtidssld::~WjtidssldO {
//zpb_begin WjtidssldDestructorl
// zpb_end

>

//
// Menu Item Selection Handlers
//

int Wjtidssld::cmdInfoDInfo(zCommandEvt* ev) {
DDDinfo* p=ZNEW DDDinfo(this, zResId(E)D_DDinfo));
p->modalO;
if (p->completedO) {
//zpb_begin WjtidssldlnfoDInfo
//2pb_end
} else {
// q)b_begin WjtidssldlnfoDInfoCancel
//zpb_end
}
delete p;
return 0;

>

int Wjtidssld::cmdInfoDIInfo(zCommandEvt* ev) {
DDDOnfo* p=ZNEW DDDIInftKthis, zResId(IDD_DDIInfo));
p->modal0;
if (p->completedO) {
// zpb_begin WjtidssldlnfoOIInfo
//zpb end
} eke~{
// zpb_begin WjtidssldlnfoDIInfoCancel
//zpb end
}
delete p;
return 0;

}

// zpb_begin WjtidssldMemberFunctions
int Wjtidssld::dinfo(DDDinfo *DDptr) {

//DDDinfo »DDptr;
DDptr->_mmHgt = pjpane->canvasO->mmHeightO;
DDptr->_mmWth = pjpane->canvasO->mmWidth();

145

>

DDptr->_pxHgt = pjpane->canvas()->pixHeight();
DDptr->_pxWth = pjpane->canvasO->pixWidth();
DDptr->_pxPinX = pjpane->canvasO->pixPerInchX();
DDptr->_pxPinY = pjpane->canvasO->pixPerInchY0;
DDptr->_pfm = pjpane->canvasO->polyFillMode();
return 0;

int ^tidssld::diinfb(DDDIInfo »DDIptr) {
//DDDinfo »DDptr;
zDisplaylnfo *zdisptr;
zdisptr=ZNEW zDisplayInfo(pjpane->canvasO);
int numclr;
zdisptr->lockO;
numclr=zdisptr->colorResO;
DDIptr->_aspectX = zdisptr->aspectXO;
DDIptr->_aspectXY = zdisptr->aspectXYO;
DDIptr->_aspectY = zdisptr->aspectYO;
DDIptr->_colorPlanes = zdisptr-XjolorPlanesO;
DDIptr->_colorRes = zdisptr->colorResO;
DDIptr->_numcolors = zdisptr->numColorsO;
DDIptr->_pixDepth = zdisptr->pixDepthO;
zdisptr->unlockO;
//chartbuf[256];
//ostrstream tmpstr(tbui; 256);
//tmpstr « numclr « ends;
//zString sbuf = " ";
//sbuf=tbuf;

//canvasO->pushFont(newzFont("Helv"^PrPoint(12^5,canvasO),900,fiDontCare));
//canvasO-> text(5,5,sbuf);
//delete canvas()->popFontO;

return 0;

// zpb_end

//
// Dialog Member Functions - About
//
DAbout:DAbout(zWindow *w,const zResId& rid): zFormDialog(wjid) {

// zpb_begin DAboutConstructor2
//zpb_end
// zpb_begin DAboutConstructor
//2pb_end
centerWindow(this); // Center window on parent
showO;

}

// zpb_begin DAboutMemberFunctions
//zpb_end

//
// Dialog Member Functions - MsgRfsh
//
DMsgRfsh::DMsgRfsh(zMndow *w,const zResId& rid): zFormDialog(w,rid) {

// zpb_begin DMsgR6hConstructor2
//zpb_end
pDRt = ZNEW zComboBoxStatic(this, ID_DRT, &_DRt);
pDRt->add(zString(zResId(IDS_MSGRFSHDRT_l)));
pDRt->add(zString(zResId(IDS_MSGRFSHDRT_2)));
pDRt->add(zString(zResId(IDS_MSGRFSHDRT_3)));
pDRt->add(zString(zResId(IDS_MSGRFSHDRT_4)));
// zpb_begin DMsgRfehConstructor
WDxWin »tptr;

146

tptr = (WDxWin*)w;
long tmpval;
tmpval = (long)tptr->drwRt;
CurRt(tmpval);
pDRt->setToDefault();
// zpb_end
centerWindow(this); // Center window on parent
showQ;

>

// zpb_begin DMsgRfshMemberFunctions
int DMsgRfeh::CurRt(long CRt){

chartbuf[256];
ostrstream tmpstr(tbuf,strlen(tbuf));
tmpstr « dec « CRt;
strcpy(_DRt,tbuf);
return 0;

}//end CurRlO
//zpb_end

//
// Dialog Member Functions - MsgRate
//
DMsgRate::DMsgRate(zWindow *w,const zResId& rid): zFormDialog(w,rid) {

// zpb_begin DMsgRateConstructor2
// zpb_end
pMrt = ZNEW zComboBoxFull(this, ID_MRT, &_Mrt);
pMrt->add(zString(zResId(IDS_MSGRATEMRT_l)));
pMrt->add(zString(zResId(IDS_MSGRATEMRT_2)));
pMrt->add(zString(zResId(IDS_MSGRATEMRT_3)));
pMrt->add(zString(zResId(IDS_MSGRATEMRT_4)));
pMrt->add(zString(zResId(IDS_MSGRATEMRT_5)));
pMrt->add(zString(zResId(IDS_MSGRATEMRT_6)));
pMrt->add(zString(zResId(IDS_MSGRATEMRT_7)));
pMrt->add(zString(zResId(IDS_MSGRATEMRT_8)));
pMrt->add(zString(zResId(IDS_MSGRATEMRT_9)));
pMrt->add(2String(zResId(IDS_MSGRATCMRT_10)));
// zpb_begin DMsgRateConstructor
WDxWin »tptr;
tptr = (WDxWin*)w;
long tmpval;
tmpval = (long)tptr->msgRt;
CurRt(tmpval);
pMrt->setToDefaultO;
llzpb_ea&
centerWindow(this); // Center window on parent
showO;

)

II zpb_begin DMsgRateMemberFunctions
int DMsgRate::CurRt(long CRt){

chartbufI256];
ostrstream tmpsottbufjtrien(tbuf));
tmpstr « dec « CRc
strcpy(_Mrt,tbuf);
return 0;

>//end CurRtO
// zpb_end

//
// Dialog Member Functions - Tlnfo
//
DTInfo::DTInfo(zWindow »w.const zResId& rid): zFonnDialog(w/id) {

// zpb_begin DTTnfoConstructor2
// following fragment shows how to create and delete this dialog
//ref only: DTInfo* p=ZNEW DTInfo(this, zResId(IDD_TInfo));
//ref only: p->modal();

