
j piaromunoH STATEMENT

! Approved tea VXDÜc rei«
L., ... j>HTirnuflca QalBBttx*

FPGA PROCESSOR IMPLEMENTATION FOR
THE FORWARD KINEMATICS OF THE UMDH

THESIS

Steven M. Parmley

AFIT/GE/ENG/97D-21

BUG QUALITY IESPSCTEXi

UT>

CVI

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

AFIT/GE/ENG/97D-21

FPGA PROCESSOR IMPLEMENTATION FOR
THE FORWARD KINEMATICS OF THE UMDH

THESIS

Steven M. Parmley

AFIT/GE/ENG/97D-21

Approved for public release; distribution unlimited

AFIT/GE/ENG/97D-21

FPGA PROCESSOR IMPLEMENTATION FOR

THE FORWARD KINEMATICS OF THE UMDH

THESIS

Presented to the Faculty of the Graduate School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the Requirements for the Degree of

Masters of Science in Electrical Engineering

Steven M. Parmley, B.S.

December 1997

Approved for public release; distribution unlimited

AFIT/GE/ENG/97D-21

FPGA PROCESSOR IMPLEMENTATION FOR

THE FORWARD KINEMATICS OF THE UMDH

Steven M. Parmley, B.S.

Approved: s~\

Major Don Gelosh, Ph.D. Chairman date

Dr. Curtis Spenny v / date

Dr. Kuldip Rattkn. fl M a date

Major Dean Schneider, Ph.D. date

FPGA Processor Implementation for the Forward Kinematics of the UMDH 11_

Acknowledgments

I would like to take a moment to thank my thesis advisor, Maj Don Gelosh, and my

committee members, Dr. Curtis Spenny, Maj Dean Schneider, and Dr. Kuldip Rattan for their

guidance and support during this thesis effort.

A special thanks goes out to my co-workers from Wright Laboratories Avionics

Directorate. Capt. Tony Kadrovach was instrumental in helping me narrow the thesis topic. Mrs.

Kerry Kill helped me get a grasp with the Exemplar and XACT tools. An extra thanks goes to a

truly motivated engineer, Mr. Gary Fecher. Gary's help with the Xilinx hardware proved

invaluable.

The Dayton Area Graduate Studies Institute (DAGSI) deserves a cheer for giving me the

opportunity to attend AFIT. On the same note, Mrs. Mary Jane McCormick always managed to

handle the paperwork with a smile.

Finally, I would like to thank my family for their support and encouragement over the past

two years.

Steven M. Parmley

^$$ß^ FPGA Processor Implementation for the Forward Kinematics of the UMDH iii

Table of Contents

Page

Acknowledgments ii
List of Figures vii
List of Tables ix
Abstract X

1. Introduction 1
1.1 Background 1
1.2 Problem Statement 1
1.3 Assumptions 2
1.4 Approach 2
1.5 Overview 2

2. Literature Review and Background 4
2.1 Review 4
2.2 Introduction 4
2.3 Review of Forward Kinematic Computations 5

and the Denavit-Hartenberg Notation
2.4 UMDH Forward Kinematic Computations 13
2.5 Conclusions 17

3. Algorithm Analysis and Profiling 18
3.1 Introduction 18
3.2 Numeric Magnitude 18
3.2 Numeric Precision 20
3.4 Mathematical Operator Usage 20
3.5 Conclusions 21

4. VHDL Model 22
4.1 Introduction 22
4.2 Functional Units 22

4.2.1 Cosine/Sine Unit 22
4.2.2 Adder/Subtractor Unit 25

FPGA Processor Implementation for the Forward Kinematics of the UMDH IV

Page

4.2.3 Multiplier Unit 27
4.2.4 Register File Unit 29
4.2.5 Latches and Multiplexors 31
4.2.6 FKP Core 32
4.2.7 Microcode Store 34
4.2.8 Control Unit 35

4.3 Conclusions 40

5. VHDL To FPGA Synthesis 41
5.1 Introduction 41
5.2 VHDL Source Restrictions 41
5.3 Design Flow 42

5.3.1 Synopsys Design Analyzer 43
5.3.2 Exemplar Leonardo 43
5.3.3 XilinxXACTstepMl 49

5.4 Bitstream file to FPGA 51
5.5 Conclusions 52

6. FPGA Verification 53
6.1 Introduction 53
6.2 IMS Logic Master XL100 tester 53
6.3 HQ208 Chip Carrier and Daughter Board 54
6.4 Functional Unit Testing 56
6.5 Conclusions 59

7. Conclusions and Recommendations for Future Work 60
7.2 Conclusions 60
7.2 Lessons Learned 61
7.3 Recomendations 61
7.4 Ideas for Future Work 62

Bibliography BIB-1

FPGA Processor Implementation for the Forward Kinematics of the UMDH

Page

Appendix A: Code for Behavioral Algorithm
A.l C code
A.2 Matlabcode

APPA-1
APPA-1
APPA-4

Appendix B: VHDL Functional Unit Models
and Simulation Testbenches

B.l Cosine/Sine Unit
B.1.1 Model
B.l.2 Testbench
B.l.3 Results

B.2 Adder/Subtractor Unit
B.2.1 Model
B.2.2 Testbench
B.2.3 Results

B.3 Multiplier Unit
B.3.1 Model
B.3.2 Testbench
B.3.3 Results

B.4 Register File Unit
B.4.1 Model
B.4.2 Testbench
B.4.3 Results

B.5 Latch
B.5.1 Model
B.5.2 Testbench
B.5.3 Results

B.6 Multiplexor
B.6.3 Model
B.6.3 Testbench
B.6.3 Results

B.7 FKP Core
B.7.1 Model
B.7.2 Testbench
B.7.3 Results

APPB-1

APPB-1
APPB-1
APPB-3
APPB-5
APPB-6
APPB-6
APPB-8
APPB-11
APP B-15
APPB-15
APPB-19
APP B-25
APP B-32
APP B-32
APP B-33
APP B-39
APP B-42
APP B-42
APP B-42
APP B-44
APP B-45
APP B-45
APP B-45
APP B-47
APP B-48
APP B-48
APPB-51
APP B-57

FPGA Processor Implementation for the Forward Kinematics of the UMDH Vl_

Page

B.8 Microcode Store APP B-64
B.8.1 Model APP B-64
B.8.2 Testbench APPB-69
B.8.3 Results APPB-74

B.9 Control Unit APPB-79
B.9.1 Model APPB-79

Appendix C: XACTstep Synthesis Log File for Register File APP C-1

Appendix D: Ironwood Electronics Adapter to IMS APPD-1
and FPGA Pinouts

VITA

 FPGA Processor Implementation for the Forward Kinematics of the UMDH Vll

List of Figures

page

Figure 2.1: The Six Possible Joints 6

Figure 2.2: Link Length and Link Twist 7

Figure 2.3: Link Offset and Joint Angle 8

Figure 2.4: Intermediate Frames 9

Figure 2.5: Utah MIT Dextrous Hand 13

Figure 2.6: Top View of UMDH 14

Figure 2.7: Side View of UMDH 14

Figure 4.1: Cosine/Sine Unit Block Diagram 23

Figure 4.2: Cosine/Sine Unit State Diagram 24

Figure 4.3: Adder/Subtractor Unit Block Diagram 25

Figure 4.4: Adder/Subtractor Unit State Diagram 26

Figure 4.5: Multiplier Unit Block Diagram 28

Figure 4.6: Multiplier Unit State Diagram 28

Figure 4.7: Register File Unit Block Diagram 30

Figure 4.8: Latch Unit Block Diagram 31

Figure 4.9: Multiplexor Unit Block Diagram 32

Figure 4.10: FKP Core Block Diagram 33

Figure 4.11: FKP System Block Diagram 36

Figure 5.1

Figure 5.2

Figure 5.3

Figure 5.4

Exemplar Logic Leonardo Startup Screen 43

Leonardo Flow Guide 44

Customize Flow Guide 45

Customized Flow Guide 46

FPGA Processor Implementation for the Forward Kinematics of the UMDH Vlll

Figure 5.5

Figure 5.6

Figure 5.7

Figure 5.8

Figure 5.9

Figure 5.10:

Figure 5.11:

Figure 5.12:

Figure 5.13:

Figure 5.14:

Figure 5.15:

Figure 5.16:

Figure 5.17:

Figure 5.18:

Figure 5.19:

Figure 5.20:

Figure 5.21:

Figure 6.1

Figure 6.2

Figure 6.3

Figure 6.4

page

Load Library 46

Analyze 46

Elaborate 47

Pre Optimize 47

Load Modgen Library 47

Resolve Modgen 47

Optimize 48

Results of Optimization 48

Pack CLBs 48

Decompose LUTs 48

Write XNF 49

XACTstep Design Manager 49

Implementation Window 50

Inplementation Options 50

Configuration Options 51

Flow Engine 51

4020E CLB and Routing for the Half Register File Unit 52

The IMS Logic Master XL100 53

Completed Test Unit 54

Slave Serial Download 56

IMS Waveform Results of Register File 58

FPGA Processor Implementation for the Forward Kinematics of the UMDH

List of Tables

IX

Table 2.1: DH Table for Thumb of UMDH

Table 3.1: Kinematic Range of UMDH

Table 4.1: FKP Instruction Set

Table 4.2: Control Port

Table 4.3: Command Port

Table 4.4a: Operations Involved with the Set Function

Table 4.4b: Internal Operations During Run Function

page

15

19

35

35

36

38

38

FPGA Processor Implementation for the Forward Kinematics of the UMDH

AFIT/GE/ENG/97D-21

Abstract

The focus of this research was on the implementation of a forward kinematic algorithm for

the Utah MIT Dexterous Hand (UMDH). Specifically, the algorithm was synthesized from

mathematical models onto a Field Programmable Gate Array (FPGA) processor. This approach is

different from the classical, general-purpose microprocessor design where all robotic controller

functions including forward kinematics are executed serially from a compiled programming

language such as C. The compiled code and subsequent real-time operating system must be

stored on some form of nonvolatile memory, typically magnetic media such as a fixed or hard disk

drive, along with other computer hardware components to allow the user to load and execute the

software. With a future goal of moving the controllers to a portable platform like a dexterous

prosthetic hand for amputee patients, the application of such a hardware implementation is

impossible.

Instead, this research explores a different implementation based on a modular approach of

dedicated hardware controllers. The controller for the forward kinematics of the UMDH is used

as a test case. The resulting FPGA processor replaces a robotic system's burden of repetitive and

discrete software system calls with a stand-alone hardware interface that appears more like a

single hardware function call. The robotic system is free to tackle other tasks while the FPGA

processor is busy computing the results of the algorithm.

FPGA Processor Implementation for the Forward Kinematics of the UMDH XI

The forward kinematic algorithm for the UMDH was chosen as test case due to its

familiarity among the academic community. Although considerable time was spent deriving the

equations, the specifics of the UMDH algorithm itself was not the focus of this thesis. Rather, the

focus was on the implementation of such an extensive and complex algorithm onto an FPGA

processor. Forward kinematic algorithms from other portable robotic devices such as planetary

rovers, flight line bomb loaders, or teleoperation systems could have been implemented just as

well.

This thesis is divided into three parts. First, the UMDH is examined and the forward

kinematic equations for it are developed. This stage will be different for every robotic system, but

the process will remain the same. Second, the resulting equations are evaluated for maximum and

minimum numeric ranges and amounts of desired precision. This information is used in the third

part, where mathematical, memory storage, and controller functional units are developed.

Specifically, VHDL models are created, simulated, synthesized, and placed into an FPGA

processor.

FPGA Processor Implementation for the Forward Kinematics of the UMDH

1. Introduction

1.1 Background

Although robotic devices have been in existence for many years, they were hindered due

to the high computational demands until the digital computer revolution came about. Today,

highly sophisticated control algorithms are written in software, usually with a real time operating

system such as Chimera(Khosla), VX-Works(Wind), or Condor(Narasimhan) and executing on a

VME based processor or similar dedicated hardware platform. Each part of the algorithm may be

executing concurrently with other parts and may be highly repetitive in nature.

One particular part that is highly repetitive is the calculation of the forward kinematics of

the device. The forward kinematics allow the angles of the device to be transformed to the spatial

position and orientation of the end of the device. Even a small motion at the base of the device

may cause considerable motion farther out on the tip of the device, so the transform must be

calculated repetively in order to keep track of the device in Cartesian coordinates.

1.2 Problem Statement

The forward kinematics of the Utah MIT Dexterous Hand (UMDH) (Sarcos) will be

developed and implemented on a Xilinx Field Programmable Gate Array (FPGA) (Xilinx). The

result is a Forward Kinematic Processor for the UMDH that will autonomously calculate the

results while the surrounding system performs more task specific operations.

FPGA Processor Implementation for the Forward Kinematics of the UMDH f_

1.3 Assumptions

Although the process used to calculate the forward kinematics is the same for most

common robotic devices, there could exist a device or devices which would not easily map to the

algorithms discussed. On example is a parallel linkage device like a bomb loader. It is assumed

that the developed algorithm is for the UMDH specifically and that all UMDHs are mechanically

identical.

1.4 Approach

The design of the Forward Kinematic Processor starts with the development of the

forward kinematic algorithm specifically for the UMDH. This algorithm is evaluated for

arithmetic and transcendental properties and arranged such that a minimum amount of hardware

time is required. The required arithmetic and transcendental operations lead to the development

of functional units to process the numeric data. The functional units are then integrated into one

complete processing unit, and synthesized from VHDL code to logic blocks on a Xilinx FPGA.

1.5 Overview

The remaining chapters of this document describe the development and implementation of

the Forward Kinematic Processor. Chapter 2 reviews the mathematical foundation of general

forward kinematics and applies it to the specific nature of the UMDH. Chapter 3 looks at the

results of Chapter 2, particularly the equations for position and orientation, and evaluates them for

magnitude constraints, required precision, and operational occurrences. Chapter 4 describes the

development of a VHDL model that simulates the digital hardware implementation of an

application specific microprocessor that can compute the equations from Chapter 2. Chapter 5

FPGA Processor Implementation for the Forward Kinematics of the UMDH

deals with synthesizing the model directly to an Xilinx FPGA. Chapter 6 evaluates the results and

Chapter 7 discusses recommendations and possible future work.

FPGA Processor Implementation for the Forward Kinematics of the UMDH

2. Literature Review and Background

2.1 Review

As mentioned in Chapter 1, a typical robotics research environment consists of a real time

operating system supported by a relatively large hardware platform. The use of such a system

allows researchers to quickly change various parameters of the control structure for robotic

devices. Although dedicated hardware may show an increase in performance for a particular

application, to build and maintain it is sometimes too much overhead for researchers whose

primary focus is robotics, not hardware design (Narasimhan).

The concept of a dexterous prosthetic hand requires a contoller that moves with the

device. Obviously, a generalized hardware platform would be much too large to be portable.

Such area requirements may necessitate a custom hardware implementation (Narasimhan). With

the hopes of a stand-alone dexterous prosthetic hand and the advent and popularity of the FPGA,

it is now possible to merge the two technologies and create a truly portable solution. As the

controller algorithms in the research laboratory are upgraded, they can be downloaded into the

existing hardware of the hand using the reconfigurable properties of the FPGA (Xilinx).

2.2 Introduction

This chapter discusses a method to represent the mechanical attributes of a particular

manipulator. This representation is then used to determine the transformation from the relative

angles of each link to the 3-dimensional coordinate locations and orientations of the tip of the end

link. The process, known as forward kinematics, is then applied to the unique nature of the Utah

FPGA Processor Implementation for the Forward Kinematics of the UMDH £_

MET Dexterous Hand (UMDH). Specifically, the thumb mechanism of the UMDH is evaluated

and the resulting control equations will form the basis for FPGA implementation in the remaining

chapters.

2.3 Review of Forward Kinematic Computations and the Denavit-Hartenberg

Notation (Craig)

In order to represent the mechanical attributes of any general purpose manipulator, a

convention is formulated that will relate the various physical parts that make up the manipulator.

It is composed of rigid links connected by joints to allow for relative motion of the neighboring

links. Most manipulators have joints that are either revolute or prismatic as shown in Figure 2.1.

Revolute joints are typical hinge style joints and the unit of measurement is the joint angle

between the two halves of the joint. Prismatic joints are designed such that one half can slide

back and forth in relation to the fixed half. The measuring unit is the joint offset between the two

halves. Other possible joint configurations include cylindrical, planar, screw, and spherical

(Craig:69).

Link 0 is considered to be the immobile base of the manipulator. Link 1 is the first moving

part, followed by link 2, and so on out to the end link n. The axes of the joints which connect the

links are measured relative to the previous axis. Each joint axis defines a vector in which the next

link in the chain will rotate about. However, the link and its previous joint are given the same

index. This vector is based on the coordinate frame of the previous joint. There are two

quantities to measure the difference between the two axes as shown in Figure 2.2. First, the link

length ai-\ is the distance of the line that is mutually perpendicular to both axes. Second, the link

FPGA Processor Implementation for the Forward Kinematics of the UMDH

Revolute Prismatic

Cylindrical Planar

Screw Spherical

Figure 2.1. The Six Possible Joints

twist ai-i is the angle between the i-1 axis and a parallel projection of the axis i onto the origin

point of the perpendicular line found earlier.

