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EXECUTIVE  SUMMARY 

This research program was funded in 1992-1997 by the Defense Advanced 

Research Project Agency of the Department of Defense, under the University 

Research Initiative at Rensselaer Polytechnic Institute, and administered by the 

Office of Naval Research. The main focus of the program was to provide 
research support and computational tools for processing and design of 

high-temperature composite materials and structures. 

Professor George Dvorak served as Program Director. The co-principal 

investigators included Professors David Duquette, Jacob Fish, Joseph Flaherty, 
William Hillig, John Hudson, Mark Shephard, Sanford Sternstein and Norman 
Stoloff, all of Rensselaer Polytechnic Institute. About 25 graduate students have 

participated at different stages of their degree programs. 

The overall goal of the research program was the development of material 

behavior models, their implementation in a software framework, and completion of 

related material processing and characterization studies to support 
mechanism-based design of composite materials and structures. This included 
micromechanical modeling of elastic and inelastic behavior and damage, and 
implementation in multiscale computational analysis at the micro, meso and 

macrolevels; modeling of hot pressing of metal matrix composites, and of vapor 
deposition processes for fabrication of ceramic matrix composites and fibers; 
characterization of certain commercially available fibers and composite systems; 

and processing and characterization of MoSi2 and Cr3Si - based composites. 

MICROMECHANICAL   MODELING 

Mechanism-based design of composite structures involves modeling of 

material responses and interactions on different physical scales, ranging from the 

reinforcement - matrix microscale, through the dimensions of plies or woven layers 
in a laminate, to the macroscale of actual composite parts. Evaluation of the 

overall thermomechanical response of the composite material systems and 
laminates in terms of the geometry and properties of the constituent phases was 



accomplished by several methods. Among the available techniques were the 

averaging methods, such as the Mori-Tanaka and self-consistent estimates, and 
the Hashin-Shtrikman bounds. These provide the effective elastic moduli, thermal 

expansion coefficients, and thermal diffusivities, together with estimates of the 

average mechanical and thermal fields in the constituents and at their interfaces. 
The techniques developed under the present program include the 

transformation field analysis (TFA) for evaluation of the inelastic response and 

the associated local fields in the phases and plies for systems with viscoelastic or 

thermo-viscoplastic matrices and/or fibers, both in the perfectly bonded state and 

after fiber decohesion. The transformation analysis regards any inelastic 

deformation, as well as thermal deformations or phase transformations, as a 

stress-free strain or eigenstrain that is applied to an otherwise elastic composite 

material or laminate together with the prescribed mechanical loads. Using certain 
transformation concentration factors and constitutive relations for the inelastic 
phases, this method provides a set of differential equations for evaluation of the 
instantaneous local fields in the phases, or at integration points in finite elements 

of subdivided unit cells. The instantaneous overall response of the composite or 
laminate is then obtained in terms of the local fields. Certain damage processes, 
such as progressive particle or fiber debonding and sliding, have also been modeled 

in terms of transformation strains. A unified procedure for determination of 
overall loading conditions that cause onset and initial evolution of local damage in 

laminates has been developed and the results displayed as initial and subsequent 

failure maps. These maps are plotted in laminate stress coordinates and consist 
of a number of branches that represent critical magnitudes of local stresses within 
individual plies which may initiate local cracking in the fibers, matrices or at 

interfaces. Such maps are now available for symmetric metal and ceramic matrix 

laminates. They include the effect of residual stresses, generated by thermal 
changes and inelastic deformation during processing and in service, on the onset of 

damage in laminates. Models of progressive interfacial debonding in participate 
and fibrous composites were developed, together with studies the effect of fiber 

size on debonding energy. The results indicate that for given interface properties, 
small diameter fibers and particles are more resistant to debonding than larger 
ones. 



Functionally graded composite materials with variable moduli and thermal 
expansion coefficients are useful in fabrication of coatings, parts subjected to 

thermal gradients, and also in joining ceramic and metal parts. Much work in 
recent years has been devoted to development of modeling methods for these 
material systems. Our work has been concerned with comparisons of average local 

fields and overall response of discrete and homogenized models for functionally 
graded materials under several typical thermomechanical loading conditions. 

Steady state heat conduction problem were also solved and the resulting 
temperature distributions compared. The results of these comparisons indicate 

that standard averaging methods can be used in replacing graded systems by 

homogenized layered systems, providing that the Mori-Tanaka method is used in 
those parts of the microstructure which have a well-defined matrix, and the 
self-consistent method in parts with skeletal microstructures. Nonlocal methods 
were also developed, but should be needed only is situations where field gradients 

are large and field averages small. 
Experimental characterization of fabric reinforced SiC/SiC and SiC/A^Os 

coupon and tube specimens, obtained from DuPont Lanxide, Inc., was a part of 
the modeling program. Apart from specific strength and endurance data at both 
ambient and elevated temperatures, the experiments provide information on overall 
response of these fabric-reinforced composites during damage development and in 
saturation damage state. A substantial part of the overall strength is preserved 

even after extensive matrix damage. Work is under way to determine and 
experimentally verify under combined plane-stress loading the constitutive 

equations that govern mechanical response of these systems. 

DESIGN   AND   ANALYSIS   SOFTWARE 

In the area of software development, we have completed development of 
mechanism-based multi-scale analysis tools for fabricating and designing 

high-temperature composite materials and structures. The new capability links 

deformation, damage and crack propagation behaviors at three physical scales, the 

fiber/particle microscale, ply/weave mesoscale and the part or structure 
macroscale. Detailed geometrical models with automatically generated meshes and 
modification   tools,   various   homogenization  methods   and   advanced   visualization 



modes and attributes are available at all three scales. For example, design 
changes in reinforcement shape and orientation can be translated into overall 

composite properties and hence to deformation of a part or structure under load. 

Any chosen structure can be evaluated under prescribed thermal and mechanical 

service loads at all three scales for local stresses, temperatures, and deformation 
and damage states. These capabilities are applicable to CMCs, MMCs amd 
PMCs with complex architectures and possibly hybrid reinforcement, and allow for 

linear or nonlinear behaviors with temperature-dependent material properties. 

Both in-house and commercially available software codes and data bases were 

assembled to provide a range capabilities with different computational costs and 

complexities, and integration of computed results with material testing. Also, 

extensive work was completed on simulations of manufacturing processes, such a 

hot isostatic pressing, diffusion bonding, reactive vapor infiltration and chemical 
vapor deposition. 

The CAD framework offers the designer numerous tools for modeling, 
analysis and design of both composite material systems and large composite 
structures, while controlling idealization errors through multiscale, adaptive or 
heuristic means. The high-temperature property database contains over 320 
material systems or constituents, 18,000 values and 180 material characteristics. 

Geometric modeling tools built on commercial geometric modelers create 
microstructures, weaves, plies, laminates and part scale models, and source their 

data from a user-selected properties and design parameters in a spreadsheet 

format. An analysis attribute code links physical material properties and 
boundary conditions with the micro- and/or macro-structural geometry. 

Automatic meshing tools, generic mesh operations and data structures, and the 
interfaces to multiple finite element analysis codes complete the integration of 
automated modeling tools for finite element analysis. 

The system invites the user to construct an "analysis goal" in terms of 

design description and analysis characteristics. These include functionality 

definitions, such as thermomechanical boundary conditions within prescribed 
deflections and heat flow direction; and specification of the type of analysis result, 
time and reliability needed to confirm the governing behavior. The goal 

description is converted into a data flow model and a sequence of code executions, 
or a "strategy" that provides the desired results to the user.    The execution of 



the analysis goal is similar to using a spreadsheet function, requiring no expertise 

in the underlying theories or software development.The user is informed of any 

specific problem with the selected design parameters. The results are 

automatically computed and returned to the spreadsheet, used as input in 

subsequent design steps, or displayed by a visualization code. 
Material modeling capabilities of the system include codes for evaluation of 

elastic properties of various composite material systems, initial failure maps of the 
constituents and their interfaces, and mathematical homogenization of unit cells 
that represent behavior of periodic microstructures with complex internal 

geometries, such as aligned or random fiber and particle distributions and weaves. 

The composite material properties, such as elastic moduli, CTEs, and heat 
conductivities are evaluated with several micromechanical averaging methods, or in 
terms of Hashin-Shtrikman bounds, in terms of constituent properties, their 
geometry and volume fractions. Associated codes evaluate mechanical, thermal, 
and transformation concentration factors which provide averages of local stress and 
strain fields in the phases under prescribed overall stresses, temperature changes, 

or phase transformations. Inverse routines are available for evaluation of in situ 

reinforcement properties from overall composite and neat matrix experimental 

data. The results are displayed in comprehensive graphs which show, for 
example, overall property variations in terms of phase geometry, volume fractions 

and temperature. 
Efficient procedures for accurate solutions of structural problems with 

inelastic materials, where the deformation history needs to be evaluated at all 
integration points and modeling scales involved have also been developed with 
novel modeling schemes based on mathematical homogenization theory with 

eigenstrains and the transformation field analysis. Solution of the very large 
systems involved is now possible at a cost comparable to problems in 

homogeneous media, without significantly compromising solution accuracy. 

PROCESS   MODELING 

Adaptive software has been developed for solving fabrication and longevity 

problems in ceramic matrix composites. Also, mathematical models were 

formulated   for   three   processes,   (i)   manufacture   of   CMCs   by   reactive   vapor 



infiltration,  (ii) coating of ceramic fibers by CVD, and (iii) oxidation of ceramic 
composites. 

The adaptive software solves steady state or transient reaction, convection 

and diffusion problems in in two dimensions, and to a limited extent also in three 
dimensions. Estimates of discretization errors are used to monitor accuracy and 
control the adaptive solution procedure. Accurate and efficient simulations of 

complex phenomena, such as sharp moving interfaces and reaction zones, havebeen 

implemented through automatic mesh refinement and coarsening (h-refinement), 

method-order variation (p-refinement), and mesh motion (r-refinement). Severe 

material distortions that occur during deposition, heating and cooling can thus be 

followed. A user-friendly interface has been implemented that allows for changes 

in the mathematical model and system parameters. The software executes on 
both serial and parallel systems. 

The reactive vapor infiltration work focused on fabrication of MoSi2 

composites. The key reactions and dilatation driven mechanical deformation were 
reflected in the model that predicted reaction rates within 10%, and final 
porosities within 1-2% of observed values. Process improvements were suggested 
for reduction of severe swelling an possible cracking and confirmed by experiment. 

The improved process was started with a powdered mixture of Mo and MoSi2, 
instead Mo alone. Predicted siliciding proceeded at twice the rate of the 

homogenenous powder, and after compression to 45% porosity, the pores filled 
without appreciable swelling. 

Coating by CVD of sapphire fibers with beta-alumina was modeled in hot 
and cold-water reactors. Critical process parameters for production of even 
coatings include the flow rate, the speed of the fiber, the injection rate of the 
(reactive) precursor species in the flow, and the reactor temperature. Strategies 
have been identified to minimize wall coating and process time while producing a 

uniform fiber coating. The model is capable of analyzing transient and steady 

flows of multiple species, heating by conduction, convection and radiation, 
chemical surface reactions, and geometry changes due to fiber motion and 

deposition. Cold-walled reactors appear to be much more efficient than 

hot-walled ones, and injecting the precursor into the flow near the fiber minimizes 
losses. 



Oxidation of CMC matrices by gaseous species was modeled as a coupled 

reaction diffusion system for chemical species, with gaseous oxidants that permeate 

protective coatings and react with the viscous matrix material that deforms 

according to the Navier-Stokes equations. The reaction of oxygen and water vapor 
with a ceramic matrix in the vicinity of a small crack have been described as a 
two-phase diffusion of gases in the crack and their diffusion and convection in the 

solid matrix. Gaseous flows involve both bulk and Knudsen diffusion. 

Improvements under consideration include modeling of self contact to describe 

visco-elastic or visco-plastic material deformation after the crack has closed, and 

analyses of systems of interacting cracks and fibers of various distributions. 

MATERIALS   PROCESSING   AND   CHARACTERIZATION 

The processing effort focused on intermetallic compounds with attractive high 

temperature properties, such as high melting point, low densities and excellent 

oxidation resistance compared to nickel-based superalloys. Two Mo-modified 
Cr3Si compounds were consolidated from prealloyed powders. To improve 

toughness, 15% volume fraction reinforcement by Saphicon short fibers, and ductile 
continuous Pt alloy fibers was introduced. Results have shown no significant 
changes in stiffness due to the reinforcement, but a significantly higher toughness 
was measured at elevated temperatures. Also, the unnotched strength at 
1000-1100°C increased from that at the room temperature due to the inclusion of 

fibers. Oxidation tests at 500°C showed absence of the "pest" phenomenon, and 

good resistance at 1250°C. Another system studied was MoSi2 reinforced with 
SiC whiskers and/or particles. Consolidation by reactive sintering of elemental 
powders was used in an attempt to reduce cost and improve purity The high 
temperature strength of reinforced MoSi2 increased until 1200°C, presumably 

indicating some effect from the smaller grains and cleaner product, and a major 
contribution from the reinforcement. The results suggest that both systems show 

promising high-temperature properties with a potential for further improvement. 
Experimental investigation of fiber coatings by CVD was carried out in a 

low pressure reactor, with deposition of aluminum nitride from an organoaluminum 

precursor on sapphire fibers. Coherent, pinhole-free were prepared by this 
technique and incorporated into a MoSi2 matrix,    the A1N coatings protected the 



fibers from attack by HC1 generated by forming the MoSi2 by the reaction of 

SiCU with bulk Mo in H atmosphere. Unprotected fibers were completely 
consumed by the reaction. 

Coupon and tubular samples of two commercially available composite 
systems were obtained from DuPont Lanxide, Inc. One set was enhanced SiC/SiC 
combined with proprietary inhibitors, reinforced with a 8-10 layer (0/90) plain 

weave fabric, at 35% fiber volume fraction. The 15% void volume was unevenly 

distributed as macroscopic surface-connected pores within and between the plies. 

The second system was a SiC fabric (12-harness satin weave) reinforced A1203 

manufactured using the Lanxide DiMOx process. The matrix was formed by 

directional oxidation of a molten alloy, with about 2% trapped residual metal. 

Porosity is microscopic and well-dispersed, but extensive matrix microcracking was 
observed on as-received samples. Baseline data show Young's modulus and 

proportional limit approximately constant between 20°C and 1200°C, equal to 120 
GPa and 75 MPa for SiC/SiC, and 130 GPa and 60 MPa for SiC/Al203, 
respectively. In the SiC/SiC, ultimate strength increases with temperature above 
1000°C, but decreases in the SiC/Al203 between 20°C and lOOOOC. The cyclic 
endurance limit is strongly affected by temperature in both materials, it generally 
decreases from the maximum 170MPa at 20°C (10 Hz, R=0.1) to below 65 MPa 

above 850°C. Static fatigue life measurements at 1000°C over a range of stresses 
and rupture times up to 240 hrs show linear relationships between applied stress 

and logarithm of rupture time. No run-out was observed in the SiC/SiC system, 
while run-out under 80 MPa was found for the SiC/Al203 composite. 

Oxidation studies at 500-1200°C in dry air, oxygen, water vapor and argon 

up to 200 hrs. For both SiC/Al203 and SiC/SiC, oxidation in dry environments 
causes outgassing of volatile species, followed by a stable weight gain independent 

of the environment. Inclusion of water vapor and addition of salts in the vapor 
both elevate oxidation rates. 

Short-term tensile test data and long-term static and cyclic fatigue limits 
are not strongly affected by the presence of pure oxygen, air or water vapor up 

to 10000C. No modulus decrease is observed at stresses below proportional limit. 
Conversely, stress-free exposure to 1200"C air, oxygen or argon for as little as 100 

hrs. results in dramatic loss of strength and stiffness, due to deterioration of the 

fibers and internal reaction of surroundings with the fibers.    As in other ceramic 



systems, aggressive environments, such as water vapor and Na2SC-4 or NaCl 
reduce creep rupture life. Formation of internal and surface silica under 
stress-free oxidizing conditions may result in healing of internal cracks. For 

example, SiC/SiC samples with internal cracking due to loading above the 

proportional limit recovered 85% of the original modulus after 5hrs. in 1000°C air, 

oxygen or water vapor. Similar effects were observed in the SiC/A^CH system. 

Finally, surface coating of specimens appears to play a vital role in lifetime. 

Removing as little as 25% of the SiC coating on the SiC/SiC system reduces 

static rupture time by 80% in 1000°C air or water vapor. 
At high temperatures, many fibers exhibit deviations from linear elastic 

behavior, which influences component lifetime, and also dynamic properties, such 
as resonance frequencies and damping factors, of interest in design of turbine parts 
and other rotating components. An apparatus has been constructed for the forced 

vibration dynamic mechanical testing of single ceramic fiber samples at 
temperatures up to 1600°C and frequencies from 0.1 to 25 Hz. Experimentally 
based dynamic constitutive relations were developed for commercial sapphire, 

YAG, and several SiC fibers. 

CLOSURE 

The described program was instrumental in bringing together the efforts of 

many investigators from mechanics, materials modeling, computer science and 
materials science, with an objective to model, fabricate, process and characterize 
composite materials for ambient and high-temperature applications. In addition 
to the numerous research papers, book chapters and reports, a significant product 

of the program is a comprehensive software package that incorporates a material 
data base, advanced micromechanical models for evaluation of overall properties of 

elastic and inelastic composite materials, novel process modeling procedures, and 

techniques for multiscale analysis and design of composite structures, together with 
user-friendly interfaces and visualization tools. Moreover, experiments with 

in-house fabricated and commercially available fibers and composite systems have 
produced a wealth of data and many useful insights into the behavior of 

high-temperature composite systems. 



MECHANISM - BASED DESIGN OF COMPOSITE STRUCTURES 
PROGRAM OVERVIEW AND ACCOMPLISHMENTS 

George J. Dvorak 
Center for Composite Materials and Structures 
Rensselaer Polytechnic Institute 
Troy, NY 12180-3590 

ABSTRACT 

This paper surveys the accomplishments of the title research program 
which was funded in 1992-1997 by the Defense Advanced Research Project 
Agency of the Department of Defense, under the University Research 
Initiative at Rensselaer Polytechnic Institute. The main focus of the 
program was to provide research support and computational tools for 
processing and design of high—temperature composite materials and 
structures. Micromechanical modeling, design and analysis software, process 
modeling, and materials processing and characterization are discussed. 

INTRODUCTION 

Designing with composite materials for high—temperature applications 
presents numerous challenges that require an extensive background in 
material design and processing, structural analysis, and material behavior in 
adverse environments. The overall goal of the research program has been the 
development of a software framework and associated modules, and 
completion of related material processing and characterization studies to 
support mechanism—based design of composite materials and structures. 
This includes micromechanical modeling of elastic and inelastic behavior and 
damage, and implementation in multiscale computational analysis at the 
micro, meso and macrolevels; modeling of vapor deposition processes for 
fabrication of ceramic matrix composites and fibers; characterization of 
certain commercially available systems; and processing and characterization 
of MoSi2 and C^Si - based composites. 

The team of co—principal investigators include Professors Duquette, 
Fish, Flaherty, Hillig, Hudson, Shephard, Sternstein and Stoloff, as well as 
the writer who serves as program director. Research faculty include Drs. 
Adjerid, Belsky, Lipetzky and Wentorf. About 25 graduate students have 
participated at different stages of their degree programs. 



MICROMECHANICAL MODELING 

Mechanism-based design of composite structures involves modeling of 
material responses and interactions on different physical scales, ranging from 
the reinforcement - matrix microscale, through the dimensions of plies or 
woven layers m a laminate, to the macroscale of actual composite parts 
Evaluation of the overall thermomechanical response of the composite 
material systems and laminates in terms of the geometry and properties of 
the constituent phases can be accomplished by several methods. Among the 
available techniques are the averaging methods, such as the Mori-Tanaka 
and self-consistent estimates, and the Hashin-Shtrikman bounds These 
provide the effective elastic moduli, thermal expansion coefficients and 
thermal diffusivities, together with estimates of the average mechanical and 
thermal fields in the constituents and at their interfaces. The techniques 
developed under the present program include the transformation field 
analysis (TFA) for evaluation of the inelastic response and the associated 
ocal fields m the phases and plies for systems with viscoelastic or 

thermo-viscoplastic matrices and/or fibers, both in the perfectly bonded 
state and after fiber decohesion. 

♦i. Thf t™™*01™1*™ analysis regards any inelastic deformation, as well as 
thermal deformations or phase transformations, as a stress-free strain or 
eigenstrain that is applied to an otherwise elastic composite material or 
laminate together with the prescribed mechanical loads [1, 2l. Using certain 
transformation concentration factors and constitutive relations for the 
inelastic phases, this method provides a set of differential equations for 
evaluation of the instantaneous local fields in the phases, or at integration 
points in fimte elements of subdivided unit cells. The instantaneous overall 
response of the composite or laminate is then obtained in terms of the local 
fields^ Certain damage processes, such as fiber debonding and sliding, have 
also been modeled m terms of appropriate transformation strains, and their 
effect on the local fields and overall response determined in a similar way [3]. 

A unified procedure for determination of overall loading conditions that 
cause onset and «itial evolution of local damage in laminates has been 
developed and the results displayed as initial and subsequent failure maps. 
These maps are plotted m laminate stress coordinates and consist of a 
number of branches that represent critical magnitudes of local stresses within 
individual plies which may initiate local cracking in the fibers, matrices or at 
interfaces. Such maps are now available for symmetric metal and ceramic 
matrix laminates [4]. 

Functionally  graded  composite  materials   with   variable  moduli   and 
Lvn^i.efLanS1°,n C0^ffic:entiLa[e useful in high-temperature applications 
involving thermal gradients. Other applications can be found, for example, 
in joining ceramic and metal parts. Our work has established that specific 
averaging methods can be selectively used to find overall properties and 
response of typical graded microstructures under both mechanical and 
thermal loading gradients [5]. 



DESIGN AND ANALYSIS SOFTWARE 

The different analysis procedures that describe constituent, composite, 
laminate and structural responses at the appropriate scales have been 
implemented in a comprehensive framework that offers the designer with 
numerous tools for modeling, analysis and design of both composite material 
systems and large composite structures, while controlling idealization errors 
through multiscale, adaptive or heuristic means. The framework provides 
application expertise and visualization tools at different design stages [6, 7]. 

TM Commercial programs are applied where possible. The Mvision format 
from MSC/PDA Engineering accommodates the material database con- 
structed from available and our own data, which conforms to or can be 
translated into ASTM and applicable PDES/STEP standards [8]. The 
high—temperature property database contains over 320 material systems or 
constituents, 18,000 values and 180 material characteristics. Geometric 
modeling tools built on commercial geometric modelers create micro- 
structures, weaves, plies, laminates and part scale models, and source their 
data from a user—selected properties and design parameters in a spreadsheet 
format [9]. An analysis attribute code links physical material properties and 
boundary conditions with the micro— and/or macro—structural geometry. 
Automatic meshing tools, generic mesh operations and data structures, and 
the interfaces to multiple finite element analysis codes complete the 
integration of automated modeling tools for finite element analysis. 

The system invites the user to construct an "analysis goal" in terms of 
design description and analysis characteristics. These include functionality 
definitions, such as thermomechanical boundary conditions within prescribed 
deflections and heat flow direction; and specification of the type of analysis 
result, time and reliability needed to confirm the governing behavior. The 
goal description is converted into a data flow model and a sequence of code 
executions, or a "strategy" that provides the desired results to the user. 
The execution of the analysis goal is similar to using a spreadsheet function, 
requiring no expertise in the underlying theories or software development. 
The user is informed of any specific problem with the selected design 
parameters. The results are automatically computed and returned to the 
spreadsheet, used as input in subsequent design steps, or displayed by a 
visualization code. 

Material modeling capabilities of the system include codes for evaluation 
of elastic properties of various composite material systems, initial failure 
maps of the constituents and their interfaces, and mathematical 
homogenization of unit cells that represent behavior of periodic 
microstructures with complex internal geometries, such as aligned or random 
fiber and particle distributions and weaves. The composite material 
properties, such as elastic moduli, CTEs, and heat conductivities are 
evaluated with several micromechanical averaging methods, or in terms of 
Hashin—Shtrikman bounds, in terms of constituent properties, their geometry 
and volume fractions.   Associated codes evaluate mechanical, thermal, and 



transformation concentration factors which provide averages of local stress 
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PROCESS MODELING 

Mathematical models and software for analysis of multiscale processes, 
such as evolving reaction fronts, boundary layers and molecular interactions, 
have been developed with the aid of adaptive methods for solving systems of 
partial differential equations [12, 13]. Such methods automatically refine, 
coarsen and relocate meshes and vary method orders in both time and space; 
hence, they are capable of resolving local nonuniform behavior. Adaptive 
algorithms use estimates of discretization errors and/or other information 
obtained during the computation to improve solution accuracy. The 
adaptive software uses this information to create strategies to decrease the 
error to a desired level as quickly as possible. Error estimation techniques, 
optimal adaptive enrichment strategies, and time integration techniques are 
employed to improve efficiency, accuracy and robustness [14]. These tools 
are being incorporated into an object-oriented framework that will simplify 
development of new applications in materials science and mechanics. 

Specific applications have been made in analysis- of a cylindrical CVD 
reactor used in surface coatings of sapphire fibers with AI2O3 and LajOs. 
The flow of carrier gas mixture of argon and oxygen is modeled as that of a 
compressible ideal fluid including convection, conduction and radiation. 
Precursor species are modeled by convection—diffusion systems. Surface 
reaction rates are assumed proportional to an impingement rate and 
dependent on temperature in an Arrhenius manner. Parameter studies of 
varying geometries and operating conditions revealed advantages and 
deficiencies of reactor design and function. 

Protecting ceramic matrix composites from oxidation in hostile 
environments may require several layers of coating. Under stress, cracks 
may form and penetrate these coatings, thus opening the system to oxidizing 
vapors. The resulting damage may reduce useful life of composite 
components; lifetime predictions consider the size, number and distribution 
of cracks, as well as the properties of the constituents and their oxides. In 
some instances, volume expansion accompanying the oxidation seals the 
cracks and retards or eliminates further oxidation. 

The reaction of oxygen and water vapor with a ceramic matrix in the 
vicinity of a small crack have been described as a two-phase diffusion of 
gases in the crack and their diffusion and convection in the solid matrix. 
Gaseous flows involve both bulk and Knudsen diffusion. The solid model 
describes a reaction—diffusion system combined with viscous deformation 
according to the Navier—Stokes equations. A volumetric flow law accounts 
for density changes. Computationally, the problem involves several complex 
reactions, moving boundaries, sharp transient reaction fronts and complex 
geometries. Specific results have been found for a crack in a SiC matrix 
exposed to oxygen. Improvements under consideration include modeling of 
self contact to describe visco—elastic or visco—plastic material deformation 
after the crack has closed, as well as analyses of systems of multiple 
interacting cracks and fibers of various distributions. 



MATERIALS PROCESSING AND CHARACTERIZATION 

The processing effort focused on intermetallic compounds with attractive 
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Short-term tensile test data and long-term static and cyclic fatigue 
limits are not strongly affected by the presence of pure oxygen, air or water 
vapor up to 1000°C. No modulus decrease is observed at stresses below 
proportional limit. Conversely, stress-free exposure to 1200°C air, oxygen or 
argon for as little as 100 hrs. results in dramatic loss of strength and stiffness, 
due to deterioration of the fibers and internal reaction of surroundings with 
the fibers. As in other ceramic systems, aggressive environments, such as 
water vapor and Na2S04 or NaCl reduce creep rupture life. Formation of 
internal and surface silica under stress-free oxidizing conditions may result 
in healing of internal cracks. For example, SiC/SiC samples with internal 
cracking due to loading above the proportional limit recovered 85% of the 
original modulus after 5hrs. in 1000°C air, oxygen or water vapor. Similar 
effects were observed in the SiC/Al203 system. Finally, surface coating of 
specimens appears to play a vital role in lifetime. Removing as little as 25% 
of the SiC coating on the SiC/SiC system reduces static rupture time by 80% 
in 1000°C air or water vapor [19]. 

At high temperatures, many fibers exhibit deviations from linear elastic 
behavior, which influences component lifetime, and also dynamic properties, 
such as resonance frequencies and damping factors, of interest in design of 
turbine parts and other rotating components. An apparatus has been 
constructed for the forced vibration dynamic mechanical testing of single 
ceramic fiber samples at temperatures up to 1600°C and frequencies from 0.1 
to 25 Hz [20, 21]. Experimentally based dynamic constitutive relations were 
developed for commercial sapphire, YAG, and several SiC fibers. 

CONCLUSION 

The described program was instrumental in bringing together the efforts 
of many investigators from mechanics, materials modeling, computer science 
and materials science, with an objective to model, fabricate, process and 
characterize composite materials for ambient and high-temperature 
applications. A significant product of the program is a comprehensive 
software package that incorporates a material data base, advanced 
micromechanical models for evaluation of overall properties of elastic and 
inelastic composite materials, novel process modeling procedures, and 
techniques for multiscale analysis and design of composite structures, 
together with user—friendly interfaces and visualization tools. Moreover, 
experiments with in-house fabricated and commercially available fibers and 
composite systems have produced a wealth of data and many useful insights 
into the behavior of high-temperature composite systems. 
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ABSTRACT 
A software framework supporting mechanism-based design of high temperature composite 

structures is described. The framework extends material property databases by allowing the 
investigation and simulation of small scale behaviors which cause full scale effects. The framework 
integrates a full range of modeling processes, including automated model generation tools, 
numerically efficient analysis codes, post-processing and visualization, so as to minimize the effort 
required to develop mechanism-based models for new behaviors and materials. 

INTRODUCTION 
The need for advanced software capabilities are motivated by current fabrication technology, 

which allows the material's structure to be configured for an application, and by the complexity of 
phenomena governing the material's behavior during fabrication and during subsequent loading. 
Current research has developed mechanism-based models of thermomechanical behaviors for high 
temperature composites and the associated fabrication and degradation processes. From the 
standpoint of design, the new capability provides insight of the relationships between a material 
system's meso/micro structural design parameters and its overall behaviors. 

The mechanism-based approach links behaviors at three physical scales: e.g. the fibrous 
(micro), the ply/weave (meso) and the part (macro) scales. For example, design changes in the 
reinforcement's shape and orientation can be translated into overall composite properties and hence 
to a part's deflection under load. Alternatively, a macro-scale cooling hole configuration under 
thermal-mechanical loading can be linked to the type and proximity of fiber-coating-matrix 
debonding. Mechanism-based models allow both vurrent and alternative material and component 
designs to be evaluated more quickly without the expense of testing all macro scale configuration/ 
environment permutations, and can also aid the design and sizing of test fixtures for those tests 
which are required. 

The balance of the paper outlines some unique features of the software system, and is 
organized by the functional role of the framework tools in the overall modeling process [1]. The 
aim is to present a range of software tools which can be assembled to support specific design 
problems. Specific application examples are referenced where needed. Covered are the engineering 
modeling tools for geometry, material test data management, applications for modeling material 
behavior on multiple scales, tools for creating and manipulating numerical models, fast and 
efficient analysis codes required for large linear or non-linear problems, post-processing and 
visualization, and techniques by which the framework integrates the composite analysis tools. 



GEOMETRY AND ATTRIBUTE DEFINITION 
The framework provides tools for the 

definition of engineering design geometry 
and   the   engineering   attributes   to   be 
associated with engineering features on the 
model.   Tools   are   provided   which   can 
construct standard geometric features from 
given  design   parameters,   and  assemble 
these into non-manifold geometric models. 
Example features on a small scale are cross 
sections     of    bundles,     bundle    paths, 
repetitive woven patterns, such as satin or 
plain    weaves,    standard    reinforcement 
shapes   such   as   fibers,   cracked  matrix 
layers and voids left as a result of vapor 
deposition    type    operations.    Figure 1 
illustrates the process where a) the cross- 
sectional shape and path parameters are 
defined to create a bundle, b) the bundle 
interlacing is defined by a schematic to 
form a weave,  and c) the bundles and 
matrix are assembled into a unit cell for 
subsequent meshing and analysis. Not all 
geometry   must  come   from  parameters: 
micro-graphs can  be scanned to define 
bundle paths. The geometric modeling is 
performed in stages, where the features to 
be combined are selected, defined in terms 
of their   size   and   position   parameters, 
translated    into    a   sequence   of   basic 
construction operations, and the operations are executed in terms of their equivalent commercial 
geometric  modeling function calls. Features can be tagged for later identification of their 
topological entities after construction operations have been executed. Features can also be linked 
across multiple models, allowing a ID idealization of a weave (its path) to be associated with the 
appropriate region in a solid model of a unit cell. Visualization tools are available to display 3D 
models in real time as both shaded and semi-transparent images. The same facilities have been used 
to create and modify macro scale models. Special tools are also available for matching topoloaical 
entities for complex unit cells. 

Attributes such as the constituent materials, periodic boundary conditions or prescribed 
displacements are defined with respect to the features and properties translated into analysis 
attributes. The SCOREC analysis attribute manager (SAM) manages the attribute information by 
defining distribution of its tensorial components, links to topological model entities, and how it fits 
into an organizational hierarchy. Example of a tensorial distribution is a parabolic loading produced 
by a pin or bolt normal to the surface of the hole, the state of residual stress in a fiber, or the 
temperature distribution on the surface of a part. Examples of links with topological entities are the 
association of an elastic modulus with a solid model region representing a fiber, or the association 
of an interface strength with the common surface (topological face) between a 3D fiber and matrix. 

Figure 1: Parametric geometry definition 



The task of collecting together all undamaged material properties which are related to the bundles 
of a weave would be accomplished by the organizational hierarchy. 

TEST DATA STORAGE AND PROCESSING 
The framework makes use of a material database which uses the commercial MSC M/ 

VISION™ format and which conforms to, or can be translated into ASTM and applicable PDES/ 
STEP standards [2]. The high temperature database developed for the project contains more than 
320 material systems or constituents, 18,000 values, and 180 material characteristics. Database 
sources include published papers, industry data sheets, handbooks, and test data generated at 
Rensselaer. Constituent properties (matrix and reinforcements), data for dog-bone and tubular test 
specimens, and durability of tested parts in oxidizing and corrosive environments are stored. 
Manufacturing size, porosity or volume fraction limitation data are available where supplied by 
vendors, and background documentation and SEM images of material systems are also managed. 

Several database related features are available which either directly support the conceptual 
desisn process in material selection, or support analysis strategies. The database application can be 
configured for automated merit indicy plotting [3], or for retrieval of material systems which have 
performed in similar environments. Supporting reliable analysis requires data structuring so as to 
define not only the analysis properties, but also the scale, specimen characteristics, source of data 
and the environmental parameters of the test - the "pedigree". Reliable analysis requires a pedigree 
consistent with the underlying analysis models. Translation between the standard procedures and 
nomenclature of the testing community and the material parameter needs of analysis and design is 
required in order to obtain meaningful data, e.g. a standard full scale "creep" test may quantify a 
behavior caused by mechanisms in a CMC which are effected by different conditions from those in 
metals. The material database is also a source of known behaviors caused by the environment. For 
example, the modulus of a CMC may vary with both temperature and time, depending on the 
dearee of micro mechanical damage before the measurement, and the presence of water, oxygen 
and corrosive compounds [4, 5]. 

The commercial database package also provides a spreadsheet, by which design parameters are 
edited, organized and annotated, automatically flagged when in need of update, and connected with 
"back of the envelop" computations. The framework augments the spreadsheet with the means to 
execute analysis strategies with these design parameters. Additionally, image processing tools were 
developed to analyze images for composite modeling parameters, such as volume fractions, aspect 
ratios, spacing and relative positions of constituents. 

COMPUTED THERMOMECHANICAL PROPERTIES 
Design analyses require material properties not available directly from test data. The 

framework provides tools to compute missing properties from what is known. The tools are 
cateaorized as either for standard geometries and constitutive behaviors, which have fast execution 
times, or for complex geometries and behaviors, which employ more complex analysis procedures. 

For standard geometries, which include plies of parallel fibers, random or aligned whiskers, or 
paniculate reinforcement, tools are available to predict overall elastic and thermal expansion 
properties in terms of constituent thermo-elastic properties and volume fractions. The codes related 
to ply properties implement the Hashin-Strikman Bounds [6], the Mori-Tanaka [7] or the self- 
consistent methods [8]. The resulting properties computed from the methods can be compared 
graphically or plotted as a function of application temperature or reinforcement volume fraction. If 
tested properties for a constituent are not available, they can be computed "in-situ" by the Mori- 



Tanaka or self-consistent methods if overall properties, phase volume fraction, and the properties of 
the other constituent are known. 

Software tools also compute mechanical, thermal, and transformation concentration factors. 
These are useful for estimating phase stress and/or strain averages in two-phase and multi-phase 
composites subjected to uniform overall stress or strain, a uniform change in temperature, and 
uniform eigenstrains in the phases [9]. Such capabilities are used as part of post-processing for 
thermal-mechanical analysis at larger scales. Additional tools provide the plane stress stiffness, the 
compliance of asymmetric laminated plates under uniform in-plane loads, and the transversely 
isotropic coefficients of thermal expansion for symmetric laminated plate structures under a 
uniform temperature. The mechanical, thermal, and transformation distribution factors are 
estimated, leading to average stresses in plies of a symmetric laminated plate under uniform in- 
plane loads, temperature change, and ply eigenstrains. Other routines for standard geometries 
evaluate the Eshelby tensor for transformed homogeneous inclusions of an ellipsoidal shape in an 
anisotropic solid, compute the P-tensor for an ellipsoidal inclusion in an anisotropic solid, perform 
numerical operations with tensors or mathematical expressions, and convert between elastic 
constants, stiffness and compliance matrix forms. For non-linear behavior of fibrous MMCs, the 
periodic hexagonal array and bimodal plasticity models [10] are available as ABAQUS™ routines. 

UNIT CELL 
With the unit cell approach, the material designer can create custom material configurations 

with complex features or behaviors at micro or meso scales. This need arises when manufacturing 
processes or component loading/environments produce material defects or exercise internal 
mechanisms not represented by the theory underlying the standard configuration codes. The effects 
of including an additional geometric feature of a constituent or altering the size parameters of a 
constituent can be studied [11]. The main disadvantages have been the complex modeling process 
and the computational expenses of a general numerical approach. To overcome these, the software 
framework provides both automated modeling tools and efficient solvers. 

The method requires that a representative geometry of the composite configuration be defined. 
In the framework this begins by user defined combinations of constituent features such as fibrous 
shapes, weaving patterns, crack or void patterns. The features are sized with dimensional 
parameters defined from processed images or as specified by the designer. Constituent material 
properties are either retrieved test data or computed from analysis on a smaller scale. Properties are 
assigned to the material regions of the geometric model, and orientation geometry, such as bundle 
center lines, are automatically created and linked with the solid constituents. Other geometric 
modeling tools automatically match corresponding geometric entities to ensure model periodicity. 
Automatic meshing works directly from the geometric model, and the analysis interface tools 
automatically assign the material properties and periodic boundary conditions. This method of 
constructing geometric and attribute models betöre meshing gives the framework considerable 
representative flexibility. Highly efficient sohers compute both homogenized properties (the 
equivalent properties of the material at a larger scale) and stress concentration factors for later post- 
processing. The classical mathematical homogenization theory for heterogeneous medium has been 
generalized [12]. for this application to account for eigenstrains. 

Unit cell modeling has been used in the multi-scale computational technique and for non-linear 
analysis with a plasticity model. Given a representative geometry, it can also predict linear elastic 
properties for woven composites for use directly with conventional macro-scale analysis tools, and 
can be readily adapted for thermal conductivity and chemical diffusion problems, e.g. for process 



modeling.  Parameterized unit cells  for oriented fibers,  periodic "random" fibers,  "'random'" 
particles, and 2D woven fabrics with cracks and voids have already been developed. 

NUMERICAL MODEL DEVELOPMENT 
Conversion of the engineering geometry to a finite element mesh is supported by automatic 

mesh generation, mesh modification and facilities for structuring and storing mesh data. SCOREC 
developed tools for automatic meshing of either 3D surfaces or volumes can be used [13]. The 
automatic meshing tools have features which automatically control the numerical solution around 
critical features or through the thickness of parts where the manufacturing or degradation processes 
will cause layered variations in behaviors or micro structures. The automatic meshing works for 
models on all scales, and are used for building periodic meshes of unit cells. Mesh modification 
tools can be used to remove the effects of undesired small features created unintentionally by 
geometric modelers, and were used for the crack propagation analysis [14]. Special mesh 
modification capability was developed which adjusts the volume of a material region. This 
capability is useful with unit cell models of meso scale weaves or micro scale reinforcements, 
allowing the volume fraction to be adjusted directly through the mesh. In addition, this provided an 
efficient means to study the sensitivity of overall properties to changes in volume fractions. 

ANALYSIS 
The framework automatically constructs the input for analysis packages such as ABAQUS™ 

or specialized solvers by extracting the mesh data from the generic mesh database and the 
associated material properties, loads and boundary conditions from the attribute structures. The 
specialized solvers include an iterative solver with multiple right-hand-sides, which is both time 
and disk space efficient. The analysis efficiency is very useful for mechanism-based simulations, 
where complex micro-structures such as weaves and/or non-linear behaviors require large 
numerical models and/or many solution increments [15]. Efficient solutions for materials with 
nonlinear history dependent behaviors have been addressed in [12] and [16]. 

The design and performance of a HTC component is often governed by the mechanical 
behavior near highly stressed features, such as attachments. The seemingly straight forward 
approach of explicitly modeling the composite microstructure throughout the component would 
require computational resources far greater than available or needed. Unit cell or representative 
volume approaches make the computations feasible but are based upon assumptions of periodicity 
and uniformity of macroscopic fields, which are often not valid near critical features. To solve these 
problems, special analysis tools and techniques were developed which automatically locate critical 
areas and then coordinate and adapt the numerical models on multiple scales, so as to capture 
failure processes down to the micro scale [17, 18]. 

The multi-scale technology has also been used to simulate the growth of a crack in a fibrous 
composite [14], and the dominant factors affecting crack growth on the micromechanical level have 
been investigated. Automatic tools were developed that explicitly represent the microstructure of 
the composite at the crack front while using homogenized material properties elsewhere. A 
significant difference in the crack growth pattern was found when the microstructure model was 
incorporated into, the analysis. Crack propagation criteria in the microstructure was based on the 
energy release rates, fracture toughnesses of the microconstituents and their interface. 

The process modeling codes included in the framework simulate the time varying production, 
or degradation, of composite materials. The analysis codes find the solution for models involving 
the reaction and transport of chemical species and material flows. In the most basic applications, 
designers can alter process parameters to improve production rates and/or minimize manufacturing 



defects. Since the analysis code is interfaced with the framework tools, the opportunity exists for 
designers to couple themomechanical and chemical process simulations to estimate processing 
residual stresses or to simulate oxidation/hot corrosion for life prediction. Codes have been applied 
to the reactive vapor infiltration process for forming MoSi2 from Mo powder, CVD fiber coating 
with ßAl203, and for oxidation simulations of SiC composites [19-21]. Inputs for the general 
analysis code are the initial geometry and mesh, process attributes per phase, and boundary 
condition distributions as a function of time. Models input to the code are categorized as chemical 
reaction models, expansion, mechanical models for solid phases, diffusion models of gaseous 
phases, and surface models for phase interfaces. Error control parameters are given for the adaptive 
refinement techniques. Outputs are the time varying volume change, shape, velocity, temperature, 
concentration and pressure fields 

a Proximity to Onset of M 
' (% allowable stress) 

cro Structural Damcge 

m 

POST PROCESSING 
Post processing and visualization 

tools provided by the framework map 
analysis results into behaviors and 
graphics to aid interpretation and 
understanding for design of mechanism- 
based models. For linear elastic 
analysis, initial brittle and plastic 
material failure of fibrous composites due 
to thermal-mechanical loading can be 
graphically depicted by the software. 
Debonding at the interfaces between the 
fiber, coating and matrix, and fracture of 
the fiber, coating or matrix materials are 
predicted for symmetric laminated plate 
configurations. The framework tools 
provide the designer with an animated 
"through the thickness" sequencing of 
these micro scale failures at each 
lamination, allowing interior-exterior 
trends to be visualized. The software 
implements the theory found in [16, 9. 
22], by mapping macro scale FEA 
temperatures and stress distributions onto 
the micro-mechanical failure map model. 
The model accounts for residual stress 
effects due to a difference between a stress 
free state, e.g. the processing temperature, and the operating temperature. The codes have been 
applied to SiC/Ti MMCs and to a SiC/Al203 woven CMC combustor housing with cooling holes 
and other hardware features, and loaded by large thermal gradients. Overall thermal stresses 
mapped to the fibrous scale result in the macro scale distribution shown in Figure 2 (top), where 
shading indicates proximity to fiber/matrix debonding failure on the inner ply. 

Post processing tools are also used to recover the critical micro scale behaviors in unit cell 
models. The computational plasticity analysis tools described earlier rely on post-processing of the 
strain histories stored for each critical macro scale element (Gauss point). In an example problem 
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Figure 2: Post processing of macro scale stress 
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usins a SiC/Ti fibrous composite, the recovered strain history was mapped to the micro scale, 
showing fiber and matrix stresses and areas of permanent deformation around the linkage 
connections [12]. The distribution of micro scale stresses are shown at the bottom of Figure 2. 

INTEGRATION OF SOFTWARE TOOLS 
Several features of the framework allow it to ultilize the software tools described earlier [1]. In 

order to communicate with commercial packages, such as geometric modelers, framework tools 
make queries and edit operations through a layer of generic operators. Each commercial code is 
then interfaced to the rest of the system by a set of functions which translate the generic instruction 
into the specific functions supported by the package. This avoids the need to customize a version of 
each framework tool for each commercial package, or version of a package. Relational database 
queries are specified in terms the SQL language, which performs a similar function. In order to 
write generic operators and support multiple, possibly specialized tool capabilities, the essential 
computational functions are abstracted, and the abstractions organized into type hierarchies. 

Expertise in several areas, including material and process modeling, analysis techniques and 
detailed software operation are needed for reliable HTC mechanism-based analysis and design. For 
a given analysis goal desired by the user, the framework facilitates the sequencing of tools into 
analysis strategies, the execution of which provides the desired results^ From the user's perspective, 
the execution of the analysis goal is no more involved than using any other spreadsheet function, 
requiring no expertise or involvement in software development. The current design parameters are 
recovered from the spreadsheet, and transferred to the goal processor. If data is missing or out of 
the applicability range of available strategies, the user is informed of the specific problem, 
otherwise the results are automatically computed and returned to the spreadsheet, used as input for 
other analysis, or displayed. 

CONCLUSION 
High temperature composites have required progressively more complex micro-structures and 

behavioral understanding. Supporting design requires analytical tools which can yield insight into 
the underlying behaviors at multiple scales, are efficient to use, and which can be adapted to new 
material configurations. Application of these tools has shown their usefulness in design. 
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ABSTRACT 

We develop a mathematical model for the oxidation of silicon carbide in a crack 
or pore. The model consists of a nonlinear partial differential system that is solved by 
adaptive finite element software that automates many of the computational decisions. 

1. INTRODUCTION 

Oxidation shortens the life of ceramic matrix composites by, e.g., changing the 
elastic properties of the medium, reducing bonding strength due to a loss of fiber coat- 
ings and weakening fibers through reaction [1-3]. Composite materials are protected 
by coatings; however, cracks that form as a result of thermal or other loading may 
expose the matrix and fibers to hostile environments. We present a model for the oxi- 
dation of a cracked silicon carbide (SiC) matrix that is exposed to a hot gaseous mix- 
ture of oxygen and water. The gases diffuse into the matrix and react with the SiCto 
form a layer of silicon dioxide (SiO 2) between the gaseous mixture and the SiC. The 
oxidation proceeds into the composite at a rate that is controlled by the solid-state 
diffusion of oxygen and/or water vapor in SiO 2. Phase transformaoons due to tne 
oxidizing reactions are accompanied by a volume expansion that causes the viscous 
SiO2 to flow and fill the crack [1-3]. This may reduce damage to the composite. The 
model, consisting of a nonlinear partial differential system, is solved by adaptive finite 
element software [4] with capabilities for unstructured mesh generation and combina- 
tions of automatic mesh refinement/coarsening (h-refinement), method-order variation 
(p-refinement), and mesh motion (r-refinement). Adaptivity helps control numerical 
accuracy and track moving material boundaries; hence, it provides an effective tool tor 
solving oxidation and related [5] composite fabrication problems. The model and its 
solution by the adaptive software produce an efficient way to predict and understand 
changes in the chemical, physical, and mechanical properties of composites that will 
eventually lead to improved design and longer material life. 



2. OXIDATION MODEL 

Following [2,3], we expose a SiC matrix to O, and H20 that are absorbed into 
the matrix and react with SiC according to the overall reaction 

3SiC{s) + 50^ -+ 3SiOh) + C02(s) + ICO^, (la) 

S/C^ + 3ff2Ofe) -> S/02(j) + COte) + 3^. (lb) 

These reactions occur at the interface between SiC and Si02 with 02 and /f20 
diffusing through S/02 to reach the fronts. 

The solid matrix consists of a mixture of reactants and products.  Let the mass 
mi is) °f chemical species i at time t in a control volume V be 

m,(0= fpl^co,    / = 1,2, -,7, (2) 

where p is the density of the mixture, Yt is the mass fraction of species i and Jco is a 
volume element. Indices of the seven species involved in the reactions are listed in 
Table I.  Considerations of mass conservation of species i yield 

d/n,        f t . 
— = -]Jinda-]pYivndo+ U,-rfco,    / = 1, 2, ■■■,!, (3a) 

o o V 

where S is the boundary of V, n is a unit outer normal to S, d a is a surface element, 
v is the mixture velocity, and qt and J,- are, respectively, the mass production rate and 
diffusive flux of species i. Assuming Fickian diffusion and regarding the position of 
a material point x as a function of / and its initial spatial location X, we have 

v(X,,) = ^&Ll,   J. =-D,V(py;.) (3b,c) 

with Dt being the diffusivity of species i in the mixture and V being the gradient 
operator. 

Applying the divergence theorem to (3a) while using (2) and (3c) yields 

d(pYi) =V-D,.V(pV.)-py.v-v+ «?,.,    xefl(0.   ' > 0, (4a) 
dt 

where 
d(Pyf) _ djpYj) 

dt dt 
+ vV(pr,),   i=l,2,-, 7, (4b) 

is the material derivative and Cl(t) is the spatial region occupied by the medium at 
time /. 

Since mass production rates during high-temperature oxidation are much faster 
than diffusive rates, we assume all reactions are irreversible, isothermal, and have 
rates that are linear in each concentration to obtain 

ql = -5wlMh   q2 = (2wl+w2)M2,   qi = wlM1>,    qA =-Qwl+w2)M4> 



q s = (2>w x+w i)M 5,    q6 = -3w2M6,    q1 = 3w2M1. 

where 

w, = k. 
Vil 'pY< 

A/4 

vv5 = k-> 
pY, 

M6 

(5a-g) 

(5h,i) 

The parameters /t, and k2 are the rate constants for rate-controlling steps in reactions 
(la,b) and Mt denotes the molecular weight of species i = 1, 2, •■■, 7 (cf. Table I). 
Thus, pYj/Mj, is the concentration of species i in mollcm2. 

Table I.  Index and molecular weight Mt (g) of species /. 

7Tt U5      W2     5IÜ     ~5iO~2 Species 
/ 1 

32 
2 

28 
3 

44 
4 
40 

5 
60 

1377 
6 
18 

77T 
7 

2. 

Assuming that a control volume V contains only chemical constituents without 
voids between the compounds, Adjerid et al. [5] show that 

V • v = 2 —[qt + V• DfVpYi],   x e Q,   t > 0. (6) 
1=1 Pi 

where p.- is the theoretical density of species i. In typical situations, there is very lit- 
tle free 02  H,, H20, CO, and C02 in the matrix; therefore, it is reasonable to 
neglect the Pr,"terms 0n the right of (6) for i = 1, 2, 3, 6, 7.  Additionally, D4 and 
D5 are negligible so (6) becomes 

v-v=2~- (7) 

i=4 P,- 

The oxidizing reactions (1) are accompanied by nearly a 120% volume expan- 
sion that induces forces on the matrix causing it to flow. We assume that the material 
is capable of viscous deformation and describe its motion by the Navier-Stokes equa- 
tions 

dv_v[^-V.(Pv)] = V-T 
dx ct 

where the traction matrix T has components 
CVL       dvi 

Tu = (-p + X.V- v)5w + u(— + —),   *,/ = !, 2, 3, 

(8a) 

(8b) 

with X and u being Lame parameters, p  being the pressure, and 8W  being the 
Kronecker delta. 

Initially, the matrix only contains SiC; thus, the initial conditions are 

y,(X,0)=|°; \*=\,   «=l,2,-,7,   v(X,0) = 0,   p(X,0) = 0. (9) 



Boundary conditions prescribe the crack surface as traction free 

Tn = 0,   ier,   r>0. (lOa) 
On planes of symmetry and in the far field, we prescribe 

vn = 0,    n-V[v-(vn)n] = 0,   DtV(pYt)-n = 0,   i = 1, 2, -, 7. 

(lOb-d) 
The rate of absorption and desorption of gaseous species i is assumed proportional to 
the deviation of Yt from its maximum solubility st in Si02, i = 1, 2, 3, 6, 7; thus, 

DfVipYi)- n = H>,.(x, Yt - st),   i = 1, 2,1,6,1,   x e T,   / > 0,       (lOe) 

where T is the surface of the crack and <)>,-(x,r) is a saturation function as described in 
Section 3. 
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Figure 1. A two-dimensional SiC matrix containing a crack. 

3. APPLICATION 

We consider an idealized crack in a two-dimensional SiC matrix (cf. Figure 1) 
that is exposed to oxygen; thus, reaction (lb) is not present and H20 and H2 are not 
involved.  With the geometry of Figure 1 and the specified reactants, we prescribe 

<t>«(^)=< 

-O.075zA(xi)[l + tanh(10(x, - 2.5))],  i = 1, 

0, / = 6 (lOf) 

0.5 x KHz [1 + tanh(z x 105)], i = 2, 3, 7 

where z = Yt - s( and h (x {) is half of the thickness of the crack at horizontal coordi- 
nate xx. The topmost equation simulates a decrease in flux as the crack width nar- 
rows; the middle equation signifies that water vapor is not present in this example; 
and the bottom equation is a sharp but continuous transition from no flux to a satura- 
tion value. 

r 



A dimensionless version of the partial differential system (4, 5, 7-10) is solved 
using adaptive finite element software that has capabilities for automatic h-, p-, and/or 
r-refinement [4,5]. Although p-refinement is very efficient [4], we use hr-refinement 
with piecewise linear polynomials 0 = 1). The r-refinement is used to follow evolv- 
ing reaction zones and track the solid-gas interface as the matrix expands. The h- 
refinement is used to increase solution resolution near sharp transitions. Adaptive h- 
refinement is guided by two elemental error indicators: n,& is a mean-square average 
of jumps in 3p74/dn across the edges of element A and C^ is a similar average of 
jumps in the components of dv/dn [6]. Letting rj and £, respectively, denote averages 
of r|A and £A over all elements, we refine those elements where rjA > 1.8t| or 
£A > 22C,. A vertex is scheduled for coarsening when the error indicators on all ele- 
ments containing it are less than 0.3fJ and 0.7<;. When this occurs, the low-error ver- 
tex is moved ("collapsed") to its neighboring vertex having the largest interior angle. 
This eliminates elements and coarsens the mesh. Badly shaped elements that may 
result from r-refinement are eliminated by a combination of edge swapping (exchang- 
ing the diagonal of the quadrilateral formed by two triangular elements) and vertex 
collapsing [6]. The variable-step, variable-order time integration [4-6] was performed 
with a temporal error tolerance of 10"4 and was halted every five time steps to exam- 
ine the error indicators and refine, coarsen, or move the mesh as necessary. 

In order to overcome spurious pressure oscillations that arise in an (essentially) 
incompressible medium, we introduce an "artificial compression" and solve 

gi + v.yaj;i (Ha) 
** <=4 Pf 

instead of (7b).  This stabilizes the viscous flow while not greatly affecting accuracy 
when £ is small. We choose 

s = (lib) 
\i5D{sl 

where L (= 0.7 \un) is the length of Q (cf. Figure 1), u5 is the viscosity of Si02, and 
e was selected as 10"6. 

Dimensionless variables are obtained by scaling x by L, p by p5, t by D xs \/L , 
and p by v^L^QSD xs {). Using symmetry, we solve a problem on the upper half of 
the matrix shown in Figure 1. Those parameter values available in the literature [7] at 
an operating temperature of 1100°C are D, = 6.6x lO"13, D6 = 3.6x 10 (nr/s), 
p4 = 3.2, p5 = 2.2 iglcm\ and X5 = u5 = 1012 (Ns/m2). The remainin| parameters 
were estimated relative to these. For example, we selected X4 = u.4 = 10 Nsim ana 
assumed that the Lame parameters for the mixture varied linearly between their SiC 
and Si02 values in the reaction zone; thus, 

X = u = u5 + (u4 - u5)** (12) 

The higher values of the Lame parameters for SiC simulate its greater stiffness (at 
1100°C) relative to SiO2. The value of the reaction rate ^ was selected as 
2xl0"4m3/5 to ensure diffusion dominance. Increasing or decreasing this value 
yielded similar results with sharper or more diffuse reaction zones, respecnvely. We 
assumed that the diffusivity of CO and C02 in Si02 is faster than that of 02 and 
selected D2 = D3 = 10~'°m2/.y. Finally, maximum solubility limits were chosen as 
s, _ ig-3, / = 1, 2, 3.  Those parameters that remain unspecified are irrelevant to this 



Figure 2. Mass fraction of SiC at t = 0.2, 1.77, and 3.6 min.  Lighter shades indicate 
a high concentration of SiC and darker ones indicate a low concentration. 

application. 

