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Abstract 

The piece-wise linear recursive convolution (PLRC) approach has been shown to provide 
much improved accuracy over the usual discrete recursive convolution approach while 
retaining the efficient use of computer memory storage and fast computational speed for 
finite-difference time-domain electromagnetic propagation calculations for linear 
dispersive materials. In this paper, an idea behind the implementation of the PLRC 
approach is extended to handle nonlinear dispersive media, specifically for the 
convolution integral that depends on the product of the electric field squared and the 
third-order electric susceptibility function. Compared to linear dispersive material, 
where one has a simple linear relationship for the next time step electric field as a 
function of the previous time step electric field, the nonlinear dispersive material case 
has a cubic equation for the next time step electric field as a function of the previous time 
step electric field. Consequently, the cubic equation must be solved at successive times to 
advance the electric field in the next time step. 

I.    INTRODUCTION 

There has been considerable interest in understanding the transient behavior of an 
ultrafast laser pulse that interacts with nonlinear dispersive materials. In the last several 
years many experimentalists have made use of the newly developed Kerr-lense mode- 
locked Titanium-Sapphire lasers to perform well-controlled experiments so that they can 
obtain accurate transient behavior measurements of ultrafast laser pulses in simple 
molecular liquids and solids that are known to exhibit nonlinear optical effects [1]. To 
better understand the details of the nonlinear processes that are observed in experiments, 
numerical simulation has been used extensively in reproducing the observed nonlinear 
effects. Until recently most computer simulation has been performed by solving 
approximated Maxwell's equations, known as the generalized nonlinear Schrodinger 
(GNLS) equation [2], for the envelope of the propagating oscillating wave packet that 
provides information on the time evolution of the overall shape of the optical pulse. Since 
computer simulation based on the GNLS equations could not simply provide any 
information about oscillating waves contained within the envelope of the optical pulse, 
there is a renewed interest in obtaining the greater details of propagating optical pulse 



phenomena by carrying out computer simulation of Maxwell's equations directly. 
In the last few years, computer technology has advanced to the point where arithmetic 

processing chips can operate up to hundreds of hertz and dynamic random memory chips 
can hold in excess of multi-giga bytes of memory. Using the present day computers, we 
can consider solving Maxwell's equations directly without having to rely on 
approximated Maxwell's equations. Of recently investigated numerical techniques which 
showed the promising future is the well-known finite-difference time-domain (FDTD) 
method [3] that is based on a simple differencing scheme in both time and space to 
calculate transient behavior of electromagnetic (EM) field quantities. Because of the 
usefulness of the FDTD method for many optical applications, recent researchers have 
focused their attention into numerical handling of linear and nonlinear polarization terms 
which appear in one of Maxwell's equations as convolution integrals so that they can 
simulate linear and nonlinear dispersive effects more effectively [4-9]. 
Depending on the form of the integrand appearing in the convolution integral, the 

dispersive effect can be classified as linear or nonlinear. For linear dispersive materials, 
the relationship between displacement field vector D and electric field vector E is usually 
expressed in the following form 

D(t) = e0ex E(t) + s0^l\E(x)X(
p'

)(t-x)dz fl-1) 
p o 

where e0 is the electric permittivity of free space, e«, is the permittivity at infinite 
frequency, and X(I)

p(t-x) is the pth term first-order electric susceptibility function that 
depends on time difference (t-x). 
For materials that show both the linear and nonlinear polarization properties, specifically 

through the first-order (linear) and third-order (nonlinear) electric susceptibility functions, 
X(1)

p(t-x) and X(3) p(t,x,tht^), respectively, the relationship between D and E can be 
expressed in the following form 

D(t) = eo6oo E(t) + e0^\E(x)X(
p
1)(t-x)dx 

P    0 

+ ^oY^\\Wt-'l^(t-t^^t-t2)x3
p
>(t^'ti>t2)dxdtldt2 (1.2) 