147

}

//ref only: if (p->completed()) {
// zpb_ TrkWinTrkPaneLButtonDown

//ref only:}
//ref only: delete p;

// zpb_end
pETAlt = ZNEW zEditLineCthis, ID_ETALT, ÄJETAlt, FLD_NOTREQUIRED);
pETTyp = ZNEW zEditLine(this, ID_ETrYP, &_ETTyp, FLDNOTREQUIRED);
pETNum = ZNEW zEditLineOhis, IDJETNUM, &_ETNum, FLD_NOTREQUIRED);
pETSpd = ZNEW zEditLine(this, ED.ETSPD, &_ETSpd, FLD_NOTREQUIRED);
pETlocx = ZNEW zEditLine(thls, ID_ETLOCX, &_ETlocx, FLD_NOTREQUIRED);
pETlocy = ZNEW zEditLinetthis, ID_ETLOCY, &_ETlocy, FLD_NOTREQUIRED);
pDType = ZNEW zComboBoxStatic(this, ID_DTYPE, &_DType);
pDType->add(zString(zResId(IDS_'nNFODTYPE_l)));
pDType->add(zString(zResId(IDSjnNFODTYPE_2)));
pDType->add(zStrmg(zResId(IDS_TINFODTYPE_3)));
pDType->add(zString(zResId(IDS_TINFODTYPE_4)));
pDType->add(zString(zResId(IDS_'nNFODTYPE 5)));
pDType->add(zString(zResId(IDS_TINFODTYPE~6)));
pDType->add(zSlring(zResId(IDS_TINFODTYPE_7)));
pDType->add(zString(zResId(IDS_TINFODTYPE_8)));
pDType->add(zString(zResId(IDS_TINFODTYPE_9)));
// zpb_begin DTInfoConstructor

int dnx = pTQ->DTindx;
CrVl(_ETAlt, pTQ->TQ[dnx]->altRaw);
pETAlt->setToDefaultO;
strcpy(_ETTyp, pTQ->TQ[dnx]->typStr);
pETTyp->setToDefaultO;
strcpy(_ETNum, pTQ->TQ[dnx]->numStr);
pETNum->setToDefaultO;
CrVl(_ETlocx, pTQ->TQ[dnx]->xRaw);
pETlocx->setToDefaultO;
CrVl(_ETlocy, pTQ->TQ[dnx]->yRaw);
pETlocy->setToDefaultO;
CrVl(_ETSpd, pTQ->TQtdnx]->spRaw);
pETSpd->setToDefeultO;
strcpy(_DType, pTQ->TQ[dnx]->dTypStr);
pDType->setToDefaultO;
// zpb_end
centerWindow(äiis); //Center window on parent
showO;

// zpb_begin DTInfoMemberFunctions
int DTInfo::CrVl(char »cvbuf, float cv){

cnarftuf[256] = " ";
ostrstream tmpstr(tbuf^trlen(n5uf));
tmpstr « cv;
strcpy(cvbuf,ä3uf);
return 0;

}//end CrVIO

int DTInfo::UpdAtt(char *typstr){
int tmptype;
tmptype = pDType->selectionO;

switch(tmptype) {
case HOSTH.E_AIR:

strcpy(typstr, "HOSTILE AmCRAFT");
break;

case HOSTILE_SUB:
strcpy(typstr, "HOSTILE SUBSURFACE");
break;

case HOSTILE_SURFACE:
strcpy(typstr, "HOSTILE SURFACE");
break;

case UNKNOWN_AIR:
strcpy(typstr, "UNKNOWN AIRCRAFT");

148

break;
case UNKNOWN_SUB:

strcpy(typstr, "UNKNOWN SUBSURFACE");
break;

case UNKNOWN_SURFACE:
strcpy(typstr, "UNKNOWN SURFACE");
break;

case FRDENDLY_AIR:
strcpyftypstr, "FRIENDLY AIRCRAFT");
break;

case FRIENDLY_SUB:
strcpy(typstr, "FRIENDLY SUBSURFACE");
break;

case FRIENDLY_SURFACE:
strcpy(typstr, "FRIENDLY SURFACE");
break;

}; //end case statement

//strcpy(typstr, "HOSTILE AIRCRAFT");
return tmptype;

}//endCrV10
// zpb_end

//
// Dialog Member Functions - SymRfsh
//
DSymRfsh::DSymRfsh(zWindow *w,const zResId& rid): 2FormDialog(w,rid) {

// zpb_begin DSymRfshConstructor2
// zpb_end
pDRt = ZNEW zComboBoxStatic(this, ED_DRT, &_DRt);
pDRt->add(zString(zResId(IDS_SYMRFSHDRT_l)));
pDRt->add(zString(zResId(IDS_SYMRFSHDRT_2)));
pDRt->add(zString(zResId(IDS_SYMRFSHDRT_3)));
pDRt->add(zString(zResId(IDS_SYMRFSHDRT_4)));
// zpb_begin DSymRishConstructor
//zpb_end
centerWindow(this); // Center window on parent
showO;

}

// zpb_begin DSymRfshMemberFunctions
//zpb_end

//
// Dialog Member Functions - TrkRfsh
//
DTrkR6h::DTrkRfeh(zWindow »w.const zResId& rid): zFormDialog(w,rid) {

// zpb_begin DTrkRfshConstructor2
// zpb_end
pDRt = ZNEW zComboBoxStatic(this, ID_DRT, &_DRt);
pDRt->add(zString(zResId(IDS_TRKRFSHDRT_l)));
pDRt->add(zString(zResId(IDS_TRKRFSHDRT_2)));
pDRt->add(zString(zResId(IDS_TRKRFSHDRT_3)));
pDRt->add(zString(zResId(IDS_TRKRFSHDRT_4)));
// zpb_begin DTrkRrsbConstructor
WDxWm *tptr,
tptr = (WDxWin*)w,
long tmpval;
tmpval = (long)tptr->drwRt;
CurRt(tmpval);
pDRt->setToDefaultO;
//zpb_end
centerWindow(this); // Center window on parent
showO;

}

//zpb_begb DTrkRfsbMemberFunctions

149

int DTrkRfsh::CurRt(long CRt){
chartbuf{256];
ostrstream tmpstr(tbuf,strlen(tbuf));
tmpstr « dec « CRt;
strcpy(_DRt,tbuf);
return 0;

}//end CurRtO
//2pb_end

//
// Dialog Member Functions - TkSet
//
DTkSet::DTkSet(zWindow *w,const zResId& rid): zFormDialog(wjrid) {

