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Abstract 

The focus of this research was on the implementation of a forward kinematic algorithm for 

the Utah MIT Dexterous Hand (UMDH). Specifically, the algorithm was synthesized from 

mathematical models onto a Field Programmable Gate Array (FPGA) processor. This approach is 

different from the classical, general-purpose microprocessor design where all robotic controller 

functions including forward kinematics are executed serially from a compiled programming 

language such as C. The compiled code and subsequent real-time operating system must be 

stored on some form of nonvolatile memory, typically magnetic media such as a fixed or hard disk 

drive, along with other computer hardware components to allow the user to load and execute the 

software. With a future goal of moving the controllers to a portable platform like a dexterous 

prosthetic hand for amputee patients, the application of such a hardware implementation is 

impossible. 

Instead, this research explores a different implementation based on a modular approach of 

dedicated hardware controllers. The controller for the forward kinematics of the UMDH is used 

as a test case. The resulting FPGA processor replaces a robotic system's burden of repetitive and 

discrete software system calls with a stand-alone hardware interface that appears more like a 

single hardware function call. The robotic system is free to tackle other tasks while the FPGA 

processor is busy computing the results of the algorithm. 
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The forward kinematic algorithm for the UMDH was chosen as test case due to its 

familiarity among the academic community. Although considerable time was spent deriving the 

equations, the specifics of the UMDH algorithm itself was not the focus of this thesis. Rather, the 

focus was on the implementation of such an extensive and complex algorithm onto an FPGA 

processor. Forward kinematic algorithms from other portable robotic devices such as planetary 

rovers, flight line bomb loaders, or teleoperation systems could have been implemented just as 

well. 

This thesis is divided into three parts. First, the UMDH is examined and the forward 

kinematic equations for it are developed. This stage will be different for every robotic system, but 

the process will remain the same. Second, the resulting equations are evaluated for maximum and 

minimum numeric ranges and amounts of desired precision. This information is used in the third 

part, where mathematical, memory storage, and controller functional units are developed. 

Specifically, VHDL models are created, simulated, synthesized, and placed into an FPGA 

processor. 
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1. Introduction 

1.1 Background 

Although robotic devices have been in existence for many years, they were hindered due 

to the high computational demands until the digital computer revolution came about. Today, 

highly sophisticated control algorithms are written in software, usually with a real time operating 

system such as Chimera(Khosla), VX-Works(Wind), or Condor(Narasimhan) and executing on a 

VME based processor or similar dedicated hardware platform. Each part of the algorithm may be 

executing concurrently with other parts and may be highly repetitive in nature. 

One particular part that is highly repetitive is the calculation of the forward kinematics of 

the device. The forward kinematics allow the angles of the device to be transformed to the spatial 

position and orientation of the end of the device. Even a small motion at the base of the device 

may cause considerable motion farther out on the tip of the device, so the transform must be 

calculated repetively in order to keep track of the device in Cartesian coordinates. 

1.2 Problem Statement 

The forward kinematics of the Utah MIT Dexterous Hand (UMDH) (Sarcos) will be 

developed and implemented on a Xilinx Field Programmable Gate Array (FPGA) (Xilinx). The 

result is a Forward Kinematic Processor for the UMDH that will autonomously calculate the 

results while the surrounding system performs more task specific operations. 
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1.3 Assumptions 

Although the process used to calculate the forward kinematics is the same for most 

common robotic devices, there could exist a device or devices which would not easily map to the 

algorithms discussed. On example is a parallel linkage device like a bomb loader. It is assumed 

that the developed algorithm is for the UMDH specifically and that all UMDHs are mechanically 

identical. 

1.4 Approach 

The design of the Forward Kinematic Processor starts with the development of the 

forward kinematic algorithm specifically for the UMDH. This algorithm is evaluated for 

arithmetic and transcendental properties and arranged such that a minimum amount of hardware 

time is required. The required arithmetic and transcendental operations lead to the development 

of functional units to process the numeric data. The functional units are then integrated into one 

complete processing unit, and synthesized from VHDL code to logic blocks on a Xilinx FPGA. 

1.5 Overview 

The remaining chapters of this document describe the development and implementation of 

the Forward Kinematic Processor. Chapter 2 reviews the mathematical foundation of general 

forward kinematics and applies it to the specific nature of the UMDH. Chapter 3 looks at the 

results of Chapter 2, particularly the equations for position and orientation, and evaluates them for 

magnitude constraints, required precision, and operational occurrences. Chapter 4 describes the 

development of a VHDL model that simulates the digital hardware implementation of an 

application specific microprocessor that can compute the equations from Chapter 2. Chapter 5 
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deals with synthesizing the model directly to an Xilinx FPGA. Chapter 6 evaluates the results and 

Chapter 7 discusses recommendations and possible future work. 
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2. Literature Review and Background 

2.1 Review 

As mentioned in Chapter 1, a typical robotics research environment consists of a real time 

operating system supported by a relatively large hardware platform. The use of such a system 

allows researchers to quickly change various parameters of the control structure for robotic 

devices. Although dedicated hardware may show an increase in performance for a particular 

application, to build and maintain it is sometimes too much overhead for researchers whose 

primary focus is robotics, not hardware design (Narasimhan). 

The concept of a dexterous prosthetic hand requires a contoller that moves with the 

device. Obviously, a generalized hardware platform would be much too large to be portable. 

Such area requirements may necessitate a custom hardware implementation (Narasimhan). With 

the hopes of a stand-alone dexterous prosthetic hand and the advent and popularity of the FPGA, 

it is now possible to merge the two technologies and create a truly portable solution. As the 

controller algorithms in the research laboratory are upgraded, they can be downloaded into the 

existing hardware of the hand using the reconfigurable properties of the FPGA (Xilinx). 

2.2 Introduction 

This chapter discusses a method to represent the mechanical attributes of a particular 

manipulator. This representation is then used to determine the transformation from the relative 

angles of each link to the 3-dimensional coordinate locations and orientations of the tip of the end 

link. The process, known as forward kinematics, is then applied to the unique nature of the Utah 
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MET Dexterous Hand (UMDH). Specifically, the thumb mechanism of the UMDH is evaluated 

and the resulting control equations will form the basis for FPGA implementation in the remaining 

chapters. 

2.3 Review of Forward Kinematic Computations and the Denavit-Hartenberg 

Notation (Craig) 

In order to represent the mechanical attributes of any general purpose manipulator, a 

convention is formulated that will relate the various physical parts that make up the manipulator. 

It is composed of rigid links connected by joints to allow for relative motion of the neighboring 

links. Most manipulators have joints that are either revolute or prismatic as shown in Figure 2.1. 

Revolute joints are typical hinge style joints and the unit of measurement is the joint angle 

between the two halves of the joint. Prismatic joints are designed such that one half can slide 

back and forth in relation to the fixed half. The measuring unit is the joint offset between the two 

halves. Other possible joint configurations include cylindrical, planar, screw, and spherical 

(Craig:69). 

Link 0 is considered to be the immobile base of the manipulator. Link 1 is the first moving 

part, followed by link 2, and so on out to the end link n. The axes of the joints which connect the 

links are measured relative to the previous axis. Each joint axis defines a vector in which the next 

link in the chain will rotate about. However, the link and its previous joint are given the same 

index. This vector is based on the coordinate frame of the previous joint. There are two 

quantities to measure the difference between the two axes as shown in Figure 2.2. First, the link 

length ai-\ is the distance of the line that is mutually perpendicular to both axes. Second, the link 
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Revolute Prismatic 

Cylindrical Planar 

Screw Spherical 

Figure 2.1.     The Six Possible Joints 

twist ai-i is the angle between the i-1 axis and a parallel projection of the axis i onto the origin 

point of the perpendicular line found earlier. 

For links that have a common joint between them, there are two quantities that can be 

measured. First, the link offset 4 is the distance between the connection points of the two links 

along the axis of the common joint. If this value is zero, then that implies a door like hinge. If the 

value is non-zero, then that implies a sort of scissors-like hinge where the two links use the same 



FPGA Processor Implementation for the Forward Kinematics of the UMDH 

Figure 2.2.     Link Length and Link Twist 

value is non-zero, then that implies a sort of scissors-like hinge where the two links use the same 

joint but are slightly offset from each other. Secondly, the joint angle ^ is the rotational 

difference between the two links about their common joint. These two quantities are shown in 

Figure 2.3. If the joint is revolute, then the link offset is fixed and the joint angle will be allowed 

to vary. Similarly, if the joint is prismatic, then the joint angle is fixed and the link offset is 

allowed to vary. For the first and last links, the fixed quantity will be set to zero (Craig:73). 
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Figure 2.3.     Link Offset and Joint Angle 

These four quantities, link length ai-i, link twist *?-i, link offset 4, and joint angle <%, 

allow for the unique description of any common manipulator. Together, they form a convention 

known as the Denavit-Hartenberg notation (Craig:74). The four quantities are then regularly 

placed into a DH table containing the information for all degrees of freedom of the manipulator 

(Craig:68-82; Rattan:37-44). 

The next step is to relate the frames of links i and i-1. To do this, three intermediate 

frames are created to allow the transformation form one link to the next. Figure 2.4 shows the 

addition of these three frames, denoted R, Q, and P (Craig:83). 
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Figure 2.4      Intermediate Frames 

First, the R frame is placed at the same origin as the i-1 frame but rotated about the x-axis 

by the link twist <%-i amount. The Q frame is then placed in the same orientation as P but it is 

shifted along the x-axis by the link length «,-i amount towards the next link. The R frame is then 

placed at the same origin as Q but rotated by the z-axis by the joint angle <?, amount. Finally, the 

frame of link i has the same orientation as R but it is shifted along the z-axis by the link offset d( 

amount towards the next link (Craig:83-84;Rattan:45-52). 
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Because moving from i-1 to R is a rotation, its rotational matrix is given by Equation 2.1. 

The transformation from R to Q is given by the positional scaling vector of Equation 2.2. 

Together, Equations 2.1 and 2.2 form the transformation matrix shown in Equation 2.3. 

Rotation about x-axis  = 

1 0 

0   cosC^) 

0    sinC^) 

0 

-sinO^) 

cosC^) Equation 2.1 

Scaling along x-asis     = 

a. i-1 

0 

0 Equation 2.2 

Transform (i-1 to Q)   = 

1 0 0 a 

0   cosC^.J   -sinC^.j) 

0    sinO;^)     cosC^) 

0 0 0 

i-1 

0 

0 

1 
-I Equation 2.3 

Similarly, moving from Q to P is a rotation. Its rotational matrk is given by equation 2.4. 

The transformation from P to i is given by the positional scaling vector of Equation 2.5. 

Together, Equations 2.4 and 2.5 form the transformation matrix shown in Equation 2.6. 
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Rotation about z-axis  = - 

cos(^) -sin(^) 0 

sin(^) cos(^) 0 

0 0 1 Equation 2.4 

Scaling along z-axis     = L   !- 

0 

0 

.4 Equation 2.5 

cos( %) -sin(^) 0 0' 

sin(4) cos( ^) 0 0 

0 0 1 *t 

0 0 0 1 
Equation 2.6 Transform (Q to i) 

The complete transformation is the matrix multiplication of Equations 2.3 and 2.6. This is 

the transformation from the i-1 to the i link and is shown in Equation 2.7. 

cos(^) -sin(^) 0 at_x 

sin(^)cos(ö;_1)   COS(^)OOS(ö;_1)   -sinC^)   -sinC^.Jcf. 

sin(^)sin(ö;_1)    cosC^sinCö^)     cosC^)     cosC^y,. 

f        r i *   •* 0 0 0 1 Transform (l-l to l)   = L 

Equation 2.7 

To find the nth frame, simply multiply the transforms of each intermediate frame together 

as in Equation 2.8a. Equation 2.8b shows the final transformation matrix from 0 to n. The result 

is a 4 by 4 matrix that represents the orientation of frame n with respect to frame 0 and the 
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location of the last link with respect to frame 0. The first column represents the normal vector N, 

the second column represents the sliding vector S, the third column represents the approach 

vector A, and the fourth column represents the position vector P. Due to the nature of the zeros 

and ones in Equations 2.3 and 2.6, the fourth row will always be [0 0 0 1] (Craig:84-85; 

Rattan:53, 55). 

07=(°1rX^X27)-C1n Equation 2.8a 

°T = 

K    Sx    Ax    Px 

Ny    Sy    Ay    Py 

N.    S_    A.    P 

0 0     0      1 
Equation 2.8b 

If there is an extension from the last joint, such as a tool or a finger tip of length L in the 

case of the UMDH, the orientation is the same as the joint itself, but the position is shifted by the 

amount L along the normal vector n of the joint. Equations 2.9,2.10, and 2.11 show the 

modification to the position vector from the last joint to get the new position vector of the end of 

the extension (Solanki and Rattan:72). 

P* =P,+NJ< Equation 2.9 

P  =P +N L 
y        y        y Equation 2.10 
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P =P+NL Equation 2.11 

2.4     UMDH Forward Kinematic Computations 

The UMDH shown in figure 2.5 is composed of three fingers and a thumb. The three 

fingers are kinematically identical with the exception of their oflsets at the knuckle locations. The 

thumb is slightly different from the fingers and it is located between the first and second fingers on 

the palm of the hand. 

Figure 2.5.     Utah MIT Dextrous Hand 

Figures 2.6 and 2.7 show the top and side view of the UMDH respectively (Solanki and 

Rattan:67-68). Notice how the Oth frame is located back towards the wrist. It is defined at this 

location because it is the intersection of the joint axis for both the thumb and the middle finger. 

This could have been chosen at a different location but would result in more complicated 

transformation matricies (Solanki and Rattan:66). 
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X1,X2,X3,X4 <out> 

Z2,Z3Z4 

YOOn) 

-|-^o 
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3.125 

YJ 
|_Y2Jout>       Y3 (out)   Y4  (out> 

Zl X3 

!Z3 |Z4 
Y3 <out>   Y4 <out> 

Y3 

X3 

Z3 
B- 

tout)  Y4 Wtt 
Z4 

X3 

—\ 1.2000   |-^- 

|Z3 f Z4 

Figure 2.6.     Top View of UMDH (thumb extends out of page) 

Figure 2.7.     Side View of UMDH 
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Because the three fingers and the thumb are almost kinematically identical, only one will 

be further explored. The thumb mechanism alone represents a serial chain manipulator with four 

degrees of freedom resulting from the four revolute joints. The DH table for the thumb of the 

UMDH in this configuration is shown in Table 2.1 (Solanki and Rattan:69). Using these values 

and Equation 2.7, each link relationship can be calculated. Replacing the i and i-1 variables with 

the fixed quantities from the DH table results in much simplified versions of the transformation 

matrices. Equations 2.12 through 2.15 shows each intermediate matrix (Solanki and Rattan:70). 

Table 2.1.      DH table for Thumb of UMDH 

1 link twist link length link offset joint angle 

1 a0 = 0° a0 = -0.75" 4=3.125" 4 
2 q=90° at = 0375" d2 = 0" 4 
3 ^=0° a2 = 1.700" d3 = 0" 

« 

4 ^=0° a3 = 1.300" d4 = 0" 
#* 

l1 

cos( ^ ) -sin(^) 

sin(^) cos(^) 

0 0 

0 0 

0 a0~ 

0 0 

1 dx 

0 1 
Equation 2.12 
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\T = 

lT = 

cos(^2) -sin(y2) 0 al 

0 0 -1 0 

sin(^2) oos(^) 0 0 

0 0 0 1 

oos(^) -sin(^) 0 a2~ 

sin(^) cos(^) 0 0 

0 0 1 0 

0 0 0 1 

Equation 2.13 

Equation 2.14 

lT = 

cos(^4) -sin(^4) 0   a3 

sin(^4) oos(^4) 0    0 

0              0 10 

0               0 0    1 Equation 2.15 

These four transformation matrices are concatenated into one using Equation 2.8. The 

result, after consecutive matrix multiplications, is shown in Equation 2.16 (Solanki and 

oT = 

Rattan:71). 

cos(^)cos(^2 +4 +^4) 
sin(^ ) cos(^2 + ^3 + #t) 

sin(^2+^3+^4) 
0 

-cos(^)sin(^2 +^3 +^4) sin(^) a0 + oos(tf1Xal +«2 cos0?2) + a, oos(^2 + ^3)) 

- sin(^ ) sin(^2 + ^3 + 0A) - cos(^ ) sin(^ X^i + «2 °°<<?i ) + ai oos(^2 + ^3)) 
cos(^2 + #3 + <?4)                0 a2 sin(^2) + a3 sin(^2 + ^3) + dx 

0                            0 1 

Equation 2.16 
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The elements within the matrix of Equation 2.16 are one to one equivalent to Equation 

2.8b. The resulting twelve equations out of sixteen (four equations are a constant 0 or 1) can 

now be used as the basis for the remaining chapters. 

2.5     Conclusions 

This chapter investigated a mathematical method for the calculation of the forward 

kinematic equations of the thumb mechanism of the Utah MIT Dexterous Hand. The resulting 

Equation 2.16 = 2.8b represents the locations and orientation of the last joint of the UMDH. It 

does not directly give the location of the tip of the thumb. It will require the application of 

Equations 2.9 through 2.11 to derive such information from 2.16. The L term can be fixed as the 

length of the last link, or 1.3 inches if the desired answer is for the tip of the thumb. Other L 

values can be used to represent tools attached to the tip. Such tools might be force or 

temperature sensors. The remaining chapters will deal with the Equation 2.16 since this 

represents the base configurations of all UMDHs. 
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3. Algorithm Analysis and Profiling 

3.1 Introduction 

Before a physical computational architecture can be defined for implementation, the 

twelve equations derived in Chapter 2 need to be evaluated in the context of the desired 

performance of the UMDH. Only those hardware components that are absolutely necessary will 

be implemented. It is proposed that the desired forward kinematic processor deals only with 

mathematical operations and does not work with concepts such as character strings, addressing 

modes, or conditional branches typically found in a general purpose microprocessor. Therefore, 

this chapter deals with the trade-offs involved in finding an optimum hardware representation for 

both high performance and low hardware overhead. 

3.2 Numeric Magnitude 

The first metric that is evaluated is the notion of numeric magnitude. We need to know 

the highest valued (positive or negative) number that is ever used within any stage in the 

calculation of the equation This defines the amount of hardware needed to hold such a number. 

To determine such a number, the algorithm was written in the C language as a procedure 

call and is listed in Appendix A. The procedure is called by the main routine for many different 

UMDH configurations. Each of the four joints of the UMDH are controlled by nested FOR loops 

which cause the angles to sweep through each joint's given range shown in Table 3.1 (Solanki and 

Rattan:69). The results of the equations for each particular configuration were written to a data 
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file. The data file was then imported into the Matlab environment and searched for the maximum 

and minimum values as listed in Appendix A. The values of the angles, including intermediate 

steps where up to three angles are added together, show that they never exceed the range +360 to 

-360 degrees. Intermediate additions, subtractions, and multiplications never exceed -2.3864 to 

+3.3750. The final results of the NSAP matrix never exceed -2.3864 to +5.6271. 

Table 3.1.      Kinematic Range of UMDH 

Joint Angle Range of motion in degrees 

4 -45 to 135 

4 -15 to 60 

4 6.5 to 90 

^ 

0to90 

The implementation of the integer portions of such numbers can be accomplished directly 

with just four bits of hardware (three bits represent the integers 0 to 7 and one bit for the sign). 

However, since the values obtained are just a sample of the results from entire range of the 

UMDH, and not an exhaustive test. This represents the minimum hardware size required. Also, 

the future expansion to another type of manipulator may require more than just four bits. 

Therefore, at least four bits will be held for now for hardware implementation.. 
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3.3 Numeric Precision 

The second metric used is the numeric precision required by the system The UMDH was 

designed with metal joints that are controlled remotely via a set of tendons running around plastic 

pulleys. The coulomb friction of the joints and pulleys causes a motion deadband every time a 

joint stops. The electronic control system of the UMDH attempts to track the desired position of 

each joint, but it is limited by these mechanical properties. Consequently, simply turning up the 

gains of the UMDH controller would not suffice because that causes the joints to become unstable 

and to begin oscillating. 

Therefore, in an attempt to avoid decreasing performance beyond that of the current 

system and to avoid possible truncation problems at intermediate stages in the equations, the 

number of decimal bits required is set to eight. This allows for a resolution of 0.003906250 per 

least significant bit since the last bit is the placeholder for 2"8. If the value is representative of an 

angle, then it is clear that 0.003906250 degrees is much higher a precision than the UMDH could 

ever track. If the value represents a Cartesian coordinate of the end of the finger, then the same 

applies to 0.003906250 inches. Although the UMDH was modeled as an ideal body of rigid links, 

all devices will inherently flex to some extent. 

3.4 Mathematical Operator Usage 

The 12 equations are examined for occurrences of additions/subtractions, multiplications, 

or cosines/sines. A brute force approach by simply counting the number of operations found in 

Equation 2.16 results in 22 additions, three subtractions, 12 multiplications, 11 cosines, and nine 

sines. However, many of the terms in the 12 equations appear in more than one location. 
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Therefore, the number of operations can be reduced by sharing these terms. Both the cosine and 

sine of three angles are used three separate times. Similarly, the entire last half of Px and Py are 

identical. If the order of calculation for the 12 equations takes advantage of the common terms 

then the number of operations can be reduced to seven additions, three subtractions, 10 

multiplications, four cosines, and four sines. This is a 68.2% decrease in additions, 16.6% 

decrease in multiplication, 63.6% decrease in cosines, and 55.5% decrease in sines. The 

subtractions remain unchanged because of the negative signs on Py, Sx and Sy. 

3.5 Conclusions 

This chapter evaluated the equations from Chapter 2 to determine the best representation 

of the numbers. We determined that the absolute largest number only required four bits but that 

more bits for higher numbers may be required in future implementations. To keep the precision of 

each number, eight bits are required for a minimum of 1/256th difference between each number. 

Therefore, the implementation of the numbers in hardware are done with a total of eight 

bits for the integer portion and eight bits for the decimal portion. Together, the 16 bits form the 

basis for a fixed point number with the binary point in the center between the set of eight bits. 

This results in a maximum number of+127.99609375 and a minimum number of-128.00000000. 

Finally, we determined that the 12 equations can be calculated in just 28 operations if 

common terms are reused. This is a decrease of 50.9% from the original 57 operations. 
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4. VHDL Model 

4.1 Introduction 

This chapter discusses the first step in the implementation of the forward kinematic 

processor. The step is the development of behavioral VHDL models for each of the required 

mathematical operations found in Equation 2.16 as well as temporary register-based memory and 

other structures used to route the data within the processor. Finally, a structural VHDL model 

for the entire processor is developed. Each model is developed and simulated using the Synopsys 

Analyzer and Simulator (Synopsys) before synthesis in Chapter 5. 

4.2 Functional Units 

In all models, the 16-bit fixed-point representation of all numeric data will be implemented 

as a bit vector of size 15 down to 0. The binary point is implied to be at the center, between bits 

8 and 9. 

4.2.1 Cosine/Sine Unit. 

The first functional unit developed was the cosine and sine unit. Both transcendental 

functions are designed into one model as shown in Figure 4.1. The unit calculated the cosine or 

sine by means of an external lookup table. An address is generated and sent to a ROM chip that 

returns the result back to the cosine/sine unit. Since the specifications of the external ROM chip 

were not known at the start of the design, the model incorporated the ability to set the delay 

before the unit latches the results from the ROM. These wait states allow the possibility of the 

use of slower ROM devices. 
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Figure 4.1. Cosine/Sine Unit Block Diagram 

For example, if the system clock of the forward kinematic processor has a clock period of 

40 ns (25 MHz) and the ROM device has an access time of only 150 ns, then the number of wait 

states would be set to three. Three wait states causes three extra 40 ns clock cycles in addition to 

the current cycle, for a total of 4 cycles or 160 ns. This prevents the cosine/sine unit from reading 

in incorrect data early. 

The state machine is shown in Figure 4.2. A reset signal during any state will force the 

system to state 0. In state 0, the ready output signal is not asserted, the number of wait states are 

calculated, the temporary counter is set to zero and look-up table address is formed and sent to 

the external ROM. To form the address, the unit takes as input a 16-bit vector and strips off the 
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lower 11 bits, representative of three bits of integer and eight bits of decimal. Also, the highest 

bit, representing the sign, is also pulled out. Finally, an input signal called sei, that determines 

cosine or sine, is also taken and these 13 bits form the address into the ROM lookup table 

containing the results of both cosine and sine. 

reset 

clock tief 

counter = wait states 

Figure 4.2. Cosine/Sine Unit State Machine 

The unit will stay in state 0 until the go input signal is asserted. Once in state 1, it will stay 

there, incrementing the counter until it matches the precalculated number of wait states. It will 

then move to state 2 where the results from the ROM look-up table are latched into the output 

bus. The unit then transitions to state 3 at the next rising edge of the clock and the ready output 

signal is asserted. The next transition on the rising edge of the clock is back to state 0, where it 

waits for the next cycle. 
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The behavioral VHDL model for the cosine/sine model is listed in Appendix B. 1.1. The 

VHDL testbench code and results for it are listed in Appendix B. 1.2. The testbench sends the 

unit through the eight possible wait states with a simulated external ROM- These results are 

shown in Appendix B. 1.3. 

4.2.2 Adder/Subtractor Unit. 

The adder and subtractor are contained within one functional unit. The subtractor is 

implemented using the adder model and inverting the secondary input before applying it to the 

adder. In both cases, two 16-bit numbers are input into the unit and one 16-bit number is output 

as shown in Figure 4.3. There are no provisions for overflow or underflow conditions because of 

the nature of the operands. At no time should there occur an overflow or underflow condition. 

reset        sei go 

A Bus Input 

16 

B Bus Input 

16 

V 

w y v 

elk done 

V 
Xor Circuit 

for Inverting 

B Bus for 

Subtraction 

16 

Ripple 

Cany 
C Bus Output 

Figure 4.3. Adder/Subtractor Unit Block Diagram 
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The unit starts at idle in state 0 shown in Figure 4.4. When the go input signal is asserted, 

the unit starts by calculating the sum and carry terms of Equation 4.1 and 4.2 for the least 

significant bits, where A and B are inputs bits and C is the carry in from the previous bit. 