P    0 0 0 

where X(3)
p(t,x,tht2) is the pth term four-time dependent third-order susceptibility 

function which contributes to the nonlinear behavior of the material. 
Reducing X(3)

p(t,x,tht2) to the one-time dependent susceptibility function, %  P(V^> by 
use of the following Born-Oppenheimer approximation [10], 

where a'op IS a constant and h(t) is the Dirac delta function, we can reduce Eq.(l .2) to a 
more amenable expression that consists of the sum of linear and nonlinear convolution 
integrals of the form 



D(t) = z0ex E(t)+s0Y4JE(T)x(J)(t-x)dx 
P    0 

ft 
+ e0 £(0%   IfEfr)]2rx(

p
3)(t-T)+a%6(t-x)] dx 

\o 
(1.4) 

Based on the above expression, this paper provides the general formulation of the FDTD 
method, which we call the piecewise continuous recursive convolution (PCRC) method, 
to evaluate the linear and nonlinear single convolution integrals. We investigate 
specifically the case in which both the first-order and third-order electric susceptibility 
functions are expressed in the following exponential forms 

X(J)(t) = Real {ae
pexp He

pt]}U(t) 

%
(3)(t) = Real {a"P

eexpH"etj}U(t) 

(1.5) 

(1.6) 

where U(t) is the unit step function and a'p, an/p, y'p and y"'p are complex constants. 
By making proper choices of complex constants and carrying out the Fourier Transform, 

we can readily obtain the familiar Debye and Lorentz forms of the complex permittivity 
from the above exponential forms. 

II.    GOVERNING EQUATIONS AND GENERAL FORMULATION 

Starting with Maxwell's equations, we can express the following differential equations 
for spatial and time dependent EM field quantities inside the dispersive material. 

WxH(t) =  ^Mll+GE(t) 

VxE(t)= - 

dt 

d(\iH(t)) 

dt 

D(t)=e0ea,E(t) + e0Y,Pp(t) 
p 

( i 

+ e0 £(%>£   pp
l(t)+a

(o3P
)\[E(x)fb(t-x)dx 

p   V o 

Pp(t)^'\E(x)x<
P
,)(t-x)dx 

0 

p"p(t)=)[E(x)]2x(
p
3)(t-x)dx 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 



where H is the magnetic field vector, D is the displacement field vector, E is the electric 
field vector, a is the electrical conductivity, \i is the magnetic permeability, e0 is the free 
space electric permittivity, e^ is the permittivity at infinite frequency, X' p and x   p are 
the pth term first-order and third-order electrical susceptibilities, and P p and P" p are 
related to the pth term linear and nonlinear polarization field vectors. 

Using FDTD the above equations can be solved numerically at each time step, provided 
P p(t) and r p(t) are handled properly. Thus, the whole problem rests upon proper 
numerical evaluation of P p(t) and P" p(t) at each time step. For that reason, the rest of this 
section is devoted to the discussion of the numerical formulation used to solve P p(t) and 

In order to achieve better accuracy in evaluating the convolution integral, E(t) is 
considered to be a piecewise continuos function over the entire integration limits and E(t) 
changes linearly with respect to time over a given discrete time interval [mAt, (m+l)At] 
where m represents the previous mth time step of the current nth time step in the FDTD 
calculation [11]. Referring to Fig.l, in terms of the electric field values, E™ and Em+1, 
which are evaluated at discrete time steps t=mAt and t=(m+l)At, respectively, we can 
express E(t) in the following form. 

E(t) = Em+1 - — — (t - mA t);      mAt<t<(m + l)At <nAt (2.6) 
A? 

When Eq.(2.6) is substituted into Eq.(2.4), we can obtain the following expressions for 
discrete values of (Plp)n at time increment n (see Appendix for manipulations). 

W=i; {Em+(yt
p,or-[Em+'-Em](yl

p,ir} (2.7) 
m=0 

where 
(n-m)Al 

fMVJn'm=    I   X(
P'>(T)<h (2-8) 

,    (n-m)bd 

^'PI/'-T:    I    [(n-m)At-T]X()(i)di (2.9) 
A' (n-l-m)M 

Similarly, substituting Eq.(2.6) into Eq.(2.5), we can obtain the following expressions for 
discrete values of (P" p)" at time increment n (see also Appendix for manipulations). 