// zpb_begin DTkSetConstructor2
// zpb_end
_laMn = 0;
_laMx = 0;
JgMn = 0;
JgMx = 0;
plaMn = ZNEW zFloatEdit(this, ID_LAMN, &JaMn, "-#######.##", FLD_NOTREQUIRED);
plaMx = ZNEW zFloatEdit(this, IDJLAMX, &JaMx," HHIIIIHHIIM", FLD_NOTREQUIRED);
plgMn = ZNEW zFloatEdit(this, ID_LGMN, &JgMn, "-II HIHI Uli UM", FLD_NOTREQUIRED);
plgMx = ZNEW zFloatEdit(this, £D_LGMX, &JgMx, "-#######.##», FLD_NOTREQUIRED);
// zpb_begin DTkSetConstructor
JaMn = pTQ->minlt; //this is for op area field
JaMx = pTQ->maxlt;
JgMn = pTQ->minIg;
_lgMx = pTQ->maxlg;
plaMn->setToDefaultO;
plaMx->setToDefault()
plgMn->setToDefaultO:
plgMx->setToDefaultO
//zpb_end
centerWindow(this);
showQ;

// Center window on parent

// zpb_begin DTkSetMemberFunctions
//zpb_end

, FLD_NOTREQUlRED);
, FLD_NOTREQUIRED);

// Dialog Member Functions - Rescale
//
DRescale::DRescale(zWindow *w,const zResId& rid): zFormDialog(w,rid) {

// zpb_begin DRescaIeConstructor2
// zpb_end
_laMn = 0;
JaMx = 0;
JgMn = 0;
JgMx = 0;
plaMn = ZNEW zFloatEdhXthis, IDJLAMN, &JaMn, "■ IIIIIIIIIIIIII. ##"
plaMx = ZNEW zFloatEdit(this, DDLAMX, ÄJaMx, "-IIIIIIIIII HUM" _. ^ „
plgMn = ZNEW zFloatEdit(this, IDJ.GMN, &JgMn, "-HUHIIIIIIII.M\ FLDJvIOTREQUIRED);
plgMx = ZNEW zFloatEdit(mis, IDJLGMX, & JgMx, "-#######.##", FLDJJOTREQUIRED);
// zpbJegin DRescaleConstructor
pTQ->rescaleO;
JaMn = pTQ->minlt; //this is for op area field
JaMx = pTQ->max!t;
JgMn = pTQ->minIg;
JgMx = pTQ->maxlg;
plaMn->setToDefaultO;
plaMx->setToDefaultO
plgMn->setToDefaultO;
plgMx->setToDefaultO
// zpb_end
centerWindow(this);
showQ;

// Center window on parent

150

// zpb_begin DRescaleMemberFunctions
// zpb_end

//
// Dialog Member Functions - FxdFmt
//
DFxdFmt:DFxdFmt(zMDIAppFrame »w.const zResId& rid): zMDIFormDialog(wjid) {

// zpb_begin DFxdFmtConstructor2
// zpb_end
// zpb_begin DFxdFmtConstructor
// zpb_end
showO;

>

// zpb_begin DFxdFmtMemberFunctions
// zpb_end

//
// Dialog Member Functions - DDinfo
//
DDDinfo::DDDinfo(zWindow *w,const zResId& rid): zFormDialog(w,rid) {

// zpb_begin DDDinfoConstructor2
Wjtidssld »wptr;
wptr = ((Wjtidssld *) w);
//_Editl = wptr->pjpane->canvasO->mmHeightO;
intstat;
stat = wptr->dinfo(this);
// zpb_end
_mmHgt = 0;
_mmWth = 0;
_pxHgt = 0;
_pxWth = 0;
_pxPinX = 0;
_pxPinY = 0;
_pfin = 0;
pmmHgt = ZNEW zIntEdit(this, ID_MMHGT, &_mmHgt, "#####", FLD_NOTREQUIRED);
pmmWth = ZNEW zIntEdit(this, ID_MMWTH, &_mmWth, "#####", FLD_NOTREQUIRED);
ppxHgt = ZNEW zIntEdit(this, IDJPXHGT, &jjxHgt, "#####", FLD_NOTREQUIRED);
ppxWth = ZNEW zIntEdit(this, EDJPXWTH, &_pxWth, "#####", FLD_NOTREQUIRED);
ppxPinX = ZNEW zlntEditfthis, ID_PXPINX, &_pxPinX, "#####", FLD_NOTREQUIRED);
ppxPinY = ZNEW zIntEdit(this, ID_PXPINY, &_pxPinY, "#####", FLD_NOTOEQUIRED);
ppfin = ZNEW zIntEdit(this, FD_PFM, &_pfin, "#####", FLD_NOTREQUIRED);
// zpb_begin DDDinfoConstructor
// zpb_end
centerWindow(this); //Center window on parent
showO;

>

// zpb_begin DDDinfoMemberFunctions
//rjrtfend

//
// Dialog Member Functions - DDIInfo
//
DDDIlnfo: J>DDQnfo(zWindow *w,const zResId& rid): zFormDialog(wjid) {

// zpb_begin DDDIlnfoConstructor2
Wjtidssld »wptr,
wptr = ((Wjtidssld *) w);
//_Editl = wptr->pjpane->canvasO->inmHeightO;
intstat;
stat = wrjtr->diinfo(rhis);
// zpb_end
_aspectX = 0;
_aspectXY = 0;
_aspectY « 0;

151

}

_colorPlanes = 0;
_colorRes = 0;
_numcolors = 0;
_pixDepth = 0;
paspectX = ZNEWzIntEdit(this, ID_ASPECTX, &_aspectX, "#####", FLDJMOTREQUIRED);
paspectXY = ZNEW zIntEdit(this, IDASPECTXY, &_aspectXY, "#####", FLD_NOTREQUIRED);
paspectY = ZNEW zlntEditfthis, ID_ASPECTY, &_aspectY, "#####", FLD.NOTREQUIRED);
pcolorPlanes = ZNEW zlntEditCthis, HMTOLORPLANES, &_colorPlanes, "#####", FLDNOTREQUIRED);
pcolorRes = ZNEW zIntEdit(this, ID_COLORRES, &_colorRes, "#####", FLD_NOTREQUIRED);
pnumcolors = ZNEW zIntEdit(this, ID_NUMCOLORS, &_numcolors, "#####", FLD NOTREQUIRED);
ppixDepth = ZNEW zIntEdit(this, IDJPKDEPTH, &_pixDepth, "#####", FLDJSTOTREQUIRED);
//zpb_begin DDDIInfoConstructor
//zpb_end
centerWindow(this); //Center window on parent
showQ;

//zpb_begin DDDIInfoMemberFunctions
// zpb_end

//
// Simple function to center window within parent or screen
//
void centerWindow(zWindow *w, BOOL fOnParent) {

zRect winRect, parentRect;
int xWin, yWin;

w->getExterior(winRect);
zSystemlnfo screen;

if (fOnParent && w->parent0) {
// retrieve parent rectangle
w->parent<>>getExterior(parentRect);

