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Abstract 

A Wavelet Fractal Method For Content Based 
Image and Video Compression 

Robert J. Bonneau 

Traditional methods of image and video coding rely on linear transformations that focus 

primarily on high compression. With the increasing demand for digital imagery and video there is 

now a need for functionality of the compressed information. This dissertation develops a new 

framework for compression that uses a fractal wavelet method to break the imagery into shape, 

texture, color, and motion. With this new organization, image information is readily accessible to 

the user in compressed form. Based on this compression method, we then develop an object-ori- 

ented video format. 

Image analysts tend to break imagery into the categories of shape, texture, color, and 

motion.  Thus, we begin our approach to image compression by finding mathematical methods 

that preserve shape and texture in an efficient manner. This new non-traditional method begins by 

using fractals. A fractal is an object which when observed at its smallest level of detail resembles 

the overall object itself. Some natural examples include ferns, snowflakes, clouds, and moun- 

tains. Recently, engineers have applied fixed point theory to describe a method of fractal image 

compression . Unfortunately fixed point theory only provides a partial description of fractal com- 

pression, since it says little about the spatial frequency structure behind the process. 

For insight into the frequency structure of fractal compression, engineers and scientists 

have recently turned to wavelets, since wavelet methods mirror the fractal compression process. 

Understanding the frequency structure enables us to see how such a shape and texture work 



together in the fractal compression process. With this new insight into fractal compression, we 

may design a much more efficient compression system. Using this new compression process we 

also include color and motion. The system developed can then be used for compression of both 

imagry and video as well as analysis and comparison of the compressed information 
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2 

1.1 Motivation 

The speed of information exchange has increased dramatically over the last several 

decades. This speed has brought with it increased need for better compression of everything from 

photographs to movies.   In order to meet this demand we look to new methods to decompose 

imagery into an extremely compact form that can be analyzed for its content. Recently interna- 

tional committees have convened to promote the new video and image compression standards. 

These committees have outlined features in compression that are desirable for new compression 

methods. We will first review the existing standards and then look at the proposed new directions. 

The existing standard has been based on the JPEG image compression format which uses 

the discrete cosine transform as a fundamental technique of compression. The DCT is a linear 

transform with excellent compression properties. This compression standard has focused on high 

compression with accurate reproduction as its main criteria. The MPEG1 and 2 video standards 

have continued this tradition using block based DCT methods as their foundation with provisions 

for high resolution, spatial, temporal, and SNR scalablity and a host of other features designed for 

improvement of speed in encoding and decoding of video. 

Recently the MPEG 4 requirements have changed from traditional techniques to less tradi- 

tional non-DCT based methods. With the growing emphasis on wireless communications, new 

avenues for compression have been explored such as wavelet, vector quantization, and fractal 

techniques. These new techniques have promised higher compression ratios with less image dis- 

tortion. These new methods have also focused on the trend for interactive computer applications 

where objects in scenes are defined much as a human would describe them. An example might be 

a car separated from a building separated from a human as individual objects within a scene. 
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Continuing the trend of object based imagery and video MPEG-7's goals are to estab- 

lish a new compression format where semantic information such as color, texture, and shape can 

be easily extracted from image and video in the compressed domain. Such information should be 

used for identification of objects and their relative position and direction if they are in motion. 

1.2 Some Basic Elements of Imagery and Video 

Imagery and video as the human visual system interprets them can be broken into 4 

basic elements, shape, color, texture, and motion. These elements must be an integral part 

of the compression process in an object-based interpretive system. Shape has one of the 

most difficult techniques of pattern recognition because finding an invariant measure of 

shape is a challenging process. A basic tasks of shape analysis is to find a reliable edge 

outline of an object. New techniques in wavelet multiresolution analysis are simplifying 

this process and are making content based shape identification more practical. 

Texture is also becoming an increasingly used technique of image segmentation. Texture 

is in increasingly useful when there is no color information and an absence of well defined shapes 

in an image. There are many ways that have been used to describe texture from Fourier desciptors 

to eigenvalue principle component analysis but texture description is very much an open topic. 

Recently, however, fractals have allowed engineers to develop some fundamental texture descrip- 

tors. Combined with new wavelet techniques fractals are an increasingly popular means of tex- 

ture discrimination. 

Another often used method of image analysis is image color image segmentation. Most 

color imagery can be segmented into 3 primary colors R, G, and B or some related color set. Thus 

by seeing the relative colors present in a given region of the image a user can identify objects that 
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have the same percentage of these three colors. 

Finally, motion is a final issue when for moving image segmentation and analysis. 

Many methods have been developed recently to interpret motion within successive frames 

of video. In order to put this motion analysis into the context of object based video com- 

pression, we must associate motion vectors with individual objects. We therefore explore 

a new way of performing such an operation with a wavelet-based optical flow technique . 

1.3 Encoder/Decoder Design 

Speed for both image encoders and decoders is essential. Even with improvements in 

computer hardware speed the demands placed on image coders and decoders are increasing pro- 

portionally.   The demands for real time compression and decompression are placing stress on 

coder design; thus whatever algorithm is used to code data must be computationally simple and 

easy to implement on existing real time hardware. For decompression, any user of a given decoder 

should be able to decompress a video sequence on a normal personal computer with no special 

decompression hardware. Obviously, the compression process should also not significantly distort 

the original image or video sequence. 

Scalability 52 refers to an image format's ability to adapt to different bandwidth and speed 

capabilities of different video systems. For instance, some video users may be connected directly 

to the internet through high bandwidth fiber connections and do not need to worry about band- 

width, but are more concerned with image quality. Some users however simply want to connect to 

a video player or conferencing over their phone line and are willing to sacrifice image quality for 

low bit rate. Spatial scalability refers to the ability to select the spatial resolution of an image in 
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accordance with bandwidth and speed requirements. Progressive JPEG, many wavelet techniques, 

and fractal encoding share this ability to present the user with a low resolution copy of an image 

and then progressively add detail to this representation when the higher resolution information 

becomes available over the communication channel. 

Temporal scalability is another method of controlling data flow. Temporal scalability 

allows the user of a video compression system to adaptively select the number of frames transmit- 

ted within a given time interval to match speed and bandwidth requirements. For instance, normal 

NTSC video runs at 30 frames per second or 60 interlace fields per second. Below 30 frames per 

second the human eye can detect visible gaps in motion within a video sequence but for some 

high speed film applications higher than 30 frames per second is necessary. Thus depending on 

the customers needs, the rate of the video can be scaled accordingly. 

With the advent of MPEG-4 a new scalability has emerged based on video objects . Video 

objects are used in conjunction with the concept of motion compensated video where objects in a 

scene are transmitted in the first frame and only their motion is transmitted in sucessive frames 

until the object significantly changes shape or disappears from the scene. As pattern recognition 

principles improve this technique will continue to advance. 

1.4 Overview 

To accommodate these analysis and compression needs we turn to the concept of the frac- 

tal. The fractal has emerged to describe many different natural phenomenon. In the work on turbu- 

lence theory Mandelbrot developed the concept of a fractal to describe an object which is self 

similar at any spatial scale at a which you observe it.The essential characteristic of fractals is that 

the smallest structure of the fractal resembles the overall 



Figure 1-1 Fractal Fern 

structure. This evidenced in the fractal fern of Figure 1-1. This concept of the fractal and fractal 

image compression has been mathematically described through linear approximation theory. 

Barnsely11, Jaquin37, Bogdan2 and others have used the concept of metric space, the iterated 

function system, and attractors to describe the process of fractal or self vector quantization com- 

pression. Unfortunately linear approximation theory does not sufficiently reveal the frequency 

structure of fractals or fractal compression. 
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Recently, others such as Davis   , Rinaldo and Calvagano    have shown that there is a 

direct analog of fractal compression frequency segmentation in wavelet compression. This real- 

ization is extremely valuable since wavelet signal processing and compression techniques are a 

well understood signal processing method. In parallel other researchers such as Arneodo and 

Bacry1, as well as Mallat45 have demonstrated in a 1-dimensional sense how wavelets can be 

used to reveal the underlying structure of the fractal and guide a linear approximation approach 

for synthesis of a wavelet decomposed signal. With this new insight into the nature of fractals and 

fractal compression we can develop a new method of fractal image compression combining both 

fractal and wavelet methods. 

This new fractal-wavelet method has the ability to break an image apart into the basic ele- 

ments of shape and texture. A basic way to define shape of an object is in terms of its geometrical 

outline. Recently Mallat44 has developed a wavelet technique which parallels an earlier method 

developed by Canny     to reveal consistent outlines or shape of objects in two dimensions. On 

the other hand, fractal dimension has been used to describe the two dimensional textural regions 

in imagery   . Recently Flandrin   the wavelet model to reveal an objects fractal dimension by the 

decay of energy across frequency bands. 

What we find through the combination of the linear approximation and wavelet definitions 

of shape and texture, is that there is a direct connection between two. Logically this connection 

makes sense in light of the concept of a fractal since, in a fractal, the smallest part resembles the 

overall shape of an object. The fractal process thus defines a mapping between the overall object 

and its smallest components. Thus the shape of the object at a smaller scale is the object's texture. 

With this fact in mind we can develop a new concept for image compression that combines shape 

and texture models not only for analysis but as an essential part of the compression process. Thus 
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compressed information can be analyzed without decompressing because it is in a form geared 

toward analysis. We will then extend this principle to color imagery and video. 
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2.3.1 Jacquin's Algorithm 20 

2.3.2 Fischer's Algorithm 23 

2.1 Metric Spaces 

To develop the basic technique of fractal compression we must find a mechanism by 

which an image can be decomposed and reassembled or mathematical terms analyzed and synthe- 

sized. Do show how this mechanism works we must first provide an overview of the concept of a 

space. The concept of space defines a set of rules for mapping a region of an image onto itself in 

a reproducible way. This mapping defines the essential structure of the fractal or the fractally 

compressed object. 

A space is a set between whose elements certain relations are prescribed by means of axi- 

oms; the set is said to have been given the structure of the relevant space.   At the very specialized 

space level we have Hilbert space (H-space) which is a special case of Banach space (B-space), 

which is a linear space and complete metric space, which is an important subset of more general 

class of topological spaces. Figure 2-1 shows the relationships between spaces. A H-space is an 

immediate generalization of RN while a topological space is at a higher level the hierarchy and 

can be seen as a generalization of the concept of an open set in RN. A (linear) vector space V is a 

nonempty set of elements called vectors for which we define two algebraic operations: addition of 

vectors and multiplication of a vector by a scalar (number). A finite set of elements 

{/. € V: i = 1, ,n} is independent if a set of scalars {X-} such that XJ/J + ^nfn 
= 0 

cannot be found. A finite set   S c V is a basis in V if it is linearly independent and any vector V 

is a linear combination of elements in S. 
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Definition 2.0 A set X is called a metric space if for each pair of elements f, g e X there is 

associated a non-negative real number p(f,g), the distance between fand g subject to the follow- 

ing conditions: 

1. P(/,*)*0; p(/,s) = 0  iff f = g 

2. P(f,g) = P(g,f) 

3. p(f, g) < p(f, h) + p(h, g)   for any h e X (the triangle inequality)y 

2.1.1 Banach Space 

We add analytic properties to a vector 4 space V when we define a norm (generalized 

absolute value). A norm||-|| :V -> 5K   associates with every element in V a nonnegative real num- 

ber. A normed space (a vector space having a fixed norm) is metrizable if we set: 

P(f,8) = \\f-g\\ (2.1.1) 

for all (/, g e V)y. We note that only the distance functions for which p(f,g) = p(f-g,0) will intro- 

duce a norm. Very important in applications are the complete normed spaces which are called 

Banach spaces (B-Space). In a B-space the notions of completeness and convergence take the 
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form of convergence in norm. A sequence {/„} in B-space converges iff. there exists an element 

/ e V such that 

nlimJ/„-/|| . 0 (2.L2) 

2.1.2 Hilbert Space 

We can add geometric properties such as orthogonality 4 between two elements in linear space 

through a scalar product (inner product). 

Definition 2.1 A scalar product (inner product) (.1.) on a linear space V over a filed of scalars 

K is a function (f,g): V x V -» K such that the following conditions are satisfied for all 

(/, g, h e V)  and all a, ß e K 

1. . (/,<Xflr + ßÄ) = <X(/|S0 = ß(/|Ä 

2. (/ISO = (01/) 

3. (/|/)>0#/*C 

A pre-Hilbert space is a vector space V with scalar product. This space becomes a normed space if 

we define a norm on V through. 
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d=f (/I/) 

If this space is a B-space then we call V a Hubert space (H-space). 

Topological 
Space 

Metric Space 

Complete 
Metric Space 

Banach Space             Vector Space 
i 1       i . i 

Hubert Space RN 

Figure 2-1 Diagram of Spaces 

2.2 Fixed points 

Fixed points are now the beginnings of a method by which we can transform a space into a 

desired function or the basic principle in the mechanism of constructing a fractal. This approach 

begins with the method of successive approximations. We want to apply the sucessive approxima- 

tion method in the form x      ,  = Tx      ,   First we introduce contractive operators on a metric 

space and then we present the main result 

Definition 2.3 An operator !T:fi c Q —» Q on a metric space (X,p) is called s contractive iff for 
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0 < s < 1 p(Tx, Ty) < sp(x, y) for allx, y e Q.. Ifs = 1, T is called nonexpansive; if the above 

equation holds for 0<s<°°,Tis called Lipschitz continuous. If p{Tx, Ty) < p(x, y) for all 

x, y e Q with x^y then Tis called contractive. 

