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Introduction 

For the sake of academic honesty, I should start 
this paper with a disclaimer: Although the title con- 
tains both the keywords "superprocesses" and "plank- 
ton dynamics", and I do know something about the 
former, my knowledge of the latter, and of biological 
oceanography in general, starts and stops at the level 
of the elementary textbook Lalli and Parsons (1993). 
This would not generally be considered a level of ex- 
pertise that would allow an author to start writing on 
a topic. Nevertheless, it does seem to me that there is 
a natural connection between the two topics, and that 
both are likely to benefit from interdisciplinary cross- 
fertilisation. This point was emphasised, for me, by 
a number of talks at the Aha Huliko'a meeting, and 
I shall return to this and some general philosophy on 
stochastic modelling in the closing, and what may be 
the most relevant, section of the paper. 

Since cross-fertilisation must start somewhere, 
you should think of this paper as a mathematical &" 
in search of its matching oceanographic <j>, and forgive 
what may seem at first like an oversimplistic view of 
plankton dynamics. 

The paper is structured as follows: In Section 
1 we describe what are generally known as the "par- 
ticle pictures" preceding and motivating most work 
in superprocesses. The particle pictures will, for us, 
descibe the reproduction and temporal-spatial spread 
of plankton communities. In Section 2 we look at 
what happens when the number of plankton genera- 
tions, and the size of each generation, tend to infinity. 
Thus we shall define superprocesses, which will be the 
infinite limit of the particle pictures, and require the 
language of stochastic partial differential equations to 
be properly described. 

In Section 3 we shall describe some basic geo- 
metric properties of superprocesses, and in Section 4 
how all of this might relate to plankton dynamics. 
As one might expect, a theory developed by abstract 
probabilists is going to have to undergo a little work 
before it can be tailored to applications. 

In the Section 5 we shall describe some variations 
on the basic model, including the way interactions 
between plankton can be modelled and, more impor- 
tantly, how to place the entire superprocess structure 
within a randomly moving frame of reference such as 
an oceanographic flow. The final Section 6 has the 
promised general comments on stochastic modelling, 
motivated by the superprocess models of the remain- 
der of the paper. 

It does not seem to make too much sense in an 
introductory paper of this kind to worry too much 
about assigning detailed credits for the structures 
and results that will be described. Since the inter- 
ested reader will have to go elsewhere for missing 
details, (s)he can search for references at the same 
time. Without doubt, the best place to start is with 
the Saint Flour lectures of Dawson (1993), which has 
a properly credit-assigned and almost encyclopaedic 
treatment of superprocess accurate up to the time of 
its writing. 

1. Particle pictures 

We shall start by describing a model for generic 
particles, which, for the remainder of this paper, we 
shall think of as plankton, moving in the Euclidean 
space 5Rd, d > 1. The most interesting case for ap- 
plications is obviously the three dimensional space 
d = 3, but it costs us nothing to work in wider gener- 
ality. While moving, our plankton will also reproduce 



(asexually) and die. The birth-death process will be 
such that the overall plankton population will remain 
of a more or less stable size, although overall linear 
death and growth rates will be permissable. 

Thus, suppose that at time t — 0 we have 
K > 1 plankton, distributed over space according 
to a Poisson point process with control measure TO, 

so that K is a Poisson random variable with mean 
\m\ = m(3Jd), and the numbers of plankton in disjoint 
regions A\,..., Ak are independent Poisson variables 
with means m(A\),.. .,m(Ak). A special case that 
we shall use for the simulations shown below will be 
when TO is a measure with all its mass concentrated 
at one point. In this case, we start with K plankton 
all at one point. 

(It is important to note that this initial setup 
can be changed quite radically, without having much 
of an affect on the overall structure that we are de- 
scribing. However, in order to make this exposition 
simple and short, we shall work throughout with spe- 
cific, simplifying assumptions. We shall have more to 
say about these generalities in Section 5.) 

Each of these K plankton follows the path of 
independent copies of a Markov process B, until time 
t = p/p. 

At time p/p each plankton, independently of the 
others, either dies or splits into two, with probability 
| for each event. The individual plankton in the new 
population then follow independent copies of J5, start- 
ing at their place of birth, in the interval [p/p, 2p/p), 
and the pattern of alternating critical branching and 
spatial spreading continues until there are no plank- 
ton left alive. (This happens with probability one, 
since the process which simply counts the total num- 
ber of plankton alive is a critical branching process, 
which ultimately dies out.) 