// center wimin parent window
xWin = parentRectleftO + ((parentRectwidthO - winRectwidth())/2);
yWin = parentRecttopO + ((parentRectheightO - winRectheightO)/2);

// adjust win x-location for screen size
if (xWin+winRectwidmO > screen.pixWidmO)

xWin = screen.pkWidthO - winRectwidthO;

// adjust win y-location for screen size
if (yWin+winRectheightO > screen.pixHeightO)

y Win = screen.pixHeightO - winRectheightO;

else {
// center within entire screen
xWin = (screen.pixW:dthO - winRectwidthO) / 2;
yWin = (screen.pbtHeightO - winRectheightO) / 2;
}

// move window to new location
w->move((xWinX)) ? xWm : 0,

}

(yWin>O)?yWin:0,
winRectwidthO,
winRectheightO);

//
// Bitmap Pane Member Functions
//
zfBitmapPane::zffiitmapPane(zWindow* w, const zResId &id, zSizer* sz)

:zPane(w, sz), theBitmap(id) {
show();

}

152

int zfBitmapPane::draw(zDrawEvt *e) {
zRectr;
getInterior(r); // Draw entire bitmap
canvas()->lockO;

zBitmapDisplay *bd;
bd = ZNEW zBitmapDisplay(&theBiünap);
bd->IockO;
bd->copyTo(canvasO, r.leftO, r.topO,
theBitmap.size0.widthO, theBitmap.sizeO JieightO, 0,0);
bd->setBitmap(0);
bd->unlock0;
delete bd;
canvas()->unlockO;
return TRUE;

// zpb_begin AppUserCode
// zpb_end

//
// Application Entry Point
//
void zApp::mainO {

initlntPackO;
// zpb_begin AppMain
// zpb_end
WMain* p=ZNEW WMain(zString(zResId(IDS_MAIN)));
// zpb_begin AppMain2
// zpb_end
goO;
delete p;

// zpb_begin AppMain3
// zpb_end

/»»»•»•«»•»»•«»»••»•»»•»I*****«»***»«**«*»«»**»*«»******««*«**»*»**»/

#include "outputh"
//^include "..\include\outputh"
#include <timeJi>

/•««»ft***

int InitOutput(HINSTANCE hlnstance){

WNDCLASS wndclass;

//check to see if die class is already registered
ifl;GerClassInfo(hInstance,"Output",& wndclass))
return TRUE;

//register the class
wndclassjtyle = CS_HREDRAW | CS_VREDRAW |CS_DBLCLKS;
wndclass JpfriWndProc = Output WndProc;
wndclassxhClsExtra = 10;
wndclass.cbWndExtra = 10;
wndclassJiInstance = hlnstance;
wndclass ilcon = LoadIcon(NULL, IDI_APPLICATION);
wndclass iCursor = LoadCursor(NULL, IDC_ARROW);
wndclassiibrBackground = NULL;
wndclass.lpszMenuName = NULL;
wndclass.lpszClassName = "Output";

153

RegisteiClass(&wndclass);

//make sure the class is registered
if(GetClassInfo{hInstance,"Output",&wndclass))
return TRUE;

return FALSE;
}

OutputWndProc
Purpose
Window Message Proc

long far pascal OutputWndProc(HWND hwmLUINT message,WPARAM wParam,LPARAM lParam){

int
hit
int
int
int
char*
SIZE
RECT
HDC

oldnumlines;
position;
len;
update;
c;

size;
rect;
hdc;

OUTPUT*
OUTPUTITEM * itemlist;

op;

//if this is the first message then setup the data strucure
if(message = WM_NCCREATE){

//create a new output structure and store it
op = new OUTPUT;
SetWindowLong(hwnd,0,(long)op);

//set up the inital variable values
op->font = NULL;

op->num lines = 0;
op->numscreenlines = 0;
op->numitemsloaded = 0;
op->viewofiset = 0;
op->scrourange = 0;
op-^margin = 2;
op->textcolor = GetSysColor(COLOR_WINIX)WTEXT)
op->backcolor = GetSysColor(COLOR WINDOW);
op->textalign = 1; //left
op->enablelog = FALSE;
op->datedlog = FALSE;
op->filename = NULL;

op->fptr = NULL;
op->historysi2e = 0;
op->items = NULL;
op->lineheight = 0;
op->lastrowcIiclced = -l;

op->hscrollrange = 0;
op->maxlinewidth = 0;
op->hviewofrset = 0;

op->stamptvpe =0;

154

//get the pointer to the data structure
else{
op = (OUTPUT *)GetWindowLong(hwnd,0);
}

/I********««*»****»*»»*********«*******»»**»*»*******»*

//if the datastructure is NULL then just use the default message handling
if(op=NULL){
return DefWindowProcOiwnd^nessage.wParamJParam);
}

II***** process messages *****
switch(message){

caseWM_CREATE:{
SendMessage(hwnd,WM_SIZE,0,0);
return 1;

}

// if destroying then delete all data
case WM_NCDESTROY:{

if(op->items != NULL){
for(t = 0; t < op->numlines; t++){

ii(op->items[t].strmg != NULL)
delete[] op->items[t].string;

}
delete[] op->items;

}

if(op->filename != NULL)
delete[] op->filename;

if(op->fptr != NULL)
fclose(op->fptr);

delete op;
op = NULL;

SetWindowLong(hwnd,0,(long)op);
return 1;

// if sizing then get the new number of lines
// then allocate or delete memory for the new number of lines
caseWM_SIZE:{

//get the height of a character
hdc = GetDC(hwnd);
if(op->font !=NULL)

SelectObject(hdc,op->font);
GetTextExtentPoint(hdc,"X",l,&size);
op->Iineheight = size.cy;
ReleaseDC(hwndJidc);

GetClientRect(hwnd,&op->clientrect);

//get the number of total rows and the number that can be displayed
oldnumlines = op->numlines; //old num rows

155

}

op->numlines = (op->clientrectbottom / op->lineheight) +1 + op->historysize; //new num

if(op->numlines < op->historysize) //double check
op->numlines = op->historysize;

op->numscreenlines = (op->clientrectbottom / op->lineheight) +1; //number of visible

if(op->numscreenlines < 1) //double check
op->numlines = 1;

//adjust the view offset
if(op->numlines <= op->numscreenlines)

op->viewofiset =0;

//realloc the mem
itemlist = new OUTPUTITEM[op->numlines];