For links that have a common joint between them, there are two quantities that can be

measured. First, the link offset 4 is the distance between the connection points of the two links

along the axis of the common joint. If this value is zero, then that implies a door like hinge. If the

value is non-zero, then that implies a sort of scissors-like hinge where the two links use the same

FPGA Processor Implementation for the Forward Kinematics of the UMDH

Figure 2.2. Link Length and Link Twist

value is non-zero, then that implies a sort of scissors-like hinge where the two links use the same

joint but are slightly offset from each other. Secondly, the joint angle ^ is the rotational

difference between the two links about their common joint. These two quantities are shown in

Figure 2.3. If the joint is revolute, then the link offset is fixed and the joint angle will be allowed

to vary. Similarly, if the joint is prismatic, then the joint angle is fixed and the link offset is

allowed to vary. For the first and last links, the fixed quantity will be set to zero (Craig:73).

FPGA Processor Implementation for the Forward Kinematics of the UMDH 8

Figure 2.3. Link Offset and Joint Angle

These four quantities, link length ai-i, link twist *?-i, link offset 4, and joint angle <%,

allow for the unique description of any common manipulator. Together, they form a convention

known as the Denavit-Hartenberg notation (Craig:74). The four quantities are then regularly

placed into a DH table containing the information for all degrees of freedom of the manipulator

(Craig:68-82; Rattan:37-44).

The next step is to relate the frames of links i and i-1. To do this, three intermediate

frames are created to allow the transformation form one link to the next. Figure 2.4 shows the

addition of these three frames, denoted R, Q, and P (Craig:83).

FPGA Processor Implementation for the Forward Kinematics of the UMDH

Figure 2.4 Intermediate Frames

First, the R frame is placed at the same origin as the i-1 frame but rotated about the x-axis

by the link twist <%-i amount. The Q frame is then placed in the same orientation as P but it is

shifted along the x-axis by the link length «,-i amount towards the next link. The R frame is then

placed at the same origin as Q but rotated by the z-axis by the joint angle <?, amount. Finally, the

frame of link i has the same orientation as R but it is shifted along the z-axis by the link offset d(

amount towards the next link (Craig:83-84;Rattan:45-52).

FPGA Processor Implementation for the Forward Kinematics of the UMDH 10

Because moving from i-1 to R is a rotation, its rotational matrix is given by Equation 2.1.

The transformation from R to Q is given by the positional scaling vector of Equation 2.2.

Together, Equations 2.1 and 2.2 form the transformation matrix shown in Equation 2.3.

Rotation about x-axis =

1 0

0 cosC^)

0 sinC^)

0

-sinO^)

cosC^) Equation 2.1

Scaling along x-asis =

a. i-1

0

0 Equation 2.2

Transform (i-1 to Q) =

1 0 0 a

0 cosC^.J -sinC^.j)

0 sinO;^) cosC^)

0 0 0

i-1

0

0

1
-I Equation 2.3

Similarly, moving from Q to P is a rotation. Its rotational matrk is given by equation 2.4.

The transformation from P to i is given by the positional scaling vector of Equation 2.5.

Together, Equations 2.4 and 2.5 form the transformation matrix shown in Equation 2.6.

FPGA Processor Implementation for the Forward Kinematics of the UMDH 11

Rotation about z-axis = -

cos(^) -sin(^) 0

sin(^) cos(^) 0

0 0 1 Equation 2.4

Scaling along z-axis = L !-

0

0

.4 Equation 2.5

cos(%) -sin(^) 0 0'

sin(4) cos(^) 0 0

0 0 1 *t

0 0 0 1
Equation 2.6 Transform (Q to i)

The complete transformation is the matrix multiplication of Equations 2.3 and 2.6. This is

the transformation from the i-1 to the i link and is shown in Equation 2.7.

cos(^) -sin(^) 0 at_x

sin(^)cos(ö;_1) COS(^)OOS(ö;_1) -sinC^) -sinC^.Jcf.

sin(^)sin(ö;_1) cosC^sinCö^) cosC^) cosC^y,.

f r i * •* 0 0 0 1 Transform (l-l to l) = L

Equation 2.7

To find the nth frame, simply multiply the transforms of each intermediate frame together

as in Equation 2.8a. Equation 2.8b shows the final transformation matrix from 0 to n. The result

is a 4 by 4 matrix that represents the orientation of frame n with respect to frame 0 and the

FPGA Processor Implementation for the Forward Kinematics of the UMDH 12

location of the last link with respect to frame 0. The first column represents the normal vector N,

the second column represents the sliding vector S, the third column represents the approach

vector A, and the fourth column represents the position vector P. Due to the nature of the zeros

and ones in Equations 2.3 and 2.6, the fourth row will always be [0 0 0 1] (Craig:84-85;

Rattan:53, 55).

07=(°1rX^X27)-C1n Equation 2.8a

°T =

K Sx Ax Px

Ny Sy Ay Py

N. S_ A. P

0 0 0 1
Equation 2.8b

If there is an extension from the last joint, such as a tool or a finger tip of length L in the

case of the UMDH, the orientation is the same as the joint itself, but the position is shifted by the

amount L along the normal vector n of the joint. Equations 2.9,2.10, and 2.11 show the

modification to the position vector from the last joint to get the new position vector of the end of

the extension (Solanki and Rattan:72).

P* =P,+NJ< Equation 2.9

P =P +N L
y y y Equation 2.10

FPGA Processor Implementation for the Forward Kinematics of the UMDH 13

P =P+NL Equation 2.11

2.4 UMDH Forward Kinematic Computations

The UMDH shown in figure 2.5 is composed of three fingers and a thumb. The three

fingers are kinematically identical with the exception of their oflsets at the knuckle locations. The

thumb is slightly different from the fingers and it is located between the first and second fingers on

the palm of the hand.

Figure 2.5. Utah MIT Dextrous Hand

Figures 2.6 and 2.7 show the top and side view of the UMDH respectively (Solanki and

Rattan:67-68). Notice how the Oth frame is located back towards the wrist. It is defined at this

location because it is the intersection of the joint axis for both the thumb and the middle finger.

This could have been chosen at a different location but would result in more complicated

transformation matricies (Solanki and Rattan:66).

FPGA Processor Implementation for the Forward Kinematics of the UMDH 14

X1,X2,X3,X4 <out>

Z2,Z3Z4

YOOn)

-|-^o

xo

3.125

YJ
|_Y2Jout> Y3 (out) Y4 (out>

Zl X3

!Z3 |Z4
Y3 <out> Y4 <out>

Y3

X3

Z3
B-

tout) Y4 Wtt
Z4

X3

—\ 1.2000 |-^-

|Z3 f Z4

Figure 2.6. Top View of UMDH (thumb extends out of page)

Figure 2.7. Side View of UMDH

FPGA Processor Implementation for the Forward Kinematics of the UMDH 15

Because the three fingers and the thumb are almost kinematically identical, only one will

be further explored. The thumb mechanism alone represents a serial chain manipulator with four

degrees of freedom resulting from the four revolute joints. The DH table for the thumb of the

UMDH in this configuration is shown in Table 2.1 (Solanki and Rattan:69). Using these values

and Equation 2.7, each link relationship can be calculated. Replacing the i and i-1 variables with

the fixed quantities from the DH table results in much simplified versions of the transformation

matrices. Equations 2.12 through 2.15 shows each intermediate matrix (Solanki and Rattan:70).

Table 2.1. DH table for Thumb of UMDH

1 link twist link length link offset joint angle

1 a0 = 0° a0 = -0.75" 4=3.125" 4
2 q=90° at = 0375" d2 = 0" 4
3 ^=0° a2 = 1.700" d3 = 0"

«

4 ^=0° a3 = 1.300" d4 = 0"
#*

l1

cos(^) -sin(^)

sin(^) cos(^)

0 0

0 0

0 a0~

0 0

1 dx

0 1
Equation 2.12

FPGA Processor Implementation for the Forward Kinematics of the UMDH 16

\T =

lT =

cos(^2) -sin(y2) 0 al

0 0 -1 0

sin(^2) oos(^) 0 0

0 0 0 1

oos(^) -sin(^) 0 a2~

sin(^) cos(^) 0 0

0 0 1 0

0 0 0 1

Equation 2.13

Equation 2.14

lT =

cos(^4) -sin(^4) 0 a3

sin(^4) oos(^4) 0 0

0 0 10

0 0 0 1 Equation 2.15

These four transformation matrices are concatenated into one using Equation 2.8. The

result, after consecutive matrix multiplications, is shown in Equation 2.16 (Solanki and

oT =

Rattan:71).

cos(^)cos(^2 +4 +^4)
sin(^) cos(^2 + ^3 + #t)

sin(^2+^3+^4)
0

-cos(^)sin(^2 +^3 +^4) sin(^) a0 + oos(tf1Xal +«2 cos0?2) + a, oos(^2 + ^3))

- sin(^) sin(^2 + ^3 + 0A) - cos(^) sin(^ X^i + «2 °°<<?i) + ai oos(^2 + ^3))
cos(^2 + #3 + <?4) 0 a2 sin(^2) + a3 sin(^2 + ^3) + dx

0 0 1

Equation 2.16

FPGA Processor Implementation for the Forward Kinematics of the UMDH 17

The elements within the matrix of Equation 2.16 are one to one equivalent to Equation

2.8b. The resulting twelve equations out of sixteen (four equations are a constant 0 or 1) can

now be used as the basis for the remaining chapters.