The concentration of SiC and the corresponding adaptive meshes at t = 0.2, 
1.77, 3.6 min are shown in Figure 2. In Figure 3, we show the pressure with velocity 
vectors superimposed at t = 3.6 min. The relative mass and volume changes 
m(t)lm(Q) - 1 and Cl(t)/Cl(0) - 1 appear as functions of t in Figure 4.  The oxidation 
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Figure 3. Pressure and velocity vectors at t = 3.6 min with lighter shading indicating 
higher pressures. 
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Figure 4. Total relative mass (left) and volume (right) changes vs. time. 

front advances into the SiC matrix and SiOz flows into the crack to ultimately close 
if thereby, reducing the gaseous diffusion into the matrix (cf. Figure 2). tiffin 5 
disolSs a qualitatively correct high pressure in the reaction zone and a flow of Si02 
Ste crack The meshes of Figure 2 indicate that the adaptive software is placing 
Z mesh« in tii reaction zone^here variables are changing rapidj, wMe usmg 
coarse meshes elsewhere. The results of Figure 4 agree with experimental results 
f ?S wSch preSct that the system is diffusion-controlled; thus, indicating parabolic 
masl SftoW change rates. Densities approach their correct theoretical values 
once reactions have passed. 

4. DISCUSSION 
We have developed a reaction-diffusion model to analyze the oxidation of 

ceramic composites. When used with adaptive finite element s°^; *° *°*£ 
oreSed Qualitatively correct chemical and mechanical behavior and quanütattvely 
correct mSf gain  "oar model displays a closing crack, which should inhibit 



oxidation. We will integrate this software into an overall mechanism-based design 
system [8] that will simplify future analyses. Computational results will be compared 
with existing [1,2] and planned experiments. 

Several improvements are possible. We are testing a model for the gaseous flow 
in the crack that contains a combination of Fickian and Knudsen diffusion. We will 
also include oxidation by H20 as described herein. Coated and uncoated fibers will 
be added to the matrix with their associated reaction and surface diffusion models. 
Parameter studies will endeavor to determine how damage varies with crack geometry 
and operating conditions. Solving contact problems as the crack closes is an essential 
capability that must be developed. With this, elastic, visco-elastic, and/or visco-plastic 
deformations should be investigated and possibly included in the mechanical model. 
With these, it should be possible to predict the formation of cracks in the SiO 2 as oxi- 
dation progresses and stress patterns change. Coupling these micro-scale models with 
macro-mechanical models that anticipate the behavior of the composite structure are 
also envisioned [8]. 
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ABSTRACT — The paper describes recent research conducted at Rensselaer aimed at modeling 
and simulation of failure processes in composite materials and structures using micromechanical and 
macromechanical approaches. The micromechanical approach is based on the mathematical homog- 
emzation theory with eigenstrains and a rapid post-processing procedure, which enables you to solve 
larse scale structural systems in heterogeneous media at a cost comparable to problems in homoge- 
neous media without significantly compromising on solution accuracy. The building blocks of the 
macromechanical approach are as follows: (i) enriching through-the-thickness kinematics of the shell 
to compute 3D effects, (ii) simulation of the delamination growth by incorporating discontinuous 
through-the-thickness interpolants. (iii) development delamination indicators to predict the critical 
regions so that enriched shell elements would be used only when and where it is necessary to do so. 
(iv) use of continuum damage mechanics approach to simulate evolution of delamination growth, 
and (v) calibration of critical damage parameters at the interface against the fracture toughnesses. 

MICROMECHANICAL APPROACH 

The computational challenge of solving nonlinear heterogeneous systems is enormous. A solution of 
large scale history-dependent nonlinear systems that provides an accurate resolution of local fields is 
not"feasible by means of the classical unit cell approach. For linear problems a unit cell or a represen- 
tative volume problem has to be solved only once, whereas for nonlinear history dependent systems 
the unit cell problem has to be solved at every increment and for each integration point. Moreover, 
history data has to be updated at a number of integration points equal to the product of number of inte- 
gration points at all modeling scales considered. To illustrate the computational complexity involved. 
we consider elasto-plastic analysis of the two-scale composite flap problem shown in Figure 1. The 
macrostructure is discretized with 788 tetrahedral elements (993 unknowns), whereas microstructure 
is discretized with 98 elements in the fiber domain and 253 elements in the matrix domain. The CPU 
time on a SPARC 10/51 for this problem was 7 hours, as opposed to 10 seconds if metal plastic- 
ity was used instead. This means that 99.7% of CPU time is spent on constitutive equations. This 
raises the question whether the observation made by Hill 30 years earlier stating that"... for nonlin- 
ear systems the computations needed to establish any constitutive law are formidable indeed ..." is 
still valid today. In the following we describe a novel modeling scheme based on mathematical ho- 
mogenization theory with eigenstrains [5] and a rapid post-processing procedure, which enables the 
solution of large scale structural systems in heterogeneous media at a cost comparable to problems 
in homogeneous media without significantly compromising on solution accuracy. 



(a) FE Mesh for the Nozzle Flap Problem (b)FE Mesh for the Unit Cell 
Model 

Figure 1: FE meshes for the Nozzle Flap Problem and the Unit Cell Model 

We assume that the microstructure of a composite is periodic (/--periodic) so that the homogenization 
process can be performed in a unit cell domain, denoted by 0. Thus, the response functions, such as 
displacements and stresses, are also periodic. Let x be a macroscopic coordinate vector and y = x/s 
be a microscopic position vector. 5 is a small parameter representing the ratio between the scales. For 
any ^-periodic function /a(.r) = f(x.y(x)). the indirect macroscopic spatial derivatives of/3 can be 
calculated by the chain rule as 

/%(*) = f,,(x.y) + -f,-,(.x.y) (l) 

where subscripts followed by a comma denote partial derivatives with respect to the subscript vari- 
ables (i.e.. /•. = df/dXi). 

In modeling a heterogeneous medium, micro-constituents are assumed to possess homogeneous prop- 
erties and satisfy the set of continuum mechanics equations 

<,,,, +*i = 0,       c?,- = Ll7W(e&-n2,).       £■, = "(,,,,, (2) 

and the appropriate boundary and interface conditions. In (2), a?j and ef; are stress and strain tensors; 
Ujia and ]x3

i} are elastic stiffness and eigenstrain tensors, respectively; bt is a body force; «, denotes 
a displacement vector; the subscript pair with parenthesis denotes the symmetric gradient defined as 
«(,.,,) = Kt; + «l,,)/2. 



The displacement u'-(.x) and eigenstrain \ifj{x), subsequently denoted by u,-(.r.y) and |i,-y(.r.y). are 
approximated by the double scale asymptotic expansions: 

M,-(.r.y) * u°(x.y) + sul,(.x.y) + ■ ■ ■ .     u„(.t.y) « u° (.r.y) -t-su^.y) + • ■ • 

Expansion for strain and stress tensors can be obtained by manipulating the above expansions and (2) 
with consideration of the indirect differentiation rule (1): 

Zij(x. v)    *    - e"' (x. y) + zfyx. y) + 9EJj(x. v) + ■ (3) 

a,;(jc.y)    %    -ar.'(x.v) + oi'7-(.r.v)+3<y-(jc. >•) + •■• (4) 

The stress and strain tensors are related by the following constitutive rules: 

o7il=Ujki*u-       <*ij = Ujki(eii-Viki)    where   r=0.1.--- (5) 

Substituting equation (5) into the equilibrium equation in (2). a set of equilibrium equations for vari- 
ous orders of s can be obtained. From the lowest order 0{s~2) of equilibrium equation, we get u° = 
u°(x). Considering the 0(s~l) equilibrium equation with arbitrary macroscopic strain and eigen- 
strain fields, and using the separation of variables for macroscopic and microscopic quantities yields 
the following two governing equations in 0: 

{LlVW(6fan8/„ + 4'Um;I)}.v.    =    0 (6) 

(Lijkt'Vk,mn);yjd^,-{Lijluii0kl).yj    =    0 (7) 

where 8km is the Kronecker delta, d^n is a macroscopic portion of the solution resulting from eigen- 
strains and 4*«™ is related to the elastic strain concentration factor At;mn such that for the case of 
zero eigenstrain, the microscopic strain can be written in terms of the overall strain lmn as follows: 

e« = AWmn lmn    and   AWm„ = -(5^5/,, + 5tn8,m) + H'w™ (8) 

In the following, we will adopt a matrix notation such that A is the matrix notation of AWmn. Equa- 
tion (6) is the standard linear unit cell equation [2] subjected to periodic boundary conditions that can 
be solved in 0. Finite element methods can be used for calculating H* [6]. The elastic homogenized 
stiffness tensor L follows from the 0(5°) equilibrium equation and is given as: 

L = -!- f L\d& = -J- /" ArLA<f0 (9) 
|0| Je \Q\Je 

in which |0| is the volume of a unit cell. 

After solving equation (7), we obtain a closed form expression for d*, and thus the 0(5°) approxima- 
tion to asymptotic strain field (3) reduces to e = Ae + 4^. Again, using the separation of variables 
for eigenstrains, the asymptotic expansion of the strain field (3) can be expressed as follows: 

•v, 
£{x.y) = A(y)£(.*)+ £ ^(y)^(.r) (10) 



in which Dn( v) are the eigenstrain influence functions given in terms of strain concentration function 
*V(y) as follows: 

^{y) = ^(L-h)-i J^TL^d@ (ii) 

Finally, the macroscopic equilibrium can be obtained as 

Ö,,., + b, = 0.        Cij = —- f of.dG (12) 

Consider a composite medium consisting of two phases, matrix and reinforcement, with respective 
volume fractions cm and cf where subscripts m and / represent matrix and reinforcement phases, 
respectively. Assuming that the eigenstrain is uniformly distributed within each phase, equation (10) 
can be reduced to 

er = Are + Dm|im + Dr/u,/,        r = m.f (13) 

in which Ar is the phase concentration factors and D„ can be expressed in terms of the phase stiff- 
nesses and concentration factors [3, 5]. 

We consider an anisotropic reinforcement material which remains elastic throughout the loading his- 
tory and an elasto-plastic matrix phase with isotropic elastic properties. Thus, the phase eigensirains 
can be expressed as \if = ze

f and |im = e£ + e° where e£ is the matrix plastic strain and e? (where 

r-m.f) is the phase thermal strain. For a known temperature distribution, e? is a prescribed quan- 
tity depending on the phase thermal expansion tensor mr. Also, we assume that all the elastic moduli 
are not functions of temperature; thus, the concentration factors and eigenstrain influence functions 
are constant matrices. 

In order to maintain a quadratic rate of convergence for the Newton's method, the formation of a 
tangent stiffness matrix that is consistent with the integration procedure employed is required. The 
rate form of the constitutive equation can be written in terms of the consistent tangent operators 2) 
[5] and 0 as 

a = 2>e + D8 (14) 

in which 

where 

/ 
2) = c/Djr + cm&m,        0 = - £ (cmQmr + C/Q/r) mr 

a. =   (i+^o-p+9-«y>-tt-*.*l)> 

and 9 is the temperature rate; I and P are the identity and projection matrices; fl£, is the normal to 
the yield surface; H. ß and cm are material constants. 



(a) Gaussian Point A 

Max. Effective Stress =551.6 MPa 

Min. Effective Stress = 38.7 MPa 

Max. Relative Error = 2.8 % 

(b) Gaussian Point B 

Max. Effective Stress = 427.7 MPa 

Min. Effective Stress = 35.0 MPa 

Max. Relative Error = 3.5 % 

Figure 2: Unit Cell Relative Error for Effective Stress 

The overall analysis procedure is divided into two stages. In the first stage, a nonlinear composite 
structural problem is solved using a finite element method based on the two-point averaging approach 
developed in previous sections. The macroscopic analysis of the composite structure is then carried 
out and the macroscopic strain histories are stored in a history database at Gaussian points in the 
critical regions. In the second stage, the microstress distribution in © is sought. The strain history 
at macroscopic Gaussian points for critical regions is extracted from the database. Subsequently, the 
macroscopic strain history is applied to the unit cell through the incremental homogenization pro- 
cedure discussed in [5]. Since the micro-history recovery is performed only at a select number of 
Gaussian points of interest without affecting macroscopic analysis, the computational cost is low. 

For the flap problem considered in Figure 1 the CPU time for the averaging scheme with variational 
micro-history recovery is only 30 seconds on a SPARC 10/51 as opposed to 7 hours using classical 
mathematical homogenization theory. The memory requirement ratio for these two approaches is 
roughly 1:250. Figure 2 shows that the maximum error in the micro-stress in the unit cell located in 
two critical locations is only 3% in comparison to the maximum error in the classical mathematical 
homogenization theory. 

MACROMECHANICAL APPROACH 

Composite laminates are prone to wide range of damage, such as matrix cracking, fracture of fibers, 
fiber-matrix debonding and delamination. In the previous section we attempted to describe the mi- 
crostructure of a composite in detail and to develop fast homogenization techniques. In this section 
we adopt a macromechanical description that views composite as homogeneous anisotropic medium. 
Our primary objective here is to develop computationally efficient macromechanical progressive dam- 
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Figure 3: Enriched Kinematics of Shell Element 

age modeling capabilities and to embed those within the framework of commercial finite element 
code. The following subtasks and limitations have been identified: 

• Evolution of delamination should be modeled using rigorous fracture mechanics philosophy. 
At the same time, for the large scale problems considered, such as the composite fan blade 
subjected to impact loading, it is not feasible to continuously remesh the component under 
consideration at every time/load step. 

• 3D effects should be captured in the vicinity of the boundary layers, although the use of 3D 
elements should be avoided due to the computational cost involved. 

• Micromechanical failure modes should be accurately predicted, but the use of unit cells or rep- 
resentative volume elements is not desired due to the computational cost involved. 

To meet these objectives the following strategy has been devised: 

Compute the 3D effects by enriching through-the-thickness kinematics of the shell with quadratic 
modes as shown in Figure 3. 

Simulate the delamination by incorporating discontinuous through-the-thickness interpolants 
to enrich the set of the element shape functions. The kinematics of the enriched shell element 
is summarized in Figure 3. The strain field within the process layer is obtained as ratio between 
the displacement jump and the thickness of the process layer. 

Use the continuum damage mechanics approach pioneered by Kachanov [7] to simulate evo- 
lution of delamination growth in the process layer [1, 9], but calibrate the critical damage pa- 
rameters at the interface against the fracture toughnesses as follows: 

Gf = rrT / = 1.11, III 

where G] is mode i fracture toughness. Yf the critical continuum energy release rate, and f the 
thickness of the process layer. 

Develop delamination indicators to predict the critical regions so that enriched shell elements 
would be used only when and where it is necessary to do so. The formulation of delamination 
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Figure 4: Macroscopic Model Validation Figure 5: Deformed Mesh of FOD panel 

indicator is based on estimating whether it is necessary to locally enrich the formulation of the 
shell element with a discontinuous displacement mode (ddm), i.e.. 

enriched _ „shell   •   \ndclm n 

where KVJJm is a shape function for discontinuous displacement mode and ß its amplitude. The 
value of ß is determined by solving a local discrete problem with ß as a single unknown keeping 
the nodal solution fixed. The value of ß is estimated at each node and for each interface. The 
delamination will most likely occur in those layers and nodes where incorporation of the jump 
mode results in the maximum change in energy. This philosophy resembles the concept of 
energy release rate. A similar strategy has been employed for hierarchical error estimation in 
laminated shells [4]. 

The final product that has been developed and implemented in ABAQUS is a 15 degrees-of-freedom 
per node hierarchical shell element which includes: 6 degrees-of-freedom to simulate classical shell 
modes, 3 quadratic modes for 3D effects, 6 jump modes to simulate mode I, II, III fracture. In absence 
of delamination, the element has an identical formulation to that of the Assumed Natural Strain shell 
element [8], 

Figure 4 shows the comparison between the numerical simulation and the experimental data in four- 
point bend test. The plate has been modeled with 10 by 10 shell elements. It can be seen that the 
critical load is 4.7 KN when delamination in the mid-layer has been observed. Numerical results 
have been found to be in good agreement with experimental measurements. 

The next example shows the simulation of a Foreign Object Damage (FOD) test. During the test, a 
cylindrical gelatin projectile is fired at a composite panel using a large gas gun. Figure 5 shows the 
deformed finite element mesh of half of the panel after impact. Numerical results agreed well with 
experimental measurements. 

SUMMARY 

Two approaches for modeling inelastic behavior of heterogeneous materials have been describes. 
The micromechanical approach, which models composite material on the scale of heterogeneity, and 



the macromechanical approach, which views the composite as anisotropic homogeneous media. Our 
micromechanical approach is based on the mathematical homogenization theory with eigenstrains 
and a rapid post-processing scheme. It provides a comparable accuracy to the classical theory but 
at a fraction of computational cost. For the numerical example considered, the speedup factor was 
over three orders of magnitude as compared to the classical theory, whereas the maximum error in 
stresses was less than 3%. The macromechanical approach presented here is based on higher order 
shell theory with built in discontinuous through-the-thickness interpolants, delamination indicators, 
and damage mechanics approach calibrated to fracture mechanics. Numerical examples in four point 
bending test and FOD panel problems agreed well with experimental data. 
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ABSTRACT 

Ceramic fibers at elevated temperatures exhibit time or frequency 
dependent mechanical behavior, the most studied of which is creep. 
Several techniques for characterizing time dependent mechanical 
properties have been developed in this laboratory. Fibers studied to date 
include single crystal alumina, YAG, and seven compositions of SiC. 
Dynamic mechanical spectroscopy methods are used to examine short 
relaxation time processes associated with periodic deformation 
phenomena, and provide both dynamic modulus and loss factor versus 
temperature (to 1600°C) and frequency (from 0.1 to 25 Hz). Pulsed 
periodic creep and recovery tests are used to examine the longer 
relaxation time phenomena, and provide an accelerated means to 
identify and separate anelastic and inelastic creep rates. Taken 
together these methods provide a comprehensive understanding of the 
multiplicity of mechanisms and time scales that are relevant to the 
proper application and design of ceramic fiber reinforced composites. 

INTRODUCTION 

The analysis of the potential performance of high temperature 
composite materials and the design of components made from such 
materials requires detailed information about the constituents of the 
composite. It is well known that ceramic fibers exhibit high 
temperature behavior which is time-dependent, i.e., not entirely elastic. 
In order to gain a more complete understanding of the behavior of 
ceramic fibers at elevated temperatures and to provide a database for 
the engineering analysis of composites using these fibers as a 
reinforcement phase, this laboratory has investigated single fiber 
behavior using a variety of techniques. In this paper, a periodic creep 
and recovery technique [1] is utilized for the investigation of the 
viscoelastic properties of ceramic fibers. 



BACKGROUND 

Materials scientists and engineers commonly use creep testing as a 
primary means to characterize long term high temperature behavior 
under applied loads. Generally, creep strain can include elastic, 
anelastic (viscoelastic) and inelastic (plastic) strain components. Refer 
to Figure 1 for a schematic of a creep and recovery test. The elastic 
contribution to a given creep strain is readily measured by simply 
removing the sample load and observing the incremental strain change. 
Decomposition of the remaining strain into anelastic and inelastic 
strains can be a challenging task, however. In general, given only a 
creep curve (strain vs. time) it is not possible to determine what fraction 
of the strain is anelastic and what fraction inelastic. This determination 
can be done only by performing a recovery test in which the (recovering) 
strain vs. time is observed following the removal of the load. The 
difficulty lies in the fact that as a rule, creep recovery is much slower 
than creep itself. Presumably, this is because creep recovery occurs 
with no externally applied load, and given any sort of activated rate 
theory for the processes involved, the reverse (recovery) process would 
be expected to involve a higher activation barrier than for the (forward) 
creep process itself. As a general rule, full recovery of anelastic strains 
can take as much as ten times longer than the creep itself. Thus a one 
month creep test might take ten months to fully recover if the strains 
were entirely anelastic. Clearly, the decomposition of a creep curve into 
anelastic and inelastic components would involve a series of creep tests 
for various times, each of which is followed by a longer recovery process. 
In this way, a long term creep curve could be decomposed into its 
component anelastic and inelastic strains. From both a mechanistic 
and design viewpoint, this decomposition is essential. As a corollary, it 
follows that the measurement of plastic strain rates from a single creep 
curve is potentially misleading since there would be no basis by which to 
judge the anelastic (time dependent but recoverable) strains. It is 
emphasized that the shape of the creep curve (e.g., constant rate) is a 
very misleading and poor delineator of whether the strain is inelastic or 
anelastic (or both), as discussed below. 

There is evidence in the literature that ceramic fibers do exhibit 
surprising amounts of anelastic strain. An important observation is 
given by DiCarlo [2] who performed a creep test on a silicon carbide fiber 
(SCS-6), followed prudently by an accelerated recovery test at a higher 
temperature. The creep test was done at 1275°C and 612 MPa, and 
followed by recovery at 1450°C. Nearly complete recovery was 
obtained which suggests that the creep curve was primarily anelastic. 



Additional creep and recovery tests for short time periods have been 
reported by Lara-Curzio [3]. 

°o 

time 
Inelastic, anelastic, or both? 

Plastic (inelastic)? 

A    time 

Figure 1: Loading history and strain response for a typical creep and recovery test. 

Guidance regarding the shape of a creep curve which is anelastic can be 
obtained directly from the theory of linear viscoelasticity (which is not to 
say that all anelastic processes are linear processes). Anelasticity can 
be represented by a series of recoverable strains each with a 
characteristic retardation time, or differently stated, an anelastic 
process can be represented by its corresponding distribution (or 
spectrum) of retardation times. For each retardation time, 63% of the 
anelastic strain component is obtained after a load application for a 
time equal to one retardation time. It becomes obvious then, that the 
shape of an anelastic creep curve is dependent on the distribution of 
retardation times characterizing the creep process. Without additional 
information, it becomes clear why the shape of the creep curve is a very 
poor determination of whether the creep is anelastic or inelastic. It 
follows that a recovery curve of 100 seconds, for example, may fully 
recover anelastic strains with 10 second or less retardation times, but 
would not recover any appreciable amount of anelastic strains having 
retardation times of longer than 1000 seconds. It is for this reason that 
we noted earlier that the decomposition of a creep curve into its 
anelastic and inelastic components requires a series of recovery tests, 
conducted for several creep times, and not a single recovery test. 

Mathematically related to the distribution of retardation times is 
another distribution referred to as the distribution of relaxation times, 
which is useful in describing anelastic processes such as stress 
relaxation or dynamic modulus.   Initially, this laboratory engaged in 



dynamic mechanical modulus studies on single ceramic fibers at 
elevated temperatures, as described elsewhere [4]. In that method a 
fiber is subjected to a sinusoidally varying displacement and the 
resulting load measured (without averaging or filtering). The load and 
displacement signals are then fast Fourier transformed (FFT) to obtain 
the component of force in-phase and out-of-phase with the 
displacement, providing ultimately the real (in-phase or storage or 
elastic) modulus and the imaginary (out-of-phase or loss or viscous) 
modulus. 

While the real and imaginary components of modulus provide equivalent 
information on the anelastic processes as does a creep/creep recovery 
test, they do so at a far different time scale. Dynamic measurements 
typically emphasize short time scale processes (e.g., relaxation times of 
milliseconds or less) while creep/recovery tests provide information on 
long time scale processes (typically retardation times of seconds to 
years). Thus, the two methods of measurement are complementary and 
provide a broad picture of material anelastic behavior over many 
decades of time scale. However, the dynamic modulus measurement 
method, being intrinsically periodic with a short time scale, quickly 
reaches steady state, whereas the creep/recovery method being 
transient, and specifically not periodic, never indicates steady state 
behavior. A perspective now emerges on the difficulties involved in 
anelastic/inelastic decomposition of creep and recovery data. The 
problem of reconstruction of a creep curve into its underlying component 
anelastic vs. time and inelastic vs. time creep curves is the basis of the 
test method described here. 

PULSED PERIODIC CREEP AND RECOVERY TESTING 

One of the useful features of the dynamic test method is its periodic 
nature, which enables one to quickly establish steady state behavior. 
The test method utilized here combines the attributes of a periodic test 
while still offering the benefits of transient (creep) testing which 
emphasizes long time processes. Referring to Figure 2, consider a test 
protocol in which a load is periodically applied to a sample for a period of 
time ti and then removed for some period of time (tp - ti) and then the 
entire cycle repeated every tp seconds, where tp is the "period." 
Further, let the strain at the end of each loading cycle be measured, as 
well as the strain at the end of each recovery cycle, as shown by the 
arrows in Figure 2. 

This test is implemented using the apparatus described elsewhere [4] for 
dynamic modulus testing, but modified with a stiff closed-loop control 



system and computer which generates the periodic program shown in 
Figure 2 and provides for automatic data acquisition. In practice, the 
load application or removal is done in less than 2 milliseconds without 
overshoot or ringing, and is made possible by a very stiff and well tuned 
servo. Data acquisition is done using 18 bit D/A conversion which is 
required for the high accuracy needed to implement the periodic pulse 
test. Precision timing for the pulse test history and data acquisition is 
done in hardware using a 6 MHz crystal, 64 bit pulse counter and 
interrupt generator. This provides for very precise and reproducible 
pulse cycles and data acquisition. Cycle periods from 0.5 seconds to 
days are readily obtained and the number of cycles is limitless, since the 
data is routinely written to hard disk. The parabolic temperature profile 
of the fiber testing device requires deconvolution of isothermal strain 
data from the measured displacements by simple calculations described 
by Feldman ana Bahder [5]. A creep activation energy of 580 kJ/mol 
was found by true isothermal creep testing of CVD SiC fibers by Lara- 
Curzio [3], and is supported by DiCarlo [2] for testing under similar 
conditions as used in the present study. 
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Figure 2: Loading history and strain measurement for pulsed periodic creep and 
recovery testing. Strain measured at (ktp)_, k=l...N and (ktp + t\)~, k=0...(N-l). 

From the theory of linear viscoelasticity, it can be shown that the 
history described in Figure 2 produces a slowly accumulating peak 
strain (the strain measured at the end of each loading cycle) and slowly 
accumulating recovery strain, with the rate of accumulation being 
strongly dependent on the ratio of the test time parameters (ti, tp) 
relative to the retardation times of the material. The mathematics will 
not be presented here. Suffice it to say that anelastic creep processes 
having retardation times substantially longer than tp are effectively 
"filtered" in that they never get activated (occur) during the loading 
cycle, while the processes having retardation times shorter or equivalent 
to tp are largely recovered after each recovery cycle and therefore do not 
accumulate as they would if the load were maintained as in a single 
creep test (without periodic recovery). In effect, the pulsed periodic 
creep test will always produce less anelastic strain (for a given 



accumulated time under load, that is ti times the number of cycles) 
than a single creep test of the same time under load. It follows that the 
resultant "creep curve," that is peak strain vs. accumulated time under 
load will always be a better representation of the inelastic strain process 
(if any) than a single creep test. These predictions are fully justified by 
the experimental results to date, as described below. 

RESULTS AND DISCUSSION 

Figure 3 shows a comparison between the creep strain developed during 
a conventional creep test and the peak strain achieved in a pulsed 
periodic creep test, the latter plotted vs. accumulated time under load. 
The pulsed data were obtained for a duty cycle consisting of ti = 10 sec. 
and tp = 30 sec. Also shown is a single strain point obtained after 9600 
seconds of recovery for the single creep test sample. The amount of 
recovery is large and shows that most of the creep strain which occurred 
after 4600 seconds was in fact anelastic, not inelastic. 

U3 

a 

1000 5000 6000 2000    3000    4000 

Creep Time 

Figure 3: Comparison of Pulse Testing with Single Creep and Recovery test. 
Testing conducted at 200 MPa, 1600°C, 480 cycles (10 sec. load on, 20 sec. load off) 
versus 4800 sec. creep, 9600 sec. recovery. 

As expected, the pulsed periodic results lie between the single creep 
results and the recovered strain value. Additional experiments on the 
effects of various duty cycles (ti and tp values, both as a ratio and 
absolute values) are currently being performed. While the recovery time 
to load time for the pulsed periodic test was only 2 to 1 there is still 
clearly a major reduction in accumulating anelastic strain. While it 
would be tempting to claim that the slope of the pulsed periodic creep 
results vs. accumulated loading time is in fact the inelastic (plastic) 
strain rate, this would be premature, since other duty cycles with longer 
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recovery to load ratios than 2/1 are required for better suppression of 
the anelastic strain. Nonetheless, we claim that the slope of the pulsed 
periodic results is closer to the true inelastic creep rate than the single 
creep test slope, which is clearly much larger. 

The effect of stress magnitude on the pulsed periodic creep test is shown 
in Figure 4 for SCS-6 fibers at 1600°C, and it is seen that the creep 
process is nonlinear, as is also concluded from single cycle creep test 
data. Finally, the effect of cycle time at constant duty cycle ratio (2/1) 
is shown in Figure 5, where it is seen that the results for 15 and 30 
second periods are virtually indistinguishable. In conclusion, it appears 
that the pulsed periodic creep test provides a method whereby the 
inelastic strain rate may be measured with higher accuracy and "more 
quickly than with single cycle creep tests. Anelastic creep in ceramic 
fibers at elevated temperatures is surprisingly large in magnitude and 
covers wide time scales, and therefore significantly affects the slope of a 
single cycle creep curve, rendering the measurement of inelastic strain 
rates difficult if not impossible from such a test. The technique used in 
this study may provide an accelerated and more time efficient method 
for determining inelastic creep rates. 
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IMPROVED PROPERTIES OF SILICIDE MATRIX COMPOSITES 
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ABSTRACT 
Powder processing techniques have been used to prepare monolithic and 

composite samples in two silicide systems: Cr3Si and MoSi2. Two Mo-modified 
Cr3Si compounds were consolidated from prealloyed powders, as were composites 
reinforced either with Pt alloy fibers or Saphikon (alumina) whiskers. Composites 
of MoSi2, reinforced with SiC particles or particles plus whiskers, were 
consolidated by reactive sintering. Physical and mechanical properties of both 
systems, together with oxidation data for Cr3Si and its composites also are 
reported. 
INTRODUCTION 

Intermetallic compounds, including several aluminides and silicides, offer 
an attractive combination of properties for high temperature structural 
applications. These include high melting points, low densities and excellent 
oxidation resistance compared to nickel-base superalloys. However, poor fracture 
resistance remains as the principal obstacle to commercialization of these 
compounds. A common approach to improving toughness has been to reinforce 
these compounds with ductile metal fibers, but the resulting composites usually 
display much lower creep and oxidation resistance, even when toughening is 
achieved. [1-3]. An alternative approach has been to utilize ceramic 
reinforcements, but these often are incompatible with the matrix due to low 
thermal expansion coefficients of the former. [4] In the present work, it was 
decided to experiment with ductile fibers with good oxidation resistance, namely 
platinum alloy fibers, to reinforce two modified Cr3Si alloys that have been shown 
to have excellent oxidation resistance themselves. Of course, this is considered to 
be a model system because of the high cost of the fibers. In the case of MoSi2, the 



focus of the research has been on lowering the cost and improving the purity of 
composites by utilizing reactive sintering of elemental powders. For both alloy 
systems, uniaxial hot pressing was employed as a lower cost alternative to hot 
isostatic pressing. 

EXPERIMENTAL MATERIALS AND PROCEDURES 
CrsSr- Two Cr3Si alloys, IM939, which contains Mo and W, and EVI945, which 
contains only Mo, were studied; compositions appear in Table 1. The alloys were 
induction melted under argon, then crushed and milled to about 3 micron diameter 
powder. Hot pressing was carried out in graphite dies using a step-wise increase in 
temperature and pressure to 1400°C and 38MPa, respectively. The coin shaped 
samples were then furnace cooled at a rate of 4°C per min. 

Two types of reinforcements were used: 100 micron dia. Saphikon fibers, 
5mm long, and continuous Pt-6Rh alloy fibers with 0.5mm dia. Typical volume 
fractions were 15%, except when the two reinforcements were present 
simultaneously; the volume fractions of each were then 10%. 

Toughness was measured at room temperature by the hardness indentation 
method and at room temperature and elevated temperatures by notch bending. For 
the latter, flat specimens 24x6x3mm were used. Flexural strength and elastic 
moduli were calculated from the load-displacement curves for three-point 
unnotched bend samples. Limited oxidation testing was done in air at 1250 and 
1400°C on specimens from monolithic and Pt-6Rh-reinforced EM945. 

TABLE I: CHEMICAL COMPOSITION OF THE Cr3Si ALLOYS (a%) 

Alloy Cr Mo W Si 
IM939 48.28 15.62 5.18 30.92 
IM945 50.54 13.40 - 36.05 

MoSi?: MoSi2, MoSi2 + 30v/o SiC particles, and MoSi2 + 30v/o SiC particles + 
lOv/o SiC whiskers were produced using elemental powders, except for the 
whiskers. The diameters of starting particles were 3-7 microns for Mo, 4-6 
microns for Si and 48 microns for C. Two mixtures were made, one of Mo + Si 
and one of Si + C, and combined in the desired stoichiometric proportions. SiC 
whiskers were added in the desired amount   The mixtures were placed in an 
Impandix Turbula mixer for 60 minutes and placed in a desiccator for 24 hours to 
remove as much absorbed moisture as possible. The powders were loosely set in a 
graphite mold with a BN mold release and the mold was then placed in the furnace 
with no initial pressure applied.The furnace was evacuated for 15 minutes and then 
put under positive pressure with argon. The furnace was then heated at a rate of 
15°C/min with loads applied in steps. A pressure drop at 1395°C indicated when 
the reaction between the silicon and molybdenum occurred. The pressure was 
applied in steps. Once the furnace reached a temperature of 1400T the pressure 
was left at 59 MPa for three hours to density the material. After three hours the 
sample was furnace cooled at a rate of 4°C/min. 



RESULTS AND DISCUSSION 
Cr£ji The microstructure of consolidated IM945 is shown in Fig. la, while that of 
a composite reinforced with Pt-6Rh is shown in Fig. lb. Note that the alloy fiber is 
broken up by the pressure exerted during hot pressing, but that no cracks from 
thermal mismatch are observed. However, when Saphikon is used, Fig. lc, cracks 
often are seen around the fibers. 

Elastic moduli data for the alloys and composites are shown in Fig. 2. 
General trends reveal that stiffness is not strongly affected by the presence of 
reinforcements; rather, temperature plays a dominant role. These moduli are much 
higher than what has been reported by Shah and Anton on A1203 fiber reinforced 
Cr3Si composite [5] 

Results of toughness tests are shown in Table II. The results show a 
significantly higher toughness for the reinforced samples at elevated temperatures 
while room temperature values are not significantly affected. The increase at high 
temperature is attributed to the combined increase in matrix ductility as well as 
retained strength of the Saphikon fibers. 

Fig. la). Etched microstructure of 
IM945 

Fig. lb). Etched microstructure of 
IM945 with Pt-6%Rh fiber 

Fig. lc). Cracking around Saphikon fibers in IM945 
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Fig. 2 The elastic modulus vs. temp for the unreinforced and composite materials 

Two notched samples of IM945+A1203 were tested at 1100°C resulting in KQ'S of 
14.5 and 22 MParn1'2. One sample of IM945+Al203+Pt6Rh was also tested at 
1100°C giving a toughness of 12 MParn1'2. For other high temperature 
intermetallic systems, KQ values, at room temperature, of 1.5 and 3.3 MPam1/2 

have been recently reported for monolithic Cr2Nb and 25% vol.% Nb/Cr2Nb 
composite, respectively [6]. In the same work, KQ values of 2.5 to 5 MParnm 

have been reported for monolithic Nb5Si3 and 20 vol.% Nb/Nb5Si3 composite, 
respectively [6]. For the same system, i.e., niobium silicide-base in situ composites 
KQ values of 12.8 to 16.4 MPam1/2 were reported for Nb-16.5Si and Nb-40Ti- 
15 Si-Al, respectively [7]. 
TABLE II: SUMMARY OF HARDNESS AND TOUGHNESS OF IM939 
AND IM945 COMPOSITES AT ROOM TEMPERATURE AND AT 1100°C 

25°C 1100°C 
Hardness Toughness Bending Toughness Bending Toughness 

IM939 unreinf 1160 kg/mm2 

5.5MPam1/2 

IM945 unreinf 1055 kg/mm2 

5 MPa m1/2 2.9 MPa mia 

IM945 Pt6Rh 3.6MPam1/2 

IM945A1203 2.7 MPa mm 18.3 MPa m1/2* 
IM945 

Pt6Rh/Al203 

2.2 MPa m1,7 12 MParn1'2 

A1203 fiber 2000 kg/mm2 

9.3 MPa m1/2 
(*average) 



Figure 3 shows the fracture strength of the various composites over a 
range of temperatures. Remarkably, the failure strength at 1000°C and 1100°C can 
significantly increase from the room temperature value due to the inclusion of 

fibers. 
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Fig. 3. Fracture strength vs. temperature for IM945 and IM939 suicides. 

The load-displacement curves for three point unnotched bending specimens 
at room temperature for IM939 and IM945 were essentially linear prior to failure. 
Similar behavior was observed in Saphikon reinforced IM939 and IM945 at room 
temperature   The Saphikon reinforced HM945 shows some non-hneanty at 1000 C 
and 1100°C respectively. The load-displacement tests for IM939 reinforced with 
Saphikon at 1100°C exhibited limited ductility. The Pt6Rh reinforced IM945 
showed limited ductility at temperatures below 800°C and did not fail at 1100 C. 
At this temperature deformation continues until the fixture prevents further 
deflection   The further inclusion of Pt6Rh with Saphikon also shows significant 
non-linearity in IM945 at 1100°C. All strength results are based on assumed linear 
elastic behavior; where this assumption is obviously violated, no value is reported. 
The fracture surfaces of IM945 specimens tested at room temperature exhibited a 
predominantly transgranular brittle failure . 

The results of the limited oxidation studies of IM945 reinforced with PtöRh 
at 1400°C, as weight change vs. time are given in Fig.4. One observes weight gain 
followed by a continuous weight loss. This behavior is explained by the formation 
of Cr203 and its subsequent change to Cr03 as a result of vaporization. 

As was reported earlier for a similar intermetallic, one may expect the 
saturation of the weight change curve, after longer times, due to the formation of 
protective Si02 [10]. However, such an assumption should be experimentally 
verified with long time oxidation tests. At 1250°C and under cyclic oxidation 
conditions, both alloys showed nearly no weight change in 250 hours at 1250 C. 
An oxidation test at 500°C for 500h on IM945 showed that this material does not 
suffer from the well known "pest" phenomenon. 
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M0SI2L Samples were extracted from the mold with a very high yield, and used as 
is, wifh minor polishing. The MoSi2, MoSi2 + 30v/o SiC particles, and MoSi2 + 
30v/o SiC particles + lOv/o SiC whiskers samples had densities of 97.10%, 
99.59%, and 98.35% respectively. Micrographs in Figs. 5a)-c) demonstrate the 
density and grain size of the MoSi2 and its composites. 

Hardnesses of the intermetallic and composites are shown in Table III. As 
can be seen from Fig. 5 monolithic MoSi2 and the composites showed grain 
boundary pinning from the SiC particles and whiskers and no Si02 at the grain 
boundaries, a problem that has plagued prior studies of MoSi2 fabrication. Very 
little porosity is evident in the MoSi2 sample while MoSi2 + 30v/o SiC particles 
and MoSi2 + 30v/o SiC particles + lOv/o SiC whiskers samples showed even less 
porosity. 
TABLE III: GRAIN SIZE AND HARDNESS OF MONOLITHIC MOSi2 
AND MOSi2 MATRIX 

Hardness (VHN) Grain Size(u.m) 
MoSi2 1060 5.0 

MoSi2 and 30v/o SiC Particles 1125 5.6 (in islands) 
2.5 (between SiC particles) 

MoSi2 and 30v/o SiC Particles 
and lOv/o SiC Whiskers 

1100 2.0-5.0 (between SiC 
particles and whiskers) 

<1 in island 
The high temperature strength of reinforced MoSi2 increased until 1200°C, 

Fig. 6, indicating some effect from the smaller grains and cleaner product. With 
the inclusion of both SiC particles and whiskers in the MoSi2 + 30v/o SiC particles 
+ lOv/o SiC whiskers sample it is thought that the total volume of reinforcement 
accounts for the improved high temperature properties. Both matrices reinforced 
with SiC showed improved fracture stress at elevated temperatures, with MoSi2 + 
30v/o SiC particles + lOv/o SiC whiskers showing less improvement. This could 
be due to a critical reinforcement volume. Whiskers that were added to the MoSi2 



matrix showed no signs of being broken during processing because of the low 
processing pressures" less than 60 MPa.  Samples with 30v/o SiC particles and 
lOv/o SiC whiskers showed the best high temperature modulus possibly due to the 
SiC absorbing the bulk of the load and "the inclusion of the directionally 
strengthening SiC whiskers.  These whiskers could not be added to the MoSi2 
matrix independent from the SiC particles due to the coefficient of thermal 
expansion mismatch. This resulted in matrix cracking during processing. 

SUMMARY AND CONCLUSIONS 
Fully dense Cr?Si alloys and their composites can be made by hot pressing 

of prealloyed powders. Dense MoSi2 and composites can be produced by reactive 
hot pressing of elemental powders. Preliminary mechanical property and oxidation 
data for CrTSi show that this is a suitable alloy system for further development. 
The McSi2 composites show some improved properties relative to unreinforced 
MoSi2 at elevated temperatures. Further work is needed to optimize properties of 
both Cr?Si and MoSi2-base composites. 

Fig. 5a). Microstructure of MoSi2 Fig. 5b). Micro structure of MoSi2+ 30v%SiCp 

Fig. 5c). Microstructure of MoSi2 + 30v%SiCp + 10v%SiC„ 
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MT JLTI-AXIAL RESPONSE OF A WOVEN CONTINUOUS-FIBER 
COMPOSITE 

P. Lipetzky, G.J. Dvorak and N.S. Stoloff, 
RPI, Troy, NY 12180, Tel: 518-276-8374 

ABSTRACT 

Thin-walled cylinders of a woven [0/90] continuous fiber-reinforced ceramic 
composite are tested in combinations of tension, torsion and internal pressure in 
order to characterize the stress-strain response. Damage envelopes, defined as the 
loci of combined load states that bound the region of elastic behavior, have also 
been measured. Loading beyond any given elastic limit can cause both an 
expansion and a translation of the original damage surface according to the 
maximum effective stress. Within the damage envelope Young's and shear moduli 
are dependent on both load angle and position in stress-space. For several 
different load paths an ultimate effective strain of 0.6% has been observed. An 
empirical model is also investigated and results are in reasonable agreement with 
proportional loading cases; for non-proportional loading only trends are predicted. 

INTRODUCTION 

Studies exist in the literature which have examined biaxial or triaxial 
deformation behavior of fiber-reinforced or woven composites. The objective 
in such work is the understanding of deformation and fracture of materials 
which are subjected to arbitrary combinations of stress [1-7]. In the course of 
this project, extensive flat plate testing has been reported, but additional data 
is necessary to expand the understanding of the weave deformation tendencies 
[8]. The work here describes the multi-axial behavior of continuous fiber, 
woven SiC/SiC composite tubes in terms of damage tolerance and evolution 
prior to failure. By testing tubes, edge effects are minimized and the load 
angle can be varied arbitrarily. Using internal pressurization, tension and 
torsion, the three independent stress components are axial stress, 
circumferential stress and shear stress. Finally, models which combine 
specific empirical data and numerical analysis are discussed in terms 



of observed constitutive relations. Given a clearer understanding of the 
general stress-strain behavior, design criteria can be established for this 
composite. 

MATERIAL 

The composite of interest consists of continuous SiC (Nicalon) fiber- 
reinforced SiC manufactured by DuPont Lanxide Composites. Fiber tows are 
woven into a mat with a plain [0/90] weave, which is subsequently rolled into tube 
form and chemical-vapor infiltrated with crystalline SiC as well as additional 
oxidation inhibitors. In this geometry no seam exists; approximately 10 layers, all 
in the [0/90] orientation, exist along any radial line in the tube. Following 
consolidation, a final seal-coat of SiC approximately 100 u.m thick is applied. 
Typical tube dimensions are 8.0 in X 1.7 in (OD) X 1.5 in (ID). Residual porosity 
is near 15%, and the fiber volume fraction is near 30%. Specimen density is 
approximately 2.3 g/cc. Additional details are given elsewhere [8]. 

EXPERIMENTAL PROCEDURE 

Experimental investigation involves static tension and torsion testing 
at room-temperature in air. End-cap grips are bonded to the tube with a 
structural epoxy leaving approximately 6 inches of the tube exposed. Strain is 
measured using multiple resistance-type strain gauge rosettes in the center of 
the gauge section. Strain gauges are also applied closer to the end caps to 
determine the extent of end effects. Load angle is controlled by 
independently adjusting the tension, torsion or internal pressure. 

NUMERICAL ANALYSIS 

Part of the multiaxial deformation analysis of this material is based on an 
interpolation scheme proposed by Genin and Hutchinson [1]. The model assumes 
that for plane stress conditions in an arbitrary [0/90] composite, the proportional 
loading behavior at any angle can be interpolated from the uniaxial loading results 
in the 0° direction and the 45° direction. The required input curves include the 
following stress-strain relationships: Axial and transverse strain as a function of 
tensile stress, a, in the 0° configuration, ei = f0(a) and en = foi(a), respectively; 
axial and transverse strain response under tensile load in the 45° orientation, Si = 
£5(0) and sn = fWO?). Given the assumption that there is no coupling between 
damage modes, equi-biaxial loading (CJI = aa = a) conditions result in the 
following relation between axial and transverse strains: f0(a) + foi<cr) = £5(0) + 
fitster). Above the elastic limit, the differences between the actual stress and 
elastically calculated stress, Aa, are defined as: AG°I = Ev (ei + ven) - r0(ei,8n), 
where E* = Eo/(l-v ), ai = r0(ei,sn) is the observed first principal stress-principal 



strain relation for 0° loading and v is the Poisson ratio. Similarly, Aa°n, Aa i and 
Aa45n define the stress differences for the first and second principal stresses at 0° 
and 45°. Following interpolation from these functions (Aa° and Ac4) to the 
actual principal stress direction, results are rotated back into the original [0/90] 
configuration to give overall constitutive relations for proportional loading 
including material damage: 

Oxx = E^CSxx + vSyy) - A(7icos20 - Aansin 9 
o-yy = E^Eyy + vExx) - Aancos29 - Acisin29 

axy = Gexy + (Aai - Aan)sin0cos0 
where G is the shear modulus and 9 is the actual principal stress or strain 
angle. Results based on this empirical model will be compared to 
experimental observations for various load paths. Other analysis methods 
based on effective stress and strain will also be presented and discussed 
below. 

RESULTS AND DISCUSSION 

As the background for a general analysis, the results from simple load 
angles are presented first. Figure 1 shows the stress-strain behavior under 
tensile and torsional load; torsional strain, y = 2e, is plotted. Young's 
modulus and shear modulus are approximately 125 GPa and 48 GPa, 
respectively; proportional limits are 75 MPa and 65 MPa in tension and 
torsion, respectively. Tension data follow an apparently bilinear constitutive 
relation prior to failure. 

The analysis now turns to the specific load state involving tension, 
torsion and internal pressure which approximates uniaxial tension at 45° 
angles to the fibers. Results in Figure 2 show stress and strain at angles of 
45° (ei = f45(o-)) and 135° (en = fts-rO)) with the linear elastic regime ending 
near 40 MPa. The data are roughly linear between 40 and 110 MPa; above 
110 MPa the sample becomes increasingly compliant until failure. 

Sufficient data now exist to implement the predictions of the empirical 
model described above. The constitutive relations required for input are axial 
and transverse behavior under uniaxial load, Si = fo(a) and en = fo-rCcj), and 
axial and transverse behavior under 45° load, Si = Ui(a) and en = Ustia)- 
Figure 1 shows the agreement between predicted and observed shear 
behavior. Under conditions of equibiaxial loading it is possible to calculate en 

= Wa) = fo(o) + fo-r(o) - f45(c7), as plotted in Figure 2. In both Figures 1 
and 2 the proper trends are predicted, and good agreement exists for limited 
excursions into the damage regimes. 

Realistic design conditions involve operation within the elastic region. 
Therefore, it is necessary to determine the elastic bounds aswell as the 



influence of a stress overload on those bounds. Define the damage envelope 
as the locus of points in stress-space which bounds the linear elastic region, as 
plotted in Figure 3. Limits are obtained by loading under various load paths 
until linearity is lost in either the axial or torsional stress-strain response. 
Altering the load path near the boundary does not affect the point where 
damage begins. The elastic response within the damage envelope is a 
function of position and stress path. For example, beginning from a combined 
state of 40 MPa tension and torsion (40,40), changing both stress components 
±10 MPa (4 permutations as shown on Figure 3, i.e. 30,50) gives axial moduli 
in the range of 64 - 118 GPa. Shear moduli are less sensitive, ranging from 
31-38 GPa. The same load excursions from a state of pure tension, 40 MPa, 
gives axial moduli in the range of 72 - 83 GPa, and shear moduli from 30-31 
GPa. These differences are attributed to the deformation coupling between 
axial and shear strain. Proportional loading will be defined as any load path 
which is perpendicular to the damage envelope. 

The damage envelope can be altered as a result of tension and 
torsional loads beyond the original or current elastic boundary. Figure 4 
shows how a pure tension overload translates the surface to a higher axial 
stress position without changing its shape. Similarly, both axial and torsional 
expansion are registered following a torsional overload. A single torsional 
overload in the "positive" direction causes the damage surface to expand in 
both the positive and negative senses. 

A method of representing the damage surface must be found in order to 
predict the new elastic limits following an arbitrary load into the damage regime. 
The effective stress, or von Mises stress, plotted as a function of axial stress 
shows consistent, nearly parallel lines for both the original and expanded damage 
surfaces as plotted in Figure 5.   Therefore, it is only necessary to locate a single 
point on the expanded damage surface from the final stress state in order to define 
the new damage envelope. Figure 4 also shows the agreement between points for 
the predicted and actual damage surface using this concept. 

Constitutive results from Figures 1 and 2 are re-plotted on an effective 
stress-effective strain format in Figure 6. Tension and torsion data are now 
virtually coincident while samples loaded in tension at 45° display a higher 
compliance. Failure strain for all load cases is nearly 6000 us. Also plotted 
are deformation results for Case IV, the combined stress state of 125 MPa 
tension (fixed) with increasing torsion. The starting point (125 MPa tension) 
is in good agreement with flat-plate tensile data and the application of torsion 
causes a linear increase in effective strain up to failure at near 6000 ue along a 
path which is consistent with other data. Apparently, non-proportional 
loading has little influence on the observed behavior when plotted in this way. 
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Figure 4b.       SiC/Al203 modulus recovery data (1000°C, stress-free). 
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EFFECT OF SALT CORROSION ON MECHANICAL PROPERTIES OF A 
SIC-SIC COMPOSITE IN DRY AND MOTST HIGH-TEMPERATURE 
ENVIRONMENT 

P. Lipetzky, M. Lieblich, W. Hillig and D. Duquette, 
Rensselaer Polytechnic Institute Troy, NY 12180; 518-276-8374 

ABSTRACT 

Oxidation and hot-corrosion effects on the mechanical and physical properties of 
SiC fiber-reinforced SiC have been studied under both short- and long-term 
exposure to dry air, argon, oxygen and water vapor up to temperatures of 
1200°C. Results in all ambients show a rapid initial weight loss followed by 
various degrees of weight gain for times up to 20 hours. Hot corrosion studies 
utilize thin surface coatings of Na2S04 and NaCl. Samples exhibit a steady 
weight loss under these conditions which surpasses the weight loss observed 
during similar oxidation tests. Salt-coated samples were also exposed to moist 
ambients; water vapor was seen to rapidly accelerate weight loss. Mechanical 
properties are also reported from static fatigue tests in oxidizing and corrosive 
environments. It is seen that the conditions which promote weight loss are not 
necessarily detrimental to specimen life due to the protective coating. Finally, it 
is seen that minor loss or cracking of the protective surface layer can 
significantly shorten the life. 

INTRODUCTION 

Components in high-temperature engine and heat-recovery applications 
are typically exposed to aggressive atmospheres which can contain sodium-, 
magnesium-, sulfur- and carbon-based gases as well as water vapor and 
numerous entrained particulates. Under these conditions, Na-based salts such as 
Na2S04 can deposit and degrade or remove material from the substrate. This 
hot-corrosion process takes place between the melting point and dew points of 
the respective salts and can drastically reduce the useable service time of many 



high-temperature components [1]. The temperature range for such attack is 
typically between 800°C and 1400°C, depending on pressure and composition 
of the ambient gas. In silicide-based ceramics the degradation is related to the 
solubility of tramp elements, such as sodium, in the passivating silica layer which 
promotes devitrification of silica and thus lowers its effectiveness as an oxygen 
barrier [2]. In this work the effect of two Na-containing salts (NaCl and 
Na2SO.») on the oxidation behavior and mechanical properties of SiC/SiC were 
examined in oxidizing and inert atmospheres. 

MATERIAL 

The material used in this investigation is a continuous SiC (Nicalon) 
fiber-reinforced SiC composite manufactured by DuPont Lanxide Inc. Tows of 
roughly 500 carbon-coated (0.2-0.4um) fibers are woven into a plain weave 
[0/90] fabric, which is subsequently chemical-vapor coated with various 
oxidation inhibitors and crystalline SiC. Approximately 8 such plies, all in the 
[0/90] orientation, are consolidated into the final plate. Tensile specimens are 
cut in the 0° orientation with a 20% reduction in the gauge section width. The 
final step is the application of a 100 micron SiC seal-coat. Figure 1 shows a 
cross section of the material. The fibers (-30 %) bundles and residual porosity 
(-15%) are visible. Further details can be found elsewhere [3,4]. 

EXPERIMENTAL PROCEDURE 

The test conditions involve atmospheric and corrosive attack while 
under various loads. The corrosion pre-treatment is to soak samples in a 
saturated salt solution followed by drying at 150°C for roughly 20 minutes. 
Typical salt coatings are near 10 um, which simulates 500 hours at 900°C in a 
combustion application [5]. Oxidation and corrosion experiments involve 
weight evolution studies during stress-free thermal exposure. Temperatures 
between 500°C and 1200°C are investigated here because oxidative attack 
begins near 500°C and Nicalon fibers degrade rapidly above 1200°C. Results 
will be reported on the basis of weight change per exposed surface area 
averaged over 6 specimens. Rectangular samples for this purpose are cut from 
the tensile coupons such that 4 of the 6 sides are protected by the seal coat and 
the other 2 are left as-cut. Sample size is typically 2.5 X 2.5 X 10.2 mm, with 
the as-cut surface dimension being 2.5 X 10.2 mm. Effects of other ambients on 
oxidation are also investigated. A water vapor environment is produced by 
injecting pre-heated moist air (0.1 liter/min STP, dew point 90°C) into the 
furnace. Dry air, oxygen and argon are also supplied at this rate. Experiments 
investigating the effects of corrosion on mechanical properties involve the same 
salt pre-treatment on a complete tensile coupon followed by time to failure and 



Comparing predicted and observed behavior for Case IV loading shows that 
the model is in poor agreement with observations for non-proportional load 
paths. Predicted stiffness is overestimated and the predicted non-linearity is 
not observed. Furthermore, the failure condition cannot be determined using 
this model. 

SUMMARY AND CONCLUSIONS 

The deformation behavior of a woven [0/90] ceramic composite has been 
analyzed under multi-axial loading conditions. Tension and torsion results show 
approximately bilinear constitutive relations, while more complicated load paths 
do not. Boundaries for the linear elastic region are plotted as damage envelopes 
in stress-space. Within the elastic envelope axial and torsional modulus are 
highly directional. Increasing both tension and torsion produces the most 
compliant response, while decreasing tension and increasing torsion gives the 
stiffest response. Differences in modulus are as high as a factor of 2. Consistent 
trends are seen for damage envelope expansion and translation based on the 
effective stress maximum during loading. A coupled numerical-empirical model 
has been developed which can be used to predict behavior under proportional 
loading. Shear deformation is accurately predicted using this model but good 
agreement is not seen for non-proportional load angles. Finally, consistent 
results were observed for various load paths when stress-strain data were plotted 
in the effective stress-effective strain format. To a good approximation, effective 
stress and effective strain at failure are 170 MPa and 0.6%, respectively, for any 
general load angle. 
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Figure 1. Stress-strain response in tension and torsion. 
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ATMOSPHERIC EFFECTS ON HIGH-TEMPERATURE LIFETIME OF 
CERAMIC COMPOSITES 

P. Lipetzky, N.S. Stoloff, GJ. Dvorak, 
RPI, Troy, NY 12180; (518) 276-8374 

ABSTRACT 

This work describes the influence of atmosphere, stress and temperature on 
long-term life of SiC fiber-reinforced ceramic composites. Results show that at 
1000°C a linear relation describes log of rupture life versus stress data for the 
SiC/SiC composite between stresses of 30 and 150 MPa. Conversely, the 
SiC/Al203 material exhibits a run-out at a stress of- 80 MPa and 1000°C. 
Relative humidity has no direct effect on the lifetimes of either composite, 
although modulus retention during testing is promoted by the presence of 
moisture. Modulus recovery has been observed in damaged samples following 
stress-free high-temperature exposure; mechanisms include silica formation on 
internal SiC crack faces. Combined stress-temperature data show that 
increasing stress above the proportional limit sharply reduces the 6-hr survival 
temperature in both composites. The importance of surface coating is also 
addressed. 

INTRODUCTION 

Developmental ceramics in heat management and structural applications 
involve both oxide and suicide matrix and fiber combinations, such as SiCf/SiC 
and SiCf/Al203 which will be examined here [1-3]. Components will be required 
to sustain a variety of loads in oxidizing or reducing environments which may 
contain hydrocarbons, water vapor, carbon- and nitrogen-based oxides. A 
previous study has shown that water vapor can be a stronger SiC oxidant than 
pure oxygen [4]. The morphology of the silica is also atmosphere-dependent, 
and the mechanical properties reflect this difference. The present study focuses 
on the effect of dry and moist air on the high-temperature lifetime of these 
oxide- and silicide-based composites. Susceptibility to environmental attack is 



also related to surface coating. Finally, aspects of damage evolution and 
recovery will be discussed in terms of environment. 

MATERIAL 

The two materials used in this investigation are woven Nicalon (SiC) 
fiber-reinforced SiC- and A^CVmatrix composites, manufactured by DuPont 
Lanxide Inc. The structures are shown in Figures la and lb. The SiC/SiC 
material consists of a plain weave [0/90] fabric, which is subsequently chemical- 
vapor infiltrated with propriatary oxidation inhibitors and crystalline SiC. 
Approximately 8 such plies, all in the [0/90] orientation, are consolidated into 
the final plate. Tensile coupons are machined in the 0° direction and completely 
seal-coated with additional SiC. Certain of the samples have a portion of the 
seal-coating removed. Further details of the processing and microstructure can 
be found elsewhere [5]. The Al203-matrix material is similarly reinforced with a 
[0/90] woven mat (12 HSW) of Nicalon fibers. Processing involves applying a 
0.3 urn coating of BN to the fibers prior to a limited CVD SiC coating. This 
porous, rigid pre-form is subsequently encased in alumina using a directional 
metal oxidation (DiMOx) process [6]. The residual aluminum alloy is 
chemically etched from the sample prior to the application of a final surface 
coating. Residual porosity is approximately 10 volume percent. 