//copy me info from the old list to the new one
for(t=0; t < op->numlines;t++){

if(t < oldnumlines){
itemlist[t].string = op->items[t].string;
itemlist[t].color = op->items[t].coIor;
itemlist[t].align = op->items[t].align;
itemlist[t].width -op->items[t].width;

}
else{

itemlist[t].string = NULL;
itemlist[t].width = 0;

}

//remove the old info
for(t=^p->nunilines;t<oldnumlines;t++) {

if(op->items[t].string !=NULL)
deletef] op->items[t].string;

op->items[t].width = 0;
}
delete[] op->items;

//reset the pointer
op->items = itemlist;

//adjust the number of loaded items
if(op->numitemsloaded > op->numlines)

op->numitemsloaded = op->numlines;

//adjust the scrollbars
AdjustScrollBars(hwnd,op);

return 1;

// paint the window
caseWM_PAINT:{

//set up the device context
hdc = GetDCfliwnd);
if(op->font !=NULL)

SelectObject(hdc,op->font);
SetBkColor(hdc,op->backcolor);

//get the client area

GetClientRect(hwnd,&rect);
y= rectbottom;

if(op->numitemsloaded >= op->numscreenIines){

156

x= op->viewoffset/op->lineheight;
y = op->viewoffset%op->lineheight;
for(t = rectbottom+y; t > 0; t— op->lineheight) {

//set up the rectangle
rectbottom = t;
tecttop = rectbottom - op->lineheight;
//setup the alignment
if(op->items[x].align=l){ //left

SetTextAlign(hdc,TA_LEFT);
position = rectleft + op->margin;

}
else if(op->items[x].align =2){ //center

SetTextAlign(hdc,TA_CENTER);
position = (rectright - rectleft)/2;

}
else if(op->items[x].align =3){ //right

SetTextAlign(hdc,TA_RIGHT);
position = rectright - op->margin;

}
//set the text color
SetTextColor(hdc,op->items[x].color);
//draw the line
ExtTextOut(hdc>position - op->hviewoffset^ecttopJETO_OPAQUE,&rect,

op->items[x].strmg,lstrlen(op->iterns[x].string)JvIULL);

x++;
}

}
else{

for(t = op->numitemsloaded -l;t >=0;t—){
//set up the red
rectbottom = recttop + op->lineheight;
//setup die alignment
if(op->items[t].align =1) { //left

SetTextAlign(hdc,TA_LEFT);
position = rectleft + op->margin;

}
else if(op->items[t].align =2) { //center

SetTextAlign(hdc,TA_CENTER);
position = (rectright - rectleft)/2;

}
else if(op->items[t].align =3){ //right

SetTextAlign(hdc,TA_RIGHT);
position = rectright - op->margin;

}
//set die text color
SetTextColor(hdc,op->items[t].color);
//draw the text
ExtTextOut(hdc,position- op->hviewo8set- op-

>hviewoffeetrecttop^TO_OPAQUE,&rect
or>>iterns[t].string4strlen(op->items[t].string)J>JULL);

recttop = rectbottom;
}
rectbottom = y;
ExtTextOut(hdcjectlefUecttop,ETO OPAQUE,&rect"",0,NULL);

}

ReleaseDC(hwndJidc);
ValidateRect(hwndJJULL);
return 1;

}

//mouse clicks
case WM_LBUTTONDBLCLK:
case WM RBUTTONDOWN:

157

case WM_LBUTTONDOWN:{
//find the row that was clicked in
if(op->numitemsloaded >= op->numscreenlines){

y = op->clientrectbottom - (short)HTWORD(lParam) + op->viewoffset;
op->lastrowcIicked = y / op->lineheight;

>
else{

y = (short)fflWORD(lParam);
op->lastrowclicked = op->numitemsloaded - (y / op->Iineheight) -1;

}
if(message = WM_LBUTTONDOWN)

SendNotifyMessage(hwnd,OPNJLCLICKED);
else ifl[message = WM_RBUTTONDOWN)

SendNotifyMessage(hwnd,OPN_RCLICKED);
else «(message = WM_LBUTTONDBLCLK)

SendNotifyMessage(hwnd,OPN_DCLICKED);
return 0:

//set the new font then recalc the number of lines
caseWM_SETFONT:{

op->font = (HFONT)wParam;
SendMessage(hwnd,WM_SIZE,0,0);
return 1;

}

//vertical scroll bar
caseWM_VSCROLL:{

y = op->viewoffset;

switch(LOWORD(wParam)){
case SB_BOTTOM :{

op->viewoffset =0;
break;

>
case SB_LINEDOWN:{

op->viewoffset -=op->lineheight;
break;

}
caseSB_LINEUP:{

op->viewoffset +=op->Iineheight;
break;

}
case SB_PAGEDOWN:{

op->viewoffset — op->clientrectbottom;
break;

}
caseSB_PAGEUP:{

op->viewoffset += op->clientrectbottom;
break;

}
case SBJIHUMBTOACK:
case SB_THUMBPOSmON: {

#ifdef WIN32
op->viewoffset = op->scrollrange - HIWORD(wParam);

#else
op->viewoffset = op->scrollrange - LOWORDflParam);

#endif
break;

}
caseSB_TOP:{

op->viewoffset = op->scrollrange;
break;

>

158

//check the range
if(op->viewoffset < 0)

op->viewoffset = 0;
if(op->viewoffset > op->scrollrange)

op->viewofFset = op->scroHrange;
//check for change in position
iSy != op->viewoffset){

//update
SetScrollPos(hwnd,SB_VERT,op->scrollrange - op->viewoffset,TRUE);
InvalidateRect(hwnd>rULL,TRUE);

}
return 0;

}
//»«»»I»**»»»*»***»**»»*»*«*********»»*****»***»********

//vertical scroll bar
caseWM_HSCROLL:{

x = op->hviewoffset;

switch(LOWORD(wParam)){
caseSB_BOTTOM:{

op->hviewoffset = op->scrollrange;;
break;

}
caseSB_LINEDOWN:{

op->hviewofiset +=10;
break;

}
caseSB_LDMEUP:{

op->hviewoffset — 10;
break;

}
case SB_PAGEDOWN:{

op->hviewofFset += op->clientrectright;
break;

}
caseSB_PAGEUP:{

op->hviewoflset — op->clientrectright;
break;

}
case SB_THUMBPOSITION:
case SB_THUMBTRACK:{

#ifdef WIN32
op->hviewofifeet = HIWORD(wParam);

#else
op->hviewofIset= LOWORD(lParam);

#endif
break;

}
caseSB_TOP:{

op->hviewo£6et = 0;
break;

>
}
//check the range
if(op->hviewofTset <0)

op->hviewofrset =0;
if(op->hviewofrset > op->hscrollrange)

op->hviewofrset = op->hscrollrange;