The process of interest to us is the measure val- 
ued Markov process 

„,,. ,.         {Number of plankton in A at time t\ 
X?(A) =  i v- s-    (1) 

where A G Bd = Borel sets in 3id. Note that, for fixed 
t and p, Xf is an atomic measure. Note also that, if 
p = oo there is no branching occurring. 

Now suppose we set K — p and p = 1, and 
send p —>■ oo. Fixing p is simply a matter of scaling 
time. Sending /{-»oo involves a high density limit, 
in which the number of plankton is high. Sending p —> 
oo means that X% measures the spatial dispersion of 
plankton after a large number (p) of generations. 

It is now well known that under very mild condi- 
tions on the motion process B the sequence {Jf},,>i 
converges (weakly, on an appropriate Skorohod space) 
to a measure valued process which is called the su- 
perprocess for B. Before we look at this limit process, 
and attempt to characterise it, let us look at some 
simulations. 

Figure 1 shows what happens to K = 1,000 
plankton that begin life together at the center of a 
square and slowly spread out according to a Brown- 
ian motion. (Actually, since this is on a computer, 
the "Brownian motion" in this case must be discrete, 
so that it is really a random walk. However, we shall 
ignore this fact in the following.) There is no branch- 
ing in this example, so that the spread, shown after 
each plankton has taken 50, 100 and 250 steps, is in 
the spherical fashion usually associated with random 
walks. The left hand graphs are the contour lines for 
the particle density plots in the right hand graphs. 

In Figure 2 we have added the birth/death pro- 
cess that leads to the superprocess. That is, in- 
termingled with the steps of the random walk are 
birth/death events, at which particles either split into 
two or die, as described above. The three sets of di- 
agrams show the extent of the plankton spread after 
the same number of random walk steps as in the cor- 
responding diagrams of Figure 1. Note however, that 
the spread is no longer purely spherical. Furthermore, 
note how disjoint, small "communities" of plankton 
develop, a phenomenon that we shall discuss in more 
detail later. 

(More examples of the above kind are available, 
either as photographic stills, an interactive computer 
program, or a video movie, in Adler (1994a-c).) 

Three dimensional versions of Figures 1 and 2 
are easy to generate, and exhibit similar phenomena, 
but are are little less easy to appreciate on the two 
dimensional, uncoloured, page. 

2. The superprocess 

We now look a little more carefully at what hap- 
pens in the high density, multiple generation situa- 
tion, when the parameters K and p of the particle 
picture tend to infinity together. 

To make the notation easier, we shall restrict 
interest for the moment to the case in which B is 
a (/-dimensional Brownian motion, and return to the 
more general case in Section 5. Here, then, is one way 
to describe the limiting process: 

Suppose that the limiting measure Xt = limXf 
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has a density f(x,t), x £ $ld, t > Q.  Then / would 
solve the stochastic partial differential equation 

=   A/(x,O + v70M)£0M).       (2) 

where £ is a space-time Gaussian white noise. 

In fact, this description does make sense in one 
dimension, but not when d > 2, for then the limiting 
superprocess does not have a density. However, an 
integrated version of (2) does make sense.  So take a 

nice test function cf> and with the notation 

/<f>{x)f{x,t)dx = J <j>{x) Xt{dx) = Xt{4>) 

rewrite (2) as 

Xt{4>)= j Xs(A^)ds+  f   f   <f>(x)Z(dx,d.t),    (3) 
Jo Jo Jsid 

where Z is a martingale measure with ZQ — 0 and 
quadratic variation given by 

(Z. Wh = f 
Jo 

XJ<f>2) (4) 



all of which is a way of writing (2) when the density / 
does not exist. Below we shall write (3) in shorthand 
as 

Xt = AXt + Zt. (5) 

This equation is, in part, familiar to all of us. 
If the birth/death branching phenomenon was not 
present in our plankton story, then the martingale 
term Zt in (5) would disappear, and so the equation 
would "degenerate" to the standard heat equation. 
This, of course, is what is to be expected from the 
strong law normalisation in (1), which, in the limit, 
yields the measure describing where any one of our 
plankton can be expected to be at time t. 

Details of how to properly formulate all the 
weak convergences used above can be found in Walsh 
(1986), where one can also find a precise formulation 
of the stochastic PDE's. The original result is due 
to Watanabe (1968), and a good general reference on 
related subjects is Ethier and Kurtz (1986). However, 
as mentioned in the Introduction, Dawson (1993) is 
an all-inclusive reference. 