EXPERTMENTAL PROCEDURE 

Experimental investigation involves static tensile testing performed in 
dry and moist air over a range of temperatures. Details of the testing facilities 
have been given previously [4,5]. Static tests for lifetime stress-dependence 
involve holding samples at a fixed stress in a given environment at 1000°C until 
either rupture or run-out is reached at 240 hrs. Temperature dependence of life 
is investigated using a 6-hr run-out limit   Tests are performed by holding a fixed 
stress at a given temperature for 6 hrs or until rupture. If the sample survives 
these conditions, temperature is increased 50°C and testing continues until 
subsequent run-out or rupture. Young's modulus is measured periodically by 
slightly altering stress and observing the change in strain in order to monitor 
damage evolution. Damage recovery is investigated by thermally soaking 
samples under stress-free conditions following an initial load cycle to 120 MPa 
or 150 MPa for SiC/SiC and SiC/AJ203 respectively. Moist air is produced by 
bubbling air (0.1 liter/min at RTP) through a reservoir of water held at 90°C 
into an atmosphere containment jacket around the sample. 



RESULTS AND DISCUSSION 

Long-term, constant stress testing of SiC/SiC reveals the stress-rupture 
behavior as plotted in Figure 2a. Data show no apparent run-out stress in dry 
air between 30 MPa and 150 MPa; rather, there is a consistent linear relation 
between the logarithm of rupture time and the applied stress. The stress 
dependence is stronger for the SiC/Al203 and an apparent static fatigue limit is 
observed at -80 MPa, Figure 2b. For stress levels above -100 MPa the 
composite lifetimes are roughly equivalent. Similar experiments have been 
performed in moist air. Survival times for SiC/SiC samples tested in water 
vapor are comparable to dry air. However, limited data indicate that moisture 
may improve life at lower stresses (<70 MPa). Although A1203 is highly 
susceptible to slow crack growth in the presence of water vapor, SiC/Al203 

lifetimes were not significantly affected [7,8]. Samples consistently failed in the 
reduced section. 

Specimen compliance is often used as a gauge of composite damage. 
The SiC/SiC modulus evolution curves for a stress level of 80 MPa at 1000°C 
are plotted in Figure 3. The modulus steadily decreases prior to failure when 
tested in dry air, although the presence of water vapor results in a high retained 
stiffness. At stresses above 90 MPa no atmospheric dependence is seen and 
modulus decrease is steady. Conversely, for stresses below 60 MPa the SiC/SiC 
composite displays an "incubation period" prior to the onset of modulus loss. 
This phenomenon has been related to the relative rates of silica formation as 
well as silica density and adherence [4,9,10]. The SiC/Al203 samples retain a 
high modulus in both ambients. At higher temperatures the inherent degradation 
of Nicalon fibers results in a significant loss of both stiffness and strength. 

Temperature dependence of the stress-rupture life is addressed by 
performing fixed stress-rupture tests with increasing temperature. Table I lists 
the 6-hr survival temperature at 100, 130 and 160 MPa for both ambients. 

TABLE I: STRESS TEMPERATURE CREEP RUPTURE BEHAVIOR 

6-hr survival 
stress 

SiC/AI203 SiC/SiC 
drv air wet air dry air wet air uncoated 

100 MPa 1000°C 1000°C 1000°C 1000°C 900°C 

130 MPa 800°C 800°C 750°C 700°C 700°C 

160 MPa 650°C 600°C 700°C 650°C 650°C 

As in Figures 2a and 2b the materials have similar behavior at high stresses 
which are not strongly influenced by ambient. Temperature capability decreases 
steadily with increasing stress for SiC/Al203, but 130 and 160 MPa are 
equivalent in SiC/SiC. 



The effects of seal-coating degradation and removal are also of interest 
for many engineering applications. Table I shows that SiC/SiC survival 
temperatures are reduced roughly 50°C when 25% of the surface seal-coat is 
removed. Data are also shown on Figure 3 for SiC/SiC lifetime at 1000°C for 
partially uncoated samples; a significant reduction in life is seen which is 
independent of ambient. 

Damage recovery capability is also examined. Figures 4a and 4b show 
modulus data following pre-damage and stress-free exposure to the various 
ambients. The SiC/SiC material exhibits extensive modulus recovery in air and 
water vapor following only 10 hrs exposure with water vapor causing recovery 
to nearly 100% of the original stiffness. Longer exposure time does not induce 
any further changes. The same phenomenon is seen in SiC/Al203 samples. The 
recovery mechanism is based on Si02 formation on SiC crack faces. Energy- 
dispersive X-ray oxygen peaks are observed on post-recovery matrix crack 
faces, but not after short-term failure. Following damage and 40 hrs recovery 
under these conditions the SiC/SiC does not lose ultimate tensile strength, 
although the SiC/Al203 loses over 60%. Recovery is sufficiently robust that 
recovered SiC/SiC samples subjected to static fatigue conditions showed 
lifetimes which were consistent with undamaged samples; recovered SiC/Al203 

samples were much weaker. 
Other exposure effects are also investigated. Thermally soaking as- 

received samples at 1200°C for 1 week in either air or argon significantly 
reduces both the ultimate strength (-50%) and stiffness (-10%) for both 
composites. Thermal cycling has also been performed between 20°C and 
1000°C (20 min cycles). Following 50 cycles no strength or stiffness was lost. 

SUMMARY AND CONCLUSIONS 

Experiments have been performed to determine the effects of 
temperature and environment on the mechanical behavior of continuous SiC/SiC 
and SiC/Al203 composites. Results show that ambient composition does not 
affect short-term behavior at any temperature up to 1000°C, although long-term 
tests show distinct atmospheric dependence. Static fatigue life for the SiC/SiC 
composite at 1000°C follows a linear relation between stress and log of rupture 
time up to 240 hrs over a stress range of 30 - 150 MPa. Under the same 
conditions the SiC/Al203 composite displays a stronger stress-dependence and 
reaches static fatigue run-out at -80 MPa. Data at low stress indicate that moist 
air may promote long-term life by forming a coherent passivating silica layer 
which can support load and retard oxygen ingress. Silica formation in dry air is 
less rapid and the resulting glass appears less dense. The importance of surface 
coating has also been investigated. Removal of 25% of the seal-coating can 



reduce specimen life up to 80%. The 6-hr survival temperatures of SiC/Al203 

are observed to decrease on the order of 6°C per 1 MPa in dry air for stresses 
greater than 100 MPa; moist air causes a slightly larger drop. Rate of survival 
temperature decrease for the SiC/SiC composite is not linear with stress; loss of 
surface coating and exposure to water vapor also accelerate the reduction. In 
general, the SiC/Al203 composite survives a given stress at higher temperatures 
for longer times; it is not clear whether the difference in composition or the 
different weave geometry is responsible [11]. Modulus retention and recovery 
have been observed for various time-temperature-stress histories. Water vapor 
causes SiC/SiC to retain a high modulus under load, and causes recovery to 
nearly 100% of the original stiffness if stress is near zero. Exposure to dry air 
results in less modulus retention and less modulus recovery. The mechanism is 
based on SiC crack face adhesion due to the formation of silica. The SiC/Al203 

samples exhibit similar modulus recovery, but are not prone to modulus loss 
during static fatigue. 
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Figure 1. 

(a) (b) 

Micrographs of SiC/SiC (a) and SiC/Al203 (b) structures. 
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Figure 2a.        SiC/SiC static fatigue lifetimes for various ambients, 1000°C. 
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Figure 2b.       SiC/Al203 stress-rupture data, various ambients, 1000°C. Solid 
symbols correspond to tests performed in dry air. 



modulus evolution curves for different load levels. Mechanical test 
temperatures are between 20°C and 1000°C. Specimens here are completely 
seal-coated, and are thus slightly different than oxidation samples. Mechanical 
testing can be performed in different ambients by continually injecting the pre- 
heated ambient into a high-temperature jacket around the specimen. Short-term 
mechanical tests are not affected by the various salt coatings or atmospheres. 

RESULTS AND DISCUSSION 

Experimental data showing the area-normalized weight histories of as- 
received samples exposed to the various atmospheres are shown in Figures 2-4 
for times up to 20 hours. Temperatures shown are 500°C, 850°C, 1000°C and 
1200°C. Weight evolution trends for temperatures below 850°C are distinctly 
different than data for 1000°C and higher. However, data for all temperatures 
show an initial weight loss followed by a slow increase. This is in qualitative 
agreement with results on a similar composite reported by Fox et al. who 
observed rapid weight loss followed by weight gain with a parabolic rate 
constant of Kp=0.0017 mg2/cm4hr at 1200°C in dry oxygen [6]. 

The data at 1200°C from Figure 2 show that weight evolution in oxygen 
and dry air ambients follow the same trend as dry air at 1000°C, although 
oxygen causes a larger initial weight loss. The steady weight gain with 
parabolic kinetics can be explained by the formation of a passivating silica layer. 
The initial weight loss is attributed to reactions of the oxidation inhibitors and 
organics prior to complete passivation. The water vapor ambient results in a 
larger initial weight loss followed by a steeper weight gain. For tests up to 200 
hours it was observed that the samples exposed to water vapor reach a peak 
weight at about 50 hours, followed by slow weight loss [3]. The presence of 
water vapor reverses the weight gain trend due to volatilization of SiCh as SiOH 
[3]. Conversely, samples tested in oxygen continue to gain weight at 1200°C 
according to a parabolic rate constant Kp - 0.238mg2/cm4hr. The extreme 
difference in these rate constants, Kp, is due to the difference in un-coated area. 

At temperatures below 850°C passivating silica forms slowly, thereby 
allowing extensive specimen degradation. Figure 3 shows that both dry and 
moist air cause extensive weight loss prior to stabilization at times over 20 
hours. Recall at 1000°C stabilization in the same ambient occurs at ~5 hours. 
Water vapor is clearly the most aggressive environment in terms of weight loss. 
For example, after 5 hours at 850° C the weight loss in water vapor is nearly 4 
times larger than in the other environments at any temperature. An argon 
ambient results in negligible weight loss at any temperature. The small weight 
loss observed at 500°C in air is attributed to oxidation of interfacial carbon. 



Results of similar weight evolution experiments are plotted in Figure 4 
for salt-coated specimens. The curves in all cases are self-similar; thermal 
exposure causes a net loss with no apparent minimum. Both increasing 
temperature and adding water vapor increase the rate of loss. At a temperature 
of 1200°C the atmosphere and salt play decisive roles [6-8]. Samples coated 
with NaCl exhibit a slightly larger weight loss than when coated with Na2S04. 
The difference could be due to the volatility of NaCl and decomposition of 
Na2S04 at this temperature [9,10] The most aggressive environment is clearly 
Na2S04 in moist air; weight loss after 20 hours is roughly 5 times the weight 
loss measured in dry air. Physical examination of the most degraded samples 
reveals extensive formation of surface glass which contains numerous bubbles 
and cracks, Figure 5. The poor coherence and continuity of surface glass is due 
to the sodium-induced devitrification of silica. Crystalline silica, tridymite and 
crystobalite, is weaker and has a lower resistance to oxygen diffusion than 
vitreous silica. Furthermore, the CTE is roughly 5X the CTE of silicon carbide 
[2,8]. Conversely, purely oxidative exposure results in a dense passivating 
vitreous layer at low temperatures and a layered structure at higher 
temperatures as seen in Figure 6. 

The relative weight loss should be an indicator of component life. For 
example, after 20 hours the uncontaminated samples display stable weight, while 
salt-coated samples continue to lose weight rapidly. This implies that salt 
coatings can act to shorten composite life; water vapor may also contribute. 

Mechanical testing of samples in dry air is conducted to establish a 
benchmark for atmosphere and surface salt comparison. Figure 7 shows time to 
rupture in dry air at 1000°C for stress levels from 30 to 145 MPa. The lifetime 
of samples follows a linear relation between stress and logarithm of survival time 
(hours) over the entire stress range. Below 40 MPa survival time is consistently 
over 240 hours. During these tests Young's modulus decreased in two distinct 
ways: starting immediately after load is applied; or after a long "incubation" 
period, during which no decrease is registered. The effect of a surface coating 
of Na2S04 in dry air on rupture life is also plotted on Figure 7. Survival time at 
low stress is not reduced by the surface salt. The life-invariance with surface 
contamination is in apparent contradiction to the weight loss data described 
above. However, the tensile samples are completely seal-coated and oxidation 
samples are not. Tests have also been performed in air and water vapor with 
25% of the surface coating removed; results show a 5X decrease in life [3]. 

Finally, it is of interest to establish some indication of temperature 
dependence on lifetime. Specifically, the temperature that corresponds to an 
approximate 6 hour life at a stress of 160 MPa is 700°C for as-received samples 
tested in dry air. When the environment becomes more aggressive, Na2S04 in 



moist air, this temperature drops to 650°C because of the chemical-indudced 
loss of integrity of the passivating surface silica. 

SUMMARY AND CONCLUSIONS 

Experiments are performed to determine the effects of sodium-based salt 
deposits on .the oxidation, corrosion and mechanical behavior of a SiC/SiC 
composite. Results have shown that 1000°C defines a boundary between two 
reaction regimes. Above 1000°C a protective silica layer forms which slows 
atmospheric attack. Below 1000°C extensive weight loss is observed for all 
ambients. Exposure of samples to salt in moist air at 1200°C is the most 
detrimental in terms of relative weight change. Mechanical properties have 
similarly been investigated. The stress for long-term composite survivability, 
>240 hours, is approximately 45 MPa in the as-received condition when tested 
in dry air at 1000°C. At higher stresses, sample life is shortened according to a 
linear relation between stress and the log of rupture time. If a sample is tested in 
water vapor the lifetime is not affected, although the stiffness remains high until 
failure. The presence of both a salt coating and water vapor can affect run-out 
stress and modulus retention. Salt deposits can be expected to shorten life in 
real components by increasing the rate of environmental attack if the seal 
coating is damaged or removed. 
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Fisure 1. Cross section of as received SiC/SiC 
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BEHAVIOR OF SIC-FIBER/AL,Ch COMPOSITE WITH NA-BASED SALTS 
IN DRY AND MOIST OXIDIZING ENVIRONMENTS 

P. Lipetzky, M. Lieblich, W. Hillig and D. Duquette, 
Rensselaer Polytechnic Institute, Troy, NY 12180 

ABSTRACT 

The current analysis focuses on thermogravimetric and mechanical properties of 
a SiC fiber-reinforced A1203 matrix composite during exposure to oxidative and 
corrosive environments. Results show a significant weight gain at temperatures 
above 1000°C in oxygen as well as dry and moist air for times up to 200 hours 
under stress-free conditions. Below 1000°C an initial weight loss is seen in dry 
and moist air with no return to the original weight; this behavior is also seen for 
1200°C argon exposure. Experiments have also been performed on salt-coated 
samples (Na2S04) exposed to similar temperatures and atmospheres. Under 
these conditions continuous weight loss is observed for times up to 200 hours. 
Mechanisms of degradation include SiC oxidation and surface spalling. 
Mechanical properties have been measured following exposure to the same 
conditions at temperatures below 1000°C. Short-term test results are 
independent of ambient composition or salt coating. Long-term tests show that 
static fatigue life is dependent on salt coating, temperature and relative humidity. 

INTRODUCTION 

Based on the high specific stiffness and inherent resistance to oxidative 
attack, oxide-based composites are candidate materials for applications ranging 
from chemical processing to combustion components. Such environments are 
likely to contain corrosive sodium and sulfur species as well as water vapor and 
reducing oxy-nitride compounds. This study focuses on the long-term effects of 
oxidative and corrosive environments on weight and mechanical properties of 
this composite at high temperatures. Atmospheres include dry and moist air as 
well as oxygen and argon at temperatures up to 1200°C. The corrosive salt is 



Na2S04, which is known to deposit in typical combustion conditions and result 
in removal of material as well as degradation of mechanical properties [1]. 

MATERIAL 

The material used in this investigation is a continuous SiC (Nicalon) 
fiber-reinforced alumina composite manufactured by DuPont Lanxide using a 
directional metal oxidation (DiMOx) process [2]. Tows of BN-coated fibers are 
woven into a 12-harness satin [0/90] fabric, which is subsequently chemical- 
vapor coated with crystalline SiC. Approximately 10 such plies, all in the [0/90] 
orientation are consolidated into a plate. The porous plate is then brought into 
contact with a molten aluminum alloy under an oxidizing ambient for the 
DiMOx infiltration. Unreacted metal is subsequently etched from the alumina 
matrix leaving approximately 10 % void space. Reduced-section tensile 
coupons are machined from these plates in the 0° direction prior to application 
of a final seal-coat. Figure 1 shows a cross section of the material transverse to 
the loading axis. The fibers and fiber coatings as well as the matrix are visible. 
Numerous matrix cracks which result from thermal expansion mismatch and 
directional matrix growth columns are visible in the as-received state. 

EXPERIMENTAL PROCEDURE 

Oxidation and corrosion studies are performed in wet and dry, oxidizing 
and inert ambients at temperatures of 500°C, 850°C, 1000°C and 1200°C. 
Specimens are cut from tensile coupons perpendicular to the loading axis so that 
the exterior seal-coat covers only 4 of the 6 sides. Samples are typically 0.1 X 
0.1 X 0.4 inches, with the as-cut surface dimension being 0.1 X 0.4 inches. 
Sample preparation for stress-free corrosion exposure involves soaking cut 
sections in a saturated salt water solution (Na2S04) followed by air drying at 
150°C. This results in roughly a 10 urn surface layer which is comparable to the 
expected salt coating on a turbine engine component after 500 hours at 900°C 
with a sulfur fuel impurity level of 0.05% [3]. Water vapor is supplied to the 
furnace by passing a continuous stream of compressed air through a 90°C water 
reservoir at a rate of 0.1 liter/min. Oxidizing and inert gases are also continually 
supplied at this rate. All weight changes are normalized to total specimen 
surface area, due to the minimal effect of the seal coating. 

Environmental effects on mechanical properties are also investigated 
using time to rupture and modulus evolution curves in the presence of the 
above-mentioned ambients. Details of the mechanical testing apparatus and 
testing procedure can be found elsewhere [4]. Environmental influence on 
short-term mechanical properties are not reported because no effect is observed 
for either atmosphere or salt coating. Mechanical property test data is limited to 



temperatures below 1000°C because of the sharp drop in strength and stiffness 
following exposure above this limit. The time-temperature dependence of stress 
rupture is determined by holding a constant stress for 6 hours or until rupture. 
Following 6-hour survival at 500°C, temperature is increased step-wise 50°C 
and testing continues at that stress. 

RESULTS AND DISCUSSION 

Experimental data from the thermogravimetric analysis for samples 
exposed to dry air are shown in Figure 2. Specific weight change for the as- 
received samples exposed to dry air at 500°C, 850°C,1000°C and 1200°C are 
plotted up to 200 hours. At 500°C there is a significant weight loss during the 
first 5 hours followed by stable behavior. Some initial loss is seen at all 
temperatures followed by slow weight gain at 850°C and 1200°C. Given the 
hydrophilic nature of alumina, the weight loss is attributed to a process of 
driving off adsorbed water from internal micro-pores. This is supported by the 
observation that exposure to inert gas (argon) at temperatures up to 1200°C 
follows the same weight evolution curve as 500°C air. The decreasing levels of 
weight loss with increasing temperature is a result of the competition between 
drying rate weight loss, and oxidation rate weight gain. The subsequent weight 
gain which occurs at temperatures greater than 850°C is largely associated with 
the oxidation of SiC or residual aluminum metal (2 vol%). Behavior in 1000°C 
dry air is parallel to 1200°C dry air, but positioned at a lower specific weight. 
This exemplifies the opposing effects of the drying and the oxidation. The 
parabolic rate constants for weight gain in 1000°C and 1200°C air are; Kp = 
0.053 mg2/cm4 hr, Kp = 0.051 mg2/cm4 hr, respectively. Higher temperature 
leads to more rapid weight gain due to increased reaction rates as well as 
increased diffusion rates. 

Exposure studies have also been conducted in other ambients as plotted 
in Figure 3. At a temperature of 850°C water vapor plays no decisive role in 
weight evolution. Apparently, the water vapor in the ambient air does not affect 
either the rate of internal evaporation or the rate of SiC oxidation. Conversely, 
at 1200°C water vapor eliminates any net weight loss over the first 2 hours by 
significantly increasing the rate of SiC oxidation; Kp = 0.080 mg2/cm4 hr. Pure 
oxygen exposure at 1200°C results in a minor initial weight loss and an even 
greater weight gain than air; Kp = 0.076 mg /cm hr. 

Results from salt-coated sample exposure are plotted in Figure 4. The 
Na2S04 coating causes a rapid and severe weight loss in all ambients 850°C and 
above. After 20 hours the samples have lost roughly 8 mg/cm2 compared to a 
weight gain on the order of 0.5-1 mg/cm2 in Figures 2 and 3. Furthermore, salt- 
coated samples continue to lose weight at a rate which is ~25X greater than the 
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Figure 5. Structure following exposure to 1200°C and salt surface coating. 

160 

140 

_ 120 - 

£   100 - 

(A 
W 
0) 
l_ 

<0 

80 

60 

40 

20 -I 

0 

Na2S04-coated 

♦ ♦ 
■*=£ 

♦ Dry air 

□ Dry air 

+ Wet Air 

1 100 1000 10 

Time (hr) 

Figure 6. S1C/AI2O3 lifetime under constant stress, in air 1000°C 

ACKNOWLEDGMENTS 

Support is from ONR/ARPA contract number N0001492J1779. We 
also thank Drs. W. Coblenz and S. Fishman for oversight of this program. 



samples show a small degree of weight gain and parabolic kinetics; rate 
constants are reported. Mechanical properties have similarly revealed the 
influence of surface contaminants and atmosphere on material integrity. In the 
as-received condition in air, the run-out stress is approximately 80 MPa. At 
higher stresses, sample life is shortened according to a non-linear relation 
between stress and the logarithm of rupture time. Water vapor and salt coatings 
are more aggressive chemically, but cause only a slight reductions in life. 
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rate of weight gain with no salt. Data show that dry and moist air are equally 
aggressive at 850°C and above. Samples exposed to these conditions, Figure 5, 
show that salt causes degradation via the formation of a sodium silicate glass. 
However, proper interpretation of weight evolution must consider that Na2S04 
is capable of vaporizing at these temperatures. Therefore, total weight change is 
a result of corrosion combined with salt decomposition and evaporation [5,6,7]. 

Mechanical testing of as-received composites under constant load and 
temperature is conducted to establish a reference baseline for material behavior. 
Figure 6 shows time to rupture in dry air at 1000°C for stress levels between 70 
and 145 MPa. Although tests have only been conducted for a maximum of 240 
hours, an apparent run-out stress is observed at 80 MPa. At higher stresses 
rupture time roughly follows a bilinear relation between log of rupture time and 
applied stress. The effect of a thin surface coating of Na2S04 on rupture life is 
also plotted on Figure 6. The Na2S04-coated samples ruptured at times which 
were consistent with the as-received samples. This highlights the importance of 
surface coating integrity. 

Water vapor effects are also of interest with respect to the as-received 
and the salt-coated material. For comparison water vapor alone results in a 
rupture time of -13 hrs at 100 MPa and 1000°C. No significant decrease is 
seen here in spite of the stress corrosion cracking susceptibility of aluminum 
oxide [8,9]. Additionally, water transport through amorphous silica is roughly 
an order of magnitude faster than oxygen transport [10]. Therefore, both the 
matrix and fibers are degrading faster in the moist environment. Combining 
Na2S04 with water vapor also results in a higher level of chemical reactivity, but 
no significant reduction in life is seen; 100 MPa, 1000°C, rupture time is 20 hrs. 

Finally, it is desired to establish the temperature at which a high level of 
stress can be supported for 6 hours. This indicates the design conditions which 
may be approached for a short-term combustion application. In dry air failure 
under 160 MPa load occurs within this time at a temperature of 650°C, while 
moist air causes failure at 600°C in the same window. 

SUMMARY AND CONCLUSIONS 

This work has investigated the high-temperature oxidation and corrosion 
behavior of an SiC/Al203 composite under dry and moist ambients. Results 
have shown that an initial weight loss occurs in all ambients followed by some 
degree of steady weight gain at temperatures above 850°C. Increasing 
temperature, oxygen activity and relative humidity all increase rate and extent of 
weight gain. Combining a salt coating in moist air is the most detrimental in 
terms of relative weight change. The presence of the Na-containing salt causes 
a rapid weight loss with apparently linear kinetics. In the absence of salt, 
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1.  Introduction 

Patibandla et al. [4,5] describe a reactive vapor infiltration (RVI) process for manufacturing fiber-reinforced 
ceramic composites where silicon carbide (SiC) or alumina (Al2Oj) fibers are mixed with molybdenum (Mo) powder and 
pressed at room temperature to form a porous preform. The preform is exposed to a silicon tetra-chloride (SiClA) and 
hydrogen (H2) flow where molecular-surface reactions liberate Si which, when absorbed into the preform, reacts with 
Mo to form a molybdenum di-silicide {MoSi2) matrix. As a first step in modeling the RVI process, we present a 
mathematical model of the diffusion of Si into a compressed-powder Mo pellet to form the MoSi2 matrix. The produc- 
tion of an intermediate (Mo5Sij) silicide layer, the growth of the MoSi2 layer, and the volume expansion of the pellet are 
predicted. The resulting partial differential system is solved using an adaptive software system [2] that includes capabili- 
ties for automatic quadtree-structured mesh generation, mesh refinement/coarsening (h-refinement), method order varia- 
tion (p-refinement), and mesh motion (r-rennement). Computational solutions of one- and two-dimensional problems 
indicate that the adaptive software is a robust and effective tool for addressing composite-processing problems. The 
mathematical model predicts the observed parabolic growth rate of the silicide layer and the volume expansion of the 
peilet to a high degree of accuracy. 

2.  RVI Model 

The loosely compacted pellet is subjected in a furnace to a flow of SiCl* and H2 that reacts on the surface of 
grains of the pellet to liberate Si [4,5]. The Si is absorbed into the Mo pellet and reacts as 

5Mo + 35« —► Mo sSij,   MosSi) + 7Si —> 5MoSi2 (2.1) 

to form Mo5Sis and the desired MoSi2 suicide. These reactions occur in narrow fronts with free Si diffusing (principally 
by solid-state diffusion) through an MoSi2 layer to reach the reaction zones. The reactions (2.1) are accompanied by a 
158% volume increase which fills the pores between grains of Mo powder, but may cause cracking [4,5]. 

Suppose the pellet contains a mixture of reactants and products and let the mass mt ig) of species i at time t in a 
control volume V be 

m; = fpK;dV,    1=1.2,3.4, (2.2) 

where p (g/cm}) is the mixture density and Yt, i = 1. 2, 3, 4, are, respectively, the mass fractions of Si, MoSi2, A/o5Si3, 
and Mo. As the pellet deforms due to the volume change, we specify the position of each material point x as a function 
of t and its initial spatial position X. With this reference, considerations of mass conservation for species i imply that 

— = -jJindo-JpYirndo + jridV.   »=1,2,3,4, (2.3) 

where BV, with unit outer normal n, is the boundary of^V; v(X,r) = 9,x(X,/) (cm/sec) is the mixture velocity; and 
r, (g /cm I sec) is the mass production rate and J; (g /cm l/sec) is the diffusive flux of species i. Assuming Fickian 
diffusion J, = -D,V(pYt), with D, (cm1/sec) being the diffusivity of species i in the mixture. 

Applying the divergence theorem to (2.3) and using (2.2) yields the partial differential system 
D(pY.) 

= df(pK,) + v-V(pK,) = VD,V(pY,) -pK.V-vW,,   xefl,    r > 0,    «=1,2,3,4, (2.4) 
Dt 
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w^,s*= sparen occup,^ep^ a, u„=,. 

0böin ;1 = -Ml(3w1 + 7w2).    r2»5Af2Wj,    r, =M,(w, - *":>. (^' 

r4 = -5M4w, 
pKi    plV (-. 

Ths««-., - *, <->-> "-* - «°f - "—■(2" -"''tt) dB"" " "*""WC,! 

species i = U 2, 3. 4 [31. ; = 1  ~> 

To „elude expansic^id,^^ 

^£V? -TT 3,4VSS äSsÄSffl? using (2.2), Aung V tend to zero gwes 

1     hv  £P.-
V
 bw       i=i pi 

Multiplying (2.4) by 1/fc. summing over i. and using (2.6). we obtain 

_ov+(7.TX1_v)aIJ-^.+v-o1.vpri].  xeO,  «>o. 
D/ i-i Pi 

We shnplify (2.7) bytmcÄ * -g^*^^ 

i=2 Pi 

The system is closed by the mixture momentum equation for a viscous medium 
p£l + vO,p + V-(pv)l = V-T 

where the traction matrix T (Pa) has components 
TiJ = (-p + X7-v)8j j + H<V< + d*'Vi) 

wi*x and n being Lame parameters, p (Pa) being the pressure, and 8,, being the Kronedcer delta. 

s'i^ "yM° 
h *" ^^ £77 *« = o. ,- = u 2,3, ux,o) = i. v(x.o).a x. ouaa 
where p is the initial mixture density.  Boundary.onditions^«-^AT*^*^ * £ 
S^U« ceases when a full monolayer of 5« ^ *J^^S by this reaction.  Moreover, we assurr 

3. Computational Results and/or r-refinet 

We use an active unite g-^^^ 

£Ä^ eÄators-Herc" " jSSSJcoS-ed flux across element bcndanes [2.3]. we inffoduce dL 

With the origin of a Cartesian coordinate systemar(he ce niter   la Employing symi 
variables with (xS^,) scaled by (a MO  ,  scaled J^^^P^       * P,   init? M? peiig 
dio*nsional F^lerns are ^^^ Jkl = 1.5xl03    and   *2=l.5xlü dimensional prooiems are MHVCU 

u" "^    (e/cmi "c)' porosity    with    a = t (/nm).    a = 10     cg/cm/sec;. 
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0, = 0.37x l(T5.   t.5x !()--, and 4.2x 10 5 (cmz/sec), and D. = 1CT;0 [cm:'sec). < = 2, 3. 4.   The three values of Dl 
correspond lo observed diffusiviues of Si at, respectively, temperatures of 1100. 1200, and 1300 (°C) [3-5]. 

We compare computed and observed [4,5] results for the square of the thickness of the MoSi2 layer as a function 
of time for three temperatures in the left portion of Figure 1. Computed and experimental results are in excellent agree- 
ment with deviations being less than 10%. Mass concentrations of MoSi2, MO}Siit and Mo at a temperature of 1200 °C 
and t = 9.2 hr are shown as a function of position in the right portion of Figure 1. The MoSi2 layer is progressing from 
right to left in Figure 2; thus, the right-most curve is the mass fraction of MoSi2, the steeply-peaked center curve is the 
mass fraction of Mo ^Si 3, and the left-most curve is the unreacted Mo. 
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Figure 1. On the left, comparison of computed and observed values of the square of the thickness of the 
MoSi2 layer as a function of time for temperatures of 1100 °C (diamonds), 1200 "C (triangles), and 1300 °C 
(plusses). On the right, mass fractions of MoSilf MosSi3, and Mo at 1200 °C and f = 9.2 Ar as a function 
of position. 

Solutions shown in Figure 1 were obtained by hpr-tefinement and in the left portion of Figure 2 we show the spa- 
tial mesh and method order used at 1200 °C and t =9.2 hr. A coarse mesh and first-order method are used away from 
the reaction zone while finer meshes and high-order methods are used near the reaction. The mesh used to solve this 
problem is shown as a function of time in the right portion of Figure 3. The mesh is concentrated near the front and 
moving to account for the expansion as the reaction occurs. 

We also solved a two-dimensional problem involving a a = 1 x 10 (mm2) pellet with the parameters as specified for 
the one-dimensional problem at 1200 "C. In Figure 3, we show a quadrant of the mesh at 2, 10, and 30 hrs. obtained 
using piece wise-bilinear finite element approximations with Lobatto quadrature used to eliminate spurious oscillations [1]. 
Expansion occurs in regions having high MoSi2 concentrations. 

4. Discussion 

We have developed a reaction-diffusion system to analyze the RVI and other chemical vapor infiltration processes 
of fabricating ceramic composites. When used with an adaptive finite element software system (2], the model predicted 
the growth of an MoSi2 layer in a suiciding application [4,5]. Production rates, volume expansion, residual stresses and 
other effects may be studied as functions of, e.g., initial composition, temperature, and porosity. 

Future experiments will be performed with fibers embedded in a powder preform and our models will be modified 
to reflect this. Our investigation will seek to reveal optimal fiber placements, packing densities, and process strategies. 
By combining a computational and experimental program we are able to identify and verify prototypical optimal combi- 
nations much more rapidly than would be possible by using either paradigm alone. 
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Figure 3. Meshes at 2 (top), 10 (center), and 30 (bottom) ors. for a two-dimensional pellet. 
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ADAPTIVE NUMERICAL TECHNIQUES FOR 
REACTIVE VAPOR INFILTRATION 

S. Adjerid. J. E Flaherty, M. S. Shephard. Y. J. Wang 
Scientific Computation Research Center 
W. Hillig, J. Hudson. N. Paubandla 
Center for Composite Materials and Structures 
Rensselaer Polytechnic Institute. Troy. New York 12180. USA 

1. INTRODUCTION 

Paubandla et al. [1.2] describe a reactive vapor infiltration (RVR process for 
manufacturing fiber-reinforced ceramic composites where silicon carbide (SiC) or 
alumina (A/203) fibers are mixed with molybdenum (Mo) powder and pressed at 
room temperature to form a porous preform. The preform is exposed to a silicon 
tetra-chloride (SiClJ and hydrogen (Hi) flow where molecular-surface reactions 
liberate Si which, when absorbed into the preform, reacts with Mo to form a 
molybdenum di-silidde (MoSij) matrix. As a first step in modeling the RVI process, 
we present a mathematical model of the diffusion of Si into a compressed-powder Mo 
pellet to form the MoSi2 matrix. The production of an intermediate (Mo*Sij) silicide 
layer, the growth of the MoSiz layer, and the volume expansion of the pellet are 
predicted. The model, consisting of a nonlinear ordinary and partial differential sys- 
tem, is solved using a state-of-the-art adaptive software system (3] that includes capa- 
bilities for automatic quadtree-structured mesh generation, mesh refinement/coarsening 
(h-refinemeni), method order variation (p-refinement), and mesh motion (r-refinement). 
Computational solutions of one- and two-dimensional problems indicate that the adap- 
tive software is a robust and effective tool for addressing composite-processing prob- 
lems. When compared with experimental observations, the mathematical model 
predicts a parabolic growth rate of the silicide layer and the volume expansion of the 
pellet to a high degree of accuracy. Anticipated applications of the adaptive software 
and enhancements to the marh^manrai model are described in a final section. 

2. RVI MODEL 

Paubandla et al. [U] describe experiments where a pellet of a loosely com- 
pacted (45% porosity) Mo powder is subjected in a furnace to a flow of SiCl* ana «i 
that reacts on the surface of grains of the pellet to liberate Si and hydrochloric ac» 
ifiCl). The Si is absorbed into the Mo pellet and reacts as 

SMo + IS» —♦ MOiSi, (11) 

to form the silicide MoySii. which quickly reacts as 

AfojSj + 75/ —♦ SMoSi2 ^ 

to form MoSi2. These reactions occur in narrow fronts with free Si diffusing (pn»* 
pally by solid-state diffusion) through an MoSi2 layer to reach the reaction zo 
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The silicide-forming reactions (2.12) are accompanied by a 158% volume increase 
which fills the pores between grains of Mo powder, but may cause cracking [1.2]. 

Suppose the pellet contains a mixture of reactants and products and let the mass 
m,- C?) of species t at time t in a control volume V be 

m, = jpYj dV.   i=1.2. 3. 4. (2.3) 

where p (g/cm*) is the mixture density and Yit i = 1. 2. 3. 4, are. respectively, the 
mass fractions of Si. MoSi,, A/o55i3, and Mo. As the pellet deforms due to the 
volume change, we specify "the position of each material point x as a function of / 
and its initial spatial position X. With this reference, considerations of mass conser- 
vation for species i imply that 

-^-L= j Jjtido+ \pYiVnda + jr,dV,   i = 1, 2. 3. 4. (2.4) 

where r, {glcm}lsec) is the mass production rate and J, {glcmllsec) is the diffusive 
flux of species i. BV is the boundary of V, n is the unit outer normal to dV, and 

v(X.O = a,x(X./) (2.5) 

is the mixture velocity. 

Assuming Fickian diffusion 

J«--OjV(pyi). (2.6) 
with D, (cmhsec) the diffusivity of species i in the mixture, applying the divergence 
theorem to (2.4), and using (2.3) yields the partial differential system 

D(pY) 
Df     - VO; V(pKi) + p^Vv = f„   xeO,   t > 0.   i m 1. 2. 3. 4. (2.7a) 

where 

•£- = d, + *V (2.7b) 

Is the material derivative and ß is the spatial region occupied by the pellet at time r. 

Mass production rates are much faster than diffusion rates and. thus, cannot be 
observed. We assume that all reactions are irreversible and that they cease when one 
or more reactants are depleted. The form of the production rates should not 
significantly affect the results, so, for simplicity, we assume that they are linear in 
each concentration to obtain 

r, = -Ml(3wl + 7*2),   r2 = 5M2w2,   r3 = Af3(w, - Wj),      (2.8a.b,c) 

r4 = -5M4H>,.   „.„^(fllx-^-),   w2 = ^Hix-^1).   (2.8c.dx) 
M\      M4 m 1       A13 

The variables k{ and i2(cm3/j«e) identify the rates of the reactions (2.1.2) and 
"i ig) denotes the molecular weight of species i = 1, 2, 3, 4 (cf. Table I). 

The process has been assumed to be isothermal, which should be acceptable 
«ace thermal variations produced by the reactions (2.1.2) have a negligible influence 
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at the temperature level of the furnace. 

To include expansion, consider a volume V at time t where each chemical occu- 
pies the portion V,, » = I, 2. 3.4. Letting V0 denote the volume of the voids 
between chemical compounds. n(x,/) = VVV denote the porosity, (ii=miiVi 
(g/cm ), i: = 1. 2. 3. 4, denote species densiües (cf. Table I), using (2.3), and letting 
V tend to zero gives 

4   V,      * P* 
,'.I p,V    ,-i |3,Vv ,-i   p, 

Table I.  Molecular Weight Af, and Density p, of Each Species. 

(2.9) 

Species 
A/, 
P; 

T T T 

28 
2.34 

Mobn 
152* 

6.24 

M05^<3       MO 
564 96 
7.38        10.2 

Multiplying (2.7) by 1/0,. summing over i. and using (2.9). we obtain 

~T£" + (V-vXl - H) = I —ft + 7D,.Vpy.],   xe a   t > 0.      (110) 
üf <-i P. 

The system is closed by assuming that the Row is irrotational (V x v = 0) and by 
specifying a porosity function of the form u,(x. t) = A(p,yt, •••. YJ. Herein, we sim- 
plify (2.10) by neglecting u. V,/V. and the diffusive terms. As noted, u. is negligible 
in the silicide layer. Its effect in the unrcacted mixture may be included in the densi- 
ties of the initial components. With very little free Si in the pellet it is reasonable to 
neglect its contribution to the total volume. The diffusivities Dz, Dj. and DA are 
negligible relative to D,. With small Si concentrations, its diffusion may also be 
neglected when calculating the volume expansion. With these assumptions. (2.10) 
becomes 

v*-v=£—. (2.11) 
i-2 Pi 

Knowing the velocity divergence, we obtain the local volume change as 

£J|*Il.<detFXV-v) (2.12) 

where F is a matrix of the deformation gradients dx.ldXk, j, k - I, 2. 3. and detF is 
its determinant 

Specification of initial and boundary conditions complete the model (2.7,11,12). 
When, e.g., only Mo powder is present in the initial state, we prescribe 

p(X.0) = p.    y,(X.0) =0,   i » 1, 2, 3.    1\(X,0) = 1.   v(X,0) = 0,   XeayjBSX 
(2.13) 

where p* is the initial mixture density. 
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Boundary condirin 

' <pr'>""°-  '-2.3.4.  ,.».   ,>0 

WU"">0 «I =0.00037. (2.14) 

3- COMPUTATIONAL RESULTS 

"""wvitiesofÄ ar ™.—       • *•   lne three vaJu« of r> \.cm-isec) and 
«     & at, respectively, ten^anS 0*,5o ,& STE?1 » 0bserv<* 

?8ht portion of H«L , ^ ' a 9-2 Ar are shown «,« 2* A/0jA* and Afo at a 
^thuaTtte nahHS* L The «Wi2 layer Vnm^L ■    ""«ton of position in a» 

^ ^aM^T S**011 of "«sä* and ^ ?eft «nÄ "* ^P'y-Peated center 

'one whi£ fi\Lfoarse m«1 ancTfirst-onw ^ ^eülod order used at 1200 «r V^ 

927 



o 
O 

*s> Ol / 
O" / 

8" , 
Er 
E°- 

.-> a ta 

J-1 

•J 2 
c^* C T 
$"" Ss 

/* Sa" 
O" O a- 
a t^* 

A 
d" 

o. 
, 

3.0 s.o 10.0          15.0 20.0 J5.0 
-I  1 H* 

3.00.2 0.4 
i       i       i 

o.6 o.a i 0 1.2 1. t(hn) 
x(mm) 

Figure 1. On the left, comparison of computed and observed values of the 
square of the thickness of the MoSi2 layer as a function of time for tem- 
peratures of 1100°C (triangles). 1200 °C (plusses). and 1300 "C (dia- 
monds). On the right, mass fractions of MoSi2, MofSij, and Mo at 
1200 "C and /= 9.2 Ar as a function of position. 

Figure 3.   The mesh is concentrated near the front and moving to account for the 
expansion as the reaction occurs. 

Production times can be reduced by starting with a mixture of Mo and MoSi2 
[2]. We compare computed and observed [2] values for the square of the thickness of 
the MoSi2 layer as a function of time in the left portion of Figure 3. Initial concentra- 
tions consisted of all Mo; 50% Mo and 50% MoSi2; and 30% Mo and 70% MoSi2. 
Corresponding dirrusivities of Si in the mixture were DI = 1J x 10~3, 3.08 x 10"5. and 
3.08x 10" (cm /sec). The reaction temperature was 1200 °C and all other parame- 
ters were as specified in the previous computation. Computationally, we assume that 
the initial Mo-MoSi2 mixture quickly reacts to form Mo^Sij with an excess of either 
Mo or MoSi2 according to the phase equilibrium diagram. In particular, the 50% 
Mo-MoSi2 mixture reacts to form all A/oj5/3 at a 61% porosity and we use this as an 
initial state with the software. With 30% Mo and 70% MoSi2, we begin with an ini- 
tial state of 52% Mo^i, and 48% MoSi2. 

On the right of Figure 3. we present the relative change in volume as a function 
of time with initial concentrations of all Mo at 45% porosity and 50% Mo and 50» 
MoSi2 at 45% porosity. In order to give some indication of the effects of porosity, 
we also present the volume expansion corresponding to an initial dense state of all 
Mo. Production times are fastest with an initial mixture of 30% Mo and 70% MoSi2 
because of the need to diffuse less Si and the doubling of the diffusivity with the 
Mo-MoSi2 mixture. This latter effect is not understood at this time. Volume expan- 
sion with the dense Mo initial state is excessive and can result in cracking. Startinf 
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Figure 3. On the left, comparison of computed and observed values of the 
square of the thickness of the MoSi2 layer as a function of time for initial 
concentrations of all Mo (triangles); 50% Mo and 50% MoSi2 (plusses); 
and 30% Mo and 70% MoSi2 (diamonds) at 45% porosity. On the right 
relative change in volume as a function of time for initial concentrations of 
all Mo with no porosity, all Mo at 45% porosity, and 50% Mo and 50% 
MoSii at 45% porosity (top to bottom). 

As Mo grains react to form MoSi2, they swell to close pores and voids between 
them and, eventually, exert forces on neighboring grains. The initial effect reduces or 
eliminates fluid infiltration into the pellet and establishes solid-state diffusion as the 
dominant transfer mechanism. The latter effect creates a stress field that may induce 
cracking [2] or residual stresses. Pores close quickly to choke fluid access with the 
present initial porosities; however, we intend to model this process at the granular 
level to better understand the effects of initial packing densities. Our software is 
capable of solving these fluid-solid interaction problems with varying geometries and. 
if not useful in our RV1 application, it may be used to address other chemical vapor 
infiltration applications [5], More realistic surface reaction models between solid ano 
fluid phases will be introduced at this stage. 

Even without gaseous infiltration, it is important to understand the closing ot 
pores in the interior of the pellet to ensure that the matrix material has a tomogeneous 
structure and chemistry. This can be studied at the macroscopic level using the moon 
(2.7,8,11-14); however, a preliminary study at the granular level is aecessar^.^'^ 
least, identify an appropriate porosity function u{x.f) and other effective properties n* 
granular materials. Combined mechanical and chemical processing models win <* 
subsequently developed with a goal of predicting cracking and residual stresses. 

Future experiments will be performed with fibers embedded in a powder P^*^ 
and our models will be modified to reflect this. Our investigation will seek to revs» 
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ABSTRACT 
The paper introduces high temperature composite software developed for mechanism-based design of 

composite structures. Mechanism-based design is characterized by an understanding of the critical composite 
; behaviors at several physical scales: the fibrous (micro) scale, the ply/weave (meso) scale and the laminated part 

(macro) scale, and by the specification of the available design parameters to achieve functionality by those 
behaviors. A software framework is described which integrates material modeling and analysis codes, provides 
automated assistance, and links to material databases. Elastic and inelastic material modeling codes suitable for 
high temperature composites with complex reinforcement and weave/lay-up configurations are presented and 
references to their underlying theories are given. Advanced analysis techniques are outlined for numerically 
efficient computational plasticity based on mathematical homogenization, idealization error indicators for material 
scale, three dimensional crack propagation in a fibrous composite, and modeling of reactive vapor infiltration and 
chemical vapor deposition processes. 

INTRODUCTION 
Current research has been directed towards developing models of high temperature composite 

thermomechanical behaviors and the processes associated with their fabrication and degradation. The composite 
systems of interest include both metal matrix composites (MMC's) and ceramic matrix composites (CMC's), with 
AI2O3, SiC and W based reinforcements, and Al203, MoSi2, NiAl, SiC, and Ti based matrices. The approach used 
has been motivated by current fabrication technology, which allows the material's structure to be configured for an 
application, and by the complexity of phenomena governing the material's behavior during fabrication and during 
subsequent loading cycles. 

The mechanism-based approach involves modeling composite behaviors at several physical scales: e.g. the 
fibrous (micro), the ply/weave (meso) and the laminated part (macro) scales, and by linking the behaviors at each 
scale. The techniques developed can be applied to design analysis by the formulation of the appropriate idealized 
models at the relevant scales and the integration of those models while controlling idealization errors through multi- 
scale, adaptive or heuristic means. An important result of the project has been the implementation of mechanism 
based modeling techniques as computer codes. 
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The new capability can support the understanding of the relationships between a material system's meso/micro 
structural design parameters and its large scale functionality. For example, design changes in the reinforcement's 
shape and orientation can be related to the overall composite properties and hence to a part's deflection under load. 
In the reverse change-of-scale, a macro scale cooling hole configuration under a particular thermal-mechanical 
loading can be linked to the type and proximity to fiber-coating-matrix debonding. Mechanism-based models allow 
both alternative material and component designs to be evaluated more quickly without the expense of testing all 
macro scale configuration/environment permutations, and can even aid the design and sizing of test fixtures for 
those tests which are still needed. 

The rest of the paper outlines the supporting software system, the material modeling and some of the analysis 
techniques required to support the design of high temperature composites structures. The system overview 
describes the capabilities developed, the assistance provided application of the codes by non-experts, and the 
material property management issues. The material modeling section briefly describes the capabilities and models 
developed. The analysis section describes results for computational plasticity, error control for laminates, advanced 
multi-scale analysis techniques needed for the coupled behaviors exhibited by HTC structures, and process 
modeling. 

SYSTEM OVERVIEW 
A set of software framework tools has been developed (Beall et al., 1994) to integrate and facilitate application 

of the material modeling and analysis codes to design problems. The framework accommodates a spectrum of 
solution cost and reliability alternatives, in order to support the different design process stages, and provides 
application expertise and visualization tools. The system applies existing commercial packages where possible. The 
framework tools integrate the material modeling and analysis techniques. Both of these codes groups can still be 
operated separately or combined and linked with other user codes. 

The software interacts with a database housed s in the Mvision™* format and conforms to, or can be translated 
into ASTM and applicable PDES/STEP standards (PDA, 1993). The high temperature database contains more than 
320 material systems or constituents, 18,000 values, and 180 material characteristics. Geometric modeling tools, 
built on the kernel of commercial geometric modelers, create micro-structures, weaves, plies and component scale 
models and source their data from a spreadsheet. The spreadsheet format allows users to arrange and annotate data 
to suit their needs, tie together design parameters for automatic updates, and to implement "back of the envelop" 
computations. 

An analysis attribute code links material, boundary condition and other attributes with the corresponding 
geometric entities, for instance, associating a debond strength with a fiber/coating interface and a chemical 
concentration distribution with a matrix region of a model In addition, finite element results on a mesh are 
mappable to the mesh of another analysis by means of their ,.-mmon geometric entity. Representative volumes 
containing the most important geometric entities are readiK ■-rutructed from a library of constituents, typical 
flaws, etc., and these entities can be related to behavioral (:r. ; •-—, via associated attributes. Automatic meshing 
tools, generic mesh operations and data structures, and the induces to multiple finite element analysis codes 
complete the integration of automated modeling tools for FEA ' Re.ill et al., 1993). 

User application and assistance 
Expertise in several areas, including material and process modeling, analysis techniques and detailed software 

operation need to be applied simultaneously for reliable HTC analysis. High temperature composite material 
technology is evolving rapidly, requiring flexible application of mechanism based design tools rather than execution 
of prescriptive or handbook design procedures. This means that the software must support a process of i) definition 
of the required functionality, e.g. control heat flow in a given direction, resist a set of loading conditions within 
prescribed deflections, self-heal when damaged, etc. ii) development of the material behaviors and geometric 
features to support those functions, and iii) specification of the type of analysis results, cost (time) and reliability 
needed to confirm the governing behaviors or define unknown design parameters. The resulting description of the 
design and the analysis characteristics constitutes an "analysis goal", and is the starting point for automatically 
selecting and assembling material modeling and analysis codes to achieve it. The goal description is converted into 

* M/VISION is a registered trademark of MSC/PDA Engineering. 
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a plan, represented in part by a data flow model, and the plan is refined into a sequence of code executions. The 
result is a "strategy", the execution of which provides the desired results to the user. 

The approach requires translation of concepts and nomenclature for the user and the management of 
information on code capabilities and operation. Code capabilities may be controlled by the underlying theory or the 
current implementation of the theory and are modeled in terms of their required/optional inputs and outputs, 
restrictions on values, cost, reliability, and a classification of the behavioral assumptions used. These code attributes 
determine its "applicability" for strategy creation and require hierarchal and relational data structures. The 
information can be used to translates between the concepts and nomenclature of the mechanism based designer and 
the appropriate composite theory, and to automatically assemble strategies based on compatible data flow and 
underlying modeling assumptions. The implementation of the approach requires the framework tools described 
earlier to facilitate material modeling and analysis, and a standardized exchange of data between codes developed 

from multiple sources. 
A data flow schematic of a basic composite Desjgn ,ntertaces 

property strategy is diagramed in Figure 1. The 
arcs indicate the type of information shared by 
the boxed computational functions. The goal is to 
estimate linear elastic laminate properties in 
seconds from given constituent properties, micro- 
structural and ply lay-up. The method used can 
depend on the shape of the reinforcement, and 
this aspect of the applicability would need to be 
refined based on the user input before any code 
would be executed. 

From the user's perspective, the execution of 
the analysis goal is no more involved than using 
any  other  spreadsheet  function,   requiring  no 
expertise      or      involvement      in      software 
development. The current design parameters are 
recovered from the spreadsheet, and transferred „,,*,-,      *     •       •    *   o .:„,. ..... ,   t        Fqure 1: Data Fow for Laminate Properties 
to the goal processor. If data is missing or out of <-■««■=      w 
the applicability range of available strategies, then the user is informed of the specific problem, otherwise the 
results are automatically computed and returned to the spreadsheet, used as input for other analysis (as shown), or 
displayed by visualization code, e.g. such as the plots n( Figure 2 and 3. 

Material Property Management 
Several database related features are available which either directly support the conceptual design process in 

material selection, or support analysis strategies. Material data requires the structuring of data so as to define not 
only the value to be used in an analysis, but also the scale, specimen characteristics, source of data and the 
environmental parameters of the test - the "pedigree". Reliable analysis requires that the pedigree be consistent with 
the underlying analysis models, so the extraction of relevant data is related to the creation of strategies from 
modeling codes. For example, the modulus of a SiC/SiC CMC will not only vary with temperature, but also with 
time depending on the degree of micro mechanical damage before the measurement and the presence of water and 
oxygen. The material database is not only a source of material parameters, but also a source of known behaviors 
caused by the environment. Translation between the standard procedures and nomenclature of the testing 
community and the material parameter needs of analysis and design functions is also required in order to obtain 
meaningful data. 

Sources include published papers, industry data sheets, handbooks, and test data generated at Rensselaer. 
Constituent properties (matrix and reinforcements), data for dog-bone and tubular test specimens, and durability of 
tested parts in oxidizing and corrosive environments are stored. Manufacturing size, porosity or volume fraction 
limitation data are available where supplied by vendors, and background documentation and SEM images of 
material systems are also accessible. The database facilities can be configured for automated search and merit 
indicy plotting (Ashby, 1992). 
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MATERIAL MODELING 
Software tools described here include linear elastic property estimation codes, initial failure maps of the 

constituents and their interfaces, and mathematical homogenization of unit cells with complex geometries. Their 
capabilities are presented and some example results are shown. 
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Linear Elastic Properties and Limits 
Routines are available to predict overall material properties for 

linear elastic analysis in terms of constituent thermo-elastic properties, 
volume fractions, and micro-structural geometry. Those related to ply 
properties are the Hashin-Strikman Bounds (Hashin and Rosen, 1964) 
for the overall elastic moduli of two-phase composites, the Mori-Tanaka 
(Mori and Tanaka, 1973) and the self-consistent methods (Teply and 
Dvorak, 1988), providing estimates for several reinforcement shapes in 
either aligned or random configurations. Figure 2 compares the methods 
for the overall transverse modulus of a fibrous ply as a function of 
volume fraction and Figure 3 visualizes trends in overall elastic axial 
shear properties as a function of volume fraction and temperature. 
Additional codes evaluate linear coefficients of thermal expansion (CTE) 
of two-phase or multi-phase composite materials in terms of overall and 
phase elastic moduli, phase CTE's and volume fractions. 

Other codes evaluate mechanical, 
thermal, and transformation concentration 
factors, which are useful for estimating phase 
stress and/or strain averages in two-phase and 
multi-phase composites subjected to uniform 
overall stress or strain, a uniform change in 
temperature, and uniform eigenstrains in the 
phases (Dvorak and Benveniste, 1992). If 
properties for a constituent are not available 
from tests, they can be computed "in-situ" by 
the Mori-Tanaka or self-consistent methods 
from known overall moduli, phase volume 
fraction, and the known properties of the 
other constituent. Figure 4 shows the results 
of a strategy to study the effects of variations 
in reinforcement aspect ratio and volume 
fraction on the effective axial shear modulus 
of a single ply. The designer can easily see 
the effects of changes in both application 
temperature and volume fraction. 

At the next larger scale, the plane stress stiffness, the compliance of asymmetric laminated plates under 
uniform in-plane loads, and the transversely isotropic coefficients of thermal expansion of a symmetric laminated 
plate under a uniform temperature can be estimated. Codes evaluate the mechanical, thermal, and transformation 
distribution factors, leading to average stresses in plies of a symmetric laminated plate under uniform in-plane 
loads, temperature change, and ply eigenstrains. Other supporting routines evaluate the Eshelby tensor for 
transformed homogeneous inclusions of an ellipsoidal shape in an anisotropic solid, compute the P-tensor for an 
ellipsoidal inclusion in an anisotropic solid, perform numerical operations with tensors or mathematical 
expressions, and convert between elastic constants, stiffness and compliance matrix forms. 

Initial brittle and plastic material failure of fibrous composites due to thermal-mechanical loading can also be 
predicted by the software. Debonding at the interfaces between the fiber, coating and matrix, and fracture of the 
fiber, coating or matrix materials are predicted for symmetric laminated plate configurations. The software 
implements the theory found in (Dvorak, 1992), (Dvorak and Benviniste, 1992), (Dvorak et al., 1992), by mapping 
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macro scale FEA temperatures and stress distributions onto the micro-mechanical failure map model. The model 
accounts for residual stress effects due to a difference between a stress free state, e.g. the processing temperature, 
and operating temperature. The models uses the linear elastic constituent properties, composite configuration and 
known allowable stresses in or between phases: libers, coatings, or matrix. 