2.5 Conclusions

This chapter investigated a mathematical method for the calculation of the forward

kinematic equations of the thumb mechanism of the Utah MIT Dexterous Hand. The resulting

Equation 2.16 = 2.8b represents the locations and orientation of the last joint of the UMDH. It

does not directly give the location of the tip of the thumb. It will require the application of

Equations 2.9 through 2.11 to derive such information from 2.16. The L term can be fixed as the

length of the last link, or 1.3 inches if the desired answer is for the tip of the thumb. Other L

values can be used to represent tools attached to the tip. Such tools might be force or

temperature sensors. The remaining chapters will deal with the Equation 2.16 since this

represents the base configurations of all UMDHs.

FPGA Processor Implementation for the Forward Kinematics of the UMDH 18_

3. Algorithm Analysis and Profiling

3.1 Introduction

Before a physical computational architecture can be defined for implementation, the

twelve equations derived in Chapter 2 need to be evaluated in the context of the desired

performance of the UMDH. Only those hardware components that are absolutely necessary will

be implemented. It is proposed that the desired forward kinematic processor deals only with

mathematical operations and does not work with concepts such as character strings, addressing

modes, or conditional branches typically found in a general purpose microprocessor. Therefore,

this chapter deals with the trade-offs involved in finding an optimum hardware representation for

both high performance and low hardware overhead.

3.2 Numeric Magnitude

The first metric that is evaluated is the notion of numeric magnitude. We need to know

the highest valued (positive or negative) number that is ever used within any stage in the

calculation of the equation This defines the amount of hardware needed to hold such a number.

To determine such a number, the algorithm was written in the C language as a procedure

call and is listed in Appendix A. The procedure is called by the main routine for many different

UMDH configurations. Each of the four joints of the UMDH are controlled by nested FOR loops

which cause the angles to sweep through each joint's given range shown in Table 3.1 (Solanki and

Rattan:69). The results of the equations for each particular configuration were written to a data

FPGA Processor Implementation for the Forward Kinematics of the UMDH 19

file. The data file was then imported into the Matlab environment and searched for the maximum

and minimum values as listed in Appendix A. The values of the angles, including intermediate

steps where up to three angles are added together, show that they never exceed the range +360 to

-360 degrees. Intermediate additions, subtractions, and multiplications never exceed -2.3864 to

+3.3750. The final results of the NSAP matrix never exceed -2.3864 to +5.6271.

Table 3.1. Kinematic Range of UMDH

Joint Angle Range of motion in degrees

4 -45 to 135

4 -15 to 60

4 6.5 to 90

^

0to90

The implementation of the integer portions of such numbers can be accomplished directly

with just four bits of hardware (three bits represent the integers 0 to 7 and one bit for the sign).

However, since the values obtained are just a sample of the results from entire range of the

UMDH, and not an exhaustive test. This represents the minimum hardware size required. Also,

the future expansion to another type of manipulator may require more than just four bits.

Therefore, at least four bits will be held for now for hardware implementation..

FPGA Processor Implementation for the Forward Kinematics of the UMDH 20^

3.3 Numeric Precision

The second metric used is the numeric precision required by the system The UMDH was

designed with metal joints that are controlled remotely via a set of tendons running around plastic

pulleys. The coulomb friction of the joints and pulleys causes a motion deadband every time a

joint stops. The electronic control system of the UMDH attempts to track the desired position of

each joint, but it is limited by these mechanical properties. Consequently, simply turning up the

gains of the UMDH controller would not suffice because that causes the joints to become unstable

and to begin oscillating.

Therefore, in an attempt to avoid decreasing performance beyond that of the current

system and to avoid possible truncation problems at intermediate stages in the equations, the

number of decimal bits required is set to eight. This allows for a resolution of 0.003906250 per

least significant bit since the last bit is the placeholder for 2"8. If the value is representative of an

angle, then it is clear that 0.003906250 degrees is much higher a precision than the UMDH could

ever track. If the value represents a Cartesian coordinate of the end of the finger, then the same

applies to 0.003906250 inches. Although the UMDH was modeled as an ideal body of rigid links,

all devices will inherently flex to some extent.

3.4 Mathematical Operator Usage

The 12 equations are examined for occurrences of additions/subtractions, multiplications,

or cosines/sines. A brute force approach by simply counting the number of operations found in

Equation 2.16 results in 22 additions, three subtractions, 12 multiplications, 11 cosines, and nine

sines. However, many of the terms in the 12 equations appear in more than one location.

FPGA Processor Implementation for the Forward Kinematics of the UMDH 21

Therefore, the number of operations can be reduced by sharing these terms. Both the cosine and

sine of three angles are used three separate times. Similarly, the entire last half of Px and Py are

identical. If the order of calculation for the 12 equations takes advantage of the common terms

then the number of operations can be reduced to seven additions, three subtractions, 10

multiplications, four cosines, and four sines. This is a 68.2% decrease in additions, 16.6%

decrease in multiplication, 63.6% decrease in cosines, and 55.5% decrease in sines. The

subtractions remain unchanged because of the negative signs on Py, Sx and Sy.

3.5 Conclusions

This chapter evaluated the equations from Chapter 2 to determine the best representation

of the numbers. We determined that the absolute largest number only required four bits but that

more bits for higher numbers may be required in future implementations. To keep the precision of

each number, eight bits are required for a minimum of 1/256th difference between each number.

Therefore, the implementation of the numbers in hardware are done with a total of eight

bits for the integer portion and eight bits for the decimal portion. Together, the 16 bits form the

basis for a fixed point number with the binary point in the center between the set of eight bits.

This results in a maximum number of+127.99609375 and a minimum number of-128.00000000.

Finally, we determined that the 12 equations can be calculated in just 28 operations if

common terms are reused. This is a decrease of 50.9% from the original 57 operations.

FPGA Processor Implementation for the Forward Kinematics of the UMDH 22_

4. VHDL Model

4.1 Introduction

This chapter discusses the first step in the implementation of the forward kinematic

processor. The step is the development of behavioral VHDL models for each of the required

mathematical operations found in Equation 2.16 as well as temporary register-based memory and

other structures used to route the data within the processor. Finally, a structural VHDL model

for the entire processor is developed. Each model is developed and simulated using the Synopsys

Analyzer and Simulator (Synopsys) before synthesis in Chapter 5.

4.2 Functional Units

In all models, the 16-bit fixed-point representation of all numeric data will be implemented

as a bit vector of size 15 down to 0. The binary point is implied to be at the center, between bits

8 and 9.

4.2.1 Cosine/Sine Unit.

The first functional unit developed was the cosine and sine unit. Both transcendental

functions are designed into one model as shown in Figure 4.1. The unit calculated the cosine or

sine by means of an external lookup table. An address is generated and sent to a ROM chip that

returns the result back to the cosine/sine unit. Since the specifications of the external ROM chip

were not known at the start of the design, the model incorporated the ability to set the delay

before the unit latches the results from the ROM. These wait states allow the possibility of the

use of slower ROM devices.

FPGA Processor Implementation for the Forward Kinematics of the UMDH 23

sei

data in

16

V

go reset elk wait ready

4

i__t
13-bit

Address

Latch

4A
Wait

16-bH

Data

Lateh

.data out

16

13

Sz.

16

External EPROM 8K X 16 Lookup Table

Figure 4.1. Cosine/Sine Unit Block Diagram

For example, if the system clock of the forward kinematic processor has a clock period of

40 ns (25 MHz) and the ROM device has an access time of only 150 ns, then the number of wait

states would be set to three. Three wait states causes three extra 40 ns clock cycles in addition to

the current cycle, for a total of 4 cycles or 160 ns. This prevents the cosine/sine unit from reading

in incorrect data early.

The state machine is shown in Figure 4.2. A reset signal during any state will force the

system to state 0. In state 0, the ready output signal is not asserted, the number of wait states are

calculated, the temporary counter is set to zero and look-up table address is formed and sent to

the external ROM. To form the address, the unit takes as input a 16-bit vector and strips off the

FPGA Processor Implementation for the Forward Kinematics of the UMDH 24

lower 11 bits, representative of three bits of integer and eight bits of decimal. Also, the highest

bit, representing the sign, is also pulled out. Finally, an input signal called sei, that determines

cosine or sine, is also taken and these 13 bits form the address into the ROM lookup table

containing the results of both cosine and sine.

reset

clock tief

counter = wait states

Figure 4.2. Cosine/Sine Unit State Machine

The unit will stay in state 0 until the go input signal is asserted. Once in state 1, it will stay

there, incrementing the counter until it matches the precalculated number of wait states. It will

then move to state 2 where the results from the ROM look-up table are latched into the output

bus. The unit then transitions to state 3 at the next rising edge of the clock and the ready output

signal is asserted. The next transition on the rising edge of the clock is back to state 0, where it

waits for the next cycle.