3. Geometry of superprocesses 

What has made superprocesses interesting to 
probabilists has, in part, been their interesting and 
delicate geometric properties. We shall describe only 
the most basic of these here, which relate to the sets 
shown in the left hand columns of Figures 1 and 2. 

Since, for each t > 0, Xt(-) is a random measure, 
it is carried by a random support set St: roughly 
speaking, St is defined as the smallest closed set for 
which 

Xt{St)= m<ixXt(A), 
A€B< 

where Bd is the collection of Borel sets in 5ftd; i.e. St 

is the set of "sites" of the particles alive at time t. 

Most of the known interesting geometrical re- 
sults about superprocesses are related to the dimen- 
sional properties of St- For example, the following, in 
which "dim^)" refers to the Hausdorff dimension of 
the set A, holds with probability one, for each t > 0: 

dim(5t) = min(2)d). (6) 

This result can also be made uniform in t. 

Furthermore, if we define the "range" of X 
(which amounts to those points ever visited by the 
particles during the time interval (0,i\) by 

R =  lim-[closure((j5(Xt))}, 
(i° t>e 

then the dimension of the range is min(4, d). 

These two basic facts lead to an entire theory of 
interesting sample path behaviour for superprocesses. 
Unfortunately, however, very little of it is likely to be 
of use in the study of plankton dynamics. 

4. Plankton dynamics 

The main issue of this short paper is not, of 
course, to discuss superprocesses per se, but rather 
whether or not they have something to offer as models 
of plankton dynamics. For this, results about Haus- 
dorff dimension, while elegant, are mere mathematical 
curiosities. What is far more important, in comparing 
theory with experiment or data, is knowing things like 
the distribution of the number and sizes of clusters in 
the support of a superprocess. 

Unfortunately, these are random variables about 
which very little quantitative is known. The main 
reason behind this is the following very basic result, 
which gives the Laplace transform of the marginal 
distributions of a superprocess: 

If Xt is the superprocess of (3,4) then 

Eexp{-Xt(<t>)} = exV{- f u(x,t) Xo(dx)},       (7) 

where Xo is the (usually non-random) starting mea- 
sure of the superprocess and u(t,x) is the solution of 
the non-linear PDE 

du(x,t) 

dt 
=    Au(x,t)-u2(x,t) 

u(x,0)   =    <f>(x). 

(8) 

(9) 

This is not an easy equation. No explicit solution 
is available, and only general scaling properties (as 
<-*ooor ||a;|| —» oo) of the solution are known. Since 
(8), even at its best, is information about a Laplace 
transform, direct, quantitative information about ac- 
tual distributions is almost impossible to find. 

Some general, qualitative results are known how- 
ever. For example, the clustering phenomenon can be 
described by a compound Poisson process, by which 
we mean that the one can represent a superprocess as 
a superposition of clusters. The number of clusters 
in any given size range is Poisson distributed, but 
the parameter of this Poisson variable is not easy to 
compute. Furthermore, the properties of a "typical 
cluster" are known only in the most general of terms. 
There is very little that could be computed explicitly 
so as to compare with a real plankton flow. 



Of course, all of this is a problem only for pure 
mathematicians. A natural, practical way to compare 
theory with the real world is easily available precisely 
the way that Figures 1 and 2 were generated; viz. 
simulation and Monte Carlo. 

If, as we believe might well be the case, a mar- 
riage between superprocesses and plankton dynamics 
is in the offing, Monte Carlo estimation of superpro- 
cess distributions will undoubtedly play the role of 
matchmaker. 

5. More general models 

Since the previous sections all concentrated on 
plankton that either die or split in two with equal 
probabilities, and then follow Brownian motions, if 
the suggested project of applying superprocesses to 
plankton dynamics is to succeed, it will be neces- 
sary to entertain far more sophisticated models of mo- 
tion and reproduction. We shall now descibe some of 
these, and the way in which they will affect the basic 
stochastic partial differential equation (SPDE) 

Xt(<}>)= [ Xs(A<ß)ds+ f   /   <j>{x)Z(dx1dt), (10) 
Jo Jo Jsf 

with its associated martingale quadratic variation 

(z.(4))t= I xs(<t>2)ds. (ii) 
Jo 

The easiest of all model assumptions to change 
is that of the branching structure, although, given the 
asexual nature of plankton reproduction, this is one of 
the least worrisome to us. For example, instead of giv- 
ing each plankton a 50/50 chance of disappearing or 
splitting in two at each generation, we can allow each 
plankton to replaced by a random number, say N, as 
long as N has mean one and finite variance a2. The 
only affect on the limiting SPDE would be to place a 
factor of a2 before the integral on the right hand side 
of (11). (In fact, even infinite variance, which would 
allow for the occassional very large family size, can 
be incorporated into the particle picture, but then 
the structure of the basic SPDE (10) changes quite 
significantly in that the limiting martingale becomes 
discontinuous.) 