(pn
P
er=YJ{(Em+1)2(wtr 

m=0 

-2Em+1(Em+1 -Em)(yn
p
e
l)

n'm+(Em+l -Em)2(\V£2)n'm} (2.10) 

where 



(n-m)Al 

(vV""E   J  X?VT;A (2.II) 
p' (n-l-m)Al 

(n-m)Al 
n(   \n,m 1 

«f,m '{:, } J(n-m)At-TjX
(

p
3)(T)dT (2.12) 

(n-m)M 

rvV—^T     '    Kn-mJAt-Tj'tffT)* (2.13) 

When Eq.(1.5) is substituted in Eqs.(2.8) and (2.9), and Eq.(1.6) in Eqs.(2.11), (2.12) 
and (2.13), we can show after some manipulations the following recursive relationships to 
exist between next time step (n+l)At and current time step nAt. 

(K,o)"+1'm =exp(-ye
p*O(ve

p,0r (2.14) 

<Vp,,r'm =exp(-ye
pAt)(ye

pir (2.15) 

fvCr'"" =exp(-y;eAt)(x¥"p
t
or (2.16) 

(wtr1-=exp(-r;At)(^ni
plr (2.1?) 

<vp^r;"" =^r-Yp^Ar;rvi/nPV"'m (2.18) 

We are able to obtain the above recursive relationships only because the susceptibility 
functions are expressed in the exponential form. 

When Eqs.(2.14) through (2.18) are used in Eqs.(2.7) and (2.10), respectively, for the 
next discrete time step at (n+l)At, we can obtain the following recursive relationships for 
(Pl/+1 and (P"'/+1 in terms of ET+1, ET, (P1/ and (P°1/. 

(pPr'=En+,(vP,orLn -(En+i-EnxVP,1r
Un 

+ exp(-ypAt)(pp)
n (2.19) 

(PIT1 =(En+1)2(VPfir
h' ~ 2E"+'(En+1 -E")^,)"*1-" 

+ (En+,-E")2(yn!,2r
ln +exp(-y"p

tAt)(p";r (2.20) 

In the above expressions, frV*''" (VP,i)"
+l", (^'P,o)"+l", (V"P,/

+A" and (yn!
Pi2)n+ln 

are evaluated at each succesuve time step using the recursive relationships [see Eqs.(2.14) 
through (2.18)] starting with initial values of (v|/p,/

0, (yl
p/'°, (v)/"'^7'0, (ynl

Pil)
l° and 

(V p,2) ' »which are calculated explicitly at the beginning of computer simulation for the 



selected value of At [see Eqs.(2.8), (2.9), (2.11), (2.12) and (2.13) and set n=l and m=0]. 
To demonstrate how the above terms are used in FDTD calculations, we considered the 

one dimensional case where the propagating wave vector k lies along a major axis in 
Cartesian coordinates. The analysis can be extended easily in the three dimensional case 
where the EM wave is propagating in any arbitrary direction based on the following 
sample formulation as described below. For our one dimensional case, we arbitrarily 
picked the k vector to lie in the x direction, Dy and Ey field vectors in the y direction and 
Hz field vector in the z direction. When Eq.(2.1) is differenced in both time and space 
using the usual Yee algorithm, we have 

(vF^-iVyh        (HT'/2)i+./2-(HT'/2h-./2   _   °[(E;+1)i+(E;)t] 
At Ax 2 (2-21) 

where n and i indices are used to denote discrete nth time step nAt and ith spatial location 
iAx, respectively. 
Using Eqs.(2.3), (2.19) and (2.20), the left-hand side of Eq.(2.21) can be expressed in 

terms of (ET+1)i and (ET), as follow 

(D;+')i-(D;)i = e0ex[(E;+I ),-(E;),J 

p 

+ [exp(-ye
pAt)-lJ[(pl

p)"Ji} 

+€0 "Z{[[(E^),js-[(E;),j3ja^ + i(ET )>y «0r
Un 

p 

- 2 [(E-;1), r [(£-;'), - (E; ;, yfv;[, rl* 

+ (En;> u (ET h -(E^r^tr1'-] 
+[(EnT h expM ;e&) - (E; ), j[(p"p

er j,} (2.22) 