FPGA Processor Implementation for the Forward Kinematics of the UMDH 25

The behavioral VHDL model for the cosine/sine model is listed in Appendix B. 1.1. The

VHDL testbench code and results for it are listed in Appendix B. 1.2. The testbench sends the

unit through the eight possible wait states with a simulated external ROM- These results are

shown in Appendix B. 1.3.

4.2.2 Adder/Subtractor Unit.

The adder and subtractor are contained within one functional unit. The subtractor is

implemented using the adder model and inverting the secondary input before applying it to the

adder. In both cases, two 16-bit numbers are input into the unit and one 16-bit number is output

as shown in Figure 4.3. There are no provisions for overflow or underflow conditions because of

the nature of the operands. At no time should there occur an overflow or underflow condition.

reset sei go

A Bus Input

16

B Bus Input

16

V

w y v

elk done

V
Xor Circuit

for Inverting

B Bus for

Subtraction

16

Ripple

Cany
C Bus Output

Figure 4.3. Adder/Subtractor Unit Block Diagram

FPGA Processor Implementation for the Forward Kinematics of the UMDH 26

The unit starts at idle in state 0 shown in Figure 4.4. When the go input signal is asserted,

the unit starts by calculating the sum and carry terms of Equation 4.1 and 4.2 for the least

significant bits, where A and B are inputs bits and C is the carry in from the previous bit.

(Weste and Eshraghian:517). Each clock tick causes the unit to progress to the next state and

calculate the next bit. After sixteen clock ticks, all sums have been calculated and the result is

sent to the output bus. A done output signal is asserted indicating completion and the state

machine returns to state 0 in preparation for another addition or subtraction.

Figure 4.4. Adder/Subtractor Unit State Machine

Carry = AB+ C(A+B)

Sum = ABC + (A+B+C)Carry

Equation 4.1

Equation 4.2

FPGA Processor Implementation for the Forward Kinematics of the UMDH 27

Typically, an adder/subtractor would not be implemented as a state machine requiring at

least 16 clock ticks. However, since the target platform is an FPGA, and the timing of the

synthesized design will not be known until Chapter 5, it is impossible to determine how long it

will take to allow all the sum and carry terms to ripple their results to the final result. Therefore,

the unit indicates to the surrounding system when it has completed the final state by asserting the

done signal. If at any time the reset signal is asserted, the unit is forced back to state 0.

The behavioral VHDL model for the adder/subtractor model is listed in Appendix B.2.1.

The VHDL testbench code for it is listed in Appendix B.2.2. The testbench sends the unit

through 30 different additions and 30 different subtractions. These results are shown in Appendix

B.2.3.

4.2.3 Multiplier Unit.

The multiplier unit has the same data interface as the adder/subtractor unit. Figure 4.5

shows the two 16-bit inputs and one 16-bit result. Once again there are no provisions for

overflow or underflow. Typically two 16-bit numbers multiplied together would result in a 32-bit

result, but in this specific implementation, the numbers should never exceed 16-bits, a constraint

of the 16-bit architecture.

The multiplier actually uses a modified copy of the adder/subtractor inside its design. The

adder/subtractor is extended to 32-bits to handle the accumulation of the partial products. The

multiplier follows the same basic data flow as the adder/subtractor except that it requires many

more states to calculate the result. Figure 4.6 shows the state machine for the multiplier unit.

FPGA Processor Implementation for the Forward Kinematics of the UMDH 28

A Bus Input

B Bus Input

C Bus Output

Figure 4.5. Multiplier Unit Block Diagram

Figure 4.6. Multiplier Unit State Machine

FPGA Processor Implementation for the Forward Kinematics of the UMDH 29_

It stays idle in state 0 until the go input signal is asserted. Each of 16 partial products are

calculated and then repetitively added up to form the final result. Similar to the adder/subtractor

unit, when the final state is reached, an output signal ready is asserted to indicate to the

surrounding system that multiplication is complete. If at any time the reset signal is asserted, the

unit is forced back to state 0.

The behavioral VHDL model for the multiplier model is listed in Appendix B.3.1. The

VHDL testbench code for it is listed in Appendix B.3.2. The testbench sends the unit through the

same 30 inputs as the adder/subtractor but multiplies rather than adds or subtracts. These results

are shown in Appendix B.3.3.

4.2.4 Register File Unit.

The register file unit is used to store the starting angles of the UMDH, certain constants

from the DH table, temporary and intermediate calculations, and the 12 equation results. It is

designed to hold the 16-bit numbers in any of 32 different locations, except for the first two

locations. The first location is hard wired to always hold a zero value and the second location

holds a hard wired one value. This was designed early on because of the expected need to

increment by one or to allow for moves from one location to another through the adder/subtractor

unit with one of the inputs being zero.

It is designed with one 16-bit input bus called the C bus and two 16-bit output buses

called the A and B bus as shown in Figure 4.7. The data of the C bus is written to any of the

remaining 30 locations by use of the C bus address and a latch signal. Data can be read from any

FPGA Processor Implementation for the Forward Kinematics of the UMDH

of the 32 locations to both A and B bus by using the A and B address. If the reset signal is

asserted, the 30 locations are forced to zero.

C address C latch reset cue A address B address

C Bus Input

16

i t

16 bit wide

32 word long

Register file

T^ST^S-, A Bus Output

B Bus Output

30

Figure 4.7. Register File Unit Block Diagram

The behavioral VHDL model for the register file model is listed in Appendix B.4.1. The

VHDL testbench code for it is listed in Appendix B.4.2. The testbench has three parts. In the

first part, a reset is asserted and the zero register and one register are verified as well as that the

remaining 30 were forced to zero. In the second part, all 32 registers are given test values. In the

third part, all 32 registers are evaluated again showing that all but the two hard wired registers

accepted the values. These results are shown in Appendix B.4.3.

FPGA Processor Implementation for the Forward Kinematics of the UMDH 31

4.2.5 Latches and Multiplexors.

The latches and multiplexors are required in the design as glue logic between the other

functional units. To start, there is a 16-bit latch as shown in Figure 4.8. When its latch signal is

asserted, the input bus is transferred to the output and held at that value until the next time this

latch is asserted. This design requires two latches as described in the next section. The

behavioral model for the latch is found in Appendix B.5.1 and its testbench is located in B.5.2.

The results of the testbench are found in Appendix B.5.3.

latch

Input Bus
Latched Output Bus

Figure 4.8. Latch Unit Block Diagram

Also required is a multiplexor as shown in Figure 4.9. It directs one of four inputs to a

single output. The multiplexor is 16 bits wide for all inputs and outputs and is controlled by two

input signals determining the one of four paths.

FPGA Processor Implementation for the Forward Kinematics of the UMDH 32

sei

Input A

16

Input B

16

InputC

16

Input D

16

sz
16

Output Bus

16

Figure 4.9. Multiplexor Unit Block Diagram

The behavioral VHDL model for the multiplexor is found in Appendix B.6.1 and its

testbench is located in B.6.2. The results of the testbench are found in Appendix B.6.3.

4.2.6 FKPCore.

The functional units designed so far are brought together to form the core of the Forward

Kinematic Processor (FKP). This core encapsulates the functional units such that they appear like

a single large functional unit. Two latches and one multiplexor are used to glue the other

functional units together so that data can travel from unit to unit in a productive manner. Figure

4.10 shows the connections of the units inside the core. There is one 16-bit data input bus which

is routed to the input data latch. From there, the data is passed though the multiplexor and back

around to the register file for storage. Once data is loaded into the registers, they can be sent to

the cosine, sine, addition, subtraction, or multiplication units and rolled back around to the

FPGA Processor Implementation for the Forward Kinematics of the UMDH 33

register file via the multiplexor again. When the desired computations are complete, the data in a

register is sent to the output latch and then to the output bus. To control the dataflow, all of the

control signals from each of the functional units are passed as control signals for the core unit.

This model does not handle the actual control of the core, but rather gives one concise shell for

everything inside it.

<:

i

i

>

Latch

*

ft

V

flft ^x

*=:

ift
H
=£

5

Cosine/Sine

h± Adder/
Subtracter

Jill.
Multiplier

^

ft

>

Multiplexor

Figure 4.10. FKP Core Block Diagram

 FPGA Processor Implementation for the Forward Kinematics of the UMDH 34_

The structural VHDL model of the FKP core is shown in Appendix B.7.1 with the

testbench in B.7.2. The testbench performs the actions described above on some data. It was

designed to prove functionality of the core since each subunit has already been verified. The

results are shown in Appendix B.7.3.