Theorem 2.0 (Banach 1922) Given an s-contractive operator T:QgzQ->Q, where Q is closed 

and non-empty in the metric space (X,p), the following are true: 

1. Existence and uniqueness: T has exactly one fixed-point on Q or equivalently or equiv- 

alent^ equation 4 has a unique solution. 

2. Convergence of iteration: the sequence {xn} of sucessive approximations convergence 

to the solution x for any choice of the initial approximation x0. 

3. Error estimates: for all n = 0,1,2,... we have the a priori error estimate 

n 

^V^-rfr^vV (2-2,1) 

and the a posteriori error estimate 

n 

P(xn+l'x)*(l^)P(Xo'aCl) {222) 

4. Rate of convergence: for all n = 0,1,2,... we have 

p(xn+vx)<sp(xn,x) (2.2.3) 
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To apply the fixed point principle and the contraction mapping theorem (2.0), we need a 

slightly different setting. Let X be a complete metric space and H(X) be the set of nonempty com- 

pact subsets of X. The distance between a point x and a set A c X is 

P(JC,A) = in/{p(*,a): a e A} (2.2.4) 
a 

The Hausdorf distance is defined for A,B 6 H(X) by 

p(A,B) = sup{ p(a,B), p(b,A): a 6 A, b e B}   n can be shown that (H(X), ph) is a complete 

metric space and we can use Banach's fixed point fixed point theorem (2.0). Let's define W = 

{wn, ,wN} a finite collection of contraction mappings in X and let W(K) = u w.(K), K e X 

It follows that W is a contraction map on H(X) and we can use the contraction mapping principle. 

This result can be reformulated on the metric space of X. 

Theorem 2.0(Hutchinson). Let (X,p) be a complete metric space and W ={wi, ,wN} be a 

finite set of contraction maps on X. Then there exists a unique closed bounded set K such 

N 
thatK = u      w .(K). Furthermore, K is compact and is the closure of the set of fixed points 

i=l   ' 

k. of the finite compositions w. ° °w.   . Starting with an arbitrary set A c X the 
'l' 'V 1 lp 

iterative methodW (A) -» K converges in the Hausdorff metric. 

2.2.1 Iterated Function Systems 

Iterated function systems is the discrete or finite mathematical mechanism for the4'11 the 
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synthesis of a fractal. There two types of IFS, global and local. We will first discuss the more gen- 

eral global IFS and then move on to local IFS. 

The collection W = {wl5 ,wN} is know as an iterated function system (IFS). In binary 

2 
and some new forms of greyscale image coding we take X = A c 9?   a rectangle and let K = I be 

the image pattern. Usually the attractor K has fractal properties like detail at every scale. It turns 

out that images which look very complicated can be represented with a very small number of 

transformations. 

One of the most important questions is if we can build a fractal code that approximates 

well enough a given image or signal. One approach is by taking a fractal code T by construction, 

starting with the assumption the original image/is a fixed-point   / = T(f) = ^7'..(/) 

Because we limit the possible maps T and we do not know the fixed point T beforehand, we are 

looking for some map such that   p (/, 7J) < e   .A bound to the distance of the fixed-point to the 

original can be estimated if T is the contraction. As a consequence of the contraction mapping 

principle 2.0 we have the collage theorem that can be reformulated in the metric space (/, p). 

Theorem 2.1 In the metric space (/, p) of images with the same support let the fractal code 

T e rcß(/,/)bea contraction with sT < 1. Then we have the following upper bound of the dis- 

tance between the fixed-point /* = T(/*) and the original image  fe I . 

(/,/*) <-i-p(/,r(/)) (2.2.5) 
1   ~~ S rp 
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2.2.1.1 The Global IFS 

Recall that an  'iterated function system (IFS) is a collection of transformations 

{wi, ,wn} from a metric space (X,p) into itself. If W(K) = {J w((K), K e X is a contraction 
i 

on the metric space (X,p), then iterating W starting with any element in the space converges to the 

unique limit I. Such an IFS is known as a global IFS since it operates on the entire metric space. 

An IFS can encode black and white images when I is a subset of R2. 

A random iterated function system, also called an (EFSp) is an IFS together with a 

probability vector {p1( ,pn}. A contractive IFSp determined by {X,w;,pn}nj will converge to a 

unique set I e X which is the support of the associated invariant measure. Invariant measures 

generated by dynamical systems are studied in ergodic theory and will be discussed in Chapter 4 

in detail. A gray scale image can be modeled as the natural measure of an IFSp and can be gener- 

ated using the chaos game. Consider the attractor I c A, where A is a bounded subset of R2 usu- 

ally a rectangle. Then I is an element ofH(A) together with the Hausdorf distance p(.,.) is a 

complete metric space under certain conditions. To generate the attractor I we start with any point 

z0 e I then all the points z, will be the attractor, else after a number of iterations, z, will be the 

attractor. In practical implementations, if we do not know the attractor, we can discard the first 

iteration. The gray image appears as the natural measure \i generated by a dynamical system we 

have described. Let M(A) be the space of all Borel probability measures on A and let B be a Borel 

subset on A. Then 



|i(B) = ^  (2.2.6) 

i= l 

where lß(z() is the indicator function for the set B. To visualize the measure on a computer dis- 

play, we have to compute U-(B-) for each pixel and rescale the dynamic values to match the 

dynamic range of that display. Now we can rewrite the fixed-point equation directly in the space 

of probability measures. 

Under some technical conditions, M(A) endowed with the Hutchinson metric is a 

complete metric space and we can define the Markov operator which is the contraction: 

n 

7(n)(B) =  ^p.ujwT^B)) (2.2.7) 

i= 1 

The contractivity of T(u,) was proved for the hyperbolic case when all {WJ} are contractions. We 

have seen that {w-}." uniquely determines the attractor I of the support of the IFSp. For different 

sets of probabilities {p,} we obtain different gray level images, all having the same support. Sev- 

eral IFS's can be combined to obtain a complicated image. Next we look at a special type of IFSp 

where the transformations { w-} are restricted to a particular region of the space A. 

2.2.1.2 The Local IFS 

The local iterated function system was named fractal block coding by Jacquin   , local 

interated function system (LIFS) and the fractal transform by Barnsely12 or partitioned iterated 
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function system (PIFS) by Fischer, Jacobs, and Boss27. It is the basis of what is currently known 

2 
as fractal image compression. The support of the gray scale image is a bounded rectangle I 6 R 

2 2 which is invariant under a block-wise continuous transformation W.R —»R . In a PIFS we 

obtain more flexibility by having the domain of each Wj restricted to a subset D- c I. Note we can 

find an infinite number of combinations {w;} with the same invariant set I. Also Wmay have sev- 

eral invariant sets. 

A grey level image is modeled as the invariant probability measure \i generated by the 

iteration of Won the complete metric space H(A) and the associated mapping Tgiven by {Wj,pj} 

operating on the space of probability measures M with the support A as before T:M(A) —> M( A) 

Since in PIFS coding, the invariant set of the IFS is the space A, we have I = A = supp(\i), 

Contractivity of each Tj is given by pj < 1 and guarantees convergence of the iteration of T 

to limit u* in the space of probability measures. The limit jx* is the approximation of the image 

U.  to be coded, and T is called the fractal code for u. . In a practical coding system, I is parti- 

tioned in rectangular blocks by. Block mapping w,: and a massic (greytone) transformation with a 

gain factor py for each block such that 

T([i) = £r(;/(|l) = S^fKw^))-^ (2.2.8) 

Coding the image n is equivalent to finding all mappings Ty, the restriction of T to each 

block of the partition. For decoding we use the chaos game as before, or we can apply the Markov 

operator T in a successive approximation algorithm (start with any initial image v e M) 

H* = (r)"(v),"->°° (2.2.9) 
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The problem of finding T = ^T^ makes ITT coding very complex and thus we seek an new 

means of determining the transformation T. 

2.3 Fractal Compression Techniques 

Extending the concept of the EFS to practical application there are two primary methods 

that have emerged. Jaquin's Algorithm37 was based on self vector quantization techniques where 

the codebook is taken from the image itself. Yuval Fisher 27extended this technique for a variable 

partitioning of the image based of feature size and resolution. 

2.3.1 Jaquin's Algorithm 

Thus we develop what is commonly known as the fractal block transform 37 shown below in Fig- 

ure 4a 

2-2 Jaquin's 1-D Block Mapping 

This process thus exploits the self-similarity of two spatial scales to compress an image. The pro- 

cess of fractal encoding is thereby described by equation 2.3.1 
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f(x) = Tf(x) = ULf{x) + b = QLf(2x) + b (2.3.1) 

where f(x) is the image to be transformed and T is a contractive operator with unique fixed point 

f. Encoding f means finding and operator T having a fixed point f approximately equal to f while 

decoding is equivalent to finding the fixed point f by iterating T starting with an image selected at 

random. ULrepresents the transformation applied to the domain blocks which both grey levels and 

decimates; QL represents a simpler UL that simply scales the already decimated domain blocks, 

and b is the intensity offset applied to the domain blocks. Note that f, b e V where V is a discrete 

and finite dimensional space. 

In two dimensions the fractal encoding processes can be described in 4 steps. Generi- 

cally, fractal encoding involves taking a block of pixels in a image known as a domain block, spa- 

tially subsampling the block, and matching it to a smaller block of pixels known as a range block. 

Step 1: Divide Image Into Range and Domain Blocks 

Domain Blocks 

Fixed Grid 

Range Blocks 

Variable 
Position 2x 
Size of 
Range Blocks 

Step2: Match Domain Blocks to Range Blocks 
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Apply Rotatation, Decimate, 
Scale in Intensity Get Best 

Possible Match 
From Pool 
of Domain 
Blocks for 
Given Range 
Block 

Domain Block Transformation Range Block 

Step 3: Build a Table of Domain Block Positions, Rotations & Scalings - This is the Compressed 
Image 

Step 4: Reverse Process to Rebuild Image Start with blank image with all pixels set to some arbi- 
trary value and iterate on transformations from coded table. 

Domain Blocks Apply Scale/Rot 
From Table 
& Replace Range 

Range Blocks 

Blocks 

A 
_ .^ 

.^  

Figure 2-2 Jaquin's 2-D Block Mapping 

As is shown in Figure 2-3 Bogdan2 and Davis20 showed the fractal block mapping technique takes 

low frequency coefficients and maps them to high frequency coefficients. Thus the block map- 

ping uses the low frequency information to approximate the high frequency information. 
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Figure 2-3 Frequency Analysis of Jaquin's Technique 

2.3.2 Fischer's Algorithm 

The problem with Jaquin's technique is that once a range and domain block size is chosen, 

all features, large or small must be represented with those block sizes. To remedy this problem, 

Yuval Fischer    has modified the original fractal transform by incorporating adaptive block sizing 

depending on the amount of information within each fractal range and domain block. This pro- 

cess gives better overall results simply because it preserves spatial detail in those blocks where 

information is needed and achieves high compression for those regions which are relatively 

homogenous. Fischer uses different tiling techniques such as quadtree partitioning where blocks 

remain square as in Jaquin's algorithm and rectangular quadtree which gives greater adaptability 

to spatial features. Also, Fischer as made use of triangular range and domain blocks. 
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Fischer's Fractal Frequency Mapping 

Power 

Encoding 

mapping 

frequency 

Power 

Decoding 

mapping 

g^S 
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frequency 

2-4 Frequency Analysis of Fischer's Technique 

As is shown in the Figure 2-4, like Jaquin's technique, Fischer uses the low frequency 

information to reconstruct the high frequency information. Unlike Jaquin however, Fischer 

reconstructs with multiple frequency scales from low to high frequency20. The width of these fre- 

quency scales for the quadtree method is powers of two. Looking at the fractal compression pro- 

cess, we will shown in Chapter 3 a similarity to the wavelet transform frequency breakdown. 
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Chapter 3 

Wavelet Image Coding and Parallels to Fractal Image Coding 
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3.1 Wavelets 

As stated at the end of Chapter 2, researchers such as Davis20 have seen a direct 

similarity between fractal and wavelet compression. Thus, we are motivated to study the wavelet 

compression methods from both a 1 and 2 dimensional perspective to gain a better understanding 

of fractal image compression and develop a means of improving compression performance. First 

we will describe the general properties of wavelets. We will then introduce two types of wavelets, 

the QMF Haar and the Gaussian Derivative Spline. We will show how the frequency structure of 
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the Haar wavelet mirrors that of Jaquin and Fischer's fractal compression and then show how the 

gaussian derivative Spline has desirable properties which will be used to improve on the fractal 

compression process. Finally we will give two examples of conventional wavelet image coding 

techniques for later comparison with the new fractal wavelet method. 

3.1.1 Definition 

Practically speaking, a wavelet is a means of approximating a function with a set 

of linear vectors. This set of vectors forms a basis set. This basis is orthogonal if the scalar prod- 

uct of the vectors is equal to zero. Vectors are formed from dilating and translating of some 

mother wavelet vector   y(x) which is based on some scaling function    §(x) . The wavelet 

decomposition thus forms a linear transform. This linear transform can be formulated in terms of 

linear filters   \\f(x)   typically corresponds to a highpass filter g(k) §(x) typically corresponds to 

a lowpass filter h(k). 