When Eq.(2.22) is substituted in Eq.(2.21), it results in the following cubic equation in 

y which we need to solve for (Ey   ) 

2>*/YO,./'=0 <2-23) 
k=0 

where 

ae— ±L[(H?*)M- (HTU1 + (E;)^- (E;),e.em Ax / 

- ^E {(E;)MJ)"" +f1-exP(-ytP
AOj[(pe

P)"Ji 
p 

+ [(E; ), r ] aft + (E; ), f(p;er j,} (2.24) 



z p 

+ exp(-yltät)[(p"P
t)"]i} (2.25) 

"i^oYtiWyMvZr1*- 2(E;)i(W;*2r"} (2.26) 
p 

«i =*. jy ag;+ «,r" -^r" +fM>pV+/'V (2.27) 
p 

Note that because we defined the electric susceptibility functions to be real parts of 
complex exponential functions as shown in Eqs.(l .5) and (1.6), it is important that we 
choose only the real parts when evaluating the above constants e^, au a2, and a3. 

The above equation can be solved for (E"+1)t using any one of the root finding 
numerical techniques. 

At each successive time step, only Eqs.(2.19), (2,20) and (2.23) have to be solved for 
updated [(Pl/+1Ji, [(P"!/+1]j and (E"+1)t values in order to handle the electric field 
response of nonlinear dispersive materials. 
For the purely linear dispersive case, a2 and a3 as well as some terms appearing in ao and 

dLX turn out to be zero. In this case we can solve for (Ey+1)t directly without having to rely 
on the numerical root finding technique as seen in many previously published papers 
[12-18] that discuss computational schemes for linear dispersive materials. 

III.    NUMERICAL ANALYSIS - A CASE STUDY FOR NONLINEAR SOLITON 
FORMATION 

To demonstrate the validity of the PCRC method, we investigated the case of an optical 
pulse where it propagated in the x-direction in free space and incident on an infinite half 
space dispersive medium that is characterized by zero electrical conductivity and the 
following single time dependent first-order (linear) and third-order (nonlinear) 
susceptibility functions, X(1)

p(t) and %(3)
p(t) [19]. 

For linear dispersion contribution: 

X(J}(t) = (-^-exp(-6 t) sin(v0t) (3.1) 

For nonlinear dispersion contribution arising from purely Raman scattering and no 
virtual electronics transition effect [20]: 

l(
p
3)(0=lo)[^^22^r22Jexp(-t/x2)sin(t/x1)   and    <x£; = 0 (3.2) 

where aR = (o0 (e^ej, vo=^((o0 -8 ), ©0 is the resonant frequency, es is relative 
permittivity at DC, 8 is the first-order susceptibility damping constant, %J3) is the 
nonlinear coefficient, lkl is the optical phonon frequency, and x2

1S the optical phonon 



lifetime. 
Comparing Eqs.(3.1) and (3.2) with the previously defined susceptibility functions as 

seen in Eqs.(1.5) and (1.6), we can relate the above coefficients to the previously defined 
susceptibility coefficients as follows. 

i ap i(o2
R/vc and    ypt=(6+iv0), 

a?<=/X?7r*ia+^Ai*iV   and   y^(- + i-). 

(3.3) 

(3.4) 

where i is the imaginary number defined as V-l. 
The incident optical pulse is assumed to propagate at the sinusoidal-carrier electric field 

frequency, wc, of 8.61xl014 rad/sec with the unit amplitude (1.0 volts/meter), enveloped 
inside the hyperbolic secant function represented by characteristic time constant Tw. Tw is 
the parameter used to determine the width of the overall shape of the incident optical 
pulse. Thus, we used the following expression to launch the incident optical pulse in free 
space for our FDTD simulation. 