(Weste and Eshraghian:517). Each clock tick causes the unit to progress to the next state and 

calculate the next bit. After sixteen clock ticks, all sums have been calculated and the result is 

sent to the output bus. A done output signal is asserted indicating completion and the state 

machine returns to state 0 in preparation for another addition or subtraction. 

Figure 4.4. Adder/Subtractor Unit State Machine 

Carry = AB+ C(A+B) 

Sum = ABC + (A+B+C)Carry 

Equation 4.1 

Equation 4.2 
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Typically, an adder/subtractor would not be implemented as a state machine requiring at 

least 16 clock ticks. However, since the target platform is an FPGA, and the timing of the 

synthesized design will not be known until Chapter 5, it is impossible to determine how long it 

will take to allow all the sum and carry terms to ripple their results to the final result. Therefore, 

the unit indicates to the surrounding system when it has completed the final state by asserting the 

done signal. If at any time the reset signal is asserted, the unit is forced back to state 0. 

The behavioral VHDL model for the adder/subtractor model is listed in Appendix B.2.1. 

The VHDL testbench code for it is listed in Appendix B.2.2. The testbench sends the unit 

through 30 different additions and 30 different subtractions. These results are shown in Appendix 

B.2.3. 

4.2.3 Multiplier Unit. 

The multiplier unit has the same data interface as the adder/subtractor unit. Figure 4.5 

shows the two 16-bit inputs and one 16-bit result. Once again there are no provisions for 

overflow or underflow. Typically two 16-bit numbers multiplied together would result in a 32-bit 

result, but in this specific implementation, the numbers should never exceed 16-bits, a constraint 

of the 16-bit architecture. 

The multiplier actually uses a modified copy of the adder/subtractor inside its design. The 

adder/subtractor is extended to 32-bits to handle the accumulation of the partial products. The 

multiplier follows the same basic data flow as the adder/subtractor except that it requires many 

more states to calculate the result. Figure 4.6 shows the state machine for the multiplier unit. 
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A Bus Input 

B Bus Input 

C Bus Output 

Figure 4.5. Multiplier Unit Block Diagram 

Figure 4.6. Multiplier Unit State Machine 
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It stays idle in state 0 until the go input signal is asserted. Each of 16 partial products are 

calculated and then repetitively added up to form the final result. Similar to the adder/subtractor 

unit, when the final state is reached, an output signal ready is asserted to indicate to the 

surrounding system that multiplication is complete. If at any time the reset signal is asserted, the 

unit is forced back to state 0. 

The behavioral VHDL model for the multiplier model is listed in Appendix B.3.1. The 

VHDL testbench code for it is listed in Appendix B.3.2. The testbench sends the unit through the 

same 30 inputs as the adder/subtractor but multiplies rather than adds or subtracts. These results 

are shown in Appendix B.3.3. 

4.2.4 Register File Unit. 

The register file unit is used to store the starting angles of the UMDH, certain constants 

from the DH table, temporary and intermediate calculations, and the 12 equation results. It is 

designed to hold the 16-bit numbers in any of 32 different locations, except for the first two 

locations. The first location is hard wired to always hold a zero value and the second location 

holds a hard wired one value. This was designed early on because of the expected need to 

increment by one or to allow for moves from one location to another through the adder/subtractor 

unit with one of the inputs being zero. 

It is designed with one 16-bit input bus called the C bus and two 16-bit output buses 

called the A and B bus as shown in Figure 4.7. The data of the C bus is written to any of the 

remaining 30 locations by use of the C bus address and a latch signal. Data can be read from any 
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of the 32 locations to both A and B bus by using the A and B address. If the reset signal is 

asserted, the 30 locations are forced to zero. 

C address   C latch        reset     cue A address B address 

C Bus Input 

16 

i t 

16 bit wide 

32 word long 

Register file 

T^ST^S-, A Bus Output 

B Bus Output 

30 

Figure 4.7. Register File Unit Block Diagram 

The behavioral VHDL model for the register file model is listed in Appendix B.4.1. The 

VHDL testbench code for it is listed in Appendix B.4.2. The testbench has three parts. In the 

first part, a reset is asserted and the zero register and one register are verified as well as that the 

remaining 30 were forced to zero. In the second part, all 32 registers are given test values. In the 

third part, all 32 registers are evaluated again showing that all but the two hard wired registers 

accepted the values. These results are shown in Appendix B.4.3. 
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4.2.5 Latches and Multiplexors. 

The latches and multiplexors are required in the design as glue logic between the other 

functional units. To start, there is a 16-bit latch as shown in Figure 4.8. When its latch signal is 

asserted, the input bus is transferred to the output and held at that value until the next time this 

latch is asserted. This design requires two latches as described in the next section. The 

behavioral model for the latch is found in Appendix B.5.1 and its testbench is located in B.5.2. 

The results of the testbench are found in Appendix B.5.3. 

latch 

Input Bus 
Latched Output Bus 

Figure 4.8. Latch Unit Block Diagram 

Also required is a multiplexor as shown in Figure 4.9. It directs one of four inputs to a 

single output. The multiplexor is 16 bits wide for all inputs and outputs and is controlled by two 

input signals determining the one of four paths. 
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Figure 4.9. Multiplexor Unit Block Diagram 

The behavioral VHDL model for the multiplexor is found in Appendix B.6.1 and its 

testbench is located in B.6.2. The results of the testbench are found in Appendix B.6.3. 

4.2.6 FKPCore. 

The functional units designed so far are brought together to form the core of the Forward 

Kinematic Processor (FKP). This core encapsulates the functional units such that they appear like 

a single large functional unit. Two latches and one multiplexor are used to glue the other 

functional units together so that data can travel from unit to unit in a productive manner. Figure 

4.10 shows the connections of the units inside the core. There is one 16-bit data input bus which 

is routed to the input data latch. From there, the data is passed though the multiplexor and back 

around to the register file for storage. Once data is loaded into the registers, they can be sent to 

the cosine, sine, addition, subtraction, or multiplication units and rolled back around to the 
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register file via the multiplexor again. When the desired computations are complete, the data in a 

register is sent to the output latch and then to the output bus. To control the dataflow, all of the 

control signals from each of the functional units are passed as control signals for the core unit. 

This model does not handle the actual control of the core, but rather gives one concise shell for 

everything inside it. 
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Figure 4.10. FKP Core Block Diagram 
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The structural VHDL model of the FKP core is shown in Appendix B.7.1 with the 

testbench in B.7.2. The testbench performs the actions described above on some data. It was 

designed to prove functionality of the core since each subunit has already been verified. The 

results are shown in Appendix B.7.3. 

4.2.7 Microcode Store. 

This section defines the instruction set of the processor. Because this is an application 

specific design, the instruction set contains only commands for moving data in and out, and 

performing one of the arithmetic or transcendental operations. Table 4.1 shows all possible 

instructions utilized within the processor. The microcode for each instruction is derived from the 

testbench of the FKP core. Since the FKP core does not supply autonomous control over the 

functional units, each simulated instruction was hard coded in sequence. The microcode store has 

taken each simulated instruction and formed each into a procedure (opcode) call with its 

parameters (operands) being the passed into the procedure. AU procedures are contained in a 

package model that can be called by the control unit of the next section. 

The behavioral VHDL package model of the instructions are shown in Appendix B.8.1 

with the testbench in Appendix B.8.2 performing the same operations as the FKP core testbench. 

The results in Appendix B.8.3 show that the replacement of the autonomous microcode performs 

identically to the hard coded testbench of the FKP core. 
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Table 4.1. FKP Instruction Set 

Instruction 

movein (R, data) 

moveout (data, R) 

add(Rl,R2,R3) 

sub (Rl, R2, R3) 

mult (Rl, R2, R3) 

cos (Rl, R2) 

sin(Rl,R2) 

Description 

Latch input bus, pass data through multiplexor to register R 

Move data out of register R, through output latch to output bus 

Send data from two registers (R2 and R3) to two inputs of 
adder/subtractor unit, add, send result back to register Rl 
Send data from two registers (R2 and R3) to two inputs of 
adder/subtractor unit, subtract, send result back to register Rl 

35 

Send data from two registers (R2 and R3) to two inputs of multiplier unit, 
multiply, send result back to register Rl  
Send data from register R2 to input of cosine/sine unit, perform cosine, 
send result back to register Rl  
Send data from register R2 to input of cosine/sine unit, perform sine, send 
result back to register Rl  

4.2.8 Control Unit. 

The control unit can now utilize the microcode store package to make the FKP core 

perform the various instructions without the burden of worrying about dataflow on every single 

clock tick. The control unit allows interface with the outside world via an six bit control port and 

a seven bit command port as shown in Table 4.2 and 4.3 respectively. The control unit is a shell 

for the microcode store and the FKP core as shown in Figure 4.11. 

Table 4.2. Control Port 

Bit# 5 4 3 2 1 0 

Name Clock Reset Strobe Ready DataGetValid DataGetAck 

IN/OUT IN IN IN OUT OUT IN 
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Table 4.3. Command Port 

Description 
bit# 

CMD1 
6 

CMDO 
5 

A4 
4 

A3 
3 

A2 
2 

Al 
1 

AO 
0 

Set Register 0 0 A4 A3 A2 Al AO 

Get Register 0 1 A4 A3 A2 Al AO 

Run 1 0 X X X X X 

1  External EPROM Lookup Table 
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Figure 4.11. FKP System Block Diagram 
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The clock input is the overall system clock for the processor. The reset is the overall 

system reset for the processor. The remaining bits of the control port are utilized in conjunction 

with the command port. After system reset, the ready output signal is asserted, indicating that the 

processor is available to perform one of the three functions: set register, get register, or run. The 

user sets the CMDO and CMD1 bits to correspond to the desired function and asserts the strobe 

input signal. The processor will deassert the ready signal, evaluate the command port and take 

the appropriate action. When the function is complete, the ready signal is reasserted. 

If the function is a set register, then the 16-bit input data bus is latched in and routed to 

the register designated by bits A4-A0 of the command port. If the function is a get function, then 

the register designated by bits A4-A0 are sent through the output latch and to the 16-bit data 

output bus. Finally, if the function is run, then the A4-A0 bits are ignored and the predetermined 

sequence of instructions is executed. 

The sequence is arranged to take advantage of any common terms found in the 12 

equations of Chapter 2. Chapter 3 evaluated the equations and determined that there would be 

seven additions, three subtractions, 10 multiplication's, four cosines, and four sines. This would 

require a total of 28 instructions. However, this did not count for the data moves into and out of 

the processor using the set and get functions. Table 4.4a shows the operations involved with 

moving in the angles and possibly some constants into the registers. The register locations that 

hold this constant data is fixed due to the fact that the run function will expect the correct data in 

these locations. The first time theses data values are loaded, both constants (a's) and angles (b's) 
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are required. But from then on, only the new set of angles are needed because the constants do 

not change and are not written over unless due to power loss or system reset. 

Table 4.4a.     Operations Involved with the Set Function 

Step# Register # Instruction and Description 

la 2 movejn (2, aO) = move link length 0 into register 2 

2a 3 movejn (3, al) = move link length 1 into register 3 

3a 4 move in (4, al) = move link length 2 into register 4 

4a 5 movein (5, a3) = move link length 3 into register 5 

5a 6 movejn (6, dl) = move link offset 1 into register 6 

lb 7 movein (7, 61) = move theta 1 into register 7 

2b 8 move in (8, 62) = move theta 2 into register 8 

3b 9 movejn (9, 63) = move theta 3 into register 9 

4b 10 move in (10, 64) = move theta 4 into register 10 

With the constants and angles loaded, the run function can be initiated. Table 4.4b shows 

the internal steps involved with calculating the results of the twelve equations. There is one extra 

add of step 18 due to the internal move of the zero in the zero register to register 28. 

Figure 4.4b. Internal Operations During Run Function 

Step# Register # Instruction and Description 

2 11 cos(ll, 7) = cos(91) 

3 12 sin(12, 7) = sin(e2) 



FPGA Processor Implementation for the Forward Kinematics of the UMDH 39 

4 13 cos(13, 8) = cos(02) 

5 

8 

14 add(14,8, 9) = 02+03 

add(14, 14, 10) = 02+03+04 

6 15 sin(15, 14) = sin(02+03) 

7 16 cos(16, 14) = cos(02+03) 

19 

21 

22 

17 mult(17, 4, 13) = & cos{Q2) 

add(17, 17, 18) = a2 cos(02) + a3 cos(02+03) 

add(17, 17, 3) = al + a2 cos(02) + a3 cos(02+03) 

20 

23 

18 mult(18, 5, 16) = a3 cos(02+03) 

mult(18, 17, 11) = cos(01)( al + a2 cos(02) + a3 cos(02+03)) 

26 19 mult(19, 4, 12) = a2 sin(02) 

11 20 mult(20, 11, 25) - cos(01)cos(02+03+04) 

12 21 mult(21, 26, 25) = sin(01)cos(02+03+04) 

9 22 sin(22, 14) = sin(02+03+04) 

13 

14 

23 mult(23, 11, 22) = cos(01)sin(02+03+04) 

sub(23, 0, 23) = -(cos(01)sin(02+03+04)) 

15 

16 

24 mult(24, 26, 22) = sin(01)sin(02+03+04) 

sub(24, 0, 24) = -( sin(01)sin(02+03+04)) 

10 25 co5f25, 14) = cos(02+03+04) 

1 26 sin(26, 7) = sin(01) 
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17 

18 

24 

25 

27 

28 

29 

27 

28 

29 

30 

31 

sub(27, 0, 11) = -cos(ei) 

add(28, 0,0) = 0 

add(29, 18, 2) = aO + cos(01)( al + a2 cos(92) + a3 cos(92+e3)) 

multßO, 17, 26) = sin(01)( al + a2 cos(02) + a3 cos(92+e3)) 

mult(31, 5, 15) = a3 sin(02+93) 

addßl, 31, 19) = a2 sin(02) + a3 sin(02+03) 

add(31, 31, 6) = a2 sin(02) + a3 sin(02+03) + dl 

The get functions can now be used to retrieve the last 12 registers for the results of the 12 

equations. Each value is moved out one at a time and in any order the user desires. 

The structural VHDL model of the Forward Kinematic Processor is shown in Appendix 

B.9.1. 

4.3 Conclusions 

This chapter developed the models of each of the required functional units. Each model 

was tested as a stand-alone design before integration into the Forward Kinematic Processor. 

Once the initial five constants are loaded in, the processor takes four instructions to load the 

angles, 29 instructions to calculate the results, and 12 instructions to get them out, for a total of 

45 instructions. The processor was then tested from the top most level of the design model. With 

the simulation of the processor complete, the next step in the implementation is synthesis to an 

FPGA. This is described in Chapter 5. 
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5. VHDL To FPGA Synthesis 

5.1 Introduction 

The goal of this chapter is to move the FKP design modeled in the hardware description 

language straight to an FPGA implementation. The models were behavioral descriptions of the 

functional units with a top level structural description of the entire processor. At this level of 

abstraction, there is no implied physical architecture. We have not even worked with a gate level 

representation of the design. The synthesis into an FPGA induces an explicit physical architecture 

based on the target device; in this case the Xilinx 4020E. 

5.2 VHDL Source Restrictions 

VHDL was originally designed as a simulation and modeling language. The concept of 

synthesis directly from the model was not included in the design of the language. Therefore, some 

of the constructs found in VHDL are not synthesizable. The most obvious limitation is the use of 

specific time delays. For example, the statement "wait for 10ns" or "A <= B after 5ns" has no 

meaning to a synthesis tool because there is no on-chip clock to direct when the action is to take 

place. Also, constructs such as access types, records, recursive subprograms, and 

multidimensional arrays are non-synthesizable (Raines; Ailes:21). 

Most of these restrictions were known when beginning the development of the models 

from Chapter 4, but some unexpected and potentially detrimental constraints appeared as the 

design moved on.   First was the use of more than one signal inside of process sensitivity list. 

Typically, many signals can be listed in the sensitivity list of the process, indicating execution of 
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the process if any of the listed signals changes state. The synthesis tools could only handle one 

signal in the list. A process that is dependent on both the clock and the reset signal would cause 

errors during synthesis. To work around this problem, most all sensitivity lists became empty 

forcing continuous execution, with the clock events being listed as a separate wait statement 

within the process body. The second problem pertains to the need to assert a signal for one clock 

period and then deassert it on the next clock period. Such an event infers a clock wait between 

the two transitions, but only one wait statement is allowed on each pass through the process body. 

The result is a streamlined hardware description such as "A<=B; wait until clock tick; 

A<=not(B); wait until clock tick" being unrolled to an explicit state machine where the execution 

through the process body takes a different path for each state. Each state then contains a unique 

command for "A<=B" or "A<=not(B)" and there is only one wait statement for all paths. 

5.3    Design Flow 

There are four major tools used to perform the synthesis step. The Synopsys VHDL 

analyzer is used to compile the VHDL code. This includes compilation of the testbenches for 

each functional unit. The functional units are then simulated with the Synopsys VHDL simulator. 

These two tools together, both executing on a UNIX platform, form the primary development 

tools of the models (Synopsys). Because both the Analyzer and Simulator do not aim towards 

synthesis, the restrictions from section 5.2 are ignored and pushed aside for later tools. The other 

three major tools are Synopsys Design Analyzer and Exemplar Leonardo for synthesis, and Xilinx 

XACTstep for mapping. 
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5.3.1 Svnopsys Design Analyzer 

The Synopsys Design Analyzer started out as the primary UNIX synthesis tool. Within 

the Design Analyzer is a feature called the FPGA Compiler. It accepts VHDL as input and 

attempts to produce a hybrid Synopsys/Xilinx netlist. The drawback to using this tool is its 

turnaround time. Typically, a small model such as the cosine/sine unit will take upwards of two 

hours to generate the netlist (Synopsys). 

5.3.2 Exemplar Leonardo 

The PC/Windows 95 based Exemplar Leonardo application turned out to be quicker than 

Synopsys and much easier to learn and use. The following sequence describes the path used to 

generate a correctly targeted netlist (Exemplar). First, the program is loaded and the startup 

screen is shown in Figure 5.1. 

0le   10   Optimize   Report   Hierarchy   Tools   Options 

Flow Guide.« 
xmpl r 

Toolbar... Schematic Viewer- Design Browser, d 
Leonardo - V4 .0.3 
Copyright 1990-1996 Exemplar Logic, Inc.  All rights reserved. 

*** Welcome to Interactive Leonardo Version V4.0.3 *** 

tfews : 
* Enter "help" to get an overview of all commands 
* Enter <command> -help to get usage of each command 

Session history will be logged to file 'exemplar.his' 
LE0HARD0{1}: 

Quit... 

Figure 5.1. Exemplar Logic Leonardo Startup Screen 
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The first action taken is to click on the Flow Guide button. The Flow Guide shown in 

Figure 5.2 appears. Because we wish to customize certain aspects of the design, the Customize 

Flow Guide button is clicked. Another window appears that allows us to inform the tool that the 

design consists of multiple VHDL files because many of the functional units depend on a package 

or header file. We also select the option of packing the configurable logic blocks (CLB) of a 

Xilinx FPGA, decomposition of Look Up Tables (LUT), and reporting of area used as shown in 

Figure 5.3. The result is a variation of Figure 5.2 with the extra steps added into the design Flow 

Guide of Figure 5.4. 

•■    t    ■ 

■'. i-oäd'/ 
Library 

Read 
';.;';■-3-V 

'":■   Pre- 
Optirnize 

Optimize 
5 

Report 
Area 

Report 
Delay 

7 
Write 

Leonardo Flow Guide 

welcome to Leonardo Flow Guide. Your commands and their output will be shown on the main command 
window. You may exit Flow Guide at any time by pressing 'Exit Flow Guide'. 

Click on the first button to start. 

Customize Flow Guide Exit Flow Guide 

Figure 5.2. Leonardo Flow Guide 

The first button, Load Library, is selected and we choose the 4000E family as shown in 

Figure 5.5. The second button is used repetitively to read in and analyze the VHDL files. A 

window appears that allows the filename to be input as shown in Figure 5.6. As each file is being 

read in, any warning messages are displayed regarding synthesis problems. 
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■HHHHHHnnnHnnin^ 
y 

i 

! 
j Input Flow: 

Check all boxes that apply to your design: 

W Multiple VHDL or VerHog Input Files 

J AlteraEDIF input file 

i 
! 

J Design with instantiated modgen cell 

| Optimize Flow: W Technology specific module generation 

I W Extract counters, decoders and ranis 
i 

J Specify constraints for optimization/timing optimization 

I J Timing Optimization 

I   Reporting How: 

|i Pack CLBs (Xilinx) 

W Report Area 

j 
1 

Output Flow: 

_| Report Delay 

W Decompose LUTs (FLEX, ORCA, Xilinx 3k/4kffik) 

i J Load balancing for Adel, QuickLogic and ASICs 

I J Generate timespec for Xilinx 

J AlteraEDIF output file 

i 

1 Run Flow Guide   |                                       Cancel   | 

Figure 5.3. Customize Flow Guide 

Once all the VHDL files are loaded in, the design is elaborated based on the top level 

entity description. Figure 5.7 shows the Elaborate window. Clicking the elaborate button 

automatically determines what the top level is and considers its port declaration as the I/O of the 

design. Next, the Pre-Optimize step is accomplished, shown in Figure 5.8, followed by the 

selection of the Modgen Library in Figure 5.9, and the resolution of the Modgens shown in Figure 

5.10. 
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r ■.$■■■■■■ 
Analyze ■♦ Elaborate 

;,::■":■■ 4-■■■■' 
•+     Pre- 

Optimize 

5 
'■■'vLoadv;' 
Modgen 

^   Resolve 
Modgen 

■■'.■    7   • 
Optimize 

8 
Pack 
CUBS 

-►    Report 
Area 

10 
Decomp 

ÜJTS 
Write 

Leonardo How Guide 

Welcome to Leonardo Flow Guide. Your commands and their output win be shown on the main command 
window. You may exit Flow Guide at anytime by pressing "Exit How Guide'. 

Click on the first button to start. 

Customize Flow Guide Exit Flow Guide 

Figure 5.4. Customized Flow Guide 

^^^^MMMMMMMiHHMHMHMryi 

I 
technology:   |xilinx4000e 

rech Type:         FPGA Enhanced     —'J 

i 
j 

1 

XJIinx3100 
Xifinx 3100a 

xmnx 4000 

xmnx 4000a 
Xifinx 4000e                                  | 

J 
XRnx4000ex 

Xffinx4000h 

Xmnx 5200 

Xmnx 7200a 

X»nx7300 

] 
Load         Advanced... Cancel 

i 

Filename: |c~/exemplairtwork/reg16fregjTe jjkgj&vhd Ofj 

Woik Library:   {work 

Format: ♦ Auto VHDL v VerHog 

Analyze Advanced- Cancel 

Figure 5.5. Load Library Figure 5.6. Analyze 
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i Root Entity:      | 

Architecture:   | 

| Work Library:   |work 
i 

| Parameters:    | 

[ Generics:         j 

i 

!                 Elaborate Cancel 

S-^-^m—mu.ummi-j  

■■HHHBBMnnHny 
! Design: work.reg_file_l 6_e.behavior 

i  Switches: 

i 

W Share common logic 

JV Remove unused (dangling) logic 

VI Extract counters, decoders and rams 

J Perform operation on only a single level of hierarchy 

1                Ere I                
-Optimize                                      Cancel 

Figure 5.7. Elaborate Figure 5.8. Pre Optimize 

Lucent ORCA-2A 
Lucent ORCA-2C 
Kilinx3K 
»nnx3KXBLOX 

minWZ 

Jv 

Xflinx4KXBLOX 

XHinx5K 
Xilinx7K 
General ASIC Technologies 
General FPGA Technologies 

Load £.ancel 

J Preserve hierarchy 

J Default Resolving 

J Perform resolving only at the top level of hierarchy 

Resolve Advanced... Cancel 

Figure 5.9. Load Modgen Library Figure 5.10. Resolve Modgen 

The heart of this design flow is the Optimize step, where we can choose what type of 

optimization to do. The exhaustive selection will require multiple hours to complete. On the 

other hand, a quick optimization may only require five to 10 minutes. Because we are primarily 

concerned with area and not with speed, the area optimization box is checked as shown in Figure 

5.11. The results of the optimization are shown in Figure 5.12, but the numbers are not entirely 

accurate. The critical path is listed as 29ns. However, the design has not yet been placed and 

routed on the chip. We will see later in Chapter 6 that the critical path is closer to 100ns. 
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Standard ♦ Exhaustive 

Design: j.work.reg_file_16_e.behavior 

Target: ♦ XWrrx4000e 

Effort: v Remap v Quick 

Mode: ♦ Chip v Macro 

Optimize: ♦ ftrea v Delay 

Pass Limits: ♦ Run M Passes v Run Only Marked Passes v SWp Marked Passes 

Switches: J Optimize only a single level of hierarchy 

Optimize Advanced- Cancel 

Figure 5.11. Optimize 

Start optimization for design .work.reg_file_16_e.behavior 

Pass 

1 

Resource Use Estimate 

Area 
(FGs) 
809 

Delay 
(ns) 
29 

DFFs Pis  POs —CPU— 
min:sec 

256   31   32  00:54 

Technology: xi 4e 
Area: 809 Function Generators 
Critical Path: 29 ns 
DFFs: 256 (in CLBs or IOBs) 
IOFFs: 32 (in IOBs) 
HM CLBs: 0 
Input Pins: 31 
Output Pins: 32 

48 

Figure 5.12. Results of Optimization 

The optimized design is then packed into the CLBs by using the window shown in Figure 

5.13, followed by decomposing the LUTs within the CLBs shown in Figure 5.14. 

Design: 

Switches: 

.work.reg_flle_16_e.behavior 

J Operate on single level of hierarchy 

Pack Cancel 

j Design: .work.regJile_16_e.6ehavtor 

] Switches: J Create new views rw each decomposed lookup table 

J Operate on single level of hierarchy 

Decompose Cancel 

r-^^r-^^r^^r-                                       n-r— 

Figure 5.13. Pack CLBs Figure 5.14. Decompose LUTs 
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The final step is the writing of the Xilinx Netlist Format (XNF) file to disk as shown in 

Figure 5.15. 