The only constraint imposed on a wavelet function \\f(x) real or complex valued, 25 in 

order to be a wavelet is the admissibility condition that requires: i f \\f(x) is integrable this actu- 

ally implies that 

j\\f(x)dx   = 0 or \|/(|k| =0) = 0 (3.1.1) 
R" 

3.1.1.1 Properties 

The properties of the wavelet transform, admissibility, similarity, invertibility, regularity, 

and moment cancellations are described as follows: 

Admissibility: For an integrable function, this means that its average is zero. 

Similarity: The scale decomposition should be obtained by the translation and dilation of 

only one "mother" function. 
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Invertibility: There should be at least one reconstruction formula for recovering the signal 

exactly from its wavelet coefficients and for allowing the computation of energy or other invari- 

ants directly from them. 

Regularity: In practice the wavelet should also be well localized on both sides of the Fou- 

rier transform, namely it should be concentrated on some finite spatial domain and be sufficiently 

regular. 

Cancellations For some applications, in particular, turbulent signal analysis, the wavelet 

should not only be of zero value(admissiblity). but should also have some vanishing high-order 

moments. 

3.1.1.2 Analysis 

The analysis of a signal involves decomposing with a set of functions which are derived 

from some common "mother" function. From the function   \|f    the so called mother wavelet, 

25we generate the family of continuously translated, dilated and rotated wavelets: 

n 

W*) = i"V[ß_1(e)(^f)] (3.1.2) 

with / e R+ as the scale dilation parameter corresponding to the width of the wavelet and 

x' e Rn as the translation parameter corresponding to the position of the wavelet; 1 and x' are 

dimensionless variables. 1 denotes the wavelet scale because it corresponds to the length scale at 

which analyze f(x) and the position of the analyzing wavelet x', because it indeed corresponds to 

the actual position in physical space; we must also distinguish x' and x which will be used an inte- 

gration variable. The rotation matrix Cl belongs to of rotations in Rn and depends on the n(n-l) / 
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_n 
2 

2 Euler angles 9. The factor 1    is a normalization which causes all the wavelets to have the same 

L norm, therefore all wavelets will have the same energy and the wavelet coefficients will corre- 

spond to energy densities. 

3.1.1.3 Synthesis 

Reconstruction of the original signal is known as synthesis. The admissibility condition 

implies the existence of a reproducing kernel. We can therefore recover the signal f(x) from its 

wavelet coefficients as shown in equation 3.1.5. 

oo 

fix) = c;11 \\}{i, x, e)¥/;c,e(x)^4i(e) 0.1.3) 

3.1.1.4 Comparison With The Fourier Transform 

The primary advantage of the wavelet transform is its ability to 72 localize in time or frequency 

where the fourier transform has great localization in frequency but poor localization in time. 

Given an absolutely integrable function f(t), its Fourier Transform is defined by 

00 

F(w) =  \f{t)e-j™dt (3.1.4) 
—00 

Likewise the discrete-time Fourier Transform is Defined as 

F[k] = Yf[n]e-j2nnk/N (3.1.5) 
n = 0 

The time and frequency localization properties of the wavelet transform can be shown in the fol- 

lowing Figure 3-1 using a space frequency analysis plot 
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f     Discrete Time Fourier Series Wavelet Transform 

Vy. 

Figure 3-1 Space vs. Frequency Plots of Fourier vs. Wavelet Transform 

And finally the short time Fourier Transform is defined by 

STFTf((0,t) =  j(0*(t-x)f(t)ejmdt 
(3.1.6) 

Which like the wavelet transform is localized in frequency because it is windowed in time. 

3.1.2 Bases 

The expansions of a mother wavelet are described as the 72 bases of the wavelet. Such 

expansions can be described as orthogonal or biorthogonal. The elements of   /, g e H     where 

His a H-space, are said to be orthogonal if (fig) = 0. A system {fj,gj} constitutes a par of biorthog- 

onal bases of a Hubert space H if and only if 

(a) For all i,j in Z (integers) 

(filfj) = 8[i-j] (3.1.7) 

(b) There exists strictly positive constants AQ, A1? B0, B} such that for all y in H 
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A0M2<X|(fk>y)|<B0lly||2 (3.1.8a) 
k 

Albf'^\(gk,y)\<'Bl\\yf (3.1.8b) 
k 

Let il bea closed subset in a complete metric space X. A fixed point of a given mapping 

T: Q -> Q, not necessarily linear is every solution xe Q. of the equation 4 x = Tx 

3.1.3 Moments 

At this point it is important to note that the number of 72 vanishing moments of the wavelet is n 

where 

0 =  jtn\\f(t)dt (3.1.9) 

Information about the number of moments in a wavelet function can be critical to determining 

certain frequency properties of the wavelet transform such as Alpha and Holder exponents. This 

fact will be discussed in detail later in Chapter 4. 

3.2 Orthogonal Structures: QMF Haar 

To begin with a specific wavelet basis we describe the 73Haar Wavelet. The Haar Wavelet 

is one of the most basic wavelet basis and as we will show later can be used to explain the basics 

of fractal compression since the averaging of a domain block to obtain a range block is simply 

applying the Haar lowpass filter to the image20. 

We begin as follows \\f(x). It is a step function taking values 1 and -1 on [0,0.5) and [.5,1) 

respectively as follows: 
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y]fjtk(x) = const ■ \\l(2Jx-k) 

define a an orthogonal basis in L2(R), the space of square integrable functions. This means that 

any element in L2(R) may be represented as a linear combination (possibly infinite of these basis 

functions 

l.O—l 

0.9 
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0.4—1 

0.3 

0.2 — 

o.i- 

0.0- 

I      I      I      I      I      I      I      I      I     I      I 
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Figure 3-2 Haar Wavelet 

A general approach to using the Haar Wavelet to decompose a signal is as follows devel- 

oped by Stephan Mallat. We start with the space l? of square integrable functions. The MRA is 

an increasing sequence of close subspace {Vj};e z which approximates L (R). 

3.2.1 Basis Derivation 

Everything starts with a clever choice of the scaling function (j). Except for the Haar 

wavelet basis for which <|> is the characteristic function of the interval [0,1), the scaling function is 
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chosen to satisfy some continuity, smoothness and tail requirements. But, most importantly, the 

family {§(x-k),ke Z} forms an orthonormal basis for the reference space V0. The following 

relation describes the analysis: 

■••cV.,cV0cV,- (3.2.1) 

The spaces V: are nested. The space L2(R) is a closure of the union of all V:. In other words, 

U    e ZV: is dense in L2(R). The intersection of all V; is empty. 

f(x) e Vj^ f(2x) e Vj+l, je Z (3.2.2) 

The spaces V: and V+i are "similar". If the space Vj is spanned by   <|> ,•*(*), k e Z   then the 

space V;+1 is spanned by tyj+\> ^M» ke Z. The space Vj+1 is generated by the functions 

^j+hk(x) = J2$jk(2x). 

We now explain how the wavelets enter the picture. Because V0 c Vx, any function in V0 

can be written as a linear combination of the basis functions Jl§{2x -k) from Vi in particular: 

<Kx) = X *M*0V2<|>(2x-fc) (3.2.3) 

Coefficients h(k) are defined as (§(x), J2ify(2x - k)). Consider now the orthogonal complement 

Wj of Vj to Vj+1 (i.e. Vj+1 = Vj 0 Wj). Define 

y(x) = J2% k(-l)
kh(-k+lM2x-k) (3.2.4) 

It can be shown that { 72^ *Y(2* -k),ks Z} is an orthonormal basis for W).  Again the sim- 

ilarity property of MRA gives that{2-/   \\f(2x - k), k e Z} is a basis for Wj. Since 
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U  • 6 zVj =   u   • e zW • is dense in L/(R), the family ^jk(x) = 2J' *\\f(2x - k), k e Z is a 

basis for L2(R). 

2 
For a given function / e L (/?) one can find N such that   / e VN   approximates/ up to 

some up to preassigned precision (in terms of L2 closeness). If   g • e Wi   and   /,- e Vt   , then 

M 
x- , (3.2.5) 

JN = JN-I
+

SN-I
+
 LS        +JN-M 

,• = 1   iV-A/ 

The above equation is the wavelet decomposition of/. 

3.2.2. QMF structure 

The filter bank is the means by which a wavelet is implemented to decompose a signal or 

image into different frequency bands. There are many filter bank implementations. The quadra- 

ture mirror filter (QMF) is here is presented as an example as one of the most basic filter bank 

implementations and is routinely used for image decomposition 

Repeating the above description in72,73terms of signal processing we recall that 

and 

V(*) = S keZg(k)j2^2x-k) (3.2.7) 

The l2 sequences {h(k), ke Z} and {g(k), k e Z} are quadrature mirror filters in the terminol- 

ogy of signal analysis. The connection between hand g is given by: 

g(n) = (-l)"h(l-n) (3.2.8) 
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The sequence h(k) is the low pass filter while g(k) is the high pass filter. The following properties 

of h(n), g(n) can be proven by using Fourier transforms and orthogonality: 

^h(k) = J2, ^g(k) = 0 As a result this filter structure k is shown in Figure 3-3 

h(n) 

g(n) 

® <& h(-n) 

€)—©■ g(-n) 

i 
J 

Figure 3-3 Biorthogonal Filter Bank Structure 

The most compact way to describe Mallat's multi-resolution analysis MRAand determine 

the wavelet coefficients is the operator representation filters. The mallatmultiresolution frequency 

structure is shown graphically below in Figure 3-4 
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Figure 3-4 Mallat Wavelet Frequency Structure 

It is useful to note that this frequency structure of the MRA approach is identical to the Fischer's 

fractal frequency decomposition shown if Figure 2-4. This makes sense since at each stage of 
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domain to range mapping on a quad-tree partition essentially applies a Haar H filter to the domain 

image and then maps this information to the next higher frequency band of range blocks. 20 

For a sequence a = {a^ the operators H and G are defined by the following coordinate- 

wise relations: 

(Ha)k = Jjnh{n-2k)an (3.2.9a) 

(Ga)k = ^ng(n-2k)an (3.2.9b) 

The operators H and G correspond to one step in the wavelet decomposition. The only dif- 

ference is that the above definitions do not include the Jl factor. 

Denote the original signal by c^n\ If the signal is of length 2n, then c^ can be represented 

by the function f(x) = Yc[" §nk, f e Vn . At each stage of the wavelet transformation we 

move to a coarser approximation c^_1) by c^"1* = Hc^ and d^_1) = Gc^. Here, d^_1) is the detail 

lost by approximating is the detail lost by approximating c^"1^. The discrete wavelet transforma- 

tion of a sequence of length 2n (notice that the sequence c^"1^ has half the length of c^): 

(J("-V-2), ,</(W0)) (3.2.10) 

Thus the discrete wavelet transformation can be summarized as a single line: 

y -> (Gy, GHy, GH2y, GHn~ly, GHny) (3.2.11) 

The reconstruction formula is also simple in terms of H and G; we first define a joint oper- 

ators H and G   as follows: 

(Ha)n = Y,kh(n-2k) (3.2.12a) 
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(G*a)n = y£kh(n-2k) (3.2.12b) 

Recursive application leads to: 

n-\ 

(Gy,GHy,GH2y, GHn~ly,GHny) ->y =   £ (H)JG*dU) + (tf*)Y0)   (3.2.13) 
; = 0 

The above equations (generating equations) used with the Haar wavelet are as follows: 

<K*) = <K2JC) + (|>(2JC-1) = -l=72(|)(2x) + 4=72())(2x-l) (3.2.14) 
J2 42 

\f(x) = <|>(2*) + <K2JC-1) = ^pfy(2x) + ^=j2$(2x- 1) (3.2.15) 
42 42 

The filter coefficients in the above equations are: 

A(0) = Ä(l) = -4   8(0) = -g(l) = 4 (3.2.16) 
Jl 42 

To get the wavelet coefficients we multiply the components of dfi\ j = 0,1,2 and c^ with 

the factor 2_N/2. Simply: 

djk = 2~N/2d[j), 0<j</V(=3) (3.2.17) 

It is interesting that the Haar wavelet case 2"3/2c0 = CQQ = 0.5 is the mean of the sample y. 

The entire frequency bank decomposition is shown below in Figure 3-5 
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Figure 3-5 Multiresolution QMF Frequency Decomposition 

Thus we have a direct description of how the fractal image compression process divides 

itself in terms of frequency representation by means of the QMF Haar frequency decom- 

position. 

3.2.2 2-D representation 

The QMF two dimensional decomposition 73 is shown below. The give image is 

decomposed in each direction by a high and low pass filter and downsampled in those directions. 

Next the wavelet is decomposed in the other direction in the same manner for a resulting two 
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Figure 3-6 Two Dimensional Multiresolution QMF 

dimensional frequency spectra as is shown above. While this method is the standard image 

decomposition used in much of wavelet image processing the Haar basis set itself has many draw- 

backs in the localization of its frequency spectra and the subsampling process decreases the inher- 

ent resolution of the image decomposition   . 