One can also move away from a mean family size 
of one for the branching, albeit not too far away. For 
example, there are no serious difficulties if the mean 
number of offspring is such that EN = l + a/n, where 
p was the parameter tending to infinity in the basic 

story and o is a finite - positive or negative - constant. 
In this case (10) changes in that a term of the form 

Jo 
a /   Xs(<ß)ds (12) 

must be added to the right hand side. In fact, the 
"constant" a can even be taken to be time and spa- 
cially varying, in which case the additional term (12) 
becomes 

a a(s, x)<f>{x) Xs (dx)ds (13) 

One application of such a space/time varying re- 
production rate would be to allow for models in which 
certain geographical regions, or seasons, impact on 
the rate and/or success of reproduction 

Of course, these changes are really very small at 
the level of the total population, since the increase 
or decrease in mean offspring size is very small for 
each plankton. This, however, is essential. For while 
this small change per plankton can be quite signif- 
icant at the level of the total population (allowing, 
for example, the solution to (10) to grow in a lin- 
ear fashion in time) a larger change, such as allowing 
each plankton to produce an average of two offspring 
per generation, would lead to immediate explosion of 
the limiting model, and so not provide a model that 
makes sense for a (roughly) stable population. 

The model also allows for immigration and em- 
igration. The effect here, which can, again, be 
time/space dependent, eventually amounts to adding 
a term of the form /„* / a(s, x)<j>(x) dxds to (10), where 
a now describes the migration. 

Finally, we can introduce interaction between 
the plankton in a way that will affect the branching 
rate. There are a number of ways to do this: plank- 
ton may increase their mean rate (again proportion- 
ally to 1/fi) in the presence or absence of neighbours. 
A model of* this kind will lead to additional terms in 
(10) of the form 

I   [ [<j>(x)a(x,y)Xs(dx)X,(dy)ds (14) 

where a(x,y) > 0 would imply an increase in the 
mean offspring number at x due to particles at y, 
etc. Interacting models in which the variance, rather 
than the mean, number of offspring can also be han- 
dled. In this case the change appears in the quadratic 
variation (11). 



This covers, roughly, the type of changes that 
can be made to the branching structure of the basic 
model. The other factor that can be changed is the 
motion of the plankton. In general, it is trivial to re- 
place the Brownian motion with that of any Markov 
process. The effect that this has on (10) is to replace 
the Laplacian A appearing there by the "infinitesi- 
mal generator" of the Markov process describing the 
motion. If, for example, the Brownian motion is re- 
placed by an elliptic diffusion, then A will replaced 
by a second order differential operator. 

Another interesting interaction involves allowing 
the particle motions some dependence. There are two 
ways to go about this: One involves interactions be- 
tween the particles themselves, which would require 
the plankton having some "knowledge" of their neigh- 
bours' whereabouts, and modifying their motion ac- 
cording. This is quite difficult to handle mathemati- 
cally, and so we shall not attempt to go into details 
here. The effect on (10) however involves the addition 
of a new, non-linear, term. 

A more recent model, under study by Adler 
and Skolakis (1997), is somewhat more interesting in 
terms of plankton dynamics, and looks at the basic 
model placed within a random flow. In other words, 
the plankton can move and reproduce according to 
any of the above perturbations of the basic model, but 
in addition they live within a random flow, such as the 
ocean, that accounts for global motion. Some simple 
models of this form have been studied by Clnlar and 
Kao (1992) and Zirbel and Cinlar (1996). 

Although the above describes new models with 
gay abandon, it is important to note that while new 
models are easy to generate at the particle level, they 
are generally at least an order of magnitude harder 
to handle at the limiting stochastic PDE level than 
is the basic superprocess. This is particularly true if 
any interactions are involved. Whether or not this is 
important from the point of view of plankton dynam- 
ics is not clear. Since, as pointed out in the previous 
section, very few of the variables that are of interest 
from this viewpoint are likely to be amenable to direct 
mathematical attack even in the simplest of cases, the 
additional mathematical complexity of the more so- 
phisticated and more realistic models should not be 
an additional drawback. 

6. On stochastic modelling 

Most of the material in the preceding five sec- 
tions was written in preparation for, and thus before, 

the Aha Huliko'a meeting at which it was presented. 
Questions that were raised during the talk found their 
way into the text via some rewriting. Thus the pre- 
sentation was much the same as the preceding sec- 
tions, although much less detailed. 