Filename: 

Format: 

I Switches: 

[ci^mplar/work/regTiifregTi^ 

v Auto  v- VHDL  v Verilog  v EDIF   ♦ XNF  v SDF 

J Don't write any warnings or info messages 

J Write only the top level of hierarchy to 1 »file 

Write Cancel 

Figure 5.15. Write XNF 

5.3.3 Xilinx XACTstep Ml 

The Xilinx XACTstep program picks up where the Exemplar tools stop. It inputs the 

XNF file and sets up a project manager screen that keeps track of the version and revision of the 

design as shown in Figure 5.16. Once loaded in as a project the design is implemented as shown 

mmm 
File    ßesign   Iools   Utilities   üiew    Help 

c£) reqji 6 

For Hslp, press Fl (w«=JlfeT,lM*J* ^ 

Figure 5.16. XACTstep Design Manager 
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in Figure 5.17. The target device is chosen, along with the current version and revision number. 

Additional options shown in Figure 5.18 allow a constraint file to be added to the design. In this 

case, a UCF file is used to lock certain I/O names to actual pins on the FPGA. Also, the 

configuration template can be edited from this screen. Figure 5.19 shows the configuration 

options screen. Both the inputs and the outputs are set to CMOS thresholds and the DONE, MO, 

Ml, and M2 mode pins are set to have an internal pull-up resistor. 

■■■■■■■ 
A  i       | 

1 

Pat ■ ■;    jxaret 1E3HQ203 

■BloiBc.i.eäpiiä'J 

.. New voajn name H 
New tension narnft. . 

Rifi     .1-          Cared 

I-1 

)          Qpbsnt... 1              '•*- 

-Comtoffite*- 

ü<a toisftainls: 

1 P 

ßiowse.'.. 

■ Ptojani Option Template» ^ 

^ implementation:    | Default 

Configuration     ' jC'döull 

- Optional Taigels—^^-— ■ .   '   ■.■ - ——— " — ';"~~~ 

r PlodualmigSiniulaiiooData      ,\f PioduceLogfcLoyelTmriaflBpott \ 

|7 ftoduce Configurator! Data   ;   '..'■■ r PtoducePostlayoutJMngRepat. 

OK ^C&tot .! H<* 

Figure 5.17. Implementation Window Figure 5.18. Implementation Options 

The Flow engine is now invoked and the process of translating, mapping, placing and 

routing, and configuring is performed. Figure 5.20 shows the Flow Engine and the results of a 

synthesized design. The result is a BIT file that is ready for download into the FPGA. 
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Figure 5.19. Configuration Options 
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Figure 5.20. Flow Engine 

5.4     Bitstream file to FPGA 

The BIT file is downloaded to the FPGA using the Hardware Debugger utility of the 

XACTstep program. An X-Checker cable is used between the FPGA and the host computer's 

serial port. The Hardware Debugger then sends the proper headers, frames of data, and trailers 

down the X-Checker cable and into the FPGA. 
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5.5     Conclusions 

This chapter discussed the procedures for synthesizing VHDL models to FPGA 

implementations. The process works, however the FKP processor cannot fit entirely on the target 

4020E FPGA. If the target FPGA was much larger in capacity than the 4020E, then in theory, the 

entire design could be placed into one device. Instead, half of the register file unit is pushed 

through Exemplar Leonardo and Xilinx XACTstep and programmed into the 4020E that is 

available in the laboratory. Figure (5.21) shows the CLB and routing layout for the register file in 

the 4020E. This design used 40% of the total available CLBs, 27% of the total available IOBs, 

and 12% of the total CLKIOBs of the 4020E. A text log of the XACTstep process from XNF 

format to BIT format is listed in Appendix C. 

Figure 5.21. 4020E CLB and Routing for the Half Register File Unit 
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6. FPGA Verification 

6.1 Introduction 

This chapter investigates the physical implementation of one of the functional unit models 

into a Xilinx 4020E FPGA. The Logic Master XL 100 by Integrated Measurements Systems 

(Integrated) will serve as the testbed for the programmed device. Because the 4020E package is 

not directly compatible with the IMS, a custom adapter is developed. 

6.2 IMS Logic Master XL100 tester 

The IMS Logic Master XL100, shown in Figure 6.1, can support up to 100MHz data and 

clock rates with up to 224 I/O channels. To test the 4020E FPGA, one XL PGA Auto Socket 

Card is used to form the interface to the IMS. 

Figure 6.1. The IMS Logic Master XL100 
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6.3     HQ208 Chip Carrier and Daughter Board 

The Xilinx 4020E FPGA is contained in a Heat-sinked Quad Flat Pack (HQFP) 208 pin 

package (Xilinx: 10-35). Because the device does not have pins that can be easily inserted into a 

test circuit board, an adapter from Ironwood Electronics (see Appendix D) is used to mount the 

FPGA to the test board. The adapter is wire-wrapped to a set of connectors which match up with 

connectors installed on the IMS socket card. Figure 6.2 shows the completed test unit. Also 

shown in Figure 6.2 is the Xilinx X-Checker cable for downloading the serial bit stream from the 

host PC to the FPGA. 

#i$Ä»^^^| 

Figure 6.2. Completed Test Unit 

There are 16 ground connections and seven +5 Volt connections to the adapter. The 

power supply is external to the IMS to allow the FPGA to be programmed and hold its 

configuration when the IMS is not cycling a test. When the IMS finishes a test and sits idle, it 

removes all power to the device under test. This would erase the configuration every time the 
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IMS stopped a test cycle because the configuration is stored in internal latches (Xilinx 13-39). By 

keeping power supplied to the FPGA, even while idle, the configuration is retained. One possible 

solution to the loss of configuration is to program a PROM device instead of the FPGA directly. 

The PROM can then hold the configuration information even when the power is removed, and 

transfer the data into the FPGA every time the system powers up. 

Also connected to the adapter are control pins for the FPGA. The TCK pin is pulled up to 

Vcc to prevent the device from entering into a boundary scan EXTEST during the download 

process(Xilinx: 13-30). The MO, Ml, and M2 pins are also pulled up to Vcc to force the device 

into Serial Slave mode. This mode is the simplest to implement. The Init, Done, Rst, and Prog 

pins are all pulled up to Vcc. Combined those with the Din and Cclk from the X-Checker and we 

have the setup shown in Figure (6.3) (Xilinx:5-18). 

The remaining connections represent either input or output of the FPGA. The Ironwood 

Electronics data sheet in Appendix C shows the 4020E pin name and number associated with the 

adapter pin numbers and corresponding IMS connections. 

There is a switch wired to the Prog pin to allow a forced reset of the FPGA. This causes 

the configuration to be erased and the device will prepare for a new download. The small green 

LED indicates power to the FPGA from the external supply. The red LED indicates that the IMS 

has output 5 Volts on the J13 channel. 
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6.4     Functional Unit Testing 

The first design that was successfully tested was a combination AND/OR gate utilizing 

four I/O pins and one CLB out of a total of 784. The AND/OR gate was modeled in VHDL and 

pushed all the way through to implementation. Fastest speed rating on the gates was 11 ns, or 

90.9MHz. 

The second design was the half register file unit from Chapter 5. The only difference in 

the process the second time was the addition of a UCF constraint file to force the I/O pins to 
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predetermined locations. Even if the model changes and causes a resynthesis of the design, the 

surrounding environment of the FPGA does not have to change. 

The IMS tester allowed for a functionality and speed test of the FPGA. For the functional 

test, the register file is reset and all 16 registers are output to the A and B bus in opposite orders. 

Figure 6.4 shows the waveforms and indicates that all registers except number 1 is cleared to a 

zero. If we recall from Chapter 4, the number 1 register always holds a numeric 1.0, and the 

number 0 register always holds a numeric 0.0. 

After the registers are cleared, all 16 registers are written to with a different bit. Once 

again the two output buses A and B are given the values of each register in opposite order. The 

waveform shows that both the A and B bus can retrieve the stored information from all registers, 

with the exception of registers 0 and 1. 

The speed test is performed by decreasing the IMS clock period until the above 

functionality test fails. At 48.5 ns, the test fails. Because the cycle of the register file is two 

cycles of the IMS, the actual failure time is a 97 ns clock period, or 10.3MHz. 
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Figure 6.4. IMS Waveform Results of Register File 
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6.5     Conclusions 

This chapter showed the physical implementation and electrical verification of only the half 

sized register file that was synthesized in Chapter 5. A Xilinx 4020E FPGA was configured from 

the host PC using a custom adapter board and electrically tested by using the IMS test station. 

The entire FKP model could not be implemented because the size of the design. It would require 

multiple 4020E FPGAs or possibly one FPGA from a higher density device, both of which were 

not available at the time of implementation. However, the success of the half sized register file 

indicates that the entire FKP model could have also been implemented successfully, assuming the 

model is correct and a multi-device partitioner program is available. 
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7. Conclusions and Recommendations for Future Work 

7.1     Conclusions 

The objective of this research was to implement the forward kinematic algorithm for the 

Utah MIT Dexterous Hand (UMDH) by creating VHDL models and directly synthesizing them 

into an FPGA. The forward kinematics of the UMDH were developed and analyzed and the 

resulting algorithm shows that 12 separate equations each containing multiple mathematical 

operations are needed. If common expressions are shared between equations, a total of 28 

operations are required. These shared terms are stored in the register file unit and are sent to 

either a cosine/sine unit, an adder/subtractor unit, or a multiplier unit as the algorithm proceeds. 

The input (angles) and output (transformation matrix) are transferred through dedicated I/O 

buses. The design results in a semi-autonomous Forward Kinematic Processor (FKP) that can 

calculate the forward kinematics every time the surrounding system issues a run command. The 

surrounding system does not deal with the intricacies of the algorithm and can tackle other system 

tasks while the FKP is busy. 

It was planned that the entire algorithm would fit into a single FPGA. However, without 

the availability of high density FPGAs in the laboratory, only a small portion of the design was 

able to become realized in hardware. The register file unit was chosen as the sub-model to 

implement because it contains combinational logic similar to all the other units plus memory 

storage. After a few iterations with the fJoorplanning tools, the register file itself proved to be 

larger than one 4020E FPGA. The register file unit was reduced to half its size and resynthesized. 
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The new design successfully fit using 40% of the configurable logic blocks of the 4020E. The 

design was programmed into a 4020E FPGA and tested using an IMS Logic Master XL. 

Electrical verification shows an upper bound on the clock frequency to be 10.3 MHz, above 

which the registers begin to hold incorrect data. 

7.2 Lessons Learned 

It can be concluded that small designs can accurately map into the FPGA and with short 

turn-around times. The Xilinx 4020E does not have the capacity that was initially expected and 

proved to be too small for the entire FKP design. The FKP core model and everything 

underneath is completely synthesizable. This required some restrictions on the coding style to 

avoid multiple signals in sensitivity lists, multiple wait statements in a process, and any reference 

to a specific delay of time. 

7.3 Recommendations 

The first issue to be addressed is the optimization of the VHDL code for synthesis. Some 

VHDL compilers support the use of in-line macro declarations for instantiation of complete 

structures such as fast adders already designed into the device. The use of such structures can not 

only speed up the design, but also take up less FPGA area. Secondly, this research focused solely 

on Xilinx devices. Using other vendors products such as Altera's MAX Plus II software and their 

FlexlOK series of FPGAs may produce better or worse results. Third, portions of the FKP itself 

could be redesigned. The multiplier unit uses a 32-bit adder as on of its components. The 

adder/subtractor unit is 16 bits by itself. The two units could be merged into an ALU, thus 

eliminating the 16-bit adder and allowing all additions and subtractions to pass through the 32-bit 
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component of the ALU. The increased overhead to choose either multiplication or 

addition/subtraction should be minimal compared to the area saved by removing the 16-bit 

adder/subtractor unit. Fourth, investigation into partitioning tools for Xilinx devices may allow 

the design to be spread across multiple FPGAs. Last, the microstore and contoller units are not 

entirly synthesizable. Both need to be modified to adhere to the synthesis restrictions. 

7.4 Ideas for Future Work 

The architecture of the design could be modified to resemble more of a macropipeline 

structure. The core could be divided into three parts. The first part would calculate the angles 

needed. The second part would calculate the sines and cosines. The third part would perform the 

multiplications, additions and subtractions. The result would be a higher throughput system but 

with a two stage delay to get the answers. On the other hand, the two data buses, one input and 

one output, could be merged into a single I/O bus. 

The design was based on the idea of the functional units each being a separate state 

machine and synchronously handshaking with the control unit. This allowed all timing 

propagation delays within the CLBs, IOBs and routing to be ignored.The result is a design that 

may waste time during a stage that is simple because the stage that requires the longest time 

restricts the rest of the design from going any faster. A possible better approach would be a more 

combinational, less state machine design. This would require knowledge of the delays of the 

circuit as it is placed into the FPGA. 

Different algorithms such as the inverse kinematics of the UMDH or a gross/fine motion 

controller could be investigated using the same concepts and procedures developed here. 
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The investigation into PROM development for truly portable systems should be addressed. 

The PROM device can serially download the configuration of the FPGA every time the system 

powers up. This property of the FPGA also allows dynamic reconfiguration of parts of the 

design, allowing the controller of the FKP to swap in and out functional units as needed. 
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Appendix A: Code for behavioral Algorithm 

A.1    C code 

"umdh.h" c code header file 
M, AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

r 
I*     umdh.h 
I* 
r Steve Parmley 
/*—— ■ ___ 

/* 
I*     Defines kinematic parameters of umdh thumb manipulators. 
r 
Ht ********************«*******************************»*****^*******» 

«define UMDH_AO (-0.75) 
«define UMDH_A1 (0.375) 
«define UMDH_A2 (1.7) 
«define UMDH_A3 (1.3) 
«define UMDH.D1 (3.125) 
«defineUMDHD2 (0.0) 
«define UMDH D3 (0.0) 
«define UMDH_D4 (0.0) 
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"range.c" c code 
/*■ 

r 
r 
r 
r 
/*• 
r 
i* 
/* 
/* 
i* 

range.c 

Steve Parmley - UMHD forward kinematic function 

Compute forward kinematics given current joint positions 
and writes all temp values to disk 
Compile with gcc range.c-Im 

*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 

Ht AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

/* include files 

#include<math.h> 
#include"umdh.h" 
include <stdio.h> 
#include <stdlib.h> 

V 
*/ 
*/ 

f ************************************************************ 
umdhFwdKin Compute forward kinematics.   */ 

««*»**A**************************************************** He **■*#*****- 

void umdhFwdKin(float *jtang, float *noap, FILE *rangeptr) 

{ 
float      a0,a1 ,a2,a3, d1 ,d2,d3,d4; 
float       d,c2, c3, c4; 
floats1,s2,s3, s4; 
float c23,s23,c234,s234; 

aO = UMDH_AO; 
a1 = UMDH_A1 
a2 = UMDH_A2; 
a3 = UMDH_A3; 
d1 = UMDH_D1 
d2 = UMDH.D2; 
d3 = UMDH_D3; 
d4 = UMDH_D4 

s1 = sinOtang[0]); d = cos(jtang[0]); 
s2 = sin(jtang[1 ]); c2 = cos(jtang[1 ]); 
s3 = sin(jtang[2]); c3 = cos(jtang[2]); 
s4 = sin(jtang[3]); c4 = cos(jtang[3]); 
s23 = s2*c3 + c2*s3; c23 = c2*c3 - s2*s3; 
s234 = sin(jtang[1]+jtang[2]+jtang[3]); 
c234 = cosQtang[1]+jtang[2]+jtang[3]); 

fprintf(rangeptr/'%f\n%f\n%f\n%f\n%fvi%f\n%f\n%f\n,',s1,s2,s3,s4,c1,c2,c3,c4); 
fprintf(rangeptr,,'%f\n%f\n%f\n%f\n%f\n%f\n",s2*c3,c2*s3,s23,c23); 

Tn vector ' 

noap[0] = d*c234; 
noap[1] = s1*c234; 
noap[2] = s234; 

/* o vector 
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noap[3] = -d*s234; 
noap[4] = -s1*s234; 
noap[5] = c234; 

I* a vector 

noap[6] = s1; 
noap[7] = -c1; 
noap[8] = 0.0; 

I* p vector */ 

noap[9] = aO + d*(a1 + a2*c2 + a3*c23); 
noap[10] = s1*(a1 + a2*c2 + a3*c23); 
noap[11] = a2*s2 + a3*s23 + d1; 

fprintf(rangeptr,"%f\n%f\n%f\n%f\n%f\n",a3*c23, 
a2*c2, 
a1+a2*c2+a3*c23, 
d*(a1+a2*c2+a3*c23), 
s1*(a1+a2*c2+a3*c23)); 

return; 
} 

main () 
{ 
FILE *fp; 
FILE *rangeptr; 

float jtang[6]; 
float noap[12]; 
float step = 3.1415/8.0; 

fp = fopen("fwdkin.dat" ,"w"); 
rangeptr = fopen("range.dat","w"); 

for (jtang[0]=-3.1415/4.0;jtang[0] < 3.1415 / 4.0*3.0; jtang[0]=jtang[0]+step) 
for (jtang[1]=0.0;jtang[1] < 3.1415 / 3.0; jtang[1]=jtang[1]+step) 
for (jtang[2]=0.0;jtang[2] < 3.1415 / 2.0; jtang[2]=jtang[2]+step) 
for (jtang[3]=0.0;jtang[3] < 3.1415 / 2.0; jtang[3]=jtang[3]+step) 

{ 
umdhFwdKin(jtang,noap,rangeptr); 

fprintf(fp,"%fVt%f\t%f\t%f\n",jtang[0],jtang[1],jtang[2],jtang[3]); 
fprintf(fp,"%f\t%f\t%f\t%f\n" ,noap[0],noap[3],noap[6],noap[9]); 
fprintf(fp,"%fVt%f\t%f\t%f\n" ,noap[li,noap[4],noapr7],noap[10]); 
fprintf(fp,"%f\t%f\t%f\t%fVi\n",noap[2],noap[5],noap[8],noap[11]); 

} 

fdose(fp); 
fclose(rangeptr); 
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A.2    Matlab code 

"fk.m" Matlab code 
% Steve Parmley % 
% Matlab code that loads data generated by C code % 
% Plots positions of last joint and arc of fingertip     % 

clear; 
close all; 
load fwdkin.dat; 
fori=1:599, 

nx(i)=fwdkin(i*4+2,1); 
ny(i)=fwdkin(i*4+3,1); 
nz(i)=fwdkin(i*4+4,1); 
ox(i)=fwdkin(i*4+2,2); 
oy(i)=fwdkin(i*4+3,2); 
oz(i)=fwdkin(i*4+4,2); 
ax(i)=fwdkin(i*4+2,3); 
ay(i)=fwdkin(i*4+3,3); 
az(i)=fwdkin(i*4+4,3); 
px(i)=fwdkin(i*4+2,4); 
py(i)=fwdkin(i*4+3,4); 
pz(0=fwdkin(i*4+4,4); 

ppx(i) = px(i) + nx(i) * 1.125; 
ppy(i) = py(i) + ny(i)* 1.125; 
ppz(i) = pz(i) + nz(i)* 1.125; 

end; 

fori=1:24, 
pxl(i) = px(i); 
py1(i) = py(i); 
pz1(i) = pz(i); 
ppxl(i) = ppx(i); 
ppy1(i) = ppy(i); 
ppz1(i) = ppz(i); 

px2(i) = px(i+24); 
py2(i) = py(i+24); 
pz2(i) = pz(i+24); 
ppx2(i) = ppx(i+24); 
ppy2(i) = ppy(i+24); 
ppz2(i) = ppz(i+24); 

px3(i) = px(i+49); 
py3(i) = py(i+49); 
pz3(i) = pz(i+49); 
ppx3(i) = ppx(i+49); 
ppy3(i) = ppy(i+49); 
ppz3(i) = ppz(i+49); 

px4(i) = px(i+74); 
py4(i) = py(i+74); 
pz4(i) = pz(i+74); 
ppx4(i) = ppx(i+74); 
ppy4(i) = ppy(i+74); 
ppz4(i) = ppz(i+74); 

px5(i) = px(i+149); 
py5(i) = py(i+149); 
pz5(i) = pz(i+149); 
ppx5(i) = ppx(i+149); 
ppy5(i) = ppy(i+149); 
ppz5(i) = ppz(i+149); 
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px6(i) = px(i+224) 
py6(i) = py(i+224) 
pz6(i) = pz(i+224) 
ppx6(i) = ppx(i+224) 
ppy6{i) = ppy(i+224); 
pp26(i) = ppz(i+224) 

px7(i) = px(i+299); 
py7(i) = py(i+299) 
pz7(i) = pz(i+299) 
ppx7(i) = ppx(i+299) 
ppy7(i) = ppy(i+299) 
ppz7(i) = ppz(i+299); 

end; 

plot3(ppx1 ,ppy1 ,ppz1 ,'-',px1 ,py1 ,pz1 ,,+',ppx2,ppy2,ppz2,•-,,px2,py2,pz2,,o,,ppx3,ppy3,ppz3,'-.,,px3,py3,pz3,,x,); 
grid; 
vjew(~45,10); 
axis([-3 3-6 017]); 
title ('UMDH Thumb Motion (joint 0 fixed)'); 
h=legend('Rngertip Positions (Joint 2 Location A)','Joint 3 Positions (Joint 2 Location A)','Fingertip Positions (Joint 2 Location B)','Joint 3 
Positions (Joint 2 Location B)','Fingertip Positions (Joint 2 Location C)','Joint 3 Positions (Joint 2 Location C)'); 
axes(h); 
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"range.m" Matlab code 
% Steve Parmley % 
% Matlab code that loads data generated by C code % 
% Plots positions of last joint and arc of fingertip     % 

load fwdkin.dat; 
max(fwdkin) 
min(fwdkin) 

load range.dat; 
max( range) 
min(range) 
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Appendix B: VHDL Functional Unit Models 
and Simulation Testbenches 

B.l Cosine/Sine Unit 

B.1.1   Cosine/Sine Model 

- Project: Thesis 
- Filename: cos_sin.vhd 
- Other files required: 
-Date: Sept 19 97 
- Entity/Architecture Name: cos_sin_e/behavior 
-Developer: Steve Pamnley 

library IEEE; 
use IEEE.std_logic_1164.all; 

entity cos_sin_e is 
port (cos sinjeset in           std_ulogic; 

cos sin elk in            std_ulogic; 
cos sin A bus in            std_ulogic_vector(15 downto 0); 
cos_sin_go in            std_ulogic; 
cos sin sei in           std_ulogic; 
cos sin wait in            std_ulogic_vector(2 downto 0); 
cos sin ready out          std_ulogic; 
cos sin C bus out          std_ulogic_vector(15 downto 0); 

- the following describes ti le connection to the rom 
cos sin rom addr out          std_ulogic_vector(12 downto 0); 
cos_sin_rom_data in           std_ulogic_yector(15 downto 0)) 

end cos_sin_e; 

architecture behavior of cos_sin_e is 
begin 

lookup: process 
variable state: integer; 
variable wait_count, wait_counter: integer; 

- create sinks for four bits not used of A_bus 
variable tempi ,temp2,temp3,temp4: std_ulogic; 

begin 

if cos_sin_reset = '1' then 
"state := 0; 

end if; 

wait until (cos_sin_clk'event and cos_sin_clk='1'); 

if state = 0 then 
- turn off all signals 
cos_sin_ready <= '0'; 

- calculate how many waits 
wait_count := 0; 
wait_counter := 0; 
if cos_sin_wait(0) = '1' then 
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wait_count := wait_count +1; 
end if; 
if cos_sin_wait(1) = T then 

wait_count := wait_count + 2; 
end if; 
if cos_sin_wait(2) = '1' then 

wait_count := wait_count + 4; 
end if; 
- copy over lower 8 decimal bits and 3 LSBs of integer 
cos_sin_rom_addr(10 downto 0) <= cos_sin_A_bus(10 downto 0); 
- copy in sign bit 
cos_sin_rom_addr(11) <= cos_sin_A_bus(15); 
- copy in selector bit for cos or sin function 
cos_sin_rom_addr(12) <= cos_sin_sel; 

■ sink the 4 unused bits 
tempi 
temp2 
temp3 
temp4 

cos_sin_A_bus(11) 
cos_sin_A_bus(12) 

= cos_sin_A_bus(13) 
cos_sin_A_bus( 14); 

-wait for go signal 
if cos_sinjjo = '1' then 

state :=1; 
end if; 

end if; 
if state 1then 

- induce ran wait states for slower external devices 
if wait_count = wait_counter then 

state := 2; 
else 

wait_counter := wait_counter + 1; 
end if; 

end if; 
if state = 2 then 

- latch data 
cos_sin_C_bus <= cos_sin_rom_data; 
- indicate to control that the information is latched 
cos_sin_ready <= '1'; 
- wait one cycle and 
state := 3; 

elsif state = 3 then 
- ready signal 
cos_sin_ready <= '0'; 
- start over 
state := 0; 

end if; 

end process lookup; 
end behavior; 
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B.1.2   Cosine/Sine Testbench 

- Project: 
- Filename: 

Thesis 
cos_sin-bench.vhd 

- Other files required: 
-Date: 
- Entity/Architecture Name: 
- Developer: 

sept 19 97 
cos_sin_tb/test 
Steve Parmley 

library IEEE; 
use IEEE.std_logic_1164.all; 

entity cos_sin_tb is 
end cos_sin_tb; 

architecture test of cos_sin_tb is 

component cos_sin_e 
port (cos_sin_reset 

cos_sin_clk 
cos_sin_A_bus 
cos_sin_go 
cos_sin_sel 
cos_sin_wait 
cos_sin_ready 
cos_sin_C_bus 

in            std_ulogic; 
in            std_ulogic; 
in            std_ulogic_vector(15 downto 0); 
in           std_ulogic; 
in            std_ulogic; 
in           std_ulogic_vector(2 downto 0); 
out          std_ulogic; 
out          std_ulogic_vector(15 downto 0); 

- the following describes the connection to the rom 
cos_sin_rom_addr   : out std_ulogic_ 
cos_sin_rom_data   : in std_ulogic. 