3.3 Existing Fractal-Wavelet Analog Techniques 

Recently a number of researchers including Geoff Davis noted that the Haar wave- 

let showed a direct analog in the fractal compression process20'57. As a result the method 

of the Haar transform has recently been adapted to improve the fractal coding processs. In 

addition another wavelet compression technique has emerged which like the fractal uses 

cross scale redundancy to achiev compression   This method Zero Tree Method known 

as the zero tree was developed by Shapiro 59 and uses a wavelet decomposition similar to 

the QMF Harr decomposition described earlier. These techniques also give insight on how 

to design a better compression method using fractal and wavelet principles. 
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3.3.1 Davis SQS Technique 

Geoff Davis20'57 and others noted that the wavelet transform could mimic the 

block mapping process of the fractal transform and developed the first hybrid transform. 

First Davis realized that the averaging process in range to domain block mapping was the 

low-pass wavelet of the Haar transform. He also noted that the range to domain mapping 

process at each scale could be made significantly faster by matching the high pass bands to 

each other to approximate the low pass to high pass reconstruction . This frequency divi- 

sion makes sense since the high pass must be 

Encoding Decoding 
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3-7 Frequency Analysis of Davis' Technique 

approximated upon fractal reconstruction anyway, so the frequency division process of the wave- 

let transform simply organizes this process. Davis' method also shows outstanding frequency 

compression as well. Unfortunately, the complexity of the compression scheme in this case is 

high since there are multiple high pass bands to map from high pass to low pass on encoding. Also 
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Davis does not take into account the implicit relationships between shape and texture In addition 

this technique does not preserve shapes in the compressed domain. 

3.3.1.1 Band structure mapping 

Figure 3-7 shows how the local IFS of the hybrid techniques maps Domain to Range 

Blocks from higher to lower scales. This process is the same as the multifractal except the map- 

ping changes from scale to scale since the wavelet fractal process uses a local rather than global 

iterated function system. The reconstruction process we will first develop then uses the attractor 

model as in the multifractal case to reconstruct. Thus we have a linear synthesis and nonlinear 

piecewise reconstruction. 

As is also shown in Figure 3-7 the reconstructive mapping approximates higher frequency 

information with information from lower scales. This process thus is a predictive coding tech- 

nique from low to high frequency. 

3.3.2  Shapiro Zero Tree 

The Shapiro Zero Tree 59 algorithm has been called "the state of the art in image coders". 

Essentially zero-tree uses the fact that power across frequency scales tends to naturally decay as 

one increases in frequency or decreases in scale. This fact allows a person attempting image cod- 

ing to eliminate information in image at a particular frequency scale and all scales below it by 

determining the local energy in a block in one of the high pass images. If the energy is below a 

certain threshold the coefficients at that scale and all scales below it are not coded. 
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3-8 Schapiro's Zero Tree 

3.4 Biorthogonal Spline 

The Haar in the applications above is a useful structure because of its simplicity in 

implementation. However, for content based image compression we look to a different wavelet 

structure to directly reveal the natural shape and texture composition of an image. This structure 

is the biorthogonal spline wavelet. 

Unlike the orthogonal structure, the biorthogonal structure reconstructing wavelet 

is not the complex conjugate of the analyzing wavelet but a totally separate function. Such bior- 

thogonal structures are useful in maintaining symmetry in the wavelet filters. Such symmetry is 

necessary later for such applications as the edge detection routines used in Mallat's decompo- 

sition shown later. 
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Figure 3-9 Biorthogonal Filter Bank Structure 

3.4.1 Gaussian Derivative Basis 

A particular implementation of the biorthogonal spline uses the Gaussian deriva- 

tive basis set. As we shall show later the Gaussian derivative has many desirable properties useful 

in signal and image analysis including an ability to accurately reveal boundaries and edges in sig- 

nals and imagery minimal artifact production in image reproduction. These properties will be 

extremely useful in designing a new fractal wavelet method of image analysis and synthesis in 

Chapters 4 and 5. 

The Mallat transform y(x) is constructed in a very different manner from the 

QMF Haar. Start with a gaussian function and take its derivative as shown in the following fig- 

ures: 

Gaussian Smoothing Function Gaussian Derivative Mother Wavelet 

Derivative 

Figure 3-10 First Derivative Gaussian Smoothing Function 
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The result is a an extremely effective means of detecting singularities(edges) in a signal. If we 

represent our gaussian ga(x) 

1 

a J2KG 

(     2\ 

V 2a2J 

(3.4.1) 

then our smoothing function at scale s0is :0„ (x) where we assume 
SQ 

(3.4.2) 

Our defining wavelet is thus 

V(x) = ^6(x) (3.4.3) 

For each scale we have 

v,w = 4Hf (3.4.4) 

Our 1-D wavelet operator is thus: 

Wlf(x) =f®\|fs(x) (3.4.5) 
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3.4.2 Wavelet Implementation 

We impose that the Fourier transform 73 of the smoothing function §(x) defined by 

+00 

\H™)\2 =    X M/(2;w)x(2;w) (3.4.6) 

can be written as an infinite product 

+00 

♦<w) - e-iWm [I «(2"P0>) (3-4.7) 

where //(Co) is a 2TC periodic differentiable function such that 

|//(co)|2 + |ff(a + 7i)|2 < 1 and |ff(0)| = 1. (3.4.8) 

One can prove that the conditions are sufficient so that the above equations define a smoothing 

function ty(x), which is in L2(R). The parameter w is a sampling shift. It its adjusted in order 

that §(x) is symmetrical with respect to 0. The above equations imply that 

$(2a) = e WC°//(a)$(a) (3.4.9) 

We define a wavelet \\f(x) whose Fourier transform \j/(x) is given by 
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\j/(2co) = e iWCOG(co)^(co) (3.4.10) 

where G(co) is a 27t periodic function. Let us impose that the Fourier transform of the reconstruct- 

ing wavelet %{x) can be written 

X(2(ö) = eW(ÜK{(ü)^) (3-4.11) 

From the above equations we can derive 

G(Cö)K(Cö) + |H(co)|2 = 1 (3.4.12) 

and for the two dimensional transform 

L(ö» = i±M^L (3.4.13) 

We want a wavelet \J/(JC) equal to the first order derivative of a smoothing function Q(x). 

This implies that \j/(x) must have a zero of order 1 at co = 0. We choose //(co) in order that a 

wavelet \\f(x), which is antisymetrical, as regular as possible , and has a small compact support. A 

family of 2n periodic functions that satisfy these constraints is given by. 

//(co) = e'CO/2(cos(co/2))2" + l (3.4.14) 

G(G» = 4iem/2 sin (co/2) (3.4.15) 

We can also derive 
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*<-)-(*^r' (3.4.16) 

and 

*<«» = ^ -^74-^J 
fsin(co/4)>|2n + 2 

(3.4.17) 

The Fourier transform of Q(x) of the primitive is therefore. 

•«-FErf*2 (3.4.18) 

The overall filter bank structure using the above wavelet basis is shown in Figure 3-9 and 

is again based on Mallat's multiresolution analysis. 

<4><u./>- go <Vl,n>f> 

ho gl <¥2>n-/> 

g2 (V3,n>f> 

Figure 3-11 Multiresolution Biorthogonal Frequency Decomposition 
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3.4.3 Fast Implementation 

A fast iterative method for the above wavelet decomposition is described below. This fast 

method is pivotal in ultimately constructing a fast multiresolution decomposition as well as fast 

image reconstruction using our new method of Chapter 5. 

We suppose that the wavelet \\f(x) is 44 characterized by the three discrete filters H, G, and 

K and L. We denote Hp, Gp, and Kp and Lp. the discrete filter obtained by putting 2P-1 zeros 

between consecutive coefficients of the filters. We also denote by D the Dirac filter whose 

impulse response is equal to 1 at 0 and 0 otherwise. We denote by A*(H,L) the separable convo- 

lution of the rows and columns, respectively of the image A with 1-D filters H and L. 

j = 0 

while (j < J) 

W   }'d.   f     = ±S d. /*(G;,D) (3.4.19a) 
2J+l Xj 2J 

W    2:d f    = ^-5 d f*(D,Gj) (3.4.19b) 

s ii\f =f51 /*(H>H;) (3A19c) 

j=j + l 

endwhile 

A fast iterative reconstruction process is also described below 
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J = J 

while (j > 0) 

hd. .2, 

lJ+l J     2
J J     2J 

/* 

±Sd.  /*(H;+1,H;+1) (3.4.20) 

endwhile 

lowing table: 
Specific coefficients for the implementation of these filters are shown in the fol- 

Finite Implulse Response of the Filters H, G, K and L That Correspond to 
The Quadratic Spline Wavelet 

n H G K L 

-3 0.0078125 0.0078125 

-2 0.054685 0.046875 

-1 0.125 0.171875 0.1171875 

0 0.375 -2.0 -0.171875 0.65625 

1 0.375 2.0 - 0.054685 0.1171875 

2 0.125 - 0.0078125 0.046875 

3 0.0078125 

Table 3-1 
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3.4.4 2-D representation 

In contrast to the Haar QMF orthogonal 2-D decomposition shown in section 3.2 Mal- 

lat uses a more elegant technique for two dimesional decomposition which lends itself to image 

compression and is the basis of the Hybrid Fractal Wavelet Method. 

The algorithm consists of first preprocessing an image with a multiscale wavelet 

decomposition as described by Mallat45 . We chose the number of scales to decompose based on 

the resolution of the image we wish to reproduce and the amount of edge information we wish to 

save (Fig. 8.)  Wavelet encoding in 2 dimensions is generically described in equations 3.4.21 

through 3.4.24. 

yl(x,y) = ^e(*')0       V2(*>v) = jUtoy) (3.4.21) 

v|/](*,y) = V1(??    ^{x'y) = V2(??} (3A22) 

s s 

Wl
sf(x,y) = f ® yJ0c,y)     W2

sf(x,y) = / ® ^(x,y. (3.4.23) 

Wf = (Wlf(x,y), WJf(x,y)).g z (3.4.24) 

4/1 and ^are the gradients of the smoothing function G in the x and the y directions 

respectively. Y^ and xFs
2are the gradients at each scale s which are usually power of 2 in the spa- 

tial x and y directions. Ws
! and Ws

2 are the wavelet transform functions in the x and y directions. 
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3.4.5 Modulus Maxima 

After computing the wavelet transform ^ we compute modulus and gradient angle 

images as described by equations 3.3.25 and 3.3.26. 

Msf(x,y) W^f(x,y) W2J{x,y) (3.4.25) 

Af(x,y) = arg(wlf(x,y) + iw2f(x,y)) (3.4.26) 

The difference between Mallat in his two dimensional biorthogonal transform and 

the ordinary orthogonal Haar two dimensional transform is that he does not subsample his images 

as in the 1 dimesional case and that he applies only one filter in the X and Y directions to com- 

pute a polar representation for modulus maxima for each of the high pass bands. Thus, Mallat has 

only two high pass bands which can be represented in terms of x and y or polar representation. 
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Figure 3-12 Modulus Maxima 

It is also interesting to note as shown in Figure 3-13 that the biorthogonal spline 

has a much more accurate frequency response than the Haar basis set. This fact is extremely 

important in the wavelet reconstruction process since the Haar basis contains many high fre- 

quency artifacts in reproduced images due to its sharp spatial domain cutoff. The Gaussian deriv- 

ative spline has a much smoother spatial cutoff and thus much less tendency to create artifacts in 

imagery, as is shown in the frequency plots below: 
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Figure 3-13 Mallat's Gaussian Derivative vs. Harr 

3.4.6 Mallat Technique 

In a technique developed by Stephan Mallat and Sifen Zhong,44 they use the modulus 

maxima edge information from the 2 dimensional biorthogonal spline wavelet described above to 

reconstruct the original image. Thus modulus maxima lines are chain coded and only those with 

intensity above a certain threshold are store as in the Zero Tree example. 

Alternating Projections/ Edge Relaxation 
to Reconctruct Image at Each Scale 

Scale n 
Ms(r) 

As(9) 

<¥„,„, fxy) 

Figure 3-14 Alternating Projections Reconstruction 
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The synthesis process for reconstructions involves a complicated alternating projection process 

which is similar to nonlinear edge relaxation. While the edge information has great use in analyz- 

ing shapes in imagery the reconstruction process can be somewhat time consuming and also has a 

tendency to remove image texture since it is essentially a nonlinear interpolation process. 
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Chapter 4 

Multifractal Model 

Contents 

4.1 Multifractal 1-D Signal Compression/Decompression 56 

4.1.1 An Invariant Measure Example 57 

4.1.2 Self Similar Wavelet Functional equation 59 
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4.2 Two Dimensional Shape and Texture Analysis 65 

4.2.1 Modulus Maxima Reveals Shape 66 

4.2.2 Lipschitz Alpha to Characterize Edges 67 

4.2.3 Fractal Dimension 68 

4.2.4. Holder Exponent Revealed by the Wavelet Transform 69 

4.3 Analogy of Multifractal Global IFS to Local IFS 74 

4.1 Multifractal 1-D Signal Decomposition/Reconstruction 

In order to define our compression technique in terms of the images natural shape 

and texture we turn to an approach to signal decomposition known as the multifractal method. 