Fiaure5 (left) shows the application of the failure 
surface codes to the inside "hot" layer of a thermally loaded 
ceramic combustor geometry with cooling and other 
hardware holes. Elements are shaded based on their 
proximity to the given debond strength limit, indicating 
potential problem areas on the part. Similar distributions are 
available for other material failure modes. An animated 
stepping "through the thickness" helps visualize interior- 
exterior trends. Figure 5 (right) applies the model in an 
alternative format, plotting the required matrix cracking 
strength for each element in the combustor above as a 
function of temperature. Other codes are available to predict 
the onset of material plasticity (Dvorak and Bahei-El-Din, 
1987). 
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Unit Cells 
The classical mathematical homogenization theory for heterogeneous medium has been generalized (Fish et 

ah, 1996a) to account for eigenstrains. The resulting method first defines a three dimensional geometric model of a 
unit cell, assigns constituent material properties, automatically meshes the geometry, and then analyzes the model 
for homogenized properties. The software framework provides facilities to automatically create the unit cell 
geometric models from size parameters of the constituent features. Though it is computationally more expensive 
than other methods, it is useful for geometrically complex microstructures where a representative geometry can be 
defined. Unit cell modeling has been used in the multi-scale computational technique and for non-linear analysis 
with a plasticity model (Shephard et al., 1995). Given an appropriate representative geometry, it can also predict 
linear elastic properties for woven composites for use directly with conventional macro-scale analysis tools and can 
be readily adapted for thermal conductivity and chemical diffusion problems. Unit cells for oriented fibers, periodic 
"random" fibers, periodic "random" particles, and plain weave fabrics are available, see Figure 6 below. Unit cells 
for other woven fabrics, defects and more complex three dimensional fiber architectures are under development. 
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Figure 6: Unit Cell Geometry and Mesh Examples 

ANALYSIS OF COMPOSITE STRUCTURES 

Computational Plasticity for Composite Structures Based on Mathematical Homogenization 
The computational challenge of 

solving      nonlinear      heterogeneous 
systems is enormous. While for linear 
problems a unit cell or a representative 
volume problem has to be solved only 
once, for nonlinear history dependent 
systems it has to be solved at every 
increment   and   for  each   integration 
point. Moreover, history data has to be 
updated at a number of integration 
points    equal    to    the    product    of 
integration   points   at   all   modeling 
scales   considered.   To   illustrate   the 
computational complexity involved we 
consider elasto-plastic analysis of the two-scale composite flap problem shown in Figure 7. The macrostructure is 
discretized with 788 tetrahedral elements (993 unknowns), whereas the microstructure is discretized with 98 
elements for the fibers and 253 elements for the matrix. The CPU time on a SPARC 10/51™ for this problem was 8 
hours, as opposed to 10 seconds if metal plasticity was used instead, which means that 99.7% of CPU time is spent 
on constitutive evaluation in the unit cells. 

Exhaust Nozzle Flap FE Mesh Unit Cell Mesh 
Figure 7: Engine Flap Example 
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The application of a novel modeling scheme based on mathematical homogenization theory with eigenstrains 
(Fish et al., 1996a) and transformation field analysis (Dvorak, 1992) enables the solution of these large scale 
structural systems in heterogeneous media at a cost comparable to problems in homogeneous media without 
significantly compromising on solution accuracy. The approach represents a breakthrough compared to. existing 
modeling schemes which are either too inaccurate to provide reliable solutions for difficult problems, or too 
expensive due to the computational complexity involved. 

The heart of this new technique is the generalization of the 
classical mathematical homogenization theory for 
heterogeneous medium to account for eigenstrains (Fish et al., 
1996a). Starting from the double scale asymptotic expansion 
for displacements and eigenstrains we derive a close form 
expression relating arbitrary eigenstrains to the mechanical 
fields in the phases. Subsequently, the overall structural 
response is computed using an averaging scheme by which 
phase concentration factors are computed in the average sense 
for each phase, i.e. history data is updated only at two/three 
points (fiber and matrix/ interphase) in the microstructure, one 
for each phase. Macroscopic history data is stored in the data 
base and then subjected in the post-processing stage onto the 
unit cell in the critical location identified by microscale 
reduction error indicators. 

For the flap problem considered in Figure 7 the CPU time for the averaging scheme with variational micro- 
history recovery is only 30 seconds on SPARC 10/51™ as opposed to 8 hours using classical mathematical 
homogenization theory. Figure 8 shows that the maximum error in the micro-stress in the unit cell located in the 
critical region is only 3% in comparison to the classic homogenization theory. 
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Figure 8: Unit Cell Relative Error 

Idealization Error Estimators 
Idealization error estimators for laminated composite shell structures developed in Fish et al. (1994a), Fish et 

al., (1994b) are aimed to quantify three sources of errors and to address the following issues: 
i. What are the regions within the problem domain where the macromechanical description (shell model), 

which is the most inexpensive modeling capability, is insufficient, i.e., where the shell model introduces 
unacceptable errors with respect to a more comprehensive ply-by-ply (mesomechanical) model. Idealization error 
estimators should be able to identify not only the precise location within the plane of the shell, but also the layers 
within the laminate where the use of mesomechanical description may result in unacceptable errors of interlaminar 
stresses. 

The Dimensional Reduction Error estimator (DRE) developed in Fish et al. (1994a) builds on a combination of 
mechanistic insight and a rigorous mathematical approach. By this technique the dimensional reduction error is 
approximated by a linear combination of some basis functions in the auxiliary mesomechanical finite element mesh 
that accurately represent the kinematics of individual plies (Fish et al., 1994a). 

ii. Enriching the fundamental kinematics of the equivalent single-layer (macro) model with a discrete-layer 
(meso) model in the vicinity of the most critical layers enables to model various failure modes on the lamina level 
such as delamination. Unfortunately, in many cases the mechanism that causes failure is at a smaller scale - the 
scale of microconstituents. A common computational rationale today is to investigate various microprocesses that 
may lead to a progressive failure by considering a unit cell or a representative volume problem. The mechanisms 
that allow us to do so are the classical assumptions of periodicity and uniformity of macroscopic fields. However, in 
the areas of high stress concentration, which are of critical interest to the analyst, periodicity assumptions are not 
valid, and thus the application of conventional homogenization techniques in the "hot spots" may lead to poor 
predictions of local fields. 

The adequacy (or lack of it) of the homogenization theory has been studied in Fish et al. (1994b) on the basis 
of assessing the uniform validity of the double scale asymptotic expansion, which serves as a basis of mathematical 
homogenization theory. The quality of the homogenization has been assessed on the basis of the relative magnitude 
of the first term neglected by the classic homogenization theory to those taken into account. 
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A closed form expression for an idealization error estimator associated with the microscale reduction has been 
derived in Fish et al. (1994b). The Microscale Reduction Error (MRE) estimator relates the homogenization (or 
scale reduction) error to macroscopic fields (strain and strain gradients) and to the details of microstructure 
(compliances of phases, volume fraction and the size of the unit cell). It has been found that there are four factors 
affecting the homogenization error: (i) the size of the unit cell in the physical domain Y, (ii) the mismatch 
parameter, (iii) the volume fraction, (iv) the strain gradients on the macro-scale. 

Besides the discretization error indicators there are other sources of idealization errors, such as microstructure 
randomness, material and geometric nonlinearities, which so far have not been considered. 

Fast adaptive Iterative Solvers for a Heterogeneous Medium 
The multigrid technology with special inter-scale connection operators has been developed in Fish and Belsky 

(1995a), Fish and Belsky (1995b), Fish et al. (1996a). The multigrid procedure starts by performing several 
smoothing iterations on the micro-scale in the regions identified by MRE indicators. Consequently, the higher 
frequency modes of error are damped out immediately. The remaining part of the solution error is smooth, and 
hence, can be effectively eliminated on the auxiliary coarse mesh. It has been shown (Fish and Belsky, 1995a), 
(Fish and Belsky, 1995b), (Fish et al., 1996a) that the finite element mesh on the meso-scale (ply level) serves as a 
perfect mechanism for capturing the lower frequency response on the micro-scale. Therefore, the residual in the 
finite element mesh on the micro-scale is restricted to the meso-scale, while the smooth part of the solution is 
captured in the finite element mesh on the meso-scale. The oscillatory part of the. solution on the meso-scale is 
again damped out by a smoothing procedure. The lower frequency response on the meso-scale is resolved on the 
macro-mesh (shell level). The resulting solution on the meso-scale is obtained by prolongating displacements from 
the macro-mesh back to the finite element mesh on the meso-scale and by adding the oscillatory part of the solution 
previously captured on the meso-scale. Likewise, the solution on the micro-scale is obtained by prolongating the 
smooth part of the solution from the meso-scale. and by adding the oscillatory part that has been obtained by 
smoothing. This process is repeated until satisfactory accuracy is obtained. 

The adaptive strategy, 
illustrated by example in 
Figure 9, starts by employing 
Discretization Error indicators 
and adaptively refining the 
finite element mesh on the 
macromechanical (shell) level 
to ensure accurate Macro- 
solutions. Subsequently, 
Dimensional Reduction Error 
(Fish et al., 1994a) indicators 
identify the areas where the 
most critical interlaminar 
behavior takes place, and 
consequently, a more 
sophisticated discrete layer 
model is placed there. Fast 
iterative solvers based on the 
multigrid technology with 
special inter-scale connection 
operators (Fish and Belsky, 
1995a), (Fish and Belsky, 
1995b), (Fish et al., 1996a) are 
used to solve a coupled two- Figure 9: Multi-scale Example 
scale     Macro-Meso     model. 
Once the phenomena of interest on the Macro-Meso levels have been accurately resolved, Microscale Reduction 
Error (Fish et al., 1994b) indicators are used to identify the location of critical microprocesses and consequently, a 
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icro mesh is placed there. The three-scale coupled Macro-Meso-Micro model is again solved using a three-scale 
multiend process (Fish and Belsky, 1995a), (Fish and Belsky, 1995b), (Fish et al., 1996a). Finally, Discretization 
Error~indicators and adaptive refinement strategy are employed simultaneously at three different scales to ensure 

reliable multiscale simulations. 
The three-scale model described in Figure 9 contains over 1,000.000 degrees-ot-freedom. The estimated CPU 

time for solving it with conventional solvers based on skyline storage is over 700 hours on a single processor 
SPARCstation 110/51™, which essentially makes the model unusable from the practical point of view. Using a 
special purpose multigrid technology for heterogeneous media developed in (Fish and Belsky, 1995a), (Fish and 
Belsky, 1995b), (Fish et al., 1996a) the same problem has been solved in less than 16 hours on a single processor 
SPARCstation 10/51™, turning it into an overnight job 

The derivation of the inter-scale transfer operators is based on the asymptotic solution expansion. The 
asymptotic forms of the prolongation and restriction operators were obtained by discretizing the corresponding 
asymptotic expansions. For unit cells of finite size the regularization functions were introduced (Fish and Belsky, 
1995b) in order to obtain well-posed inter-scale transfer operators, termed homogenization based operators. 

The rate of convergence of the multigrid process has been studied in Fish and Belsky (1995a). It has been 
proved that if the stiffness of a fiber is significantly higher than that of a matrix, then the multigrid method 
converses in a single iteration. This behavior of the multigrid method for heterogeneous media together with its 
linear dependence on the number of degrees-of-freedom, makes it possible to solve large scale coupled global-local 
problems with the same amount of computational effort, or faster, than would be required to solve the 
corresponding uncoupled problem using direct solvers. 

Crack Growth Simulation 
In Beall et al. (1996) the crack growth analysis methodology that accounts for the dominant influence factors 

affecting crack growth on the micromechanical level has been investigated. An automated system has been 
developed that explicitly represents the microstructure of the composite at the crack front while using homogenized 
material properties elsewhere. Procedures for automatic construction and update of the models and meshes used in 
the analysis have been developed in order to avoid any time consuming human intervention. Figure 10 shows the 

Macro Scale Specimen Macro to Micro Scale Transition Mesh 

Four Fibrous Unit Cells 

Figure 10: Crack Propagation Models 
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evolution of the micro-crack growth in the turbine blade. It has been found (Beall et al. 1996) that there is a 
significant difference in the crack growth pattern when accounting for the microstructure. Crack propagation 
criteria in the microstructure is based on the energy release rates, fracture toughnesses of the microconstituents and 
their interface (He and Hutchinson, 1989) 

XXX 
Process Modeling 

The process modeling codes simulate the time 
varying production, or degradation, of composite 
materials. The models include the reaction and transport 
of chemical species and material flows. Altering process 
parameters can improve production rates and/or minimize 
defects. Product designers can estimate processing 
residual stresses or simulate oxidation/hot corrosion for 
life prediction. Codes have been applied to the reactive 
vapor infiltration process for forming MoSi2 from Mo 
powder, CVD fiber coating with ßA^C^, and for 
oxidation simulations of SiC composites (Adjerid et al., 
1995), (Adjerid et al. 1996). Inputs for the general code 
are the initial geometry and mesh, process attributes per 
phase, and boundary condition distributions as a function 
of time. Models input to the code are categorized as 
chemical reaction models, expansion, mechanical models 
for solid phases, diffusion models of gaseous phases, and 
surface models for phase interfaces. Error control 
parameters are given for the adaptive refinement 
techniques. Outputs are the time varying volume change, 
shape, velocity, temperature, concentration and pressure 
fields. 

Figure 11 shows one frame of a result for the ßAl2Ü3 
coating simulation. The image is a cross section of a 
tubular reaction chamber, through the center of which 
moves    the    fiber   to    be    coated    (left).    Reactants, 
concentrations of which can be shown in color, are injected at the bottom of this design, and the flow field of the 
gaseous phase is indicated by the vectors. The code is currently used to both optimize and control the actual 
production hardware. Results can be animated to show the dynamic behaviors resulting from the initial design 
geometry and boundary conditions. 

Figure 11: Fiber Coating Simulation 

CONCLUSION 
Success with high temperature composites has required progressively more complex micro-structures and 

behavioral understanding. Design requires support by mechanism based analytical tools to take full advantage of 
HTC properties and to avoid material failures. The models and tools developed, integrated with their supporting 
framework, are capable of simulating key composite behaviors and processes at multiple scales 

ACKNOWLEDGMENT 
The support of ARPA/ONR under grant number N00014-92J-I779 and NSF award ECS-9257203 are 

gratefully acknowledged. 

REFERENCES 
Adjerid, S., Flaherty, J. E.. Hillig, W., Hudson, J., and Shephard, M. S., 1995, "Modeling and the Adaptive 

Solution of Reactive Vapor Infiltration Problems", Modeling and Simulation in Materials Science Engineering, Vol. 
3, pp. 737-752. 

280 

i 



Adjerid. S.. Flaherty, J. E„ Hudson, J. B., and Shephard, M. S., 1996, "Adaptive Solution For Fiber Coating 
Process", to be published in Modeling and Simulation in Materials Science Engineering. 

Ashby M.'F. 1992, "Materials Selection in Mechanical Design". Pergamon Press. Oxford, New York. 
Beall. M. W.. Fish. J., Shephard. M. S., Dvorak. G. J., Shek, K.-L.. Wentorf, R., 1994, "Computer-Aided 

Modelina Tools for Composite Materials", Ceramic Engineering and Science Proceedings of the American 
Ceramicfsocieiy's 18th Annual Meeting and Exposition, Cocoa Beach, FL, January 9-12. 

Beall, M. W„ and Shephard, M. S., 1996, "Mesh Data Structures for Advanced Finite Element Applications", 
submitted to the International Journal of Numerical Methods in Engineering. 

Beall, M. W., Belsky, V., Fish, J. and Shephard, M. S., 1996, "Automated Multiple Scale Fracture Analysis", 
SCOREC Report. 4-1996, Rensselaer Polytechnic Institute, Troy, NY. 

Dvorak, G. J., and Bahei-El-Din, Y. A., 1987, "A Bimodal Plasticity Theory of Fibrous Composite Materials", 

ACTA Mechanica, 69. pp. 219-241. 
Dvorak, G. J., 1992,"Transformation Field Analysis of Inelastic Composite Materials", Proc. R. Soc. Lond. A, 

437, pp 311-327. . 
Dvorak, G. J., and Benveniste, Y., 1992, "On Transformation Strains and Uniform Fields in Multiphase Elastic 

Media", G. J. Dvorak and Y. Benveniste, Proc. R. Soc. Lond., A 437, pp. 291. 
Dvorak, G. J., Chen, T and Teply, J., 1992, "Thermomechanical Stress Fields in High-temperature Fibrous 

Composites. I: Unidirectional Laminates", Composites Science and Technology, Vol. 43, pp. 347-358. 
Fish, J., Markolefas, S., Guttal, R. and Nayak, P., 1994a, "On Adaptive Mutilevel Superposition of Finite 

Element Meshes," Applied Numerical Mathematics, Vol 14. 
Fish, J., Nayak, P., and Holmes, M. H., 1994b, "Microscale Reduction Error Indicators and Estimators for a 

Periodic Heterogeneous Medium," Computational Mechanics: The International Journal, Vol. 14, pp. 323-338. 
Fish, J., and Belsky, V, 1995a, "Multigrid Method for a Periodic Heterogeneous Medium. Part I: Convergence 

Studies for One-dimensional Case", Comp. Meth. Appl. Mech. Engng., Vol. 126, pp. 1-16. 
Fish, J. and Belsky, V, 1995b, "Multigrid method for a Periodic Heterogeneous Medium. Part 2: Multiscale 

Modeling and Quality Control in Multidimensional Case", Comp. Meth. Appl. Mech. Engng., Vol. 126, 17-38. 
Fish, J., Suvorov, A., and Belsky, V, 1996a, "Composite Grid and Adaptive Multigrid Methods for 

GlobaJJocal Analysis of Laminated Composite Shells," to appear in Applied Numerical Mathematics. 
Fish, J., Pandheeradi, M.t Shek, K., Shephard, M. S., 1996b, "Computational Plasticity for Composite 

Materials and Structures Based on Mathematical Homogenization: Theory and Practice", to appear in Comp. Meth. 

Appl. Mech. Engng. 
Hashin, E., and Walter Rosen, B., 1964, "The Elastic Moduli of Fiber-Reinforced Materials", Journal of 

Applied Mechanics, Transactions of the ASME, pp. 223-232, June. 
He, M., and Hutchinson, J. W., 1989, "Kinking of a Crackout of the Interface", Appl. Mech., Vol. 56, pp. 270- 

278. 
Mori, T and Tanaka, K., 1973, "Average Stress in Matrix and Average Elastic Energy of Materials with 

Misfitting Inclusions", Acta Metallurgica, Vol. 21, pp. 571-574, May. 
PDA Engineering, 1993, "M/VISION Material System Builder User's Guide and Reference", Release 1.2, 

Publication No. 2190011, 2975 Redhill Avenue, Costa Mesa, California, 92626. 
Shephard, M. S., Beall, M. W., Garimella, R., and Wentorf, R., 1995, "Automatic Construction of 3-D Models 

in Multiple Scale Analysis", Computational Mechanics, 17, pp. 196-207 
Teply, L., and Dvorak, G. J., 1988, "Bounds on Overall Instantaneous Properties of Elastic-Plastic 

Composites", Jan J. Mech. Phys. Solids, Vol. 36, No. 1, pp. 29-58. 

281 



A Posteriori Error Estimation for the Finite Element 
Method-of-Lines Solution of Parabolic Problems 

Slimane Adjerid, Ivo Babuska and 
Joseph E. Flaherty 

SCOREC Report #8-1997 
Scientific Computation Research Center 

Scientific Computation Research Center 
Rensselaer Polytechnic Institute 

Troy, NY   12180-3590 
voice 5182766795 
fax 5182764886 



A POSTERIORI ERROR ESTIMATION FOR THE 

FINITE ELEMENT METHOD-OF-LINES SOLUTION 

OF PARABOLIC PROBLEMS 

SLIMANE ADJERIDi, IVO BABUSKAi, AND JOSEPH E. FLAHERTY! 

Abstract. Babuska and Yu constructed a posteriori estimates for finite element 

discretization errors of linear elliptic problems utilizing a dichotomy principal stating that 

the errors of odd-order approximations arise near element edges as mesh spacing decreases 

while those of even-order approximations arise in element interiors. We construct similar 

a posteriori estimates for the spatial errors of finite element method-of-lines solutions of 

linear parabolic partial differential equations on square-element meshes. Error estimates 

computed in this manner are proven to be asymptotically correct; thus, they converge in 

strain energy under mesh refinement at the same rate as the actual errors. 

Key Words. Finite element methods, method of lines, a posteriori error estimation, 

parabolic partial differential equations 
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1. Introduction.   A posteriori estimates of discretization errors have been an integral 

part of adaptive finite element methods since their inception nearly twenty years ago [5, 

6].   Local contributions to global error estimates furnish error indicators that are typically 

used to control adaptive enrichment through mesh refinement/coarsening (h-refinement) 

and/or method order variation (p-refinement).   Thus, meshes are refined and/or method 

orders increased where error indicators are large and an opposite course is taken where 
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error indicators are small.   An ideal a posteriori error estimation techniques would 

i.      be asymptotically correct in the sense that the error estimate in a particular norm 

approach zero under enrichment at the same rate as the actual error; 

ii.     be computationally simple by requiring a small fraction of the solution cost; 

iii.    be robust by furnishing accurate estimates for a wide range of meshes and method 

orders; 

iv.    provide relatively tight upper and lower bounds of the true error in a particular norm; 

and 

v.     supply local error indicators that provide global error estimates in several norms. 

Recent surveys [8, 9, 16] indicate that no error estimates satisfy all of these criteria for all 

combinations of meshes, method orders, geometries, etc. 

Babuska and Yu [10, 18, 19] constructed a posteriori error estimates in strain energy 

for the finite element solution of linear elliptic problems on square domains by using a 

dichotomy principal stating that the errors of odd-order approximations arise at element 

edges as the spacing of a square-element mesh decreases to zero while those of even-order 

approximations arise in element interiors in the same limit.   Yu [18, 19] established the 

asymptotic correctness of these error estimates for finite element spaces consisting of 

piecewise bi-polynomials of arbitrary degree.   Adjerid et al. [3] showed that similar esti- 

mates could be obtained for the spatial discretization errors of method-of-lines solutions of 

one-dimensional parabolic partial differential equations.   We extend this earlier work by 

constructing a posteriori estimates for the spatial errors of finite element method-of-lines 

solutions of two-dimensional linear parabolic equations.   We establish asymptotic correct- 

ness of these error estimates on square elements and show that temporal variations of spa- 

tial errors may be neglected for both odd- (§3) and even-order (§4.2) finite element solu- 

tions.   Error estimates of even-order finite element solutions may also be obtained by 
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solving local parabolic problems (§4.1), which include the temporal variation of the error 

estimate. This procedure might be useful when error estimates are used to control mesh 

motion (r-refinement) [2]. 

Both odd- and even-order error estimation procedures are computationally simple. 

The odd-order estimates only require jumps in solution gradients at the four element ver- 

tices and neither element nor edge residuals are needed. Only nearest-neighbor interaction 

is necessary; thus, simplifying implementation on a parallel computer. Gradient jumps 

may be shared between elements sharing a vertex to halve the cost relative to element-by- 

element computation. The even-order elliptic and parabolic estimates are local to the ele- 

ment. No off-element communication is necessary; hence, there is no search for neighbor 

information and parallelization is perfect. Computations (§5) imply that the even-order 

estimates improve with increasing polynomial degree. 

Numerical examples presented in §5 and elsewhere [1] indicate that the error esti- 

mates are applicable more widely than the present theory would suggest. Thus, for exam- 

ple, they appear to work in the presence of some nonlinearity, when some singularities are 

present, and on graded quadrilateral-element meshes. Experiments of Baehmann et al. [4] 

and Hin et al. [11] would suggest that the even-order estimates are applicable to triangular 

elements. 

2. Formulation. Consider the linear, scalar, two-dimensional parabolic differential 

equation 

dtu +Lu =f(x),    x = [x^x2]TeQ,    t > 0, (2.1a) 

with 

2     2 

L" = - £ I ht (
aj jc 003* ") + b (x)«. (2. lb) 

on a bounded rectangle Q subject to the initial and Dirichlet boundary conditions 

u (x,0) = u°(x),    x e Q {j an, (2. lc) 



u(x,/) = 0,    xeaa    f>0. (2. Id) 

The functions ajJc(\), j, k = 1, 2. and b(\) are smooth with L being a positive-definite 

operator. 

The Galerkin form of (2.1) consists of determining u e HQ satisfying 

(v,3,u)+A(v,u) = (v/),   r>0, (2.2a) 

A(V,K)=A(V,K°),    f=0,    for a// v e tf <{, (2.2b) 

where the strain energy and L2 inner products, respectively, are 

2     2 
A(v,«) = JJ[£ ti ai,kWdx,vdXk

u +b(X)VM]dx{dx2 (2.2c) 

and 

(v ,M ) = (v ,u )0 = JJ »v dx xdx2. (2.2d) 
n 

As usual, functions in the Sobolev space Hs, s > 0, have the inner product and norm 

(v,u)s=   £ 0,»,a,a;a,>),    II"II? = (u,u)s, (2.2e,f) 
lai<s 

where loci = c^ + a2.   The subscript 0 on H1 additionally restricts functions to satisfy 

(2. Id). 

Finite element solutions of (2.2a,b) are obtained by approximating Hl by a finite- 

dimensional subspace SN,p and determining U€SQ
,P
 such that 

(V\a,t/) + A(V,£/) = (V,/),    r>0, (2.3a) 

A(V,U)=A(V,u°),    t=0,   forall VeSft*. (2.3b) 

Partitioning Q. into a uniform mesh of square elements A,-, i = 1, 2, •••, N, define S^ as 

S
N

>P = (w6H1lw(x)eöp(A,),X6Af,j = 1,2, -,N} (2.4) 

where (2, (A,-) is the space of bi-polynomial functions that are products of univariate poly- 

nomials of degree p in x [ and x2 on A,-. 
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The following two lemmas describe standard interpolation and a priori discretization 

error estimates for finite element solutions of (2.2) that will be useful during the subse- 

quent analysis. 

LEMMA 2.1. Let We S%-p be an interpolant of w e #0' r-^Hp+l that is exact when 

w e Qp (£>)•   Then, there exists a constant C > 0 such that 

\\W-w\\s <C^+1-J|M|.+1>    s =0,1, 
where 

h = l/W. 

Proof.   Cf., e.g., Oden and Carey [12]. D 

(2.5a) 

(2.5b) 

LEMMA 2.2.   Let u and U be solutions of (2.2a,b) and (2.3), respectively.   Further let 

A(V,U)'=A(V,u),    for all VeS^-P,    t > 0, (2.6) 

be the strain energy projection of u   onto S%-p.   If u°eH^ f^H1 and u   is smooth 

enough for all terms in (2.7) to be bounded, then there exist C > 0 and tQ>0 such that 

\\U - U\\i < Ch*p^\\\dtu(-,x)\\}+xdx,    t > 0, (2.7a) 

na;w-,oii0 * chp+l[\\u% + £ \\diu(;t)\\p +, + | iia,"+1
M(-,T)ii,+1^T 

/=0 t-tn 

+ j\\dtu(-,x)\\2dx],    t>t0>0,    n>0, (2.7b) 

lia^COIIi < ChP [\\u% + X  max  ||a/«(-,x)|L+1 + 
/=0'_'o<t<r 

J   \\drXu{;X)\\jdx 
t-tn 

t 

+ h\\u% + hj\\f\\0dx],    t>t0>0,    n>0, 
o 

(2.7c) 

where 
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e(xj) = u(xj)-U(xj). (2.7d) 

Proof. Cf. Wait and Mitchell [17], e.g., for the proof of (2.7a) and Thomee [15] for 

the proofs of (2.7b) and (2.7c). G 

2.1. Preliminary considerations. Let K[Z] be the univariate operator that interpo- 

lates functions in H^ (z-h/2,z+h/2) at the Lobatto points of degree p + 1, p > 1, on 

[z-h/2.z+h/2].   Also let 

Vp+l(z,z) = z^-m]zp+l (2.8) 

vanish at these p + 1 Lobatto points. Hence, yp+{(z,z) and Yp+l(z,z) are, respectively, 

proportional to Lobatto and Legendre polynomials on [z-h/2,z+h 12], with ( )' denoting 

ordinary differentiation. 

We use K to define a two-dimensional interpolation operator JE,- on element i satisfy- 

ing Ktu(x) = lt[xu]ft[jc2il-]u (x) 6 Qp(A(-), xeAj. Since the mesh is uniform, we will omit 

the elemental index / and the dependence of %[xjti] and \\f(xj,- jc{) on the coordinates of 

the cell center (xujc2j), / = 1, 2, •••, W, whenever confusion is unlikely. 

The functions- yp+\(Xj), j = 1,2, provide the dominant contributions to the spatial 

discretization error on element A for both odd- and even-order finite element approxima- 

tions.  Indeed, we shall show that estimates E(\,t) of e(x,r) have the form 

E(.x,t) = bl(t)yp+l(xl) + b2(t)yp+l(x2),   xeA (2.9) 

The following sequence of lemmas take steps in this direction. 

LEMMA 2.3.  Let u e Hp+2, t > 0, then 

u (x,t) - nu (x,t) = 0(x,r) + Y(x,r),   x e A, (2.10a) 

where 

<|>(x,r) = ßi(OY,+i(*i) + ß2(OY,+i(*2). (2-10b> 

\\dW\sA<ChP+l-*\\d?u\\p+hA,    t>0,    n>0,    s=0,l,-,p, (2.10c) 



||ax.0|lo.A ^ ChP\\u\\p+lA,    j = 1,2,    t > 0, (2.10d) 

l7ll,iA < ChP+1-s\\u\\   2^    s = 0, 1, ••■, p + U (2.10e) 

am/ 

||a,;/ll5,A < CA'+l-*||M|L,+2>A,    J = 0 ,1,   j = 1, 2,    r > 0. (2.10f) 

Remark. Local Sobolev norms are defined like their global counterparts (2.2d,e) with 

Q. replaced by A. 

Proof. Yu's [18] results for elliptic partial differential equations extend directly to 

the transient case. D 

LEMMA 2.4. Let Uu e SQ '
P
 be an interpolant of u e Hp+2forx<= Q. that agrees with 

Ku when x e A, then 

\A(W,u - Uu)\ < ChP+l\\u\\p+2\\W\\x,    for all W(x)eS%-?. (2.11) 

Proof,   cf. Yu [18]. D 

LEMMA 2.5. Let u e H<j n H?+1, U e S%*, and U € S$*, be solutions of (2.2a,b), 

(2.3), and (2.6), respectively. Further let Uu e SQ -p interpolate u as described in Lemma 

2.4, then 

lieu nail, <C/i/,+11|«|L,+2,    \\U -Uu\\x<C(u)hP+l, (2.12a,b) 
and 

e(x,r) = <D(x,O + 0(x,O (2.13a) 

where the restrictions of <&{x,t) and Q(x,t) to A are <f>(x,/) of (2.10b) and 

6(x,r) = Y(x,r) + Tiu(x,t) - U(x,t). (2.13b) 
Furthermore, 

||V*||o2£CÄ^||«||,2
+l,    \\VO\\Z<C(u)h2(P+l\ (2.13c,d) 

and 

\\d?Q\\s < C(u)hP+l~s,   n>0,   s = 0, 1,    t > r0. (2.13e) 



Proof.   Subtract A{V,Tlu) from (2.6) and use (2.11) to obtain 

\A{V,U-Uu)\ = \A(VM-UU)\ < ChP^WuWp^WV^, for all V s S%-?. (2.14) 

Replacing V in (2.14) by U -Tlu yields (2.12a). Addition and subtraction of U to 

U -Tlu and subsequent use of the triangular inequality with (2.7a) and (2.12a) establishes 

(2.12b). 

In order to prove (2.13c-e), use (2.10a) and (2.13b) to obtain 

e=u-iut+nu-U=$ + y+mi-U=$ + B,    xeA, (2.15) 

and, consequently, (2.13a). Squaring and summing (2.10d) over the elements of the mesh 

leads to (2.13c). Taking the gradient and L2 norm of (2.13b) and using the triangular ine- 

quality yields 

HVeil^ < C(||VT!|0
2
A + ||V(TCU - £/)|lo2

A) (2.16) 

The use of (2.10f) and (2.12b) with a summation over all elements yields (2.13d). In a 

similar manner, a combination of (2.13a), (2.7b,c), and (2.10c) yields (2.13e). D 

LEMMA 2.6.   Under the conditions of Lemma 2.5, there exists a function z{ such that 

|M|2 = |!" -nU||
2 + ei (2.17a) 

with 

'  \£l\<C(u)h2P+l. (2.17b) 

Proof.   Adding and subtracting Tlu to e yields (2.17a) with 

£l = 2(i* - Tlu,Tlu - U)x + \\Tlu - U\\l (2.18) 

Applying the Schwarz inequality and using (2.5) and (2.12b) yields (2.17b).  D 

3. A posteriori error estimation of odd-degree approximations. If u is smooth on 

A then error estimates E(x,t) of odd-degree approximations may be constructed in terms 

of jumps in derivatives of U at the vertices of A. Informally, use (2.7d) to and its approx- 

imation (2.9) to compute jumps in the derivatives of e(x,t) at the vertices pk = (piicPik)' 



£ = 1, 2, 3, 4, of Aas 

&,'(P* .<>],- =-{dxU(pk.t)]j = *,(')&, V,+I(Pi*)]y +b1(t)[dXjyp+l(ß2k)]J, 

j = 1, 2,    k = 1,2,3,4,    xe A, (3.1) 

where [q (p)]; denotes the jump in q at point p in the Xj direction. Since jumps in the 

solution U and vj/p+, are known, this overdetermined system may be solved in some sense 

for the coefficients b-}, j = 1,2. The procedure used in the following lemma and theorem 

is to solve (3.1) for b}, j = 1, 2, at each element vertex pk, k = 1,2, 3, 4, and average 

the values of ||£(-,r)||liA based on the pairs of bj,j = l, 2, obtained. 

LEMMA 3.1.   Let u s H^ C\HP
+2

, UU be as defined in Lemma 2.4, andp be a posi- 

tive odd integer, then 

"" " °" "l2 =  16(2^+ 1) ? ? £ ft*n« (p, ,0]/ + e2 (3.2a) 

where 

^1 * Ch^\ (3.2b) 

Proo/ cf. Yu [19]. D 

THEOREM 3.1.   Let u s //0' n^"*: ^ U e 5^ ^ jo/«/wnj o/ (2.2) and (2.5), 

respectively.   If p is an odd positive integer, then 

IkCOIIf = ||£(-,Ollf+ e (3.3a) 
where 

llEi''t)]l? = I6(2hp\ 1) f> ?2 Px^(P*^)]/.    lei ^ CA*+1. (3.3b,c) 

Proof.   Adding and subtracting Uu on each element yields 

(3.4a) 
where 
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2[at;(f/(p^r) - nM(Pt,r))]y[3;r.nM(pJt,r)]y}. (3.4b) 

Using (3.2a) and (2.17a) in (3.4a) we obtain 

16(2^"+ 1} S I £ [3x^(P*.Ol/ = Iklli2 - e, - £2 + e3; (3.4c) 

thus, establishing (3.3a,b) with £ = £t + £2 - £3. Since £, and £2 are 0(h2p+[), it remains 

to find a similar bound for £3. To this end, an application of the Schwarz inequality to 

(3.4b) yields 

l£3' * ,/,i i Z [9x/^(P*.0 " n«(Pjt,/))]/ + 16(2/7 + l),.=u=u=1 

2{,^'    nZ I Z ftc,(tf(P*.0 - n«(pt,r))]/}*x 
16(2/7 + 1).=1;=U=, 

(T^—rl I I [a,;.nw(p,,r)]/}*. (3.5) 
16(2/7 + l).=,y=u=1 

Let AQ be the canonical element -1 <^x,%2- * anc* use norm equivalence on the 

finite-dimensional space Q„(AQ) to show that 

max    (19p v I + 13* v I) < C||Vv||0A),    for all v e Q/AQ). (3.6a) 

A subsequent linear mapping of AQ to an element A,-, i = 1, 2, •••, N, yields 

max    (Id  w I + 13  w I) < Y"||w||1A,    for all w e ß (A,-). (3.6b) 
(jci^eA,- « 

Let A,„, n = 1, 2, 3, 4, denote the four elements having common edges with A, 0 = A, 

and 

A/=UA,„. (3.7) 
n=0 
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Then, using (3.6b), 

[dJU(pk.t) - nu(pk,t))]j < C   max _ {Id  (C/ - Tlu)\ + l9ri(C/ - EM < 
U,^:)sA,-" '' 

h 

With (3.8), we have 

C"U -Tlu\\lA.,   j = 1,2,    fc = 1,2,3,4. (3.8) 

77^—71 I £ [^(tf(p*.0 " n«(p„0)]/ < 

l6(2p
C
+1)I lltf - n«||f. A- < C\\U - Uu\\l (3.9a) 

Similarly, using (2.5) and (3.2), we have 

77^—TTI I1 [3,;nU(p,,/)]/ < en« - n«n2. (3.%) 

Using (3.9) in (3.5) yields 

ie3i <c{\\u - o«up + ||U - nM||j \\u - n«n,}. (3.10) 

The estimates (2.5) and (2.12b) imply that £3 = 0(h2P+l), which completes the proof. D 

4. A posteriori error estimation of even-degree approximations. Error estimates 

in terms of jumps in solution derivatives fail for even-order approximations since 

Yp+iC*;), ; = U 2, is continuous on 9A. Thus, with p even, we construct a Galerkin 

problem for e by replacing u in (2.2) by U + e to obtain 

(v,dte) + A(v,e) = g(t,v),    t > 0, (4.1a) 

A(y,e)=A(y,u°-U),    t = 0,    forallveH^, (4.1b) 
with 

g(t,v) = (vf)-(v,dtU)-A(v,U). (4.1c) 

The error is once again approximated by E according to (2.9) and the test function v is 
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selected as 

where 

V;.(x) = (Xj - .r;ii)8(.ri)8(.r2),    j = 1, 2, (4.2a) 

8(;)= ^+l(^,    c(z) = ^+1(z),   ze[f-A/2,r+/i/2]. (4.2b,c) 
z - z 

(Although not yet needed, we define a for future reference.)   Since \\ip+l(xj) and v,(x), 

y' = l,2, vanish on 3A,-, the error estimate satisfies the local Dirichlet problems 

(vJ,dlE)A + AA(vj,E) = gA(t,vJ),    t>0 (4.3a) 

AA(VJ,E) = AA(VJ,U°-U),    r=0,    y = l,2. (4.3b) 

where A subscripts denote that inner products are restricted to A,-.   The time derivative of 

E in (4.3a) may be neglected to obtain the local elliptic problem 

AA(vj,E) = gA(t,Vj),    t > 0,    7 = 1, 2. (4.4) 

The parabolic (4.3) and elliptic (4.4) error estimates are shown to be asymptotically 

correct in §4.1 and §4.2, respectively; however, prior to this, we establish some properties 

of yp+l, 5, a, and v,-, j = 1, 2. 

LEMMA 4.1.   Let p > 2 be an even integer, then there exist C > 0 such that 

\\§(Xj)dxxdx2 = ChP+1,    tfyp+l(Xj)2S(xk)dxldx2 = Ch3?*4, (4.5a,b) 
A A 

JJo(^)28(xJk)dx1d!x2 = Ch3P+2,   \\c(Xj)\\lA = Ch2(P+l\ (4.5c,d) 
.A 

ch2(P-s)+4 < \\Vp+l(Xj)\\lA < Ch2(P-s)^,    s = 0, 1, (4.5e) 

ch2P+l < \\Vj(-)\\hA < Ch2P+[,   j, k = 1, 2. (4.50 

Proof.   A direct computation reveals the results. D 

4.1.  The parabolic error estimate.  The parabolic finite element problem (4.3) may 
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be further simplified by neglecting the higher-order off-diagonal diffusion coefficients and 

the reaction term in the strain energy (2.2c), freezing the diagonal diffusion coefficients, 

and using symmetry properties of \\fp+l(~) and v,(x), j = 1, 2. to obtain the uncoupled 

constant-coefficient initial value problem on element / 

b'J(t) + rjbj(t) = Gj(t),    t>0, (4.6a) 

AA(v..,W°(-)-f/(-,0)) 
bj(0)=  _ A   ; ,   ; = 1,2, (4.6b) 

ajJ)\ <J-(*;)6(.r0- mod 2)+l)^1^2 

where 

JJ a2(.Xj )5(x0- mod 2)+1) dx xdx2 

rj = äjj , (4.6c) 
JJ^p+ii-Xj )8(xu mod 2)+{)dx {dx2 

JJ Vp+\(Xj )ö(x(j mod 2)+1)dx {dx2 

and 

ajk =fl;jfc(x),   j', fc = 1, 2. (4.6e) 

Of course, the exact solution of (4.6) is 

t 

bj (t) = bj (0)e~r>' + |e~r'(t~z)Gj(X)dx,    t > 0,    j = 1, 2. (4.7) 
o 

In order to estimate the difference between the exact solution of (4.1) and its approxi- 

mation by (2.9, 4.7), we substitute (2.13) into (4.1) while using (2.10b) to obtain 

Pj(.t) + rj$j(t) = Gj(t)-Fj{t)-Hj{t),    f>0, (4.8a) 

AA(Vj,u°(-)-U(-,0))                FAQ) 
ß,-(0) = - ^ J- , (4.8b) 

aj j\\°2(xj^XU mod 2)+i) dxxdx2 . rj 

where 
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i\[± 2>*AvAe + ii(au-*u)dxt
vjdXl* + bvJeidx\dx2 

F(0 = A±ÜÜÜ ^ = ,   y = i,2. 
[f Vp^\(-Xj)5(.r{j mod 2)+i) dx xdx: 
A 

(4.8c) 

(V:,d.8) 
H;(r) = ; -^ ,   7 = 1, 2. (4.8d) 

JJVp+lty)5^ mod 2)+\)dx\dxl 
A 

We may formally solve (4.8a) for ß;- to obtain 

t 

ßy(r) = ß;(0)e_r>' + \e-r*-z)[Gj(x) - F,(T) - ^-(T)]^,    r > 0,   y = 1, 2.    (4.9) 
o 

The following Lemma quantifies the differences between ß; and its approximation 

bj,j = 1,2. 

LEMMA   4.2.     Let   p >2   be   an   even   integer,    u e HQ f~^Hp+2,   t > 0,   and 

ak k(\) > aQ> 0, xeQ, k = 1, 2, and assume that 

\$?e\\x<C{u),    «=0,1,    0<t<tQ, (4.10) 

Then, 

£(ß„. -6;,.)
2<C(M),    X (ß? - *;J) < ^1,   7 = 1, 2,    t>tQ.    (4.11a,b) )2<c(M),   2'R2-A2 

1=1 1=1 

Proo/   Letting 

0C;(O = ß;(O-tyO.    7 = 1,2, (4.12) 

and subtracting (4.7) from (4.9) and (4.6b) from (4.8b) we obtain 

t 

<X;(r) = a;(0)<Tr'f - }e"o("x)[F/x) + Hj(x)]dx,   t > 0, (4.13a) 
o 

with 

Fj(0) 
(4.13b) 

j 

cc.(0) = -^—,   7 = 1,2 y r,- 
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Integrating (4.13a) by parts and applying the Schwarz and triangular inequalities yields 

a]it)<C{e--r'ta}i<3) + 
FJ(t) + HJ(t)\2       _2r[ \Fj(0) + Hj(0)\ 

+ e + 

_2r;(     '° \F/(x) + H/(x)\2          '  !F/(x) + H/(x)\2 

?    >K   o;j—i _i dx + j—- J-  dx],    f>0.        (4.14) 
<o 

It remains to bound the various terms in (4.14). To begin, apply the Schwarz and triangu- 

lar inequalities to (4.8c) while using the assumed smoothness of the coefficients ak t, 

k, I = 1,2, and the dominance of the Hl norm relative to the L2 norm to obtain 

iF.(o + tf.(0i2sC'M.^^^ . = i)i(4i5. 
[JJ v£+i(Xj )8(*0- mod 2)+i) dx ldx2]2 

A summation over the elements and use of (4.6c) and (4.5) reveals that 

N   lF,7(0 + Hii(t)\2 

I ——r^— * ch*-p-»[\\e\\} + A
2

H*H? + ikii0
2 + iiafeii0

2], 

j = 1,2, s >0, f >0. (4.16) 

The terms on the right may be bounded for t > tQ using (2.7b) and (2.13). Additionally, 

since ||e||0 is bounded on 0 < t < t0, (4.16) may be written as 

N  lF,(r) + H;i(r)l2 

I 
i=i 

ji' - <1 
ß 

C{u)h2(s-P~l\ if 0 < r <r0 

C{u)h2^2\      if r0 < r       •   7 = 1.2,   ^0.   (4.17) 

In a similar manner, 

N   \F/(t) + H/(t)\2 

^ -3 ' 
4=1 

C(u)h~2P, if 0 < r <r0 

C(«), if r0 < r ;' = 1, 2. (4.18) 

The initial data a;(0), j = 1, 2, may be bounded by applying the Schwarz inequality 

to (4.13b) and using (4.5) to obtain 
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ct.(O)2 < C^-^^^Ciiec-^llf^-H /22Ö(-.0)||1
2
A-^ lk(-,0)||^], j = 1,2.        (4.19) 

A summation over the elements and use of (2.13) yields 

N 
^\aß(0)\2<C(u)h-2(P^\   j = 1,2. (4.20) 

A summation of (4.14) and use of (4.17), (4.18), (4.20), and the dominance of the 

exponential relative to any algebraic power of h yields (4.11a). 

Following the reasoning used to obtain (4.14), we find 

t) < C\e lr>'br®) + —^— + e -'   —t-z  b/(t)<C[e--r''bj-(0) + e -lr,(t-tn) dx 

+ J—-^-j dx],    t>0. (4.21) 
'o       rj 

Once again, we must bound the various terms in (4.21).   Thus, applying the Schwarz ine- 

quality to (4.3a) while using (4.6d) and (4.5), we obtain 

N   IG,;(/)I2       N   c 
-      J'       - < X -T 

«=i    n =1   ru 

llvylU 

|JVp+i,i(^)8(.v0- mod inr\)dxxdx: 

4 

(l|3^ll0A+llelll2A,) 

< c^2(j-/'-3)(iia^iio2 + Ik Hi21'   ;' = 1, 2,   s > 0, 2,   t > 0. 

The estimates (2.7b,c) and assumed bounds on e yield 

2J       <• <1 
i=i ;« 

C(«)/z2(^-3\ if 0 < r <r0 

C(u)h2{s~3\     if t0<t 

Similarly, 

AT   lG;i'(f)l
2 C(u)h~2P, if 0 < r <r0   ■ 

C(u), ifr0<r       '   ; = 1>2- 

(4.22) 

; = 1,2,    s >0. (4.23) 

(4.24) 
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Likewise, using (4.6b) and (4.5), we obtain 

f /V ,v 
IO,(0)2<C£ 

vjm.±, 

JJ a(.Xj )25(.r {J mod 2)+1) dx,dx 2 
A, 

|K°(-,0)- U(-,0)\\L, <C(u)h-1J?+\\ 

j = 1,2. (4.25) 

A summation of (4.22) over the elements and subsequent use of (4.23-25) yields 

2>/(0<C(M)/z-2,    t>t0. 

Differentiating (2.10b), and using (2.10d), (4.2c), and (4.5d) we readily obtain 

"lldx,<K-.OIb?.A       C       , 
ßfr>=      ' ^TVH"11^,.A.   ; = 1,2,   r>0. 

l|0(-^-)llo.A ^~ 

Combining (4.26) and (4.27) 

A/ 

I 
i=i 

Applying the Schwarz inequality 

N        . /V 

(4.26) 

(4.27) 

l[^(0 + ßj(0]<-^,   f>r0- (4.28) 

I [ßj(0 - bß(t)] < C[£ (ß;,.(0 - fy(O)2]* [£ (ßj(0 + ^(r))]*        (4.29) 
i=i 

while using (4.11a) and (4.28) leads to (4.11b). D 

We are now in position to state and prove the main result of this section. 

THEOREM 4.1. Let u e H$ r\HP+2 and U e Sgf* be solutions of (2.2) and (2.3), 

respectively. If p > 2 is an even integer and there is a constant C > 0 such that 

11^111 ^ C(u), n = 0, 1, then there exist constants C > 0 and tQ>0 such that 

ll*(-,0lli2 = l|£(-,0lli2 + e,    t>t0, 
where 

N   2 

I? _ V  V fc 2/ l|£(-,r)||,z = X I ^(0«o(xy)llo2A..   'el * Ch2»+l 

/=1j=\ 

(4.30a) 

(4.30b,c) 
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Proof.   Consider the identity 

l|e(-.')llf= l\\0dxe\2+ l3r/l2)J.t1J.t: + |k||0
2 (4.31) 

i' = l A, " ■ 

and use (2.10b) and (2.15) to obtain 

IH? = IIII [ßjofy) + !^9'2 + 2dxtöxQ]dxldx2 + IkHo2 (4.32) 
(=1  A;  j = \ 

Adding and subtracting bßü2(Xj), j = 1, 2, to the above integrand yields (4.30a.b) with 

e = £ X JJtCßj - */)o2(*;) + I3x,0l2 + 29Jt.«D3Xye]£fa1rfr2 + |M|0
2. (4.33) 

(=iy=iA, 

Applying the Schwarz and triangular inequalities and using the estimates (2.13c,d), (4.11b) 

and (4.5d) yields (4.30c). D 

4.2 The Elliptic error Estimate. As in §4.1, we further simplify the elliptic error 

estimation problem by neglecting the off-diagonal diffusion coefficients and the reaction 

term in the strain energy and by freezing the diagonal coefficients. With these approxima- 

tions, bj(t), j = 1, 2, is determined from (4.4) as 

bj = - ^^ ,    r>0,   ; = 1,2. (4.34) 
ajji\a2(XjMXiJ mod 2)+0dx\dx2 

A 

Substituting (2.15) into (4.1a) while using (2.10b) yields 

«;jß;(OjJ<J2(*;)8(x0. mod 2)+\)dxidx2 = g(t,Vj) - Fj(t) (4.35a) 
A 

where 

tt   2   2 2    2 

Fj«) = JJ[£ Z akJdXkVjdXlQ + X X (a*./"5* A^A* + bvJe + Vjdte]dXldx2, 

j = 1,2. (4.35b) 

Write (4.35a) in the form 

h - 'W-fJ ,   j , ,, 2. (4.36) 
ajj\i G-(.Xj)S(x{J mod 2)+x)dxxdx2 



The analysis parallels that of §4.1 with a preliminary Lemma establishing differences 

between ß-(r) and b.(t), y = 1,2, and a subsequent Theorem containing the convergence 

result. 

LEMMA 4.3. Let p > 2 be an even integer, u e HQ r~^Hp+1, and akj.(x) > a0 > 0, 

xs Q, k = 1, 2.   Then, there are constants C > 0 such that 

Z%~bß)2<C(u),    i(ßj-^)<-^,    ; = l,2,    f>f0- 
i=l i=i 

(4.37a,b) 

Proof.   Subtracting (4.34) from (4.36) we obtain 

F;(t) 
cc;(0 = --— l ,    r>0.   y = l,2, (4.38) 

JJ °~(
X

J )S(*(j m0d 2)+I) dx \dx2 
A 

with a,-(0. 7 = 1,2, given by (4.12). Applying the Schwarz and triangular inequalities to 

(4.38) while using (4.35b), the assumed smoothness of the diffusion coefficients, and the 

dominance of the Hl norm relative to the L2 norm yields 

a;(r)2<C||v;||,
2
A -— ,   7 = 1,2.       (4.39) 

[JJa%r;)5(.r(i mod2)+1)dr1dx2]z 

A 

Summing over the elements and using (4 5 i 

X a7,(r)2 < Or2<"+1)[||0||f + h2\m\2 + Ikllo2 + l|3,e|lo2].   t > 0. (4.40) 
i=l 

Using (2.7b) and(2.13c,d), we establish (4.37a). 

Applying the same reasoning that was used to obtain (4.22-26), we obtain 

bj(t)2 < C/r2('+1)[||a,e||0
2
A + Heilig,   y = 1, 2,    t > 0. (4.41) 

Summing over the elements while using (2.7b,c) 

f>,(02<-^-,    t>t0,   7 = 1,2. 
«=1 « 

(4.42) 
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Combining (4.27) and (4.42) 

f-[^(r) + ßj(r)]<^,    t>t0. (4.43) 

Using (4.29) with (4.37a) and (4.43) establishes (4.37b). D 

THEOREM 4.2. Let u e tf0
! C\HP+1 and U e S^p be solutions of (2.2) and (2.3), 

respectively. If p > 2 is an even integer, then there exist constants C > 0 and tQ > 0 such 

that 

lk(-,OHr = ||£(-,OHr + e,    t>tQ, (4.44a) 

where 

II^COIIi2 = I L bjKt)\\a(xj)\]§Al    lei < Ch^K (4.44b,c) 
i=i;=i 

Proof.   The proof is the same as that of Theorem 4.1. D 

5. Examples. We present four examples to illustrate the performance of the error 

estimation procedures of §3 and §4 in situations where the theory applies and does not 

apply. Accuracy of the error estimate is measured by the global and local effectivity 

indices 

l|£(-.OIIi             IE'"-'>lliA     . 
Tl = ,   ri, = ,   i = 1, 2 N, (5.1) 

respectively, which should converge to unity under mesh refinement. In all cases, even- 

order results are presented for the elliptic error estimation procedure. Results with the 

parabolic error estimation procedure are virtually identical. 

Example 1.  The theory applies to the linear heat conduction equation 

d,u - Au =/(x,r),   xe(0,l)x(0,l),   t > 0, (5.2a) 

with / (x,r) and the initial and the Dirichlet boundary conditions specified so that the exact 

solution is 



- 21 - 

u(x.t) = cos{t)e-mx-h-)Z-{y-*)1]. (5.2b) 

We solved this problem on 0 < t < 0.5 using uniform meshes having N = 100, 400. 

900, and 1600 square elements and uniform orders p = 1, 2, 3, 4. Temporal integration 

was performed using the backward difference software system DASSL [13] with error 

tolerances of 10-6 for p = 1,2 and 10"10 for p = 3, 4, which should minimize temporal 

discretization errors and enable us to concentrate on spatial errors. Finite element errors 

and effectivity indices at t =0.5 appear in Table 1. Numbers in parenthesis indicate a 

power of ten. 

Effectivity indices are in excess of 95% of ideal for all combinations of p and N. 

Convergence in h of the effectivity index to unity is apparent. Based on the limited data 

available in Table 1, converence in p seems plausible for even orders but not so for odd 

orders. 

Example 2. Convection is not supported by the theory, but the error estimates should 

work as long as convection does not dominate diffusion. Thus, consider a linear 

convection-diffusion equation 

B,u - Aw + V-u =/(x,r),    xe (0,l)x(0,l),    t > 0, (5.3a) 

with the data specified so that the exact solution is 

u(x,t) = h[\ - tanh(10x! + 2x2 - lOr - 2)]. (5.3b) 

We solved (5.3) using the parameters of Example 1. Finite element errors and 

effectivity indices at t = 0.5 appear in Table 2. As conjectured, the effectivity index 

appears to be approaching unity as N increases. Effectivity indices are above 80% of 

ideal for almost all computations. Performance of the even-order error estimates is better 

than that of the odd-order estimates. Again, the even-order indices suggest possible con- 

vergence in p. 

Example 3.   Although the present theory does not apply to nonlinear problems, we 
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TABLE 1 
Errors and ejfectivity indices for Example I on N-element uniform 

meshes with piecewise bi-p polynomial approximations. 

p      <.                  1                  1                  2                   !                  3 4 

N      i   llelli/llulli    i      n       I   lk!|,/|M|,    i       Ti        I   HelMluH,    1      n IHMMI, TI 

100 
400 
900 
1600 

0.151(0) 
0.757(-l) 
0.505C-1) 
0.379(-l) 

0.988 
0.998 
0.999 
0.999 

0.137(-1) 
0.345(-2) 
0.154(-2) 
0.864(-3) 

0.9961 
0.9990 
0.9996 
0.9998 

0.987(-3) 
0.124(-3) 
0.369M) 
0.156(-4) 

0.948 
0.983 
0.992 
0.995 

0.587(-4) 
0.369(-5) 
0.731 (-6) 
0.231 (-6) 

0.9991 
0.9998 
0.9999 
0.9999 

TABLE 2 
Errors and ejfectivity indices for Example 2 on M-element uniform 

meshes with piecewise bi-p polynomial approximations. 

p   1          1 2                  |                 3 4 

N    \  iklMlKll,   1     TI     1  IklMI»!!,   In     I   lkll,/1l«ll. TI IklMMI, TI 

100 
400 
900 
1600 

0.239( 0) 
0.118( 0) 
0.785(-l) 
0.589(-l) 

0.739 
0.928 
0.968 
0.981 

0.504(-l) 
0.127(-1) 
0.569(-2) 
0.320(-2) 

0.885 
0.970 
0.987 
0.992 

0.958(-2) 
0.125(-2) 
0.377(-3) 
0.160(-3) 

0.426 
0.754 
0.880 
0.930 

0.177(-2) 
0.118(-3) 
0.238(-4) 
0.331(-4) 

0.920 
0.979 
0.991 
0.995 

TABLE 3 
Errors and ejfectivity indices for Example 3 on N-element uniform 

meshes with piecewise bi-p polynomial approximations. 

p 1 2 3 4 

N Iklli/llMlh TI IklMI« II,   1    n IH./||«II. TI lk!l./||«ll. TI 

100 
400 
900 
1600 

0.262(-l) 
0.129(-1) 
0.858(-2) 
0.643C-2) 

0.949 
0.977 
0.985 
0.989 

0.872(-3) 
0.218(-3) 
0.963(-4) 
0.544(-4) 

0.995 
0.999 
0.999 
1.000 

0.278(-4) 
0.348(-5) 
0.103(-5) 
0.436(-6) 

0.920 
0.966 
0.979 
0.979 

0.848(-6) 
0.530(-7) 
0.105(-7) 
0.331 (-8) 

0.999 
1.000 
1.000 
1.000 

expect good results when the nonlinearity is not strong and when the solution is smooth. 

Thus, consider the reaction-diffusion equation 

dtu - hAu = qu\l - u),    xe (0,l)x(0,l),    t > 0, (5.4a) 

with q > 0 and the data specified so that the exact solution is 

 1  
~   1 +g^/2Ui+*:-'^/2) 

(5.4b) 
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We selected q = 20 and solved (5.4) on 0 < t < 0.5 using the parameters of Example 

1. Temporal tolerances were selected as 10"10 for p = 1, 2, 3, 10~12 for p =4 and the 

three coarser meshes, and 10~14 for p =4 and the finest mesh. 

Finite element errors and effectivity indices at t = 0.5 are presented in Table 3. The 

performance of the error estimation procedures is excellent, with effectivity indices in 

excess of 90% of ideal for all choices of N and p. As with the previous examples, con- 

vergence in h is apparent 

Example 4. as a final example, consider a linear heat conduction equation of the 

form (5.2a) with the data specified so that the exact solution (expressed in polar coordi- 

nates) is 

u(x,O = n(r,<M) = rt0(')sina)(O<|>,    <*>(0 = (2/3) + (l/4)sinr. (5.5) 

This solution behaves as 0(rCÜ(')) near the origin and this singular behavior will limit the 

rate of convergence in h. Unless the singularity is resolved by, e.g., grading the mesh, it 

will "pollute" the solution and error estimate globally. Our local error estiamtes fail to 

recognize such pollution errors and may be expected to give poor performance in their 

presence. Were the singularity resolved to the point where the pollution errors are small 

relative to the local errors, we would expect reasonable accuracy. 