Incident Optical Pulse (t) = cos /> c (t- tMay )] sech (t~ * delay ' (3.5) 

where t^ is the delay time for the incident optical pulse to reach the peak value at the 
place where the optical pulse is launched. Two different values of the characteristic time 
constant are used to investigate the effect of the characteristic time constant on soliton 
formation. We used 3.5 femtoseconds (fs) and 7.0 fs for the characteristic time constants. 
These characteristic time constants resulted in enveloping about 6 cycles of the electric 
field oscillation for the 3.5 fs pulse and 12 cycles for the 7.0 fs pulse. 

We selected the total simulation cells to be 50,000, ranging from x=-l0,000 to x=40,000 
with the free space-dispersive material interface located at x=0. The optical pulse was 
launched in free space at x=-10,000, traveling in the positive x direction. The LIAO 
absorbing boundary condition [21] was used at the two end points of the computational 
space. 
For the selection of basic FDTD parameters we chose the following values. 

Uniform cell size (or Ax) = 5.0 nanometers (= 2nc/(oc/43& = A,/438), 
1 8 

Time step increment (or At) = 8.33 attoseconds (10" ) (= Ax/2c), 
Total number of uniform cells = 50,000, 
Total number of time steps = 2x10 , 

where c is the speed of light. For Ax of 5 nanometers, we can estimate the free space 
numerical phase velocity error to be around 5x10" [22]. 

To observe the soliton formation within the total propagation distance of 250 
micrometers (=5.0 nanometers/cell x 50,000 cells), we had to enhance the nonlinear 
behavior by scaling the coefficients found in the first and third order susceptibility 
functions (see Eqs.(3.1) and (3.2)). To show consistencies of our FDTD results with 
previously published results, we used the values similar to the ones found in the papers 



referenced in [4,5]. Shown below are the values that we used for our FDTD calculations. 
For linear dispersive material properties: 

€, = 5.25; 6^ = 2.25; 
G>0 = 8xl014 sec"1; 8 = 4.0xl09 sec"1. 

For nonlinear dispersive material properties: 
%(3)

0 = 30.0 (volts/meter)2; 
T; = 12.2 fs;x2 = '32.0 fs. 

To see the difference in linear and nonlinear responses, we first calculated the linear 
dispersive case by setting the nonlinear coefficient, %(3)

0, to zero. For the nonlinear case, 
we used the nonlinear material property values as shown above. 

To calculate the updated electric field value at each time step, we used the simple 
Newton iteration method by making use of the previous time step electric field value as 
the initial guess to solve the cubic equation (see Eq.(2.23)). For every simulation we 
performed, the convergence criterion of 10"4 was reached after at most two iterations. 

Shown in Fig.2 and Fig.3 are spatial plots obtained for linear and nonlinear dispersive 
calculations, respectively, at time steps of 10,000,40,000, 70,000,100,000 and 130,000 
for the incident optical pulse width of 3.5 fs. Similarly, Fig.4 and Fig.5 show spatial plots 
obtained for the same input values with the exception of 7.0 fs, instead of 3.5 fs, for the 
incident optical pulse width. As seen in Fig.2 and Fig.3 (likewise Fig.4 and Fig.5) the 
solitary wave started forming first with the appearance of the small spike-like shape 
inside the linearly dispersive part of the pulse as a result of the nonlinear self-focusing 
effect. As the pulse propagated deeper in the dispersive medium, the spike-like shape 
transformed gradually to the shape that resembles the solitary wave packet and became 
isolated from the main linear dispersive part of the pulse due to the slower phase velocity. 
Once the solitary wave packet became completely isolated from the linear dispersive part 
of the pulse, the solitary wave packet propagated at constant amplitude while maintaining 
the general structure. On the other hand, the linear dispersive part of the pulse decreased 
in its amplitude and became much broader in its shape as it propagated deeper into the 
dispersive medium because of the linear dispersive effect. 