//check for change in position
H(x != op->hviewofrset){

//update
SetScrollPos(hwnd,SB_HORZ,op->hviewofTset,TRUE);
InvalidateRect(hwnd^NULL,TRUE);

}
return 0;

159

}
//«I**

//add a new line of text
caseOP_ADDLINE:{

//params
c = (char *)lParam;
position = wParam;
ifljxisition <0)

position = 0;

//check to see if the line being remove was the widest
//if so then find the new widest item
x = op->numlines -1;
if(op->items[x].width = op->maxlinewidth){

op->maxlinewidth =0;
op->items[x].width =0;
for(t=0;t< op->numlines;t++){

if(op->items[t].width > op->maxlinewidth)
op->maxIinewidth = op->items[t].width;

}
}
//remove the last string - at the very end of the list
if(op->items[x].string !=NULL)

deletef] op->items[x].string;

//move all the strings color and alignment info above the
//specified entry position
for(t=(op->numlines-1);t>position;t—) {

op->items[t].string = op->items[t-l].string;
op->items[t].color = op->items[t-l].color,
op->items[t].align = op->items[t-l j.align;
op->items[t].width = op->items[t-l].width;

>

//add the new string color and alignment info
if(c = NULL)

c="";
//copy the string and expand tabs
op->items[position].string = ExpandTabs(c);

op->items[position].color = op->textcolor,
op->items[position].align = op->textalign;

//get the width of the string
hdc = GetDC(hwnd);
if(op->font !=NULL)

SelectObject(hdc,op->font);
GetTextExtentPoint0idc,c4strlen(c),&si2e);
op->items[position].width =size.cx;
ReleaseDCfliwndJidc);

//check to see if mis is a max width
if(op->maxlinewidth < size.cx)

op->maxlinewidth = size.cx;

//adjust the number of items loaded
op->numitemsloaded++;
if(op->numitemsloaded > op->numlines)

op->numitemsloaded = op->numlines;

//if logging then add the line to the log
if(op->enablelog) {

WriteToLog(op,&op->items[position]);
}

160

//adjust the scrollbars
if(op->viewoffset > 0)

op->viewoffset += op->lineheight;
AdjustScrollBars(hwnd,op);

//re-draw
InvalidateRect(hwndJ4ULL,TRUE);
return 1;

}

case OP_ADDSTAMPEDLINE:{
len = lstrlen((LPSTR)lParam) +30;
c = new charflen];

GetTimeDateStamp(c,20,op->stamptype);
lstrcat(c,"");
lstrcat(c,(LPSTR)lParam);
SendMessage(hwnd,OP_ADDLINE,wParam,(LPARAM)c);
deletef] c;

return 1;
}

case OP_SETMARGINS:{
//check for a valid range
if((int)wParam >=0 && wParam <1000){

op->margin = wParam;
//re-draw
InvalidateRect(hwndJvIULL,TRUE);
return TRUE;

>
return FALSE;

}

case OP_SETTEXTALIGN: {
//check for a valid range
in>Param >0 && wParam <4){

op->textalign = wParam;
//re-draw
InvalidateRect(hwndJ>JULL,TRUE);
return TRUE;

}
else{

op->textalign = 1;
}
return FALSE;

>

caseOP_CLEAR:{
//delete all strings
if(op->items != NULL){

for(t=0,-t<op->numlines^++){
if(op->items[t]^tring!=NULL){

delete[] op->items[t].string;
op->items[t].string = NULL;

}
op->items[t] .width = 0;

}
>

op->numitemsloaded =0;
op->viewoffset =0;
SetScrollRange(hwnd,SB_VERT,0,0,TRUE);
op->maxlinewidth =0;
op->hviewofrset =0;
SetScrollRange(hwnd,SB_HORZ,0,0,TRUE);

161

//re-draw
InvalidateRect(hwntUMULL,TRUE);
return 1;

}
//I»*********************.****«**»***»«*«»»«»,*»»*»»„*

case OP_SETTEXTCOLOR:{
//set the color
op->textcolor = (COLORREF)lParam;
//re-draw
InvalidateRect(hwndJ<ULL,TRUE);
return 1;

}

case OP_SETBACKCOLOR: {
//set the color
op->backcolor = (COLORREF)lParam;
//re-draw
InvalidateRect(hwndJsIULL,TRUE);
return 1;

}

case OP_SETLOGNAME:{
ifl>p->filename !=NULL)

delete[]op->filename;

op->filename = new char[lstrlen((LPCSTR)lParam)+l];
lstrcpy(op->filename,(LPCSTR)lParam);

//if logging is enabled then open the log
OpenLogFile(op);
return 1;

>
//ft*********************** »»».it«******»»*»******»*»»,»,

case OP_ENABLELOG:{
if(wParam =0)

op->enablelog = FALSE;
else{

op->enablelog = TRUE;
//if logging is enabled then open the log
OpenLogFile(op);

}
return op->enablelog;

}
//****»******»»***♦•»•*•**»*»*»**********»»»*»«*****»*»

case OP_DATEDLOGGING: {
ifiVParam =0)

op->datedlog = FALSE;
else{

op->datedlog = TRUE;
//if logging is enabled then open the log
OpenLogFile(op);

}
return op->datedIog;

}

case OP_HISTORYSIZE: {
//set the history size
op->historysize = wParam;
if(op->historysize < 0)

op->historysize =0;
if(op->historysize > 1000)

op->historysize = 1000;
//call WM_SIZE to readjust
SendMessage(hwnd,WM_SIZE,0,0);
return op->historysize;

162

case OP_GETROWCLICKED:{
return op->lastrowclicked;

}
//*»*******************»***»»***»*******»********«♦****

case OP_GETTEXTLENGTH: {
if((int)wParam >=0 && (int)wParam < op->numscreenlines){

return lstrlen(op->items[wParam].string);
}
else{

return 0;
}

}

caseOP_GETTEXT:{
if((int)wParam >=0 && (int)wParam < op->numscreenlines){

lstrcpy((LPSTR)lParam,op->items[wParam].string);
return TRUE;

}
return FALSE;

}
//»»I**»»*«»»*««»«*»***»*«**«******»****»*****»»*»*****

case OP_DELETELINE:{
if((int)wParam >=0 && (int)wParam < op->numitemsloaded){

//check to see if the line being removed was the widest
//if so then find the new widest item
if(op->items[wParam].width = op->maxlinewidth){

op->maxlinewidth =0;
op->items[wParam].width =0;
for<lN),-t< op->numlines;t++){

if(op->items[t].width > op->maxlinewidth)
op->maxlinewidth = op->items[t].width;