Let us begin by solving (5.2a, 5) on 0 < t < 0.3 using the uniform meshes and poly- 

nomial degrees specified with Example 1. Temporal tolerances are 10-4, 10"6, 10~7, and 

10"10 for p = 1,2, 3, 4, respectively. Errors and effectivity indices at t = 0.3 are shown 

in Table 4 for all combinations of N and p. Similar data at t = 0.0, 0.1, 0.2, and 0.3 for 

a 400-element uniform mesh with p = 1, 2, 3, 4 are shown in Table 5. Errors in the local 

H norm and the difference between the local effectivity indices and unity at t = 0.3 for a 

100-element mesh with p = 4 are shown in Figure 1. 

Results in Tables 4 and 5 indicate that error estimates have little to do with exact 

errors.   An examination of the upper portion of Figure 1 reveals that large errors near the 
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TABLE 4 
Errors and effectivity indices for Example 4 on N -element uniform 

meshes with piecewise bi-p polynomial approximations. 

p 1 2 3 4 

N   J Ik lh i\\u ll, n lklli/H«lli *1 II« II ./'ll« Hi T1 IklMMI, Tl 

100 
400 
900 
1600 

0.376(-l) 
0.229(-l) 
0.171C-1) 
0.138(-1) 

0.563 
0.581 
0.589 
0.593 

0.15l(-l) 
0.112(-1) 
0.906(-2) 
0.768(-2) 

0.319 
0.319 
0.319 
0.319 

0.938C-2) 
0.561 (-2) 
0.416(-2) 
0.336(-2) 

0.075 
0.075 
0.075 
0.075 

0.681 (-2) 
0.407(-2) 
0.302C-2) 
0.244(-2) 

0.078 
0.078 
0.078 
0.078 

TABLE 5 
Errors and effectivity indices for Example 4 at t = 0.0, 0.1, 0.2, 0.3 

on a 400-element uniform mesh with p = 1, 2, 3, 4. 

p 1                                    2 3                 1                4 
N lie II i/||« lli   1      r\      1   Ik lh /ll« II,   1      i) lklMI"ll< n     1  IklMHI, n 

0.0 
0.1 
0.2 
0.3 

0.372(-l) 
0.317(-1) 
0.270(-l) 
0.229(-l) 

0.519 
0.541 
0.561 
0.581 

0.204(-l) 
0.168(-1) 
0.137(-1) 
0.112C—1) 

0.268 
0.288 
0.303 
0.319 

O.lll(-l) 
0.889(-2) 
0.708(-2) 
0.561 (-2) 

0.054 
0.069 
0.072 
0.075 

0.841 (-2) 
0.663(-2) 
0.520(-2) 
0.407(-2) 

0.064 
0.071 
0.074 
0.078 

singularity pollute the entire domain and result in large deviations from unity of local 

effectivity indices everywhere [7].   As anticipated, the solution is converging as 0(/ia(,)). 

In order to improve the performance of the error estimations, we solve (5.2a, 5) on 

graded meshes obtained by refining the element of a uniform mesh that is closest to the 

origin. We do this by dividing the two element edges along the coordinate axis into the n 

segments 

\-} =h(jlnfi,   j =0, l,-,n,    C>0; (5-6) 

introducing a diagonal from from (s^,^) to (h,h); and connecting line segments at the 

points (5.6) along the axes to similarly spaced points on the diagonal. This mesh, referred 

to as N:n, has N square and 2(n - 1) trapezoidal elements. The mesh shown in the 

lower portion of Figure 1 is one uniform refinement of the 25:5 mesh. Error estimates can 

be constructed for these quadrilateral elements by introducing minor modifications to the 
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formulas developed here [1]. 

We solve (5.2a. 5) on 0 < t < 0.3 using the meshes 25:5, 100:10, 225:15, and 400:20 

with p ranging from 1 to 4. The grading parameter C, was selected as 3/2 for p = 1 and 

9/?/4 otherwise. Temporal tolerances are the same as the uniform-mesh case. Errors and 

effectivity indices at t = 0.3 are presented for all mesh and order combinations in Table 6. 

Similar data at t = 0.0, 0.1, 0.2, and 0.3 on the 132-element mesh appear in Table 7. 

Local errors and the difference between local effectivity indices and unity are shown in 

the lower portion of Figure 1. 

The severe mesh grading has reduced errors on the element adjacent to the singular- 

ity. This has substantially reduced global pollution errors and improved the performance 

of the error estimation procedures.   Global effectivity indices are within 12% of unitv. 

TABLE 6 
Errors and effectivity indices for Example 4 on N-element graded 

meshes with piecewise bi-p polynomial approximations. 

p 1 2 3 4 
N lkll./||«ll. n IHI./IMIi A      1   Ikll./llull. T1 IMI./Il«lli n 

132 
472 
1012 
1752 

0.181C-I)' 
0.112(-1) 
0.862(-2) 
0.704(-2) 

0.999 
1.004 
0.991 
0.993 

0.11S(—2) 
0.468(-3) 
0.336(-3) 
0.271 (-3) 

0.941 
1.016 
1.017 
1.017 

0.369(-3) 
0.453(-4) 
0.300(-4) 
0.241 (-4) 

3.431 
1.279 
1.066 
0.989 

0.234(-3) 
0.682(-5) 
0.230(-5) 
0.177(-5) 

0.879 
1.039 
1.121 
1.080 

TABLE 7 
Errors and effectivity indices for Example 4 on a 472-element graded 

mesh with p = 1, 2, 3, 4. 

p 1 2 3 4 
N IklMMI, Tl ll«lli/||«lli n IHMHI, n ll«lli/||«lli Tl 

0.0 
0.1 
0.2 
0.3 

0.156(-1) 
0.139(-1) 
0.125(-1) 
0.112(-1) 

1.024 
1.025 
1.019 
1.004 

0.713(-3) 
0.624(-3) 
0.541 (-3) 
0.468(-3) 

1.017 
1.017 
1.016 
1.016 

0.760(-4) 
0.642(-4) 
0.540(-4) 
0.453(-4) 

1.304 
1.297 
1.288 
1,279 

0.121(-4) 
0.100(-4) 
0.827(-5) 
0.682(-5) 

1.024 
1.035 
1.029 
1.039 
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FlG. 1. Local errors (upper-left) and the difference between the local ejfactivity indices 
and unity (upper-right)'for Example 4 at t - 0.3 on a uniform 100-element mesh using 
piecewise bi-quartic polynomial approximations. Similar data for computations performed 

' 5 mesh that has been uniformly refined are shown at the bottom. on a graded 
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6. Discussion. We have developed simple a posteriori procedures for estimating spa- 

tial discretization errors of piecewise bi-p polynomial finite element solutions of linear 

parabolic partial differential equations. The theory developed for square-element meshes 

easily extends to rectangles. As earlier work [10. 18, 19] would suggest, the error estima- 

tion procedures divide into distinct classes for odd- and even-order approximations. Error 

estimates for each are asymptotically exact and involve only element level computations 

with, at most, nearest-neighbor communications. 

The error estimates for even values of p perform better than that for odd p. Results 

indicate that asymptotic correctness under p-refinement is possible for even p. This is not 

the case for odd p where results deteriorate with increasing polynomial degree. Computa- 

tional evidence further suggests that the error estimates are asymptotically correct under 

more general conditions than indicated by the present theory. Indeed, results of Example 

4 indicate that the error estimates are asymptotically correct on graded quadrilateral- 

element meshes in the presence of singularities. Adjerid et al. [1] show that the error esti- 

mation procedures apply to finite element spaces other than piecewise bi-p polynomials. 

In particular, they apply to a class of piecewise hierarchical functions that have been 

modified by adding "bubble functions" to a standard hierarchical basis [14]. 

Extending the present theory to three-dimensional linear problems on hexahedral 

element-meshes would be straight forward. It would be more interesting and difficult to 

establish correctness of the error estimates on arbitrarily graded triangular- and 

tetrahedral-element meshes. Nonlinearity, strong reactions, convective influences, and 

singularities would be other important considerations. 
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Mechanics of hot isostatic pressing 
in intermetallic matrix composites 
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Thermal residual and mechanical stresses generated by hot isostatic pressing, cooling and 
subsequent mechanical loading of SCS6/Ni3AI and SCS6/Ti3AI composites with uncoated and 
carbon-coated fibres have been simulated by micromechanical modelling. The solutions were 
found in a periodic hexagonal array model of the microstructure with the finite element method. 
The intermetallic matrices were assumed to be elastic-plastic, with temperature-dependent 
properties. The fibre and coating were assumed to be elastic. Local stress fields and overall 
response were found for several processing sequences. The results suggest that plastic 
deformation of the matrix during cooling from fabrication temperatures reduces residual stresses. 
The Ni3AI matrix system yields more easily than the Ti3AI system. HIP programmes that promote 
such yielding are proposed and analysed in both systems. Compliant and expansive fibre coatings 
tend to reduce the thermal stresses, but may also enhance the interface stresses in the matrix under 
overall mechanical loads. 

1. Introduction 
One of the factors affecting the overall response and 
damage and failure resistance of composite materials 
is the residual stress field caused by pressure and 
temperature histories applied in fabrication, process- 
ing and subsequent cooling. The distribution and 
magnitude of such stresses is affected by the thermo- 
mechanical compatibility of the phases, and by ;he 
inelastic deformation that may take place under cer- 
tain loading conditions in some systems. Understand- 
ing of the various factors involved is possible only 
with reasonably detailed modelling of the fabncation. 
processing and loading sequences. 

The present work examines local stresses in 
SCS6,Ni3Al and SCS6/Ti3Al intermetallic matrix 
composites reinforced by coated and uncoated fibres. 
under thermal changes, mechanical loads, and ther- 
momechanical loading conditions which simulate fab- 
rication by hot isostatic pressing (HIP). The effect of 
fibre coating, matrix plasticity, and standard and 
modified HIP parameters is considered. The results 
focus primarily on understanding the mechanics of the 
HIP process and the role of the various parameters 
involved. 

Section 2 describes the micromechanical model 
used in this study and the constitutive equations of the 
phases; Section 3 presents the material properties of 
the phases. The local stress concentrations found in 
unidirectional composites reinforced by coated and 

uncoated fibres under mechanical or thermal loads are 
presented in Section 4. The main results of interest 
appear in Section 5, where we evaluate the stresses 
created in the two systems during standard and modi- 
fied hot isostatic pressing proce-dures. and in sub- 
sequent mechanical loading or reheating to processing 
temperatures. Significantly different outcomes are 
found for different HIP parameters. Interpretation of 
the results by several models shows that higher pres- 
sures and axisymmetric rather than isotropic overall 
stress states promote plastic straining of the matrix 
and thus help to reduce the magnitudes of the residual 
fields. 

2. Evaluation of local fields in fibrous 
media 

2.1. Micromechanical models 
The overall response and local fields in fibrous com- 
posites can be predicted by several material models 
which offer various approximations of the micro- 
geometry, phase constitutive behaviour, and loading 
conditions. In elastic composites, the local moduli do 
not change during deformation, hence acceptable esti- 
mates can be found using approaches that rely on 
averages of local fields in the phases, such as the 
self-consistent [1] or Mori-Tanaka [2-4] models. 
Analogous techniques are available for inelastic com- 
posites. However, because the instantaneous moduli 
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of the inelastic phases depend on the local deforma- 
tion history, the overall response mav not be well 
represented by averages of the local fields. Indeed 
a recent comparison [5] of several micromechanical 
models with experiments indicated substantial devi- 
ations of certain predictions from observed behaviour 
This was true in particular for the self-consistent and 
Mon-Tanaka models. Our bimodal plasticity theory 
[6] provided good predictions of the observed yield 
surfaces, but not of overall plastic strains. This is 
readily understood if the overall surface is regarded as 
a locus of vertices of yield cones formed by clusters of 
yield surfaces of matrix subelements in the overall 
stress space, so that the plastic strain increment vec- 
tors are contained within cones of normals at each 
loading point [7]. Most reliable predictions are of- 
fered by models that can approximate the actual local 
stress and strain fields. Those are typically discretized 
unit cell models, such as the periodic hexagonal array 
model [8, 9], or its rectangular array analogous 
[10. 11]. Under remotely applied uniform stress or 
strain, one can identify a representative unit cell, de- 
rive periodic boundary conditions for   he cell, dis- 
cretize the volume and evaluate the ;  .al fields in 
terms of piecewise uniform estimates oy the finite 
element method or by the transformation field analy- 
sis [12]. A survey of the above models can be found in 
the reviews by Bahei-El-Din and Dvorak [13] and 
Dvorak [14]. 

The present work employs the periodic hexagonal 
array (PHA) model developed by Dvorak and Teply 
[8, 9]. In a series of recent publications, advanced 
constitutive equations for elastic-plastic and visco- 
plastic phases have been implemented in this model 
[15. 16] and predictions were verified by comparisons 
with experimental results [5, 16-19]. The microstruc- 
tural geometry in the transverse plane of a unidirec- 
tionally reinforced fibrous composite is re~esented by 
a periodic distribution of the fibres i exagonal 
array. The fibre cross-sections are ap nated by 

in x 6)-s.ded polygons. Examples of the PHA miCro- 
geometry w,th hexagonal and dodecaaonal fibre 
cross-secnons are shown in Fig. 1. The" hexagonal 
array is divided into two kinds of unit cell, as indicated 
by the shaded and unshaded triangles. Under overall 
uniform stresses or strains, the internal fields of the 
two sets of unit cells are related by a simple trans- 
formation. Accordingly, for uniform overall stresses or 
strains applied to the aggregate, onlv one unit cell 
selected from either set needs to be analvsed under 
certain displacement boundary conditions which re- 
flect periodicity of the local fields [9]. A three-dimen- 
sional view of the unit cell showing dimensions and 
support conditions is given in Fig. 2 for a fibre with 
hexagonal cross-section. 

The actual analysis was performed by the finite 
element method. The unit cell was subdivided into 
a selected number of subelements in the matrix, fibre. 
and coating subdomains. The degree of mesh refine- 
ment may vary from a few elements in each sub- 
domain to several hundred elements. In general 
evaluation of the internal fields in the phases and at 
their interfaces requires a large number of elements 
[20], whereas the overall response can be adequately 
predicted with few elements [15. 20]. Examples of 
various degrees of mesh refinements are shown in 
Fig. 3. In the present study we implemented the PHA 
microgeometry in the ABAQUS finite element pro- 
gram [21] for the mesh shown in Fig. 3b. 

2.2. Phase constitutive equations 
The fibre and coating, if any, are assumed to be elastic 
and transversely isotropic. The matrix is assumed to 
be isotropic in the elastic deformation ranee confined 
within a current yield surface. The thermoeiastic 
properties of the phases are, in general, functions of 
temperature. Using contracted notation, let 
d<rr = [da[da2 da3da4da5da6]

T, d£r = [de^ 
de3de4dE5dE6]

T,   denote   the   stress   and   str: 

Figure / Transverse cross sect.ons of «he PHA m.crogeome.ry w,,h (a, hexagonal and lb» dodecagonal cylindrical fibres. 
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Figure 2 Geometry, dimensions and support conditions of the unit cell. 

(al ^<^ (b) 

Figure 3 Examples of finite element meshes in the PHA unit cell. 

increments in the fibre r = f, matrix r = m, or the 
coating r = c, in a Cartesian coordinate system xh 

j = I. 2. 3. In the presence of a temperature change, 
d 7". the stress-strain relation for the elastic phases are 

written in the incremental form [22.23] 

de, = .WKDda, + me
T{T. ar)dT 

do, = L'AT)dET+l?(T.er)dT 

(1) 

(2) 

3 



where 

i;(T.eT) = (dL;;ZT) 

mUT. dr) = (eAtf./eT)«t + m'AT) (3) 
"T 

£r- ^(Ddr 
To 

-^(D^tn 

= -i?(r)«?(r) (4) 

where ir
e(F) is the phase elastic stiffness matrix. 

M'(T) = [£?(7")] "l is the elastic compliance matrix, 
m,iT) = [sAaTaT000]T is the thermal strain vector 
of linear thermal expansion coefficients for the axial 
and transverse directions, and 7"0 is the initial temper- 
ature. The dependence of the thermal strain on the 
current stress in Equation 3 satisfies the path indepen- 
dence requirement of the elastic solution. When integ- 
rated along the thermal loading path. Equations 1-4 
provide uncoupled mechanical and thermal fields. 

For a transversely isotropic phase with the axis of 
rotational symmetry x,, the non-zero coefficients of 
the upper half of the symmetric stiffness matrix, L'r, at 
a given temperature are evaluated as 

£u=n,   Li2 = £.33 = k + m,   Z.t2 = Z-13 = / 
Z.,3 = k - m,    Ut. = m,    £55 = L66= p     (5) 

The Hill's moduli [24] k. I, n, m, and p of the phase are 
related to the engineering moduli by the relations 

k = - 1 [(4. £T) - (l/GT) - (4vL
2/£T)]       / = 2fcvL 

n = EL + l2,k,   m = Gr,   p = GL (6) 

where the Young's modulus, £L, shear modulus, GL, 
the Poisson's ratio. vL, refer to straining in the longitu- 
dinal direction, and £T, GT, vT = (£T/2GT - 1) to the 
transverse piane. 

The region of the elastic response of the matrix to 
thermomechanical loads is determined by certain con- 
ditions related to the existence of a yield surface 
f(am. T) = 0. Assuming kinematic and isotropic hard- 
ening, the Mises yield surface is given by 

f{am, T) = i(jm - «m):(sm - am 

-(Y(T) + Q)2 =0 (7) 

where sm is the matrix deviatoric stress, a,, is the 
centre of the yield surface. Y is the matnx yield stress 
in simple tension, and Q is isotropic stress function. In 
Equation 7, we used the notation (a: A) to denote the 
inner product of second order tensors a{j and btj. 

In particular, elastic response of the matrix obtains 
if/<0, or if/=0 and i(df/i9m):dam + (Sf/ST) 
d7"] ^ 0 [25]. In this case. Equations 1-6 apply and 
the Hill's moduli in Equation 6 are given in terms of 
the bulk modulus, Km, and shear modulus, Gm, of the 
isotropic matrix as k = G/( 1 - 2v). / = K - 2G/3, 
n = K +  4G 3. m = p = G. 

Elastic-plastic deformation takes place in the 
matrix if/= 0 and [|c/c«m):d<Tm + {Sf:GT)dT] > 0. 
The assumption is that the total strain increment can 
be additively decomposed into elastic and plastic com- 
ponents. The instantaneous response is then evaluated 
from Equations 1 and 2. providing that the elastic 
compliance matrix M',. the stiffness matrix Lf. the 
thermal strain vector, m'. and the thermal stress vec- 
tor. I', are replaced by their instantaneous counter- 

parts. The latter are written as [22. 26] 

/Wm = ;V£ + (3:2HM»:/iT) (81 

Lm = L'm-[2Gm(\ +H3Gm)](«:/«T) (9) 

mm = mc
m - ([3l 2 Y'(T)li2l-2H))m (10) 

4 = [2Gm;'(l+H3Gm)](nTmS1 

+ [r(r)/612Gm])n-£ (in 

H = [dä-Y'{T)dT]:dz> (12a) 

da 

ds" 

- ds:ds 

1 \ 1 
^d£p:dEp 

n = [1,(2/3)'2 r][5u s22s33 2s23 2J3l 2i12]
T 

S = <Tm - %, 

(12b) 

12c) 

(13) 

where Y'(T) = dYidT, t" is the plastic strain vector. 
and H is plastic tangent modulus of the stress-plastic 
strain curve. In Equation 9, n:nr denotes the tensor 
product nynw. 

Evolution of the position of the centre of the matrix 
yield surface am, the isotropic function Q, and the 
plastic tangent modulus H may take several different 
forms which are usually guided by experimental ob- 
servations. In the present work we used the constitut- 
ive equations available in the ABAQUS finite element 
program. Specifically, we assumed linear hardening in 
which H is constant under isothermal loading, and 
specified translation of the yield surface by the 
Prager-Ziegler hardening rule. Except for variations 
of the yield stress Y caused by the temperature change. 
we neglected isotropic hardening of the yield surface. 
Other constitutive rules, such as the two-surface plas- 
ticity theory [27], could be applied as well: these 
would provide somewhat different magnitudes of the 
local fields. 

3. The intermetallic matrix composite 
systems 

Two intermetallic matrix composite materials rein- 
forced by aligned continuous fibres are considered in 
the present study. One system has nickel aluminide 
(Ni3Al) matrix, the other a titanium aluminide (Ti3Al) 
matrix. Both systems are reinforced by silicon carbide 
fibre (SCS6) at 25% volume concentration. A 10 urn 
thick carbon coating has been added to the fibres in 
some cases. The thermoelastic properties of the silicon 
carbide fibre and the carbon coating are taken as 
independent of temperature, and their specific magni- 
tudes are given in Table I [28]. The thermoelastic 
properties of the two aluminide matrices vary with 
temperature as shown in Tables II and III [29. 30]. 
Variation of the Young's moduli and of the thermal 
expansion coefficients of the phases with temperature 
is shown in Figs 4 and 5. respectively, together with 
the Mori-Tanaka estimates of the overall moduli and 
expansion coefficients derived from these estimates. It 
is seen that the thermal coefficient mismatch between 
the phases in the nickel-based composite system is 
larger than that in the titanium-based system. 



TABLE I  Material properties of SCS6 fibre and carbon coating [28] 

SCS6 fibre 
Carbon coating 

(GPa) 

413.6 
172.4 

£T 
(GPal 

413.6 
6.9 

(GPa) 

159.1 
14.5 

(GPa) 

159.1 
3.8 

0.3 
0.3 

(10- X"1)   (10" 

4.6 
1.8 

4.6 
28 

TABLE II Material properties of Ni3Al matrix [29] 

8 £ 
(GPal 

1 

(10- 
Y 

C-')   iMPa) 
H 
(GPa) 

1200 134 0.32 20.6 137 6.70 
994 142 0.32 19.0 279 7.10 
776 150 0.32 17.2 459 7.50 
673 154 0.32 16.4 557 7.70 
642 155 0.32 16.1 564 7.75 
578 158 0.32 15.6 535 7.90 
376 165 0.32 14.3 356 8.25 
327 167 0.32 14.0 279 8.35 
206 172 0.32 13.4 156 8.60 
127 175 0.32 13.0 110 8.75 
21 179 0.32 12.5 79 8.95 

o 25r 

.2   0 
=     0 
ai o 
u 

200        400 600 800        1000      1200 

Temperature. T (°C) 

Figure 5 Coefficients of thermal expansion of the phases and com- 
posites. (M-T estimates) ( ) iA, (- - -) ^. 

TABLE [If Material properties of Ti,AI matrix [30] 

9 £ V i Y H 600 

rc> (GPa) HO"* C"' ) (MPa) (GPa) 
500 

950 32.4 0.3 10.4 210 2.71 
(0 
a. 
I 400 760 51.2 0.3 10.4 240 2.63 

649 62.0 0.3 10.4 260 5.44 
427 66.3 0.3 10.4 320 5.88 8 300 
260 66.3 0.3 10.4 390 5.06 £ 

21 69.0 0.3 10.4 500 3.91 2 200 

Ni,AI 

400       600       800      1000     1200 

Temperature. T (°C) 

Figure 4 Elastic Young's moduli of the phases and composites 
lM-T estimates). I i £..(---) £.. 

The yield stress. Y, and the plastic tangent modulus, 
H. of the Ni3Al [29] and the Ti3Al [30] matrices are 
shown in Tables II and III as function of temperature. 
The yield stress changes are shown in Fig. 6. The 
variation of the yield stress of the Ni3Al matrix with 
temperature, which is not typical of intermetallic com- 
pounds, will be seen to cause early yielding of the 

* 100- 

0 

Ni,AI 

0 200       400       600       800      1000      1200 

Temperature. T (°C) 

Figure 6 Tensile yield stresses of the matrix materials. 

nickel-based composite system during fabrication and 
thus reduce the local stresses in the matrix. 

In a typical fabrication process of intermetallic 
matrix composites, particles of the matrix are sprayed 
on aligned fibres to create a monolayer composite 
[31. 32]. The required number of layers is then 
assembled and encapsulated in a hermetically sealed 
package consisting of stainless steel plates or tubes 
depending on the shape of the final product. The 
assembly is then consolidated by hot isostatic pressing 
(HIP) at a specified high temperature and hydrostatic 
pressure. After a predetermined time period, the HIP 
package is cooled down to room temperature and the 
pressure is simultaneously reduced to atmospheric 
pressure. Owing to the thermal mismatch present be- 
tween the fibre and matrix phases, cooldown from the 
processing temperature cause internal stresses. Such 
local stresses may lead to localized effects such as 
yielding   or  damage,   and   thus   alter   the   overall 



performance of the composite. The following sections 
examine the local stress field in the two intermetailic 
matrix composites described above, after certain 
simple loading programs, and after several typical and 
modified HIP cycles applied during fabrication and 
processing. Modification of the HIP parameters and 
thermo-mechanical loading, unloading paths is ex- 
plored to identify conditions that may lead to reduced 
residual stress fields. 

4. Stress concentrations in uncoated 
and coated fibre systems 

4.1. Elastic response 
The local fields and the overall thermomechanical 
response of elastic composites reinforced by coated or 
uncoated fibres was evaluated by Benveniste et al. [4], 
Dvorak et al. [23], and Bahei-El-Din and Dvorak 
[33]. The latter, as well as our present study, also 
consider the effect of matrix plastic flow on the local 
stresses and on overall response. This section presents 
new data for the stresses in the above intermetailic 
composite systems subjected to thermal and mechan- 
ical loading. In contrast to elastic composites with 
constant moduli, the systems considered here have 
temperature-dependent properties. Therefore, all re- 
sults are presented in terms of ratios of increments of 
local stresses to the increments of overall stress or 
temperature, at specified temperature. These ratios 
may be somewhat different at other temperatures, but 
they illustrate the magnitudes of changes of local fields 
under overall applied loads. 

First, we examine the thermal and mechanical stres- 
ses generated in elastic systems at high temperature, 
and the overall elastic response over a range of tem- 
peratures. An initially stress-free state was assumed, 
and the magnitudes of thermoelastic phase moduli 
were taken at 1200 and 950 C for the SCS6 NijAl and 
SCS6 TijAl composites, respectively. Small changes in 
temperature and transverse tensile stress were applied 

in separate solutions for the unit cell shown in Fig. 3b. 
and the local fields were found using the ABAQUS 
finite element program. Among the six components of 
the local stress fields, of interest here are the contours 
of the ratios of the local transverse normal stress 
Aa,,, AT in the unit cell, shown in Figs 7 and 8 for 
systems with Ni3Al and Ti3Al matrices, respectively. 
and with uncoated and coated SCS6 fibres. Also of 
interest are the local to overall transverse normal 
stress ratios at room temperature, plotted in Figs 9 
and 10. The dashed triangular boundary shown in 
Figs 7-10 indicates the unit cell used in the solution. 
The contours outside the unit cell were found from 
periodicity of the local stress field. The significant 
stress ratios found in these plots are listed in the top 
part of Table IV. Note that the transverse normal 
stress, o22. at the interface coincides with the radial 
normal stress in the .^-direction, and with the hoop 
stress perpendicular to the .xj-direction. The magni- 
tudes of these stresses play a significant role in initia- 
tion of fibre matrix debonding and radial cracking in 
the matrix at the fibre interface, respectively. 

The results in Figs 7 and 8 indicate that a decrease 
in temperature, and the consequent differential dilata- 
tion of the phases, cause compressive radial stresses 
and tensile hoop stresses in the matrix, and compres- 
sive radial and hoop stresses in the fibre. Note that as 
long as the phases remain elastic, the magnitudes of 
the thermal stresses found in the titanium-based 
system are much smaller than those found in the 
nickel-based system. This is consistent with the smaller 
difference between the coefficients of thermal expan- 
sion of the fibre and matrix in the two systems. Fig. 5. 
Thermomechanical compatibility can be enhanced by 
applying a compliant coating to the fibre, such as the 
CVD-deposited carbon coating with properties de- 
scribed in Table I. This causes a significant reduction 
in the local thermal stresses, particularly at the 
fibre, matrix interface. Figs 7b and 8b. Compared to 
the matrix and fibre phases, the carbon coating has 

Fmure ' Transverse thermal stress concentrations. Aa,, AfiMPa C '• I. in the SCS6 NijAl composite in the elastic range at i:iK) C ui 
uncoated ribre. ibl carbon-coated ribre. 



Figures Transverse thermal stress concentrations. ACT,, AT iMPa C"'). in the SCS6.Ti.AI composite in the elastic range at 9<0 C lai 
uncoated fibre, ibl carbon-coated fibre. 

Figure 9 Transverse mechanical stress concentrations. ACT,, ACT,,, in the SCS6,Ni3Al composite in the elastic range at 1*00 C: lal uncoated 
fibre, ibl carbon-coated fibre. 

0.94 
1 09 

Figure 10 Transverse mechanical stress concentrations. ACT,, ACT,,, in the SCS6 Ti,AI composite in the elastic range at 950 C: lal uncoated 
fibre, ibl carbon-coated fibre. 



TABLE IV Summary of stress concentrations in the matrix at fibre matrix interface 

°22 — [ji /Orr  1 

SCS6Ni,AI SCS6Ti3Al 

Uncoated Coated L'ncoated 
fibre fibre fibre fibre 

Elastic 
■ItJrr 
Aaw 

ACT,, 

AT'lMPa 
AT*! MPa 
ACT:2 

■c-'i 
c-'i 

1.56 
- 2.13 

1.15 

0.45 
-0.90 

0.61 

0.28 
-0.36 

1.25 

0.08 
-0.18 

091 
ACT«, ACTIJ 0.57 2.01 0.28 1.37 

Elastic -Plastic 
lo„ A7"*lMPa ■c-'i 0.13 0.08 NYC 

NYC 

NY' 
ACT«, AT'lMPaC"1) -0.16 -0.13 NY0 

ACT,, Aa„» 1.23 1.11 1.28 1 04 
ACT„ ACT;," 0.11 0.56 0.34 0.93 

T= 1200 ;C in SCS6 NijAI. 950 C in SCS6 Ti3AI. 

AHelasticI = - 30 C. A7"(elastic-plasticl = T- 21  C 
°ö,, = 225 MPa in SCS6 Ni3Al. 605 MPa in SCS6-Ti3AI. 
"No yielding. 

a much smaller elastic moduli in the transverse plane. 
Table I, hence it offers little resistance to lateral ther- 
mal deformation of either phase. Also, the coating has 
a large coefficient of thermal expansion in the trans- 
verse plane, and is thus able to fill or vacate the 
void between the fibre and matrix that expands or 
contracts with positive or negative changes in 
temperature. 

Contours of the elastic stress concentration factors 
found in uncoated SCS6,Ni3AI and SCS6,Ti3Al com- 
posites under uniform transverse tension are shown in 
Figs 9 and 10. respectively, for uncoated and coated 
fibres. The stress concentrations found in both com- 
posite systems under overall transverse tension are of 
similar magnitude. In contrast to its effect under ther- 
mal changes, the fibre coating, in general, tends to 
elevate significantly the mechanical transverse stresses 
Figs 9b and 10b. In particular, as shown in Table IV. 
the matrix hoop transverse overall stress ratio 
AcrM, Ad22 increased from 0.57 to 2.01. or by a factor 
of 3.5 in the SCS6/Ni3Al composite and from 0.28 to 
1.37. or by 4.9 in the SCS6,Ti3Al composite when the 
10 urn carbon coating was added to the fibre. Of 
course, the coating reduced both radial stress ratios by 
similar but not identical magnitudes. 

4.2. Elastic-plastic response 
The inelastic response of solids to thermomechanical 
loading depends, in general, on the applied loading 
path. Therefore, in contrast to the elastic response, it is 
not possible to find overall moduli, coefficients of 
thermal expansion, or thermomechanical stress con- 
centrations that are independent of loading history. In 
what follows we present illustrative examples of in- 
elastic deformation of the two composite systems un- 
der monotonically increasing, overall thermal or 
mechanical loading. In the linearly hardening matrix 
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assumed herein (cf. Section 2.2). the local instan- 
taneous moduli remain constant during sustained 
plastic loading along a proportional path, provided, of 
course, that the yield stress does not change. There- 
fore, under proportional mechanical loading at con- 
stant temperature which causes plastic yielding in all 
elements of the subdivided unit ceil, the local fields 
change proportionally. This property may be useful in 
interpretation of the numerical results. 

For uniform changes in temperature throughout 
the volume of the composite, the effect of matrix 
plastic flow on the local stresses was evaluated for 
cooldown to room temperature from a stress-free state 
at 1200 C for the SCS6 Ni3AI composite and from 
950 C for the SCS6 Ti3Al composite. Along these 
thermal paths, the nickel-based matrix exhibited ex- 
tensive plastic deformation, but the titanium-based 
matrix remained mostly elastic. This is consistent with 
the variation of the matrix yield stress with temper- 
ature shown in Fig. 6. 

First, we consider the local stresses in a SCS6 Ni3Al 
composite. Figs 11-13 show stress contours of the 
transverse normal stress. a22, and the transverse shear 
stress. cr23. found at room temperature in uncoated 
and carbon-coated fibre systems. Fig. 11 represents 
the actual field. a22. and Fig. 12 the same field nor- 
malized by the A7"= 1179 C temperature difference 
along the cooling path. This was done to facilitate 
comparisons with the normalized elastic field in Fig. 7. 
It is seen that the local stress, temperature ratios were 
reduced substantially by the plastic deformation of the 
matrix. This can be understood by comparing the 
Young's moduli. £. with the plastic tangent moduli. H. 
in Table II. During plastic straining, the matrix be- 
comes very compliant compared to the fibre and can 
therefore deform at much lower ratios of stress tem- 
perature increments. In fact, the stiffness of the matrix 
in the plastic range is approximately comparable to 



Figure II Transverse normal stresses, o-,;. in the SCS6 Ni3Al composite after cooling from 1200 C to room temperature: lai uncoated fibre, 
ibl carbon-coated fibre. 

Figure/: Transverse  normal  stresses  in  the SCS6 Ni,AI composite from  Fig.   11.  normalized  by  IT = 1179 C: lai uncoated  fibre. 
ib> carDon-cuated fibre. 

Future 13 Shear stress, a.,, in the tranverse plane of the SCS6 Ni,Al composite after cooling from 1200 C to room temperature: lai uncoated 

fibre, ibi carbon-coated fibre. 



the st.ffness of the carbon coating so that the differ- 
ences m the stress ratios found in the coated and the 
uncoated fibre systems are not significant. The defor- 
mat.on itself was quite extensive. For cooling from the 
assumed state free of internal stresses at 1200 C the 
onset of matrix yielding was found at 1140 C, or after 
a - 60 -C change in the uncoated fibre composite and 
at 1020 -C. after a -180'C change in the carbon- 
coated fibre system. Plastic yielding then proceeded 
along the entire cooling path to 21  C. 

Contours of the Isotropie part of the local stress 
field are shown in Fig. 14. and of the normalized 
second invariant of the deviatoric stress field in 
Fig. ix Large stress gradients are observed in the local 
fields. As expected, plastic flow of the matrix started at 
the fibre matrix or coating, matrix interface where the 
stress concentrations were high. The stress contours 
indicate that the internal stresses can be approximated 

by an axisymmetnc field; this may not be possible at 
larger fibre concentrations. A comparison of Figs 14 
and 15 indicates that the cooldown causes both Wee 
hydrostat.c stresses and plastic flow in the entire 
matrix volume. Examples of evolution of plastic zones 
m the matrix during cooldown to room temperature 
are shown in Fig. 16. 

Next, we turn our attention to the SCS6/Ti,Al 
composite. Figs 17-20 illustrate the stresses found 
after cooling from 950 JC to room temperature As 
indicated by the variation of the vield stress of the 
TijAl matrix with temperature, Table III, the matrix 
remains mostly elastic in this case. Fig. 20. Conse- 
quently, relatively large stresses exist in the svstem 
after cooldown to room temperature. In the coated 
system, however, the stresses in the matrix are reduced 
by the compliant carbon coating and are similar to the 
stresses found in the nickel-based svstem. 

x,'k 

■      -e 14 Isotropie stress. u0, in  the SCS6 Ni,Al 
lb. -jrbon-coated fibre. ,AI composite after cooling from  1200 C to room temperature: la, uncoated fibre. 

^Ä^Ä^rj^sr-""' tool,"! - ,:o°c»- —• —«-» 
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Figure 16 Evolution of plastic zones in the matrix SCS6 Ni;AI composite during cooling from 1200 C to room temperature: lai uncoated 
fibre, ibl carbon-coated fibre. 

Figure I' Transverse normal stresses, o\,. in the SCS6 T:,M .^mposite after cooling from 950 C to room temperature: lai uncoated fibre, 
ibi carbon-coated fibre. 

200^'5 

(a) ■" ;cc 

Figure IS Shear stress. rr:l. in the tranverse plane of the SCS6 Ti,AI composite after cooling from 950 C to room temperature- lai uncoated 

fibre, ibi carbon-coated fibre. 
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^Z^Zl^r- °"  m  tHe SCS6Tl^A1 "«^ *« «».in, fro.  950 C lb) carbon-coated fibre. to  room  temperature: la) uncoated fibre. 

Plastic zone 

,?"a-5^eMpV
a

e
(r

SS- l3rllL '"„I"6 SP6Ti3A1 C°mP0Si!e after C00"ng fr°m 95° C t0 room «en.pera.ure. normalized bv 1-1 C) = 500 MPa (a) uncoated fibre, (bl carbon-coated fibre. 

Figure :i Normalized tranverse normal stresses. Aa„ .10.,. in the SCS6 Ni.AI composite after loadinz b 
to (7,, = „5 MPa "" ~ 
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Figure 22 Normalized tranverse normal stresses, Aa22 Ad22. in the SCS6Ti3Al composite after loading by overall transverse normal stress 
to a., = 605 MPa. 

To illustrate the magnitudes of local stresses caused 
during inelastic deformation under mechanical load- 
ing, we present results for loading from a stress-free 
state by an overall transverse tension stress to such 
levels that produced sustained plastic straining in all 
subelements in the matrix volume. These were found 
as ö22 = 225 MPa in the SCS6/Ni3Al and CT22 = 
605 MPa in the SCS6/Ti3Al matrix systems. The local 
stresses computed in the two composite systems at 
these stress levels were normalized by the applied load 
and contours were plotted in the unit cell. Figs 21 and 
22. Selected local stress ratios appear in Table IV. 

The results indicate that material selection for 
monotonic loading should favour uncoated fibrous 
systems with ductile, compliant matrices over coated 
fibres systems with matrices which remain elastic or 
rather stiff during plastic flow. However, plastic strain- 
ing should be avoided under cyclic loads as it may lead 
to low-cycle fatigue damage of the matrix. 

5. Simulation of hot isostatic pressing 
5.1. Analysis of the standard process 
We now proceed to examine the stress states created 
in the two intermetallic composite systems by hot 
isostatic pressing (HIP). In addition to the standard 
pressure-temperature cycle, we explored pressure and 
temperature combinations that could lead to more 
favourable distribution of residual stresses after cool- 
ing to room temperature and reheating to the operat- 
ing temperature. The results were obtained for the 
PHA domain shown in Fig. 3b using the ABAQUS 
finite element program. The composite was assumed 
to be free of external loads and internal stresses at the 
beginning of the path at fabrication temperature. 
Then, the selected pressure was applied in a single step 
if the composite remained elastic, or incrementally 
when plastic straining was involved. This was followed 
by combined pressure and temperature changes dur- 

ing cooling. As in Section 2.2. a rate-independent 
thermoplasticity theory was used. The analysis ne- 
glects the role of possible rate effects, and thus implies 
that cooldown to room temperature and reduction of 
the hydrostatic stress to the atmospheric value take 
place at a very slow rate. Evaluation of the rate effects 
during fabrication, which may be significant in some 
composite systems, requires application of a viscoplas- 
ticity theory for the ductile phases. This has been 
considered in our yet unpublished work using the 
viscoplastic constitutive equations reported by 
Bahei-El-Din et at. [16] and Shah [26]. 

The temperature-overall hydrostatic pressure com- 
binations applied to the SCS6 Ni3Al composite are 
shown schematically in Fig. 23. Conditions similar to 
those shown in Fig. 23a and c were applied to the 
SCS6/Ti3Al system; however, the fabrication temper- 
ature was taken as 7"0 = 950 C. and the initial pres- 
sure as 200 or 400 MPa. In addition, we applied modi- 
fied pressure conditions, with the ratio of the axial to 
transverse hydrostatic pressure ranging from 0-1.5. to 
promote plastic yielding of the matrix. 

In typical HIP cycles, the cooling/unloading path to 
room temperature and atmospheric pressure is usually 
linear, as in Fig. 23a. Under the hydrostatic load, the 
local stress field is not necessarily isotropic. hence 
plastic flow may take place in the matrix during ap- 
plication of the pressure. a0. In the systems con- 
sidered, the local stresses in the matrix are dominated 
by an isotropic stress field so that the matrix, which is 
assumed to be plastically incompressible, remains 
elastic at the fabrication temperature and 200 MPa 
hydrostatic pressure. However, the two intermetallic 
composites exhibited different deformation behaviour 
under the linear cooldown, depressunzation cycle. In 
agreement with the variation of the yield stress with 
temperature of the nickle aluminide and the titanium 
aluminide matrix. Fig. 6. the SCS6 Ni,Al composite 
exhibited substantial plastic deformations while the 
SCS6 Ti3Al composite remained mainly elastic. 
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Figure 23 Thermomechanical unloading programmes applied to simulate modified hot 

(f) 

isostatic pressing. 

Fig. 24 shows the distribution of the axial, radial, 
and hoop stresses, a„ = crU) arr, aM, along the x2- 
axis in the unit cell for uncoated and coated 
SCS6/"Ni3Al composite after the HIP cycle, at room 
temperature and in complete unloading. The inset in 
the figures indicates the loading/unloading path as- 
sumed in this simulation. The axial stress in the fibre 

is uniform and compressive. The magnitude of the 
fibre axial stress is reduced substantially if the fibre is 
coated by a thin carbon layer. However, the coating 
itself sustains large axial tensile stress after cooldown 
to room temperature. The matrix axial stress is also 
uniform, but the radial and hoop stresses are not 
uniform. Large tensile stresses develop in the matrix at 
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the fibre matrix interface in the axial and hoop direc- 
tions. Comparing the plots in Fig. 24a and b, we see 
that the matrix stress in the SCS6/Ni3Al composite 
does not benefit from the presence of the fibre coating. 

Fig. 25 shows the internal stresses after reheating to 
1200 C. Because the composite deformed plastically 

400 

300 

200 

100 

0 

S -100 

2-200 

« -300 

in -400 

-500 

-600 

-700 

-800 

-900 
0 

200 °C 

-200 MPa 

0.5      1.0      1.5      2.0      2.5      3.0     3.5 
x2/fl Ix, = 0) 

Figure J5 Distribution of axial, radial and hoop stresses in the 
SCS6 NijAl composite after hot isostatic pressing and reheating to 
1200 C: (a) uncoated fibre, (b) carbon-coated fibre. 

in the cooling cycle, the residual stresses did not van- 
ish after reheating. 

Depending on the direction of the subsequent load, 
the residual stresses may improve or impair the over- 
all strength. For example, if overall transverse tension 
is applied to the composite at 1200=C (see the con- 
tours in Figs 9 and 12) the matrix tensile stress in the 
radial direction is elevated by the residual stress, 
whereas the tensile stress in the hoop direction is 
reduced by the compressive residual stress. This re- 
duces the likelihood of developing radial cracks in the 
matrix and increases the possibility of debonding at 
the interface. 

The residual stresses found at room temperature in 
uncoated and coated SCS6/Ti3Al composite are 
shown in Fig. 26. Compared to the nickel-based sys- 
tem, much larger thermal stresses were found in the 
matrix of the uncoated titanium-based system. Of 
course, this is the consequence of plastic straining in 
the Ni3Al matrix, and elastic deformation in the Ti3Al 
matrix. However, for the same reason, the magnitude 
of the radial and hoop stresses in the Ti3Al matrix 
were reduced by more than a factor of two by the fibre 
coating, Fig. 26, while remained unchanged in the 
Ni3Al matrix, Fig. 24. Also, the residual stresses were 
completely removed by reheating the Ti3Al matrix 
composite to 950 °C. 

5.2. Effect of HIP parameters on residual 
stresses 

The results presented in the preceding sections indi- 
cate that plastic flow of the matrix causes redistri- 
bution of the local stresses and reduction of the 

0.0 

(a) 
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0.5     1.0       1.5      2.0      2.5      3.0 

Xj/fl (x3 = 0) 

950°C 
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Finure 26 Distribution of axial, radial and hoop stresses in the SCS6.Ti3Al composite at room temperature after hot 
uncoated fibre. Ibl carbon-coated fibre. 

isostatic pressing: lal 
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interfacial stresses in the matrix. This feature can be 
utilized in optimizing the temperature, pressure path 
in order to reduce the adverse local stresses. In this 
section, we examine various HIP regimes and evaluate 
the corresponding local stresses in the two intermetai- 
lic composites considered above. 

First, we computed the local residual stresses re- 
tained in the SCS6/Ni3Al system at room temperature 
after exposure to an HIP temperature of 1200 :C and 
hydrostatic pressure of 200 or 400 MPa, when unload- 
ing was reached through the various options shown in 
Fig. 23b-f, including an excursion below room tem- 
perature. Fig. 23f. For the loading cases shown in 
Fig. 23a, b, d and e, the stresses at the end of the HIP 
cycle were very similar. On the other hand, the tensile 
stresses were substantially reduced when the hydro- 
static pressure, a0, was sustained during cooldown of 
the composite. Fig. 23c. Moreover, the tensile stresses 
m the phases were lower when the higher hydrostatic 
pressure of 400 MPa was maintained during the HIP 
process. 

The interfacial and internal matrix stresses com- 
puted in uncoated and carbon-coated SCS6/Ni3Al 
composites for the various conditions are shown in 
Tables V and VI. Table V lists the radial stress arr> 

hoop stress aw, and axial stress ou, found at the 
interface at either point "a" or point "b" indicated on 

the unit cell shown in the inset. The average isotropic 
stress in the matrix a? is also indicated" Table VI 
shows the local stresses found in the matrix internal 
point "c" (see inset of unit cell), the axial stress 
a™ 3 On, the transverse stress af2 and the isotropic 
stress GQ . 

Note the substantial reduction of the radial and 
hoop stresses at the interface between the first and last 
regimes in Tables V and VI. As discussed below, this 
reduction is mostly due to more extensive plastic 
straining caused by the higher and sustained hydro- 
static stress. It appears that the tensile stresses would 
be reduced further by increasing the hydrostatic pres- 
sure, provided that fibre splitting could be avoided. 
The matrix interfacial tensile stresses in the coated 
system have been also reduced, but to a lesser extent, 
by following the loading path indicated in Fig. 23c. 
Table V. The hoop stress in the coating, however, is 
not affected by the thermomechanical path. The pres- 
sure applied during the HIP process did not much 
affect the stresses, in the coated system. 

Of course, reheating to 1200 :C did not eliminate 
the residual stresses. Tables VII and VIII. However, 
the stresses in the reheated systems were not much 
affected by the processing path, or by the magnitude of 
the hydrostatic pressure. c0, applied. 

Table IX summarizes the results found for the 

TABLE V Maximum interface stresses found in a SCS6/Ni3Al composite at room temperature after HIP 
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TABLE VII Maximum interface stresses found in a SCS6NijAl composite at room temperature after HIP and reheating to fabrication 
temperature 
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TABLE VIII Matrix internal stresses found in a SCS6,Nt3Al composite at room temperature after HIP and reheating to fabrication 
temperature 

ri200-c 

L2VC 

12O0'C 

Stress at point c 
(MPa) 

-20OMP1 

Uncoated 
fibre 

Coated 
fibre 

-200 MPa 

Uncoated 
fibre 

0«j 

Coated 
fibre 

21 »C 

- 400 MPa 

Uncoated      Coated 
fibre fibre 

<T 
1200"C 

-400 MPa 
h2rc 

O0 

250-C 

Uncoated      Coated 
fibre fibre 

CTn = an - 132 - 127 -132 -124 - 132 - 123 - 132 - 124 

a?, 13 13 13 14 13 15 13 14 

°o" -62 -64 -62 -63 -62 -62 -62 -63 

TABLE IX Maximum interface stresses found in a SCS6/Ti3Al composite at room temperature after HIP 
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uncoated and carbon-coated SCS6/Ti3Al composites. 
Apart from very localized matrix yielding at the 
fibre/matrix interface in the uncoated fibre system, this 
composite remained elastic when subjected to the 

loading path indicated in Fig. 23a at 950 :C. The 
matrix also remained elastic and the local stresses 
were unaltered when the hydrostatic pressure, a0, was 
increased   from   200 MPa   to   400 MPa   and   then 
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reduced proportionally during cooling. On the other 
hand plastic flow of the matrix was induced early in 
the HIP process of the uncoated fibre system, and the 
matrix experienced substantial plastic deformation 
when the HIP path shown in Fig. 23c was followed 
from 9>0"C at sustained hydrostatic pressure of 
400 MPa. The hoop stress and the axial stress in the 
matrix of the uncoated system were reduced by ap- 
proximately 49%. These reductions in the local stres- 
ses are larger than those found in the nickel-based 
system. Table V. This may be attributed to more 
extensive plastic straining at the low plastic tangent 
modulus of the titanium aluminide matrix, Table III 

5.3. Modified pressure ratios 
To exF ^re other possible alternatives that could mag- 
nify tr. favourable effect of plastic straining on the 
distribution of residual stresses, we applied modified 
HIP cycles in which the axial pressure at and the 
transverse hydrostatic pressure aT, assumed different 
magnitudes. The results are shown in Tables X-XIII 
for crT = 400 MPa, and a£/crj ratios of 0.0, 0.5, 1.0, 
1.5. In these calculations, the axial pressure and the 
transverse hydrostatic pressure were held constant 
during cooldown to room temperature. 

The axial tensile stress in the matrix benefited most 
from reducing the axial pressure during hot isostatic 
pressing of the composite, particularly in uncoated 
fibre systems. Compared to the standard HIP 
methods in which a three-dimensional hydrostatic 
pressure was applied, a$ = CTJ, the matrix axial stress 
was reduced by 50%-60% in the SCS6/Ni3Al com- 
posite when a£/aj = 0.5, and by 73%-115% in the 
SCS6/Ti3Al composite when cr^/aj = 0.0. As ex- 
pected, the axial compressive stress in the fibre and 

TA B LE X Interface stresses found in uncoated SCS6/NijAl com- 
posite at room temperature after HIP with modified pressure condi- 
tions 
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TABLE XI Interface stresses found in carbon-coated SCS6 Ni \l 
compos.te at room temperature after HIP *,th modified pressure 
conditions 
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TABLE XII Interface stresses found in uncoated SCS6 Ti A' 
composite at room temperature after HIP with modified pressure 
conditions 
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coating was lower when the overall axial pressure was 
reduced. 

In contrast, the tensile matrix hoop stress found in 
all cases considered in Tables X-XIII changed onlv 
slightly when the overall axial pressure and the trans- 
verse hydrostatic pressure had different maenitudes 
o-o * aj. 
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TABLE XIII Interface stresses found in carbon-coated 
SCS6 TijAl composite at room temperature after HIP with modi- 
fied pressure conditions 
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5.4. Mechanical loading of processed 
composites 

To complete the numerical simulations of the inelastic 
response of the two composite systems, we applied 
transverse tension stresses to systems processed with 

the standard and modified HIP cycles. The mechan- 
ical stress levels chosen were equal to those employed 
earlier to stress-free systems in Figs 21 and 22. The 
processing sequences and local stress magnitudes at 
the maximum stress are shown in Tables XIV and XV. 
Then. Table XVI compares the local stresses attained 
after fabrication alone, following the regime indicated 
in the table, with those found after mechanical loading 
applied alone from a stress-free state at room temper- 
ature (Section 4.2) and finally with those found after 
transverse loading of the fabricated composites with 
the initial residual stresses. 

Note that during plastic straining of the fabricated 
systems, the differences in the residual stresses after 
fabrication. Tables V and VI, have no discernible 
effect on the final stress state. However, there are large 
differences between the local stresses reached after 
loading from the stress-free state, and from the fab- 
ricated state. 

5.5. Interpretation of the results 
To gain a better insight into the numerical results, we 
present here a simplified analysis of unidirectional 
fibrous systems exposed to pressure, temperature 
loads, using the thermomechanical equivalence [34, 
35]. The local fields and overall response under ther- 
mal changes applied to elastic or inelastic, unidirec- 
tionally reinforced fibrous composites can be found by 
superposition of a certain uniform stress field in the 
phases with a field corresponding to an overall mech- 
anical load that removes the surface tractions of the 
uniform stress field. 

For composites with two isotropic phases of any 
microgeometry, which are subjected to a uniform 

TABLE XIV Interface stress found in SCS6/NijAl composite at room temperature after HIP and transverse tension of 255 MPa 

I'1 < 
r 

■1200°C 
. r 
■1200°C 

d*" b 

•21 

1 

<< ,. *2 .21"« 

^<J -400 MPa 0 °0 4C »MPa 0   Co 

Interface s tress                      + äxl = 225 MPa + o\. = 225 MPa 
(MPal 

(Jncoated fibre Coated fibre Uncoated fibre Coated fibre 

cr™ at a 170 192 171 191 
at b - 143 - 135 - 143 - 135 

a™ at a 311 249 310 251 
at b 170 245 169 245 

a™ at a 322 310 320 311 
at b 104 157 99 157 

0-i.ata - 128 - 126 
at b - 226 - 227 

CTM aI a - -674 - -674 
at b - -738 - -737 

< at a 170 184 171 183 
at b - 143 - 125 - 143 - 125 

<ata -51 -52 -49 -52 
at b 257 230 .259 230 

°u at a -686 -432 -684 -432 
at b -680 -439 -678 -438 
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TABLE 

"1 

1B- 
i T 

■950°C 

erse tension of 605 MPa 

i T 

■950-C 

^ r: 
1  V Nj 400 MPa 0   Oo 

-400 MPa 0 oT Interface stress + CT,,  = - 605 MPa 
iMPal + CT,2 = 505 MPa 

c 

a 

L'ncoated fibre Coated fibre L'ncoated fibre Coated fibre 
C at d 

at b 
*«a 

578 
75 

500 

593 
-53 

53 
604 
408 
287 

626 
68 

593 
-53 

at b 
CT™ at a 

at b 

511 
454 
253 

348 
418 
323 
160 

53 
604 
408 
287 

«T^at a - "M 
at b - 244 24 

a* at a - -662 
244 

at b ~ -662 - 787 - -787 
CT'   at a 

at b 
578 664 

7 
41 

762 

626 664 
<*L at a 

at b 
- 165 

702 

68 
- 74 

735 
- 1009 
-972 

7 
42 

IT], at a 
at b 

- 1076 
- 1005 

-733 
-721 

762 
-733 
-721 

TABLE XVI Comparison of matrix interface stresses found in 
intermetallic matrix composites after fabrication and transverse 
tension 

^3     '2 
-400 MPa 

'0 

21"C 

Interface stress    SCS6 Ni Al 
(MPal   

0   °o 
SCS6,Ti3Al 

Uncoated      Coated     L'ncoated      Coated 
fibre fibre fibre fibre 

Fabrication 
CTrr at a 
CT^at b 

Overall CT,2 

°rr at a 

crwatb 

<rrr at a 
o-„ at b 

r0 = 1200 C 
-107 -113 

120 152 

225 MPa 
277 250 

25 126 

Fab. + 225 MPa 
'  171 191 

169 245 

r0 = 950 C 
-204 

165 

605 MPa 
774 
206 

- 79 
165 

629 
563 

Fab. + 605 MPa 
626 593 
418 604 

Kf > Km and ■Xf < tm, the cooldown from T0 to 
T causes uniform hydrostatic tension. Equation 14, in 
the entire composite. Because S is an isotropic stress in 
all phases, it does not cause inelastic deformation in 
a plastically incompressible material. 

Of course, the internal field S is supported by cor- 
responding surface tractions which are not actually 
applied at the surface of the representative volume, 
and must, therefore, be removed. If an overall uniform 
stress, ö, is applied to the composite simultaneously 
with the temperature change, then the corresponding 
tractions can be added to those created by an overall 
stress equal to -S. The local stress a\x) referred to 
a Cartesian coordinate system, XjJ = 1. 2, 3, is then 
given by [34, 37] 

<TU) = S1 + B(x)(a-Sl) (15) 

where 1 = [1 1 1000]T, and £(x) is a (6x6) stress 
concentration factor matrix. Note that this stress is 
not uniform and may cause yielding. For fibrous me- 
dia with transversely isotropic phases, where xx is the 
fibre axial direction, the matrix B has the form [35] 

temperature change (T- T0), one can find the uni- 
form stress field in phases as 

S'-Wit-^W.Kt-lK^KT-To)   (14)     ä = 

where the elastic bulk modulus and coefficient of ther- 
mal expansion of the matrix and fibre are denoted 
respectively, by K„. am, K„ a,. 

If thermoelastic properties of the phases are func- 
tions of temperature, then Km and Kt denote the 
magnitudes of the phase bulk moduli at the current 
temperature T. whereas im and af are replaced by the 
averages \)TT^T[T)dT\ (T- T0),r =/ m [36]. In typ- 
ical composite systems with isotropic phases in which 

on St 2 Bu 0 0 0 
ß:i Bzz BZ3 0 0 0 
Ä21 B2i B22 0 0 0 
0 0 0 Ba 0 0 
0 0 0 0 ß53 0 
0 0' 0 0 0 ß<« 

(16) 

The respective columns of B represent the local stres- 
ses corresponding to a sequence of unit overall stresses 
a = ik, k = 1. 2 6, where ik is the kth column of 
a (6 x 6) unit matrix. Actual magnitudes of the coeffi- 
cients must be found from analysis of a selected 
micromechanical    model.    Such   models    typically 
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approximate the actual fields with piecewise uniform 
distributions in a representative volume of the com- 
posite. The periodic hexagonal array (PHA) model 
[8. 9] employed here is an example of this approach. 
Other examples are the self-consistent method [1], 
Mori-Tanaka model [2, 3], and the vanishing fibre 
diameter model [38]. in which only the phase average 
stresses are determined. Hence, if .V denotes the num- 
ber of subelements. one finds .V = 2 for the averaging 
models of two-phase composites, and .V equal to the 
number of subelements or integration points in the 
unit cell of the PHA model. In any case . Equation 15 
is replaced by 

<rr = S1 + Sr(ff-Sl). ,v (17) 

Under hot isostatic pressing of unidirectional com- 
posites, the applied overall stress is usually the three- 
dimensional hydrostatic stress. a0. Substituting 
ä = a0l in Equation 17, the local stresses caused by 
the thermomechanical loading are given by 

<rr = S1 -f- BrS*l,    S*=(CT0-S),    r=l. .V 

(18) 

In this way, the thermomechanical HIP problem is 
reduced to a mechanical problem in which the com- 
posite is subjected to hydrostatic pressure (a0 — S). 
Note that S* is often negative. 