4.2.7 Microcode Store.

This section defines the instruction set of the processor. Because this is an application

specific design, the instruction set contains only commands for moving data in and out, and

performing one of the arithmetic or transcendental operations. Table 4.1 shows all possible

instructions utilized within the processor. The microcode for each instruction is derived from the

testbench of the FKP core. Since the FKP core does not supply autonomous control over the

functional units, each simulated instruction was hard coded in sequence. The microcode store has

taken each simulated instruction and formed each into a procedure (opcode) call with its

parameters (operands) being the passed into the procedure. AU procedures are contained in a

package model that can be called by the control unit of the next section.

The behavioral VHDL package model of the instructions are shown in Appendix B.8.1

with the testbench in Appendix B.8.2 performing the same operations as the FKP core testbench.

The results in Appendix B.8.3 show that the replacement of the autonomous microcode performs

identically to the hard coded testbench of the FKP core.

FPGA Processor Implementation for the Forward Kinematics of the UMDH

Table 4.1. FKP Instruction Set

Instruction

movein (R, data)

moveout (data, R)

add(Rl,R2,R3)

sub (Rl, R2, R3)

mult (Rl, R2, R3)

cos (Rl, R2)

sin(Rl,R2)

Description

Latch input bus, pass data through multiplexor to register R

Move data out of register R, through output latch to output bus

Send data from two registers (R2 and R3) to two inputs of
adder/subtractor unit, add, send result back to register Rl
Send data from two registers (R2 and R3) to two inputs of
adder/subtractor unit, subtract, send result back to register Rl

35

Send data from two registers (R2 and R3) to two inputs of multiplier unit,
multiply, send result back to register Rl
Send data from register R2 to input of cosine/sine unit, perform cosine,
send result back to register Rl
Send data from register R2 to input of cosine/sine unit, perform sine, send
result back to register Rl

4.2.8 Control Unit.

The control unit can now utilize the microcode store package to make the FKP core

perform the various instructions without the burden of worrying about dataflow on every single

clock tick. The control unit allows interface with the outside world via an six bit control port and

a seven bit command port as shown in Table 4.2 and 4.3 respectively. The control unit is a shell

for the microcode store and the FKP core as shown in Figure 4.11.

Table 4.2. Control Port

Bit# 5 4 3 2 1 0

Name Clock Reset Strobe Ready DataGetValid DataGetAck

IN/OUT IN IN IN OUT OUT IN

FPGA Processor Implementation for the Forward Kinematics of the UMDH 36

Table 4.3. Command Port

Description
bit#

CMD1
6

CMDO
5

A4
4

A3
3

A2
2

Al
1

AO
0

Set Register 0 0 A4 A3 A2 Al AO

Get Register 0 1 A4 A3 A2 Al AO

Run 1 0 X X X X X

1 External EPROM Lookup Table

Z /\ ̂

\
\/

7

Data IN K FKP

CORE

h
16 \ 16

V V

/. /\ j^. Z
/\ \

8

\
&

7

Data OUT

Command Port Control Port

Figure 4.11. FKP System Block Diagram

FPGA Processor Implementation for the Forward Kinematics of the UMDH 37_

The clock input is the overall system clock for the processor. The reset is the overall

system reset for the processor. The remaining bits of the control port are utilized in conjunction

with the command port. After system reset, the ready output signal is asserted, indicating that the

processor is available to perform one of the three functions: set register, get register, or run. The

user sets the CMDO and CMD1 bits to correspond to the desired function and asserts the strobe

input signal. The processor will deassert the ready signal, evaluate the command port and take

the appropriate action. When the function is complete, the ready signal is reasserted.

If the function is a set register, then the 16-bit input data bus is latched in and routed to

the register designated by bits A4-A0 of the command port. If the function is a get function, then

the register designated by bits A4-A0 are sent through the output latch and to the 16-bit data

output bus. Finally, if the function is run, then the A4-A0 bits are ignored and the predetermined

sequence of instructions is executed.

The sequence is arranged to take advantage of any common terms found in the 12

equations of Chapter 2. Chapter 3 evaluated the equations and determined that there would be

seven additions, three subtractions, 10 multiplication's, four cosines, and four sines. This would

require a total of 28 instructions. However, this did not count for the data moves into and out of

the processor using the set and get functions. Table 4.4a shows the operations involved with

moving in the angles and possibly some constants into the registers. The register locations that

hold this constant data is fixed due to the fact that the run function will expect the correct data in

these locations. The first time theses data values are loaded, both constants (a's) and angles (b's)

FPGA Processor Implementation for the Forward Kinematics of the UMDH 38

are required. But from then on, only the new set of angles are needed because the constants do

not change and are not written over unless due to power loss or system reset.

Table 4.4a. Operations Involved with the Set Function

Step# Register # Instruction and Description

la 2 movejn (2, aO) = move link length 0 into register 2

2a 3 movejn (3, al) = move link length 1 into register 3

3a 4 move in (4, al) = move link length 2 into register 4

4a 5 movein (5, a3) = move link length 3 into register 5

5a 6 movejn (6, dl) = move link offset 1 into register 6

lb 7 movein (7, 61) = move theta 1 into register 7

2b 8 move in (8, 62) = move theta 2 into register 8

3b 9 movejn (9, 63) = move theta 3 into register 9

4b 10 move in (10, 64) = move theta 4 into register 10

With the constants and angles loaded, the run function can be initiated. Table 4.4b shows

the internal steps involved with calculating the results of the twelve equations. There is one extra

add of step 18 due to the internal move of the zero in the zero register to register 28.

Figure 4.4b. Internal Operations During Run Function

Step# Register # Instruction and Description

2 11 cos(ll, 7) = cos(91)

3 12 sin(12, 7) = sin(e2)

FPGA Processor Implementation for the Forward Kinematics of the UMDH 39

4 13 cos(13, 8) = cos(02)

5

8

14 add(14,8, 9) = 02+03

add(14, 14, 10) = 02+03+04

6 15 sin(15, 14) = sin(02+03)

7 16 cos(16, 14) = cos(02+03)

19

21

22

17 mult(17, 4, 13) = & cos{Q2)

add(17, 17, 18) = a2 cos(02) + a3 cos(02+03)

add(17, 17, 3) = al + a2 cos(02) + a3 cos(02+03)

20

23

18 mult(18, 5, 16) = a3 cos(02+03)

mult(18, 17, 11) = cos(01)(al + a2 cos(02) + a3 cos(02+03))

26 19 mult(19, 4, 12) = a2 sin(02)

11 20 mult(20, 11, 25) - cos(01)cos(02+03+04)

12 21 mult(21, 26, 25) = sin(01)cos(02+03+04)

9 22 sin(22, 14) = sin(02+03+04)

13

14

23 mult(23, 11, 22) = cos(01)sin(02+03+04)

sub(23, 0, 23) = -(cos(01)sin(02+03+04))

15

16

24 mult(24, 26, 22) = sin(01)sin(02+03+04)

sub(24, 0, 24) = -(sin(01)sin(02+03+04))

10 25 co5f25, 14) = cos(02+03+04)

1 26 sin(26, 7) = sin(01)

FPGA Processor Implementation for the Forward Kinematics of the UMDH 40

17

18

24

25

27

28

29

27

28

29

30

31

sub(27, 0, 11) = -cos(ei)

add(28, 0,0) = 0

add(29, 18, 2) = aO + cos(01)(al + a2 cos(92) + a3 cos(92+e3))

multßO, 17, 26) = sin(01)(al + a2 cos(02) + a3 cos(92+e3))

mult(31, 5, 15) = a3 sin(02+93)

addßl, 31, 19) = a2 sin(02) + a3 sin(02+03)

add(31, 31, 6) = a2 sin(02) + a3 sin(02+03) + dl

The get functions can now be used to retrieve the last 12 registers for the results of the 12

equations. Each value is moved out one at a time and in any order the user desires.

The structural VHDL model of the Forward Kinematic Processor is shown in Appendix

B.9.1.

4.3 Conclusions

This chapter developed the models of each of the required functional units. Each model

was tested as a stand-alone design before integration into the Forward Kinematic Processor.

Once the initial five constants are loaded in, the processor takes four instructions to load the

angles, 29 instructions to calculate the results, and 12 instructions to get them out, for a total of

45 instructions. The processor was then tested from the top most level of the design model. With

the simulation of the processor complete, the next step in the implementation is synthesis to an

FPGA. This is described in Chapter 5.

FPGA Processor Implementation for the Forward Kinematics of the UMDH 41_

5. VHDL To FPGA Synthesis

5.1 Introduction

The goal of this chapter is to move the FKP design modeled in the hardware description

language straight to an FPGA implementation. The models were behavioral descriptions of the

functional units with a top level structural description of the entire processor. At this level of

abstraction, there is no implied physical architecture. We have not even worked with a gate level

representation of the design. The synthesis into an FPGA induces an explicit physical architecture

based on the target device; in this case the Xilinx 4020E.