}
}

//delete the string
if(op->items[wParam].string != NULL)

delete[] op->items[wParam].string;

//shift items down one
for(t=wParam; K (op->numitemsloaded -1); t++){

op->items[t].string = op->items[t+l].string;
op->itemstt].color = op->items[t+l].color;
op->items[t].align = op->items[t+l].align;
op->items[t].width = op->items[t+l].width;

}
op->items[t].string = NULL;
op->items[t].widm =0;

op->numitemsloaded —;

//adjust the scrollbars
AdjustScrollBars(hwnd,op);

//re-draw
InvalidateRect(hwn<tNULL,TRUE);

return TRUE;
}
return FALSE;

}
//»»»»»»«•»»»»««»•»»•»»»»»»»I«*«»*»*«**»»**»»»»*»»**»*»

case OP_UPDATELINE:{

//check the range
rfl[(int)wParam <0 || (int)wParam >= op->numitemsloaded){

163

return FALSE;
}

//get the params
c = (char *)lParam;
position = wParam;

lldxeck to see if the line being updated was the widest
//if so then find the new widest item
if(op->items[position].width = op->maxlinewidth)

update = TRUE;
else

update = FALSE;

//add in extra lines if ness.
ifljjosition >= op->numitemsloaded){

for(t = op->numitemsloaded; t<position;t++){
op->items[t].string = new char[2];
lstrcpy(op->items[t].string,"");
op->items[t].color = op->textcolor;
op->items[tj.align = op->textalign;
op->items[t].width = 0;

}
op->numitemsloaded = position +1;

}

//update the specified line
ifl; op->items[position].string !=NULL)

delete[] op->items[position].string;
op->iteins[position].string = new char[lstrlen(c)H];
lstrcpy(op->items[position].string,c);
op->items[position].color = op->textcolor,
op->items[positionj.align = op->textalign;
op->items[position].width = 0;

//if update is true then find the widest line
if(update) {

op->maxlinewidth =0;
op->items[wParam].width =0;
for(t=0,-t< op->numlines;t++){

üfop->items[t].width > op->maxlinewidth)
op->maxlinewidth = op->items[t].width;

}
}

//re-draw
InvalidateRect(hwndrNULL,TRUE);

return TRUE;
>

case OP_STAMPSTVLE: {
ifi>Param = FALSE)

op->stamptype = FALSE;
else

op->stamptype = TRUE;
return op->stamptype;

}

case OP_GETNUMLINES: {
return op->numitemsloaded;

}

case OP_UPDATESTAMPEDLINE:{
len = lstrlen((LPSTR)lParam) +30;
c = new charf len];

164

GetTimeDateStamp(c,20.op->stamptype);
lstrcat(c," ");
lstrcat(c,(LPSTR)lParam);
SendMessage(hwnd,OP_UPDATELINE,wParam,(LPARAM)c);
delete[] c;

return 1;

}
return DefWmdowProc(hwn(Lmessage,wParam,lParam);

} /**
****************««ft***************************/

int OpenLogFile(OUTPUT * op){

char *path;
int extensionjen;
chardate[10];

//check to see if logging is enabled
if(op->enablelog = FALSE) {
return FALSE;
}

//alloc a string for the filepath
path = new char[lstrlen(op->filename)+10];

//close old log file if open
if(op->fptr != NULL)
fclose(op->fptr);

//get the logfile name if dated logfiles are used
if(op->datedlog){

//get die date
GetDateString(op,date, 10);

//find where the filename extension is
len = lstrien(op->filename);
for(extension =0;extension < len ;extension++){

iffop->filename[extension]=\l)

}
^extension != len){

}
else!

}
}
else{
lstrcpy(path,op->fi]ename);
>

//open the log file
op->fptr = fopen(path,"a+");

delete[] path;

if(op->fptr != NULL)
return TRUE;

return FALSE;

break;

op->filename[extension]=0;
wsprintflj>am,"%s%s.%s",op->filename,date,&op->filename[extension+l]);
op->filename[extension]-.';

wsprintf(pam,"%s%s",op->filename,date);

}

165

int WriteToLog(OUTPUT *op,OUTPUnTEM *item){

tiine_t tt;
struct tm * systime;

//check the dale if datedlogging
if(op->datedlog){
//get the time/date
tt = time(NULL);
systime = locaItime(&tt);
//store the current date
if(op->logday != systime->tm_mday || op->logmon != systime->tm_mon ||
op->logyear != systime->tm_year){

OpenLogFile(op);
}

}
//write the line
rwrite(item->string,sizeof(char),lstrlen(item->string),op->Q)tr);
fwrite("\n"^izeof(char), 1 ,op->rptr);

return TRUE;

int GetDaieString(OUTPUT »opJLPSTR stringent len){

time_t t;
struct tm *systime;

if(len<7)
return FALSE;

//get the time/date
t = time(NULL);
systime = localtime(&t);

//store me current date
op->logday = systime->tm_mday;
op->logmon = systime->tm_mon;
op->logyear= systime->tm_year;

v^pnnt^sUmg,n/^2dV^2dVa22d"^söme->tmjfeai^stime->tm_mon+l,
systime->tm_mday);

return TRUE;

type 0 - date + time
1 - time only

int GetTtmeDateStamrXLPSTR stringent lenjnt type){

time_t t;
struct tm »systime;

if(len<18)
return FALSE;

//get the time/date
t = time(NULL);
systime = localtime(&t);

ifl:type=0){
wsprintfl:string,"%2.2d^/o22d^/o2^d0/o2^d:%2Jd:%2^d",

166

sy stime->tm_mday ,systime->tm_mon+1 ,systime->tni_year,
systime->tm_hour,systime->tni_min^ystime->tm_sec);

}
elseif(type=l){
wsprintl(string,"%2^d:%2.2d:%2.2d",

systime->tni_hour,systime->tm_min3ystime->tm_sec);
>
return TRUE;

}

/*t***t**
***/
long SendNotifyMessage(HWND hwndjnt message) {

#ifdef_WIN32
long ID = GetWindowLong(hwnd,GWL_ID);
return SendMessage(GetParent(h\rad),WM_COMNt\h^^
#else
WORD ID = GetWindowWord(hwnd,GWW_ID);
return SendMessage(GetPaient^wnd),WM_COMMANDJD>l\KELPARAM(hwna\message));
#endif

}
/**
***/
int AdjustScrollBars(HWND hwnd,OUTPUT *op) {

//adjust the vertical scroll bar
if((op->numitemsloaded * op->lineheight) > op->clientrectbottom){
op->scrollrange = (op->numitemsloaded * op->lineheight) - op->clientrectbottom - 1;
if(op->viewoffset > op->scrollrange)

op->viewoffset = op->scrollrange;
SetScroIlRange(hvnid,SB_VERT,0,op->scrollrangeJALSE);
SetScrollPos(hwnd,SB_VERT>op->scrollrange - op->viewoffset,TRUE);
}
else{
SetScrollRange(hwnd,SB_VERT,0,0,TRUE);
op->viewoflset = 0;
}