In modelling of the hot isostatic pressing of 
SCS6,Ni3Ai and SCS6/Ti3Al composites reinforced 
by uncoated fibres, the cooldown part of the ther- 
momechanical loading regimes shown in Fig. 23 was 
converted into the stress S. using Equation 14 and the 
thermoelastic properties listed in Tables I—HI. This 
stress was combined with the hydrostatic pressure. CT0, 

applied in the HIP process, and plotted against the 

current temperature. The individual points were 
connected by straight line segments. The hydrostatic 
pressure path found in this manner for selected HIP 
loading regimes is shown in Figs 27 and 28 for 
SCS6/Ni3AI and SCS6 Ti3Al composites, respectively. 
The non-linear variation of this normalized pressure 
with temperature is caused, in part, by the temper- 
ature dependence of the yield stress and thermoelastic 
properties of the phases. 

This replacement of the actual thermomechanical 
loads by the pressure S* = (o0 - S) simplifies evalu- 
ation of the onset of initial yielding of the composite 
under standard and modified HIP regimes. The mag- 
nitude of the overall hydrostatic stress. S*. at initial 
yielding in the matrix is found by substituting the local 
stresses given by Equation 18 into a specified yield 
function. Of course, .V such solutions can be found, 
but only the lowest S* corresponds to the onset of 
yielding. In a Jz material, the local hydrostatic stress 
given by the first term in Equation 18 causes no plastic 
deformation. Using the local stresses given by the 
second term in Equation 18. and adopting the Mises 
yield function (Equation 7) for the matrix material, 
one finds the overall hydrostatic stress at initial yield- 
ing as 

S?' = J7(B'U + 2B\Z - S'21 - S;: - B':3),    r = 1. N 

(19) 

In the self-consistent method. Equation 19 provides 
a single solution. This is indicated by the upper dashed 
curve in Figs 27 and 28. Under the HIP loads shown, 
the onset of yielding is given by intersection of the 
applied hydrostatic pressure and the hydrostatic yield 
stress curves. Consistent with our finite element calcu- 
lations, matrix yielding in the SCS6Ni3Al composite 
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can be induced earlier in the HIP process by maintain- 
ing the hydrostatic pressure, a0, during cooldown to 
room temperature. As we found earlier, this causes 
redistribution of the local stresses and leads to reduc- 
tion of the magnitude of the matrix stress. It is also 
clear that increasing CT0 translates the applied load 
curve in Fig. 27 upwards in the direction of the hy- 
drostatic yield stress curve. In this case, initial yielding 
of the composite takes place at a higher temperature 
during the cooldown path, which may further reduce 
the magnitude of the local stresses. The actual onset of 
yielding will be different from that indicated in Fig. 27 
if a more refined stress field is employed. The self- 
consistent estimate of the initial yield stress for the 
SCS6 TijAI composite reveals no yielding during the 
HIP regimes shown in Fig. 28. On the other hand, our 
calculations with the PHA model and the finite ele- 
ment method indicated plastic yielding in this system 
for some of the HIP paths. The conclusion drawn 
from Fig. 28 is that initial yielding can be induced 
earlier in the process by modifying the HIP path such 
that cooldown to room temperature takes place at 
a constant, high pressure. 

Another modification of the HIP path which may 
improve the local stresses, is the superposition of an 
isotropic stress, arj. in the transverse plane of the 
composite, as in Section 5.3. In this case, the loads 
applied consist of the hydrostatic stress. S. caused by 
the temperature change, the hydrostatic pressure. CT0, 

and the overall transverse hydrostatic stress, 
ö = [0CTO"CTO"000]

T
. Substituting into Equation 17, 

and using the Viises yield function (Equation 7), the 
hydrostatic initial yield stress is found as 

S*yr = [y- a0
r(fl';2 + Br

2i - 2B[2)l' 

(A', +2B[2 -B'2[ -fl'j2 -fl'2J)       r=l..V 

CO) 
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It is seen from Equation 20 that the magnitude of the 
initial yield hydrostatic stress is reduced by super- 
imposing the transverse isotropic pressure. CTJ. Equa- 
tion 20 is plotted in Figs 27 and 28 for selected 
magnitudes of aj, where the stress concentration fac- 
tors were found with the self-consistent method. The 
onset of yielding was found at the intersection of the 
applied load curve and the S*r curve. The actual vield 
temperature depends on the magnitude of the iso- 
tropic pressure, aj, maintained during the process. 
and it can be elevated substantially by increasing oj. 
These observations indicate how the processing para- 
meters contribute to earlier, more extensive plastic 
straining, and thus to reduction of residual stresses. 

6. Conclusion 
Adverse thermal residual stresses generated during 
fabrication of fibrous composites can be reduced by 
a CVD carbon coating. The fibre coating provides 
a buffer that reduces the fibre/matrix constraint and 
the stresses caused by thermal mismatch of the phases. 
However, the coating may cause higher concentra- 
tions of certain stress components under mechanical 
loading. This is true, in particular, for the matrix hoop 
stress at the interface with the coated fibre, under 
overall transverse normal stress. The magnitude of 
these effects also depends on the relative stiffness of the 
matrix, fibre and coating. 

Plastic flow of the matrix under overall transverse 
tension may cause substantial reductions in the tensile 
interfacial stresses. The implication is that mechanical 
compatibility in fibrous composites depends not only 
on the thermomechanical phase properties, but also 
on the inelastic response of the phases. A reasonably 
accurate evaluation of thermal residual stresses re- 
quires a refined micromechanical model, such as the 



PHA model used here. A qualitative assessment of 
initial yielding during fabrication helps to identify 
effective HIP regimes, and can be performed with 
simple micromechanical models, e.g. the self-consis- 
tent or Mori-Tanaka schemes. 

Numerical evaluations of the local stresses in the two 
intermetallic composites indicate that significant reduc- 
tions in thermal residual stresses after hot iso- 
static pressing can be achieved by modifying the pro- 
cessing path. Most of the reductions in the adverse 
stresses in the matrix were obtained when cooldown to 
room temperature took place at a constant pres- 
sure. Increased pressure helped reduce the local stresses. 

Another modification found effective in relieving 
the matrix residual tensile stresses is the application of 
axial compression which is smaller than the transverse 
hydrostatic pressure. The matrix axial tensile stress 
was found to be smallest when the overall axial stress 
was absent. In this case, the magnitudes of the fibre 
axial stress and the radial stress at the interface were 
also reduced, but remained compressive at the end of 
the HIP cycle. While decreasing the overall axial pres- 
sure relative to the transverse hydrostatic pressure 
caused significant reductions in the axial stresses and 
radial stresses in the phases, it also enhanced the 
matrix tensile hoop stress slightly. The smallest matrix 
hoop stress was found under three-dimensional hy- 
drostatic pressure. 

Thermal residual stresses generated in composite 
materials have a profound effect on their performance 
in service. In particular, the residual stresses may 
reduce or enhance the local stresses developed in the 
phases under service loads. The differences in the 
residual stresses after fabrication by variable HIP 
parameters, however, have a minor effect on the final 
stress states. 
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ABSTRACT 

As part of Rensselaer's ONR/ARPA URI on Mechanism-Based Modeling of Composite 
Structures a set of computational and visualization tools are being developed and inte- 
grated together to provide scientists and engineers with the means to better design com- 
posite materials and structures. This paper briefly overviews the modular software 
framework which underlies the system. Some of the underlying computational techniques 
critical to the numerical analysis procedures are introduced, such as adaptive multiscale 
modeling based on hierarchic superposition techniques and effective unit cell and other 
rnicromechanical models. This paper shows examples of the application of these tech- 
niques to understanding the behavior of composite materials and structures. 

INTRODUCTION 

The design of composite structures is a difficult task due to the fact that there are many dif- 
ferent failure modes that must be taken into account. Often these failure modes occur at 
scales which are much smaller than the scale of a component in a structure, down to the 
scale of the microstructural constituents of the composite or smaller. Modeling an entire 
structural component at a scale that will resolve all of the important features is not a prac- 
tical approach to the analysis of the problem. 

To make the problem of modeling a composite structure practical, assumptions must be 
made about the behavior of the structure to reduce the size of the problem; these assump- 
tions are generally referred to as idealizations. However, these idealizations are often not 
valid over the entire domain and generally not validated as a part of the solution process. 
A main focus of the current research is the development of adaptive tools that can be used 
to estimate the error associated with specific idealizations and automatically adapt the ide- 
alizations being used to reduce the error to the desired level. 

Even after the behavior of a component is understood, the problem is not solved. Often 
there are great gains that can be made by adjusting some of the other parameters available 
in the system. One of these parameters is the processing technique used to manufacture the 
part being designed. Depending on the process used to create the part there may be many 
parameters available to adjust the final properties of the material. The ability to use these 



processing parameters in design depends on being able to properly model their effects on 
the resulting material. To this end modeling capabilities are being developed for material 
processing and being integrated into an overall system for composite design. 

This paper describes a system that is being developed to assist in designing with compos- 
ite materials. The purpose of the system is to give the user a set of adaptive tools for the 
analysis of structures made from composites as well as tools to investigate processes used 
to create the materials and to determine their properties. 

ANALYSIS FRAMEWORK 

System Overview 

The system can be broken down in four functional parts which work together to solve the 
overall problem of designing with composites. Each of these parts is comprised of pro- 
grams which perform specific tasks. The system is designed so that any functionally 
equivalent part can be substituted for another without affecting other parts of the system. 

Design: The first part of the system is the user interface to the system; it is the only part 
that the user directly interacts with in a design process. Two things can currently be done 
at this level: 1) problem specification, specifying the problem to be analyzed in terms of a 
geometric model, analysis attributes and the goals of the analysis, and 2) material design 
and selection, investigating properties of various material systems as a part of problem 
specification or as a stand-alone task. 

Material Property/Response Calculations: The second part of the system is a set of 
tools to provide material response characteristics and homogenized material properties for 
various types of microstructures. Specific current capabilities include material models 
such as Bimodal Plasticity [1], PHA [2], and a general unit cell evaluation program. These 
tools are also available to other parts of the system for the same purpose. 

Thermomechanical Analysis: The system also has tools for performing adaptive thermo- 
mechanical analysis, that is to provide accurate and efficient solutions for displacements, 
stresses, strains, temperatures and heat fluxes for the purpose of determining structural 
response and predicting failure. The specific codes that are available in this part of the sys- 
tem include commercial FE packages, such as ABAQUS [3], and in-house codes, such as 
the Mesh Superposition Research Code which implements the s-version FEM. 

Process Modeling: The fourth functional part of the system are tools to simulate material 
processing. This part of the system allows the designer to investigate alternate processing 
procedures to increase the efficiency of the material processing and to obtain more 
detailed initial material properties for a thermomechanical analysis of a structure. One 
piece of software that is being developed models a reactive vapor infiltration process. 

Goal Driven Methodology 

One method by which the system allows its users to get the full benefit of the various com- 
ponent tools is through the use of a goal driven methodology to assist in the solution of the 
problems to be analyzed. A main objective of the goal driven methodology is to provide 



analysis expertise for use in design, in a manner which is as simple as possible to use. This 
is done by separating the objectives of the analysis: the goal, from the details of how it can 
be accomplished: the strategy. 

Creation of analysis goals is primarily the responsibility of the composites designer, con- 
sisting of the definition of what is "known" or fixed, what is desired, and the allowable 
cost and required reliability of the analysis. Strategies are developed by analysis experts 
and software developers. Once an analysis goal has been specified in the system, a strategy 
can be automatically selected and executed to achieve it. A strategy consists of modules of 
software which can accomplish specific parts of an analysis goal, and a plan which pro- 
vides expert guidance for implementing the analysis. During execution, inferencing details 
the plan by matching particular conditions of the problem with known capabilities of the 
methods and software modules available to the strategy. 

As an example, a composite material application may have known reinforcement shape 
and composition and unknown instantaneous effective properties such as compliance, 
stiffness, thermal strain and stress vectors, mechanical and thermal concentration factors 
or bounds on the effective moduli. The analysis goal specifies the knowns, the desired 
data, plus the desired reliability of the results and the time (cost) available. A strategy plan 
for reaching the unknowns states that a model, e.g. PHA, random fibers in a unit cell, sim- 
ple bounds; modified SCM/TEA etc., an analysis method, e.g. finite element or transfor- 
mation field analysis, and a constitutive model must be determined. The details of which 
method and modules of software are used, and the order in which they must be executed 
are determined from the particular attributes of the goal and the known capabilities of the 
methods and software. 

Strategies can readily accommodate expanded analytical capabilities. For instance, as 
material processing models and analytic techniques become more advanced, some of the 
material knowns given above could be replaced with the initial materials and processing 
technique parameters. The new analytical capability may then derive reinforcement shape 
and composition properties, helping to integrate manufacturing of the composite with the 
design process. The goal driven approach reduces the assumption as to how designers will 
want to use the new analytical capability and requires no procedures to be written or 
rewritten in order to accommodate those assumptions. Further details of the approach as 
used for idealization control can be found in [4] and [5]. A related application focusing on 
information dependency and planning for composite design can be found in [6]. 

MULTISCALE MODELING 

One of the greatest challenges in computational mechanics is to construct optimal mathe- 
matical and numerical models for large scale laminated shell structures. The challenge is 
to accurately determine the global behavior of the shell structure, including maximum dis- 
placements, vibration and buckling modes, as well as predicting various failure modes on 
the lamina level, such as delamination or ply buckling, and on the level of microconstitu- 
ents, such as microcracking, debonding, microbuckling, etc. To accomplish this, research 
efforts have been directed in the following two areas: 

•  Development of idealization error estimators for laminated composite shell structures 
to control the quality of both mathematical and numerical models 



•   Development of efficient multiscale adaptive solution refinement strategies aimed at 
improving the quality of numerical and mathematical models 

Idealization error estimators for composite shells 

Dimensional Reduction Error estimator (DRE) developed in [7] is designed to indicate 
areas where the equivalent single-layer model, the most inexpensive modeling tool, is 
insufficient. The kinematics of the model can then be enriched in these areas with a dis- 
crete-layer model to allow modeling of such failure modes as delamination. The error esti- 
mator builds on the earlier works on residual based error estimators. By this technique the 
dimensional reduction error e = uEX - uFE = Oß, is approximated by a linear combination 
of some basis in the auxiliary FE mesh. The unknown coefficients are found by solving the 
auxiliary problem: 

±{l-a(uFE + E,uFE + E)a-(uFE+E,b)cl-(uFE + E,t)r}  = 0 (1) 
op   2 

where O is defined to maintain C continuity of the augmented field, « + E, and to sat- 
isfy essential boundary conditions. The auxiliary mesh is constructed by uniformly subdi- 
viding each layer into 2NSD self-similar subregions. 

In many cases the mechanism that causes failure is at a much smaller scale - the scale of 
microconstituents. A common computational rationale today is to investigate various 
microprocesses that may lead to a progressive failure on the unit cell problem, based on a 
periodicity assumption. This assumption is not valid in areas of high stress concentration. 
Thus the application of conventional homogenization techniques to the "hot spots" leads 
to poor predictions of local fields. A closed form expression for a Microscale Reduction 
error estimator (MRE) has been derived in [8]. The proposed MRE estimator relates the 
homogenization error to macroscopic fields and the details of microstructure as follows: 

•   .•    P         JCi-C2|a(a-l)llve1£ m Homogenization Error = X—— = r.—r.— U; 
Ceff 2 II el£ 

where Cx and C, are compliances of microconstituents, Cg^ the effective compliance of 
the unit cell, a the volume fraction, X the size of the unit cell, || V e0||£ the energy norm 
of the gradient of the macroscopic strain field in the homogenized FE mesh. 

It can be seen that the error estimator is asymptotically exact in the sense that the micros- 
cale reduction errors vanish if either the normalized strain gradients are negligible, the unit 
cell is infinitesimally small, the compliances of microconstituents are almost identical or 
the volume fraction is close to zero or one, which corresponds to a homogeneous material. 
The formulation of microscale reduction error estimator is based on assessing the magni- 
tude of the first term neglected by a classical mathematical homogenization theory [8]. 

Adaptive refinement strategy 

Once the sources of errors have been quantified, it is necessary to employ the most effi- 
cient solution refinement strategy. Our experience indicates that a solution strategy that 
exploits previous solutions and computations, such as formation and factorization of the 



stiffness matrix of the lower level idealization model is likely to provide the best accuracy 
with a minimal computational effort. Such a hierarchical solution procedure can be 
obtained by superposition of finite element meshes. This procedure, known as the s- 
method [7][9] has the following features: 

1. Overlay a discrete layer model on the equivalent single layer model in the critical 
regions (in-plane and through-thickness) as identified by DRE estimators 

2. Overlay finite element meshes that represent the microstructure in the regions where 
the homogenization procedure has been identified by MRE estimator as being invalid. 

3. Refine a given mathematical model (or idealization) composed of overlapping single- 
layer, discrete-layer and the micro finite element meshes by overlaying refined finite 
element meshes of the same kind in the corresponding regions until the discretization 
error is smaller than a user prescribed limit. 

EXAMPLES 

Multiscale Modeling using the Mesh Superposition Method 

To demonstrate the performance of the method consider a single layer (2"x3") Boron-Alu- 
minium composite plate with a centered hole (diameter 0.2") subjected to uniform load- 
ing. The MRE estimator indicated that in the radius of four unit cells from the tip of the 
hole the homogenization error was above 2%. In this region, as indicated in lower-middle 
portion of Figure 1, a micro mesh was superimposed which accurately represents the geo- 
metrical features of the microconstituents. Figure 1 shows stresses extracted from the 
superposition method, reference solution and the post-processing from the mathematical 
homogenization formulation. Note that, in the figure, the solution shown for the homoge- 
nization formulation spans only the single unit cell closest to the hole, while the other two 
solutions span a distance of five unit cells. The solution from homogenization does not 
capture the details of the stress field, while the superposition solution shows a good corre- 
spondence to the reference solution. Near the hole, the superposition method yields a max- 
imum stress value of 5.75, while the reference solution yields 5.6 and the post-processing 
from homogenization, 4.0. This examples clearly demonstrates how the method of mathe- 
matical homogenization fails in areas of high solution gradients due to the fact that one of 
the assumptions of the method is that the gradients are small. It is, of course, these areas of 
high gradients that are most important to resolve. 

Failure Surface Visualization 

In the process of developing new materials and new processing methods, it is often desir- 
able for the material designer to have an understanding of the behavior of a material on the 
microscale level. One way to look at the behavior is by using various models that predict 
some type of overall behavior based on the microstructure and the thermomechanical 
loading of the composite, such as the evolution of yield or failure surfaces. 

To allow this type of information to be investigated in a natural manner a tool was devel- 
oped to visualize yield and failure surfaces for composite laminates based on any theory 
which has a lamina-based yield or failure criteria[U]. These surfaces can be shown for 
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FIGURE 2. Failure Surfaces for a SCS6/Ti-24Al-l INb (±45°) s laminate 

individual laminas in a laminate or combined to show the surface for the entire laminate. 
Two different failure/yield theories have been implemented: the Bimodal Plasticity theory 
[1] and a modified Mori-Tanaka approximation [12]. 

Figure 2 shows an example of the failure surfaces for each layer of an SCS6/Ti-24Al- 
UNb (±45°) laminate. The different surfaces indicate the stresses required to initiate 
various failure modes for each layer of the composite, each of the surfaces is colored to 
indicate the failure mode to which it corresponds. The inner envelope of these surfaces 
gives the initial failure envelope for the laminate. The external loading and applied tem- 
perature can be interactively changed and the failure surfaces are automatically updated. 
The tool was implemented using IBM Visualization Data Explorer [10] for the user inter- 
face and general visualization capabilities. 
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Abstract. This paper discusses a system for automated analysis of crack propagation in 

heterogeneous materials. The system uses a multiscale analysis technique to account for 

the effect of the microstructure on the propagation of the crack. The multiscale analysis 

allows the microstructure of the composite to be expliciüy represented in the vicinity of 

the crack front while using homogenized material properties elsewhere. Procedures for 

automatic construction and update of the models and meshes used in the analysis are 

described. 

1 Introduction 

The continued improvement in the price-performance of high performance workstations, 

and the parallel computers which build upon them, is having a dramatic impact on the 

ability to solve more complex physical problems. However, to take full advantage of these 

hardware speed improvements, advances in computational methodologies are required. 

One advance needed is to effectively employ the power of parallel processing. Although, 

this will increase the problem size possible, it does not address issues associated with (i) 

the need for a more detailed accounting of the physics of the problem, (ii) ensuring the 

reliability of the computation, or (iii) removing the labor intensive aspects of generating 

the numerical analysis discretizations. This paper conside-s the problem of discrete frac- 

ture simulation in heterogeneous three-dimensional structures and presents a set of com- 



putationally efficient procedures which can automatically provide a reliable solution to 

these problems, while explicitly accounting for behavior at two physical scales. 

To understand the failure of heterogeneous materials systems, such as reinforced concrete 

and structural composites, it is necessary to understand the interactions and failure of the 

individual constituents of the system as driven by the local stress and strain fields. The 

determination local fields are dictated by the behavior of the entire structure. However, it 

is not feasible to analyze the entire structure explicitly representing the constituents 

throughout the domain. This problem can be addressed by the application of multiple 

scale analysis methodologies which correctly combine overall models (macromechanical) 

for the majority of the domain with local models (micromechanical) in critical regions. 

The reliable application of multiple scale techniques requires mathematically sound meth- 

odologies to transfer information between the two physical scales and the ability to adap- 

tively determine those portions of the domain where the local models are needed. 

Section 2 discusses the techniques used to perform and adaptively control multiple scale 

analyses. 

Even with the ability to effectively employ multiple scale representations, the resulting 

discrete systems are very large and must be solved with appropriate equation solving tech- 

nologies. As also indicated in Section 2, iterative equation solvers based on multigrid 

techniques can take direct advantage of multiple scale representations. 

The failure processes considered in this paper are governed by the propagation of discrete 

cracks at the micromechanical level. The simulation of discrete crack growth requires cri- 

teria to indicate under what conditions a crack will propagate, in which direction it will 



propagate, and how far it will propagate. Section 3 discusses the criteria used in the 

present work for crack propagation and discusses issues associated with the effective 

numerical implementation of these processes. 

A final key to an effective multiple scale fracture simulation is the ability to generate and 

control the required models and meshes. Since any need for human intervention would 

introduce an expensive bottleneck, all model update and mesh generation processes must 

be automated. Sections 4 and 5 describe the techniques and procedures developed to sup- 

port the generation of local models and meshes from a geometric model of the overall 

domain and a description of the microstructure. Since the geometry evolves as the crack 

propagates, both the models and the meshes must be updated to account for the propaga- 

tion of the crack using the procedures discussed in Section 6. 

It is worth noting that the entire set of procedures described in this paper employ method- 

ologies consistent with those used in a set of parallel automated adaptive finite element 

procedures (Shephard et. al. 1995, de Cougny et. al. 1995) developed to take full advan- 

tage of scalable distributed memory parallel computers. 

Section 7 demonstrates the application of the procedures described to crack growth in a 

unidirectional composite material. A comparison is made between the crack growth pre- 

dicted with and without explicit consideration of the effect of the microstructure. 

2 Adaptive Multiscale Computational Techniques for 
Heterogeneous Media 

In analyzing large scale structures made of heterogeneous materials it is common in prac- 

tice to carry out at least three distinct levels of analysis corresponding to different length 



scales: (i) macroscale (structural level), (ii) mesoscale (component level), and (ii) micros- 

cale (the level of material heterogeneity). On the structural level, structural components 

are treated discretely, while individual components are idealized to adequately determine 

their overall properties. On the component level, individual subcomponents are treated 

discretely, while microconstituents are treated collectively as a homogenized medium 

where homogenized material properties can be determined experimentally, or predicted 

from micromechanics. For micromechanical analysis individual phases are treated dis- 

cretely, while lower scales such as material grains or atoms are treated as homogeneous. 

These steps comprise a sequence of interdependent analyses in the sense that the output 

from one level is used as input to the next level, using constitutive laws to serve as the 

bridging mechanisms between the scales. It is important to note that any level of analysis 

is performed totally independent of the others if the required input data is available, per- 

haps from experiment. There is no doubt that this approach reflects a necessary compro- 

mise aimed at bridging the length scales in excess of several orders of magnitude in time 

and space. The obvious question arises as to the validity limits of such a step-by-step pro- 

cedure. Is there a need for a coupled approach that will simultaneously consider phenom- 

ena at several different scales, and if the answer is positive, is the current status of software, 

and hardware tools mature enough for such coupled multiscale considerations? 

Let's start by addressing the first issue. Figure 1 depicts the shear stress distribution in the 

axial tension problem in a (90/04/90)s laminate (Fish and Belsky 1994). Results are shown 

for one quarter of the plate cross section in the x-y plane. The lines of symmetry are at the 

bottom and on the right hand side of the cross section. The uniform tension load is applied 

normal to the x-y plane. The zoomed area of shear stress distribution in the close vicinity 



to the free edge is also shown. Results of the classical step-by-step procedure based on the 

homogenization theory are compared to the reference solution where the size of finite ele- 

ments is of the same order of magnitude as that of material heterogeneity. It can be seen 

that a classical step-by-step procedure predicts accurate shear stress distribution except for 

the close vicinity to the free edge, where it significantly underestimates maximum stress 

values, and along the entire interface between the two dissimilar layers. The reference 

solution shows oscillatory shear stresses along the entire interface, while the solution 

based on the classical step-by-step approach shows no such stress concentration. The mag- 

nitude of these oscillatory shear stresses is roughly 1/3 of the maximum shear stresses 

developed at the interface, but even so, these interface shear stresses may significantly 

affect the propagation of cracks emanating from the free edge. 

Recent theoretical and numerical studies (Fish and Wagiman 1993, Fish and Markolefas 

1994) have shown that in the areas of high gradients, primarily developed in the boundary 

layers at free edges and interfaces, the classical uncoupled step-by-step procedure may 

lead to poor predictions of local fields, since it assumes uniformity of macroscopic fields 

over the unit cell domain. 

Simulation of the evolution of failure processes in heterogeneous media poses an even 

greater obstacle to the classical step-by-step approach. Sometimes the failure is cata- 

strophic, and the ability to compute only the onset of failure is sufficient. Although com- 

puting the onset of failure is still a very difficult task, particularly in heterogeneous media, 

it is a goal that has largely been accomplished by means of a classical uncoupled step-by- 

step approach. However, in determining the vulnerability or survivability of a structure, a 

computation beyond the onset of failure is critical because there may be a considerable 
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reserve strength. Reliable simulations of failure processes in heterogeneous media ema- 

nating from the smallest scale, such as microvoid nucleation and followed by their coales- 

cence and structural failure, require revitalization of classical bridging mechanisms 

between various modeling levels. 

It is now feasible to use more sophisticated mathematical models and more refined dis- 

crete models, which account for close interaction between different scales. However, it is 

appropriate to recall the statement made by Einstein, "The model used should be the sim- 

plest one possible, but not simpler." Adaptive multiscale modeling techniques enable the 

analyst to start from a simpler model and then adaptively refine both the mathematical and 

numerical models to permit coupled multiscale considerations, whenever and wherever 

needed, until the simplest possible model that provides an accurate solution is obtained. 

To address the question regarding the maturity of existing hardware and software tools 

needed for such multiscale holistic considerations, Figure 2 demonstrates the application 

of this approach to analyzing a typical composite structure. The adaptive multiscale strat- 

egy starts by employing classical discretization error indicators (Zienkiewicz and Zhu 

1992, Oden et. al. 1989) and adaptively refining the finite element mesh on the macrome- 

chanical (shell) level to ensure accurate macro-solutions. Subsequently, dimensional 

reduction error indicators (Fish et. al. 1994) identify the areas where the most critical 

interlaminar behavior takes place, and consequently, a more sophisticated discrete layer 

model is placed there. Fast iterative solvers based on the multigrid technology with special 

inter-scale connection operators (Fish and Belsky 1995a,b) are used to solve a coupled 

two-scale macro-meso model. Once the phenomena of interest on the macro-meso levels 

have been accurately resolved, microscale reduction error indicators (Fish et. al., 1994) are 



used to identify the location of critical microprocesses and consequently, a micro-mesh is 

placed there. The three-scale coupled macro-meso-micro model is again solved using a 

three-scale multigrid process (Fish and Belsky 1995a,b). In this methodology, discretiza- 

tion error indicators and adaptive refinement strategy are employed simultaneously at 

three different scales to ensure reliable multiscale simulations. 

The three-scale model described in Figure 2 contains over 1,000,000 degrees-of-freedom. 

The estimated CPU time for solving it with a conventional direct solver based on skyline 

storage is over 705 hours on a single processor SPARCstation 10, which essentially makes 

the model intractable. With a special purpose multigrid technology for heterogeneous 

media, developed in (Fish and Belsky 1995a,b), the same problem has been solved in less 

than 16 hours on a single processor SPARCstation 10, turning it into a practical overnight 

job. 

The derivation of the inter-scale transfer operators for the three-scale multigrid method is 

based on the asymptotic solution expansion, which assumes infinitesimality of the unit 

cell. The asymptotic forms of the prolongation and restriction operators are obtained by 

discretizing the corresponding asymptotic expansions. For unit cells of a finite size, the 

regularization function has been introduced to obtain well-behaved inter-scale transfer 

operators, termed as homogenization based operators. The resulting homogenization 

based prolongation operator is given by: 

Q = Q + dQCVsN(Xg) (1) 

where Q is the standard multigrid linear prolongation operator, d is the unit cell solution, 

VSN(X ) is the symmetric gradient of the shape functions in the auxiliary grid evaluated 





at the Gauss points in the auxiliary mesh, C is the projection operator aimed at maintain- 

ing C0 continuity of the displacement field on the micro-scale. For a technical description 

of these operators see (Fish and Belsky 1995b). 

The rate of convergence of the multigrid process for heterogeneous media has been stud- 

ied in (Fish and Belsky 1995a,b). It has been proved that for periodic 1-D heterogeneous 

media problems, the rate of convergence of the two-grid method with special inter-scale 

transfer operators is given by: 

where dt represent the stiffnesses of microconstituents. Note that if the material is homo- 

geneous and the mesh is uniform (dx = d2) a classical two-grid estimate is recovered: 

\el+ 1  = — j|e'||. Otherwise q < 1 resulting in \e      || < -||e ||. (3) 

Note that if the stiffness of a fiber is significantly higher than that of a matrix, i.e. dl»d2, 

then the multigrid method converges in a single iteration. In multidimensions, conver- 

gence of the multigrid process for periodic heterogeneous media has been studied (Fish 

and Belsky 1995b). It has been found that convergence trend characteristics found in the 

1-D cases are closely followed in multidimensions. In practice, for fiber/matrix stiffness 

ratios, d{/d2, of approximately ten, 4 to 6 multigrid cycles are sufficient to obtain con- 

verged results. 

10 



3 Crack propagation procedures 

There are two common approaches taken in the development of crack propagation proce- 

dures. The 'global' approach assumes that crack extension takes place in an idealized 

anisotropic homogeneous material with gross combined properties of the constituents. The 

'local' point of view, often referred to as micromechanical approach, considers material as 

heterogeneous. The 'local' approach takes into consideration local damage patterns. In the 

present study we adopt a global-local approach by which 'local' description is used in the 

vicinity of the crack front while elsewhere the medium is treated as homogenized. 

Crack growth simulations, in general, are difficult to perform because of the need for con- 

tinual geometry and computational mesh updates. This process becomes even more chal- 

lenging for problems in heterogeneous media where in addition to the geometry and mesh, 

the mathematical model has to be updated. 

The crack propagation increment xA-XA is defined in terms its shape {5^}^ _ t and 

amplitude a 

xA = XA + aSA (4) 

where XA, xA denote position of the finite element node A located at the crack front inter- 

face before and after incremental update, respectively, and n is the number of nodes on the 

crack front interface. Prediction of crack trajectory requires determination of {5A}^ _ x 

and oc. 

No generally accepted criterion exists for predicting trajectories of cracks in three-dimen- 

sional heterogeneous media. Among the popular phenomenological theories for predicting 

instantaneous angle of crack propagation in two-dimensional homogeneous media are 

u 



maximum tangential stress criterion, maximum energy release criterion and minimum 

strain energy density criterion. Two major obstacles in applying these criteria to three 

dimensional applications in heterogeneous media with arbitrary crack surfaces are sum- 

marized below: 

1. Crack growth depends on the geometry, boundary conditions and material characteris- 

tics of microconstituents, including strength and fracture toughness. 

2. Asymptotic fields are generally not known in these cases. 

To overcome these difficulties we propose the following generalization of the classical 

crack propagation criteria: 

1. The preliminary crack propagation shape {S,4}A = l is defined on the basis of the fol- 

lowing normalized criteria: 

INI - £ <5) 

where || [| denotes Euclidean norm of a vector, FA is either maximum energy release 

rate, maximum tangential stress, or minimal strain energy density. GA is either fracture 

toughness, strength in tension or critical energy density, respectively. 

2. The unit vector eA = SA/||SA| defining the crack propagation direction at node A 

points in the direction of the maximum ratio FA/GA (among the elements connected 

to node A) projected onto the plane normal to the crack tip interface at node A. 

3. Deformation and stress fields are either directly extracted from the finite element analy- 

sis or by postprocessing finite element solution (Niu and Shephard 1993, Niu and Shep- 

hard 1994). 
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4. Smoothing is applied to the crack propagation shape as obtained from equation (5) to 

avoid numerically defined oscillations. 

The process of finding the smoothed crack propagation shape can be viewed as con- 

strained optimization problem, which states: 

Find the smoothed crack propagation shape increment, ||S,J , such that 

| (||SJ-||SA|) dL-^min (6) 

subjected to the smoothness constraint: 

where L is a coordinate along the crack tip, and e is the smoothness parameter. Solution 

of the constrained optimization problem yields the following differential equation: 

SA\\ = IIS J (8) (r       ?) 
I      3L2J 

subjected to periodic boundary condition. Note that the parameter y « 1 is defined by the 

user. Equation (8) can be solved using finite element method using bi-linear discretization 

of\SA\. 

Due to the history dependence of crack growth, the problem of evaluating the amplitude a 

can be stated in terms of an ordinary delay differential equation (Fish and Nath, 1993): 

%-'S*W W 
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The special nature of ordinary delay differential equations has the effect of making the 

crack path smoother with evolution in 'time' if the evolution of the right hand side vector 

in (9) is smooth. For problems in heterogeneous media GA , and thus S^, are C contin- 

uous functions in a and thus the optimal integrator for such a differential equation should 

be based on a type of integration scheme which does not rely on the smoothness of the 

crack path. The simplest form of such integrator is based on a predictor-corrector scheme: 

Predictor xA = XA+S(XA)a 

Corrector xA = XA +-(S(XA)+ S(xA))a 

The normalized local truncation error, ß, is given as: 

(10) 

ß=   If (*A-*A)2 _   If (~S(xA)-~S(XA))2 (ii) 

HA = i (*A " XA)
2
      \A = i (~S(xA) + ~S(XA))2 

The crack propagation amplitude may increase or decrease to keep the magnitude of the 

normalized truncation error, ß, below the user prescribed tolerance. 

4 Problem Definition to Support Automated Model 
Construction 

The effective application of multiple scale analysis requires automation of the entire pro- 

cess. Without automation the analysis is effectively impossible due to the time and effort 

required to update the models and meshes needed as the analysis progresses. The automa- 

tion of a set of engineering analyses requires all analysis models, and their discretizations, 

be derived from a single problem definition. The two key components of the problem def- 

inition are the domain description (the geometric model), and the analysis attributes 

14 



defined in terms of it. For sake of discussion, this single problem definition, from which all 

other models are derived, is referred to as the primary problem definition. 

4.1 Geometric Model 

The geometric models constructed from the primary problem definition in support of mul- 

tiscale analyses vary from a representation of the middle surface of a composite structure, 

to one containing multiple volumes representing the micromechanical structure of a com- 

posite material. The representations used must be able to support the requirements of auto- 

mated discretization construction procedures (Shephard and Finnigan 1989, Shephard and 

Georges 1991). The primary model must be structured such that the various idealized 

engineering analysis models can be automatically constructed, and the interactions 

between those models controlled. For example, at the highest level, a composite structure 

is idealized as a surface (a shell model), while at a portion is represented as a multi-layer 

volume, and in a local region the microstructural components are represented as volume 

elements. The relation of all of these models to each other must be understood by the anal- 

ysis, this done by relating all of them back to the primary problem definition. 

The model construction and discretization processes can be effectively supported by geo- 

metric modeling systems supporting non-manifold representations of general combina- 

tions of volumes, surfaces and curves (Weiler 1988). In addition to taking direct advantage 

of the massive development effort required to produce such geometric modelers, this 

approach can properly support all the geometry needs of automatic mesh generation 

(Shephard and Georges 1992). 
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The approach of defining the primary geometric model as a detailed geometric representa- 

tion at the lowest physical scale is not advantageous for several reasons, including: (i) the 

model sizes would be unacceptably large, (ii) the automatic construction of the higher 

level models can be more complicated than the automatic construction of low level mod- 

els, and (iii) user effort to construct detailed lower level models would be burdensome to 

the design process. The approach taken here is to store an overall geometric representation 

supplemented with the additional geometric feature data required to automatically con- 

struct needed idealized geometric models. Usually this means that a simple, engineering- 

type geometric model is used to describe the structure and attributes are used to describe 

the details required for the analysis, such as the material microstructure. This approach 

also corresponds well to the design process, where different portions of a structure will be 

understood to different levels of detail at various times. 

The most geometrically demanding processes involve the construction of the idealized 

geometric models for specific analyses from the primary geometric model. One class of 

such operations are dimensional reductions where, for example, the middle surface of a 

complex three-dimensional solid, which is thin in some through-the-thickness, direction is 

needed for an analysis. Another example is constructing a multi-material solid model of a 

representative unit cell from basic composite specifications when micromechanical mod- 

els are included in the analysis process. The approach used to address these needs is to 

employ the geometric construction functionality of commercial solid modelers, driven by 

appropriate knowledge housed in the primary model and the analysis strategy being exe- 

cuted. Figure 3a shows the a unit cell for a composite weave automatically constructed in 

the Parasolid non-manifold solid modeler (Parasolid 1994) using the basic manufacturing 
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parameters defining the weave and the procedures described in Section 5. The automati- 

cally generated mesh of this model is shown in Figure 3b. 
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(a) Geometric model of woven composite (b) Mesh of woven composite 

FIGURE 3. Automatically constructed and meshed unit cell model 

4.2 Analysis and Idealization Attributes 

Analysis attributes consist of the information past the geometric model needed to specify 

an analysis model. Analysis attributes include material property, boundary condition, load, 

and initial condition information. Idealization attributes define the information needed to 

convert a primary model to the idealized model used in an analysis process. Examples of 

idealization information are specification of the use of the middle surface for an overall 

deformation analysis, and the information defining the microstructure of a unit cell. To 

support an automated environment, the analysis and idealization attributes must be defined 

directly in terms of the physical parameters and associated directly with the geometric rep- 

resentation of the primary geometric model (Shephard 1988, Wong 1994). When defined 

in this manner they can be properly transferred to the idealized analysis models and their 

discretizations. 
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The physical description of all analysis attributes are in terms of tensorial quantities. The 

components of the structure used to define the attributes' physical information include (i) 

the order of the tensor, (ii) an indication of the coordinate system the tensor is defined in, 

(iii) the symmetries possessed by the tensor, and (iv) the distribution information defining 

each component of the tensor in the given coordinate system. 

Since a number of basic attributes, such as material parameters, are likely to be used in 

multiple analyses, it is advantageous to allow the single specification of an attribute and to 

collect the attributes appropriate for an analysis into the specific analysis case desired. A 

hierarchical organization structure that allows the convenient collection of attributes, 

including the application of multipliers has been put into place. 

Finally, attributes must be associated with the entities in the geometric description of the 

domain. Complications are introduced in the case of multiple scale analyses since it is 

necessary properly transfer the appropriate attribute information from the primary 

attribute definition to the idealized analysis models. The transfer of the attributes must cor- 

rectly deal with such processes as dimensional reductions and replacement of a set of het- 

erogeneous constituents with a homogeneous continuum. 

5 Automatic Generation of Models and Meshes for Multiscale 
Analysis 

The multiscale analysis used here treats the problem being solved as a three level problem. 

The top level is the component (macro) level, where all the material properties are consid- 

ered to be homogenized. The bottom level is the microstructural level where all the details 

of the microstructure, and damage that is occurring to the microstructure, are represented. 

18 



The middle level serves as a transition between these two level and incorporates any 

macro level damage. 

For the discrete crack propagation problem discussed here primary problem definition 

consists of a solid geometric model of the physical structure being analyzed (the macro 

model) with appropriate analysis attributes and idealization attributes that describe the 

layup and microstructure of the composite. These attributes include the type of micro- 

structure, the parameters needed to build a unit cell, the material properties of the constit- 

uents and the orientation of the unit cell with respect to the macro model. The models that 

represent the lower levels of the analysis are constructed using the information in this 

problem definition. The initial crack geometry is also specified in the primary problem 

definition. 

5.1 Unit Cell Construction 

The primary model definition includes a definition of the unit cell that describes the micro- 

structure. This definition is in terms of the parameters that define the unit cell (such as vol- 

ume fraction and fiber diameter for a continuous fiber composite). The geometric model of 

the unit cell is created by the system when needed. 

Currently, the microstructure geometry is assumed to be periodic which allows it to be 

represented by the repetition of a single unit cell. This unit cell is used for the calculation 

of homogenized material properties using standard homogenization procedures (Bakh- 

valov and Panasenko 1989, Guedes and Kikuchi 1991) and for construction of the micros- 

cale model of the composite. Both the model and the mesh of the unit cell must be 

periodic. 
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Random Short Fibers Random Particles 

FIGURE 4. A sample of the various types of unit cells that can be created. 

Common composite unit cells are: aligned fibers, random chopped fibers, random parti- 

cles, and woven fibers (Figure 4). The unit cells fall into two categories: those with pre- 

scribed structure and those with random structure. The unit cells with prescribed structure, 

such as the aligned fiber and the woven fiber cells in Figure 4, are created from a paramet- 

ric model of the unit cell. The parameters in the model include fiber size, volume fraction, 

and other geometric properties of the unit cell. The unit cells with random structure, such 

as chopped fibers and particles, are generated using a stochastic procedure that randomly 

inserts appropriate reinforcements into the unit cell while enforcing the periodicity 

requirement (Shephard et. al. 1995b). 
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5.2 Microscale Model 

The domain of the micro model is the set of unit cells that encompass the critical areas of 

the model where it is necessary to resolve local fields. For the crack propagation problem 

this area is the unit cells that enclose the crack front. The steps to find this domain for the 

crack propagation problem are: 

1 
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(a) Macro model with crack location indicated (b) unit cell grid overlaid on model 
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(c) domain of micro model found (d) micro model created 

FIGURE 5. Defining the domain of the micro model. 

1. Given the overall model (Figure 5a) a regular grid is defined over the portion of the 

macro model that encompasses the required microscale domain. Each grid cell is one 

unit cell in size (illustrated in Figure 5b with the third dimension removed for clarity). 
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This grid must be defined to be aligned with the microstructure such that when the unit 

cells are inserted in the grid ceils, the correct microstructure is created. The grid is only 

"defined", it is not actually created in the geometric modeler. 

2. The grid cells containing the crack front, the minimal domain for the micro model, are 

determined as follows: Pick a point on the curve defining the crack front and determine 

which cell the point is in. Add this cell to the list of cells that the crack front passes 

through. Find which cell face, edge or vertex the curve passes through as it exits the cell 

by intersecting the curve with the planes defined by each cell face of the current cell. 

Add the cell on the opposite side of the face to the list of cells that the crack front passes 

through. If the crack front passes through an edge or vertex then add all the cells touch- 

ing that edge or vertex. Continue this procedure, tracking the curve as it passes from 

one cell to another until the entire curve has been traversed. This is illustrated by the 

light grey filled cells in Figure 5c. 

3. This minimal domain is extended by adding n layers of cells surrounding the minimal 

cells to the model (Figure 5c shows one layer of these cells added, shaded dark grey) 

giving the domain of the micro model. The number of additional layers depends on how 

far the crack will be allowed to advance in a single analysis step. The crack front must 

always remain with the micro model. 

Once the domain of the micro model has been determined, the actual model can be con- 

structed. For each cell in the grid that has been determined to be in the domain of the 

micro model, the model of the unit cell is duplicated, translated and rotated so that it corre- 

sponds to the position and orientation of that grid cell. The boundaries of adjacent unit cell 

are then sewn together to make a single model. This model, when unioned with the portion 
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of the crack model that is interior to the unit cells, makes up the microscale model. Mate- 

rial property attributes are then associated with the entities in the micro model by copying 

them from the corresponding entities in the unit cell model. The result of this process for a 

delamination problem is shown in Figure 6. 

FIGURE 6. Microscale model of delamination crack 

To support the analysis procedures, the mesh on the micro model boundary must be identi- 

cal to that which is on the boundary of the unit cell that was used to calculate the homoge- 

nized material properties. The mesh on the interior of the model has no restrictions. This 

requirement is enforced by copying the mesh from the boundary of the unit cell to all the 

faces on the boundary of the model, then meshing the other (interior) faces of the model 

using the Finite Octree mesh generator (Shephard and Georges 1991). Finally the interior 

of the model is meshed using an element removal procedure that works from the given 

boundary mesh. 



5.3 Transition Model 

The transition model is used to connect the macro model, with its coarse mesh and 

homogenized material properties, and the micro model, with its fine mesh and explicit 

microstructure. The outer boundary of the transition model is the boundary of the union of 

all the elements in the macro mesh that the micro model is interior to (Figure 7). (In addi- 

tion some elements that the micro model is very close to may be added). Imbedded in the 

interior of the transition model are a set of non-manifold faces (faces with model regions 

on both sides) that represent the outer boundary of the micro model and the portion of the 

crack face that is external to the micro model (Figure 7c). The portion of the crack internal 

to the micro model does not need to be represented, but it can be, and is in the examples 

shown here (whether or not this part of the crack is represented is irrelevant since the 

micro model represents the correct geometry in that portion of the domain). The transition 

model created for the delamination crack in Figure 6 is shown in Figure 8. 

%ct 

(a) Macro-mesh 

FIGURE 7. Construction of the transition model 

(b) micro-boundary superimposed over 
macro-mesh 
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mesh, element 

Boundary of unit cells 
in micro model 

(c) elements intersecting micro modei        (d) outer boundary of elements found and 
found interior structure inserted. 

FIGURE 7. Construction of the transition model 

FIGURE 8. Transition model 

The mesh for the transition model does not need to be compatible with the mesh of the 

macro model, however there should be no elements on the boundary of the transition mesh 

that are in more than one macro mesh element face. This is ensured by constructing the 

transition model so that the edges of the macro mesh are retained on the boundary (i.e. co- 

planar faces on the boundary are not unioned to make a single face so the edges that define 

the original faces are retained). Although compatibility of the mesh is not required, it is 



desirable, from a convergence standpoint, to have the size of the elements in the transition 

mesh roughly (within a factor of 3 to 5) the same size as the elements in the macro mesh 

on its outer boundary and roughly the size of the elements in the micro mesh on that inte- 

rior boundary. 

6 Model and Mesh Updates for Crack Propagation 

To simulate the growth of the crack for a step, the analysis must update the representation 

of the crack to account for the growth predicted at the last step. This process can be made 

efficient by performing local modifications to the models and meshes to reflect the growth 

of the crack. This works well since the majority of the updates only change the representa- 

tion at the micro level. As the crack grows, it eventually approaches the boundary of the 

micro model, requiring the micro model domain and, thus, the transition model and mesh 

to be updated. The updates of the higher level models only happen occasionally. An out- 

line of the steps in the model update are as follows: 

1. From the results of the analysis determine the updated geometry of the crack. 

2. Update the crack representation in micro model and mesh to reflect the crack growth. 

3. If the crack front nears the boundary of a unit cell, the micro and transition models are 

updated as follows: 

a. Add unit cells ahead of crack and remove them behind, to ensure that the micro- 

model exists for the desired distance ahead of the crack front. 

b. Update the transition model to reflect the new micro model domain. 



6.1 Crack Update 
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FIGURE 9. Analysis results showing predicted crack growth. 

As shown in Figure 9, the analysis provides the direction and magnitude of the crack 

growth at each vertex on the crack front. This information is used to define the "crack 

extension" which is the geometric representation of the new crack surface. To avoid plac- 

ing unnecessary constraints on the growth of the crack the crack extension is defined inde- 

pendently of the mesh. It is defined as a set of triangular faces extending from the current 

crack front to new locations for the vertices on the crack front given by the analysis 

(Figure 10). 

•ows show, direction 
and magnitude ot 

k growth 

Analysis Results Crack Extension Defined 

FIGURE 10. Definition of crack extension from analysis results 
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To construct the crack extension, the direction and magnitude of growth from each node 

on the crack front is added to the nodes current location and a new position is found. A tri- 

angular mesh is then constructed that extends from the old crack front to these new loca- 

tions. The triangulation procedure must account for crack front expansion or contraction 

as illustrated in Figure 11, using the following procedure: 

Let J-be the distance between two adjacent vertices, i and ;' that will form the new crack 

front. lmax is the maximum desired edge length on the crack front, a (a> 1) and ß 

(ß< 1) are two constants that define a criteria to guide the triangulation process to 

account for expansion and contraction. 

If d ■ > a/ , then crack front is expansion must be accounted for by the introduction of 

new vertices on the front. A new vertex is introduced midway between those two vertices 

and the mesh is created accordingly as shown in Figure 1 la. 

If d-< ß/ , then the crack Front contraction must be accounted for by coalescing the 

two adjacent vertices into a single vertex as shown in Figure 1 lb. This procedure helps 

prevent the crack from locally self intersecting as the crack front contracts. 

For the examples shown later in this paper, lmax was selected to be equal to the maximum 

amount of propagation of the crack for a given step. This was done to ensure well shaped 

elements could be created around the propagating crack since the mesh currently created 

around the new crack will use these faces as faces in the mesh (as described in the next 

section). The other two parameters were selected as: a = 1.2 and ß = 0.3, which can be 

shown to maintain control of the element shapes. 
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(a) Expanding crack front (b) Contracting crack front 
FIGURE 11. Special cases for creating crack extension 

6.2 Micro mesh update 

The crack extension is taken as the geometric representation of the growth of the crack. 

Since the crack extension intersects elements in the current mesh at places other than their 

boundaries, a method is needed to update the mesh to make it conform to the crack exten- 

sion. Two approaches have been developed to allow this arbitrary crack growth: local 

remeshing and mesh modification. Local remeshing deletes the portions of the mesh that 

are intersected by the crack extension, and then creates a new mesh that reflects the pres- 

ence of the new crack growth in this local area. Mesh modification uses the geometry 

defined by the crack extension to split mesh entities in the existing mesh to reflect the 

crack growth. Only the local remeshing procedure will be discussed in this paper, the 

mesh modification will be described in detail in a later paper. 
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The first step in growing the crack is to determine the interaction of the crack extension 

with the existing mesh. For each face in the crack extension, the mesh regions it interacts 

with are found as follows: 

1. Get the mesh regions surrounding any mesh vertices on original crack front. 

2. Intersect edges of extension face with faces of the regions, if intersection is found add 

the region on the other side of the intersected face to the list regions to be checked. 

3. Intersect the extension face with edges of the regions found in step 2, add any new 

regions of the intersected edges and vertices to the list of regions to be checked. 

4. Repeat 2 and 3 until no more regions are found. 

This step is repeated for each face in the crack extension, resulting in a list of mesh regions 

in the original mesh that the crack extension touches or passes through. 

The next step is to delete all of the mesh regions that were found to interact with the crack 

extension, creating a hole in the mesh into which the crack extension mesh is inserted. 

One additional layer of mesh regions surrounding this hole in the mesh is then also 

deleted, for two reasons. First, the mesh in front of the crack needs to be refined to allow a 

good solution to be obtained. By removing this additional layer of mesh regions and refin- 

ing the mesh on the boundary of the hole (by splitting mesh edges which are longer than a 

certain length) this is easily accomplished. Second, the original hole in the mesh can be 

extremely close to the crack extension, which can result in a poor mesh being created 

when the hole is remeshed. By moving this boundary away from the crack extension a 

much better mesh is obtained. 
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After the hole has been cleared out in the existing mesh, the crack extension mesh is 

inserted as shown in Fiaure 12. The hole is then meshed usin2 a face-removal meshins 

procedure. 

FIGURE 12. Boundary of hole in mesh created for local remeshing procedure. Grey surface is the 
crack extension 

There are issues that arise in the local remeshing procedure when the growing crack inter- 

sects a material boundary in the model (such as growing from the matrix into a fiber). One 

consideration is whether or not such a situation can be detected. In the procedures 

described here the situation can be easily detected while the interaction of the crack exten- 

sion with the micro mesh is found. This is done by checking the classification (relation of 

the mesh entities to the model entities they are discretizations of) of the mesh regions that 

are found to interact with the crack extension. This classification information is stored as 
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part of the data structure describing the mesh (Beall and Shephard 1995). Given the list of 

the mesh regions that a crack extension face interacts with, if the classification of any 

mesh region in the list differs from the others, then the crack extension face interacts with 

a model boundary. Once this situation has been detected there are issues involving both the 

analysis procedure and the mesh update procedure. Since the analysis does not take into 

consideration that the crack may propagate from one material to another it may not be cor- 

rect to update the model to reflect this occurrence. The local remeshing mesh update pro- 

cedure described here requires does not handle the situation of propagating the crack 

across material boundaries without modification. A more general mesh update procedure 

has been developed that does handle this situation without having to consider special 

cases. Both of these issues will be addressed further in a subsequent paper. 

6.3 Micro and transition model update 

Eventually, as the crack front moves though the micro model, the original selection of the 

domain for the micro model will no longer be optimal for the analysis for one of two rea- 

sons. First, the crack front needs to be sufficiently far away from the boundary of the 

micro model for the analysis to be accurate. When the crack approaches the boundary the 

micro model will need to be extended. Second, there will be unit cells in the micro model 

that are no longer close to the crack front. This makes the micro model larger than it needs 

to be, reducing the efficiency of the analysis. These unit cells should be removed from the 

micro model. 

Modification of the domain of the micro model requires updating the transition model. 

This is due to the change in the boundary of the micro model and also, possibly due to the 
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need to expand the transition model, by adding more elements from the macro mesh, due 

to the changes of the micro model. The process of updating the transition model is illus- 

trated in Figure 13. 
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(a) update crack representation in micro 
model 

(b) if needed, update domain of micro 
model 
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from macro mesh 
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(c) updated local model and macro mesh (d) Updated transition model 

FIGURE 13. Construction of the transition model. 

When new unit cells are added to the micro model, they can be meshed using the mesh 

that was created on the unit cell when the homogenization procedure was done. This is a 

simple procedure since the mesh on the boundary of the micro-mesh is identical to the 

mesh on the boundary of the unit cell. 
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When unit cells are removed from the micro model, the domain of the transition model 

cannot be reduced since all of the geometry of the crack must still be contained interior to 

transition model. For these analyses this is done by only adding macro-mesh elements to 

the domain of the transition model and never removing them as the crack grows. Thus, 

although the micro model domain only surrounds the area immediately around the crack 

tip, the transition model encompasses the entire crack. 

Figure 14 shows the boundary of the micro model, before and after the crack grows. It can 

be seen that after the crack growth there is a portion of the model near the center of the 

crack where unit cells have been removed from the micro model since they are far from 

the current crack front. 

(a) Before crack growth. (b) After crack growth. 

FIGURE 14. Boundary of micro model. 

7 Results 

The procedures described in the previous sections have been put. together into a system for 

analyzing the propagation of discrete cracks in heterogeneous media. The following two 

analyses are an example of the difference in crack growth that is found comparing an anal- 
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ysis using homogenized material properties to one using explicitly represented micro- 

structure. 

In both cases the problem being analyzed is an initially circular crack. The macro model is 

a cube loaded in off axis tension at an angle of 45 degrees to the crack surface (Figure 15). 

The material used is a unidirectional fiber reinforced composite. Both the fiber and matrix 

are taken as isotropic with the fiber properties: Ef = 50000, X), = 0.25 and the matrix 

properties: Em = 10000, vm = 0.25 . 

Initial 
Crack 

z, Fiber direction 
i L 

Y7777 
FIGURE 15. Test problem. 

The first analysis was run using homogenized material properties, calculated from the unit 

cell of the composite, throughout the problem domain. The second analysis uses explicit 

microstructure in the vicinity of the crack front. The current capabilities of the system do 

not allow the crack to propagate through the fibers so only the initial growth of the crack 

can be analyzed (A new local mesh modification procedure, which is just nearing comple- 

tion, will allow this. Results of that capability will be given in a future paper). 

Figures 16 and 17 show the models that were automatically created by the analysis. 

Figure 16a shows the transition model in relation to the macro model. Figure 16b shows 
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(a) Macro model with embedded transition model      (b) Transition model with embedded micro model 

FIGURE 16. Models created by the analysis 

Initial Crack 

FIGURE 17. Micro scale model with crack location indicated 

the micro model in relation to the transition model. The micro model consists of four unit 

cells. The initial crack is circular and located approximately a quarter of a fiber diameter 

away from the nearest fiber as shown in Figure 18. The same micro model was used 

throughout the analysis since the amount of crack growth was small. 
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FIGURE 18. Crack growth shown in relation to composite microstructure 

Figure 19 shows the crack growth predicted from the two analyses. The crack in the 

homogeneous material is shown in the lighter grey and the crack for the heterogeneous 

material is shown in dark grey. The closest fiber is on the right side of the view. 