Shown Fig.6 is the comparison of two solitary wave packets that are formed from the 
two different incident optical pulse widths. It shows the overlay views taken around 
solitary wave packets of the two spatial plots which are found in Fig.3 and Fig.5 
(specifically at the time step of 100,000). We can see that these two solitary wave packets 
have approximately the same size envelopes. We estimated the solitary wave packet sizes 
to be around 1.54 micrometers based on approximately two wave cycles of oscillation at 
a wavelength of 0.77 micrometers contained inside the envelopes of these solitary wave 
packets. We can think ofthat the formation of the same size solitary wave packet is 
analogous to calculating the allowable bound states of the nonlinear Schrodinger wave 
equation inside a potential well [23]. Because of material property values used for our 
simulation calculations, we ended up getting the unique solitary wave packet size as we 
saw in our simulation results. 
Also shown in Fig.6 is the difference we obtained in the amplitude of the two solitary 

wave packets from two different incident optical pulse widths. The wider incident pulse 
resulted in about 1.2 times that of the narrow incident pulse. 



For the nonlinear case, we saw the formation of a small secondary high frequency pulse 
that moved ahead of both the linear dispersive part of the pulse and the nonlinear solitary 
wave packet. The same secondary high frequency pulse was also obtained and reported 
previously for computational modeling of femtosecond optical solitons using another 
FDTD approach, called the auxiliary differential equation approach, to handle the 
nonlinear dispersive term. 

To perform these calculations we used a SPARC 20 workstation equipped with a 75 
MHz processor and 512 Megabyte dynamic random access memory chips. On average it 
took around 24 CPU hours to complete the job with no optimization. There was little 
difference in the total computational time for the linear dispersive case as compared to the 
nonlinear dispersive case. Using present day computers equipped with much faster 
multiple processors, the computational time can be reduced considerably more. 

IV.   CONCLUSIONS 

In conclusion, we have shown in our sample calculations that the PCRC approach of the 
FDTD method presented here is fully capable of predicting the formation of nonlinear 
solitary waves by solving Maxwell's equations directly. The PCRC approach resulted in a 
much simpler algebraic form to relate the displacement field vector to the electric field 
vector than the auxiliary differential equation approach which requires the additional 
coupled nonlinear ordinary equations to be solved at each time step. Consequently, the 
PCRC approach is capable of calculating at much faster computational speed. Also, 
because of the piecewise linear approximation used for the time dependent electric field 
vector, the PCRC approach should provide the accuracy comparable to that of the 
auxiliary differential equation approach. 

Also, we gained much from exponential function forms of the linear and nonlinear 
susceptibility functions which allowed us to implement the recursive feature in our 
algorithm. As a whole, the PCRC approach retained all the advantages of the usual 
discrete recursive convolution approach, such as fast computational speed and efficient 
use of the computer memory, however, with much improved accuracy. 

The nonlinear dispersive formulation resulted in having to solve the cubic equation for 
the successive time step electric field values as compared to the linear equation for the 
simple linear dispersive case. For sample calculations we have looked into here, the 
simple Newton iterative method provided sufficiently fast convergence for finding the 
root of the cubic equation by using the previous time step electric field value as the initial 
guess. 
The present PCRC approach is robust and applicable for applications in two and three 

dimensional problems. The one dimensional code can be extended easily into two and 
three dimensional codes with little effort. 
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Fig. 1.   Illustration of Piecewise Linear Approximation for the 
Electric Field as a Function of Discrete Time Steps 
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Fig. 2.   Perspective plots of the electric field intensity versus spatial location from linear 
dispersive calculations taken at five successive times of Ti, T2, T3, T4 ant T5 in 
order to show the space-time evolution of the optical pulse with the initial pulse 
width of 3.5 fs. 
[ Ti = 10,000At (=0.083 ps); T2= 40,000At (=0.333 ps); 

T3= 70,000At (=0.583 ps); T4=100,000At (=0.833 ps); 
T5=130,000At (=1.083 ps) with At=8.33xl0"18 second ] 
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Fig. 3.   Perspective plots of the electric field intensity versus spatial location from 
nonlinear dispersive calculations taken at five successive times of Ti, T2, T3, T4 

ant T5 in order to show the space-time evolution of the optical pulse with the 
initial pulse width of 3.5 fs. 
[ Ti= 10,000At (=0.083 ps); T2 = 40,000At (=0.333 ps); 