Recently the multifractal model has emerged as a defining connection between wavelets and frac- 

tals. The multifractal in most implementations uses Mallat's MRA with biorthogonal spline 

wavelet decomposition to analyze a signal and a global iterated function system invariant measure 

algorithm to reconstruct the signal. We will first derive how the multifractal connects both wavelet 

and fractal models. We will then show how parameters from this technique may be used to 

describe the natural fractal shape and texture of an object. Using this connection we will ulti- 

mately develop the wavelet-fractal compression method. 

To understand the multifractal concept we first give an example of an invariant 

measure one dimensional iterated function system. This will serve as the basis for synthesis of any 

arbitrary signal. This method is a mathematical example of the method described in section 

2.2.1.1. 
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4.1.1 An Invariant Measure Example 

The contractions wbw2 ,wN and the 53 probabilities p!,p2 ,p^ determine 

how frequently a certain pixel Py will be hit by the chaos game. The average fraction 

lim h(z,       zk;Pij) 
' 7      J   = Rij (4.1.1) 

if the result of a particular measure \i which has the attractor A„, the attractor of the IFS as its 

support (i.e. ^{A^) = 1). In other words, 

MPij) = Rij (4.1.2) 

This measure \x is Borel measure and is invariant under the Markov operator M(v) which is 

defined as mentioned in chapter 1 with slightly different notation. Let X be a large square in the 

plane which contains A«, the attractor of the IFS, and v a (Borel) measure on X. Then this oper- 

ator is defined by 

M(v) = p^vv^ +P2Vw2*1 + "-+pA,vvt^1 (4.1.3) 

In other words, M(v) defines a new normalized Borel measure on X. We evaluate this measure 

for a given subset B in the following way: first we take the preimages wjl (B) with respect to X, 

then evaluate v on that and finally we multiply the probabilities pj and add up the results. Here is 

an example. Let 

wx(x) = (1/2)*, Pl = 1/3 (4.1.4) 

w2(x) = 1/2*4-1/2, p2 = 2/3 (4.1.5) 
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This is an IFS which has the unit interval as its attractor AM = [0, 1 ]. Now assume that we start 

with a measure given by the density: 

h0(x) = 
1    if*e[0, 1] 

0     otherwise 
(4.1.6) 

/ 

/ 

\ 

0 V,                     1 

»3 

cd 

-"-n-nT "UKT Uli un 
1 o 

Figure 4-1 Invariant Measure Example 

i.e., the initial measure is v0 = jh0(x)dx. For a subset A c [0,1/2] of the left half unit interval 

we have w^^c [-1,0] and V0(W~2\A)) = 0. Thus v^A) = v0(w2 (A)). Acorrespond- 

ing argument holds for the right half interval [1,1/2] while w2 does the same with the right half 

interval multiplying the result by p2 . Thus after the first step we obtain the density 
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p,     ifxe [0,1/2] 

p2    ifxe [1/2,0] (4.1.7) 

0 otherwise 

and   Vj(A) = jhl(x)dx . We construct a measurev2 = M(vx) along the same lines and 
A 

obtain the density function h2 as shown in the above figure. In the limit this process generates a 

binomial measure that is a self-similar multifractal measure In the next section we will describe a 

new selection of functional equations incorporating the wavelet from which we will be able to 

reveal the properties of an invariant measure and synthesize any arbitrary signal. 

4.1.2 Self Similar Wavelet Functional Equation 

To determine the invariant measure implicit in a given signal we have a method of 

interpreting its essential temporal or spatial structure. This structure is defined by the singularities 

or edges of the signal.  Thus, to detect singularities 36 in the original signal we can find the points 

within the signal where most energy is localized using the biorthogonal spline approach with Mal- 

lat's MRA. The next task is to find a mapping or set of iterated function system equations that 

characterizes the original signal. 

Note that the mapping proceeds from the lowest frequency band to the next higher 

band of frequencies.    The goal of the multifractal process is to use the wavelet transform to 

reveal the invariant measure parameters of probability p, translation r, and scale 1. If we have a 

self similar signal fix) which can be approximated the invariant measure parameters as follows: 

f(x) = plf(ls,(x-r)) (4.1.8) 

We can show that by taking the wavelet transform of 4.1.8 that these these parameters naturally 
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fall out of the wavelet transform as follows: 

Wf(s,x) = plWf(ls,l(x-r)) (4.1.9) 

Or more importantly taking the wavelet maxima 

Mf(s,x) = plMf(ls,l(x-r)) (4.1.10) 

By using the wavelet maxima singularity spectra shown in Fig 4-2c this process can be greatly 

simplified since we have separated the original signal into frequency bands and then reduced the 

information within these bands to an elementary set of data, namely the maxima themselves. We 

can characterize the original equations that resulted in figure 4-2c by a histogram voting proce- 

dure that records the following quantities 1, p and r directly from the maxima representation. 1 as 

indicated in 4.1.10 characterizes the contractivity factor or spacing between separate wavelet 

scales 

log/ = log (4.1.11) 

p is probability of the invariant measure and characterizes the decay of energy across frequency 

bands. 

logp = log 
(Wf(sl,x1Y 

lWf(s2,x2) 
(4.1.12) 

is the geometrical displacement or translation between scales 
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11 
42 

(4.1.13) 

4.1.3 Analysis with wavelet -> Reconstruction with fractal 

The process of multifractal analysis and construction amounts to decomposition with the 

wavelet and invariant measure or ifs reconstruction. To detect singularities we use a wavelet 

basis function in the time domain which follows the above frequency structure but in the con- 

volution process detects singularities or "edges" in imagery. Such a basis set might be the 

derivative of a Gaussian function 7 This process is demonstrated in the following three fig- 

ures.Figure 4-2a shows the Devils Staircase in 1 Dimension created with the functional equa- 

tions of section 4.1.2 characterized by the multifractal parameters:   ^=2,12=4, p^O.66, 

p2=0.33, r1=-.25, r2=0.37 

Figure 4-2a Devils Staircase Original Function 
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Wavelet 1-D Modulus Maxima 

Wavelet 1-D Modulus Maxima 

Figure 4-2a-c Multifractal Decomposition 1-D 
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xn+l N(p) 

0.33   P    0.66 

Figure 4-3 Multifractal Parameter Analysis 

Figures 4-3 shows the ratios of the spacing between maxima lines in figure 4-2c of 

the devils staircase followed by histograms of the number of maxima lines which fall into each 

category. As we can see from histograms of the modulus maxima graphs we are able to derive 

the exact parameters of the functional equations that created the Devils Staircase of Figure 4-2a. 

Thus we have a means of breaking apart a given one dimensional signal into its elementary frac- 

tal structure and then reconstructing it using iterated function system equations. Needless to say, 

this method is an extremely effective compression method since it uses the innate mathematical 

structure of a fractal to compress It also shows the implicit connection between wavelets and 

fractals. Unfortunately this method is much more challenging in two dimensions. We will now 

discuss a methodology for approaching this "inverse fractal" problem in two dimensions. 
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4.1.4 Two Dimensional Global IFS 

1 1 ^A 
In two dimensions the iterated function system    'equations have both x and y 

components for the reconstruction. Such functional equations take a somewhat different form 

since x and y axis can be coupled. Simplify the process we do not couple the axis and we thus get 

the two following equations as in the previous section and also assuming that we can approximate 

our signals f(x) and f(y) with a summation of versions of itself we have: 

f(y)= X^w.-/K(y-'/)) <4-U5> 
i = i 

A set of the above equations applied with probabilities p can be used to generate an arbitrary two 

dimensional function as was done with the devils staircase in 1 dimension. Now setting lp.5, 

12=.5,13=.5, m^O.5, m2=0.5, m3=0.5, r1=0.0, r2=0.5, r3=0.0, s1=0.0, s2=0.0, s2=0.5, p^O.33, 

p2=0.33,  p3=0.33 we produce the Serpinski triangle shown in Figure 4-4 
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Figure 4-4 Sierpinsky Triangle 

Unfortunately the task of finding the two dimensional functional analysis parameters is 

not as easy as for the 1 dimensional case since the extra dimension adds a geometrical order of 

magnitude of complexity. We now compare the implementation of multifractal global IFS to local 

IFS. 

4.2 Two Dimensional Shape and Texture Analysis 

Now with an understanding of the multifractal concept we turn to analysis of shape and 

texture in imagery. First we will examine how the two dimensional singularity spectra reveals the 

shape of objects in imagery. Then we will apply this singularity spectra to texture and show how 

the concepts relate to the local IFS model to ultimately improve the image compression process. 
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4.2.1   2-D Modulus Maxima Reveals Shape 

The Mallat basis set is based 14>43>44 on an approximation of the first derivative of a gaus- 

sian. Such a filter is shown to have very accurate edge detecting capabilities. In other words the 

edges detected at each scale are not significantly displaced from where the edge is physically 

located in an image. Such a property is very useful for image reconstruction as will be shown 

later. The biorthogonality property of the Mallat Transform significantly helps this process since 

it allows symmetric basis functions which also produce accurate edges. The Gaussian is also 

known to produce edges which are consistent and do not represent false edge points. Also the first 

derivative only produces one edge response per edges unlike higher order derivatives that produce 

multiple responses. 

The zero crossing representation 14'43 produced by the first derivative of the Gaussian is 

significant because it represents boundaries in 2 dimensional signals between different intensities. 

These boundaries are revealed by the modulus maxima edges. This modulus maxima edge 

method is among the most reliable way to detect edges since edges that might otherwise end due 

to low intensity can be regularized by chain coding and finding continuation of edges based on 

edge gradient values. Thus Mallat is able to exploit this fact for greater localization of edges 

across scales. This localization reveals the inherent self-similar structure in an image and our goal 

in the new wavelet fractal method is to exploit the modulus maxima representation to simplify the 

fractal compression process in a similar manner to what was achieved in the 1-dimensional multi- 

fractal case. 
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Chain Coded Segment #1 

4-5 Gradient-Based Chain Coding 

4.2.2 Lipschitz Alpha to Characterize Edges 

To positively identify edges, Mallat ^ makes use of the multiple frequency scales 

to see edge patterns over a range wavelet frequency bands . If these edge patterns appear over 

multiple frequency bands then an edge is positively identified. To characterize the self similarity 

between scales Mallat uses the Lipschitz criteria as described in equation 4.2.1. If we select some 

a where 0 < a < 1 and the function f(x,y) is uniformly Lipschitz over an open set of reals if there 

exists a constant K such that for all points (x,y) of this open set 

M  ./(x,y)<K(2y) 
a 

(4.2.1) 

Essentially the a criterion measures the intensity of the wavelet modulus as one 

progresses to successively higher scales (lower frequencies). If in a two dimensional signal an 

object has a small exponent, the intensity of the wavelet modulus maxima stays relatively con- 

stant over a number of scales and we have essentially a 'hard edge'   which stays the same from 

scale to scale whereas higher a indicate softer edges. Thus in 2-D low a can be used to character- 
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ize hard geometric objects in scenes which is an extremely useful property in removing noise 

from objects. Also low a indicates occlusions where there are multiple objects in a scene . Thus 

along modulus lines with low a we can separate two objects for identifying separate shapes. 

Because of the denoising capability we can also tune our algorithm to preserve only features of 

interest. 

In terms of our multifractal parameters we can define a with 

a = -£&J (4.2.2) 
log/ 

4.2.3 Fractal Dimension 

The Lipschitz alpha has been related directly to what is known as fractal 

dimension50. Pentland 54and others have shown that fractal dimension has shown promise in 

characterizing the texture natural objects from man-made and others have used fractal dimension 

to characterize the standard Broadatz texture classes.  Unfortunately such texture characterization 

is arbitrary since it did not have a precise mathematical method but is instead discussed in terms 

of box counting dimension. Thus we must find another means of characterizing fractal dimen- 

sion. 

As it happens, the Lipschitz alpha is a difficult quantity to calculate experimen- 

tally for characterizing texture since it does not characterize individual points in an image but sets 

of points instead. To characterize individual singularity points in an image we turn instead to the 

Holder exponent. The Holder exponent h(x) of a distribution/at the point x0 is defined as the 

greatest h so that/is Lipschitz h at x0, i.e., there exists a constant C and polynomial Pn(x) of 

order n so that for all x in a neighborhood of XQ, we have 
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\f(x)-Pn(x-x0)\<C\x-x0\h (4.2.3) 

4.2.4 Holder Exponent Revealed by the Wavelet Transform 

We can use the wavelet transform to reveal the Holder exponent in a signal. Differ- 

ent wavelet basis sets have different ranges of permissible Holder exponents which they can 

reveal. To study this phenomenon as described by Araeodo1, we slightly redefine the wavelet 

transform where 

W*> = «M^) (4-2-4) 

where a is a scale parameter a e SR+ and b is a real valued space or time parameter. We now 

define 

7*¥[5](ft, a) = (vb> a\s)L2(% dx) = a~~2\y{^)f{x)dx (4.2.5) 

where (.1.) 2 „ .   is the scalar product in L (% dx) . We can then derive that the local singular 
L (9v, dx) 

h( Y \ 
behavior C\x - x0\    ° of/around the point x = x0 when the scale a goes to 0 for a given Holder 

exponent h(x). On the other hand, if/were C°° at x0 on could prove that we would get a power 

law scaling exponent n^>n . 
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T^[f](x0,a) ~ a^ (4-2-6) 

In other words, the maximum Holder exponent that one can achieve in a singularity spec- 

tra is equal to the number of vanishing moments of the analyzing wavelet. Thus for the first deriv- 

ative of the gaussian as well as the Harr wavelet, both of which have one vanishing moment, we 

can achieve Holder exponents which are between +/-1. 