end component; 

signal sys_reset, sys_clk, go, sei, ready: std_ulogic := '0'; 
signal waits : std_ulogic_vector(2 downto 0) := "000"; 
signal anglejn: std_ulogic_vector(15 downto 0); 
signal result : std_ulogic_vector(15 downto 0); 
signal rom_address: std_ulogic_vector(12 downto 0); 
signal rom_result : std_ulogic_vector(15 downto 0); 

begin 
U1 : cos_sin_e 

PORT MAP   (sys_reset, 
sys_clk, 
anglejn, 
go. 
sei, 
waits, 
ready, 
result, 
rom_address, 
rom_result); 

vector(12 downto 0); 
vector(15 downto 0)); 

clock: process 
begin 

sys_clk <= not(sys_clk); 
wait for 10 ps; 

end process clock; 

rst: process 
begin 

sys_reset<=T; 
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wait for 5 ps; 
sys_reset <= '0'; 
wait for 15000 ps; 

end process rst; 

exercise: process 
variable wait_count: integer := 0; 
begin 

- do it again with more waits 
casewait_countis 

when 0 => waits <= "000"; 
whenl => waits <= "001" 
when 2 => waits <= "010" 
when 3 => waits <= "011 
when 4 => waits <= "100"; 
when 5 => waits <= "101"; 
when 6 => waits <= "110" 
when 7 => waits <= "111"; 
when others => wait until sys_clk'event and sys_clk='1 

wait until sys_clk'event and sys_clk='1 
wait until sys_clk'event and sys_clk-1 
wait until sys_clk'event and sys_clk='1 
wait until sys_clk'event and sys_clk='1 
wait until sys_clk'event and sys_clk='1 
ASSERT false 

REPORT "DONE" 
SEVERITY failure; 

end case; 

wait_count := wait_count + 1; 

wait until sys_clk'event and sys_clk='0'; 
- processor is setting up input bus 
angle_in(15 downto 1) <= "000100100011010"; 
angle_in(0) <= waits(O); 
- set selection to sin or cos 
sei <= waits(O); 

-wait for a while 
wait until sys_clk'event and sys_clk=T; 
- and initiate function 
go<=T; 

- wait for function to report ready 
wait until ready = T and readyevent; 

wait until sys_clk'event and sys_clk-1'; 

- turn off go signal 
go <= '0'; 

end process exercise; 

ran: process 
begin 

wait until rom_address'event; 

- make up some ran data (inverse of the address for now) 
rom_result(12 downto 0) <= not(rom_address(12 downto 0)); 

- fill in the rest 
rom_result(15 downto 13) <= "111"; 

end process rom; 
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end test; 

CONFIGURATION cos_sin_c OF cos_sin_tb IS 
FOR test 

FOR ALL: cos_sin_e 
USE ENTITY WORK.cos_sin_e(behavior); 

END FOR; 
END FOR; 

END cos sine; 

B.1.3   Cosine/Sine Results 

SYS_RESET 
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READY 
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B.2 Adder/Subtractor Unit 

B.2.1   Adder/Subtractor Model 

- Project: Thesis 
- Filename: adder.vhd 
- Other files required: 
-Date: sept 30 97 
- Entity/Architecture Name: adder_e/behavior 
-Developer: Steve Parmley 
- Function: 
- Limitations: 
- History: 
-Last Analyzed On: 

library IEEE; 
use IEEE.std_logic_1164.all; 

entity adder_e is 
port (adder_reset in std_ulogic; 

adder elk in std_ulogic; 
adder A bus in std_ulogic_vector(15 downto 0); 
adder_B_bus in std_ulogic_vector(15 downto 0); 
adder_go in std_ulogic; 
adder_sel in std_ulogic; 
adder done out std_ulogic; 
adder C bus out std_ulogic_vector(15 downto 0)) 

end adder_e; 

architecture behavior of adder_e is 
Signal state: integer; 
Signal Bxor: std_ulogic_vector(15 downto 0); 
Signal Cout: std_ulogic_vector(15 downto 0); 
Signal SUM: std_ulogic_vector(15 downto 0); 

begin 

addsub: process 

begin 

wait until adder_clk'event and adder_clk-1'; 

if adderjeset = T then 
Itate <= 0; 

end if; 

if adder_go = Tthen 

if state = 0 then 
Bxor(0) <= 
Bxor(1)<= 
Bxor(2)<= 
Bxor(3) <= 
Bxor(4) <= 
Bxor(5) <= 
Bxor(6) <= 
Bxor(7) <= 
Bxor(8) <= 
Bxor(9) <= 
Bxor(10) <= 

adder_B_bus(0) xor adder_sel; 
adder_B_bus(1) xor adder_sel; 
adder_B_bus(2) xor adder_sel; 
adder_B_bus(3) xor adder_sel; 
adder_B_bus(4) xor adder_sel; 
adder_B_bus(5) xor adder_sel; 
adder_B_bus(6) xor adder_sel; 
adder_B_bus(7) xor adder_sel; 
adder_B_bus(8) xor adder_sel; 
adder_B_bus(9) xor adder_sel; 
= adder_B_bus(10) xor adder_sel; 
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Bxor(11) <= adder_B_bus(11) xor adder_sel; 
Bxor(12) <= adder_B_bus(12) xor adder_sel; 
Bxor(13) <= adder_B_bus(13) xor adder_sel; 
Bxor(14) <= adder_B_bus(14) xor adder_sel; 
Bxor(15) <= adder_B_bus(15) xor adder_sel; 
state <=1; 

sis if ststs — 1 thsn 
Cout(O)    <= ((adder_A_bus(0) and Bxor(O)) or (adderjsel and (adder_A_bus(0) or Bxor(0)))); 
state <= 2; 

ffterf ststs — 2 thsn 
SUM(O)   <= ((adder A_bus(0) and Bxor(0) and adder_sel) or ((adder_A_bus(0) or Bxor(0) or adder_sel) and (not Cout(0)))); 
Cout(1)    <= ((adder~A_bus(1) and Bxor(1)) or (Cout(O) and (adder_A_bus(1) or Bxor(1)))); 
state <= 3; 

gig if ftfaf6 z: 3 thsn 
SUM(1)   <= ((adder A_bus(1) and Bxor(1) and Cout(0)) or ((adder_A_bus(1) or Bxor(1) or Cout(0)) and (not Cout(1)))); 
Cout(2)    <= ((adder~A_bus(2) and Bxor(2)) or (Cout(1) and (adder_A_bus(2) or Bxor(2)))); 
state <= 4; 

etsif state = 4 then J/m.« 
SUM(2)   <= ((adder A_bus(2) and Bxor(2) and Cout(1)) or ((adder_A_bus(2) or Bxor(2) or Cout(1)) and (not Cout(2)))); 
Cout(3)    <= ((adder~AJ)us(3) and Bxor(3)) or (Cout(2) and (adder_A_bus(3) or Bxor(3)))); 
state <= 5; 

sis if stets -* 5 thsn 
SUM(3)   <= ((adder_A_bus(3) and Bxor(3) and Cout(2)) or ((adder_A_bus(3) or Bxor(3) or Cout(2)) and (not Cout(3)))); 
Cout(4)    <= ((adder_A_bus(4) and Bxor(4)) or (Cout(3) and (adder_A_bus(4) or Bxor(4)))); 
state <= 6; 

elsif state = 6 then ^„„ 
SUM(4)   <= ((adder_A_bus(4) and Bxor(4) and Cout(3)) or ((adder_A_bus(4) or Bxor(4) or Cout(3)) and (not Cout(4)))); 
Cout(5)    <= ((adder_A_bus(5) and Bxor(5)) or (Cout(4) and (adder_A_bus(5) or Bxor(5)))); 
state <= 7; 

elsif state = 7 then 
SUM(5)   <= ((adder_A_bus(5) and Bxor(5) and Cout(4)) or ((adder_A_bus(5) or Bxor(5) or Cout(4)) and (not Cout(5)))); 
Cout(6)    <= ((adder_A_bus(6) and Bxor(6)) or (Cout(5) and (adder_A_bus(6) or Bxor(6)))); 
state <= 8; 

elsif state = 8 then 
SUM(6)   <= ((adder_A_bus(6) and Bxor(6) and Cout(5)) or ((adder_A_bus(6) or Bxor(6) or Cout(5)) and (not Cout(6)))); 
Cout(7)    <= ((adder_A_bus(7) and Bxor(7)) or (Cout(6) and (adder_A_bus(7) or Bxor(7)))); 
state <= 9; 

pjsjf stst© ~ 9 thöi 
SUM(7)   <= ((adder_A_bus(7) and Bxor(7) and Cout(6)) or ((adder_A_bus(7) or Bxor(7) or Cout(6)) and (not Cout(7)))); 
Cout(8)    <= ((adder_A_bus(8) and Bxor(8)) or (Cout(7) and (adder_A_bus(8) or Bxor(8)))); 
state <= 10; 

elsif state =10 then 
SUM(8)   <= ((adder_A_bus(8) and Bxor(8) and Cout(7)) or ((adder_A_bus(8) or Bxor(8) or Cout(7)) and (not Cout(8)))); 
Cout(9)    <= ((adder_A_bus(9) and Bxor(9)) or (Cout(8) and (adder_A_bus(9) or Bxor(9)))); 
state <= 11; 

filsif stats —11 thsn 
SUM(9)   <- ((adder_A_bus(9) and Bxor(9) and Cout(8)) or ((adder_A_bus(9) or Bxor(9) or Cout(8)) and (not Cout(9)))); 
Cout(10)<= ((adder_A_bus(10) and Bxor(10)) or (Cout(9) and (adder_A_bus(10) or Bxor(10)))); 
state <= 12; 

sis if ststs —12 thsn 
SUM(10) <= ((adder_A_bus(10) and Bxor(10) and Cout(9)) or ((adder_A_bus(10) or Bxor(10) or Cout(9)) and (not 

Cout(10)))); 
Cout(11)<= ((adder_A_bus(11) and Bxor(11)) or (Cout(10) and (adder_A_bus(11) or Bxor(11)))); 
state <= 13; 

sis if state —13 thsn 
SUM(11) <= ((adder_A_bus(11) and Bxor(11) and Cout(10)) or ((adder_A_bus(11) or Bxor(11) or Cout(10)) and (not 

Cout(11)))); 
Cout(12)<= ((adder_A_bus(12) and Bxor(12)) or (Cout(11) and (adder_A_bus(12) or Bxor(12)))); 
state <= 14; 

elsif state = 14 then 
SUM(12) <= ((adder_A_bus(12) and Bxor(12) and Cout(11)) or ((adder_A_bus(12) or Bxor(12) or Cout(11)) and (not 

Cout(12)))); 
Cout(13)<= ((adder_A_bus(13) and Bxor(13)) or (Cout(12) and (adder_A_bus(13) or Bxor(13)))); 
state <= 15; 

elsif state =15 then 
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SUM(13) <= ((adder_A_bus(13) and Bxor(13) and Cout(12)) or ((adder_A_bus(13) or Bxor(13) or Cout(12)) and (not 
Cout(13)))); 

Cout(14)<= ((adder_A_bus(14) and Bxor(14)) or (Cout(13) and (adder_A_bus(14) or Bxor(14)))); 
state <= 16; 

slsif stdts —16 thsn 
SUM(14) <= ((adder_A_bus(14) and Bxor(14) and Cout(13)) or {(adder_A_bus(14) or Bxor(14) or Cout(13)) and (not 

Cout(14)))); 
Cout(15)<= ((adder_A_bus(15) and Bxor(15)) or (Cout(14) and (adder_A_bus(15) or Bxor(15)))); 
state <= 17; 

elsif state =17 then 
SUM(15) <= ((adder_A_bus(15) and Bxor(15) and Cout(14)) or ((adder_A_bus(15) or Bxor(15) or Cout(14)) and (not 

Cout(15)))); 
state <= 18; 

elsif state =18 then 
adder_C_bus <= SUM; 
adder_done<=T; 

end if; 
else 

adder_done <= '0'; 
state <= 0; 

end if; 

end process addsub; 
end behavior; 

B.2.2   Adder/Subtractor Testbench 

- Project: Thesis 
- Filename: adder-bench.vhd 

- Other files required: 
-Date: sept 30 97 
- Entity/Architecture Name: adder tb/test 
-Developer: Steve Parmley 
— Function: 
— Limitations: 
- History: 
-Last Analyzed On: 

library IEEE; 
use IEEE.std_logic_1164.all; 

entity adder_tb is 
end adderjtb; 

architecture test of adderjtb is 

constant AtestOO    : std_ulogic_vector(15 downto 0) 
constant AtestOI: std_ulogic_vector(15 downto 0) := 
constant Atest02    : std_ulogic_vector(15 downto 0) 
constant Atest03: std_ulogic_vector(15 downto 0) := 
constant Atest04    : std_ulogic_vector( 15 downto 0) 
constant Atest05: std_ulogic_vector(15 downto 0) := 
constant Atest06    : std_ulogic_vector(15 downto 0) 
constant Atest07 : std_ulogic_vector(15 downto 0) := 
constant Atest08    : std_ulogic_vector(15 downto 0) 
constant Atest09: std_ulogic_vector(15 downto 0) := 

:= "OOOOOOOOOOOOOOOO1 

"0000000000000001"; 
:= "0000000000000010" 
"0000000000000011"; 
:= "0101010101010101"; 
"1010101010101010" 
:= "1111111111111110"; 
"1111111101111111"; 
:="0111111111111111 
"1111111111111111"; 
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constant BtestOO   : std_ulogic_vector(15downto0) 
constant BtestOI: std_uTogic_vector(15 downto 0) 
constant Btest02    : std_ulogic_vector(15 downto 0) 
constant Btest03: std_ulogic_vector(15 downto 0) := 
constant Btest04   :std_ulogic_vector(15 downto 0) 
constant Btest05: std_ulogic_vector(15 downto 0) := 

constant  add: std_ulogic := '0'; 
constant sub:std_ulogic:='1'; 
component adder_e 

port (adder_reset 
adder_clk 
adder_A_bus 
adder_B_bus 
adderjgo 
adder_sel 
adderjdone 
adder_C_bus 

end component; 

signal sys_clk,sys_reset, go, set, done: std_ulogic := '0'; 
signal A,B7 result     : std_ulogic_vector(15 downto 0); 

"0000000000000000" 
:= "0000000000000001"; - +/- 1 
)) := "0000000000000010"; - +/- 2 

"0000000100000000"; - +/- 256 
:= "1000000000000000"; - +/- 32K 
"1111111111111111";-+/-65534 

-+/-0 

in std_ulogic; 
in std_ulogic; 
in std_ulogic_vector(15 downto 0); 
in std_ulogic_vector(15 downto 0); 
in std_ulogic; 
in std_ulogic; 
out std_ulogic; 
out std_ulogic_vector(15 downto 0)) 

begin 
U1: adder_e 

PORT MAP (sys_reset, 
sys elk, 
A, 
B, 
go, 
sei, 
done, 
result); 

clock: process 
begin 

sys_clk <= not(sys_clk); 
wait for 10 ps; 

end process clock; 

exercise: process 
variable inputA inputB: std_ulogic_vector(15 downto 0); 
begin 

sys_reset <= '0'; 

ForiinOtol loop 
-add or sub 

CASE i IS 
WHEN 0 => sei <= add; 
WHEN 1 => sei <= sub; 

END CASE; 

for j in 0 to 9 loop 
for I in 0 to 5 loop 

-pick a test 
CASE j IS 

WHEN 0 => inputA := AtestOO; 
WHEN 1 => inputA := AtestOI 
WHEN 2 => inputA := Atest02; 
WHEN 3 => inputA := Atest03; 
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WHEN 4 
WHEN 5 
WHEN 6 
WHEN 7 
WHEN 8 
WHEN 9 

END CASE; 
CASE I IS 

WHENO 
WHEN1 
WHEN 2 
WHEN 3 
WHEN 4 
WHEN 5 

END CASE; 

=> inputA: 
=> inputA: 
=> inputA: 
=> inputA: 
=> inputA: 
=> inputA: 

=> inputB: 
=> inputB: 
=> inputB: 
=> inputB: 
=> inputB: 
=> inputB: 

<Atest04; 
= Atest05; 
= Atest06; 
= Atest07; 
:Atest08: 
:Atest09; 

■■ BtestOO: 
= BtestOI 
■■ Btest02 
■■ Btest03 
: BtesttM 
■ Btest05 

go <= '0'; 

wait until done = '0'; 

end loop; 
end loop; 

end loop; 

FOR k IN 0 TO 15 loop 
A(k) <= inputA(k); 
B(k) <= inputB(k); 

end loop; 

wait until sys_clk'event and sys_clk='0'; 

go<=T; 

wait until done-1'; 

go^'O1; 

wait until sys. 
wait until sys. 
wait until sys. 
wait until sys. 
wait until sys. 
wait until sys. 
wait until sys. 
wait until sys. 
wait until sys. 
wait until sys. 
wait until sys. 
wait until sys. 
wait until sys. 
wait until sys. 
wait until sys. 
wait until sys. 
wait until sys. 
wait until sys. 

.clk'event 
clk'event 
clk'event 
.clk'event 
.clk'event 
.clk'event 
.clk'event 
.clk'event 
.clk'event 
.clk'event 
.clk'event 
.clk'event 
.clk'event 
.clk'event 
..clk'event 
_clk'event 
.clk'event 
clk'event 

and sys. 
and sys. 
and sys. 
and sys. 
and sys. 
and sys. 
and sys. 
and sys. 
and sys. 
and sys. 
and sys. 
and sys. 
and sys. 
and sys. 
and sys. 
and sys. 
and sys. 
and sys. 

clk='0' 
clk='0' 
clk='0'; 
clk='0' 
clk='0' 
clk='0' 
clk='0' 
clk='0' 
clk='0' 
clk='0' 
clk='0'; 
clk='0' 
clk='0' 
clk='0' 
clk='0' 
clk='0' 
clk='0' 
clk='0' 

ASSERT false 
REPORT "DONE" 
SEVERITY failure; 

end process exercise; 
end test; 
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CONFIGURATION adder_c OF adderjb IS 
FOR test 

FORALL:adder_e 
USE ENTITY WORK.adder_e(behavior); 

END FOR; 
END FOR; 

END adder c; 

B.2.3   Adder/Subtractor Results 
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B.3 Multipler Unit 

B.3.1   Multiplier Model 

■ Project: 
- Filename: 
-Otherfiles required: 
-Date: 
- Entity/Architecture Name: 
■Developer 
- Function: 
- Limitations: 
- History: 
- Last Analyzed On: 

Thesis 
adder32.vhd 

sept 30 97 
adder32_e/behavior 
Steve Parmley 

library IEEE; 
use IEEE.std_logic_1164.all; 

entity adder32_e is 
port (adder_reset 

adder_clk 
adder_A_bus 
adder_B_bus 
adderjjo 
adder_sel 
adder_done 
adder_C_bus 

end adder32_e; 

architecture behavior of adder32_e is 
Signal state: integer; 
Signal Bxor: std_ulogic_vector(31 downto 0) 
Signal Cout: std_ulogic_vector(31 downto 0); 
Signal SUM: std_ulogic_vector(31 downto 0) 

in std_ulogic; 
in std_ulogic; 
in std_ulogic_vector(31 downto 0); 
in std_ulogic_vector(31 downto 0); 
in std_ulogic; 
in std_ulogic; 
out std_ulogic; 
out std_ulogic_vector(31 downto 0)) 

addsub: process 

begin 

wait until adder_clk'event and adder_clk=T; 

if adder_reset = '1' then 
state <= 0; 

end if; 

if adder_go = "T then 

if state = 0 then 
Bxor(0) <= 
Bxor(1) <= 
Bxor(2) <= 
Bxor(3) <= 
Bxor(4) <= 
Bxor(5) <= 
Bxor(6) <= 
Bxor(7) <= 
Bxor(8) <= 
Bxor(9) <= 
Bxor(10) <= 

adder_B_bus(0) xor adder_sel; 
adder_B_bus(1) xor adder_sel; 
adder_B_bus(2) xor adder_sel; 
adder_B_bus(3) xor adder_sel; 
adder_B_bus(4) xor adder_sel; 
adder_B_bus(5) xor adder_sel; 
adder_B_bus(6) xor adder_sel; 
adder_B_bus(7) xor adder_sel; 
adderJ5_bus(8) xor adder_sel; 
adder_B_bus(9) xor adder_sel; 
= adder_B_bus(10) xor adder_sel; 
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Bxor(11) <= adder_B_bus(11) xor adder_sel; 
Bxor(12) <= adder_B_bus(12) xor adder_sel; 
Bxor(13) <= adder_B_bus(13) xor adder_sel; 
Bxor(14) <= adder_B_bus(14) xor adder_sel; 
Bxor(15) <= adder_B_bus(15) xor adder_sel; 
Bxor(16) <= addeTB_bus(16) xor adder_sel; 
Bxor(17) <= adder_B_bus(17) xor adder_sel; 
Bxor(18) <= adder_B_bus(18) xor adder_sel; 
Bxor(19) <= adder_B_bus(19) xor adderjsel; 
Bxor(20) <= adder_B_bus(20) xor adder_sel; 
Bxor(21) <= adder_B_bus(21) xor adder_sel; 
Bxor(22) <= adder_B_bus(22) xor adder_sel; 
Bxor(23) <= adder_B_bus(23) xor adder_sel; 
Bxor(24) <= adder_B_bus(24) xor adder_sel; 
Bxor(25) <= adder_B_bus(25) xor adder_sel; 
Bxor(26) <= adder_B_bus(26) xor adder_sel; 
Bxor(27) <= adder_B_bus(27) xor adder_sel; 
Bxor(28) <= adder_B_bus(28) xor adder_sel; 
Bxor(29) <= adder_B_bus(29) xor adder_sel; 
Bxor(30) <= adder_B_bus(30) xor adder_sel; 
Bxor(31) <= adder_B_bus(31) xor adder_sel; 
state <=1; 

filsif ststs -* i th©n 
Cout(0)    <= ((adder_A_bus(0) and Bxor(0)) or (adder_sel and (adder_A_bus(0) or Bxor(0)))); 
state <= state + 1; 

elsif state = 2 then 
SUM(state-2) <= ((adder_A_bus(state-2) and Bxor(state-2) and adder_sel) or ((adder_A_bus(state-2) or Bxor(state-2) 

or adder_sel) and (not Cout(state-2)))); 
Cout(state-1) <= ((adder_A_bus(state-1) and Bxor(state-1)) or (Cout(state-2) and (adder_A_bus(state-1) or Bxor(state- 

1)))); 
state <= state+1; 

elsif state >= 3 and state <= 32 then 
SUM(state-2) <= ((adder_A_bus(state-2) and Bxor(state-2) and Cout(state-3)) or ((adder_A_bus(state-2) or Bxor(state- 

2) or Cout(state-3)) and (not Cout(state-2)))); 
Cout(state-1) <= ((adder_A_bus(state-1) and Bxor(state-1)) or (Cout(state-2) and (adder_A_bus(state-1) or Bxor(state- 

D))); 
state <= state+1; 

filsif ststfi = 33 thfin 
SUM(31) <= ((adder_A_bus(31) and Bxor(31) and Cout(30)) or ((adder_A_bus(31) or Bxor(31) or Cout(30)) and (not 

Cout(31)))); 
state <= state+1; 

elsif state = 34 then 
adder_C_bus <= SUM; 
adder_done <= '1'; 

end if; 
else 

adder_done <= '0'; 
state <= 0; 

end if; 

end process addsub; 
end behavior; 

• Project: Thesis 
- Filename: mult.vhd 
-Otherfiles required: 
-Date: Oct10 97 
■ Entity/muft_A_busrchitecture Name:     mult32_e/behavior 
■ Developer: Steve Parmley 
- Function: 
- Limitations: 
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- History: 
-Last Analyzed On: 

library IEEE; 
use IEEE.std_logic_1164.all; 

entity mult_e is 
port (mult reset in std_ulogic; 

mult elk in std_ulogic; 
mult A bus in std_ulogic_vector(15 downto 0); 

mult B bus in std_ulogic_vector(15 downto 0); 

mult_go in std_ulogic; 
mult done out std_ulogic; 
mult_C_bus out std_ulogic_vector(15 downto 0)); 

end mul t_e; 

architecture behavior of mult_e is 

Signal state, state2: integer, 
Signal      result00,result01 ,result02,result03,result04,result05,resuft06,result07, 

result08,result09,result10,result11 ,result12,result13,result14,result15 
: std_ulogic_vector(31 downto 0); 

signal sys_clk, sys_reset, go, sei, done: std_ulogic := '0'; 
signal AB, result     : std_ulogic_vector(31 downto 0); 

component adder32_e 
port (adder_reset 

adder_clk 
adder_A_bus 
adder_B_bus 
adder_go 
adder_sel 
adder_done 
adder_C_bus 

end component; 

in std_ulogic; 
in std_ulogic; 
in std_ulogic_vector(31 downto 0); 
in std_ulogic_vector(31 downto 0); 
in std_ulogic; 
in std_ulogic; 
out std_ulogic; 
out std_ulogic_vector(31 downto 0)) 