The analysis with the homogeneous material exhibits the expected behavior in this situa- 

tion. The crack is growing so that it becomes perpendicular to the direction of the loading. 

The final step shown in the results is right after the crack would have come in contact with 

the fibers. 

In the inhomogeneous case the crack exhibits more complicated behavior. It can be clearly 

seen that the presence of the fibers is affecting the growth of the crack. As the crack is 

approaching the fiber on the right side it bends away from the fiber and becomes more par- 

allel to it. 

8 Closing Remarks 

The analysis system described in this paper builds on several important technologies. 

First, a multigrid, multiscale solution technique that correctly accounts for the coupling 
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FIGURE 19. Analysis results showing the difference in crack growth when accounting for the 
microstructure. The light grey crack grew in a homogeneous material, the dark grey crack grew 

with the microstructure explicitly represented. 

between overall models with homogenized material properties and local models with 

explicitly represented microstructure. 

Second, automatic model and mesh generation procedures required to automate the com- 

plex analysis process involving several evolving models and meshes. These procedures 

operate from a common description of the analysis problem defined in terms of geometric 

model and attributes. 

All of the procedures described in this paper have been implemented in a manner consis- 

tent with those used for parallel automated adaptive finite element analysis. Although the 

current simulations are being run on single processor workstations, larger problems will 

be able to take advantage of parallel processing. 

Further development of the system is underway which will allow a microscopic flaw to be 

propagated until it grows to the point where macroscale failure of the component occurs. 

At this point analyses can be run to investigate the ultimate failure strength of components 

in the presence of various types of initial flaws. 
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SUMMARY 

Tnis paper provides an overview of an analysis framework which operates directly from a general 
geometry-based specification. The framework is designed using object-oriented methodologies to allow for 
easy extension to analyze new problem classes and introduce additional adaptive control techniques. 

INTRODUCTION 

The numerical analysis of a physical problem can be seen as a series of idealization steps, each of 
which may introduce errors into the solution. The manner in which these errors can be understood and con- 
trolled is through error estimation and solution adaptivity. Since adaptive control should be applied to each 
idealization step, the numerical analysis procedures must operate from the original problem definition 
which is best described with respect to a geometric model. Tnis paper provides a brief overview of an anal- 
ysis framework which operates directly off such geometry-based problem specifications. 

To increase the usefulness of the framework, it is designed for easy extension to include new analysis 
capabilities and adaptive idealization control techniques. This extensibility is aided by the application of 
object-oriented programming techniques. 

We can identify three levels of description that arise in the analysis of a physical problem (Figure 1). 
The highest level description is that of the physical problem. The physical problem description is posed in 
terms of physical objects interacting with their environment. Since we often want to estimate the response 
through modeling we idealize the behavior in terms of a mathematical problem description. The mathemat- 
ical problem description consists of a domain definition (geometry), a description of the external forces act- 
ing on the object and the properties of the object (attributes), and, in the classes of physical problems 
considered here, a set of appropriate partial differential equations which describe the behavior of interest. 
Construction of a numerical problem from a mathematical problem involves another set of idealizations. 
From a single mathematical problem it is possible to construct any number of levels of numerical problems, 
which are idealizations of one another. 
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Figure 1. Idealizations of a physical problem to be solved. 



The framework described in this paper starts at the level of a mathematical problem description, 
allowing multiple numerical problems to be formulated, solved, and the solution related back to the original 
problem description. Tne analysis framework is designed to be extended. It is possible to add new problem 
types that can be solved as well as adding new solution techniques. Current implementation efforts are 
focused on finite element discretizations. However, the framework is designed to be general to utilize other 
types of numerical solution procedures. 

Since the analysis framework must take a problem description consisting of a geometric model and 
attributes and construct a solution to the problem specified, it is important to understand abstractions for the 
various types of data that the framework uses. As outlined in the next section, geometry-based descriptions 
are best suited to meet these needs. The following section briefly introduces the process of performing 
geometry-based analyses. 

DATA COMPONENTS OF A GEOMETRY-BASED ANALYSIS FRAMEWORK 

The structures used to support the problem definition, the discretizations of the model and their inter- 
actions are central to the analysis framework. Tne two structures of the geometric model and attributes are 
used to house the problem definition. The general nature of the attribute structures allow them to also be 
used for defining numerical analysis attributes. The analysis discretizations are housed in the mesh struc- 
ture which is linked to the geometric model. The final structure is the field structure which houses the distri- 
butions of numerical solution results over the domain of the problem. 

Geometric Model 

The geometric model representation used by the analysis framework is a boundary representation 
based on the Radial Edge Data Structure (Weiler 1988). In this representation the model is a hierarchy of 
topological entities called regions, shells, faces, loops, edges and vertices (Figure 2). This representation is 
completely general and is capable of representing non-manifold models that are common in engineering 
analyses. The use of a boundary representation is very convenient for attribute association and mesh gener- 
ation processes since the boundaries of the model are explicitly represented. 
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Figure 2. Boundary representation. 



The geometric mcdei classes support operations to and the various model entities that make up a 
model and to and which model entities are adjacent to a given entity. Other operations relating tc perform- 
ing geometric queries are also supported. The details of these operations are not important in the current 
context. Much more important is the fact that there are associations between the ModelEntity class and . 
both the Attribute and MeshEntity classes. These associations are central to being able to support general- 
ized adaptive analysis procedures that operate from a general problem definition. 

Attributes 

In addition to geometry, information that describes such things as material properties, loads and 
boundary conditions (Shephard 1988) is needed. This other information is described in terms of tensor val- 
ued attributes that may vary in both space and time. Attribute information is organized into a directed acy- 
clic graph (DAG). There are three basic types of nodes in the graph. The leaf nodes of the graph are 
information nodes. Tnese nodes hold the actual attribute information (e.g. an information node might 
define a vector with a certain variation in space and time). Above the information nodes are two types of 
grouping nodes which allow for the flexible combination of attributes to form analysis cases which drive 
the numerical analysis process. 

Tensor valued attributes only make sense when applied to and associated with a geometric model 
entity. During this process the graph is traversed, and when the information nodes are encountered at the 
leaves of the graph, attribute objects are created. Tnese attributes are a particular instance of the informa- 
tion represented in the attribute graph. One reason for the distinction between the information nodes and 
attributes is that the interpretation of the information node can depend on the path in the graph traversed to 
get to that node. Thus one information node may give rise to multiple attributes with different values. 

A simple example of a problem definition is shown in Figure 3. The problem being modeled here is a 
dam subjected to loads due to gravity and due to the water behind the dam. There are a set of attribute infor- 
mation nodes that are all under the attribute case for the problem definition. When this case is associated 
with the model, attributes (indicated by triangles with A's inside of them) are created and attached to the 
individual model entities on which they act 

Information Nodes 
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type:problem definition 
name:... 

type:load 
name:water load 
value:(f(z),0,0) 
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Attributes 
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name: concrete 
value:... 

u=U 

type: displacement 
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Figure 3. Attribute example. 



Nodes in the attribute graph have another important property. They can represent an object that is to 
be created when the attribute graph is traversed. This object is called the image of the attribute and repre- 
sents the run time interpretation of the information of the attribute node and its children. 

Mesh 

The representation used for a mesh is similar to that used for a geometric model (Beall & Shephard 
1997). A hierarchy of regions, faces, edges and vertices makes up the mesh. In addition, each mesh entity 
maintains a relation, called the classification of the mesh entity, to the model entity that it was created to 
partially represent as indicated in Figures 2 and 4. This representation of the mesh is very useful for mesh 
adaptivity. Also understanding how the mesh relates to the geometric model allows an understanding of 
how the solution relates back to the original problem description. The topological representation can be 
used to great advantage in performing adaptive p-version analyses as polynomial orders can be directly 
assigned to the various entities (Shephard, Dey & Flaherty 1996). 
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Figure 4. Mesh representation. 

Field 

A problem with many "classic" finite element codes is that the solution of an analysis is given in 
terms of the values at a certain set of discrete points (e.g. nodal locations or integration points). However 
the finite element discretization actually has more information than just the values at these points, there is 
also information about the interpolations that were used in the analysis. Therefore, when the standard pro- 
cess of storing just the discrete pointwise values is maintained, information is lost after the analysis is run. 
Without knowing the specifics of the analysis code it is impossible to reconstruct the interpolations used 
and one can not define the values at general locations. This makes it much more difficult to use the solution 
in a subsequent step in the analysis (e.g. error estimation, or as an attribute for another analysis). The anal- 
ysis framework eliminates this problem by introducing a construct known as a field. 

A field describes the variation of some tensor field over one or more entities in a geometric model. 
The spatial variation of the field is defined in terms of interpolations defined over a discrete representation 
of the geometric model entities, which is currently the finite element mesh. A field is a collection of indi- 
vidual interpolations, all of which are interpolating the same quantity (Figure 5). Each interpolation is asso- 
ciated with one or more entities in the discrete representation of the model. 



Interpolation 2 

Interpolation Field 1 = (Interpolation 1, 
Interuolauon 2....} 

Mesh 

Figure 5. Example of a field. 

GEOMETRY-BASED AiNALYSIS PROCESSES 

The framework represents the analysis process as a series of transformations of the problem from the 
original mathematical problem description through to the sets of algebraic equations approximately repre- 
senting the problem (Figure 6). This transformation starts at the mathematical problem description level 

Problem Analysis Assembler 

Figure 6. Analysis transformation process. 

which contains the geometric model and the attributes which apply to that model. The attributes for a par- 
ticular problem are specified by a particular case node in the attribute graph. All of the attributes under this 
case node are used for the given problem. An instance of a ContinuousSystem is then transformed to an 
instance of the class DiscreteSystem which represents the discretized version of the model and attributes 
and the weak form of the partial differential equation (PDE). This transformation is done by an object that 
is an instance of a class that is part of a hierarchy of analysis classes. The particular analysis class that is 
used depends on the selected weak form of the PDE to be solved. 

For each problem definition it is possible to define any number of analyses. An analysis is defined by 
combining a problem definition with one or more cases that contain the rest of the information needed to 
perform the analysis. Here an analysis is defined by combining a problem definition case with a numeric 
case (which contains information relating to the specific numerical techniques used to solve the problem) 
and a meshing case (which contains information describing the parameters needed to generate a mesh for 
the model being used). The responsibilities of an Analysis class are to: 

1. Create a DiscreteSystem of a type appropriate for the problem. 

2. Interpret attributes associated with the geometric model and appropriately create StiffhessContributors, 
ForceContributors and EssendalBCs and add them to the DiscreteSystem. 

3. Create an AlgebraicSystem with an appropriate solver. 



4. Invoke the solve method of the AlgebraicSystem. 

The DiscreteSystem class represents the problem in terms of contributions from a set of objects that 
live on the discrete representation of the model. These objects are called SystemContributors. Tnere are 
three types of SystemContributors: StiffnessContributors contribute coupling terms between degrees of 
freedom of the system. ForceContributors contribute terms to the right hand side vector, Constraints set 
specific values to given degrees of freedom (e.g. setting the value of a certain degree of freedom to zero). 
The SystemContributors are created by the Analysis object and correspond to an interpretation of attributes 
consistent with the weak form that the Analysis implements. For example, in a heat transfer analysis, mate- 
rial property attributes will give rise to StiffnessContributors, applied heat fluxes will give rise to ForceCon-. 
tributors and prescribed temperatures will give rise to Constraints. Typically a SystemContributor 
corresponds to a mesh entity classified on the model entity where the attribute is applied. 

The Analysis class creates all of the SystemContributors and adds them to an instance of a Discrete- 
System. There is a hierarchy of DiscreteSystem classes that represent different time orders of PDEs. This 
transformation of the problem from the ContinuousSystem to the DiscreteSystem allows the various solu- 
tion routines to work on a representation that is independent of the type of problem being solved. 

The next step in the solution process is to set up and solve the linear algebra. The setting up of the lin- 
ear algebra consists of transforming a DiscreteSystem into an AlgebraicSystem. This transformation is han- 
dled by an Assembler object. Essentially an Assembler maps the contributions of each StiffnessContributor 
and ForceContributor in a DiscreteSystem into the correct entries in the global stiffness matrix and global 
force vector in an AlgebraicSystem. 

Each type of operation that needs to form a global matrix or vector must use an assembler (either 
denning a new one or using an existing one). The base class Assembler provides the operations needed to 
do the perfrom the process of assembling the global system through it's assemble method (this method is 
only accessible to subclasses of Assembler). Each derived class must implement the operations that need to 
be carried out on the matrices returned by the ForceContributors and StiffnessContributors and then call the 
base classes assemble method. 
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1 Introduction 
The computer modeling of a physical problem can be seen as a series of idealizations, each of 
which introduces errors into the solution as compared to the solution of the initial problem. Since 
these idealizations are introduced to make solving the problem tractable (due to constraints on 
either problem size and/or solution time), it is necessary to understand their effect on the solution 
obtained and to have procedures to reduce the errors to an acceptable level with respect to the rea- 
son the analysis is being performed. Understanding of the effects of idealizations requires a more 
complete definition of the problem than is typically used in numerical analysis procedures. In par- 
ticular it is necessary to have a complete geometric description of the original domain and have 
the rest of the problem defined in terms of that geometry. This paper provides an overview of an 
object oriented analysis framework which operates directly off a geometry-based problem specifi- 
cation to support adaptive procedures. 

We can identify three levels of description that arise in the analysis of a physical problem 
(Figure 1). The highest level description is that of the physical problem which is posed in terms of 
physical objects interacting with their environment. We often want to obtain reliable estimates of 
the response of these objects through modeling. Modeling physical behavior requires a mathemat- 
ical problem description which introduces some level of problem idealization, which we want to 
control as well as possible. The mathematical problem description consists of a domain definition 
(geometry), a description of the external forces acting on the object and the properties of the 
object (attributes), and, in the classes of physical problems considered there, a set of appropriate 
partial differential equations which describe the behavior of interest. For any one physical prob- 
lem there are any number of mathematical problems that can be constructed. Quite often one 
mathematical problem description is constructed as an idealization of another. If the mathematical 
problem as stated cannot be solved analytically, numerical techniques can be used. Construction 
of a numerical problem from a mathematical problem involves another set of idealizations. Again 
from a single mathematical problem it is possible to construct any number of levels of numerical 
problems, which are idealizations of one another. 

The framework described in this paper starts at the level of a mathematical problem description, 
allowing multiple numerical problems to be formulated, solved, and the solution related back to 
the original problem description. The analysis framework is designed to be extended. It is possible 
to add new problem types that can be solved as well as adding new solution techniques. Current 
implementation efforts are focused on finite element procedures [6,7]. However, the framework is 
designed to be general to utilize other types of numerical solution procedures. 

Since the analysis framework must take a problem description consisting of a geometric model 
and attributes and construct a solution to the problem specified, it is important to understand 
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Figure 1. Idealizations of a physical problem to be solved 

abstractions for the various types of data that the framework uses. As outlined in the next section, 
geometry-based descriptions are best suited to meet these needs. The following section briefly 
introduces the data needed to perform geometry -based analyses. 

2 Data Components of a Geometry-Based Analysis Framework 
The structures used to support the problem definition, the discretizations of the model and their 
interactions are central to the analysis framework. The two structures of the geometric model and 
attributes are used to house the problem definition. The general nature of the attribute structures 
allow them to also be used for defining numerical analysis attributes. The analysis discretizations 
are housed in the mesh structure which is linked to the geometric model. The final structure is the 
field structure which houses the distributions of numerical solution results over the domain of the 
problem. 



2.1 Geometric Model 

The geometric model representation used by the analysis framework is a boundary representation 
based on the Radial Edge Data Structure [1]. In this representation the model is a hierarchy of 
topological entities called regions, shells, faces, loops, edges and vertices. This representation is 
completely general and is capable of representing non-manifold models that are common in engi- 
neering analyses. The use of a boundary representation is very convenient for attribute association 
and mesh generation processes since the boundaries of the model are explicitly represented. 
Figure 2 shows an object diagram of related to the model package (All of the object diagrams in 
this paper use the UML notation [5]). 
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Figure 2. Class hierarchy of the geometric model representation 

The classes support operations to find the various model entities that make up a model and to find 
which model entities are adjacent to a given entity. Other operations relating to performing geo- 
metric queries are also supported. The details of these operations are not important in the current 
context. Much more important is the fact that there are associations between the ModelEntity 
class and both the Attribute and MeshEntity classes. What these associations are and their impor- 
tance is detailed below. 

2.2 Attributes 
In addition to geometry, the definition of a mathematical problem requires other information that 
describes the such things as material properties, loads and boundary conditions [3]. This other 
information is described in terms of tensor valued attributes that may vary in both space and time. 
In addition attributes are used to describe information that is non-tensorial in value and may repre- 
sent some concept (such as a time integration algorithm and it's associated parameters). 

Attributes information is organized into a directed acyclic graph (DAG). There are three basic 
types of nodes in the graph. The leaf nodes of the graph are information nodes. These nodes hold 
the actual attribute information (e.g. an information node might define a vector with a certain vari- 



ation in space and time). Above the information nodes are two types of grouping nodes. The first 
of these is called a group which is simply used to represent the grouping of certain information 
nodes. The other grouping node is called a case. The case node has important semantics, it repre- 
sents a point in the graph where all the information below it makes a meaningful whole with 
respect to some operation. 

Tensor valued attributes are only meaningful when applied to a geometric model entity. This pro- 
cess of applying attributes to a geometric model is called association. During this process the 
graph is traversed, starting from a case node, and when the information nodes are encountered at 
the leaves of the graph, attribute objects are created. These attributes (represented by the Attribute 
class) are a particular instance of the information represented in the attribute graph. One reason 
for the distinction between the information nodes and attributes is that the interpretation of the 
information node can depend on the path in the graph traversed to get to that node. Thus one 
information node may give rise to multiple attributes with different values. 

An simple example of a problem definition is shown in Figure 3. The problem being modeled here 
is a dam subjected to loads due to gravity and due to the water behind the dam. There are a set of 
attribute information nodes that are all under the attribute case for the problem definition. When 
this case is associated with the model, attributes (indicated by triangles with A's inside of them) 
are created and attached to the individual model entities on which they act. 

Information Nodes 

Case 

type:problem definition 
name:... 

type:load 
name:water load 
value:(f(z),0,0) 

type:load 
name:gravity 
value: (0,0,9.8) 
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name: concrete 
value: ... 

Geometric 
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type: density 
namexoncrete 
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name: base 
value: (0,0,0) 

Attributes 

Figure 3. Example geometry-based problem definition 



Nodes in the attribute graph have another important property. They can represent an object that is 
to be created when the attribute graph is traversed. This object is called the image of the attribute 
and represents the run time interpretation of the information of the attribute node and its children. 
Each attribute node that will give rise to an image has a string that identifies the class of the object 
to create as its image. The current implementation maps these strings to creator functions for the 
objects which take in the attribute node as an argument. 

• •• 

1 
type: time integrator 
imaae class: backward euler 

type:linear solver 
image class: direct solver 

Figure 4. Portion of an attribute graph specifying a time integrator. 

Figure 4 shows an example of the portion of the attribute graph that specifies a time integrator to 
be used in solving a particular analysis. In this case a backward Euler integrator is specified as 
indicated by the image class field of the group node of type "time integrator". This means that, at 
run time, an object of the class mapped to the image name "backward euler" (which is the class 
BackwardEuler) will be created. When the object is created it is passed the node that specified its 
creation so that it can extract addition information that it needs. In this case the additional infor- 
mation is the starting time, ending time, the time step to use, and the linear solver to use to solve 
the systems of equations that it constructs. Note that the linear solver node also has an image class 
specified which means that an object will be created representing this node (which will be used by 
the time integrator object). In this example, to change the type of linear solver used, it is simply a 
matter of changing the image class of the "linear solver" information node. For example its image 
class could be changed to "conjugate gradient" and then the time integrator would use this solver 
to solve its equations. This technique is used throughout the framework to allow the users to spec- 
ify the run time behavior of the program. 

2.3 Mesh 

The representation used for a mesh is similar to that used for a geometric model [2]. A hierarchy 
of regions, faces, edges and vertices makes up the mesh. In addition, each mesh entity maintains a 
relation, called the classification of the mesh entity, to the model entity that it was created to par- 
tially represent as indicated in Figures 2 and 5. This representation of the mesh is very useful for 
mesh adaptivity, the support of which is important for the framework. Also understanding how the 
mesh relates to the geometric model allows an understanding of how the solution relates back to 
the original problem description. The topological representation can also be used to great advan- 
tage in performing adaptive p-version analyses as polynomial orders can be directly assigned to 
the various entities [4]. 
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2.4 Field 
A problem with many "classic" numerical analysis codes is that the solution of an analysis is 
given in terms of the values at a certain set of discrete points (e.g. nodal locations or integration 
points). However the finite element discretization actually has more information than just the val- 
ues at these points, there is also information about the interpolations that were used in the analy- 
sis. Therefore, when the standard process of storing just the discrete pointwise values is 
maintained, information is lost after the analysis is run. Without knowing the specifics of the anal- 
ysis code it is impossible to reconstruct the interpolations used and one can not define the values 
at general locations. This makes it much more difficult to use the solution in a subsequent step in 
the analysis (e.g. error estimation, or as an attribute for another analysis). The analysis framework 
eliminates this problem by introducing a construct known as a field. 

A field describes the variation of some tensor over one or more entities in a geometric model. The 
spatial variation of the field is defined in terms of interpolations defined over a discrete representa- 
tion of the geometric model entities, which is currently the finite element mesh.. A field is a col- 
lection of individual interpolations, all of which are interpolating the same quantity (Figure 6). 
Each interpolation is associated with one or more entities in the discrete representation of the 
model. 
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Figure 6. Representation of a field defined over a mesh 



One general form of a tensor field is a polynomial interpolation with an order associated with each 
mesh entity. Since in some cases it is desirable to have multiple tensor fields with matching inter- 
polations, the polynomial order for a mesh entity is specified by another object called a Polynomi- 
alField which can be shared by multiple Field objects. 
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Figure 7. Classes used to represent a field 

3 The Analysis Process 
The framework presents the analysis process as a series of transformations of the problem from 
the original mathematical problem description through to sets of algebraic equations approxi- 
mately representing the problem. This transformation starts at the mathematical problem descrip- 

Problem Analvsis Assembler 

Figure 8. Solution of a mathematical problem description as a series of transformations 

tion level which is described by a class named ContinuousSystem, which contains the geometric 
model and the attributes which apply to that model. The attributes for a particular problem are 
specified by a particular case node in the attribute graph. All of the attributes under this case node 



are used for the given problem. An instance of a ContinuousSystem is then transformed to an 
instance of the class DiscreteSystem which represents the discretized version of the model and 
attributes and the weak form of the partial differential equation (PDE). This transformation is 
done by an object that is an instance of a class that is part of a hierarchy of analysis classes. The 
particular analysis class that is used depends on the selected weak form of the PDE to be solved. 

3.1 The Analysis Classes 
For each problem definition it is possible to define any number of analyses. An analysis is defined 
by combining a problem definition with one or more cases that contain the rest of the information 
needed to perform the analysis, as shown in Figure 9. Here an analysis is defined by combining a 
problem definition case with a numeric case (which contains information relating to the specific 
numerical techniques used to solve the problem) and a meshing case (which contains information 
describing the parameters needed to generate a mesh for the model being used). 

rest of graph describes rest of graph describes rest of graph describes 
problem definition numerical methods used to      how to generate 

solve the problem discretization of model 

Figure 9. Structure of an analysis definition 

The information contained in each of these cases is responsible for controlling a particular aspect 
of performing the analysis. The system is data driven using the information contained in the 
attribute graph. 

Analysis classes (those derived from the base class Analysis) implement behavior that is specific 
to a particular type of analysis. In this context a "type of analysis" corresponds to a particular 
weak form of the PDE being solved. For each type of problem there can be more than one analysis 
(representing different ways to solve the same problem). 

The responsibilities of an Analysis class are to: 

1. Create a DiscreteSystem of a type appropriate for the problem 

2. Interpret attributes associated with the geometric model and appropriately create StiffnessCon- 
tributors, ForceContributors and EssentialBCs and add them to the DiscreteSystem. 

3. Create a solver of the appropriate type, passing it the DiscreteSystem 
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FEAnalysis 

HeatTransferAnalysis ElasticityAnalysis 

StaticHeatTransfer rransiantHeatTransfer 

Figure 10. Class Hierarchy of the analysis classes 

3.2 Discrete System 

DiscreteSystem 

StiffnessContributor 

O- ForceContributor 

T 
Constraint 

DiscreteSystemZeroOrder 

process(As sembler) 

DiscreteSysteniFirstOrder 

process(Assembler) 

Figure 11. The DiscreteSystem and derived classes 

The DiscreteSystem class represents the problem in terms of contributions from a set of objects 
that live on the discrete representation of the model. These objects are called SystemContributors. 
There are three types of SystemContributors: StiffnessContributors contribute coupling terms 
between degrees of freedom of the system, ForceContributors contribute terms to the right hand 
side vector, Constraints set specific values to given degrees of freedom (e.g. setting the value of a 
certain degree of freedom to zero). The SystemContributors are created by the Analysis object and 
correspond to an interpretation of attributes consistent with the weak form that the Analysis 



implements. For example, in a heat transfer analysis, material property attributes will give rise to 
StiffnessContributors, applied heat fluxes will give rise to ForceContributors and prescribed tem- 
peratures will give rise to constraints. Typically a SystemContributor corresponds to a mesh entity 
classified on the model entity where the attribute is applied. 

The Analysis class creates all of the SystemContributors and adds them to an instance of a Dis- 
creteSystem. There is a hierarchy of DiscreteSystem classes that represent different time orders of 
PDEs. DiscreteSystemZeroOrder represents an equation of the form F(x, 0 = 0, DiscreteSys- 
temFirstOrder represents an equation of the form F(x, x, t) = 0 and so on. This transformation 
of the problem from the ContinuousSystem to the DiscreteSystem allow the various solution rou- 
tines to work on a representation that is independent of the type of problem being solved. 

3.3 Algebraic System 
The next step in the solution process is to set up and solve the linear algebra. The setting up of the 
linear algebra consists of transforming a DiscreteSystem into an AlgebraicSystem. This transfor- 
mation is handled by an Assembler object. Each solution algorithm (e.g. a backward Euler time 
integrator or a SIRK) must create an Assembler that knows how to create the specific algebraic 
equations that the solution algorithm needs. This Assembler is used by the algebraic system to 
construct or update it's internal representation of the equations to be solved. 

AlgebraicSystem 
Matrix 

DiscreteSystem 
<?  

solve() 

timestepO 
update() 
updateRHSO 
updateLHSO 

Vector O  

">-l Assembler 

LinearSystemSolver 

Figure 12. Structure of the AlgebraicSystem class 

Essentially an Assembler maps the contributions of each StiffnessContributor and ForceContribu- 
tor in a DiscreteSystem into the correct entries in the matrix A and vector b in an AlgebraicSys- 
tem. The easiest way to understand this is to consider a simple example of using Backward Euler 
to solve a first order PDE. In this case the equation we are solving is: 

Mü + Ku - f 

where each of the global matrices and vectors is the sum of the contributions of the individual sys- 
tem contributors (Msc, Ksc, fsc): 

M = 2Xc-* = 5X "nd/ = £/„ 
when the Backward Euler algorithm is applied to Eq. the resulting equation is of the form: 

10 



(M + KAt)un+l = f + Mun 

If this equation is then mapped into Ax = b we find that: 

A = M + KAt 

b = f + Mun 

and, of course, basically the same thing happens at the level of the individual system contributors. 

In the solution process what needs to be done is to form Equation from the contributions of the 
individual system contributors. It would be inefficient to first form a global M, K and f and then 
perform the algebra needed to form the final equation. A more efficient way to do this would be to 
separately transform the individual contributions according to Equation and directly assemble 
them into the desired form. This is the task of the assembler. 

Each type of operation that needs to form a global matrix or vector must use an assembler (either 
defining a new one or using an existing one). The base class Assembler provides the operations 
needed to do the actually assembly into a global system through it's assemble() method (this 
method is only accessible to subclasses of Assembler)! Each derived class must implement the 
operations that need to be carried out on the matrices return by the ForceContributors and Stiff- 
ness contributors and then call the base classes assemble() method. 

Two examples of Assembler subclasses are shown in Figure 13. One, the BackwardEulerAssem- 
bler, was discussed above. The other, the MatrixAssembler, just directly assembles the matrix 
contributions with no additional manipulations. 

MatrixAssembler 

accept(...) Q 

Assembler 

acceptf...) 
assemble(...) (protected) 

BackwardEulerAssember 

accept(...) Q 

A = K 

b = f 

A = M + KAt 

b = f + Mun 

Figure 13. Part of the Assembler class hierarchy 

An assembler gets the contributions from the individual system contributors by being passed to a 
DiscreteSystem process() method. For all the appropriate system contributors contained in the 
DiscreteSystem, this method passes the assembler to the contributors accept() method. The con- 
tributor then calculates what is it contributing to the system and passes the result (which is either 
an ElementMatrix or a ForceVector) to the assembler's acceptQ method. 

ii 



4 Extending the Framework 
One of the most important goals of designing the analysis framework is to make it easily extend- 
able to meet unforeseen needs. There are two major categories of extension that the framework 
allows: adding new types of analyses and providing replacements for functional components that 
can be used by any analysis (e.g. linear solvers, time integrators, etc.). 

4.1 Adding a New Analysis 
To add a new analysis type to the framework a class derived from Analysis (e.g. the HeatTransfer- 
Analysis class in Figure 10) must be defined for the new analysis and system contributors appro- 
priate for the analysis must be written. The class derived from Analysis embodies the knowledge 
of how to interpret attributes that are applied to the geometric model in a manner consistent with 
the weak form of the PDEs being solved and create the appropriate system contributors. 

Also the various system contributor for the analysis must be written. In the case of the heat trans- 
fer example, there are three classes that need to be written (Figure 14): the HeatTransferSC (stiff- 
ness contributor) that calculates coupling between degrees of freedom of the temperature field on 
the interior of the domain, HeatFlux which calculates contributions due to applied heat fluxes and 
TemperatureBC which is a constraint that arises due to prescribed values of temperature. 

SystemContributor 

StiffnessContributor ForceContributor 

HeatTrans ferSC 

1 
HeatFlux 

Constraint 

TemperatureBC 

Figure 14. System contributor classes for heat transfer analysis 

4.2 Adding a New Functional Component 
Many of the functional components of the framework are designed for easy replacement. Among 
these are the mappings and interpolations used to define a field, solvers for linear and non linear 
system and spatial and temporal integration procedures. 

Each of these are replaceable by deriving a new class that implements the appropriate functional- 
ity from the appropriate base class and registering the new class with the framework so that it can 
be created as needed. 
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5 Closing Remarks 
This paper has described an object oriented framework for performing geometry-based finite ele- 
ment analyses. The geometry-based approach was selected to give a firm foundational for per- 
forming adaptive procedures. An object oriented design and implementation was used to allow the 
framework to be easily extended to new problem areas. The resulting framework has been used to 
implement a number of different types of analyses. Current efforts are focused on implementing 
adaptive strategies within the framework. 

6 References 
1. Weiler K.J. The radial-edge structure: a topological representation for non-manifold geomet- 

ric boundary representations. In Wozney M.J; McLaughlin H.W.; and Encarnacao J.L., edi- 
tors. Geometric modeling for CAD applications, North Holland; 1988. p 3-36. 

2. Beall M.W and Shephard M.S. A general topology-based mesh data structure. International 
Journal for Numerical Methods in Engineering (1997) accepted. 

3. Shephard M.S. The specification of physical attribute information for engineering analysis. 
Engineering with Computers, 4 (1988) 145-155. 

4. Shephard, M. S.; Dey, S.; and Flaherty, J. E. A straightforward structure to construct shape 
functions for variable p-order meshes. Computer Methods In Applied Mechanics and Engi- 
neering, (1996) to appear. 

5. Booch, G.; Jacobson, I. and Rumbaugh, J. Unified Modeling Language for Object-Oriented 
Development Documentation Set Version 0.91 Addendum, Rational Software Corporation, 
Santa Clara, CA, 1995. 

6. Hughes, T. J. R., The Finite Element Method: Linear Static and Dynamic Finite Element 
Analysis, Prentice Hall, Englewood Cliffs, NJ, 1987. 

7. Zienkiewicz, O. C. and Taylor, R. L., The Finite Element Method - Volume 1, 4th Edition, 
McGraw-Hill Book Co., New York, 1987. 

13 



Pergamon 

Computing Systems in Engineering, Vol. 6, No. 3, pp. 213-223, 1995 
Copyright © 1995 Elsevier Science Ltd 

0956-0521(95)00019-4 Printed in Great Britain. All rights reserved 
0956-0521/95 S9.50 + O.0O 

COMPUTER-AIDED MULTISCALE MODELING TOOLS 
FOR COMPOSITE MATERIALS AND STRUCTURES* 
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Abstract—This paper presents recent research efforts at Rensselaer Polytechnic Institute aimed at 
developing computer-aided multiscale modeling tools for composite materials and structures aimed 
at predicting the macromechanical (overall) structural response, such as critical deformation, vibration 
and buckling modes, as well as various failure modes on the mesomeehanical (lamina) level, such as 
delamination and ply buckling, and on the micromechanical (the scale of microconstituents) level, such 
as debonding, microbuckling, etc. 

The building blocks of this technology are (i) idealization error estimators aimed at quantifying the 
quality of the numerical and mathematical models of composites, (ii) multigrid technology aimed at 
superconvergent solution of the multiscale computational models, (iii) mathematical homogenization 
theory aimed at constructing inter-scale transfer operators for rapid and reliable information flow between 
the scales, (iv) system identification for in situ characterization of the phases and their interface, and 
(v) multiscale model construction and visualization. 

1. BACKGROUND 

1.1. Idealization error estimators 

Idealization error estimators for laminated composite 
shell structures are aimed to quantify three sources of 
errors and to address the following issues: 

(i) Identifying the regions within the problem 
domain where the macromechanical description (shell 
model), which is the most inexpensive modeling 
capability, is insufficient, i.e., introduces unacceptable 
errors with respect to a more comprehensive ply-by- 
ply (mesomeehanical) model. Idealization error esti- 
mators should be able to identify not only the precise 
location within the plane of the shell, but also the 
layers within the laminate where the use of meso- 
meehanical description may result in unacceptable 
errors of interlaminar stresses. 

The Dimensional Reduction Error estimator 
(DRE) developed in Ref. 1 builds on the earlier works 
on residual based error estimators. By this technique 
dimensional reduction error e = uEX — uFE s <Pß is 
approximated by a linear combination of some basis 
in the auxiliary mesomeehanical finite element mesh. 
The unknown coefficients ß are found by solving the 
auxiliary problem: 

dß 
{O.5a{uF* + <Pß,uFE + 0ß)a 

- (ura + */?, b)Q - (uFE + 4>ß, t), } = 0    (1) 

•Paper presented at the 3rd National Symposium on 
Large-Scale Structural Analysis for High-Performance 
Computers and Workstations, held 8-11 November 
1004   y,„;nn tv.i»-;,!,  M^rf^ii-   VA   i ;>; A 

where <P is defined to maintain C° continuity of 
uFE 4- e, and to satisfy essential boundary conditions; 
a(u, v) and (u, v) are bilinear symmetric forms defined 
by 

a(u,v) = |VsuT] DV'v dfi   and   (u, v) = uvdQ; 

V'u represents the symmetric gradient of u and D is 
a constitutive tensor. To ensure that the dimensional 
reduction error estimation takes only a small fraction 
of the entire computational effort, the Hessian matrix 
resulting from (1) is replaced by a diagonal or block 
diagonal form. For details see Ref. 1. 

(ii) Enriching the fundamental kinematics of the 
equivalent single-layer (macro) model with a discrete- 
layer (meso) model in the vicinity of the most critical 
layers enables modeling of various failure modes on 
the lamina level such as delamination. Unfortunately, 
in many cases the mechanism that causes failure is at 
a much smaller scale—the scale of microconstituents. 
A common computational rationale today is to 
investigate various microprocesses that may lead to 
a progressive failure by considering a unit cell or 
representative volume problem. The mechanism that 
allows us to do so is a periodicity assumption. 
However, in the areas of high stress concentration, 
which are of critical interest to the analyst, periodicity 
assumptions are not valid, and thus the application 
of conventional homogenization techniques in the 
"hot spots" may lead to poor predictions of local 
fields. 

The adequacy (or lack of it) of the homogenization 
th^nrv   hac   h/v»n   :.Q^^H   in   RPf    ~>   OP   the   basis   of 
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the uniform validity of the double scale asymptotic 
expansion, which serves as a basis of mathematical 
homogenization theory. The double scale asymptotic 
expansion of the form 

u(z. y) = u"(y) + e H(z)Vu"(y) + t :P(z) W( v) ...   (2) 

is considered to be uniformly valid if the terms 
in the asymptotic sequence are rapidly decreasing. 
In Eq. (2) y is the position vector on the meso-scale 
and z = y/£ is the coordinate in the unit cell; V is the 
symmetric gradient operator: functions uü(y), H(z), 
P(z) are found by inserting asymptotic expansion 
into the strong form of equilibrium conditions and 
by identifying equal powers of e. The quality of 
homogenization is assessed on the basis of the relative 
magnitude of the first term neglected by the classical 
homogenization theory £2P(z)V:u°(y) to the first two 
taken into account. 

A closed form expression of idealization error 
estimators associated with the Microscale Reduction 
has been derived in Ref. 2. The proposed MRE 
estimator relates the homogenization (or scale 
reduction) error to macroscopic fields (strain and 
strain gradients) and to the details of microstructure 
(compliances of phases, volume fraction and the size 
of the unit cell). A simplified form of such homogen- 
ization error (or MRE) has been derived in Refs 2, 3 
which shows that 

Homogenization error 

_r|C,-C2|a(l-g)||V£°i|E 

Car 2 ||€0||E     V> 

where C, and C2 are the compliances of the micro- 
constituents, Ceff the effective compliance of the unit 
cell, a the volume fraction, Y the size of the unit 
cell» IIVe°||E the energy norm of the gradient of the 
macroscopic strain field in the homogenized FE 
mesh. 

From the above expression it is evident that 
there are four factors affecting the homogenization 
error: (i) The size of the unit cell in the physical 
domain Y, (ii) the normalized compliance difference 
|C|-C2|/Cc(r, (iii) the volume fraction a(l -a)/2, 
(iv) the strain gradients on the macro-scale. 

1.2. Fast iterative solvers for a heterogeneous medium 

The multigrid technology with special inter-scale 
connection operators has been found to possess 
superconvergent characteristics for the periodic 
heterogeneous medium.34 The multigrid procedure 
starts by performing several smoothing iterations on 
the micro-scale in the regions identified by MRE 
indicators, typically using Gauss-Seidel or Conjugate 
Gradient method with diagonal scaling. Conse- 
quently, the higher frequency modes of error are 
damped out immediately. The remaining part of the 
solution error is smooth, and hence, can be effectively 

damped out on the auxiliary coarse mesh. It has 
been proved34 that the finite element mesh on the 
meso-scale (ply level) serves as a perfect mechanism 
for capturing the lower frequency response on the 
micro-scale. Therefore, the residual in the finite 
element mesh on the micro-scale is restricted lo the' 
meso-scale, and the smooth pan of the solution is 
captured in the finite clement mesh on the meso-scale. 
The oscillatory part of the solution on the meso-scale 
is again damped out by one of the classical smoothing 
procedures. The lower frequency response on the 
meso-scale is perfectly captured on the macro-mesh 
(shell level). The resulting solution on the meso-scale 
is obtained by prolongating the displacement field 
from the macro-mesh back to the finite element mesh 
on the meso-scale and by adding the oscillatory part 
of the solution previously captured on the meso-scale. 
Likewise, the solution on the micro-scale is obtained 
by prolongating the smooth part of the solution from 
the meso-scale and by adding the oscillatory part 
that has been captured by smoothing. This process is 
repeated until satisfactory accuracy is obtained. 

The derivation of the inter-scale transfer operators 
is based on the asymptotic solution expansion, which 
assumes infinitesimality of the unit cell size. The 
asymptotic forms of the prolongation and restriction 
operators are obtained by discretizing the corre- 
sponding asymptotic expansions. For unit cells of a 
finite size the regularization function is introduced to 
obtain a well-behaved inter-scale transfer operators. 
The resulting homogenization based prolongation 
operator is given by: 

Q = Q + dQCVsN(Xg) (4) 

where Q is the standard linear prolongation 
operator; d is the unit cell solution; VsN(Xg) the 
symmetric gradient of the shape functions in the 
auxiliary grid evaluated at the Gauss points in 
the auxiliary mesh; C the projection operator aimed 
to maintain C° continuity of the displacement field on 
the micro-scale. For more details see Ref. 3. 

The rate of convergence of the multigrid process 
has been studied in Ref. 4. It has been proved that 
for problems in periodic 1-D heterogeneous media 
the rate of convergence of the two-grid method with 
special inter-scale transfer operators is given by: 

and 

= [<7/(4-<7)]lk'| 

q = {(DlDi)"/[0.5(Dl+D2)]y- (5) 

where Z), represent the stiffnesses of microcon- 
stituents. Note that if the material is homogeneous 
and the mesh is uniform, then £>, = D2 and we recover 
a classical two-grid estimate: ;|e>"-' |] = 1/3 j|e'||. 
Otherwise q < 1 resulting in \\e" ' !|/!|e'|| < 1/3. 

Note that if the stiffness of a fiber is significantly 
higher than that of a matrix, i.e. Q,»Q,. then the 



Computer-aided multiscale modeling tools 

multigrid method converges in a single iteration. 
In multidimensions, convergence of the multigrid 
process for periodic heterogeneous media has been 
studied in Ref. 3. It has been found that a conver- 
gence trend characteristic of the 1-D cases is closely 
followed in multidimensions. 

1.3. The incer.se problem—ealihralion of the 
constitutive laws 

The success of the multiscale computational tech- 
nology depends on the in situ characterization of 
nonlinear behavior of phases and their interaction 
through the interface. Thus it is necessary to con- 
struct a systematic approach aimed at calibrating the 
material parameters of the matrix and the interface 
to the observed boundary measurements. The observ- 
able experimental data could be of a very global 
nature, such as average strains or lower frequency 
modes, as well as of a very local nature on the 
micromcchanical level.5 For example, using moire 
interferometry,5 it is possible to measure displace- 
ments on the surfaces with spatial resolution of up 
to 0.4 ^m. Experimental data of a lesser detail can 
be obtained by photodepositing a mesh of dark and 
bright lines on the specimen surface. This technique 
has been successfully used in Ref. 6 to measure the 
localized shear strains in the metal matrix emanating 
from the crack tip. 

The inverse problem for estimating the control 
variables, denning the shape and the size of the failure 
surfaces of the matrix and the interface, is formulated 
on the basis of regularized least squares principle, 
which states: 

Find: the control variables h 

Such that: 

<P(d) = Kx (Nd-Zd,Nd-Zd)dr 
J 'obi 

+ K2(e(d)-Z£,e(d)-Z()=>min(d)     (6a) 

Subjected to: 

rsf„ fin.(d,h) 

= 0and hm,n < h < h™, (6b, c) 

where N and d represent the finite element shape 
functions and nodal displacement vector, respect- 
ively; Zd is the experimental data of the displacement 
field on fobs; Z( are the overall strain measurements 
obtained from the strain gauges and £(d) are the 
corresponding average finite element strains; K^ and 
K2 are weighting parameters, which are used to scale 
two different sources of information; f„, and f,n, are 
external and internal force vectors; hmin and hma( are 
some bounds on control variables that might be 
possible to obtain  from  the experimental data on 

individual constituents. The scalar product of the two 
vectors u and v is denoted by (u, v). In Eq. (6) the 
experimental "noise" function is omitted. For details 
see Ref. 7. 

1.4.  Multiscale model construction 

The use of multiscale analysis in an adaptive 
environment requires the ability to automatically 
construct models of different kinds. Microstructural 
models must be constructed as necessary as well as 
transition models between the different analysis 
scales. The construction of these microscale models 
is done from a microstructural description that in- 
cludes information on the geometry and material 
properties of the constituents, and the composition of 
the composite in terms of these constituents. These 
microscale models are more complex than just a 
simple unit cell model as they must conform to 
the geometry of the macroscale model, not just the 
geometry of a unit cell. Currently we are producing 
these microscale models by the repetition of a mesh 
of a unit cell model which limits the microstructure 
models to being on planar faces in the macro model. 
This mesh is made periodic by special mesh matching 
procedures in the Finite Octree mesh generator.9 The 
transition mesh between the two models is made by 
first creating a geometric model that is composed of 
a region that represents the boundary of the unit cells 
embedded in a region that is the union of elements in 
the macro mesh that are being modeled at the micro 
level. This nonmanifold model is then meshed using 
the Finite Octree mesh generator.8 

2. ITERATIVE GLOBAL-LOCAL PROCEDURE FOR 
PERIODIC HETEROGENEOUS MEDIA 

WITH TRANSITION ZONE 

In this section we describe an iterative global-local 
algorithm for solving problems in a periodic hetero- 
geneous medium, where the local region of interest 
Q, is modeled on the microscale, while elsewhere 
the medium is treated as homogeneous. The local 
region(s) are selected in the portion of the macro 
problem domain QQ (Qt <= Qo) where microscale 
reduction error indicators2 indicate that the classical 
homogenization theory is invalid. We assume that 
there might be a lack of conformity between the 
boundary of rectangular array of unit cells forming 
the local region and the element boundaries in the 
unstructured macro-mesh. In order to patch between 
the two meshes, we introduce an intermediate 
mesh on Q, as the smallest region so that the local 
region is embedded within fts(ft, c fls c fi,) and 
the boundaries of intermediate mesh on Qs match 
the element boundaries in the global grid as shown 
in Fig. 1. The transition mesh as well as the macro- 
mesh are assumed to possess homogenized material 
properties. 

In the following we describe a three-level multigrid 
like process in the spirit of adaptive composite grid 
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Local Models for Multiscale Analysis 

Create local transition model w/ 
boundary of unit cells 

Extract boundary of 
local area 

Mesh with areas to be 
locally modeled indicated 

Create local microstructural model 
by repetition of unit cell mesh 

Mesh local model 

**V A -A*, f iV &&k 'A*. 

'»►*'*•■«•■*•'*&* •fc****-**Ti» ',&**&&& Ha'fcw^&I 

Fig. 1. Illustration of macro-mesh, transition mesh and micro-mesh. 

\M- 

method (FAC)9'10 and multilevel adaptive technique 
(M'LAT)." 

1. Solve the global problem on the auxiliary 
macro-grid. Let f0 and AQ denote the force 
vector and the stiffness matrix on the auxiliary 
macro-mesh, then the solution u0 on the 
auxiliary macro-mesh can be schematically 
expressed as 

u0 = A0-'f0. (7) 

2. Select the critical region using MRE 
indicators. 

3. Encompass selected elements in the critical 
region with a rectangular array of unit cells 
and define the transition region, such that 
it entirely encompasses selected unit cells. 
External boundaries of the transition zone are 
defined as a minimal space occupied by the 
elements in the macro-mesh encompassing the 
selected rectangular array of unit cells. 

4. Prolongate the macro solution onto the inter- 
face Tos between the macro domain and the 
intermediate mesh 

us(^oJ = Quo (8) 

where subscript s denotes the quantities in the 
intermediate mesh. 

5. Solve the problem on the intermediate mesh, 
subjected to the interface essential boundary 
conditions 

subject to 

'AT'f. 

Us = Us(^os)on r0 (9) 

where the subscript s is used to denote various 
quantities in the intermediate mesh. 

6. Prolongate solution onto the interface Ts, 
between the intermediate mesh and the rec- 
tangular array of unit cells forming the micro- 
grid using homogenization based prolongation 
operator (4). The subscript 1 is reserved for the 
micro-mesh 

u.a\.) = Qjis. (10) 

7. Solve the problem on the intermediate mesh, 
subjected to the interface essential boundary 
conditions on /\, 

subject to 

Af'f, 

u, = ujr,) on r fin 
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The system of equations described in (11) can 
be solved either directly or iterativcly. The 
latter is a two-grid process with an auxiliary 
grid corresponding to the finite element mesh 
with homogeneous material properties. This 
variant has been successfully used in Rcf. 3 and 
has been found to have a clear advantage over 
the direct method in the case of a large number 
of unit cells. 

8. Restrict the residual to £,, using a homogeniz- 
ation based restriction operator 

r, = (f,-Asu<)n.fl, + Q*(f,-A,u1)n,.   (12) 

9. Correct the solution on the intermediate mesh 

us: = us + wsAs 'rs (13) 

where   ws   is   intermediate   mesh   relaxation 
parameter. 

10. Restrict the residual to fUi 

r0 = (f0 - Aoiio)«^ + Q*(fs - A.uJn,.    (14) 

11. Correct the solution on the intermediate mesh 

u0: = u0 + w0A0-'r0 (15) 

where   w0   is    the   macro-mesh    relaxation 
parameter. 

The solution is considered as converged if the 
L2-norm of residuals in the composite grid denned by 
{T^CI^T^QS/Q^T^QQ/^)} is much smaller than the 
corresponding initial norm. 

3. NUMERICAL EXAMPLES 

Our numerical experimentation agenda includes 
two test cases. In the first, we consider a lap joint 
made of high-temperature composite tubes subjected 
to internal pressure. The composite is fabricated from 
silicon carbide fibers embedded in a titanium matrix. 
The layups of tubes A and B shown in Fig. 2 
are [0/0/0/0/0/90] and [0/90/0/90/0/90], respectively. 
Each layer is represented with 6 unit cells. The 
silicon carbide-titanium composite system has been 
considered with the following properties of micro- 
constituents: SiC: £, =425GPa, v,=0.25, Ti: 
£, = 106.9 GPa, v-, = 0.32. The internal pressure was 
selected as 0.055 GPa. The micromechanical finite 
element mesh included 16 elements per each unit 
cell. 

The multi-grid process has been carried out on the 
4 different mesh levels: micro-mechanical (fine) mesh 
and three macro-mechanical meshes. The V-cycle 
has been used with 1 pre- and 1 postsmoothing 
Gauss-Seidel iteration on the intermediate levels; 
3 pre- and 3 postsmoothing Jacobi iterations on the 
finest level and direct solver on  the coarsest level. 

It was necessary to perform 34 multi-grid cycles to 
achieve convergence with a tolerance of 0.001. The 
distribution of homogcnizalion errors is : Jicatcd 
in Fig. 1. In the bottom of Fig. 1 we compare the 
distribution of the strain 'energy absorption at 
the intersection of the two tubes as obtained with the 
proposed multiscalc procedure and on the basis of 
classical homogcnizalion theory. The distribution of 
the peeling, shear and normal axial stresses in the 
whole domain as well as in the critical regions arc 
presented in Figs 2-4, respectively. It can be seen that 
the classical homogemzation theory underestimates 
maximum stresses in the critical regions. 

In the second example we consider an axial tension 
problem of the cracked composite specimen with the 
following normalized material properties: £,/£, = 5; 
v, = v2 = 0.25. The microcrack was embedded 
between two unit cells in the center of the specimen 
as shown in Fig. 5. The problem has been analyzed 
using three different meshes: (i) The crack-free macro- 
mesh with homogenized material properties in the 
whole problem domain, (ii) the crack free transition 
mesh placed inside the middle macro element with 
homogenized material properties, and (iii) the micro- 
mesh, describing the microstructure of the composite 
system in the close vicinity (7x7x2 unit cells) of 
the microcrack. Adaptive composite grid method 
(FAC) with homogenization-based restriction and 
prolongation operators has been employed, where the 
information between the different meshes flows 
through the interfaces only. Note that in the present 
example the macro- and micro-meshes represent 
different mathematical models. It was necessary to 
carry out 23 cycles to achieve the convergence with 
a tolerance 10~6. The distribution of the normal 
stresses on the different levels is depicted in Fig. 6, 
which reflects the force redistribution due to fiber 
breakage. 
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ABSTRACT 
The paper investigates computational efficiency of various 

finite element solvers, including the state-of-the-art iterative 
methods based on multigrid-like and Modified Incomplete 
Cholesky preconditioners. as well as sparse direct solver recently 
developed at NASA Langley. These methods are compared to the 
newly developed Finite Element Oriented Solver (FEOS), which 
combines the advantages of the iterative and direct solution tech- 
niques. Numerical tests are conducted for both well-conditioned 
three dimensional problems as well as poor-conditioned problems, 
such as thin shells. The proposed FEOS solver has been found to 
possess a remarkable robustness and computational efficiency, by 
far superior to its comprising ingredients. 

INTRODUCTION 
The performance of linear solvers in terms of CPU time for 

symmetric positive definite systems can be approximated as 
CNß . where N is the number of degrees-of-freedom. and C. ß 

are solution dependent parameters. The major advantage of direct 
solvers is their robustness, which is manifested by the fact that 
parameters C and ß are independent of problem conditioning 
(except for close to singular systems). Direct solvers are ideal for 
solving small up to medium size problems (since the constant C 
for direct methods is significantly smaller than for iterative solv- 
ers), but becomes prohibitively expensive for large scale problems 
since the value of exponent for direct solvers is higher than for 
iterative methods. For large well conditioned three dimensional 
problems the storage and CPU time requirements for direct meth- 
ods are so large that serious consideration of competing methods 
is a virtual reality. 

Recent years saw a re-emergence of iterative solvers in finite 
element structural analysis due to increasing demand to analyze 
very large finite element systems. Nevertheless, the major obstacle 
that needs to be overcome before iterative solvers can be routinely 
used in commercial packages is circumventing their pathological 
sensitivity to problem conditioning, which is manifested by the 

increase of constant C with degradation in problem conditioning. 
Moreover, for linear static analysis any type iterative method 
requires (except for the stiffness and preconditioner formation and 
factorization) for each load case a new iterative process (whereas 
in a direct solution, factorization is performed only once, and each 
load case requires only forward reduction and back substitution). 

This paper presents a Finite Element Oriented Solver (FEOS). 
which exploits specific properties of the problem, including a 
finite element discretization and estimated problem conditioning 
in constructing a nearly optimal solution strategy. The FEOS is a 
hybrid solver with built in strategist that combines multigrid-like 
principles with efficient Incomplete Cholesky based smoothing 
techniques and state-of-the-art sparse direct methods for solving 
auxiliary preconditioned systems. Its major characteristics are 
summarized below: 
•Computational efficiency and robustness: FEOS is faster and 
requires less storage than the sparse direct solver for wide range of 
practical problems including those with distorted geometries, 
unstructured meshes, strong anisotropies - all giving rise to poor 
conditioned problems. 
'Fully automated: FEOS a priori selects an optimal solution strat- 
egy based on the estimated conditioning, problem size, number of 
load cases, etc. 

Subsequent sections describe the building blocks of FEOS. 
Numerical experiments comparing the performance of FEOS with 
its basic constituents alone are given in the last section. 

SPARSE DIRECT SOLVERS 
Consider a sparse symmetric positive definite linear system 

Au = f        u£ Rn f £ R° (I) 

where A is the n x n symmetric and positive definite matrix; 
u and f are vectors of order n . Traditionally, the linear equa- 

tion solvers employed have been envelope, band or frontal type. 
The common idea behind all these methods is that zeros outside 
the envelope of A are preserved in its Cholesky factor L . In 
order to reduce the storage requirements for the factor, the linear 



system is reordered to reduce the envelope, band or front size. 
Among the effective enveiope-reducing algorithms include the 
reverse Cuthill-McKee (George, 1981), Gibbs-Poole-Stockmeyer 
(Crane. 1976) and Gibbs-King (Lewis, 1982) ordering algorithms. 
Generally, zero entries within the envelope structure are not 
exploited as they are in true sparse solvers, and thus for large 
problems envelope-type methods can be much more demanding 
than true sparse solvers. Yet envelope-type methods have been 
very popular primarily due to their simplicity and ease of reorder- 
ing algorithms. 

A true sparse solver attempts to reduce an overall storage and 
arithmetic requirements by storing and computing only the logical 
nonzeros of the factor matrix. By this technique the linear system 
of equations is reordered to reduce the number of nonzeros in the 
factor matrix irrespective of any envelope structure. Indeed, effec- 
tive ordering algorithms for true sparse solvers, such as Minimum 
Degree algorithm (George. 1987) generally scatter many of the 
nonzeros away from the diagonal and thus are entirely inappropri- 
ate for an envelope-type methods. Nevertheless, true sparse matrix 
methods have not gained wide acceptance among the software 
developers for large-scale applications primarily because general 
sparse orderings were difficult and time-consuming. 

Our numerical experiments comparing envelope-type solvers 
with recently developed sparse direct solver at NASA Langley 
show that major shortcomings have been overcome, and that a 
good implementation of the sparse direct solver outperforms enve- 
lope-type solvers by orders of magnitude in bom execution time 
and storage requirements. 

MUU1GRID PRINCIPLES 
Since the pioneering work of Fedorenko (1962), multigrid lit- 

erature has grown in astonishing rate. This is not surprising since 
the multigrid-like methods possess the highest rate of convergence 
among the iterative techniques for solving symmetric positive def- 
inite linear systems. The principal idea of multigrid consists of 
capturing the oscillatory response of the system by means of 
smoothing, whereas remaining lower frequency response is 
resolved on the auxiliary coarse grid. 

To clarify the basic priciples we will denote the auxiliary grid 
functions with subscript 0. For example, u0 denotes the nodal 
values of the solution in the auxiliary grid, where 
u0 6 Rm, m < n .We also denote the prolongation operator from 
the coarse grid to the fine grid by Q : 

Q:Rm-»Rn (2) 
T 

The restriction operator Q from the fine-to-coarse grid is 
conjugated with the prolongation operator, i.e.: 

QT:Rn-»Rm (3) 

The superscripts are reserved to indicate the iteration count. 
Let r   be the residual vector in the i -th iteration defined by 

r1 = f - Au' (4) 

where u' - is the current approximation of the solution in the i - 
th iteration. 