4.3  2-D Singularity Characterization for Texture 

Figure 4-6 shows the 39'54 process of computing the Holder exponent on two dimensional 

images. This exponent is first computed by calculating the gaussian derivative decomposition of 

the image and then taking corresponding pixels across high pass images between successive 

scales. For each pixel we compute a graph of the slope of the wavelet coefficient magnitudes 

across scales. When the log (base 2) of the slope across scales is computed, each resulting slope 

is entered into a new image at the pixel position it represents. 
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The result is called the singularity spectra. An example of the singularity spectra is computed for 

the star image shown in Figure 4-7. 

The result is that specific region extraction and object detection can be done with the sin- 

gularity spectra by specifying Holder exponents in certain ranges. For instance, Holder exponents 

with negative values correspond to hard edges such as the edges of buildings in an image whereas 

positive Holder exponents correspond to naturally occurring phenomenon such as vegetatation, or 

cloud formation. 

In the image of Figure 4-7 we are able to extract the shape of a planet from a very noisy 

saturated background simply by the fact that the planet has very hard fixed edges in the range 

from -.21 to -.2. If we were to use a different basis set having two vanishing moments such as the 

mexican hat function, we could reveal in a broader range between -2 to 2. However, this 

basis set also reveals many other unwanted features in the image for a similar alpha range 

so its detection capabilities are severely limited. The singularity spectra are an extremely use- 

ful tool in many applications 39'54 including synthetic aperature radar analysis, downlooking sat- 

ellite surveillance, and texture analysis. Recently similar analysis has been performed to 

characterize Broadatz texture classes as well. 
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Figure 4-7 Planet Detected in Singularity Spectra 
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4.3 Analogy of Multifractal Global IFS to Local IFS 

Now with the concept shape and texture as they apply to the multifractal we may now bet- 

ter understand some of the concepts of the local ifs which has been used to compress imagery. 

There are essentially three parameters needed for local fractal reconstruction as was discussed in 

Jaquin and Fischers's techniques and indicated in Equation 2.3.1 indicated below as Equation 

4.1.1. 

f(x) = Tf(x) = ULf(x) + b = QLf(2x) + b (4.3.1) 

These parameters are spatial location and orientation symbolized by the spatial transfor- 

mation QL analogous to the displacement parameters r and s in the multifractal case of equations 

4.1.14 and 4.1.15. Note, however that the local IFS QL represents a block based operation 

between two scales where the r and s parameters represent a point operation between all scales. 

Secondly there is b the intensity transformation from range to domain block, analogous to the 

probabilty p in the 1 dimensional multifractal case. Again realized that b is an intensity transfor- 

mation between two scales where p is an intensity transformation associated with r and s between 

all scales. Finally, the scale separation parameters, 1 and m are a power of 2 since we are using 

Mallat's dyadic decomposition. 

Note that the local IFS technique has more flexibility than the global case since the map- 

ping between frequency scales can be arbitrary where the global case has a fixed relationship 

between all scales. Thus the global case applies to only certain naturally occurring fractal objects 

such as the EFS fern or Sierpinsky Triangle. Note, as previously stated, it is not feasible to draw a 

direct mathematical relationship between the multifractal and local IFS parameters since the mul- 

tifractal parameters represent pointwise transformations and the global ifs parameters represent 

block transformations. Nonetheless, the analogy will be useful when studying shape and texture 



relationships later in this Chapter 5. 
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Local IFS Mapping 

Scale 3 

Mallat Modulus 
Maxima X-Form 
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Attractor = Reconstructed Image 

Global IFS Multifractal 
Reconstruction 

r, s, 1, d - geometric 
mapping between 
scales 

p - intensity 
transformation 
between scales 

4-8 Local vs. Global IFS Mapping 

Thus now in retrospect we can see the implicit relationship between shape and texture in 

the multi-fractal model. Recalling that the multifractal maps the lower frequency information to 

reproduce the higher frequency information in an image, lets assume we have an object with a 
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given shape outline in an image. This object may or may not be generated by a fractal process. 

Whatever the case, the object may also have some form of texture associated with it. If we assume 

an implicit multifractal equations associated with the object, then the gross edge outlines of the 

object are iteratively mapped back onto the object to reproduce its internal detail and texture. If 

so, the wavelet will will have a unique mapping from shape to texture. If the object is not fractal 

then the mapping will be an approximation. Thus, we are now prepared to develop a fractal wave- 

let method which has the basic elements of shape and texture as its fundamental components. 
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The basic principle of the fractal, as we have seen in preceding sections, is that of an 

object whose shape resembles that of its smallest component and there is a spatial mapping which 

defines the relationship between the objects overall shape to the smallest component shape. Now 

with Mallat's modulus maxima technique we have a means of defining shape at any given scale. 

The multifractal mapping represents the transition from an objects shape to its texture. This tex- 

ture can be defined in terms of fractal dimension which in wavelet theory is the decay in energy 

of wavelet coefficients across scales. With this conceptual model we define the wavelet fractal 

method of image compression. 

The first thing to remember when designing a fractal compression algorithm is that few 

objects that occur in imagery are generated by a natural set of fractal equations. Thus we are 
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forced to approximate objects in imagery with the fractal model. For this reason we will choose 

the local iterated function system to reproduce a given part of an image rather than a global iter- 

ated function system since the local iterated functions system has more flexibility in its construc- 

tion. 

Looking at all models of fractal encoding we realize that the trend is to reconstruct an 

object from its low frequency components to its high frequency components. In the wavelet frac- 

tal case this method approximates wavelet coefficients across scales. This model fits with the frac- 

tal method since low frequency corresponds to large scale. We also know that the Mallat 

multiresolution decomposition happens in diadic scales which, in the Haar basis set case, corre- 

sponds to blocks which are dimensions are powers of 2 in size. Thus we shall keep with this 

framework for the Gaussian derivative basis set. Putting this in the context of the wavelet trans- 

form we re-write equation 2.3.1 by inserting equation 3.4.24 as: 

W   •_ xf{x,y) = QLW2Jf(x,y) + b (5.1.1) 

This equation is analogous to equation 4.1.9 for the global ifs multifractal case. Thus we build our 

reconstructed image from the low frequency or large scale images first and then eventually recon- 

struct the final image. Note that his process use the wavelet decomposition to explicitly separate 

scales by frequency. Thus for a given block size we only have information that is fits that particu- 

lar scale. 

5.1.1  Modulus Maxima Decomposition 

The first step in the wavelet fractal method is to reduce a given image by the Gaussian 

Derivative modulus maxima technique and obtain the wavelet scales W shown in equation 5.1.1. 

We recall that the gaussian derivative modulus maxima technique in two dimensions decomposes 

an image into three parts. A lowpass image defined be equation 3.4.19c   as 
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S  :,if(x,y)       the modulus maxima highpass magnitude    M f(x,y) and argument 
2J 

images    A f(x,y)       . The results of this decomposition are shown for three scales on Lena 

below. It is important to note that in the Mallat decomposition that the scales are not subsampled 

as in standard wavelet decomposition so for range to domain block matching we subsample the 

higher scale by 2 as in standard fractal compression with no averaging process since each scale is 

naturally filtered by the wavelet. 

Another by product of the Gaussian derivative wavelet decomposition is that it natu- 

rally organizes the features in an image for matching thereby restricting the domain to range 

blocks that get chosen for a particular scale, and thus makes the domain to range block matching 

process both accurate and fast. This is a significant improvement of Jaquin and Fischer's tech- 

niques of fractal compression. 
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Original Image 

Lowpass Highpass Maxima Highpass Argument 

5-1 Modulus Maxima Decomposition Scales 1-3 
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5.1.2 Domain to Range Block Matching 

To find a mapping QL from shape to texture for a particular object we need an efficient 

mechanism for determining a mapping. If we recall from section 2.3 range and domain blocks in 

traditional fractal encoding are obtained by subsampling the image and then matching each range 

block to every possible domain block in an image. Needless to say this encoding process takes an 

extremely long time and is one of the major drawbacks of traditional fractal encoding. 

5.1.2.1 Range to Domain Localization Based on Shape 

If we recall the concept of a fractal we remember that it is the same shape no mat- 

ter what scale the user observes. Looking at the 2-dimensional Gaussian derivative basis set we 

see that the modulus maxima lines give us a natural indication of the object's shape as was indi- 

cated in Chapter 4. Thus, if we have a natural fractal object, we should be able to map the shape 

of the object into its smaller details via our local ifs block transformation process. This mapping 

process also typically follows the natural cone of influence of the wavelet scale decomposition of 

objects. 20 We will see how this process also speeds up encoding since it reduces the domain 

block pool and thus the matching time. 

To begin the object based compression process, we must determine the boundaries 

and interior of an object. The modulus maxima values provide the natural boundaries of objects 

in a given scene for a particular scale. After choosing a scale at which the object of interest is 

located we take the modulus maxima values associated with that object and chain code them 

together based on their magnitude and gradient direction.44 Once we have a set of modulus max- 

ima values associated with a particular object we determine if these values form a closed curve. If 

they do we fill the interior and this becomes an object mask. If not we connect the ends of the 

curve with a straight line and then fill the interior of this curve for the mask. The process is shown 



below in Figure 5-1. 
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Object Mask Scenarios 

Closed Curve Open Curve Artificially Close Curve 

Line Segment 
Between Ends 
of Open Curve 

Figure 5-2 Object Shape Mask 

If we encode using the object shape mask we select the range and domain blocks 

associated with that particular mask.  This process makes intuitive sense, particularly if the object 

is generated by a self similar process such as a fern or a cloud. The modulus maxima mapping 

process in the case of a natural fractal would simply define how the object iteratively maps onto 

itself. Unfortunately since we are dealing with non-fractal objects in most case, and our block 

mapping procedure is restricted to dyadic scales with linear, square block transformations we can 

only approximate most natural fractals. Thus the block mapping process is at best a compromise 

between ease of implementation and exact representation. 

An additional advantage of the self encoded object is that we can decode it individ- 

ually apart from the overall image. This fact will later be extremely useful for image and video 

editing purposes. Also it offers the new possibility of object scalablity to reduce the overall bit 

rate of data transmission for a compressed file. 

In some cases when objects are inherently non self similar restricting the domain 

block pool can result in reduced reproduction quality of an object. In the case where the best pos- 

sible accuracy is required we can still fall back on selecting range and domain blocks from any 
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part of the image but in most cases this is not necessary. The object domain pool often gives 

results as good as those for the domain pool of the entire image. It also turns out that we can still 

save on bits in our encoded representation of the image with the b offset parameter since in the 

case of on object with constant texture the mapping between scales is the same and within an 

object we select blocks which have approximately the same b parameter. Also by having range 

and domain blocks naturally organized by modulus maxima lines we have a natural means orga- 

nizing compressed information by shape and as we shall see texture. This fact is a significant 

improvement over the zero-tree method since it combines shape information as a natural part of 

the compression process. Examples of self encoded objects are featured in Appendix A. 
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Self Encoded Object Across Scales 

Scale 3 

Object = Attractor 

Spatial Mapping 
Based on Gradient 
Angles 

5-3 Range to Domain Self Mapping 

Thus, a direct analogy between the multifractal analysis and wavelet fractal encod- 

ing method may be drawn. The the object instead of the entire image is the attractor. The map- 

ping between scales to reproduce a given object is simply designed to minimize distortion in the 
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reproduced object and not necessarily reveal the underlying physical process. However, knowl- 

edge of this technique improves encoder performance by speeding up the block matching process 

and reducing the bandwidth of compressed information if a user wants only a specific object from 

a scene rather than all the objects and background. 

5.1.2.2 Modulus Maxima Gradient Matching 

To simplify the process of range to domain block matching thus finding the mapping for 

QLin equation 5.1.1 we classify the range and domain blocks by summing the blocks modulus 

maxima magnitude and angle parameters since these gradient magnitude and angles are accurate 

indications of energy and direction within each block. Jaquin used a similar procedure in his clas- 

sification of blocks in traditional fractal encoding. 37 by applying the centroid operator to each 

block. Now with Mallat's wavelet decomposition energy direction is already indicated as a natu- 

ral part of the process. This block summation procedure is described for both angle and modulus 

values as is shown in equations 5.2.1 and 5.2.2. Note that Norm is the number of nonzero modulus 

or angle values in a block 

n      n 

M   . = k= U=l  (5.1.2) 
27 Norm 

n      n 

2 lyw 
a   , = k=ll=}  (5.1.3) 

2-/ Norm 
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We then apply this same block matching procedure to the possible domain blocks at each scale. 

For domain/range block matching processes we use the difference of both angle and modulus val- 

ues between successive scales to achieve domain to range block matching. The block pair with 

lowest combined mdif and adif are selected as the best matched blocks rather than recursively 

differencing every pixel in every possible range and domain block. 

(5.1.4) mdif = 

adif = 

m   .    *-m   ■ 
2J~l       V 

a   .    t -a   . 
2J~l      V 

(5.1.5) 

Thus the operation of block classification thus becomes a lookup table procedure 

rather than an exhaustive matching process. Both range and domain block position in the image 

are stored. The block rotation value is also determined by applying the appropriate flip that makes 

the block gradient angles match most closely. 