5.2 VHDL Source Restrictions

VHDL was originally designed as a simulation and modeling language. The concept of

synthesis directly from the model was not included in the design of the language. Therefore, some

of the constructs found in VHDL are not synthesizable. The most obvious limitation is the use of

specific time delays. For example, the statement "wait for 10ns" or "A <= B after 5ns" has no

meaning to a synthesis tool because there is no on-chip clock to direct when the action is to take

place. Also, constructs such as access types, records, recursive subprograms, and

multidimensional arrays are non-synthesizable (Raines; Ailes:21).

Most of these restrictions were known when beginning the development of the models

from Chapter 4, but some unexpected and potentially detrimental constraints appeared as the

design moved on. First was the use of more than one signal inside of process sensitivity list.

Typically, many signals can be listed in the sensitivity list of the process, indicating execution of

 FPGA Processor Implementation for the Forward Kinematics of the UMDH 42_

the process if any of the listed signals changes state. The synthesis tools could only handle one

signal in the list. A process that is dependent on both the clock and the reset signal would cause

errors during synthesis. To work around this problem, most all sensitivity lists became empty

forcing continuous execution, with the clock events being listed as a separate wait statement

within the process body. The second problem pertains to the need to assert a signal for one clock

period and then deassert it on the next clock period. Such an event infers a clock wait between

the two transitions, but only one wait statement is allowed on each pass through the process body.

The result is a streamlined hardware description such as "A<=B; wait until clock tick;

A<=not(B); wait until clock tick" being unrolled to an explicit state machine where the execution

through the process body takes a different path for each state. Each state then contains a unique

command for "A<=B" or "A<=not(B)" and there is only one wait statement for all paths.

5.3 Design Flow

There are four major tools used to perform the synthesis step. The Synopsys VHDL

analyzer is used to compile the VHDL code. This includes compilation of the testbenches for

each functional unit. The functional units are then simulated with the Synopsys VHDL simulator.

These two tools together, both executing on a UNIX platform, form the primary development

tools of the models (Synopsys). Because both the Analyzer and Simulator do not aim towards

synthesis, the restrictions from section 5.2 are ignored and pushed aside for later tools. The other

three major tools are Synopsys Design Analyzer and Exemplar Leonardo for synthesis, and Xilinx

XACTstep for mapping.

FPGA Processor Implementation for the Forward Kinematics of the UMDH 43

5.3.1 Svnopsys Design Analyzer

The Synopsys Design Analyzer started out as the primary UNIX synthesis tool. Within

the Design Analyzer is a feature called the FPGA Compiler. It accepts VHDL as input and

attempts to produce a hybrid Synopsys/Xilinx netlist. The drawback to using this tool is its

turnaround time. Typically, a small model such as the cosine/sine unit will take upwards of two

hours to generate the netlist (Synopsys).

5.3.2 Exemplar Leonardo

The PC/Windows 95 based Exemplar Leonardo application turned out to be quicker than

Synopsys and much easier to learn and use. The following sequence describes the path used to

generate a correctly targeted netlist (Exemplar). First, the program is loaded and the startup

screen is shown in Figure 5.1.

0le 10 Optimize Report Hierarchy Tools Options

Flow Guide.«
xmpl r

Toolbar... Schematic Viewer- Design Browser, d
Leonardo - V4 .0.3
Copyright 1990-1996 Exemplar Logic, Inc. All rights reserved.

*** Welcome to Interactive Leonardo Version V4.0.3 ***

tfews :
* Enter "help" to get an overview of all commands
* Enter <command> -help to get usage of each command

Session history will be logged to file 'exemplar.his'
LE0HARD0{1}:

Quit...

Figure 5.1. Exemplar Logic Leonardo Startup Screen

FPGA Processor Implementation for the Forward Kinematics of the UMDH 44_

The first action taken is to click on the Flow Guide button. The Flow Guide shown in

Figure 5.2 appears. Because we wish to customize certain aspects of the design, the Customize

Flow Guide button is clicked. Another window appears that allows us to inform the tool that the

design consists of multiple VHDL files because many of the functional units depend on a package

or header file. We also select the option of packing the configurable logic blocks (CLB) of a

Xilinx FPGA, decomposition of Look Up Tables (LUT), and reporting of area used as shown in

Figure 5.3. The result is a variation of Figure 5.2 with the extra steps added into the design Flow

Guide of Figure 5.4.

•■ t ■

■'. i-oäd'/
Library

Read
';.;';■-3-V

'":■ Pre-
Optirnize

Optimize
5

Report
Area

Report
Delay

7
Write

Leonardo Flow Guide

welcome to Leonardo Flow Guide. Your commands and their output will be shown on the main command
window. You may exit Flow Guide at any time by pressing 'Exit Flow Guide'.

Click on the first button to start.

Customize Flow Guide Exit Flow Guide

Figure 5.2. Leonardo Flow Guide

The first button, Load Library, is selected and we choose the 4000E family as shown in

Figure 5.5. The second button is used repetitively to read in and analyze the VHDL files. A

window appears that allows the filename to be input as shown in Figure 5.6. As each file is being

read in, any warning messages are displayed regarding synthesis problems.

FPGA Processor Implementation for the Forward Kinematics of the UMDH 45_

■HHHHHHnnnHnnin^
y

i

!
j Input Flow:

Check all boxes that apply to your design:

W Multiple VHDL or VerHog Input Files

J AlteraEDIF input file

i
!

J Design with instantiated modgen cell

| Optimize Flow: W Technology specific module generation

I W Extract counters, decoders and ranis
i

J Specify constraints for optimization/timing optimization

I J Timing Optimization

I Reporting How:

|i Pack CLBs (Xilinx)

W Report Area

j
1

Output Flow:

_| Report Delay

W Decompose LUTs (FLEX, ORCA, Xilinx 3k/4kffik)

i J Load balancing for Adel, QuickLogic and ASICs

I J Generate timespec for Xilinx

J AlteraEDIF output file

i

1 Run Flow Guide | Cancel |

Figure 5.3. Customize Flow Guide

Once all the VHDL files are loaded in, the design is elaborated based on the top level

entity description. Figure 5.7 shows the Elaborate window. Clicking the elaborate button

automatically determines what the top level is and considers its port declaration as the I/O of the

design. Next, the Pre-Optimize step is accomplished, shown in Figure 5.8, followed by the

selection of the Modgen Library in Figure 5.9, and the resolution of the Modgens shown in Figure

5.10.

FPGA Processor Implementation for the Forward Kinematics of the UMDH 46

r ■.$■■■■■■
Analyze ■♦ Elaborate

;,::■":■■ 4-■■■■'
•+ Pre-

Optimize

5
'■■'vLoadv;'
Modgen

^ Resolve
Modgen

■■'.■ 7 •
Optimize

8
Pack
CUBS

-► Report
Area

10
Decomp

ÜJTS
Write

Leonardo How Guide

Welcome to Leonardo Flow Guide. Your commands and their output win be shown on the main command
window. You may exit Flow Guide at anytime by pressing "Exit How Guide'.

Click on the first button to start.

Customize Flow Guide Exit Flow Guide

Figure 5.4. Customized Flow Guide

^^^^MMMMMMMiHHMHMHMryi

I
technology: |xilinx4000e

rech Type: FPGA Enhanced —'J

i
j

1

XJIinx3100
Xifinx 3100a

xmnx 4000

xmnx 4000a
Xifinx 4000e |

J
XRnx4000ex

Xffinx4000h

Xmnx 5200

Xmnx 7200a

X»nx7300

]
Load Advanced... Cancel

i

Filename: |c~/exemplairtwork/reg16fregjTe jjkgj&vhd Ofj

Woik Library: {work

Format: ♦ Auto VHDL v VerHog

Analyze Advanced- Cancel

Figure 5.5. Load Library Figure 5.6. Analyze

FPGA Processor Implementation for the Forward Kinematics of the UMDH 47

i Root Entity: |

Architecture: |

| Work Library: |work
i

| Parameters: |

[Generics: j

i

! Elaborate Cancel

S-^-^m—mu.ummi-j

■■HHHBBMnnHny
! Design: work.reg_file_l 6_e.behavior

i Switches:

i

W Share common logic

JV Remove unused (dangling) logic

VI Extract counters, decoders and rams

J Perform operation on only a single level of hierarchy

1 Ere I
-Optimize Cancel

Figure 5.7. Elaborate Figure 5.8. Pre Optimize

Lucent ORCA-2A
Lucent ORCA-2C
Kilinx3K
»nnx3KXBLOX

minWZ

Jv

Xflinx4KXBLOX

XHinx5K
Xilinx7K
General ASIC Technologies
General FPGA Technologies

Load £.ancel

J Preserve hierarchy

J Default Resolving

J Perform resolving only at the top level of hierarchy

Resolve Advanced... Cancel

Figure 5.9. Load Modgen Library Figure 5.10. Resolve Modgen

The heart of this design flow is the Optimize step, where we can choose what type of

optimization to do. The exhaustive selection will require multiple hours to complete. On the

other hand, a quick optimization may only require five to 10 minutes. Because we are primarily

concerned with area and not with speed, the area optimization box is checked as shown in Figure

5.11. The results of the optimization are shown in Figure 5.12, but the numbers are not entirely

accurate. The critical path is listed as 29ns. However, the design has not yet been placed and

routed on the chip. We will see later in Chapter 6 that the critical path is closer to 100ns.