T3= 70,000At (=0.583 ps); T4=100,000At (=0.833 ps); 
T5=130,OOOAt (=1.083 ps) with At=8.33xl0"18 second ] 
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Fig. 4.   Perspective plots of the electric field intensity versus spatial location from linear 
dispersive calculations taken at five successive times of Th T2, T3, T4 ant T5 in 
order to show the space-time evolution of the optical pulse with the initial pulse 
width of 7.0 fs. 
[ Ti = 10,000At (=0.083 ps); T2= 40,000At (=0.333 ps); 

T3= 70,000At (=0.583 ps); T4=100,000At (=0.833 ps); 
T5=130,000At (=1.083 ps) with At=8.33xl0"18 second ] 
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Fig. 5.   Perspective plots of the electric field intensity versus spatial location from 
nonlinear dispersive calculations taken at five successive times of Ti, T2, T3, T4 

ant T5 in order to show the space-time evolution of the optical pulse with the 
initial width of 7.0 fs. 
[ T,= 10,000At (=0.083 ps); T2= 4O,000At (=0.333 ps); 

T3= 70,000At (=0.583 ps); T4=100,000At (=0.833 ps); 
T5=130,OOOAt (=1.083 ps) with At=8.33xl0"18 second ] 
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Fig. 6.   Comparison of solitary wave packets obtained in the nonlinear dispersive medium 
from launching two different width pulses in free space. The solid line is from the 
optical pulse width of 7.0 fs and the dashed line is from the optical pulse width of 
3.5 fs. These are taken at the time step of 100,000. 
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APPENDIX 

For the linear part, when we substitute Eq.(2.6) in Eq.(2.4) and evaluate t at nAt for the 
argument of the susceptibility function where n is the nth time step, we have 

n-l (m+l)M ' , 

(PV" = T   I   {Em+1-(Em+I-Em){-[x-mAt]}X(
(!
)(nAt-x)dx 

m=0    mM At 

n-l (m+l)M 

= £ {Em+1   \   X(
p
,)(nAt-x)dx 

m=0 »iM 

.   (m+l)Al 

-(Em+1-Em)—   I   [x-mAt]X(
p

1)(nAt-x)dx} (A.l) 
At    mM 

Similarly for the nonlinear part, when we substitute Eq.(2.6) in Eq.(2.5) and evaluate t at 
nAt for the argument of the susceptibility function where n is the nth time step, we have 

n-l (m+l)Al 

S   I 
m=0    mki 

7m+I       r,m  \2       1 

n-l (m+l)At . 

(Pnp)" = Y,    I   {(Em+1)2 -2Em+'(Em+1 -Em) — 

+ (Em+1 - Em )2 —— [x - mA t]2}% [3)(nA t -x )dx 
(At)2 

n-l (m+l)hl 

= T((Em+')2    I    1
(

p
3)(nAt-x)dx 

m=0 mM 

,   (m+l)Al 

-2Em+'(Em+'-Em)—    |    [x-mAtJx(
0
3)(nAt-x)dx 

At     mM 

,       (m+l)M 

+ (Em+,-Em)2—!—    J    [x-mAt]2x<3)(nAt-x)dx} (A.2) 
(At)2      mM 

Using the change of variable x '=(nAt-x), we can readily show the existence of the 
following relationships for the above integrals 

(m+l)M (n-m)M 

J    [x-mAt]kf(nAt-x)dx=     \     [(n-m)At-x']k f(x')dx'       (A3) 
mM (n-l-m)M 

where k takes the values of 0,1, and 2 and f(t) represents, respectively, the time- 
dependent first and third order susceptibility functions, X()

p(t) andx3)
p(t). 

Since T ' appearing in the right-hand side of Eq.(A.3) is the integration variable, we can 
simply replace it by x. When Eq.(A.3) is substituted back in Eqs.(A.l) and (A.2), we can 
obtain the expressions as shown in Eqs.(2.7) and (2.10). 
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