The problem of the coarse grid correction consists of the mini- 
mization of the energy functional on the subspace Rm , i.e.: 

2(A(ui + Qui),ui + Qui) -(f.u' + Quj) =* min uj, € Rm (5) 

where (...) denotes the bilinear form defined by 

(u,v) =  £ujV. u, v € R (6) 

A direct solution of the equation (5) yields a classical two-grid 
procedure. Alternatively, one may introduce an additional auxil- 
iary grid for u0 and so forth, leading to a natural multi-grid 
sequence. To fix ideas we will consider a two-grid process result- 
ing from the direct minimization of (5) which yields 

A0u|, = QT(f-Aui) (7) 
T 

where   A„ = Q AQ   -is the restriction of the matrix A . The 
resulting classical two-grid algorithm can be viewed as a two-step 
procedure: 

a) Coarse grid correction 

r' = f - Au' 

ü' = u' + QuJ, 

(8) 

where ü1 is a partial solution obtained after the coarse grid cor- 
rection. Even though the auxiliary system of equations is much 
smaller than that of the source problem, it's solution for large 
scale systems can be most efficiently obtained by means of sparse 
direct solver, 

b) Smoothing 

ui + i _ ü» + p"l(f_Aü') (9) 

where P is a smoothing preconditioner. For example, if the Jacobi 
method is employed for smoothing, then 

P = co(diag(A)) (10) 

where o> is a weighting factor. A more efficient preconditioner of 
the form of Incomplete Cholesky factor is described in the next- 
section. 

To assess .the rate of convergence we can associate the error 
vectors   e', e'   defined by 

e' = u-u'        e' = U-Ü' (11) 

where u is the exact solution of the source problem. Then the 
error resulting from the coarse grid correction (8) can be cast into 
the following form 

e1 = (l-QA51QTA)e (12) 

where I is the identity   n x n    matrix. Combining equations 
(9),(11), the influence of smoothing on error reduction is given by: 

„i + i = (i-P^Aje1 
(U) 

and from the equations (12), (13) the error vector of the two-grid 



process with one post-smoothing iteration can be expressed as: 

ei+i = (l-P
_lAJ(l-QAö»QTA)eä (14) 

Denoting 

(IS) 
G = I-P~lA 

T^I-QAo-iQ^ 

equation (14) can be rewritten in the following concise form 

e1 +' = GTe; (16) 
It is essential to note that T and S = I - T are A -orthogo- 

nal projectors, namely: 

(ATw,Sv)=0 Vw, v£Rn (17) 

M\ =HTv|2+|Sv||2 (18) 

which yields that 

|T|A£1 (19) 

Note that the projector T eliminates the effect of the prolon- 
gation operator, i.e.: 

TQ = 0 (20) 
The rate of convergence of the two-grid method in heteroge- 

neous media for one-dimensional problems has been assessed by 
Fish and Belsky (1994), and has been shown to be governed by a 

factor q:/^4 - q2J .where 

q = (7d7d;)/|(d1 + d2) (21) 

and d; represent the stiffnesses of the microconstituents. Note 
that if the media is homogeneous and the mesh is uniform, then 
dl = d, and one recovers the classical multigrid estimate, which 
states that asymtotically the error reduces by a factor of three with 
each new multigrid cycle. On the other hand if one phase is signif- 
icantly suffer than the other, i.e. dt»d,, then the multigrid 
method converges in a single cycle or very few cycles at most. 

For poor conditioned problems it is necessary to accelerate the 
rate of convergence of the multigrid method. Using (14) the reduc- 
tion of error in a single cycle s' = e' . -e' can be expressed as 
linear function of the residual, i.e.. s' = M" r1, where M is 
termed as multigrid preconditioner. Various forms of the second- 
order acceleration schemes can be expressed as follows 

uk*l-pV + (l-pk)B
k-, + pk«Vlrk (22) 

where acceleration parameters a, ß are found by either (i) mini- 
mizing the energy functional or L* norm of residuals, or by(ii) 
conjugate gradient method, which imposes orthogonality condi- 
tion of the form 

(M^AM"
1
^*

1
,^) =0        Vjük (23) 

The major drawback of the multigrid method for general 
unstructured meshes is the fact that it requires construction of 
mesh hierarchy in the solution process. This linkage seems to be 
undesirable for general purpose FE codes, unless it is utilized in 

the adaptive context, where the sequence of meshes generated by 
the process of adaptivity is exploited in the solution process. Alge- 
braic multigrid (Ruge, 1987), on the hand, does not require formu- 
lation of continuous problem, which corresponds to the given 
algebraic system equations, and no grids are involved, but as a 
result of that the efficiency suffers. Instead. FEOS automatically 
constructs auxiliary mesh hierarchies from the source grid by 
recursively simplifying the kinematics of the source grid. 

INCOMPLETE CHOLESKY PRECONDITIONERS 
Perhaps one of the most efficient smoothers for multigrid-like 

methods is based on Incomplete Cholesky Factorization. By this 
technique an approximate factorization of the stiffness matrix is 
introduced without generating too many fill-ins. Such an approach 
leads to the factorization of the type LDLT = A - E . where 
E is an error matrix which is not explicitly formed. For this class 
of methods the error is introduced by either prescribing the posi- 
tion of elements to be rejected (Manteuffel. 1980) or by discarding 
those elements in the factor which are smaller than specified toler- 
ance (Axelsson, 1983). This rejection process often leads to an 
unstable factorization that may result in a nonpositive definite 
preconditioner. Several remedies have been proposed including 
modification of factorization by making it more diagonally domi- 
nant (Manteeuffel, 1980) or by correcting diagonal elements in 
the factorization process (Axelsson, 1983). 

Our experience with multigrid-like methods suggests that the 
simplest version of Incomplete Cholesky Factorization, which 
preserves the sparsity pattern of the source stiffness matrix ind 
ensures its stability by means of diagonal scaling, is the most suit- 
able smoothing procedure. Heavier MIC-based smoothers, which 
allow partial fill-ins suffer from duplication of computational 
effort in the sense that they are acting on the same lower fre- 
quency modes of error which can be adequately captured on the 
auxiliary coarse mesh 

PERFORMANCE STUDIES 
The performance comparisons between the FEOS. PCG with 

Modified Incomplete Cholesky (MIC) preconditioner and NASA 
Langley sparse direct solvers were carried out on the SPARC 10 
workstation. The numerical results are summarized in Table 1. 
The convergence criterion for the FEOS and PCG solvers was 
selected as 1.0e-8 in the relative residual norm. Note that the 
sparse direct solver outperformed the envelope-type solver by 
orders of magnitude for the problems considered, and therefore 
the envelope-type solver's results were not included in the Table. 
Our numerical experimentation agenda included three 3D solid 
mechanics problems (intersection of two cylinders - model 1. 
inclusion problem - model 2, bracket problem - model 3) and two 
cylindrical shell problems with thickness/span ratio of 1/100 for 
model 4 and 1/300 for model 5. The finite element mesh for the 
Model 3 is presented in Figure 1. 
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SUMMARY 

This paper describes automated tools for the analysis of three-dimensional composite 

unit cells via the finite element method. These tools include an automated matched mesh 

generation algorithm, a constituent mesh volume fraction adjustment algorithm, and an 

iterative solver with efficient handling of the multiple right hand sides necessary for 

homogenization analyses. The described algorithms are used to examine the effect of the 

constituent volume fractions on the homogenized material properties. The local stresses 

within a representative composite weave are also examined. 

KEY WORDS: automatic mesh generation; finite element; unit cell; volume fraction; 

woven composite 

1. INTRODUCTION 

Effective design with composite materials requires the ability to predict their behavior. 

This behavior is partially influenced by the configuration of the constituents and other 

small scale features such as microcracks and voids. This paper is concerned with general 

automated methods allowing materials researchers and composite designers to understand 



the effects of constituent geometric configurations on the functions which the material 

must perform (e.g. support loads, resist deflection, transfer heat, or reflect radiation). 

The large number of complex small-scale interactions in composites makes the 

complete characterization of the overall behavior of composites for all permutations of 

manufacturing and operation variables impractical. This has led to the development 

of multi-scale approaches where overall composite properties are derived from smaller- 

scale (more detailed) models of the constituents, and the effects of overall loadings are 

transformed into effects on the constituents. As shown in Figure 1, the small-scale 

modeling process begins with the definition of constituent phases and their significant 

features, the constitutive model(s) and associated property parameters of the solid phases, 

and the boundary conditions needed for the analysis. The constituent geometric features 

may be given either directly as idealized geometric features, e.g. cylindrical fibers, whose 

size and position are controlled by parameters !- 2 or by scanned sample data with given 

discretization, noise processing and interpretation parameters 3. The constitutive model 

is chosen based upon the material constituents, the environment, loading and expected 

lifetime and the tested property parameters obtained. The boundary conditions depend 

on the formulation of the subsequent analysis. 

After a representative model has been developed, an analytical or numerical solution 

technique is employed to calculate the average material properties and constituent stress 

concentrations. These approaches include analytical methods based on elasticity theory 

for classical shapes (ellipsoids or circular fibers) included in infinite media. Such 

methods are the Mori-Tanaka method 4, which entails a closed form solution, the Self 



Consistent method 5, which entails numerical root finding, differential schemes 6, which 

entail solving ordinary differential equations, composite moduli bounding methods 7, and 

methods based on transformation strains 8. These methods are characterized by quick 

solution times, do not require complicated model generating procedures, and require only 

material design parameters such as volume fractions and linear elastic moduli as input. 

However, they are limited to specific inclusion geometries. 

Numerical methods for solving unit cell problems are applicable to general constituent 

geometries, and may be utilized wherever periodicity assumptions are valid (i.e. in 

portions of the large-scale problem domain which are not near boundaries or regions of 

high stress gradients). In regions of the large-scale problem domain where assumptions 

about the periodicity of the solution are not valid, localized approaches such as multigrid 

techniques 9 can be utilized. In areas of the large-scale model where periodicity 

assumptions are valid the homogenization technique allows for great flexibility in the 

choice of the included small-scale features, but at the expense of complicated model 

building and meshing procedures and more computationally intensive solutions. The 

generation of valid finite element meshes 10- " within the problem domain is critical 

to the success of these analyses. The topological and geometrical complexity of three- 

dimensional woven composite unit cells, and the need to analyze multiple unit cell models 

to optimize microstructure for a given application make the ability to generate meshes 

without user intervention a practical necessity. The difficulties inherent in generating 

three dimensional finite element meshes of geometrically complex domains may be 

greatly simplified by employing digital image based finite element techniques, as done 



by Hollister and Kikuchi 3. This method has been shown to provide good results for the 

homogenization analyses they were performing, but the poor geometric representation of 

material interfaces does not directly permit reliable computation of local stresses near 

constituent boundaries. In reference 12 Dasgupta et. al. determine the thermal and 

thermos-mechanical properties of a woven composite using discretizations which provide 

a smoother representation of constituent boundaries. However, meshes and results are 

shown for only a plain weave, and their modeling and discretization algorithms do not 

appear to be applicable to more complicated weave patterns. The unit cell model may also 

be used to determine the local stresses in the woven composite, as shown by Whitcomb 

et.   al.   13   in two dimensions. 

The large number of equations resulting from the numerical modeling of three- 

dimensional unit cells requires an efficient solution technique. The practical value of 

detailed unit cell representations in the design process is very limited if the computa- 

tional cycle for analyzing a single microstructure entails more than a couple of hours. 

Application of direct equation solution methods, including state-of-the-art multifrontal 

solvers, is inappropriate due to the very dense structure of the stiffness matrix. However, 

the use of standard iterative methods is questionable due to poor conditioning caused 

by strong heterogeneities and anisotropies. Moreover, the need for analyzing unit cell 

models for multiple forcing functions (6 in classical homogenization, 24 in higher order 

homogenization theory 14) further complicates the efficient utilization of iterative meth- 

ods. In this paper a multilevel solution technique developed in 15'16 is utilized for solving 

the linear systems of equations arising from complex microstructures. 



This paper describes a set of automated finite element modeling procedures for 

performing homogenization analyses of woven composite unit cells. Sections 2 through 4 

detail the description of the unit cell model, the generation of matched meshes on opposing 

faces of the unit cell, and a procedure for controlling the unit cell constituent volume 

fractions. Section 5 describes the solver features aimed a efficiently handling poorly 

conditioned linear systems subject to multiple right hand sides. Section 6 discusses the 

calculation of homogenized stiffness parameters, and section 7 discusses the determination 

of local stress values in the unit cell models. Closing remarks are made in section 8. 

2. UNIT CELL MODEL DESCRIPTION 

The definition of the geometry of the unit cell representing the chosen composite 

weave geometry is needed as input to the automated unit cell analysis. The overall shape 

of the unit cell is a rectangular prism. Boundary conditions and other analysis attributes 

are associated with this basic model. For example, homogenization analysis requires that 

the displacement fields vary identically over opposing faces of this prism 17. However, 

geometric model creation and mesh generation operations must be performed with respect 

to the geometry of the constituents of the weave structure. This weave structure is 

complex, and may be comprised of matrix, fiber bundle, and void geometries as shown 

in Figure 2, and may also contain cracks in the matrix material. Consideration of both 

the basic unit cell model and the geometric model of the weave geometry components is 

necessary in the modeling and analysis process. The weave characteristics and analysis 

attributes of the composite being modeled may be altered to optimize the composite as 

shown in Figure 3. 



The schematic in Figure 3 depicts the inputs and outputs (arcs) for each function 

(boxes) used to implement the automated homogenization "Solution Technique" of Figure 

1. The "Geometric Modeler" (top of Figure 3) provides a non-manifold boundary 

representation 18 of the composite weave geometry comprising the unit cell. This 

•representation is comprised of both topology, which describes the relationships of the 

model entities, and geometry, which describes the shape of the model entities. 

The "Matched Mesher" function (middle right of Figure 3) uses the geometric model 

information and constraints dictated by the periodic boundary conditions to automatically 

create a three-dimensional mesh of the composite weave. A set of "Mesh Copy Op- 

erations" is used to create matching surface mesh topology and geometry on opposing 

faces of the unit cell. The mesh matching requirements are specified via the rectangular 

prism "Unit Cell Template" (middle left of Figure 3), and are independent of the com- 

posite weave geometric model. The topology of the composite weave geometric model 

is associated with the topology of the unit cell template by the "Classify on Unit Cell" 

function shown in Figure 3. After the mesh has been generated, mesh queries and ma- 

nipulations are performed via the "Generic Mesh Database Operations" 19 indicated on 

the right side of Figure 3. 

The unit cell template is also used to automatically "Identify Moveable Constituent 

Topology", as indicated in the center of Figure 3. This function determines the topological 

entities of the given "Target Constituents" in the composite weave model for which the 

associated mesh may be altered to "Adjust Constituent Mesh Volumes" to the given 

"Target Volume Fractions" by the subsequent function shown in Figure 3. 



The "Material Property" function (lower left of Figure 3) forms the constitutive rela- 

tions for each constituent in the composite. The necessary constituent material properties 

are selected from a relational material property database indexed by compound, form, 

manufacturer, environment, or other factors. Alternatively, the properties are computed 

from a lower scale analysis of the average properties of micro-constituents. Complete 

definition of material properties also requires inter-scale transformation geometries to 

provide local coordinate systems orienting non-isotropic material models. Data from 

the geometric modeler is used to associate the material properties (and other analysis 

attributes 20) with the geometric model topology. Associating these properties with the 

geometric model makes them independent of the mesh, and the mesh can therefore be 

altered without requiring their respecification. 

The "Kinematic B.C. Attributes" function (lower right in Figure 3) specifies the 

appropriate boundary conditions for the homogenization analysis. These attributes and 

the constitutive relations are associated with the correct finite element mesh entities 

and formatted as necessary for the finite element solver by the "Associate and Format" 

function shown at the lower center of Figure 3. The resulting system of equations is 

provided to the finite element solver ("FE Solver" at the bottom of Figure 3), and the 

resulting solution data is supplied to appropriate post processing routines. 

3. MATCHED MESH GENERATION 

Since the homogenization modeling is performed via the finite element method, the 

necessary periodic boundary conditions are specified to the equation solver in terms 

of nodal displacement requirements (multi-point constraints).   Since the displacement 



solution field is not constant over a cell face, the displacement of a given node, referred 

to as the subordinate node, on one face of the unit cell is defined as a function of the 

displacements of specific nodes, referred to as control nodes, on the opposing unit cell 

face.   That is 

N. con 

ut = Y, amj (1) 

i=i 

where ut denotes the displacements of the ith subordinate node, Uj denotes the dis- 

placements of the jth control node, a,j are weighting values, and Ncon is the number of 

control nodes associated with the current subordinate node. The displacement function 

for a given node is written in terms of the shape functions of the element face which 

contains the projection of the given node on the opposing unit cell face, as shown in 

Figure 4. This approach requires an expensive search process to determine within which 

element faces the projected node lies. The projected point must also be located in the 

parametric (£1, £2, £3) space of the element face to express the displacement of the subor- 

dinate node in terms of the control nodes. The complexity of this calculation is increased 

if higher order polynomial element geometry interpolations are utilized. 

Specification of the periodic boundary conditions is substantially simplified if the 

finite element nodes on opposing unit cell faces match. In this case the periodic boundary 

condition for a given subordinate node reduces to 

m = U] (2) 

where Uj is the displacement of the sole control node.   With a priori knowledge of 

the correspondence between nodes on opposing faces of the unit cell, no searching is 



required and it is not necessary to locate a projected point in real space within the 

parametric space of an element face. 

Matched meshes are generated by first discretizing the weave geometric model outer 

boundary entities which are defined as "control" entities, and then copying the meshes 

to the matching "subordinate" weave geometric model entities. In order to generate 

a matched mesh of the weave geometric model, it is therefore necessary to identify 

the control-subordinate relationships of the weave geometric model outer boundary 

topological entities. For convenience, the outer boundary of the weave geometric model 

is denoted as dM. The control-subordinate relationships are determined by associating 

the topological entities of dM with the predetermined control and subordinate topology 

of the unit cell template. 

One unit cell template face of each opposing pair of faces is specified as the control 

face, and the other is specified as the subordinate face. One of the three such pairs 

of faces is indicated on the unit cell template shown in Figure 5(a). Periodicity in each 

direction normal to the faces of the unit cell requires that parallel edges of the box-shaped 

unit cell template undergo the same variations in displacement and must have identical 

meshes. One unit cell template edge in each group of four parallel edges is specified as 

the control edge, and the other three are designated as subordinate edges. One of the 

three such control-subordinate edge groups is shown in Figure 5(a). All eight vertices of 

the unit cell undergo the same displacement, and (trivially) must have identical meshes. 

Each dM face associated with a control face of the unit cell template is identified as 

a control face, and the matching dM face is identified as a subordinate face, as shown for 



a typical pair of weave geometric model faces in Figure 5(b). If a dM edge lies within a 

control face of the unit cell template, then it has one matching dM edge lying within the 

opposing subordinate face of the unit cell template. If a dM edge lies on a control edge 

of the unit cell template, it has three matching edges lying on the parallel subordinate 

edges of the unit cell template, as shown for one group of dM edges in Figure 5(b). The 

dM vertices similarly inherit control-subordinate designations. 

Generating meshes in a hierarchic manner {i.e. meshing vertices first, then edges, 

faces, and volumes) allows the periodicity requirements to be easily satisfied during 

the meshing process, since discretizing the weave geometric model face boundaries first 

ensures that the necessary matching meshes can be generated in their adjacent faces. 

The control dM edges are meshed first, as shown in Figure 6(a). As described 

in reference 21, the edge meshing is done such that the resulting discrete edges are of 

approximately the same size as requested by the user. The meshes on the control edges 

are then copied to the subordinate weave edges. This is done by first creating a new 

subordinate mesh vertex as shown in Figure 6(b). A new mesh edge is then created and 

classified on the subordinate weave edge, as shown in Figure 6(c). 

The weave faces are then meshed by a surface meshing algorithm which discretizes 

the model faces in their parametric spaces 21. The weave face boundary mesh is first 

copied into the parametric space, as shown for the face- with four curved edges in Figure 

7(a). The surface mesh is then created using a Delaunay insertion method as illustrated in 

Figure 7(b). After the surface mesh has been created in the parametric space, it is copied 

back to the weave face in the real space by obtaining the corresponding xyz coordinates 
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for each of the mesh vertex parameter values as shown in Figure 7(b). The matching 

mesh on the subordinate weave face is created by also copying the temporary mesh to 

the corresponding subordinate weave face. 

The region meshing process is comprised of three steps 22'23. In the first step an 

underlying variable level octree is created to reflect mesh size control information during 

the region meshing procedure. The octants residing far enough inside the model interior 

are then meshed using templates. Finally, a face removal procedure is used to connect 

the surface triangulation to the interior elements. 

4. CONTROL OF CONSTITUENT VOLUME FRACTIONS 

The efficiency of the analysis process is increased by using the fewest number of 

degrees of freedom which can achieve the desired accuracy for the requested parameters. 

In finite element analyses the solution accuracy is affected by both discretization error 

and geometric approximation error. Discretization error is caused by the projection of 

the solution field into a finite dimensional space. If this error is dominant, then the 

discretization must be suitably refined to improve solution accuracy. 

Geometric approximation error is caused by the piecewise approximation of curved 

model geometry. The presence of curved geometries in composite microstructures is 

illustrated by the cross-sectional view of a planar weave composite shown in Figure 

8. The matrix and fiber bundle geometries are clearly visible in this image, as are the 

individual fibers comprising the fiber bundles. The weave geometric models presented 

in this paper consist of fiber bundle and matrix constituents only. The smaller-scale 

modeling of the fibers within the bundles is done via the Mori-Tanaka method. Since the 
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fiber bundles are convex in cross-section and are curved to form the weave, geometric 

approximation creates errors in the constituent volume fractions calculated from the finite 

element mesh. The mesh constituent volume fractions, CFE, are defined as 

VFE 
riFE     'cons ,-o\ c     ~ 17— ^ Vcell 

where VC
FE

3 is the volume of the elements classified inside the constituent regions of 

the geometric model, and Vct\\ is the total volume of the unit cell. The errors in the 

mesh volume fractions can be sizeable, as illustrated by the circular geometric model of 

radius r in Figure 9(a). The circle is discretized such that there are four finite element 

mesh edges of equal length around the circumference as shown in Figure 9(b), and each 

edge is of length \/2r. The resulting mesh area is 2r2, and the "lost" area not contained 

within the mesh is -KT
2
 -IT

1
, as indicated by the shaded portions of Figure 9(b). The 

area error of the mesh is therefore —36%. 

In homogenization analyses, the results presented here indicate that the CFE values 

influence the evaluation of the homogenized material parameters more strongly than 

does the discretization error. The CFE errors must therefore be reduced to improve the 

analysis accuracy. There are several methods by which these errors may be reduced. 

The simplest method consists of refining the mesh to improve the approximation of the 

model geometry. This process dramatically increases the number of degrees of freedom 

in the domain, as illustrated by the meshes of a base one planar weave geometric model 

shown in Figure 10. Only the mesh faces classified on the interior fiber bundle surfaces 

are shown in these figures. The mesh in Figure 10(a) contains 21,850 elements and 4,608 

nodes. The mesh fiber bundle volume fraction, CFE, of this mesh is 0.2527, which is in 
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error by -19.4% when compared to the geometric model fiber bundle volume fraction of 

0.3137. The mesh in Figure 10(b) was created through uniform refinement and contains 

154,020 elements and 28,858 nodes. The fiber bundle volume fraction is 0.298761, which 

is in error by -4.8%. The approximation of the fiber bundle volume fraction by the finite 

element mesh improved, but still underestimates the fiber bundle volume fraction of the 

geometric model, and the number of degrees of freedom in the domain increased by a 

factor of greater than 6. The memory requirements and large increases in solution time 

for the highly refined meshes needed to adequately approximate the fiber bundle volume 

fraction make this an expensive method. 

Another approach for reducing the errors in CFE values entails making adjustments 

to the geometric model such that the constituent volume fractions of the geometric model 

are higher than the constituent volume fractions of the actual composite material. The 

constituent volume fractions of the finite element mesh generated within this model then 

more closely approximate the constituent volume fractions of the composite material. 

This method requires iterations of the model construction and mesh generation processes 

to reduce the CFE errors to a given level. Further, since CFE values are a function of 

discretization size, meshes of different degrees of refinement require the construction of 

different geometric models to obtain the same CFE values. 

The chosen method for reducing the CFE errors involves the modification of an 

existing mesh. This method begins with an initial mesh which is valid and of acceptable 

element shape quality, and relocates the mesh vertices classified on the surfaces of the 

constituents under consideration to correct CFE values of those constituents. The mesh 
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vertices are relocated in a manner such that the validity and quality of the mesh is 

maintained. In the current implementation, the quality of the mesh is measured by 

the largest dihedral angle 24. Although this C[E adjustment method is an iterative 

procedure, it does not require the creation of a new finite element mesh for each iterative 

step. Instead, the same mesh topology is used throughout the process with changes being 

made only to the locations of specific mesh vertices. 

The values of the desired mesh bundle volume fraction, Cj, and the bundle volume 

fraction of the existing mesh, C[E, are utilized to determine how the mesh should be 

altered.  Since the area A of an ellipse is given by 25 

A=  fr(0j2d0 (4) 

where r is the distance from the bundle centerline to a point on the bundle surface and 9 is 

the angular measure around the ellipse, the volume of a given fiber bundle is proportional 

to the square of the radius of the elliptical bundle cross-section 

Vb<xr2(9,s) (5) 

where Vj is the volume of the bundle, and 5 is a parametric measure along the bundle 

centerline. Using equation (5), the new bundle radius R required to achieve the desired 

fiber bundle volume Vb is expressed as 

R(d,s)(xy/Vb (6) 

The new bundle radius R is therefore calculated as a function of the current bundle radius 

m*) = \Hrr(0,s) (7) 
V n 
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If all of the fiber bundles in the geometric model are of the same cross-sectional geometry, 

equation (7) may be expressed in terms of the volume fraction measures Cj and C[E 

R(d,s) = $r{6,s) (8) 

where $ = ■JCi,/C[E is the bundle volume adjustment factor. 

The new position of each mesh vertex on the bundle surfaces is calculated as a 

function of the bundle volume adjustment factor, $, as illustrated for a typical ellipsoidal 

bundle cross-section in Figure 11. The current positions x, of the vertices in the inscribed 

surface discretization of the bundle cross-section are located distances r; from the center 

of the bundle cross-section, as shown in Figure 11(a). If the bundle volume adjustment 

factor is greater than one, each of the mesh vertices is located radially outward from 

its current position to its new location JQ at a distance Rj from the bundle center, as 

shown in Figure 11(b). The coordinates to which the vertex is relocated are therefore 

calculated as 

2C=x + ($-l)£ (9) 

where r denotes the vector from the bundle center to the current location of the vertex. 

Scaling the bundle cross-section by $ in this manner maintains the original shape of the 

bundle cross-section, as can be seen by examining the aspect ratios of the meshes in 

Figure 11. The aspect ratio aj of the original discretization is calculated as 

ai =      n a (10) 
7*2 COS 02 

and the aspect ratio ajj of the adjusted discretization is calculated as 

ail = -w^h~ (11) 
U2 COS do 
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Substitution of equation (8) in equation (11) results in 

<*// =      n 0 (12) 
To COS Vo      - 

After moving a given vertex to the new position determined from equation (9), the 

validity and quality of the mesh is evaluated. If any of the dihedral angles affected by 

the vertex movement exceed the largest dihedral angle in the original mesh, a new vertex 

position is determined by bisecting the distance the vertex was moved and again checking 

the quality of the mesh. The vertex relocation procedure is repeated until a location is 

found for which the mesh quality does not degrade. The vertex is returned to its original 

location if after five distance bisections no location can be found for which the quality of 

the mesh does not degrade. This process permits the bundle surface mesh to be altered 

anisotropically if the movement of mesh vertices is constrained in some manner. Such 

constraints are caused by the proximity of geometric model entities, or by the topology 

and geometry of the mesh surrounding the fiber bundle surface. 

After the mesh vertices on the bundle surfaces have been moved to their new posi- 

tions, a constrained Laplacian smoothing 26, utilizing a specific element shape parameter 

27, is employed to improve the shapes of the altered elements. The surface and edge 

smoothing techniques usually employed in automatic mesh generation algorithms would 

pull the vertices classified on the bundle surfaces back to the surfaces of the geometric 

model, thereby restoring the original constituent mesh volume fractions. Therefore, in the 

current implementation only the mesh vertices classified on the interior of the geometric 

model regions are subjected to smoothing operations. 

16 



The following example demonstrates the ability of the algorithm to adjust CFE to a 

prescribed value. The geometric model for this example was created with the Shapes™ 

28 geometric modeler. The example consists of a unit cell containing a single cylindrical 

fiber bundle. The unit cell is of height h = 2, width w = 2, and length / = 5. The 

fiber bundle is of radius r = 0.5. The exact bundle volume fraction, Cj, is 0.19635. 

The initial mesh of the unit cell model is shown in Figure 12. The exterior of the 

mesh is shown in Figure 12(a), and the interior mesh faces on the surface of the fiber 

bundle are shown in Figure 12(b). The C[E of this mesh is 0.13421, which represents 

a -31.6% error. The mesh volume fraction correction algorithm was then used to adjust 

the mesh to the correct bundle volume fraction. The exterior faces of the adjusted mesh 

are shown in Figure 12(c), and the interior mesh faces classified on the surface of the 

bundle are shown in Figure 12(d). In this case the topology and geometry of the volume 

mesh outside of the bundle region prevented some mesh vertices from moving to the full 

extent of the relocation prescribed by the volume fraction adjustment algorithm without 

degrading the mesh quality. Three iterations of the mesh volume fraction correction 

procedure were required to raise the bundle volume fraction to within 1% of Cj. The 

value of the mesh volume fraction at the end of each of the three iterations is listed in 

Table 1. Section 6 contains examples of composite weave geometries where similar 

improvements were obtained. 

5. ITERATIVE SOLUTION OF UNIT CELL PROBLEMS 

The Generalized Aggregation Method (GAM) is utilized for solving the unit cell 

problems. These problems are characterized by a large system of linear equations with 
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Table 1. Mesh bundle volume fraction and percent error at each iteration 
of the volume fraction correction of the single fiber bundle example. 

Mesh Move Iteration Mesh Bundle 
Volume Fraction 
(desired = 0.19635) 

Mesh Bundle Volume 
Fraction Error (%) 

initial mesh 0.13421 -31.6 

1 0.18209 -7.3 

2 0.19369 -1.3 

3 0.19579 -0.3 

multiple right hand sides and multi-point constraints, and may be written as 

QTKQum = QTf (13) 

where K_ is the unit cell stiffness matrix, / is a forcing matrix given by 

/=- fRTDd8 (14) 
~~ J9 

ß is a strain-displacement matrix, 6 is the unit cell domain, D_ is the small-scale 

constitutive tensor, and Q_ is the multi-point constraint matrix relating the control degrees 

of freedom y^ to the set of all degrees of freedom u as 

IL = QlL, (15) 

Further details are contained in 15. 

5.1 SOLVER DESCRIPTION 

GAM is a multilevel solution scheme based on the multigrid philosophy, which 

captures the lower frequency response by solving an auxiliary coarse model, whereas 

the higher frequency response is resolved by smoothing on the source grid. As such 

GAM possesses an optimal rate of convergence by which the CPU time grows linearly 
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with the problem size. Unlike the multigrid method GAM does not require construction 

of auxiliary grids. Furthermore, because of the adaptive control of the structure of 

the preconditioner GAM is insensitive to problem conditioning in terms of number 

of iterations. In GAM the auxiliary coarse model is directly constructed from the 

source grid by decomposing the whole set of nodes into non-intersecting blocks to be 

referred to as aggregates, and then for each aggregate assigning a reduced number of 

degrees of freedom. By doing so one reduces the dimensionality of the source problem, 

while maintaining the compatibility of the solution. Theorems quantifying the optimal 

approximation properties aimed at ensuring that the coarse model will effectively capture 

the lower frequency response of the source system and at the same time will be sparse 

and rapidly computed have been described in 15. 

5.2 MULTIPLE RIGHT HAND SIDES 

A combination of two mechanisms is employed to provide a rapid solution for linear 

systems of equations (13) with multiple right hand sides: 

1. Construction of the preconditioner aimed at reducing the overall cost of the itera- 

tive process at the expense of increasing the computational cost of computing the 

preconditioner; 

2. Acceleration of the GAM scheme with the block conjugate gradient method. 

5.2.1 GAM PRECONDITIONER FOR PROBLEMS WITH 
MULTIPLE RIGHT HAND SIDES 

One of the key aspects of the GAM scheme is a selection of the coarse model cut- 

off frequency parameter 7, below which all the eigenvectors of the eigenvalue problem 
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on the aggregate are included within the prolongation operator. In order to make this 

parameter dimensionless, the eigenvalue problem on each aggregate a is formulated in 

the following manner: 

K_af = XaDaf (16) 

where Da is the diagonal of K_a. 

The value of the parameter 7 determines the effectiveness of coarse grid correction. 

In the limit as 7 —> maxAa, the auxiliary problem captures the response of the source 
a 

system for all frequencies and therefore the two-level procedure converges in a single 

iteration even without smoothing. On the negative side, for large values of 7, the 

eigenvalue analysis on each aggregate becomes prohibitively expensive and the auxiliary 

matrix becomes both large and dense. At the other extreme, in the limit as 7 —► 0 the 

prolongation operator contains the rigid body modes of all the aggregates only, and thus 

the auxiliary problem becomes inefficient for ill-posed problems. 

For problems with multiple right hand sides the value of 7 should be increased to 

reduce the number of iterations, and consequently to reduce the overall computational 

cost. 

5.2.2 BLOCK CONJUGATE GRADIENT ACCELERATOR 

The system of linear equations with s load cases given in (13) can be expressed in 

a block structure as 

KU = E (17) 
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where U = [ni,u2: ■ • ■ ,l*s]> £ =   Lvb ••■[*   and ^' L are the *** load vector and 

the corresponding solution, respectively. The matrix K_ G 3£nxn is the global stiffness 

matrix which is symmetric, positive definite and sparse. 

The forcing functions are orthonormalized using the Gram-Schmidt procedure to 

obtain £(F = KKm) and t0 ensure that the resulting set of forcing functions is linearly 

independent 
t-i 

(18) ;-# 

where 

7J = (Z°)   /? (19) 

and 8i is the set of parameters which normalize /.. The original problem KJJ_ — F_ can 

then be transformed into KJl = ~E where F_ = TH^ and H^ is an upper triangular 

matrix of the form: 

Km = 
*2 

0 

l\ 

6*-i    f',-i 
6s 

(20) 

The block conjugate gradient acceleration scheme described below utilizes the GAM 

cycle as a preconditioner. To clarify ideas consider the following energy functional 

±(U) = [$i(2£i) $2(1*2) ... $s(Us)] (21) 

where$,(u,) = \ufKui -uff.. The corresponding block residual matrix ^ G 3£nX5 at 

the ith step is #; = F_- KU^ and the corresponding solution U_i+1 G 9£nX3 is defined as 

Ui+i = Ui + Vi+iA (22) 
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where Vj 6 5ftnxs spans the subspace of search directions, and A{ £ -Rsxs is the matrix 

representing the step length determined by the minimization 

d*((JU + Vi+1Ai)     n 

dA{ 

which yields Vj+ii?,-+i = 0. The subspace V^+1 is subsequently constructed by 

(23) 

Zi+i = £ + Y^Bi (24) 

where the parameter matrix £?, € 3£sxs is determined from the block conjugacy condition 

Vj+\KVi = 0, and Zj is the predictor from a single GAM cycle. The complete algorithm 

is summarized below. 

Step 1: Initiation 

Eo = 0 Ro =£ 

£o = Ü      Z0 = 0 

Step 2: Do i=0, 7, . . . until all right hand sides converge 

& = GAM(Ri,K) 

\Ri-\Zi-\)Bi = Ri Z., 

Vi+i = & + ££ 

2G+i = KVl+1 
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(£+i2Ei+iU- = gz, 

m+i = TL + Yi+iAi 

Convergence is checked for each right hand side. If one of the right hand sides converges, 

it is removed from the iterative process. Once all the right hand sides have converged, 

the final solution is recovered as 

LL = EKm (25) 

5.3 MULTIPLE POINT CONSTRAINTS 

The GAM scheme can deal with multi-point constraints in a conventional way if all 

the elements containing at least one "subordinate" node form a separate aggregate. Each 

multi-point constraint can then be represented as follows: 

Us = I«c (26) 

where ^ are the subordinate" degrees of freedom, and T is a transformation matrix 

representing the multi-point constraint data: 

"rl 
u=   j   Ug = QjUs (27) 
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6. CALCULATION OF HOMOGENIZED STIFFNESS PARAMETERS 

The effect of C[E on the homogenized stiffness parameters of a composite material is 

easily seen in an analysis of a single bundle unit cell. This model consists of a cylindrical 

fiber of radius r = 0.5 embedded in a block of matrix of length / = 2, width w = 2, and 

height h = 2. The isotropic matrix material modulus and Poisson's ratio were chosen as 

6.89 msi and 0.33, which are representative of Titanium. The isotropic bundle material 

modulus, shear modulus, and Poisson's ratio were chosen as 37.9 msi, 15.7 msi, and 0.21 

which are representative of a silicon carbide fiber. 

A series of meshes of increasing levels of uniform refinement was generated, as 

shown in Figure 13. The coarsest mesh, shown in Figure 13(a), contains 93 vertices 

and 284 elements. The mesh shown in Figure 13(b) contains 576 vertices and 2,549 

elements. The mesh shown in Figure 13(c) contains 4,156 vertices and 21,951 elements. 

The finest mesh, shown in Figure 13(d), contains 20,615 vertices and 110,638 elements. 

Homogenization analyses were performed with each of the four meshes, and also with 

the volume fractions of the four meshes corrected to within ±0.5% of the correct volume 

fraction for the geometric model. 

The most relevant stiffness parameter for the single bundle model is the parameter 

corresponding to the axial stiffness of the bundle. For the model under consideration the 

fiber bundle axis is aligned with the z direction, making the G33 term of the homogenized 

material stiffness matrix G of greatest relevance. The values of G33 computed using the 

various discretizations were compared to G33 computed with the finest mesh adjusted to 

0.0% bundle volume fraction error. 
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Table 2. Mesh bundle volume fraction and homogenized material 
stiffness differences for the discretizations shown in Figure 13. 

Number of 
Vertices 

Mesh Bundle 
Volume 
Fraction 

Mesh Bundle 
Volume Fraction 
Error (%) 

G33 (xl07psi) G33 
Difference 
(%) 

93 0.14998 -23.61 1.4906 -8.79 

93 0.18409 -6.24 1.5976 -2.24 

93 0.19263 -1.89 1.6244 -0.6 

93 0.19623 -0.06 1.6357 0.09 

576 0.18440 -6.09 1.5972 -2.26 

576 0.19351 -1.45 1.6257 -0.52 

576 0.19630 -0.02 1.6345 0.02 

4,156 0.19334 -1.53 1.6248 -0.57 

4,156 0.19633 -0.01 1.6342 0.00 

20,615 0.19558 -0.39 1.6318 -0.15 

20,615 0.19635 0.00 1.6342 0.00 

The percent differences between the G33 values and the G33 value of the finest mesh 

are listed in Table 2. This data may be examined in two manners. The first entails 

viewing the homogenized axial stiffness parameter differences as a function of the Cb 

error. The CFE of each mesh was adjusted to match the initial CFE values of the finer 

discretizations and also to CV The change in the value of the axial stiffness parameter 

for a given mesh corrected to different CFE values shows the effect of improving the 

geometric approximation only. This data shows that all of the discretizations adjusted to 

within ±0.5% of Cf, produced nearly the same axial stiffness parameter. In particular, 

the coarse discretization and the fine discretization produced results which differed 

by only 0.09%. This result indicates that it is possible to use coarse discretizations 

and achieve accurate results if the geometric approximation error is controlled.   This 
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shortens the analysis cycle since it is much quicker to generate coarse discretizations and 

also much quicker to perform the homogenization analysis on the coarse discretization. 

The CPU time required for the mesh generation and homogenization solution of the 

coarse discretization was 444 times faster than the time required for the most refined 

discretization. 

Examining the homogenized axial stiffness differences for meshes corrected to within 

±0.5% of the same C[E shows a small change in this parameter with increasing mesh 

refinement. When all the discretizations were corrected to within ±0.5% of Üb, changing 

the number of mesh vertices by two orders of magnitude resulted in only a 0.09% change 

in the homogenized axial stiffness parameter estimate. In contrast, changing the volume 

fraction of the coarse discretization by less than 2% resulted in a 0.69% change in the 

homogenized axial stiffness parameter accuracy, indicating that the analysis of this model 

is affected more by the geometric approximation error than by the discretization error. 

The second example consists of a base two satin weave composite 29. The parameters 

used to construct the geometric model of this weave were taken from a series of 

micrographs of a representative sample of the composite. The design target bundle 

fraction was 0.55. The matrix is an amorphous glass composed of silicon, oxygen, 

and carbon. The matrix was modeled as a transversely isotropic material with degraded 

properties to represent the through-thickness matrix cracks in the as-processed composite. 

The axial Young's and shear moduli of the matrix are 11.5 msi and 4.0 msi. The transverse 

Young's and shear moduli are 8.1 msi and 3.3 msi. The Poisson's ratio is 0.26. These 

values will be compared with specimen test data in future work 30.   The fibers are a 
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ceramic material. The axial Young's and shear moduli of the fiber bundles are 16.6 msi 

and 6.55 msi. The transverse Young's and shear moduli of the fiber bundles are 16.2 msi 

and 6.52 msi. The Poisson's ratio of the bundles is 0.24. 

Meshes of varying amounts of uniform refinement were generated within the con- 

structed geometric model. The coarsest mesh, (Figure 14) contains 2,380 vertices and 

11,050 elements, the mesh created with one level of refinement (Figure 15) contains 

10,475 vertices and 52,509 elements, and the finest mesh (Figure 16) contains 62,436 

vertices and 338,253 elements. Meshes of each of the three levels of uniform refinement 

were also generated with the mesh volume fraction corrected to within ±0.5% of the 

target volume fraction of 0.55. The mesh faces classified on the interior fiber bundle 

surfaces of each of the volume fraction corrected meshes are shown in Figure 17. The 

number of mesh vertices and mesh volume fraction data of all of the meshes are listed 

in Table 3. 

Homogenization analyses were performed and the in-plane stiffness parameters were 

examined. For the modeled composite weave the in-plane fiber bundle directions 

correspond to the x and z axes, with the y axis normal to the plane of the composite. 

The in-plane material parameters are therefore the values of Gn, G33, G55, and G13. 

The homogenized stiffness parameters were compared to the values calculated using 

the finest discretization corrected to 0.17% CFE error. The in-plane normal stiffness 

parameter data determined from these analyses are shown in Table 3, and the in-plane 

shear and Poisson effect stiffness parameter data are shown in Table 4. The values for 

the coarsest and finest discretizations differed by at most 1.64% when adjusted to within 
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Table 3. Mesh sizes, mesh bundle volume fractions, and in-plane normal homogenized stiffness 
parameter values of the discretizations of the base two satin weave geometric model. 

Number 
of 
Vertices 

Mesh 
Bundle 
Volume 
Fraction 

Mesh Bundle 
Volume 
Fraction Error 

(%) 

(xlO7) 
Gn 
Difference 
(%) 

G33 
(xlO7) 

G33 
Difference 
(%) 

2,380 0.3905 -29.00 1.3099 -11.5 1.3085 -11.6 

2,380 0.4460 -18.91 1.3651 -6.54 1.3636 -6.60 

2,380 0.4593 -16.50 1.3783 -5.64 1.3769 -5.69 

2,380 0.5526 0.47 1.4715 0.74 1.4688 0.60 

10,475 0.4441 -19.25 1.3582 -7.01 1.3570 -7.05 

10,475 0.4594 -16.5 1.3734 -5.97 1.3723 -6.00 

10,475 0.5515 0.28 1.4649 0.29 1.4635 0.24 

62,436 0.458 -16.7 1.3690 -6.28 1.3677 -6.31 

62,436 0.5509 0.17 1.4607 0.0 1.4600 0.0 

Table 4. Mesh sizes, mesh bundle volume fraction errors, and in-plane 
shear and Poisson effect homogenized stiffness parameter values of 

the discretizations of the base two satin weave geometric model. 

Number 

of 

Vertices 

Mesh Bundle 

Volume 

Fraction Error 

(%) 

G55 

(xlO6) 

G55 Difference 

(%) 

G13 

(xlO6) 

G13 Difference 

(%) 

2,380 -29.00 4.5536 -8.05 3.7119 -12.94 

2,380 -18.91 4.7007 -5.07 3.9193 -8.08 

2,380 -16.50 4.7387 -4.31 3.9694 -6.91 

2,380 0.47 5.0334 1.64 4.3233 1.39 

10,475 -19.25 4.6717 -5.66 3.8825 -8.94 

10,475 -16.5 4.7115 -4.86 3.9399 -7.60 

10,475 0.28 4.9753 0.47 4.2853 0.50 

62,436 -16.7 4.6904 -5.28 3.9182 -8.11 

62,436 0.17 4.9520 0.00 4.2639 0.00 
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±0.5% of the correct bundle volume fraction. 

There is also little change in the stiffness parameters with large changes in the 

number of degrees of freedom in the model, indicating that the homogenization analysis 

is affected more by the amount of geometric approximation error than by the amount 

of the discretization error. 

The results of this example again show that it is possible to achieve accurate 

homogenization results with coarse finite element discretizations if the C[E values are 

adjusted to the correct values. The total CPU mesh generation and solving time required 

for the coarsest discretization was 44 times faster than the time required for the finest 

discretization. 

7. DETERMINATION OF LOCAL STRESSES 

A thorough analysis of a given composite weave must also include the calculation of 

the local stresses in the weave which result from loadings on the larger-scale homogenized 

material. These local values aid in the design of composite microstructure by indicating 

areas of high stress which may lead to failure of the composite. The meshes generated by 

the procedures described in this paper conform to the model geometry, and are therefore 

capable of producing reliable local stress data. 

The local unit cell stresses corresponding to the strain field e existing at a given 

point in the larger-scale model are given by 

£i = 4! (28) 
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where oj are the stresses at the ith integration point in the unit cell model, and A% is the 

stress concentration matrix relating the strain field at a given point in the macroscopic 

model to the stresses at the ith integration point in the unit cell model 31. 

The following example of local stress calculation uses the base two satin weave 

composite unit cell of section 6. The homogenized material stiffness parameters were 

used to calculate i corresponding to a 100 ksi uniaxial stress in the x-direction. This 

direction corresponds to the warp direction of the unit cell. 

The results of applying equation (28) to every integration point in the coarse mesh 

adjusted to 0.47% C[E error (shown in Figure 17(a)) are shown in Figure 18. This figure 

represents an exploded view of the unit cell, with the groups of elements comprising the 

matrix (at the left), warp bundles (at the top), and weft bundles (at the bottom) separated 

for clarity. Linear elements were used for the homogenization analysis of this example, 

and the elements in this figure are colored according to the values of the maximum 

principal stress calculated at their single integration points. The correspondence between 

the colors and the stress values is shown by the color bar at the top of Figure 18. 

The stresses in the warp bundles show concentration "bands" near the crossovers 

where the warp and weft bundles are woven together. This is due to the load carrying 

capacity of bundles being reduced when their axes do not align with the loading direction, 

and the load therefore being transferred to the neighboring bundles which are aligned in 

the loading direction. The matrix material shows bands of stress values due to additional 

reinforcement by the transverse stiffness of the weft bundles. The peak stress in the 

warp bundles is 148.0 ksi. 
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The medium mesh (Figure 17(b)) adjusted to 0.28% C[E error was also analyzed 

to examine the effect on the peak stress. The local stresses calculated with the medium 

mesh (Figure 19) exhibit the same characteristics as the coarse mesh. The peak stress 

in the warp bundles is 160 ksi. 

8. CONCLUSIONS 

This paper presented a system for the efficient three-dimensional homogenization 

analyses of complex composite materials. These capabilities include a matched meshing 

algorithm which simplifies the specification of periodic boundary conditions, and an 

iterative solver algorithm capable of efficiently handling the multiple right hand sides 

required for homogenization analyses. An algorithm was also developed to correct the 

mesh volume fraction, and the effect of the mesh volume fraction error on the values 

of homogenized material stiffness parameters was shown to be greater than that of the 

discretization error. Acceptable homogenization results may therefore be obtained with 

coarse discretizations if the mesh volume fraction is controlled. The reliable calculation 

of local stresses permitted by the mesh conforming to the model geometry was also 

demonstrated. 

9. ACKNOWLEDGMENTS 

The support of ARPA/ONR under grant number N00014-92J-1779, and of the Allison 

Advanced Development Company under the LC3 project is gratefully acknowledged. 

10. REFERENCES 

31 



1. R. Wentorf, M. S. Shephard, G. J. Dvorak, J. Fish, M. W. Beall, R. Collar, and K.-L. 

Shek, "Software framework for mechanism-based design of composite structures," in 

Proceedings of the 21st Annual Cocoa Beach Conference on Composite Advanced 

Ceramics, Materials and Structures, 1997. to appear. 

2. J. Shah, "Conceptual development of form features and feature modellers," Research 

in Engineering Design, pp. 93-108, 1991. 

3. S. J. Hollister and N. Kikuchi, "Homogenization theory and digital imaging: A basis 

for studying the mechanics and design principles of bone tissue," Biotechnology and 

Bioengineering, vol. 43, pp. 586-596, 1994. 

4. T. Mori and K. Tanaka, "Average stress in matrix and average elastic energy of 

materials with misfitting inclusions," Acta Metallurgica, vol. 21, pp. 571-574, 1973. 

5. R. Hill, "A self-consistent mechanics of composite materials," Journal of the 

Mechanics and Physics of Solids, vol. 13, p. 213, 1965. 

6. A. N. Norris, "A differential scheme for the effective moduli of composites," 

Mechanics of Materials, vol. 4, 1985. 

7. E. Hashin and W. B. Rosen, "The elastic moduli of fiber-reinforced materials," Journal 

of Applied Mechanics, Transactions of the ASME, pp. 223-232, 1964. 

8. G. J. Dvorak and Y. Benveniste, "On transformation strains and uniform fields in 

multiphase elastic media," Proc. R. Soc. Lond., vol. 437, p. 291, 1992. 

9. J. Fish and V. Belsky, "Multi-grid method for periodic heterogeneous media .2. 

32 



multiscale modeling and quality control in multidimensional case," Computer Methods 

in Applied Mechanics and Engineering, vol. 126, pp. 17-38, 1995. 

10. M. S. Shephard and M. K. Georges, "Reliability of automatic 3-D mesh generation," 

Comp. Meth. Appl. Mech. Engng., vol. 101, pp. 443-462, 1992. 

11. W. J. Schroeder, Geometric Triangulations: with Application to Fully Automatic 

3D Mesh Generation. PhD thesis, Rensselaer Polytechnic Institute, Scientific 

Computation Research Center, RPI, Troy, NY 12180-3590, May 1991. SCOREC 

Report #9-1991. 

12. A. Dasgupta, R. K. Agarwal, and S. M. Bhandarkar, "Three-dimensional modeling 

of woven-fabric composites for effective thermo-mechanical and thermal properties," 

Composites Science and Technology, vol. 56, pp. 209-223, 1996. 

13. J. Whitcomb, K. Srirengan, and C. Chapman, "Evaluation of homogenization for 

global/local stress analysis of textile composites," Composite Structures, vol. 31, 

pp. 137-149, 1995. 

14. J. Fish, P. Nayak, and M. H. Holmes. "Microscale reduction error indicators and 

estimators for a periodic heterogeneous medium," Computational Mechanics: The 

International Journal, vol. 14, pp. 1-16, 1994. 

15. J. Fish and V. Belsky, "Generalized aggregation multilevel solver," Submitted to: 

Int. J. Numer. Meth. Engng., 1997. 

16. J. Fish and A. Suvorov, "Automated adaptive multilevel solver," Submitted to: Comp. 

Meth. Appl. Mech. Engng., 1997. 

33 



17. B. Hassani, "A direct method to derive the boundary conditions of the homoge- 

nization equation for symmetric cells," Communications in Numerical Methods in 

Engineering, vol. 12, pp. 185-196, 1996. 

18. M. Mäntylä, Introduction to Solid Modeling. Rockville, Maryland: Computer Science 

Press, 1988. 

19. M. W. Beall and M. S. Shephard, "Mesh data structures for advanced finite 

element computations," Tech. Rep. 19-1995, Scientific Computation Research Center, 

Rensselaer Polytechnic Institute, Troy, NY 12180-3590, 1995. submitted to Int. J. 

Num. Meth. Engng. 

20. M. S. Shephard, "The specification of physical attribute information for engineering 

analysis," Engineering with Computers, vol. 4, pp. 145-155, 1988. 

21. H. L. de Cougny and M. S. Shephard, "Surface meshing using vertex insertion," in 

Proceedings of the 5th International Meshing Roundtable, 1996. 

22. H. L. de Cougny, M. S. Shephard, and C. Ozturan, "Parallel three-dimensional mesh 

generation on distributed memory MIMD computers," Engineering with Computers, 

vol. 12, no. 2, pp. 94-106, 1996. 

23. M. S. Shephard, J. E. Flaherty, H. L. de Cougny, C. Ozturan, C. L. Bottasso, and 

M. W. Beall, "Parallel automated adaptive procedures for unstructured meshes," in 

Parallel Computing in CFD, vol. R-807, pp. 6.1-6.49, AGARD, Neuilly-Sur-Seine, 

France, 1995. 

24. M. Krizek, "On the maximal angle condition for linear tetrahedral elements," SIAM 

J. Numer. Anal., vol. 29, pp. 513-520, 1992. 

34 



25. E. W. Swokowski, Calculus with Analytic Geometry. Prindle, Weber and Schmidt, 

1979. 

26. D. A. Field, "Laplacian smoothing and Delaunay triangulations," Comm. Appl. Num. 

Meth., vol. 4, pp. 709-712, 1987. 

27. H. L. de Cougny, M. S. Shephard, and M. K. Georges, "Explicit node point smoothing 

within the Finite Octree mesh generator," Tech. Rep. 10-1990, Scientific Computation 

Research Center, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, 1990. 

28. XOX Corporation, Two Appletree Square, Suite 334, Minneapolis, Minnesota 55425, 

SHAPES Reference Manual, Release 2.0.8, July 20, 1993. 

29. N. Pan, "Analysis of woven fabric strengths: Prediction of fabric strength under 

uniaxial and biaxial extensions," Composites Science and Technology, vol. 56, 

pp. 311-327, 1996. 

30. R. Wentorf, R. Collar, J. Fish, and M. S.Shephard, "Influences of some constituent 

features on the homogenized mechanical properties of composite materials," In 

Preparation, 1997. Scientific Computation Research Center, Rensselaer Polytechnic 

Institute, Troy, NY. 

31. J. Fish and A. Wagiman, "Multiscale finite element method for a locally nonperiodic 

heterogeneous medium," Computational Mechanics, vol. 12, pp. 164-180, 1993. 

35 



Develop 
Representative 

Model 
■ Geometric Features 
' Constituent Properties 
• Boundary Conditions 

Analytic or Numerical 
Solution Technique 

LH 
Extract 
Average 

W Extract Stress 
Concentration 

Figure 1. Schematic of small-scale composite thermo-mechanical modeling process. 
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Figure 2. Typical composite weave with fiber bundles, matrix, and void geometries. 
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Figure 3. Details present in the automated finite element 
based homogenization analysis of composite unit cells. 
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Figure 4. Projection of node from back face of unit a 
cell to an element face on the opposing unit cell face. 

39 



Subordinate Edges 

Control Face 

Control Edge-^   Subordinate Face- 

(a) 

Subordinate \ 
Edges 

Control 
Subordinate Face ■ 

(b) 

Figure 5. Determining control-subordinate relationships for the weave 
geometric model. (a)Typical relationships on the unit cell template. 

(b)Corresponding relationships on the weave geometric model. 
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Subordinate weave edges 

Control weave edge 
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Control mesh edges 
(b) (c) 

Figure 6. Edge meshing procedure. (a)Control edge is meshed. 
(b)Mesh vertices from control edge are copied to subordinate weave 

edge. (c)New mesh edge is created on subordinate weave edge. 
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Figure 7. Weave Face meshing, (a) Boundary mesh is copied into the 
parametric space, (b) Delaunay insertion method is used in the 

parametric space, and face mesh is copied back into the real space. 
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Figure 8. Micrograph of a planar weave composite. 
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Figure 9. Mesh volume error example. (a)Circular 
geometric model of radius r. (b)Inscribed mesh. 
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Figure 10. Solid mesh of base one planar weave model. Only mesh faces on interior bundle 
surfaces are shown. (a)Coarse mesh of 21,850 elements. (b)Fine mesh of 154,020 elements. 
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Figure 11. Cross section of an ellipsoidal fiber bundle. (a)Inscribed 
discretization, and distance to mesh vertex. (b)Distance to relocated vertex. 
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(a) 
(b) 

(c) (d) 

Figure 12. Single fiber bundle example meshes. (a)Exterior mesh faces of initial mesh 
(31.6% bundle volume fraction error). (b)Initial mesh faces classified on interior fiber 

bundle surface. (c)Exterior mesh faces of adjusted mesh (-0.3% bundle volume 
fraction error). (d)Adjusted mesh faces classified on interior fiber bundle surface. 
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Figure 13. Finite element meshes of the single fiber bundle model. (a)93 
vertices and 284 elements. (b)576 vertices and 2,549 elements. (c)4,156 
vertices and 21,951 elements. (d)20,615 vertices and 110,638 elements. 
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Figure 14. Coarse mesh of base two satin weave model. 
(a)External mesh faces. (b)Fiber bundle surface mesh faces. 
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Figure 15. Medium mesh of base two satin weave model. 
(a)External mesh faces. (b)Fiber bundle surface mesh faces. 
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Figure 16. Fine mesh of base two satin weave model. 
(a)External mesh faces. (b)Fiber bundle surface mesh faces. 
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(a) 

(b) (c) 

Figure 17. Fiber bundle surface mesh faces of meshes corrected to 
0.55 volume fraction. (a)Coarse mesh. (b)Medium mesh. (c)Fine mesh. 
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Max. principal stress (ksi) 

Figure 18. Maximum principal stress values in a base two satin weave composite 
resulting from a uniaxial x-direction stress of 100 ksi applied to the homogenized 

material (Coarse mesh). The peak stress in the warp bundles is 148.0 ksi 
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Figure 19. Maximum principal stress values in a base two satin weave composite 
resulting from a uniaxial x-direction stress of 100 ksi applied to the homogenized 

material (Medium mesh). The peak stress in the warp bundles is 160 ksi. 
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