Until recently one of the greatest drawbacks to fractal and fractal wavelet compres- 

sion has been overwhelming number of computations necessary to compute the range to domain 

block mappings since the process was performed by least mean square differencing for every 

range to domain block pair for multiple scales. Our matching technique dramatically reduces the 

number of calculations to compute a compressed image. The number of calculations is 

0(N log(N)) (a given image has N pixels) which is a significant improvement over existing frac- 

tal wavelet techniques   which can be as high as 0(N3log(N)) in complexity. Thus this method is 

a significant improvement over the Davis and Rinaldo/Cavagano9 methods of fractal wavelet 

compression. 
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Figure 5-4 Gradient Angle Matching 

5.1.3 Intensity Offset Determination 

In order to determine the intensity offset or b parameter from Equation 5.1.1 between two 

scales we find the range and domain block pairs positions determined by gradient angle matching 
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and then subtract the lowpass blocks which correspond to these positions. Thus within a given 

range block where the dimensions of the domain and range block are range {x:xl<x<x2} and 

{y:yl<y<y2}. 

xl    yl  r d d \ b = I £ [s j+ittx>y)-s jf (*.y)J (5-1-6) 
x = x\y = yl      *• *• 

This strategy makes sense since at each stage of the reconstruction process we are using a given 

lowpass image to reconstruct the information in the next highpass band. The spatial position 

information via range to domain block matching is computed with the highpass modulus maxima 

bands and all parameters necessary to complete the calculation of equation 5.1.1 are present. 
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Figure 5-5 Dyadic Maxima Fractal Block Matching 

5.1.4 Zero-Tree pruning 

Essentially the fractal mapping process amounts to approximating successive 

wavelet frequency scales with information from previous scales. This decay across scales 

is known as texture in the sense of fractal dimension. Thus as was stated before the fractal 

mapping constructs its texture from its shape. Shapiro noticed that the natural decay of fre- 
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quency between scales can be exploited to optimize the compression process by eliminat- 

ing wavelet coefficients that fall below some threshold. 

This pruning of wavelet coefficients can be adapted for the fractal wavelet com- 

pression method. We can show that using the modulus maxima to determine the range to domain 

mapping can result in a natural quadtree pruning process. Since the edge detection process natu- 

rally compresses the spatial information to the maxima locations and these maxima are in turn 

thresholded, blocks with maxima energy falling below a certain threshold are naturally eliminated 

thus improving the overall compression process. Others such as Davis 20'    have included a rate 

distortion optimization routine for this process although our technique is computationally faster 

and has comparable compression performance with rate distortion optimized code. Once Zero- 

Tree pruning is performed we run-length encode range and domain information at each scale. 
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Figure 5-6 Dyadic Maxima Zero Tree Pruning 
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5.1.5 Color 

For flexibility in compressed domain color storage and compressed domain object manip- 

ulation we transform RGB images into YRB images in the compressed domain corresponding to 

the follow color transformations. For luminance we have the transformation Tr 

Y = 0.177Ä + 0.831G + 0.011B 

To return from luminance to RGB we have Tc' 

(5.1.7) 

G = 0.1355+ 1.23G +0.227? (5.1.8) 
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Figure 5-7 Color Image Transformation 

Overall we decompose the image into three separate color bands and each one of which has a 

separate multiresolution modulus maxima analysis performed on it. An overview of this entire 

process is featured in Appendix A. 
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5.2 Image File Organization 

With the great amount of information obtained as the result of the wavelet analysis process 

we must find an efficient way to characterize this information in the compressed domain. We will 

now develop a means of organizing shape, texture, and color in the compressed file so it is easily 

accessible to the user in its compressed form. 

5.2.1 Object Edge Blocks & Signatures 

Because the range blocks are chosen basis on the modulus maxima edge formulation and 

their positions are stored we can isolate edge blocks from interior blocks in the compressed 

domain. From these edge blocks we can recover the shape outline of each object through a tech- 

nique known as a signature. A signature is computed by finding the geometric center of an object 

and then making a plot of the angle vs. the distance to the edge from the geometric center. This 

technique is extremely useful since it is invariant to scale and can be adjusted for rotation in 2 

dimensions. 32 The only requirement for this technique is that it have reliable edges information. 

Figures show the signature matching process. Signatures may be matched by simple LMS differ- 

encing algorithms or more sophisticated correlation algorithms for the case of rotated objects. The 

following figure shows the signature creation and matching process. Example signatures are 

shown in Appendix A. 
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5-8 Signature Creation and Matching 

5.2.2 Object Texture Feature Vectors 

Not only can the modulus maxima shape mask be used to restrict domain 

block search but it can also be used to segment relevant texture information about an 

object. To define the texture within an object we create the object texture mask multiply- 

ing a binarized copy of the shape mask with the Holder exponet map of an image. The 

interior of this mask corresponds to the profile of the texture within a given object. 
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5-9 Object Texture Mask 

Within a texture mask we can compute the average texture as shown below. 

This is known as the texture or Holder vector for that object. 

N      N 

I X HU y) 
H"—ATäT  

(5.2.1) 

5.2.3 Object Color Feature Vectors 

Also the Red, Green and Blue partitions of a color image may also be segmented 

using the object shape mask as is shown below. Thus we can associate color with given objects in 

an image. 

Blue 
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Figure 5-10 Color Mask 
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Color feature vectors Vc   and the associated average colors  (R, G, B)    within an objects mask 

are described below: 

AT      N 

I   lÄ(*fy) 
R = *=Qv=Q (5.2.2) 

N-N 

N     N 

S I AU y) 
G = ^ = Qv = 0  (5.2.3) 

N-N 

N     N 

I X *U y) 
R = ^ = Qv = Q (5.2.4) 

VC = (Ä,G,5) (5.2.5) 

5.2.4 Object Compositing by Feature Vectors 

Quite often edges that define objects do not form closed curves because of varia- 

tions in image intensity, occlusions or other image artifacts. Thus signatures do not 

always reflect the true shape of an object. To combat this problem we can group objects 

together. Objects with similar feature vectors can be grouped together as one object if their rela- 

tive positions are near each other. This operation can be user defined or automatic depending on 

the desired information in the composited objects. An example of this process is shown in 

Appendix A 
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Such object compositing can be useful for providing more accurate signature 

information since quite often there are gaps in the chain coded block edges which can be filled in 

with texture and color information as is shown below. 
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Figure 5-11 Object Grouping 

5.2.5 Feature Vector Matching Process 

To compare shape, texture and color of objects within the compressed file 

we need simply compare the associated vectors. This greatly increases the speed of com- 

pressed object database matching. The matching process is also quite straightforward 

since vectors can be matched by simple LMS differencing or correlation in the case of 

shape signatures. A graphical overview of the matching process is shown in the following 
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figure and Appendix A. 
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Object 3 
Object Texture 
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Object Shape 

da    =    HMOi "  HMOj 

dCv   =  Vcoi " Vc°J Color 

*peak : 

Figure 5-12 Signature and Vector Matching Process 

5.2.6 Stored Image File Format 

Combining the reorganized wavelet fractal compressed file information we have he 

object based wavelet fractal file. This file contains all the information necessary to interpret 

shape, texture, color, position and orientation of objects in a scene. Images can be rendered pro- 

gressively, objects can be rendered individually, objects can be rendered in black and white or 

color, and every object has shape, color, texture, position, and orientation information associated 

with it. Thus such an image file is ideally suited for content based inquiry applications as well as 

interactive video editing and in an extremely low bit rate environment. Formulas for object 

moment calculations are shown in Appendix B. An example compressed image file is shown in 

Appendix A 
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Figure 5-13 Image File Format 

5.3 Decompression 

Because our frequency mapping proceeds from low to high frequency our reconstruction 

process simply proceeds by iterating our compressed parameters on the low pass image. For each 

scale the iterative procedure forms the approximation of the next higher lowpass image and is 

then lowpass filtered and the process is repeated. This process thus removes all blocky artifacts in 

the image while still revealing the image features. The above technique leads to a direct recon- 

struction method based on the fast decomposition process described in section 3.4.3 
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j=J 
while (j > 0) 

j =j -1 
endwhile 

QL^S dj f*(Üj+l,Üj+l) + b (5.3.1) 

The stages of this reconstruction process are indicated graphically as follows. 

Domain Block Qu 

Range Block 

+ b N 

UN 
r 

/(*, >0 

*HW 

^ 

5-14 Direct Reconstruction Technique 

Thus in the compressed file our first step is to upsample compressed lowpass image and then use 

the stored fractal local iterated function parameters on it to reconstruct the original image building 

each new scale from the previous lowpass image. The image can be restored to any desired resolu- 

tion simply by stopping the reconstruction process at a given scale. This iterative procedure is 

only order O(N) where N is the number of image blocks for all scales and thus can be performed 

real time with no special hardware. Thus this approach is a significant advance over the Mallat 

alternating projections reconstruction method because it is extremely efficient in its reconstruction 
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speed. The reconstruction stages for 6 scales are shown in the following figure. 

Level 6 Level 5 Level 4 

Level 3 Level 2 

Level 1 

5-15 Multiresolution Fractal Wavelet Reconstruction 
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Thus our compression process is progressive or spatially scalable and is well suited to network 

transmission. For low bandwidth systems lower resolution copies of the image are transmitted 

first so the user can see the image before the entire file is transmitted. This fact will be extremely 

useful in our video compression technique. We can see in the decompressed versions of Lena that 

in fact most block artifacts are removed from the image and we have a very high quality repro- 

duced version of the original image. A graphical overview of the decompression process is fea- 

tured in Appendix A. 

5.3.1 Results 

Figures 5-16 through 5-17 show the test result of transforming the images of Lena 

with the multiresolution transform in comparison with other popular compression methods. In 

figure 5-18 we see that the multiresolution technique has higher PSNR for a given compression 

ratio than pure wavelet. Our method falls slightly below zero-tree compression but in general fol- 

lows the same compression numbers for Davis's spline wavelet fractal approach. At low com- 

pression ratios our technique is equal to or slightly below most of the compression techniques in 

PSNR. At 16:1 our wavelet fractal approach surpasses most conventional fractal and DCT meth- 

ods and maintains a relatively flat PSNR curve where other methods tend to decrease in reproduc- 

tive quality 9.   This is due to the fact that by filtering at each decompressed scale we remove 

artifacts which appear in linear transform techniques as well as fractal techniques when the num- 

ber of coefficients or fractal blocks decrease. 
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Compress Ratio: 4:1 8:1 16:1 32:1 64:1 

Bits/Pixel: 2.0 1.0 0.5 .25 .125 

PSNR(db): 38.6 36.7 35.8 33.5 31.7 

Figure 5-17   Lena at Various Compression Ratios Clockwise 1:1, 8:1, 16:1, 32:1 
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Chapter 6 

Video Encoding 
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6.3 Decoder Ill 

6.4 Scalability  112 

6.5 Results 112 

6.1 Object Based Video Encoding 

As a result of the image compression method we have developed, we can apply the same 

principles to object oriented video coding. Most video motion estimation techniques rely simply 

on motion as a way to define objects in video. However, given our concept of shape- to- texture 

mapping we have a means of defining a video frame by its shape, texture, and color in one inte- 

grated approach and then using optical flow 61 to define object-based motion. 

First17 we know that for object-based coding to work effectively, and improve over 

strictly block-based coding, only a few objects in the scene are moving, object motion is domi- 

nant, and moderate, the moving objects cover 40-60% of the image area, and no camera motion 

occurs. For the general crossection of video we need to have a technique which can handle video 

favorable and unfavorable to object video. 

6.2 Optical Flow 

For video compression we have an effective means of detecting motion of objects 

in the video stream. Sundeswaran 67 has shown that one can compute optical flow from Mallat's 

edge detected imagery. If the image intensity function is represented by I(x,y,t), one can prove that 

the two components of the optical flow (Vx,Vy) satisfy the optical flow constraint equation 6.1.1. 

dx   x   dy   y       dt 
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At a fixed time t, instead of solving the motion constrain equation for the image 

I(x,y,t), we can first smooth this image with the smoothing function 0(x,y) dilated by 2J. This 

reduced the computational noise when estimating partial derivatives with finite differences. We 

thus have equation 6.1.2: 

SE<Wv*+35<WVy = 4(7<8V (6L2) 

This equation allows us to recover the normal component of the flow from the 

wavelet transform at the scale 2j Instead of computing this normal component at all points (x,y) 

we compute it only at the locations were the wavelet transform modulus is locally maximum. 

This saves significantly in computational complexity over traditional optical flow computation 

techniques. 

Thus for each scale we compute the optical flow. Since each dyadic scale has a 

particular block size associated with it we take the average optical flow associated with each NxN 

block as we did the average argument and modulus maxima as is described by the following equa- 

tions. 