U1: adder32_e 
PORT MAP   (sys_reset, 

sys_clk, 
A 
B, 
90, 
sei, 
done, 
result); 

sys_clk <= mult_clk; 
sei <= '0'; 
sys_reset <= mutt_reset; 

addsub: process 

begin 

wait until mult_clk'event and mult_clk='1'; 

ifmult_reset = '1'then 
state <= 0; 

end if; 

if mult_go = Tthen 
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if state = 0 then 
resultOO <= "OOOOOOOOOOOOOOXJOOOOOOOOOOOOOOOO''; 
resultOI <= "00000(XXX)00000(X)0000000000000000"; 
result02 <= "00000000000000000000000000000000"; 
result03 <= "OOOOOOCWOOOOOOCXXXJOOOOOOOOOOOOOO"; 
result04 <= "0CJ00000CIO000CIO00000O000000000000"; 
result05 <= "OOOOOOOCXXXWfJOOOOOOOOOOOOOOOOOOO"; 
resultt» <= "00000000000000000000000000000000"; 
result07 <= "00000000000000000000000000000000"; 
resultt» <= "OOOOOOOOOOOCJOOCWOOOOOOOOOOOOOOOO"; 
resultt» <= "OOCJOOXJOOOOOOCIOOOOOCIOOOOOOOOOOOOO''; 
resultIO <= "00000000000000000000000000000000"; 
resultH <= "CIO(XX)000(X)OC)OOOOOOOOC)OOC)00000000"; 
result12 <= "C)C)C)OC)OOOC)00000000000000000000000,'; 
resuK13 <= "OC)OC)()OOC)0000(XXXXXXX)000000000000''; 
result14 <= "00000000000000000000000000000000"; 
resultl 5 <= "00000000000000000000000000000000"; 

state <=1; 
elsif state = 1 then 

for i in 0 to 15 loop 
if murt_B_bus(i) = '1' then 

case i is 

end if; 
end loop; 
state <= 2; 

when 0 => result00(15 downto 0) <= mult_A_bus; 
when 1 => resurt01(16 downto 1) <= mult_A_bus; 
when 2 => resurt02(17 downto 2) <= mult_A_bus; 
when 3 => result03(18 downto 3) <= mult_A_bus ; 
when 4 => result04(19 downto 4) <= murt_A_bus ; 
when 5 => result05(20 downto 5) <= mult_A_bus; 
when 6 => resurt06(21 downto 6) <= mult_A_bus; 
when 7 => result07(22 downto 7) <= mult_A_bus; 
when 8 => result08(23 downto 8) <= mult_A_bus; 
when 9 => result09(24 downto 9) <= mult_A_bus; 
when 10 => result10(25 downto 10) <= mult_A_bus ; 
when 11 => resultl 1 (26 downto 11) <= mult_A_bus; 
when 12 => result12(27 downto 12) <= mult_A_bus ; 
when 13 => result13(28 downto 13) <= murt_A_bus; 
when 14 => result14(29 downto 14) <= mult_A_bus ; 
when 15 => resultl 5(30 downto 15) <= mult_A_bus; 
when others => 

end case; 

elsif state = 2 then 
go<='0'; 
if done = '0'then 

A <= resultOO; 
B<= resultOI; 
state <= 3; 

end if; 
elsif state = 3 then 

go<=T; 
if done = '1' then 

state <= 4; 
state2 <= 0; 

end if; 

elsif state >= 4 and state <= 15 then 
if state2 = 0 then 

go <= '0'; 
if done = '0" then 

A <= result; 
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case state is 
when 4 => B <= resuR02; 
when 5 => B <= result03; 
when 6 => B <= result04; 
when 7 => B <= result05; 
when 8 => B <= result06; 
when 9 => B <= resutt07; 
when 10 => B <= result08; 
when 11 => B <= result09; 
when 12 => B <= resultIO; 
when 13 => B <= resultl 1 
when 14 => B <= result12; 
when 15 => B <= resultl 3; 
when 16 => B <= result14; 
when 17 => B <= result15; 
when others => 

end case; 
state2<=1; 

end if; 
elsif state2 = 1 then 

go<=T; 
ifdone = '1'then 

state2 <= 0; 
state <= state +1; 

end if; 
end if; 

elsif state =18 then 
mult_C_bus <= result(23 downto 8); 
mult_done<=,1'; 

end if; 
else 

mult_done <= '0'; 
state <= 0; 

end if; 

end process addsub; 
end behavior; 

B.3.2   Multiplier Testbench 

- Project: 
- Filename: 
- Other files required: 
-Date: 
- Entity/Architecture Name: 
-Developer 
- Function: 
- Limitations: 
- History: 
-Last Analyzed On: 

Thesis 
adder32-bench.vhd 

sept 30 97 
adder32Jb/test 
Steve Parmley 

library IEEE; 
use IEEE.std_logic_1164.all; 

entity adder32Jb is 
endadder32 tb; 
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architecture test of adder32_tb is 

constant AtestOO   : std_ulogic_vector(31 downto 0) 
constant AtestOI: std_uTogic_vector(31 downto 0) := 
constant Atest02    : std_ulogic_vector(31 downto 0) 
constant Atest03: std_ulogic_vector(31 downto 0) := 
constant Atest04   : std_ulogic_vector(31 downto 0) 
constant Atest05: std_ulogic_vector(31 downto 0) := 
constant AtestOS    : std_ulogic_vector(31 downto 0) 
constant Atest07: std_uTogic_vector(31 downto 0) := 
constant Atest08    : std_ulogic_vector(31 downto 0) 
constant Atest09: std_ulogic_vector(31 downto 0) := 

:= "OOOOOOOOOTJOOOOOOOOC10000000000000' 
"00000000000000000000000000000001"; 
:= "0(XXX)000000000000000000000000010"; 
"OOOCKXXXXXXXI00000000000000000011" 
= "01010101010101010101010101010101"; 
"10101010101010101010101010101010"; 
:= "11111111111111111111111111111110" 
"11111111011111111111111101111111"; 
:= "01111111111111111111111111111111"; 
"11111111111111111111111111111111' 

constant BtestOO   : std_ulogic_vector(31 downto 0) 
constant BtestOI : std_ulogic_vector(31 downto 0) := 
constant Btest02    : std_ulogic_vector(31 downto 0) 
constant Btest03: std_ulogic_vector(31 downto 0) := 
constant Btest04   : std_ulogic_vector(31 downto 0) 
constant Btest05: std_ulogic_vector(31 downto 0) := 

:= "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO"; 
"OOCKXXXXXX)C)00OOOOOOO0OO0OOOO00Or; 
:= "000O000CJ0O0O00O0OO00OO000O0O0010"; 
"00000000000000000000000100000000"; 
:= "1(K)OC)OOOOOC)000000000000000000000"; 
"11111111111111111111111111111111"; 

constant  add: std_ulogic := '0'; 
constant sub: std_ulogic := T; 
component adder32_e 

port (adder_reset 
adder_clk 
adder_A_bus 
adder_B_bus 
adderjjo 
adder_sel 
adder_done 
adder_C_bus 

end component; 

in std_ulogic; 
in std_ulogic; 
in std_ulogic_vector(31 downto 0); 
in std_ulogic_yector(31 downto 0); 
in std_ulogic; 
in std_ulogic; 
out std_ulogic; 
out std_ulogic_vector(31 downto 0)); 

signal sys_clk,sys_reset, go, sei, done: std_ulogic := '0'; 
signal A,B7 result     : std_ulogic_vector(31 downto 0); 

begin 
U1 : adder32_e 

PORT MAP   (sys_reset, 
sys_clk, 
A 
B, 
go, 
sei, 
done, 
result); 

clock: process 
begin 

sys_clk <= not(sys_clk); 
wait for 10ps; 

end process clock; 

exercise: process 
variable inputA, inputB: std_ulogic_vector(31 downto 0); 
begin 

sys_reset <= '0'; 

For i in 0 to 1 loop 
— add or sub 

CASE i IS 
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WHEN 0 => sei <= add; 
WHEN 1 => sei <= sub; 

END CASE; 

forjin0to9loop 
for I in 0 to 5 loop 

- pick a test 
CASE j IS 

WHEN 0 => inputA := AtestOO; 
WHEN 1 => inputA := AtestOI 
WHEN 2 => inputA := AtestCG; 
WHEN 3 => inputA := Atest03; 
WHEN 4 => inputA := Atest04; 
WHEN 5 => inputA := Atest05; 
WHEN 6 => inputA := Atest06; 
WHEN 7 => inputA := Atest07; 
WHEN 8 => inputA := Atest08; 
WHEN 9 => inputA := Atest09; 

END CASE; 
CASE I IS 

WHEN 0 => inputB := BtestOO; 
WHEN 1 => inputB := BtestOI 
WHEN 2 => inputB := Btest02; 
WHEN 3 => inputB := Btest03; 
WHEN 4 => inputB := Btest04; 
WHEN 5 => inputB := Btest05; 

END CASE; 

go <='<>'; 

wait until done = '0'; 

FOR k IN 0 TO 31 loop 
A(k) <= inputA(k); 
B(k) <= inputB(k); 

end loop; 

wait until sys_clk'event and sys_clk='0'; 

go<=T; 

wait until done =T; 

end loop; 
end loop; 

end loop; 

go <= '0'; 

wait until sys. 
wait until sys. 
wait until sys. 
wait until sys. 
wait until sys. 
wait until sys. 
wait until sys. 
wait until sys. 
wait until sys. 
wait until sys. 
wait until sys. 
wait until sys. 
wait until sys. 

clk'event 
.clk'event 
.clk'event 
.clk'event 
.clk'event 
.clk'event 
.clk'event 
.clk'event 
.clk'event 
.clk'event 
.clk'event 
.clk'event 
clk'event 

and sys. 
and sys. 
and sys. 
and sys. 
and sys. 
and sys. 
and sys. 
and sys. 
and sys. 
and sys. 
and sys. 
and sys. 
and sys. 

clk='0'; 
clk='0'; 
clk='0'; 
clk='0'; 
clk='0'; 
clk='0'; 
clk='0'; 

_clk='0'; 
clk='0'; 
clk='0'; 
clk='0'; 
clk='0'; 
clk='0'; 
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wait until sys_clk'event and sys_clk='0'; 
wait until sys_clk'event and sys_clk='0'; 
wait until sys_clk'event and sys_clk='0'; 
wait until sys_clk'event and sys_clk-0'; 
wait until sys_clk'event and sys_clk='0'; 

ASSERT false 
REPORT "DONE" 
SEVERITY failure; 

end process exercise; 
end test; 

CONFIGURATION adder32_c OF adder32_tb IS 
FOR test 

FORALL:adder32_e 
USE ENTITY WORK.adder32_e(behavior); 

END FOR; 
END FOR; 

END adder32_c; 

- Project: Thesis 
- Filename: mult-bench.vhd 
- Other files required: 
-Date: oct10 97 
- Entity/Architecture Name: multjb/test 
-Developer: Steve Parmley 
- Function: 
- Limitations: 
- History: 
- Last Analyzed On: 

library IEEE; 
use IEEE.std_logic_1164.all; 

entity multjb is 
end multjtb; 

architecture test of mult tb is 

constant AtestOO    :std_ulogic_vector(15downto0) 
constant AtestOI: std_ulogic_vector(15 downto 0) := 
constant Atest02   :sTd_ulogic_vector(15 downto 0) 
constant Atest03: std_ulogic_vector(15 downto 0) := 
constant Atest04    : std_ulogic_vector( 15 downto 0) 
constant Atest05: std_ulogic_vector(15 downto 0) := 
constant Atest06    : std_ulogic_vector(15 downto 0) 
constant Atest07: std_ulogic_vector(15 downto 0) := 
constant Atest08    :std_ulogic_vector(15 downto 0) 
constant Atest09: std_ulogic_vector(15 downto 0) := 

:= "0000000000000000" 
"oorjoooooooooooor; 
:= "0000000000000010" 
"0000000000000011"; 
:= "0101010101010101" 
"1010101010101010"; 
-"1111111111111110" 
"1111111101111111"; 
:= "0111111111111111": 
"1111111111111111" 

constant 
constant 
constant 
constant 
constant 
constant 

BtestOO    : std_ulogic_vector(15 downto 0) := "0000000000000000"; - +/- 0 
BtestOI: std_uTogic_vector(15 downto 0) := "0000000000000001"; - +/-1 
Btest02 : std_ulogic_vector(15 downto 0) := "0000000000000010"; 
Btest03: std_ulogic_vector(15 downto 0) := "0000000100000000"; ■ 
Btest04    : std_ulogic_vector(15 downto 0) := "1000000000000000' 

-+/-2 
+/-256 
-+/-32K 

Btest05: std_ulogic_vector(15 downto 0) := "1111111111111111"; - +/- 65534 

constant  add : std_ulogic := '0'; 
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constant sub: std_ulogic := '1' 
component mult_e 

port (mult_reset in std_ulogic; 
mult elk in std_ulogic; 
mult A bus in std_ulogic_vector(15 downto 0); 
mult B bus in std_ulogic_vector(15 downto 0); 
multjgo in std_ulogic; 
mult done out std_ulogic; 
mult_C_biis out std_ulogic_vector(15 downto 0)) 

end component; 

signal sys_clk,sys_reset, go, done: std_ulogic := '0'; 
signal A,B7result     : std_ulogic_vector(15 downto 0); 

begin 
U1 : mult_e 

PORT MAP (sys_reset, 
sys_clk, 
A, 
B, 
9°. 
done, 
result); 

clock: process 
begin 

sys_clk <= not(sys_clk); 
wait for 10 ps; 

end process clock; 

exercise process 
variable inputA inputB         : std_ulogic_vector(15 downto ( 

begin 

sys_reset <= '0'; 

for j in 0 to 9 loop 
for I in 0 to 5 loop 

-pick a test 
CASE j IS 

WHEN 0 => inputA := AtestOO 
WHEN 1 => inputA := AtestOI 
WHEN 2 => inputA := Atest02 
WHEN 3 => inputA := Atest03 
WHEN 4 => inputA := AtesttM 
WHEN 5 => inputA := Atest05 
WHEN 6 => inputA := AtestOS 
WHEN 7 => inputA := Atest07 
WHEN 8 => inputA := Atest08 
WHEN 9 => inputA := Atest09 

END CASE; 
CASE 1 IS 

WHEN 0 => inputB := BtestOO 
WHEN 1 => inputB := BtestOI 
WHEN 2 => inputB := Btest02 
WHEN 3 => inputB := Btest03 
WHEN 4 => inputB := Btest04 
WHEN 5 => inputB := Btest05 

END CASE; 

go <= '0'; 
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wait until done = '0'; 

FOR k IN 0 TO 15 loop 
A(k) <= inputA(k); 
B(k) <= inputB(k); 

end loop; 

wait until sys_clk'event and sys_clk='0'; 

go<='1'; 

wait until done =T; 

go <= '0'; 
end loop; 

end loop; 

wait until sys. 
wait until sys. 
wait until sys. 
wait until sys. 
wait until sys. 
wait until sys. 
wait until sys. 
wait until sys. 
wait until sys. 
wait until sys. 
wait until sys. 
wait until sys. 
wait until sys. 
wait until sys. 
wait until sys. 
wait until sys. 
wait until sys. 
wait until sys. 

.clk'event 

.clk'event 
clk'event 
clk'event 
.clk'event 
.clk'event 
..clk'event 
.clk'event 
..clk'event 
.clk'event 
.clk'event 
.clk'event 
.clk'event 
.clk'event 
.clk'event 
.clk'event 
.clk'event 
clk'event 

and sys. 
and sys. 
and sys. 
and sys. 
and sys. 
and sys. 
and sys. 
and sys. 
and sys. 
and sys. 
and sys. 
and sys. 
and sys. 
and sys. 
and sys. 
and sys. 
and sys. 
and sys. 

clk='0'; 
clk='0'; 
clk='0' 
clk='0'; 
clk='0' 
clk='0' 
clk='0' 
clk='0' 
clk='0'; 
clk='0' 
clk='0' 
clk='0' 
clk='0' 
clk='0' 
clk='0' 
clk='0' 
clk='0' 
clk='0' 

ASSERT false 
REPORT "DONE" 
SEVERITY failure; 

end process exercise; 
end test; 

CONFIGURATION mult_c OF multjb IS 
FOR test 

FOR ALL: mult e 
USE ENTITY WORK.mult__e(behavior); 

END FOR; 
END FOR; 

END mult c; 
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B.3.3   Multiplier Results 
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B.4 Register Unit 

B.4.1   Register Model 

- Project: Thesis 
- Filename: reg_file_pkg.vhd 
-Otherfiles required: 
_ Date: sept 23 97 
- Entity/Architecture Name: na 
- Developer Steve Parmley 

library IEEE; 
use IEEE.std_logic_1164.all; 

package reg_file_pkg is 

subtype addr is integer range 31 downto 0; 

end reg_file_pkg; 

- Project: Thesis 
- Filename: reg_file.vhd 
- Other files required: reg file_pkg.vhd 
-Date: sept 23 97 
- Entity/Architecture Name: reg_file_e/behavior 
-Developer Steve Parmley 

library IEEE; 
use IEEE.std_logic_1164.all; 

use WORK.reg_file_pkg.all; 

entity reg_f ile_e is 
port (reg_file_reset 

reg_file_clk 
reg_file_C_bus 
reg_file_C_regJatch 
reg_file_C_reg_addr 
reg_fiie_A_bus 
reg_file_A_reg_addr 
reg_file_B_bus 
reg_file_B_reg_addr 

end reg_file_e; 

architecture behavior of reg_file_e is 
begin 

registers: process 
subtype reg is std_utogic_vector(15 downto 0); 
type bank is array(31 downto 0) of reg; 
variable regs: bank; 

begin 

in std_ulogic; 
in std_ulogic; 
in std_ulogic_vector(15 downto 0) 
in std_ulogic; 
in addr; 
out std_ulogic_vector(15 downto 0) 
in addr; 
out std ulogic_vector(15 downto 0) 
in addr); 

if reg_file_reset = '1' then 
for index in 31 downto 2 loop 

regs(index) := "0000000000000000" 
end loop; 
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end if; 

- force reg 0 and 1 to zero and one values 
regs(O) := "0000000000000000"; 
regs(1) := "0000000100000000"; 

wait until (reg_file_clk'event and reg_file_clk-1'); 

- take care of write function first 
ifregjile C regjatch = T then 

~rf7reg_file_C_reg_addr = 0) or (reg_file_C_reg_addr = 1) then 
- can not write to the zero and 1 registers 

else 
regs(reg_file_C_reg_addr) := reg_file_C_bus; 

end if; 
end if; 

- now do A bus 
reg_file_A_bus <= regs(reg_file_A_reg_addr); 

- now do B bus 
reg_file_B_bus <= regs(reg_file_B_reg_addr); 

end process registers; 
end behavior; 

B.4.2   Register Testbench 

- Project: 
- Filename: 
- Other files required: 
-Date: 
- Entity/Architecture Name: 
-Developer 

Thesis 
regjile-bench.vhd 
reg_file_pkg.vhd, reg_file.vhd 
sept 23 97 
reg_file_tb/test 
Steve Parmley 

library IEEE; 
use IEEE.std_logic_1164.all; 

use WORK.reg_flle_pkg.all; 

entity reg_file_tb is 
end reg_file_tb; 

architecture test of reg_file_tb is 

component reg_file_e 
port (reg_file_reset 

reg_file_clk 
reg_file_C_bus 
reg_file_C_reg_latch 
reg_file_C_reg_addr 
reg_file_A_bus 
reg_file_A_reg_addr 
reg_file_B_bus 
reg_file_B_reg_addr 

end component; 

signal sys_reset, sys_clk: std_ulogic := '0'; 
signal bus_C, bus_A bus_B: std_ulogic_vector(15 dcwntoO); 
signal reg_addr_A reg_addr_B, reg_addr_C: addr; 
signal reg_latch_C: std_ulogic; 

in std_ulogic; 
in std_ulogic; 
in std_ulogic_vector(15 downto 0) 
in std_ulogic; 
in addr; 
out std_ulogic_vector(15 downto 0) 
in addr; 
out std ulogic_vector(15 downto 0) 
in addr); 
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begin 
IM: reg_file_e 

PORT MAP   (sysjeset, 
sys_clk, 
bus_C, 
reg_latch_C, 
reg_addr_C, 
bus_A, 
reg_addr_A, 
bus_B, 
reg_addr_B); 

clock: process 
begin 

sys_clk <= not(sys_clk); 
wait for 10 ps; 

end process clock; 

rst: process 
begin 

sys_reset <= '1'; 
wait for 5 ps; 
sysjeset <= '0'; 
waiTfor 15000 ps; 

end process rst; 

exercise: process 
begin 

reg_latch_C <= '0'; 
bus_C <=' 
reg_addr_A<=15; 
reg_addr_B <= 15; 
reg_addr_C <= 0; 
wait until sys_clk'event and sys_clk -0'; 

- verify that all regs are clear (except for zero regs 0 and 1) 
for i in 31 downto 0 loop 

reg_addr_A <= i; 
- get B in reverse order to show dual bus works 
reg_addr_B<=31-i; 
wait until sys_clk'event and sys_clk ='0'; 

end loop; 

reg_addr_A<=15; 
regIaddr_B <= 15; 
reg_addr_C<=15; 

wait until sys_clk'event and sys_clk ='0' 
wait until sys_clk'event and sys_clk ='0': 
wait until sys_clk'event and sys_clk ='0' 

- write some info to the regs 
reg_addr C <= 0; 
bus_C «= "0100000000000001"; 
wait until sys_clk'event and sys_clk ='0'; 
reg_latch_C<=T; 
wait until sys_clk'event and sys_clk ='0'; 
reg_latch_C <= '0'; 

reg addr_C<=1; 
bus_C <= "0100000000000010"; 
wait until sys_clk'event and sys_clk ='0'; 
reg_latch_C<='1'; 
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wait until sys_clk'event and sys_clk ='0'; 
reg_latch_C <= '0'; 

reg_addr_C <= 2; 
bus_C <= "0100000000000011"; 
waifuntil sys_clk'event and sys_clk -0'; 
reg_latch_C<='1'; 
waituntil sys_clk'event and sys_clk ='0'; 
reg_latch_C <= '0'; 

reg_addr_C <= 3; 
bus_C <= "0100000000000100"; 
wait until sys_clk'event and sys_clk ='0'; 
reg_latch_C <= '1'; 
wait until sys_clk'event and sys_clk ='0'; 
reg_latch_C <= '0'; 

reg_addr_C <= 4; 
bus_C <= "0100000000000101"; 
wait until sys_clk'event and sys_clk ='0'; 
reg_latch_C<='1'; 
wait until sys_clk'event and sys_clk ='0'; 
reg_latch_C <= '0'; 

reg_addr C<=5; 
bus_C <= "0100000000000110"; 
wait until sys_clk'event and sys_clk -0'; 
reg_latch_C <= T; 
wait until sys_clk'euent and sys_clk ='0'; 
reg_latch_C <= 'ff; 

reg_addr_C <= 6; 
bus_C <= "0100000000000111"; 
wait until sys_clk'event and sys_clk ='0'; 
reg_latch_C<='1'; 
wait until sys_clk'event and sys_clk ='0'; 
regJatch_C<='0'; 

reg_addr_C <= 7; 
bus_C <= "0100000000001000"; 
wait until sys_clk'event and sys_clk ='0'; 
reg_latch_C<=T; 
wait until sys_clk'event and sys_clk ='0'; 
regJatch_C<='0'; 

reg_addr_C <= 8; 
bus_C <= "0100000000001001"; 
wait until sys_clk'event and sys_clk ='0'; 
reg_latch_C<=T; 
wait until sys_clk'event and sys_clk ='0'; 
reg_latch_C <= '0'; 

reg_addr C <- 9; 
bus_C <= "0100000000001010"; 
wait until sys_clk'event and sys_clk ='01; 
regJatch_C«'1'; 
wait until sys_clk'event and sys_clk -0'; 
reg_latch_C <= '0'; 

reg addr_C<=10; 
bus_C <= "0100000000001011"; 
wait until sys_clk'event and sys_clk ='0'; 
reg_latch_C<='1'; 
wait until sys_clk'event and sys_clk -0'; 
reg_latch_C <= '0'; 
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reg_addr C<=11; 
bus_C <= "0100000000001100"; 
wait until sys_clk'event and sys_clk -0'; 
reg_latch_C <= T; 
wait until sys_clk'event and sys_clk ='0'; 
reg_latch_C <= '0'; 

reg_addr_C <= 12; 
bus_C <= "0100000000001101"; 
wait until sys_clk'event and sys_clk ='0'; 
reg_latch_C <= '1'; 
wait until sys_clk'event and sys_clk ='0'; 
reg_latch_C <= '0'; 

reg_addr_C <= 13; 
bus_C <= "0100000000001110"; 
wait until sys_clk'event and sys_clk ='0'; 
reg_latch_C <= '1'; 
wait until sys_clk'event and sys_clk ='0'; 
reg_latch_C <= '0'; 

reguaddr_C <= 14; 
bus_C <= "0100000000001111"; 
wait until sys_clk'event and sys_clk ='0'; 
reg_latch_C<=T; 
wait until sys_clk'event and sys_clk ='0'; 
reg_latch_C <= '0'; 

reg_addr_C<=15; 
bus_C <= "0100000000010000"; 
wait until sys_clk'event and sys_clk ='0'; 
regJatch_C <= T; 
wait until sys_clk'event and sys_clk -0'; 
reg_latch_C <= '0'; 

reg_addr_C <= 16; 
bus_C <= "1000000000000001"; 
wait until sys_clk'event and sys_clk -0'; 
teg_latch_C <= '1'; 
wait until sys_clk'event and sys_clk -0'; 
reg_latch_C <= '0'; 

reg_addr C<=17; 
bus_C <= "1000000000000010"; 
wait until sys_clk'event and sys_clk ='0'; 
reg_latch_C<=T; 
wait until sys_clk'event and sys_clk ='0'; 
reg_latch_C <= '0'; 

reg addr C<=18; 
bus_C <= "1000000000000011"; 
wait until sys_clk'event and sys_clk ='0'; 
reg_latch_C<='1'; 
wait until sys_clk'event and sys_clk ='0'; 
regJatch_C <= '0'; 

reg_addr_C <= 19; 
bus_C <= "1000000000000100"; 
wait until sys_clk'event and sys_clk ='0'; 
reg_latch_C<=T; 
waiTuntil sys_clk'event and sys_clk ='0'; 
reg_latch_C <= '0'; 

reg_addr_C <= 20; 
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bus_C <= "1000000000000101"; 
waiTuntil sys_clk'event and sys_clk ='0'; 
reg_latch_C <= '1'; 
waiTuntil sys_clk'event and sys_clk ='0'; 
n3g_lalch_C <= '0'; 

reg_addr_C<=21; 
bus_C <= "1000000000000110"; 
wait until sys_clk'event and sys_clk ='0'; 
reg_latch_C<=T; 
waiTuntil sys_clk'event and sys_clk ='0'; 
reg_latch_C<='0'; 

reg_addr_C <= 22; 
bus_C <= "1000000000000111"; 
wait until sys_clk'event and sys_clk -0'; 
reg_latch_C <= '1'; 
wait until sys_clk'event and sys_clk -0'; 
reg_latch_C <= '0'; 

reg_addr_C <= 23; 
bus_C <= "1000000000001000"; 
wait until sys_clk'event and sys_clk ='0'; 
reg_latch_C <= '1'; 
wait until sys_clk'event and sys_clk -0'; 
reg_latch_C <= '0'; 

reg_addr_C <= 24; 
bus_C <= "1000000000001001"; 
wait until sys_clk'event and sys_clk ='0'; 
reg_latch_C<=,1'; 
wait until sys_clk'event and sys_.dk ='0'; 
regJatch_C <= '0'; 

reg_addr_C <= 25; 
bus_C <= "1000000000001010"; 
wait until sys_clk'event and sys_clk -0'; 
reg_latch_C <= '1'; 
wait until sys_clk'event and sys_clk -0'; 
negJatch.C^'O'; 

regL_addr_C <= 26; 
bus_C <= "1000000000001011"; 
wait until sys_clk'event and sys_clk ='0'; 
reg_latch_C<=T; 
wait until sys_clk'event and sys_clk ='0'; 
rea_latch_C <= '0'; 

regL_addr_C <= 27; 
bus_C <= "1000000000001100"; 
wait until sys_clk'event and sys_clk ='0'; 
reg_latch_C <= '1'; 
wait until sys_clk'event and sys_clk -0'; 
reg_latch_C <= '0'; 

reguaddr_C <= 28; 
bus_C <= "1000000000001101"; 
waiTuntil sys_clk'event and sys_dk ='0'; 
reg_latch_C<='1'; 
wait until sys_clk'event and sys_clk ='0'; 
reg_latch_C <= '0'; 

reg_addr_C <= 29; 
bus_C <= "1000000000001110"; 
wait until sys_clk'event and sys_clk -0'; 
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reg_latch_C <= '1'; 
waituntil sys_clk'event and sys_clk ='0'; 
reg_latch_C <= '0'; 

reg_addr_C <= 30; 
bus_C <= "1000000000001111"; 
wait until sys_clk'event and sys_clk - 0"; 
reg_latch_C<=T; 
wait until sys_clk'event and sys_clk ='0'; 
reg_latch_C <= '0'; 

reg_addr_C<=31; 
bus_C <= "1000000000010000"; 
waifuntil sys_clk'event and sys_clk ='0'; 
reg_latch_C <= T; 
wait until sys_clk'event and sys_clk ='0'; 
reg_latch_C <= '0'; 

reg_addr_C <= 15; 
wait until sys_clk,event and sys_clk ='0'; 
wait until sys_clk'event and sys_clk -0' 
wait until sys_clk'event and sys_clk ='0' 