//adjust the horizontal scrollbar
if((op->maxlinewidth + op->margin*2) > op->clientrectright){
op->hscrollrange = (op->maxlinewidth + op->margin*2) - op->clientrectright;
iflop->hviewoffset > op->hscrollrange)

op->hviewof6et = op->hscroUrange;
SetScrollRange(hwnd,SB_HORZ,0,op->hscrollrange,TRUE);
SetScrollPos(hwnd,SB_HORZ,op->hviewof6et,TRUE);
}
else{
SetScrollRange(hwnd,SB_HORZ,0,0,TRUE);
op->hviewoflset =0;
}

return TRUE;
}

***/
LPSTR ExpandTabs(LPSTR in) {

intt;
int num =0;
int len = lstrlen(in);
intpos;

LPSTR out;

for{t=0;t<len;t++){
if(in[t]==9)

num++;

167

}

num = (num*5)+len;

out = new char[num+l];

pos=0;
for(t=0;t<len;t-H-){
if(in[t]=9){

out[pos]=32;
pos++;
out[pos]=32
POS++;

out[pos]=32;
pos++;
out[pos]=32
pos++;
out[pos]=32;
pos++;

out[pos]=inft];
pos++;

}
else{

)
}

out[pos]=0;

return out;

#include <windowsJi>
#include <stdioJi>
#include <io i>
#include <winsockJi>
#include "routines-h"

/*****••••*»»*•»•»«»*»*»»****»»****»**»*

long GetFUeTime(LPCSTR filenameJTIME * ft){

FTLE'fptr;
intrt;

I* create a file containing 10 bytes */
fptr = fopen(filename,"r");

rt = getftime(fileno(fptr),(ftime*)ft);

/* close the file */
fclose(fptr);

iflrt=0)
return TRUE; //success

return FALSE;
}

long GetFileSize(LPCSTR filename)}

FILE »fptr;
long size;

/* create a file containing 10 bytes */

168

filename[tHY;

if(filename[t+l]='\Y){
for(x=tpc<lenpc++) {

filename[x] =filename[x+l];
}

}

fptr = fopen(fiIename, V);

size = filelength(fileno(fptr));

I* close the file */
fclose(fptr);

return size:

/««»it*»**««*»********»******«********»**

int FixFilename(LPSTR filename) {

inttpc;
int len = lstrlen(filename);

for(t=0;t<len;t++){
if(filename[t]='/,){

}
}
//check for two in a row
for(t=0;t<len;t++){
if(filename[t]=^\,){

len—;

}
}

return TRUE;

}

return
0-success
1 - address string is not long enough
2-failed

int GetClientAddressFromName(LPSTR address^nt maxaddrienJJCSTR name){

hostent 'pHostent;
int len;

pHostent = gethostbyname (name);

if(pHostent=NULL)
return 2;

len = lstrlen(pHostent->h_addr_list[0]);
if(len > (maxaddrlen-1))

return 1;

lstrcpy(address,pHostent->h_addr_list[0]);

return 0;
}

0-success
1 - address string is not long enough
2-failed

169

int GetClientNameFromAddress(LPSTR name.int maxnamelenJL.PCSTR address) {

unsigned long addr;
hostent »pHostent;
intlen;

addr = inet_addr (address);

pHostent = gethostbyaddr((char*)&addr,4JPF_INET);

if(pHostent=NULL)
return 2;

len = lstrlen(pHostent->h_name);

if(len > (maxnamelen-1))
return 1;

lstrcpy(name,pHostent->h_name);

return 0;

SAMPLE DATA FILE USED IN DEMONSTRATION IS CALSSIFIED AND

CAN NOT BE INCLUDED HERE

170

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
8725 John J. Kingman Road, Suite 0944
Fort Belvoir, VA 22060-6218

2. Dudley Knox Library 2
Naval Postgraduate School
Monterey, CA 93943

3. Center for Naval Analysis 1
4401 Ford Ave.
Alexandria, VA 22302

4. Dr. Ted Lewis, Chairman, Code CS/L 1
Computer Science Dept.
Naval Postgraduate School
Monterey, CA 93943

5. Chief of Naval Research 1
800 North Quincy St.
Arlington, VA 22217

Dr. Luqi, Code CS/Lq
Computer Science Dept.
Naval Postgraduate School
Monterey, CA 93943

7. Dr. Marvin Langston
1225 Jefferson Davis Highway
Crystal Gateway 2 / Suite 1500
Arlington, VA 22202-4311

David Hislop
U.S. Army Research Office
PO Box 12211
Research Triangle Park, NC 27709-2211

Capt. Talbot Manvel
Naval Sea Systems Command
2531 Jefferson Davis Hwy.
Attn: TMS 378 Capt. Manvel
Arlington, VA 22240-5150

171

10. CDR Michael McMahon
Naval Sea System Command
2531 Jefferson Davis Hwy.
Arlington, VA 22242-5160

11. Dr. Elizabeth Wald
Office of Naval Research
800 N. Quincy St.
ONR CODE 311
Arlington, VA 22217-5660

12. Dr. Ralph Wächter
Office of Naval Research
800 N. Quincy St.
CODE 311
Arlington, VA 22217-5660

13. Army Research Lab
115 O'Keefe Building
Arm: Mark Kendall
Atlanta, GA 30332-0862

14. National Science Foundation
Atta: Bruce Barnes
Div. Computer & Computation Research
1800 G St. NW
Washington, DC 20550

15. National Science Foundation
Atta: Bill Agresty
4201 Wilson Blvd.
Arlington, VA 22230

16. Hon. John W. Douglass
Assistant Secretary of the Navy
(Research, Development and Acquisition)
Room E741
1000 Navy Pentagon
Washingotn, DC 20350-1000

172

17. Technical Library Branch
Naval Command, Control, and Ocean Surveillance Center
RDT&E Division, Code D0724
San Diego, CA 92152-5001

18. Head, Command and Control Department
Naval Command, Control and Ocean Surveillance Center
RDT&E Division, Code D40
San Diego, CA 92152-5001

19. Head, Integration and Interoperability Division
Naval Command, Control and Ocean Surveillance Center
RDT&E Division, Code D45
San Diego, CA 92152-5001

20. Michael W DaBose, Technology Development and Insertion Group
Naval Command, Control and Ocean Surveillance Center
RDT&E Division, Code D4525
San Diego, CA 92152-5001

173