However, as a response to some of the earlier 
talks presented at the meeting, a lively discussion 
arose as to what one might call "the role of white 
noise" in stochastic modelling, which I now want 
to address, using superprocesses as an example of a 
much wider class of phenomena. 

The discussion arose after one speaker presented 
an oceanographic food chain model of some complex- 
ity. We all know the basics behind these models: A 
system is described by a collection of linked ordinary 
differential equations, in which (at the risk of gross 
oversimplification on my part) birth and death rates 
are combined into one (birth minus death) rate term, 
and predator-prey relationships by matching terms, 
but with opposite signs, in the equations for the over- 
all size of each subpopulation in the chain. 

The solution to a system of this kind is, of course, 
deterministic, since all stochastic variation has been 
replaced by mean behaviour in the ODE's. Since 
real systems of this kind are known to exhibit what 
seem to be random (or, at the very least, model- 
unpredictable) variations, the modeller's way of solv- 
ing this problem was to add random noise terms to 
each of the ODE's, without, in any way, tailoring the 
noise to the model. 

Furthermore, I should point out that this type 
of modelling was far from uncommon, and figured in 
a number of different models, of very different phe- 
nomena, throughout the meeting. Here, again grossly 
oversimplified, is a typical justification of this ap- 
proach: "The ocean is really just Navier-Stokes equa- 
tion, but we have no idea what the boundary con- 
ditions really are, and even if we did the equations 
would be too difficult to solve with available (and 
even foreseeable) computing power. Thus we approx- 
imate Navier-Stokes somehow, we approximate the 
boundary conditions, and then we add some white (or 
coloured) noise to indicate this approximation/lack of 
knowledge". 

My claim is that it is imperative in this kind 
of (unavoidable) situation to give a great deal more 
thought to how the random noise itself should be 
modelled, and any relation it might have to the basic 
model. 

As an example, consider the simplest model of 



the superprocess. (The same kind of argument will 
apply to all the others.) Suppose that instead of 
building the model as we had, we used the following 
kind of argument: At splitting times, each particle 
either dies or splits into two with equal proababili- 
ties. Thus there is no change in the mean population 
size. So, for the moment, we might as well forget the 
branching phenomenon. Thus, we have only motion. 
Since we are averaging this over many particles, ul- 
timately we will replace the superprocess stochastic 

PDE (2) 

^M    =    A/(x,*)+vOXMKOM)>    (15) 
ot 

by the simple heat equation: 

df(x,t) 

at 
Af(x,t). (16) 

In other words, the stochastic term will have been 
lost, and we will have an equation with an extremely 
smooth solution. Since we know that in the real 
world, whether "real" means the ocean or the nu- 
merical experiment, there is stochastic variation, the 
kind of philosophy described above of merely adding 
a stochastic noise term will lead to an equation of the 

form 

8f(x,t) 
at Af(x,t) + £(x,t), (17) 

where £ is the same space-time white noise appear- 
ing in (15), but, as a result of the way randomness 
was ascribed to the model, which does not have the 
multiplying factor oiy/f. This is really quite different 
from the correct equation (15), and the differences are 
significant. Among them are the facts that: 

• Whereas the solution to (15) is always positive, 
as one would expect of a particle density, the 
solution to (17) will often be negative. 

• Whereas the solution to (15) will exhibit the 
kind of clustering phenomena that, for math- 
ematicians, are what makes the process chal- 
lenging, and, for biological oceanographers, may 
make the process interesting, the solution to 
(17) exhibits no such behaviour. 

• The solution to (17) is Gaussian, which makes 
it readily amenable to mathematical analysis, 
and which therefore gives it a certain advantage 
over the solution of (15). On the other hand, 
the mathematical complexity resulting from the 

non-Gaussian nature of the solution of (15) al- 
lows for the phenomena of larger than Gaussian 
variation in subpopulation (cluster) sizes that 
mimics what is known to happen in real branch- 

ing phenomena. 

The bottom line that comes out of this example 
is that the mere addition of random noise at a late 
stage to correct a model that has been oversimplified 
at an earlier stage cannot generally be expected to 
reproduce missing phenomena, neither quantitatively 

nor, more importantly, qualitatively. 

Exactly how should this affect the existing stoch- 
astic models of physical and biological oceanography? 
I do not know, but, if I did, that would make me 
an oceanographer, rather than merely a meddling 

mathematician... 
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