- verify that all regs are correct (except for zero regs 5 and 6) 
for i in 31 downto 0 loop 

reg_addr_A <= i; 
reg_addr_B <= 31-i; 
wait until sys_clk'event and sys_clk -0'; 

end loop; 

wait until sys_clk'event and sys_clk -1'; 

ASSERT false 
REPORT "DONE" 
SEVERITY failure; 

end process exercise; 
end test; 

CONFIGURATION reg_file_c OF reg_file_tb IS 
FOR test 

FOR ALL: reg file_e 
USE ENTITY WORK.reg_file_e(behavior); 

END FOR; 
END FOR; 

END reg_file_c; 
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B.4.3   Register Results 
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B.5 Latch 

B.5.1   Latch Model 

- Project: Thesis 
- Filename: latch.vhd 
- Other files required: 
-Date: Oct17 97 
- Entity/A_busrch'rtecture Name: latch_e/behavior 
-Developer Steve Parmtey 
- Function: 
- Limitations: 
— History: 
-Last Analyzed On: 

library IEEE; 
use IEEE.std_logic_1164.all; 

entity latch_e is 
port (latch_en in 

latch_A_bus in 
latch_0_bus out 

end latch_e; 

architecture behavior of latch_e is 
begin 

latch: process (latch_en, latch_A_bus) 
begin 

if latch_en = '1' then 
latch_0_bus <= latch_A_bus; 

end if; 
end process latch; 
end behavior; 

std_ulogic; 
std_ulogic_vector(15 downto 0); 
std_ulogic_vector(15 downto 0)); 

B.5.2   Latch Testbench 

- Project: 
- Filename: 
- Other files required: 
-Date: 
- Entity/Architecture Name: 
-Developer: 
- Function: 
- Limitations: 
- History: 
-Last Analyzed On: 

Thesis 
mux4_1 -bench, vhd 

Oct 17 97 
mux4_1_tb/test 
Steve Parmley 

library IEEE; 
use IEEE.std_logic_1164.all; 

entity latchjb is 
end latchjb; 
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architecture test of latchjb is 

constant AtestO     : std uiogic_vector(15 downto 0) := "0000000000000000"; 
constant Atestl : std_uiögic_vector(15 downto 0):= "0101010101010101"; 
constant Atest2     : std_ulogic_vector(15 downto 0):= "1111111111111111"; 
constant Atest3 :std ulogic vector(15 downto 0):= "1010101010101010"; 

component latch_e 
port (latchjen 

latch_A_bus 
latch_0_bus 

end component; 

in std_uiogic; 
in std_ulogic_vector(15 downto 0); 
out std2ulogic_vector(15 downto 0)); 

signal en 
signal A,0 

begin 
U1 : latch_e 

PORT MAP   (en, 

: std_ulogic := '0'; 
: std_ulogic_vector(15 downto 0); 

A, 
O); 

exercise: process 
begin 

wait for 5 ps; 

For j in 0 to 3 loop 

CASE j is 
WHEN 0 => A <= AtestO; 
WHEN 1=> A <= Atestl 
WHEN2=>A<=Atest2; 
WHEN3=>A<=Atest3; 

end CASE; 

wait for 5 ps; 

en <= '1'; 

wait for 5 ps; 

en <= '0'; 

wait for 20 ps; 

end loop; 

ASSERT false 
REPORT "DONE" 
SEVERITY failure; 

end process exercise; 
end test; 

CONFIGURATION latch_c OF latchjb IS 
FOR test 

FORALL:latch_e 
USE ENTITY WORK.Iatch_e(behavior); 

END FOR; 
END FOR; 

END latch c; 
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B.5.3   Latch Results 
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B,6 Multiplexor 

B.6.1   Multiplexor Model 

- Project: Thesis 
- Filename: mux4_1.vhd 
- Other files required: 
-Date: Oct 17 97 
- Entity/A busrchitecture Name mux4_1. e/behavior 
-Developer Steve Parmley 
— Function: 
— Limitations: 
- History: 
-Last Analyzed On: 

library IEEE; 
use IEEE.std_logic_1164.all; 

entity mux4_1_e is 
port (mux elk in std_ulogic; 

mux sei in std_ulogic_vector(1 downto 0); 
mux A bus in std_ulogic_vector(15 downto 0); 
mux B bus in std_ulogic_vector(15 downto 0); 
mux C bus in std_ulogic_vector(15 downto 0); 
mux D bus in std_ulogic_vector(15 downto 0); 
mux_0_bus out std_ulogic_vector(15 downto 0)) 

end mux4_1_e; 

architecture behavior of mux4_1 eis 
begin 

mux: process 
begin 
wait until mux_clk'event and mux_clk-1'; 
case mux_sel is 

when "00" => mux_0_bus <= mux_A_bus; 
when "01" => mux_0_bus <= mux_B_bus; 
when "10" => mux_0_bus <= mux_C_bus; 
when "11" => mux_0_bus <= mux_D_bus; 
when others => mux_0_bus <= mux_A_bus; 

end case; 
end process mux; 

end behavior; 

B.6.2   Multiplexor Testbench 

-Project: 
- Filename: 
- Other files required: 
-Date: 
- Entity/Architecture Name: 
-Developer: 
- Function: 
- Limitations: 
- History. 
-Last Analyzed On: 

Thesis 
mux4_1-bench.vhd 

Oct 17 97 
mux4_1Jb/test 
Steve Parmley 
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library IEEE; 
use IEEE.std_logic_1164.all; 

entity mux4_1_tb is 
end mux4_1_tb; 

architecture test of mux4 1_tbis 

constant AtestO     :std_ulogic_vector(15downto0) 
constant BtestO :std_ulogic_vector(15downto0):= 
constant aestO     :std_ulogic_vector(15downto0) 
constant DtestO : std_ulogic_vector(15 downto 0) := 
constant Atestl      :std_ulogic_vector(15 downto 0) 
constant Btestl : std_ulogic_vector(15 downto 0) 
constant Ctesrl     : std_ulogic_vector(15 downto 0) 
constant Dtestl :std_ulogic_vector(15 downto 0):= 

constant A_sel: std_ulogic_vector := "00" 
constant B_sel: std_ulogic_vector := "01" 
constant C_sel:std_ulogic_vector:="10' 
constant D_sel: std_ulogic_vector := "11' 

component mux4_1_e 
port (mux_clk 

mux_sel 
mux_A_bus 
mux_B_bus 
mux_C_bus 
mux_D_bus 
mux_0_bus 

end component; 

signal sei : std_ulogic_vector(1 downto 0) := "11" 
signal A,B,C,D,0     : std_ulogic_vector(15 downto 0); 
signal sys_clk : std_ulogic := '0'; 

:= "0000000000000000"; 
"0101010101010101"; 
:= "1111111111111111 
"1010101010101010"; 
:= "0000111100001111 
"1111000011110000"; 
:= "1100110011001100"; 
"0011001100110011"; 

in std_ulogic; 
in std_ulogic_ 
in std_ulogic_ 
in std_ulogic_ 
in std_ulogic. 
in std_ulogic_ 
out std_ulogic. 

vector(1 downto 0); 
vector(15 downto 0); 
vector(15 downto 0) 
vector(15 downto 0) 
vector(15 downto 0) 
_vector(15 downto 0)) 

begin 
U1: mux4_1 e 

PORT MAP   (sys_clk, 
sei, 
A 
B, 
C, 
D, 
O); 

clock: process 
begin 

sys_clk <= not(sys_clk); 
wait for 10 ps; 

end process clock; 

exercise: process 
begin 

wait for 20 ps; 

ForjinOtol loop 

CASE j is 
WHEN 0=> A «AtestO; 

B <= BtestO; 
C <= CtestO; 
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D <= DtestO; 
WHEN1=>A<=Atest1; 

B<=Btest1; 
C<=Ctest1; 
D<=Dtest1; 

end CASE; 

For i in 0 to 3 loop 
CASE i IS 

WHENO=>sel<=A_sel; 
WHEN 1 => sei <= B_sel; 
WHEN 2 => sel<= Cjsel; 
WHEN 3 => sei <= D_sel; 

END CASE; 

end loop; 
end loop; 

wait until sys_clk'event and sys_clk = '1'; 

ASSERT false 
REPORT "DONE- 
SEVERITY failure; 

end process exercise; 
end test; 

CONFIGURATION mux4_1_c OF mux4_1_tb IS 
FOR test 

FOR ALL: mux4_1_e 
USE ENTITY WORK.mux4_1_e(behavior); 

END FOR; 
END FOR; 

END mux4_1_c; 

B.6.3   Multiplexor Results 

0 50000 
i      i      i      i      i      I      >      i >      ' i     „i.- -j 

L00000 
i      i 

t> SEL(1:0) 3 j 0 t          |         2                   3 0 1 2 3 

> A(15:0) UU* 0000 OFOF 

P> B(15:0) uu* 5555 FO FO 

CC t> C(15:0) uu* FFFF CC 

E>  D(15:0) 

> 0(15:0) 

UU* 

uu*: 0000 

AAAA 

5555             FFFF            AAAA OFOF 

3333 

FOFO      j     CCCC 3333 



FPGA Processor Implementation for the Forward Kinematics of the UMDH     AP" B-48 

B.7 FKP Core 

B.7.1   FKP Core Model 

- Project: 
- Filename: 
-Otherfiles required: 
-Date: 
■ Entity/Architecture Name: 
■ Developer. 
- Function: 
- Limitations: 
- History: 
-Last Analyzed On: 

library IEEE; 
use IEEE.std_logic_1164.all; 

use WORK.reg_filej5kg.all; 

Thesis 
fkp_core_core.vhd 
all FKP files 
Oct17 97 
fkp_core_e/behavior 
Steve Parmley 

entity fkp_core_e is 
port (fkp_core_clk 

fkp_core_reset 
fkp_core_data_in 
fkp_core_data_out 
fkp_core_data_in_latch 
fl^_a>re_data_outJatch 
fkp_core_c_reg_latch 
fkp_core_c_reg_addr 
fkp_core_a_reg_addr 
fkp_core_b_reg_addr 
fkp_core_cos_sin_ready 
fkp_core_cos_sin_go 
fkp_core_cos_sin_sel 
fkp_core_cos_sin_vrait 
fkp_core_rorn_addr 
fkp_core_rom_data 
fkp_core_adder_go 
fkp_core_adder_sel 
fkp_core_adder_done 
fkp_core_mult_go 
fkp_core_mult_done 
fkp_core_mux_sel 

end fkp_core_e; 

architecture structural of fkp_core_e is 

-SIGNALS 
signal      cos_sin_to_mux, adder_to_mux, mult_to_mux, data_in_to_mux: std_ulogic_vector(15 downto 0); 
signal mux_to_regs, A_bus, B_bus        : std_ulogic_vector(15 downto 0); 

in std_ulogic; 
in std_ulogic; 
in std_ulogic_vector{15 downto 0); 
out std_ulogic_vector(15 downto 0); 

:              m std_ulogic; 
;              in std_ulogic; 

in std_ulogic; 
in addr; 
in addr; 
in addr; 
out stdjjlogic; 
in std_ulogic; 
in std_ulogic; 
in std_ulogic_vector(2 downto 0); 
out std_ulogic_vector(12 downto 0); 
in std_ulogic_vector(15 downto 0); 
in std_ulogic; 
in std_ulogic; 
out std_ulogic; 
in std_ulogic; 
out std_ulogic; 
in std_ulogic_vector(1 downto 0)); 

-COMPONENTS 
component adder_e 

port (adder_reset 
adder_clk 
adder_A_bus 
adder_B_bus 
adderjgo 
adder sei 

in std_ulogic; 
in std_ulogic; 
in std_ulogic_vector(15 downto 0) 
in std_ulogic_vector(15 downto 0) 
in std_ulogic; 
in std_ulogic; 
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adder_done out stdjjlogic; 
adder_C_bus out stdjilogic_vector(15 downto 0)); 

end component; 

component mult_e 
port (mult_reset                   1 n           std_ ulogic; 

mult_clk   :              i n           std_ulogic; 
mult_A_bus in std_ulogic_vector(15 downto 0); 
mult_B_bus in std_ulogic_vector(15 downto 0); 
mult_go in std_ulogic; 
mult_done out stdjjlogic; 
mult_C_bus out std_ulogic_vector(15 downto 0)); 

end component; 

component cos_sin_e 
port (cos_sin_reset: n            std_ ulogic; 

cos_sin_clk in std_ulogic; 
cos_sin_A_bus in std_ulogic_vector(15 downto 0); 
cos_sin_go in std_ulogic; 
cos_sin_sel in stdjjlogic; 
cos_sin_wa'it in std_ulogic_vector(2 downto 0); 
cos_sin_ready out std_ulogic; 
cos sin_C_bus out std_ulogic_vector(15 downto 0); 

- the following describes the connection to the rom 
cos_sin_rom_addr:  out std_ulogic_vector(12 downto 0); 
cos~sin_rom_data:  in std_ulogic_vector(15 downto 0)); 

end component; 

component reg_file_e 
port (reg_file_reset 

reg_file_clk 
reg_file_C_bus 
reg_file_C_reg_latch 
reg_file_C_reg_addr 
reg_file_A_bus 
reg_file_A_reg_addr 
reg_file_B_bus 
reg_file_B_reg_addr 

end component; 

in stdjjlogic; 
in stdjjlogic; 
in std_ulogic_vector(15 downto 0) 
in std ulogic; 
in addr; 
out stdjiiogicj/ector(15 downto 0) 
in addr; 
out std ulogic vector(15 downto 0) 
in addr); 

component latch_e 
port (latchjsn 

latch_A_bus 
latchjD_bus 

end component; 

component mux4_1_e 
port (mux_clk 

mux_sel 
mux_A_bus 
muxjB_bus 
mux_C_bus 
mux_D_bus 
mux_0_bus 

end component; 

stdjjlogic; 
stdjjlogic_vector(15 downto 0); 

vector(1 downto 0); 
vector(15 downto 0); 
.vector(15 downto 0): 
vector( 15 downto 0) 
vector(15 downto 0); 
yector(15 downto 0)) 

in stdjjlogic. 
out stdjjlogic. 

in stdjjlogic; 
in stdjjlogic. 
in stdjjlogic. 
in stdjjlogic. 
in stdjjlogic. 
in stdjjlogic. 
out stdjjlogic. 

begin 
U_adder_1: adder_e 

PORT MAP   (fkpjxirejeset, 
fkp_core_clk, 
A_bus, 
B_bus, 
fkp_core_adderjgo, 
fkp_core_adderj5el, 
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fkp_core_adder_done, 
adder_to_mux); 

U_mult_1: mult_e 
PORT MAP   (fkp_core_reset, 

fkp_core_clk, 
A_bus, 
B_bus, 
fkp_core_multjgo, 
fkp_core_mult_done, 
mult_to_mux); 

U_cos_sin_1: cos_Sin_e 
PORT MAP   (fkp_core_reset, 

fkp_core_clk, 
A_bus, 
fkp_core_cos_sin_go, 
fkp_core_cos_sin_sel, 
fkp_core_cos_sin_wait, 
fkp_core_cos_sin_ready, 
cos_sin_to_mux, 
fkp_core_rom_addr, 
fkp_core_rom_data); 

U_reg_file_1: reg_file_e 
PORT MAP   (fkp_core_reset, 

fkp_core_clk, 
mux_to_regs, 
fkp_core_c_reg_latch, 
fkp_core_c_reg_addr, 
A_bus, 
fkp_core_a_reg_addr, 
B_bus, 
fkp_core_b_reg_addr); 

U mux4_1_1 : mux4_1_e 
PORT MAP   (fkp_core_clk, 

fkp_core_mux_sel, 
cos_3in_to_mux, 
adder_to_mux, 
mult_to_mux, 
data_in_to_mux, 
mux_to_regs); 

UJatchJn: latch_e 
PORTMAP   (fkp_cote_dataJn_latch, 

fkp_core_data_in, 
data_in_to_mux); 

UJatch_out: latch_e 
PORT MAP   (fkp_core_data_out_latch, 

B_bus, 
fkp_core_data_out); 

end structural; 
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B.7.2   FKP Core Testbench 

- Project: 
- Filename: 
- Other files required: 
-Date: 
- Entity/Architecture Name: 
-Developer: 

Thesis 
fkp_core-bench.vhd 
fkp_core.vhd 
Oct20 97 
fkp_core_tb/test 
Steve Parmley 

library IEEE; 
use IEEE.std_logic_1164.all; 

use WORK.reg_file_pkg.all; 

entity fkp_core_tb is 
end fkp_core_tb; 

architecture test of fkp_core_tb is 

component fkp_core_e 
port (fkp_core_clk 

fkp_core_reset 
fkp_core_data_in 
fkp_core_data_out 
fkp_core_data_in_latch 
fkp_core_data_oüt_latch 
fkp_core_c_reg_latch 
fkp_core_c_reg_addr 
fkp_core_a_reg_addr 
fkp_core_b_reg_addr 
fkp_core_cos_sin_ready 
fkp_core_cos_sin_go 
fkp_core_cos_sin_sel 
fkp_core_cos_sin_wait 
fkp_core_rom_addr 
fkp_core_rom_data 
fkp_core_adderjjo 
fkp_core_adder_sel 
fkp_core_adder_done 
fkp_core_mult_go 
fkp_core_mult_done 
fkp_core_mux_sel 

end component; 

signal sys_reset, sys_clk: std_ulogic := V; 
signal a_reg_addr, b_reg_addr, c_reg_addr: addr, 
signal datajn, data_out: std_ulogic_vector(15 downto 0); 
signal data_in_latch, data_out_latch, c_reg_latch, cos_sin_ready: std_ulogic; 
signal cos_sin_go, cos_sin_sel, adder_go, adder_sel, adder_done : std_ulogic; 
signal muitjgo, mult_done : std_ulogic; 
signal cos_sin_wait: std_ulogic_vector(2 downto 0); 
signal rom_addr: std_ulogic_vector(12 downto 0); 
signal rom_data: std_ulogic_vector(15 downto 0); 
signal mux_sel : std_ulogic_vector(1 downto 0); 

type opcode is (illegal, movein, moveout, move, cosine, sine, addition, subtraction, multiplication); 
signal instruction: opcode; 

begin 
U1: fkp core_e 

PORTMAP   (sys_clk, 

in std_ulogic; 
in std_ulogic; 
in std_ulogic_vector(15 downto 0); 
out std_ulogic_vector(15 downto 0); 

:              in std_ulogic; 
in std_ulogic; 
in std_ulogic; 
in addr; 
in addr; 
in addr; 
out std_ulogic; 
in std_ulogic; 
in std_ulogic; 
in std_ulogic_vector(2 downto 0); 
out std_ulogic_vector(12 downto 0) 
in std_ulogic_vector{15 downto 0); 

:              in std_ulogic; 
in std_ulogic; 
out std_ulogic; 
in std_ulogic; 
out std_ulogic; 
in std_ulogic_vector(1 downto 0)); 
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sys_reset, 
data_in, 
data_out, 
data_in_latch, 
data^outjatch, 
c_reg_latch, 
c_reg_addr, 
a_reg_addr, 
b_reg_addr, 
cos_sin_ready, 
cos_sinjgo, 
cos_sin_sel, 
cos_sin_wait, 
rom_addr, 
rom_data, 
adderjjo, 
adder_sel, 
adder_done, 
multjgo, 
mult_done, 
mux_sel); 

clock: process 
begin 

sys_clk <= not(sys_clk); 
wait for 10 ps; 

end process clock; 

rst: process 
begin 

sysjreset <= T; 
wait for 40 ps; 

sys_reset <= '0'; 
wait for 50000 ps; 

end process rst; 

exercise: process 
begin 

-quiektest 
instruction <= illegal; 
data_in_latch <= '0'; 
dataloutjatch <= '0'; 
c_reg_latch <= '0'; 
cos_sin^go <= '0'; 
cos_sin_wait <= "111"; 
adderjgo <= '0'; 
multjgo <= '0'; 
a_reg_addr<=15; 
b_reg_addr<=15; 
c_reg_addr<=15; 
mux_sel <= "00"; 
wait for 60 ps; 
wait until sys_clk'event and sys_clk='1'; 

• MOVE IN 
instruction <= movein; 
data_in <= "0000000000000101"; 
wait until sys_clk'event and sys_clk='1'; 

mux_sel<="11"; 
c_reg_addr <= 2; 
data_in_latch <= '1'; 
wait until sys_clk'event and sys_clk=T; 
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datajnjatch <= '0'; 
cjegjätch <= '1'; 
wait until sys_clk'event and sys_clk=T; 

c_reg_latch <= '0'; 
- END MOVE IN 

- MOVE OUT 
instruction <= moveout; 
b_reg_addr<=2; 
wait until sys_clk'event and sys_clk=T; 

data_outJatch<='1'; 
wait until sys_clk'event and sys_clk=T; 

data_out_latch <= '0'; 
-ENDMOVE OUT 

- MOVE IN 
instruction <= movein; 
data_in <= "0000000001001011"; 
wait until sys_clk'event and sys_clk=T; 

mux_sel<="11"; 
c_reg_addr <= 3; 
datajnjatch <=T; 
wait until sys_clk'event and sys_clk=T; 

datajnjatch <= '0'; 
cjegjatch <= '1'; 
wait until sys_clk'event and sys_clk='1'; 

c_regjatch <= '0'; 
- END MOVE IN 

-MOVEOUT 
instruction <= moveout; 
bjegjxldr <= 3; 
wait until sys_clk'event and sys_clk=T; 

datajxrtJatch<=T; 
wait until sys_clk'event and sys_clk-1'; 

data_outJatch <= '0'; 
- END MOVE OUT 

-ADD 
instruction <= addition; 
ajegjaddr <= 2; 
bjeg_addr <= 3; 
c_reg_addr<=10; 
adder sei <= '0'; 
muxjsel     <= "01"; 
wait until sys_clk'event and sys_clk='f; 

adderjgo<='1'; 
wait until adder_done = 'T; 

adderjgo <= '0'; 
c_regjatch <= '1'; 
wait until sys_clk'event and sys_clk='1'; 

cjegjatch <= '0'; 



FPGA Processor Implementation for the Forward Kinematics of the UMDH     APP B-54 

-END ADD 

■ MOVE OUT 
instruction <= mcveout; 
b_reg_addr<=10; 
wait until sys_clk'event and sys_clk=T; 

data_out_latch <= '1'; 
wait until sys_clk'event and sys_clk=T; 

data outjatch <= '0'; 
- END MOVE OUT 

■MOVE 
instruction <= move; 
a_reg_addr <= 0; 
bjreg_addr <= 10; 
c_regL_addr<=11; 
adder_sel <='0'; 
mux_sel     <= "01"; 
wait until sys_clk'event and sys_clk=T; 

adderjgo <=T; 
wait until adder_done = '1'; 

adderjgo <= '0'; 
c_reg_latch <= T; 
wait until sys_clk'event and sys_clk=T; 

c_regLlatch <= '0'; 
- END MOVE 

for i in 0 to 3 loop 

-SUB 
instruction <= subtraction; 
a_reg_addr<=11; 
b_reg_addr<=1; 
c_reg_addr<=11; 
adder_sel <='1'; 
mux_sel     <= "01"; 
wait until sys_clk'event and sys_clk-1'; 

adder_go <= '1'; 
wait until adder_done = '1'; 

adderjgo <= '0'; 
cjegjatch <= T; 
wait until sys_clk'event and sys_clk=T; 

c_reg_latch <= '0'; 
-END ADD 

- MOVE OUT 
instruction <= moveout; 
b_reg_addr<=11; 
wait until sys_clk'event and sys_clk-1'; 

data_out_latch<=T; 
wait until sys_clk'event and sys_clk=T; 

data out latch <= '0'; 
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- END MOVE OUT 

end loop; 