N     N 

S IVM y) 
y-   _  X=0V = 0 (6.1.3) 

■* Norm 

N     N 

V~ = * = Oy = o  (6.1.4) 
y Norm 

Optical flow associated with small blocks is associated usually with background 

texture motion such as moving water or camera panning where optical flow associated with larger 

blocks is associated with object motion 



108 

Frame 1 Frame 2 Frame 3 

i 
□ 

Frame 1 

Predictive Coding Only Around 
Blocks With High Optical Flow 
All Other Transmit Once 

Track Motion in Individual 
Features 

Frame 2 Frame 3 

Figure 6-1 Video Sequence Coding 

6.2.1 Frame Structure 

In our current implementation we have only intra coded or I frames and forward 

predicted or P frames. Within this structure I frames are self encoded as normal image frames and 

optical flow is computed between an I frame and sucessive P frames. This model assumes there is 

no significant scene changes between two I frames. 
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Figure 6-2 Frame Structure 

6.2.2 Background 

For static background characterized by average optical flow in blocks below a cer- 

tain threshold we do not retransmit these blocks between frames. Moving background this is sim- 

ply treated as an added object. Individual block motion vectors are transmitted to update 

background and all background blocks are recoded if motion is above a given threshold. Since this 

process is done in a multiresolution fashion, smaller detail changes may be added to update fine 

texture while lower resolution information remains constant. Uncovered background is totally 

recoded as if it were part of an intra frame, as are 3 dimensional changes in objects and new 

objects that enter a scene or scene changes. Such changes are characterized by optical flow above 

a given threshold which is set based on desired video quality vs. bit rate requirements. 

6.2.3 Moving Objects 

As presented from Chapter 4 we define shape at a particular scale j by taking the chain 

coded outline of an object at a particular scale and forming a mask. This wavelet defined shape 

technique is simply a by-product of the modulus maxima decomposition. We may apply this same 

technique to the optical flow information from the modulus maxima computation. A video object 

mask is created in the same manner as other objects. A binary shape mask is multiplied by the 

optical flow x and y images as is shown below. The average flow within this object thus character- 
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izes the average shape based motion of the object. 

Xflow 

Yflow 

Fig 6-3 Motion Object Mask 

This object based format can result in significant bit rate improvements over transmitting 

individual frames. The optical flow format, by concentrating motion into different frequency 

scales does an excellent job of characterizing motion which might occur within and object. For 

instance the external gears of a moving train would be characterized by one scale while the overall 

train engine itself would be characterized by another. Each would have its own motion but one 

object could be contained within the other at a different scale. 

It also interesting to note that such block based optical flow analysis can give us rotation 

and three dimensional information about objects5- In a rotating object the edges will rotate faster 

than the center and thus depth may be derived via motion vectors. Also rotation may derived with 

concentric vectors around a central axis. A graphical overview of the video compression process 

is shown Appendix A. 
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6.2.4 Object Integrity 

In order to determine whether an object has changed significantly between frames so it 

should be updated we can use the associate feature vector with the object. If the overall shape of 

the object changes we can compare Oth moment or signature profile. If the angle of the object has 

changed we can observe the 2nd moment or profile of the flow vectors at the edges. For 3-D rota- 

tion we can look at the flow at the edges of the object. If internal details of the object have 

changed we can look to average texture information or flow vectors at smaller scales. If there are 

significant changes the object is totally re-coded. Thus the object information for compressed 

domain query also improves the motion estimation process. Also compositing may be used to 

improve object quality. A pictorial example of this process is shown in Appendices D-2, D-3, 

and D-4. 

6.2.5 Video Object File 

The video object file has the same capability as the image file with the addition of an opti- 

cal flow field to track individual object blocks for motion in P frames. In I frames all range and 

domain block information is transmitted.  As in the image case three separate frames are encoded 

after a color transformation has been performed. One for luminance, one for the red frame and 

one for the blue frame. An example video file is shown in Appendix A. 

6.3 Decoder 

As with the fractal video system the decoder is efficient, needing no special hard- 

ware for near real-time decoding. Only those blocks which change and are not part of 

existing objects need to be retransmitted; thus the decoder only needs to update those 

blocks that completely change. Because the user can isolate self encoded objects these 
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can be transmitted individually so that video editing functions may be performed without 

special human intervention. 

6.4 Scalability 

This intra frame process to a new set of scalabilities in image transmission as shown in 

Appendix A . The first is spatial scalability - low frequency scales are transmitted first and then 

higher frequency information follows as new scales are added. Secondly we have temporal scal- 

ability with P frames being skipped of the video stream depending on the speed of the connection 

and the amount of temporal resolution needed. Also we have object scalability where only indi- 

vidual objects are transmitted or just their motion vectors. Finally, we have color scalability 

where black and white luminance information or full color can be transmitted depending on user 

requirements. 

Appendix A show how the above system can be integrated into a distributed networked 

content-based query system. Thus we may manipulate individual objects by shape, color, texture, 

and motion in video sequences. We may database search on individual frames and post process 

video to modify content. The issue of how to design a network to optimize this search process is 

still an open topic but the evolution of such tools as JAVA for object oriented programming is 

greatly increasing the ease of this process. 

6.5 Results 

The results of our study are shown as follows. We attempted to maintain the same 

PSNR within the taxi sequence shown as the still encoded images of Lena. In this compression 

study motion was computed simply by computing the flow between an I and given P frame where 

I frames occurred every 5 frames. Future studies will examine in detail object oriented motion 

compensated video. Factors that decrease the compression ratio achieved include camera jitter, 
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photon noise within pixels, and camera non-uniformity. Upcoming studies will focus on removing 

such image distortions to obtain even higher compression and lower overall picture noise. The 

prominent spike shown in these curves is the result of transition from an intra to inter coded frame 

as well as a large truck entering the scene and a car turning away from the camera in 3-D. 
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Taxi Sequence Frame 1 Taxi Sequence Frame 2 

Frame 1-2 Optical Flow X Component Frame 1-2 Optical Flow Y Component 

Reconstructed Taxi Frame 1 Reconstructed Taxi Frame 2 

Figure 6-4 Taxi Sequence 



40 

35 

T3 

Pi 
c     30 
o 
e/j 
C/J 

O 
U     25 

20 L 

T 1 1 1 1 r 
PSNR vs Frame Number 

I I | I      '    " I" 

-I * ■ 

10 
Frame 

15 

115 

Compression Ratio of Above Video Frames 

10,000 b      ' i      i      i      i      i      ■      i      i      ■      ■      ■      • 

- 

■ä 1-ÖD0 
1 1 

Cfl - ~ 
-4—> 

X) 
bß __ 
O 

■2   0.1 DO 
-» • ^™ . —       »   ■   W_~"*   •   *    -                                                       i    ^_^—   *   ^rmm^   *    .^    •    ««in HI    n    — —   *   —* 

™ _, 
a ~ _ 
& - ._ 
§ V . • -vv                                        . • *^ - 

*.   S          ■. s          •.  - 
»a 
U 
a 0.010 ~ "= 
e - 
o 
U - - 

0.OD1 i     i ■        ■ -   -l ■ ■ ■ ■ 1 1 1 1 1- 

Frame 
10 15 
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Chapter 7 

Conclusion 

The fractal-wavelet method offers a significant improvement over existing tech- 

niques because of its unified approach to image analysis and compression. The fractal wavelet 

method itself gives naturally higher compression and better reproductive quality than conven- 

tional DCT-based methods. By its wavelet frequency division process, it gives a more natural 

organization to existing fractal methods and allows more accurate block matching. As a result of 
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its modulus maxima shape representation it gives a shape to texture content-based approach to 

compressed file organization. By its gradient based block matching technique it is significantly 

faster than existing wavelet-fractal compression methods. Because of its progressive multiresolu- 

tion frequency decomposition method it gives faster and more efficient means of image decom- 

pression than conventional shape-based wavelet techniques. And by efficient organization of 

content via shape, texture, color, and motion it produces an efficient object-based video compres- 

sion method. 

The preceding wavelet-fractal method for image compression offers a new frame- 

work for data compression and analysis. This model will hopefully serve as a guide both to future 

research as well as provide a useful technique for image and video compression for immediate 

needs. It holds the promise for even higher compression ratios with greater spatial resolution and 

increased speed. Also, because of the well known wavlet fractal signal modelling of natural phe- 

nonmena, it offers the possibility of linking physical modeling to existing compression tech- 

niques. Thus, the wavelet fractal model should benefit researchers in a wide range of disciplines. 
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Appendix 
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A3 Wavelet Fractal Database Server. 137 

B.Moments 140. 

A. Image and Video Analysis Network System Overview 

With the unique capabilities of the wavelet fractal video method the technique lends itself 

well to an application on the existing World Wide Web. The high compression capability coupled 

with the flexibility of object based video and pattern matching are uniquely suited to a Web-based 

system. Figure A-l shows an over view of how such a system would be organized on the web. 
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Figure A-l Network Wavelet Fractal System 
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A.l Clients 

There are essentially three client applications - these applications are exported to the user on run 

time of a Web browser currently through the Java/HTML programming languages. Once estab- 

lished on the client these applications fulfill three roles. The feature extraction software provides a 

flexible interface for users to read in an image from any server on the web and convert it into the 

elemental feature vectors of shape, color, and texture as is done in the preprocessing steps of the 

video. In this way , various objects in any image format such as GIF and JPEG can be matched 

against compressed images in the wavelet fractal database for comparison. Secondly the image 

and video display allows users to display compressed imagery and video in complete or object 

form either from stored files or live imagery. The decompression technique for images is shown 

in Figure A-2. 
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Finally the pattern matching interface allows the user to display individual objects in the video 

scene and match them against shape color and texture vectors of objects in the compressed video 

database interactively - controlling the relative weighting of the shape, color and texture matching 

vectors Objects may be removed or added as is shown Figure A- 3. 
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Original Objects 

Self Encoded Objects 

Figure A-3 Self Encoded Object Image 
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Once the desired objects are selected shape information such as the signatures of Figure 

A-4 are used to match against the compressed database information at the wavelet fractal database 

server which will be described later. Additionally the database object matching interface may cre- 

ate composite images either automatically or with user assistance as is shown in Figure A-5 
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A-4 Signatures of Objects in Figure A-3 
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A.2 Servers 

Like the clients there are three servers. Each server is suited to its particular video task. 

For instance the image and video compression server usually consists of a video camera with spe- 

cial purpose hardware designed to transmit video to the Java Client. The Wavelet Fractal database 

sever on the other hand is usually a large multiuser computer sometimes with many processing 

nodes designed for feature vector query. 

A2.1 Image and Video Compression Server 

The image and video compression server is designed to transmit Java software to clients 

and to compress imagery and video. In many cases this operational can be contained in one porta- 

ble PC so that many sources of imagery and video may be provide live from multiple locations to 

the client software. 

A2.1.1 Image Compression 

The color image compression operation is performed on the server as shown in Figure A- 

5. The basic color compression compresses Y, R, and B color planes separately as shown in a mul- 

tiresolution framework. The resulting image file is shown in Figure A-7 This content indexable 

file is easily referenced by the database matching system. 
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A2.1.2 Video Compression System 

The image and video server also contains the video compression system. This the video 

compression process is depicted in Figure A-8. The Y,R, and B fields are computed separately and 

the optical flow between these fields is used to determine what compressed blocks to transmit. 

This function be performed non real time or real time with a camera interface and special purpose 

hardware. A-9 shows how a typical video sequence is broken into its component shape color and 

texture fields for content based query and object video. This process is then illustrated with actual 

imagery in figures A-10 through A-l 1. Finally in Figure A.-12 the compressed file format is illus- 

trated. What is clear in the image compression process is that there is a great deal of flexibility 

with the wavelet fractal technique in terms of adapting to a specific network bandwidth. The spa- 

tial, temporal, object, and color scalable features of this compression system make it practical for 

use on the low bandwidth World Wide Web. 
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A3 Wavelet Fractal Database Server 

The wavelet fractal database server servers two roles. First it is a repository of data in the 

wavlet fractal compressed data format. Secondly, it performs searches across vast numbers of 

compressed files very efficiently for object and image matches. This role is nicely filled by some 

of the large supercomputer architectures with multiple processors, large network capacity, and 

large disk capacity. The process of creating and submitting a query with either the feature or data- 

base matching interfaces is shown in Figures A-14. and A15 . Many methods for matching vectors 

may be considered including neural networks. 
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A    mag 

B    ma§ 

/V^- 

C    ma§ 

Angle 6 

Angle 9 

W^ 

Angle 9 

mag 

-► mag 

Angle 0 

A-15 Object and Signature Compositing 
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B Object Moments 

Simple shapes can be characterized by zeroth, first, and second moments. Zeroth moment 

is the area in pixels occupied by an object. If I(x,y) is a luminance image with pixels of coordi- 

nates x,y then the zeroth moment is. 

N      N 

M0=  £ £/(*,y) (8-D 
x = 0;y = 0 

First moment is the intensity weighted average in the x and y directions of an object also 

known as the center of mass or centroid of an object. This information is necessary for determin- 

ing signature profile and can also be used to track objects in motion video as is discussed in the 

next chapter. 

N-\N-l 

Mix = *s0vs°     (8-2) 
MO 

N-lN-l 

I  I'(*>v)-y 

Mly = ^  (8-3) 

Finally, second moment gives the angle 6 of the primary axis of orientation of the object. This 

information can be very useful in the signature matching process for lining up signatures of the 

same objects that has been rotated. 

N-lN-l 

M2a =   X- X (M\x-x)2I(x,y) (8-4) 
x=0y=Q 
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N-lN-l 

M2b = 2 ^  £ (Mlx-x)(Mly-y)I(x,y) (8.5) 

N-lN-l 

M2c=   £  ^(M\y-y)2I{x,y) (8.6) 
x=Oy=0 

tan29 = .J*2* (8.7) Af2a-M2c 
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