- Multiply 
instruction <= multiplication; 
a_reg_addr <= 2; 
b_reg_addr <= 3; 
c_reg_addr<=31; 
mux_sel     <= "10"; 
wait until sys_clk'event and sys_clk=T; 

multjgo<=T; 
wait until mult_done = '1'; 

mult_go <= '0'; 
cjregjatch <= T; 
wait until sys_clk'event and sys_clk=T; 

c_reg_latch <= '0'; 
-END ADD 

for i in 0 to 31 loop 
- MOVE OUT 

instruction <= moveout; 
b_regL_addr <= i; 
wait until sys_clk'event and sys_clk='1'; 

data_.out_latch <= '1'; 
wait until sys_clk'event and sys_clk=T; 

data_out_latch <= '0'; 
- END MOVE OUT 

end loop; 

-COSINE 
instruction <= cosine; 
cos_sin_sel <= '0'; 
a_reg_addr <= 2; 
mux_sel <= "00"; 
c_reg_addr<=15; 
wait until sys_clk'event and sys_clk='1'; 

cos_sinjgo <= '1'; 
wait until cos_sin_ready=T; 

cos_sinjgo <= '0'; 
c_reg_latch <= '1'; 
wait until sys_cik'event and sys_clk='1'; 

c_reg_latch <= '0'; 

■MOVEOUT 
instruction <= moveout; 
b_reguaddr<=15; 
wait until sys_clk'event and sys_clk='T; 

data_out_latch <= '1'; 
wait until sys_clk'event and sys_clk=T; 

data out latch <= 'ff; 
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- END MOVE OUT 

-SINE 
instruction <= sine; 
cos_sin_sel <= '1'; 
a_reg_addr <= 3; 
rnux_sel<="00"; 
c_reg_addr<=16; 
wait until sys_clk'event and sys_clk=T; 

cos_sinjgo<='1'; 
wait until cos_sin_ready=T; 

cos_sinjgo <= '0'; 
c_reg_latch<='1'; 
wait until sys_clk'event and sys_clk=T; 

cjegjatch <= '0'; 

- MOVE OUT 
instruction <= moveout; 
b_reg_addr<=16; 
wait until sys_clk'event and sys_clk='1'; 

data_.out_latch<=T; 
wait until sys_clk'event and sys_clk=T; 

data outjatch <='0'; 
- END MOVE OUT 

wait until sys_clk'event and sys_clk=T 
wait until sys_clk'event and sys_clk-1 
wait until sys_clk'event and sys_clk='1 

ASSERT false 
REPORT "DONE" 
SEVERITY failure; 

end process exercise; 

rom: process 
begin 

wait until rom_addr'event; 

- make up some rom data (inverse of the address for now) 
rom_data(12 downto 0) <= not(rom_addr(12 downto 0)); 

- fill in the rest 
rom_data(15 downto 13) <= "000"; 

end process rom; 

end test; 

CONFIGURATION fkp_core_c OF fkp_core_tb IS 
FOR test 

FOR ALL: fkp_core_e 
USE ENTITY WORK.fkp_core_e(structural); 

END FOR; 
END FOR; 

END fkp_core_c; 
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B.7.3   FKP Core Results 

400000 
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B.5 Microstrore 

B.5.1   Microstrore Model 

-Project: 
- Filename: 
- Other files required: 
-Date: 
- Entity/Architecture Name: 
-Developer 

Thesis 
microstoreJiead.vhd 

Oct3197 
n/a 
Steve Parmley 

library IEEE; 
use lEEE.stdJogicJ 164.all; 

use WORK.reg_filej3kg.all; 

Package MICROSTORE is 

procedure movej'n   (SIGNAL reg: in addr; 
SIGNAL sys_clk: in stdjjlogic; 
SIGNAL mux_sel: out std_ulogic_vector(1 downto 0); 
SIGNAL c_reg_addr out addr; 
SIGNAL data_injatch: out std_ulogic; 
SIGNAL cjegjatch: out stdjjlogic); 

procedure move_out (SIGNAL reg: in addr; 
SIGNAL sys_clk: in std_ulogic; 
SIGNAL b_reg_addr out addr; 
SIGNAL data_out_latch: out std_ulogic); 

procedure add       (SIGNAL reg1, reg2, reg3: in addr; 
SIGNAL sys_clk: in std_ulogic; 
SIGNAL adder_done: in std_ulogic; 
SIGNAL a_reg_addr, b_reg_addr, c_reg_addn out addr; 
SIGNAL adder_sel: out std_ulogic; 
SIGNAL muxjsel: out std_ulogic_vector(1 downto 0); 
SIGNAL adder_go: out std_ulogic; 
SIGNAL cjegjatch: out stdjjlogic); 

procedure sub      (SIGNAL reg1, reg2, reg3: in addr; 
SIGNAL sys_clk: in stdjjlogic; 
SIGNAL adderjlone: in stdjjlogic; 
SIGNAL a_reg_addr, b_reg_addr, c_regjaddr: out addr; 
SIGNAL adder_sel: out stdjjlogic; 
SIGNAL muxjsel: out std_ulogic_vector(1 downto 0); 
SIGNAL adder_go: out stdjjlogic; 
SIGNAL cjegjatch: out stdjjlogic); 

procedure mult      (SIGNAL regl, reg2, reg3: in addr; 
SIGNAL sysjclk: in stdjjlogic; 
SIGNAL mult_done: in stdjjlogic; 
SIGNAL ajegjaddr, bjeg_addr, cjegjaddr: out addr; 
SIGNAL muxjsel: out std jjlogic_vector(1 downto 0); 
SIGNAL multjgo: out stdjjlogic; 
SIGNAL cjegjatch: out stdjjlogic); 

procedure cos       (SIGNAL regl, reg2:in addr; 
SIGNAL sys_clk: in stdjjlogic; 
SIGNAL cosjsinjeady: in stdjjlogic; 
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SIGNAL cos_sin_sel: out std_ulogic; 
SIGNAL a_reg_addr, c_regLaddr: out addr; 
SIGNAL müxiel: out std_ulogic_vector(1 downto 0); 
SIGNAL cos_sin_go: out std_ulogic; 
SIGNAL c_reg_latch: out std_ulogic); 

procedure sin      (SIGNAL regl, reg2:in addr, 
SIGNAL sys_clk: in std_ulogic; 
SIGNAL cos_sin_ready; in std_ulogic; 
SIGNAL cos_sin_sel: out std_ulogic; 
SIGNAL a_reg_addr, c_reg_addr: out addr; 
SIGNAL mux_sel: out std_ulogic_vector(1 downto 0); 
SIGNAL cos_sin_go: out std_ulogic; 
SIGNAL c_reg_latch: out std_ulogic); 

end MICROSTORE; 

- Project: 
-Filename: 
- Other files required: 
-Date: 
- Entity/Architecture Name: 
-Developer 

Thesis 
microstore, vhd 

Oct 31 97 
n/a 
Steve Parmley 

library IEEE; 
use IEEE.std_logic_1164.al 

use WORK.reg_filej3kg.all; 

Package body MICROSTORE is 

- MOVEJN(reg)   assume that data is present on input of latch 
procedure move_in   (SIGNAL reg: in addr; 

SIGNAL sys_clk: in std_ulogic; 
SIGNAL mux_sel: out std_ulogic_vector(1 downto 0); 
SIGNAL c_reg_addr. out addr; 
SIGNAL dataj'njatch: out std_ulogic; 
SIGNAL c_reg_latch: out std_ulogic) is 

begin 
- set mux to allow data in latch to reg 
mux_sel<="11"; 

- set up register to write to 
c_reg_addr <= reg; 

- latch the data already present on the input of the latch 
data_jnJatch<=T; 

wait until sys_clk'event and sys_clk=T; 

- hold latched value 
datajnjatch <= '0'; 

- and copy it into register file 
c_reg_latch<=T; 

wait until sys_clk'event and sys_clk=T; 

-hold it in register file 
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cjegjatch <= '0'; 
end move in; 

- MOVE_OUT (reg) 
procedure move_out  (SIGNAL reg: in addr; 

SIGNAL sys_clk: in std_ulogic; 
SIGNAL b_reg_addr: out addr; 
SIGNAL data_out_latch: out std_ulogic) is 

begin 
- set up register to write to 
b_reg_addr <= reg; 

wait until sys_clk'event and sys_clk=T; 

- latch the data from the register file to the output 
data_out_latch <= T; 

wait until sys_clk'event and sys_clk='1'; 

- hold it on the output 
data_out_latch <= '0'; 

end move_out; 

- ADD (reg1, reg2, reg3) 
procedure add      (SIGNAL regl, reg2, reg3: in addr; 

SIGNAL sys_clk: in std_ulogic; 
SIGNAL adder_done: in std_ulogic; 
SIGNAL a_reg_addr, b_reg_addr, c_reg_addr out addr; 
SIGNAL adder_sel: out std_ulogic; 
SIGNAL mux_sel: out std_ulogic_vector(1 downto 0); 
SIGNAL adderjgo: out std_ulogic; 
SIGNAL c_reg_latch: out std_ulogic) is 

begin 
- set up two terms from reg file 
a_reg_addr <= reg2; 
b_reg_addr <= reg3; 

- set up new register to hold result 
c_reg_addr<=reg1; 

- set adder/subtractor to add 
adder_sel <='0'; 

- set mux to allow add result to go to register 
mux_sel     <= "01"; 

wait until sys„clk'event and sys_cik=T; 

- initiate adder unit 
adder_go <= T; 

wait until adder_done = '1'; 
wait until sys_clk'event and sys_clk=T; 

- release adder unit 
adderjgo <= '0'; 

- latch result into regiter 
cjegjatch <= '1'; 

wait until sys_clk'event and sys_clk=T; 

- hold result in register 
c_reg_latch <= '0'; 
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end add; 

-SUB(reg1,reg2, reg3) 
procedure sub      (SIGNAL regl, reg2, reg3: in addr; 

SIGNAL sys_clk: in std_ulogic; 
SIGNAL adderjdone: in std_ulogic; 
SIGNAL a_reg_addr, b_reg_addr, c_reg_addr out addr; 
SIGNAL adder_sel: out std_ulogic; 
SIGNAL mux_sel: out std_ulogic_vector(1 downto 0); 
SIGNAL adderjgo: out std_ulogic; 
SIGNAL c_reg_latch: out std_ulogic) is 

begin 
- set up two terms from reg file 
a_reg_addr <= reg2; 
b_reg_addr <= reg3; 

- set up new register to hold result 
c_reg_addr <= regl; 

- set adder/subtracter to sub 
adder_sel <=T; 

- set mux to allow add result to go to register 
mux_sel     <="01"; 

wait until sys_clk'event and sys_clk="T; 

- initiate adder unit 
adderjgo <=T; 

wait until adder_done = '1'; 
wait until sys_clk'event and sys_clk=T; 

- release adder unit 
adder_go <= '0'; 

- latch result into regfter 
c_reg_latch <= '1'; 

wait until sys_clk'event and sys_clk='1'; 

- hold result in register 
c_reg_latch <= '0'; 

end sub; 

- MULTIPLY (regl, reg2, reg3) 
procedure mult     (SIGNAL regl, reg2, reg3: in addr; 

SIGNAL sys_clk: in std_ulogic; 
SIGNAL muifdone: in std_ulogic; 
SIGNAL a_reg_addr, b_reg_addr, c_reg_addr: out addr; 
SIGNAL mux_sel: out std_ulogic_vector(1 downto 0); 
SIGNAL multjgo: out std_ulogic; 
SIGNAL c_reg_latch: outstd_ulogic) is 

begin 
- set up two terms from reg file 
a_reg_addr <= reg2; 
b_reg_addr <= reg3; 

- set up new register to hold result 
c_reg_addr <= regl; 

- set mux to allow mult resutl to go to register 
mux_sel     <="10"; 
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wait until sys_clk'event and sys_clk=T; 

- initiate multiplier unit 
mult_so<=T; 

wait until mult_done - T; 
wait until sys_clk"event and sys_clk=T; 

- release mult unit 
multjgo <= '0'; 

- latch results into register 
c_reg_latch<=T; 

wait until sys_clk'event and sys_clk='1'; 

- hold results in register 
cjegjatch <= '0'; 

end mult; 

-COS(reg1,reg2) 
procedure cos       (SIGNAL reg1, reg2:in addr; 

SIGNAL sys_clk: in std_ulogic; 
SIGNAL cos_sin_ready: in std_ulogic; 
SIGNAL cos_sin_sel: out std_ulogic; 
SIGNAL a_reg_addr, c_reg_addr: out addr; 
SIGNAL mux_sel: out std_ulogic_vector(1 downto 0); 
SIGNAL cos_sinjjo: out std_ulogic; 
SIGNAL cjegjatch: out stdjilogic) is 

begin 
- set unit to do cosine 
cos_sin_sel <= '0'; 

- set input to A register 
a_reg_addr <= reg2; 

- set up mux to allow cos/sin unit to go to registers 
mux_sel <= "00"; 

- set up new register to put result 
c_reg_addr <= regl; 

wait until sys_clk'event and sys_clk=T; 

- initiate unit 
cos_sin_go <= T; 

wait until cos_sin_ready=T; 
wait until sys_clk'event and sys_clk='1'; 

- release unit 
cos_sinjjo <= 'O'l 

- latch result into register 
cjegjatch <= T; 

wait until sys_clk'event and sys_clk=T; 

- hold result in register 
cjegjatch <= '0'; 

end cos; 

-SIN(reg1,reg2) 
procedure sin       (SIGNAL regl, reg2:in addr; 
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begin 

SIGNAL sys_clk: in std_ulogic; 
SIGNAL cos_sin_ready: in std_ulogic; 
SIGNAL cos_sin_sel: out std_ulogic; 
SIGNAL a_reg_addr, c_reg_addr: out addr; 
SIGNAL mux_sel: out std_ulogic_vector(1 downto 0); 
SIGNAL cos_sin_go: out std_ulogic; 
SIGNAL c_reg_latch: out std_ulogic) is 

-set unit to do sine 
cos_sin_sel <= '1'; 

- set input to A register 
a_reg_addr <= reg2; 

- set up mux to älow cos/sin unit to go to registers 
mux_sel<="00"; 

- set up new register to put result 
c_reg_addr<=reg1; 

wait until sys_clk'event and sys_clk=T; 

- initiate unit 
cos_sin_go <= '1'; 

wait until cos_sin_ready=T; 
wait until sys_clk'event and sys_clk=T; 

- release unit 
cos_sinjjo <= '0'; 

- latch result into register 
c_reg_latch <= '1'; 

wait until sys_clk'event and sys_clk=T; 

- hold result in register 
cjegjatch <= '0'; 

end sin; 

end MICROSTORE; 

B.5.2   Microstrore Testbench 

- Project: 
- Filename: 
- Other files required: 
-Date: 
- Entity/Architecture Name: 
-Developer 

Thesis 
microstore-bench.vhd 
microstore, vhd 
Oct3197 
microstore_tb/test 
Steve Parmley 

library IEEE; 
use IEEE.std_logic_1164.all; 

use WORK.reg_file_pkg.all; 
use WORK.microstore.all; 

entity microstorejb is 
end microstorejb; 

architecture test of microstorejb is 
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component fkp_core_e 
port (fkp_core_clk in std_ulogic; 

fkp_core_reset in std_ulogic; 
fkp_core_data_in in std_ulogic_vector(15 downto 0) 
fkp_core_data_out out std_ulogic_yector(15 downto 0); 
fkp_core_data_in_latch in std_ulogic; 
fkp_cofB_data_out_latch in std_ulogic; 
fkp_core_c_reg_latch in std_ulogic; 
fkp_core_c_reg_addr in addr; 
fkp_core_a_reg_addr in addr; 
fkp_core_b_reg_addr in addr; 
fkp_core_cos_sin_ready out std_ulogic; 
fkp_core_cos_sinjgo in std_ulogic; 
fkp_a>re_cos_sin_se! in std_ulogic; 
fkp_core_cos_sin_wait in std_ulogic_vecton;2 downto 0); 
fkp_core_rom_addr out std_ulogic_vector(12 downto 0) 
fkp_core_rom_data in std_ulogic_vector(15 downto 0) 
fkp_core_adderjgo in std_ulogic; 
fkp_core_adder_sel in std_ulogic; 
fkp_core_adder_done out std_ulogic; 
fkp_core_multjgo in std_ulogic; 
fkp_core_mult_done out std_ulogic; 
fkp_core_mux_sel in std_ulogic_vector(1 downto 0)); 

end component; 

signal sysjeset, sys_clk: std_ulogic := '0'; 
signal a_reg_addr, b_reg_addr, c_reg_addr: addr; 
signal dätajn, data_out: std_ulogic_vector(15 downto 0); 
signal data_injatch, data_oiitJatch, c_reg_latch, cos_sin_ready: std_ulogic; 
signal cos3>njgo, cos_sin_sel, adder_jgo, adder_sel, adder_done : std_ulogic; 
signal mult_go, mult_done : std_ulogic; 
signal cos_sin_wait: std_ulogic_yector(2 downto 0); 
signal rom_addr: std_ulogic_vector(12 downto 0); 
signal rom_data: std_ulogic_vector(15 downto 0); 
signal muxlsel : std_ulogic_vector(1 downto 0); 

type opcode is (illegal, movein, moveout, move, cosine, sine, addition, subtraction, multiplication); 
signal instruction: opcode; 

Ireg1,reg2, reg3:addr; 

begin 
U1: fkp core_e 

PORT~MAP   (sys_clk, 
sys_reset, 
data_in, 
datajxit, 
data_in_latch, 
data_out_latch, 
c_reg_latch, 
c_reg_addr, 
a_reg_addr, 
b_reg_addr, 
cos_sin_ready, 
cos_sinjgo, 
cos_sin_sel, 
cos_sin_wait, 
rom_addr, 
rom_data, 
adder_go, 
adder_sel, 
adder_done, 
multjgo, 
mult_done, 
mux_sel); 
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clock: process 
begin 

sys_clk <= not(sys_clk); 
wait for 10 ps; 

end process clock; 

rst: process 
begin 

sys_reset <= T; 
wait for 40 ps; 

sys_reset <= '0'; 
wait for 50000 ps; 

end process rst; 

exercise: process 
begin 

instruction <= illegal; 
data_in_latch <= '0'; 
data_out_latch <= 'ff; 
cjegjatch <= '0'; 
cos_sinjgo <= '0'; 
ccs_sin_wait <= "111"; 
adderjgo <= '0'; 
multjgo <= '0'; 
a_reg_addr<=15; 
b_reg_addr<=15; 
c_reg_addr<=15; 
rnux_sel <= "00"; 
wait for 60 ps; 
wait until sys_clk'event and sys_clk=T; 

- MOVE IN 
instruction <= movein; 
datajn <= "0000000000000101"; 
regl <= 2; 
wait until sys_clk'event and sys_clk=T; 
movejn(reg1,sys_clk,mux_sel,c_reg_addr,data_inJatch,c_reg_latch); 

- END MOVE IN 

- MOVE OUT 
instruction <= mcveout; 
regl <=2; 
wait until sys_clk'event and sys_clk='1'; 
move out(reg1 ,sys_clk,b_reg_addr,data_outJatch); 

-END MOVE OUT 

■MOVEIN 
instruction <= movein; 
datajn <= "0000000001001011"; 
regl <=3; 
wait until sys_clk'event and sys_clk='1'; 
move_in(reg1,sys_clk,mux_sel,c_reg_addr,data_inJatch,c_reg_latcri); 

- END MOVE IN 

- MOVE OUT 
instruction <= mcveout; 
regl <= 3; 
wait until sys_clk'event and sys_clk=T; 
move_out(reg1,sys_clk,b_reg_addr,data_out_latch); 

-END MOVE OUT 
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-ADD 
instruction <= addition; 
regl <= 10; 
reg2 <= 2; 
reg3 <= 3; 
wait until sys_clk'event and sys_clk='1'; 
add(reg1,r^2,reg3,sys_dk,ado^_done,a_reg_addr,b_reg_addr,c_reg_addr, 

adder_sel,mux_sel,adderjgo,c_reg_latch); 
•END ADD 

• MOVE OUT 
instruction <= moveout; 
regl <=10; 
wait until sys_clk'event and sys_clk='1'; 
move_out(reg1,sys_clk,b_reg_addr,data_out_latch); 

- END MOVE OUT 

-MOVE 
instruction <= move; 
regl <=11; 
reg2 <= 0; 
reg3 <= 10; 
wait until sys_clk'event and sys_clk=T; 
add(reg1,reg2,reg3,sys_clk,adder_done,a_reg_addr,b_reg_addr,c_reg_addr, 

adder_sel,rnux_sel,adderjgo,c_reg_latch); 
- END MOVE 

for i in 0 to 3 loop 

-SUB 
instruction <= subtraction; 
regl <=11; 
reg2<=11; 
reg3<=1; 
wait until sys_clk'event and sys_clk='1'; 
sub(reg1,i^2,reg3,sys_clk,adder_done,a_reg_addr,b_reg_addr,c_reg_addr, 

adder_sel,mux_sel,adderjo,c_reg_latch); 
-END ADD 

-MOVEOUT 
instruction <= moveout; 
regl <=11; 
wait until sys_clk'event and sys_clk=T; 
move_out(reg1,sys_clk,b_reg_addr,data_outjatch); 

- END MOVE OUT 

end loop; 

— Multiply 
instruction <= multiplication; 
regl <=31; 
reg2 <= 2; 
reg3 <= 3; 
wait until sys_clk'event and sys_clk=T; 
mult(reg1,reg2,reg3,sys_clk,mult_done,a_reg_addr,b_reg_addr,c_reg_addr, 

mux_sel, multjgo, c_reg_latch); 

- END ADD 
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for i in 0 to 31 loop 
- MOVE OUT 

instruction <= moveout; 
regl <= i; 
wait until sys_clk'event and sys_dk=,1'; 
move_out(reg1,sys_clk,b_regLaddr,data_outJatch); 

- END MOVE OUT 
end loop; 

■ COSINE 
instruction <= cosine; 
reg2 <= 2; 
regl <= 15; 
wait until sys_clk'event and sys_clk=T; 
cos(reg1 ,reg2, sys_clk,cos_sin_ready,cos_sin_sel,a_reg_addr, 

c_regLaddr, mux_sel,cos_sinjgo,c_reg_latch); 

■ MOVE OUT 
instruction <= moveout; 
regl <=15; 
wait until sys_clk'event and sys_clk=T; 
move_out(reg1,sys_clk,b_regLaddr,data_out_latch); 

- END MOVE OUT 

-SINE 
instruction <= sine; 
reg2<=3; 
regl <= 16; 
wait until sys_clk'event and sys_clk-1'; 
sin(reg1 ,reg2, sys_clk,cos_sin_ready,cos_sin_sel,a_regLaddr, 

c_reg_addr, mux_sel,cos_sinjgo,c_reg_latch); 

-MOVEOUT 
instruction <= moveout; 
regl <= 16; 
wait until sys_clk'event and sys_clk=T; 
move_out(reg1,sys_clk,b_reg_addr,data_out_latch); 

- END MOVE OUT 

wait until sys_clk'event and sys_clk=T; 
wait until sys_clk'event and sys_clk=T: 
wait until sys_clk'event and sys_clk=T 

ASSERT false 
REPORT "DONE" 
SEVERITY failure; 

end process exercise; 

rom: process 
begin 

wait until rom_addr'event; 

- make up some rom data (inverse of the address for now) 
rom_data(12 downto 0) <= not(rom_addr(12 downto 0)); 

- fill in the rest 
rom_data(15 downto 13) <= "000"; 

end process rom; 

end test; 



FPGA Processor Implementation for the Forward Kinematics of the UMDH     APP B-74 

CONFIGURATION microstore_c OF microstore_tb IS 
FOR test 

FOR ALL: fkp_core_e 
USE ENTITY WORK.fkp_core_e(structural); 

END FOR; 
END FOR; 

END microstorec; 

B.5.3   Microstrore Results 
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B.9 Control 

B.5.9   Control Model 

- Project: 
- Filename: 
-Otherfiles required: 
-Date: 
- Entity/Architecture Name: 
-Developer: 
- Function: 
- Limitations: 
- History: 
-Last Analyzed On: 

Thesis 
fkp.vhd 
allFKP files 
Oct 17 97 
fkp_e/behavior 
Steve Parmley 

library IEEE; 
use lEEE.stdJogicJ 164.all; 

use WORK.regLfile_pkg.all; 
use WORK.microstore.all; 

entity fkp_e is 
port (fkp_cntprt7_clock 

fkp_cntprt6_reset 
fkp_cntprt5_strobe 
fkp_cntprt4_ready 
fkp_cntprt3_dgv 
fkp_cntprt2_dga 

- fkp_cntprt1_dsv 
- fkp_cntprtO_dsa 

fkp_cmdprt6_cmd1 
fkp_cmdprt5_cmd0 
fkp_cmdprt4_a4 
fkp_cmdprt3_a3 
fkp_cmdprt2_a2 
fkp_cmdprt1_a1 
fkp_cmdprtO_aO 

fkp_data_in 
fkp_data_out 

fkp_rom_addr 
fkp_rom_data 

end fkp_e; 

architecture structural of fkp_e is 

-SIGNALS 
signal sysjreset, sys_clk: std_ulogic := '0'; 
signal a_reg_addr, b_reg_addr, c_reg_addr: addr; 
signal datajn, data_out: std_ulogic_vector(15 downto 0); 
signal data_in_latch, data_out_latch, c_reg_latch, cos_sin_ready: std_ulogic; 
signal cos_sin_go, cos_sin_sel, adder_go, adder_sel, adder_done : std_ulogic; 
signal mult_go, mult_done : std_ulogic; 
signal cos_sin_wait: std_ulogic_vector(2 downto 0); 
signal rom_addr: std_ulogic_vector(12 downto 0); 
signal rom_data: std_ulogic_vector(15 downto 0); 
signal mux_sel : std_ulogic_vector(1 downto 0); 

in std_ulogic; 
in std_ulogic; 
in std_ulogic; 
out std_ulogic; 
out std_ulogic; 
in std_ulogic; 
in std_ulogic; 
out std_ulogic; 

in std_ulogic; 
in std_ulogic; 
in std_ulogic; 
in std_ulogic; 
in std_ulogic; 
in std_ulogic; 
in std_ulogic; 

in std_ulogic_vector(15 downto 0); 
out std_ulogic_vector(15 downto 0); 

out std_ulogic_yector(12 downto 0); 
in std_ulogic_vector(15 downto 0)); 

type opcode is (illegal, movein, moveout, move, cosine, sine, addition, subtraction, multiplication); 
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signal instruction: opcode; 
signal regl, reg2, reg3: addr; 

signal state: integer; 

-COMPONENTS 
component fkp_core_e 

port (fkp_core_clk 
fkp_core_reset 
fkp_core_data_in 
fkp_core_data_out 
fkp_core_data_in_latch 
fkp_core_data_out_latch 
fkp_core_c_reg_latch 
fkp_core_c_reg_addr 
fkp_core_a_reg_addr 
fkp_core_b_reg_addr 
fkp_core_cos_sin_ready 
fkp_core_cos_sin_jgo 
fkp_core_cos_sin_sel 
fkp_core_cos_sin_wait 
fkp_core_rom_addr 
fkp_core_rom_data 
fkp_core_adderjgo 
fkp_core_adder_sel 
fkp_core_adder_done 
fkp_core_multjgo 
fkp_core_mult_done 
fkp_core_mux_sel 

end component; 

in std_ulogic; 
in std_ulogic; 
in std_ulogic_vector(15 downto 0) 
out std_ulogic_vector(15 downto 0) 
in std_ulogic; 
in std_ulogic; 

;             in std ulogic; 
in addr; 
in addr; 
in addr; 
out stdjjlogic; 
in std_ulogic; 
in std_ulogic; 
in std_ulogic_vector(2 downto 0); 
out std_ulogic_vector(12 downto 0) 
in std_ulogic_vector(15 downto 0) 
in std_ulogic; 
in std_ulogic; 
out std_ulogic; 
in std_ulogic; 
out std_ulogic; 
in std_ulogic_vector(1 downto 0)); 

begin 
U1 : fkp_core_e 

PORT MAP    (sys.clk, 
sys_reset, 
data_in, 
data_out, 
datajnjatch, 
data_out_latch, 
c_reg_latch, 
c_reg_addr, 
a_reg_addr, 
b_reg_addr, 
cos_sin_ready, 
cos_sin_go, 
cos_sin_sel, 
cos_sin_wait, 
rom_addr, 
rom_data, 
adderjjo, 
adder_sel, 
adder_done, 
multjgo, 
mult_done, 
mux_sel); 

controller: process 
variable r1 : integer; 

begin 
sys_clk <= fkp_cntprt7_clock; 

• system wide reset ? 
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if fkp_cntprt6_reset = '1' then 
sysjeset <= '1'; 
wait until sys_clk'event and sys_clk=T; 
sysjeset <= '1'; 
state <= 0; 
fkp_cntprt4_ready <= '1'; 
fkp_cntprt3_dgv <= '0'; 

end if; 

- ready to accept command 
if state = 0 then 

- either set, get, or run 
if fkp_cntprt5_strobe = '1' then 

-set 
if fkp_cmdprt6_cmd1='0' and fkp_cmdprt5_cmd0='0' then 

-set not ready flag 
fkp_cntprt4_ready <= '0'; 

- set the register designated by the a4-a0 bits to 
- the data from the input data bus 

- MOVE IN 
instruction <= movein; 
data_in <= fkp_data_in; 

- transform bits to integer 
r1 := 0; 
if fkp_cmdprt4_a4 = '1' then 

r1 := r1 + 16; 
end if; 
if fkp_cmdprt3_a3 = '1' then 

r1 := r1 + 8; 
end if; 
iffkp. 

end if; 
iffkp. 

cmdprt2_a2 = '1' then 
r1 := r1 + 4; 

cmdprt1_a1=Tthen 
r1 := r1 + 2; 

end if; 
iffkp cmdprtO_aO = Tthen 

M :=r1 + 1; 
end if; 

- set target register 
regl <=r1; 

wait until sys_clk'event and sys_clk-1'; 

mowe_in(reg1,sys_clk,mux_sel,c_reg_addr,datajnJatch,c_reg_latch); 
- END MOVE IN 

wait until fkp_cntptt5_strobe = '0'; 

- set ready flag 
fkp_cntprt4_ready <= '1'; 

-get 
elsif fkp.cmdprte.cmdl^O' and fkp_cmdprt5_cmd0='1' then 

-set not ready flag 
fkp_cntprt4_ready <= '0'; 

- get the register designated by the a4-a0 bits to 
- the data from the input data bus 

- MOVE OUT 
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instruction <= moveout; 

- transform bits to integer 
r1 := 0; 
if fkp_cmdprt4_a4 = '1' then 

r1 := r1 + 16; 
end if; 
if fkp_cmdprt3_a3 = '1' then 

r1 := r1 + 8; 
end if; 
if fkp_cmdprt2_a2 = 'V then 

r1 := r1 + 4; 
end if; 
if fkp_cmdprt1_a1 = '1' then 

r1 := r1 + 2; 
end if; 
iffkp cmdprtO a0 = '1'then 

r1:=^r1 + 1; 
end if; 

-settarget register 
reg1 <=r1; 

wait until sys_clk'event and sys_clk='1'; 
move_out(reg1,sys_clk,b_reg_addr,data_out_latch); 
- END MOVE OUT 

fkp_data_out <= data_out; 

- let user know data is valid 
fkp_cntprt3_dgv <= T; 

wait until fkp_cntprt2_dga -1'; 
- user has data 

- release dgv 
fkp_cntprt3_dgv <= '0'; 

wait until fkp_cntprt5_strobe = '0'; 

-set ready flag 
fkp_cntprt4_ready <= '1'; 

-run 
elsif fkp_cmdprt6_cmd1='1' and fkp_cmdprt5_cmd0='0' then 

-set not ready flag 
fkp_cntprt4_ready <= '0'; 

- ASSUME that the 5 constansts are located in r2,r3,r4,r5,r6 
- ASSUME that the 4 angles are located in r7,r8,r9,r10 
- this was accomplished using the set function 

- See table 4.4b of Thesis for order of operations 

- **** STEP 1 **** 
-desc: reg 26 = sin of theta 1 
instruction <= sine; 
reg1 <= 26; 
reg2 <= 7; 
wait until sys_clk'event and sys_clk=T; 
sin(reg1 ,reg2, sys_clk,cos_sin_ready,cos_sin_sel,a_reg_addr, 

c_regL.äddr, mux_sel,cos_sinjgo,c_reg_latch); 

_**** STEP 2 **" 
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-desc: reg 11 =cosoftheta1 
instruction <= cosine; 
regl <=11; 
reg2 <= 7; 
wait until sys_clk'event and sys_clk=T; 
cos(reg1 ,reg2, sys_clk,cos_sin_ready,cos_sin_sel,a_reg_addr1 

c_reg_addr, mux_sel,cos_sinjo,c_reg_latch); 

-**** STEP 3 **** 
-desc: reg 12 = sinoftheta2 
instruction <= sine; 
regl <= 12; 
reg2 <= 8; 
wait until sys_clk'event and sys_clk=T; 
sin(reg1 ,reg2, sys_clk,cos_sin_ready,cos_sin_sel,a_reg_addr, 

c_reg_addr, mux_sd,cos_sinjgo,c_reg_latch); 

_**** STEP 4 **** 
-desc: reg 13 = cosoftheta2 
instruction <= cosine; 
regl <= 13; 
reg2 <= 8; 
wait until sys_clk'event and sys_clk="1'; 
cos(reg1 ,reg2, sys_clk,cos_sin_ready,cos_sin_sel,a_reg_addr, 

c_reg_addr, mux_sel,cos_sin_go,c_regjatch); 

- **** STEP 5 **** 
-desc: reg 14 = theta2 + theta3 
instruction <= addition; 
regl <= 14; 
reg2 <= 8; 
reg3 <= 9; 
wait until sys_clk'event and sys_clk='1'; 
add(reg1,reg2,reg3,sys_clk,adder_done,a_reg_addr,b_reg_addr,c_reg_addr, 

adder_sel,mux_sel,addeMgo,c_reg_latch); 

_**** STEP 6 **** 
-desc: reg 15 = sin of theta 2+3 
instruction <= sine; 
regl <= 15; 
reg2 <= 14; 
wait until sys_clk'event and sys_clk-1'; 
sin(reg1 ,reg£ sys_clk,cos_sin_ready,cos_sin_sel,a_reg_addr, 

c_reg_addr, mux_sel,cos_sin^go,c_reg_latch); 

 ****   CTCD 7   **** 

- desc: reg 16 = cos of theta 2+3 
instruction <= cosine; 
regl <= 16; 
reg2 <= 14; 
wait until sys_clk'event and sys_clk='1'; 
cos(reg1 ,reg2, sys_clk,cos_sin_ready,cos_sin_sel,a_reg_addr, 

c_reg_addr, mux_sel,cos_sinjo,c_reg_latch); 

-***♦ STEP 8 **** 
- desc: reg 14 = theta 2 + theta 3 + theta 4 
instruction <= addition; 
regl <= 14; 
reg2 <= 14; 
reg3 <= 10; 
wait until sys_clk'event and sys_clk='1'; 
add(reg1,reg2,reg3,sys_clk,adder_done,a_reg_addr,b_reg_addr,c_reg_addr, 

adder_sel,mux_sel,adderjgo,c_reg_latch); 

- **** STEP 9 **** 
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-desc: reg 22 = sin of theta 2+3+4 
instruction <= sine; 
regl <= 22; 
reg2 <= 14; 
wait until sys_clk'event and sys_clk=T; 
sin(reg1 ,reg2T sys_clk,cos_sin_ready,cos_sin_sel,a_reg_addr, 

c_reg_addr, mux_sel,cx>s_sinjgo,c_regJatch); 

-**** STEP 10 **** 
-desc: reg 25 = cos of theta 2+3+4 
instruction <= cosine; 
regl <= 25; 
reg2 <= 14; 
wait until sys_clk'event and sys_clk=T; 
cos(reg1 ,reg2, sys_clk,cos_sin_ready,cos_sin_sel,a_regu.addr, 

c_reg_addr, mux_sel,cos_sin_jgo,c_reg_latch); 

-**** STEP 11 **** 
- desc: reg 20 = cos (th1) * cos (th2+th3+th4) 
instruction <= multiplication; 
regl <= 20; 
reg2<=11; 
reg3 <= 25; 
wait until sys_clk'event and sys_clk=T; 
mult(reg1,reg2Teg3,sys_clk,mult_done,a_reg_addr,b_reg_addr,c_reg_addr, 

mux_sel, mult_go, cjegjatch); 

__ ****    CTCQ HO   **** 

- desc: reg 21 = sin (th1) * cos (th2+th3+th4) 
instruction <= multiplication; 
reg1<=21; 
reg2<=26; 
reg3 <= 25; 
wait until sys_clk'event and sys_clk-1'; 
mult(reg1,reg2,reg3,sys_clk,mult_done,a_reg_addr,b_reg_addr,c_reg_addr, 

muxsel, multjgo, c_reg_latch); 

_**** STEP 13 "** 
- desc: reg 23 = cos (th1) * sin (th2+th3+th4) 
instruction <= multiplication; 
regl <= 23; 
reg2<=11; 
reg3 <= 22; 
wait until sys_clk'event and sys_clk='1'; 
mult(reg1,reg2,reg3,sys_clk,mult_done,a_reg_addr,b_reg_addr,c_reg_addr, 

mux_sel, multjgo, c_reg_latch); 

- **** STEP 14 **" 
- desc: reg 23 = -(cos(th1) * sin(th2+th3+th4) 
instruction <= subtraction; 
regl <= 23; 
reg2<=0; 
reg3 <= 23; 
wait until sys_clk'event and sys_clk-1'; 
sub(reg1,reg2,reg3,sys_clk,adder_done,a_reg_addr,b_reg_addr,c_reg_addr, 

adder_sel,mux_sel,adder_go,c_regJatch); 

_**** STEP 15 **** 
- desc: reg 24 = sin (th1) * sin (th2+th3+th4) 
instruction <= multiplication; 
regl <= 24; 
reg2 <= 26; 
reg3 <= 22; 
wait until sys_clk'event and sysjclk-1'; 
mult(reg1,reg2,reg3,sys_clk,mult_done,a_reg_addr,b_reg_addr,c_reg_addr, 
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mux_sel, mult_go, c_reg_latch); 

 ****   CTCP ifi  **** 

- desc: reg 24 = -(sin(th1) * sin(th2+th3+th4) 
instruction <= subtraction; 
regl <= 24; 
reg2 <= 0; 
reg3 <= 24; 
wait until sys_clk'event and sys_clk='1'; 
sub(reg1,i^2,reg3,sys_clk,adder_done,a_regLaddr,b_tBg_addrlc_reg_addr, 

adder_sel,rnux_sel,adder_go,c_regJatch); 

_**** STEP 17 **** 
-desc: reg27 = -(cos(th1)) 
instruction <= subtraction; 
regl <= 27; 
reg2 <= 0; 
reg3<=11; 
wait until sys_clk'event and sys_clk=T; 
sub(reg1,reg2,reg3,sys_clk,adder_dcfle,a_reg_addr,b_reg_addr,c_reg_addr, 

adder_sel,mux_sel,adder_go,c_reg_latch); 

_**** STEP 18 **** 
-desc: reg28 = 0 
instruction <= addition; 
regl <= 28; 
reg2 <= 0; 
reg3 <= 0; 
wait until sys_clk'everrt and sys_clk='1'; 
sub(reg1,reg2,r^3,sys_clk,ackier_done,a_reg_addr,b_reg_addr,c_reg_addr, 

adder_sel,mux_sel,adderjgo,c_regJatch); 

-**** STEP 19 **" 
-desc: reg 17 = a2* cos (th2) 
instruction <= multiplication; 
regl <= 17; 
reg2 <= 4; 
reg3<=13; 
wait until sys_clk'event and sys_clk=T; 
mult(reglTeg2,reg3,sys_clk,mult_done,a_reg_addr,b_reg_addr,c_reg_addr, 

mux_sel, multjgo, c_reg_latch); 

_**** STEP 20 **** 
- desc: reg 18 = a3 * cos (th2+th3) 
instruction <= multiplication; 
regl <= 18; 
reg2 <= 5; 
reg3<=16; 
wait until sys_clk'event and sys_clk='1'; 
mult(teg1,reg2,reg3,sys_clk,muH:_dcine,a_reg_addr,b_reg_addr,c_reg_addr, 

mux_sel, mult_go, c_reg_latch); 

_**** STEP 21 **** 
- desc: reg 17 = a2*cos(th2) + a3*cos(th2+th3) 
instruction <= addition; 
regl <= 17; 
reg2<=17; 
reg3<=18; 
wait until sys_clk'event and sys_clk=T; 
sub(reg1,reg2>reg3,sys_clk)adder_done,a_reg_addr,b_reg_addr,c_reg_addr, 

adder_sel,mux_sel,adder_go,c_reg_Iatch); 

_**** STEP 22 **** 
- desc: reg 17 = a1 + a2*cos(th2) + a3*cos(th2+th3) 
instruction <= addition; 
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regl <= 17; 
reg2<=17; 
reg3 <= 3; 
wait until sys_clk'event and sys_clk='1'; 
sub(reg1,reg2,r^3,sys_clk,adder_done,a_regLaddr,b_reg_addr,c_reg_acldr, 

adder_sel,mux_sel,adderjgo,c_regJatch); 

_ *««* 3"fEP 23 **** 
- desc: reg 18 = cos(th1) * (a1 + a2*cos(th2) + a3 * cos (th2+th3)) 
instruction <= multiplication; 
regl <=18; 
reg2 <= 17; 
reg3<=11; 
wait until sys_clk'event and sys_clk='1'; 
mult(reg1,i^,r^3,sys_clk,mult_dcfie,a_reg_addr,b_reg_addr,c_rieg_addr, 

mux_sel, mult_go, c_reg_latch); 

-**** STEP 24 **** 
- desc: reg 29 = aO + cos(th1)*(a1 + a2*cos(th2) + a3*cos(th2+th3) 
instruction <= addition; 
regl <= 29; 
reg2 <= 18; 
reg3 <= 2; 
wait until sys_clk'event and sys_clk-1'; 
sub(reg1,reg2,reg3,sys_clk,adder_done,a_reg_addr,b_reg_addr,c_reg_addr, 

adder_sel,nriux_sel,adder_go,c_reg_latch); 

-**** STEP 25 **** 
- desc: reg 30 = sin(th1) * (a1 + a2*cos(th2) + a3 * cos (th2+th3)) 
instruction <= multiplication; 
regl <= 30; 
reg2 <= 17; 
reg3 <= 26; 
wait until sys_clk'event and sys_clk-1'; 
mult(i^1,reg2,reg3,sys_clk,mult_done,a_reg_addr,b_reg_addr,c_reg_addr, 

mux_sel, multjgo, c_reg_latch); 

-**** STEP 26 **** 
-desc: reg 19 = a2*sin(th2) 
instruction <= multiplication; 
regl <=19; 
reg2 <= 4; 
reg3 <= 12; 
wait until sys_clk'event and sys_clk='1'; 
mult(reg1,reg2,reg3,sys_clk,mult_done,a_reg_addr,b_reg_addr,c_reg_addr, 

mux_sel, muftjgo, c_reg_latch); 

-**** STEP 27 **** 
- desc: reg 31 = a3 * sin (th2+th3)) 
instruction <= multiplication; 
regl <=31; 
reg2 <= 5; 
reg3<=15; 
wait until sys_clk'event and sys_clk=T; 
mult(reg1,reg2,reg3,sys_clk,mult_done,a_reg_addr,b_reg_addr,c_reg_addr, 

mux_sel, multjgo, c_reg_latch); 

_**** STEP 28 **** 
- desc: reg 31 = a2 * sin(th2) + a3 * sin (th2+th3)) 
instruction <= addition; 
regl <=31; 
reg2<=31; 
reg3<=19; 
wait until sys_clk'event and sys_clk=T; 
mult(reg1,reg2,reg3,sys_clk,mult_done,a_reg_addr,b_reg_addr,c_reg_addr> 
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end if; 
end if; 

mux_sel, multjgo, c_reg_latch); 

_♦*** STEP 29 **** 
- desc: reg 31 = a2 * sin(th2) + a3 * sin (th2+th3)) + d1 
instruction <= addition; 
reg1 <=31; 
reg2<=31; 
reg3 <= 6; 
wait until sys_clk'event and sys_clk='1'; 
add(i^1,reg2,i^3,sys_clk,adder_done,a_reg_addr,b_reg_addr,c_reg_addr, 
adder_sel,mux_sel,adder_5o,c_reg_latch); 

wait until fkp_cntprt5_strobe = '0'; 

-set ready flag 
fkp_cntprt4_ready <= '1'; 

end if; 

end process controller; 
end structural; 
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Appendix C: XACTstep Synthesis Log File for Register File 

ngdbuild -p xc4000e C:\exemplar\work\reg16\reg16.xnfxc4000e.ngd 
ngdbuild: version M1.3.7 
Copyright (c) 1995-1997 Xilinx, Inc. All rights reserved. 

Command Line: ngdbuild -p xc4000e C:V3xemplar\work\reg16\reg16.xnf xc4000e.ngd 

Launcher: Using ruleXNF_RULE 
Launcher: reg16.ngo being compiled because it does not exist 
Launcher: Running xnf2ngd from C:\exemplar\work\reg16\xproj\veri\ 
Launcher Executing xnf2ngd -p xc4000e -u "C:\exemplar\work\reg16\reg16-xnf' 
"reg16.ngo" 
xnf2ngd: version M1.3.7 
Copyright (c) 1995-1997 Xilinx, Inc. All rights reserved. 

using XNF gate model 
reading XNF file "C:/exemplar/work/reg16/reg16.xnf'... 
Writing NGO file "reg16.ngo"... 

Launcher: "xnf2ngd" exited with an exit code of 0. 

Reading NGO file "C:/exemplar/wo^k/reg16/xproj^er1/reg16.ngo"... 
Reading component libraries for design expansion- 

Running Timing Specification DRC... 
Timing Specification DRC complete with no errors or warnings. 

Running Logical Design DRC... 
Logical Design DRC complete with no errors or warnings. 

NGDBUILD Design Results Summary: 
2148 total blocks expanded. 

Writing NGD file "xc4000e.ngd"... 

Writing NGDBUILD log file "xc4000e.bld"... 

NGDBUILD Done. 

map -p xo4020e-3-hq208 -o map.ncd ../xc4000e.ngd reg16.pcf 
map: version M1.3.7 
Copyright (c) 1995-1997 Xilinx, Inc. All rights reserved. 
Reading NGD file "../xc4000e.ngd"... 
Using target part "4020ehq208-3". 
MAP xc4000e directives: 

Partname="xc4020e-3-hq208". 
No Guide File specified. 
No Guide Mode specified. 
Covermode="area". 
Coveriutsize=4. 
Coverfgsize=4. 
Perform logic replication. 
PackCLBsto97%. 

Processing logical timing constraints... 
Running general design DRC... 
Verifying F/HMAP validity based on pre-trimmed logic... 
Removing unused logic... 
Processing global clock buffers... 
WARNING:baste:24 - All of the external outputs in this design are using 

slew-rate-limited output drivers. The delay on speed critical outputs can be 
dramatically reduced by designating them as fast outputs in the original 
design. Please see your vendor interface documentation for specific 
information on how to do this within your design-entry tool. 

Optimizing... 
Removed Logic Summary: 
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Design Summary: 
Number of warnings: 1 
Number of errors: 0 
Number of CLBs: 315 out of 784 

Flops/latches: 224 
4 input LUTs: 621 
3inputLUTs: 183 

Number of bonded lOBs: 63 out of 160 
Number of clock lOBs: lout of   8 

10 flops/latches: 32 
Number of primary CLKs: 1 out of   4 

Writing design file "map.ncd"... 

par -w -14 -d 0 map.ncd reg16.ncd reg16.pcf 
PAR: Xilinx Place And Route M1.3.7. 
Copyright (c) 1995-1997 Xilinx, Inc. All rights reserved. 

Constraints file: reg16.pcf 

Placement level-cost: 4-1 

Loading device database for application par from file "map.ncd". 
"reg16" is an NCD, version 2.27, device xc4020e, package hq208, speed -3 

Loading device for application par from file '4020e.nph' in environment 
d:/xilinx. 
Device speed data version: x1_0.79 PRELIMINARY. 

Device utilization summary: 

IO 

LOGIC 
SPECIAL 

63/224 
63/160 
315/784 
1/3023 

28% used 
39% bonded 
40% used 
0% used 

CLKIOB 
IOB 

1/8 
62/224 

12% used 
27% used 

CLB 315/784 40% used 

PRI-CLK 1/4 25% used 

Starting initial Placement phase. REAL time: 13 sees 
Finished initial Placement phase. REAL time: 14 sees 

Starting Constructive Placer. REAL time: 15 sees . 
Placer score =1081980 
Placer score = 977380 
Placer score = 886140 
Placer score = 853480 
Placer score = 783540 
Placer score = 705220 
Placer score = 634260 
Placer score = 577740 
Placer score = 486240 
Placer score = 439200 
Placer score = 375240 
Placer score = 332160 
Placer score = 298500 
Placer score = 284400 
Placer score = 271260 
Placer score = 260940 
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Placer score = 255660 
Placer score = 252840 
Placer score = 248700 
Placer score = 246900 
Placer score = 245640 
Placer score = 244680 
Placer score = 244320 
Placer score = 242160 
Placer score = 241920 
Placer score = 241140 
Placer score = 240240 
Placer score = 239220 
Placer score = 238920 
Placer score = 238560 
Placer score = 237900 
Finished Constructive Placer. REAL time: 11 mins30secs 

Dumping design to file "reg16.ncd". 

Starting Optimizing Placer. REAL time: 11 mins 31 sees 
Optimizing   
Swapped 30 comps. 
Xilinx Placer [1]  235080  REAL time: 12 mins 40 sees 
Optimizing   
Swapped 5 comps. 
Xilinx Placer [2]  234840  REAL time: 13 mins 45 sees 
Finished Optimizing Placer. REAL time: 13 mins 45 sees 

Dumping design to file "reg16.ncd". 

Total REAL time to Placer completion: 13 mins 47 sees 
Total CPU time to Placer completion: 13 mins 47 sees 

0 connection(s) routed; 2231 unrouted. 
Starting router resource preassignment 
Completed router resource preassignment. Real time: 13 mins 49 sees 
Starting iterative routing. 
End of iteration 1 
2231 successful; 0 unrouted; (0) real time: 14 mins 
Constraints are met. 
Power and ground nets completely routed. 
Dumping design to file "reg16.ncd". 
Starting cleanup 
End of cleanup iteration 1 
2231 successful; 0 unrouted; (0) real time: 15 mins 17 sees 
Dumping design to file "reg16.ncd". 
Total CPU time 15 mins 18 sees 
Total REAL time: 15 mins 18 sees 
Completely routed. 
End of route. 2231 routed (100.00%); 0 unrouted. 
No errors found. 

Total REAL time to Router completion: 15 mins 20 sees 
Total CPU time to Router completion: 15 mins 20 sees 

Generating PAR statistics. 
Timing Score: 0 

Dumping design to file "reg16.ncd". 

All signals are completely routed. 

Total REAL time to PAR completion: 15 mins 28 sees 
Total CPU time to PAR completion: 15 mins 28 sees 
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PAR done. 

bitgen reg16.ncd -I -w -f bitgen.ut 

Loading device database for application Bitgen from file "reg16.ncd". 
"reg16" is an NCD, version 2.27, device xc4020e, package hq208, speed -3 

Loading device for application Bitgen from file '4020e.nph' in environment 
d:/xilinx. 

BITGEN: Xilinx Bitstream Generator M1.3.7 
Copyright (c) 1995-1997 Xilinx, Inc. All rights reserved. 

Running DRC. 
DRC detected 0 errors and 0 warnings. 
Saving II file in "reg16.H". 
Creating bit map... 
Saving bit stream in "reg16.bit". 

xcpy reg16.bit C:\exernplar\work\reg16\reg16.bit 

xcpy reg16.ll C:\exemplar\work\reg16\reg16.ll 
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Appendix D: Ironwood Electronics Adapter to IMS 
and FPGA Pinouts 

9 Ironwood Electronics, Inc. 
PO Box 21151 • St Paul, MN 55121 • (612)452*100 • Fax (612)452*400 
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9 Ironwood Electronics, Inc. 
PO Box 21151 • St Paul, MN 55121 • (612)4524100 • Fax (612)452-8400 
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