FPGA Processor Implementation for the Forward Kinematics of the UMDH

Standard ♦ Exhaustive

Design: j.work.reg_file_16_e.behavior

Target: ♦ XWrrx4000e

Effort: v Remap v Quick

Mode: ♦ Chip v Macro

Optimize: ♦ ftrea v Delay

Pass Limits: ♦ Run M Passes v Run Only Marked Passes v SWp Marked Passes

Switches: J Optimize only a single level of hierarchy

Optimize Advanced- Cancel

Figure 5.11. Optimize

Start optimization for design .work.reg_file_16_e.behavior

Pass

1

Resource Use Estimate

Area
(FGs)
809

Delay
(ns)
29

DFFs Pis POs —CPU—
min:sec

256 31 32 00:54

Technology: xi 4e
Area: 809 Function Generators
Critical Path: 29 ns
DFFs: 256 (in CLBs or IOBs)
IOFFs: 32 (in IOBs)
HM CLBs: 0
Input Pins: 31
Output Pins: 32

48

Figure 5.12. Results of Optimization

The optimized design is then packed into the CLBs by using the window shown in Figure

5.13, followed by decomposing the LUTs within the CLBs shown in Figure 5.14.

Design:

Switches:

.work.reg_flle_16_e.behavior

J Operate on single level of hierarchy

Pack Cancel

j Design: .work.regJile_16_e.6ehavtor

] Switches: J Create new views rw each decomposed lookup table

J Operate on single level of hierarchy

Decompose Cancel

r-^^r-^^r^^r- n-r—

Figure 5.13. Pack CLBs Figure 5.14. Decompose LUTs

FPGA Processor Implementation for the Forward Kinematics of the UMDH 49

The final step is the writing of the Xilinx Netlist Format (XNF) file to disk as shown in

Figure 5.15.

Filename:

Format:

I Switches:

[ci^mplar/work/regTiifregTi^

v Auto v- VHDL v Verilog v EDIF ♦ XNF v SDF

J Don't write any warnings or info messages

J Write only the top level of hierarchy to 1 »file

Write Cancel

Figure 5.15. Write XNF

5.3.3 Xilinx XACTstep Ml

The Xilinx XACTstep program picks up where the Exemplar tools stop. It inputs the

XNF file and sets up a project manager screen that keeps track of the version and revision of the

design as shown in Figure 5.16. Once loaded in as a project the design is implemented as shown

mmm
File ßesign Iools Utilities üiew Help

c£) reqji 6

For Hslp, press Fl (w«=JlfeT,lM*J* ^

Figure 5.16. XACTstep Design Manager

FPGA Processor Implementation for the Forward Kinematics of the UMDH 50

in Figure 5.17. The target device is chosen, along with the current version and revision number.

Additional options shown in Figure 5.18 allow a constraint file to be added to the design. In this

case, a UCF file is used to lock certain I/O names to actual pins on the FPGA. Also, the

configuration template can be edited from this screen. Figure 5.19 shows the configuration

options screen. Both the inputs and the outputs are set to CMOS thresholds and the DONE, MO,

Ml, and M2 mode pins are set to have an internal pull-up resistor.

■■■■■■■
A i |

1

Pat ■ ■; jxaret 1E3HQ203

■BloiBc.i.eäpiiä'J

.. New voajn name H
New tension narnft. .

Rifi .1- Cared

I-1

) Qpbsnt... 1 '•*-

-Comtoffite*-

ü<a toisftainls:

1 P

ßiowse.'..

■ Ptojani Option Template» ^

^ implementation: | Default

Configuration ' jC'döull

- Optional Taigels—^^-— ■ . ' ■.■ - ——— " — ';"~~~

r PlodualmigSiniulaiiooData ,\f PioduceLogfcLoyelTmriaflBpott \

|7 ftoduce Configurator! Data ; '..'■■ r PtoducePostlayoutJMngRepat.

OK ^C&tot .! H<*

Figure 5.17. Implementation Window Figure 5.18. Implementation Options

The Flow engine is now invoked and the process of translating, mapping, placing and

routing, and configuring is performed. Figure 5.20 shows the Flow Engine and the results of a

synthesized design. The result is a BIT file that is ready for download into the FPGA.

FPGA Processor Implementation for the Forward Kinematics of the UMDH

Coriiguutori | Startup | RM*«*, | *ie I
ConfiguaraiRa» ^ äW> <" E«*

7he*okJLeveU- I^^^HHJ
Inputs. -, <~ IB. «■_ yws

Ciiput- <* TIL f qjOG

TDO: if FW r pump f~ PJDwm

MC r Fba (S- Putip 1" Pi*>r*i>

M1: r Ffeot ff BJWp ■1* PJDowi

M2; r Flo» C PUUp (~ PJDCMO

. Done <~ Ft»! P WUp

|7 P«fomi£RCDuingCoi*9u(elion ■

T PiodgctäSCIlCorfljualOTFJe

0< | Cdrice | ßela* 1 Help
«,;S:^»,.^->

Figure 5.19. Configuration Options

no« View Setup utlHHas Help

; riowCnfllaa -tesrtywT-wiS) '

XC<KX»EOtii<)nFloar(ruvM gSBÄraBÖfiSS«

Q ■ .* a *
Hup

3
f^^BSNw^

« n
BgiUiuilii ~p xo«OOOe -uc /usv/i»li»rt/ho»i!/olii/3Wa>l»y/TBBBIlB/to(i_tUe_ls!gc£ /usr/exaoxfcftnae/elej-

»BOIrriHe

n/ldbolld -p xctOOte -uc /usr/wtportyinw/BWspanleY/'niKSIB/raq.flle lS.uof /uEi/«»l«>rt/lK»«i/«lo|*
tujdbuild* wraiw): Hi.A.7
Copyritfit (ej W5-I3M IlHrat, Isci £11 rltfit» ramrwl.

COMKUUI bin»: agdbuUii ~p XC4000* -uc
/un/e^rt/licn^W^nüsy/TlSsls/nuj_flla,_l$.tt!f ,

*E£E jjBstw^&awassm'wasraJ
jt_i r~H~i no r»T

forttetp, press Pi fXC40EDE-3-r^*208TIreBj-T ücf [Nor«

51

Figure 5.20. Flow Engine

5.4 Bitstream file to FPGA

The BIT file is downloaded to the FPGA using the Hardware Debugger utility of the

XACTstep program. An X-Checker cable is used between the FPGA and the host computer's

serial port. The Hardware Debugger then sends the proper headers, frames of data, and trailers

down the X-Checker cable and into the FPGA.

FPGA Processor Implementation for the Forward Kinematics of the UMDH 52_

5.5 Conclusions

This chapter discussed the procedures for synthesizing VHDL models to FPGA

implementations. The process works, however the FKP processor cannot fit entirely on the target

4020E FPGA. If the target FPGA was much larger in capacity than the 4020E, then in theory, the

entire design could be placed into one device. Instead, half of the register file unit is pushed

through Exemplar Leonardo and Xilinx XACTstep and programmed into the 4020E that is

available in the laboratory. Figure (5.21) shows the CLB and routing layout for the register file in

the 4020E. This design used 40% of the total available CLBs, 27% of the total available IOBs,

and 12% of the total CLKIOBs of the 4020E. A text log of the XACTstep process from XNF

format to BIT format is listed in Appendix C.

Figure 5.21. 4020E CLB and Routing for the Half Register File Unit

FPGA Processor Implementation for the Forward Kinematics of the UMDH 53

6. FPGA Verification

6.1 Introduction

This chapter investigates the physical implementation of one of the functional unit models

into a Xilinx 4020E FPGA. The Logic Master XL 100 by Integrated Measurements Systems

(Integrated) will serve as the testbed for the programmed device. Because the 4020E package is

not directly compatible with the IMS, a custom adapter is developed.

6.2 IMS Logic Master XL100 tester

The IMS Logic Master XL100, shown in Figure 6.1, can support up to 100MHz data and

clock rates with up to 224 I/O channels. To test the 4020E FPGA, one XL PGA Auto Socket

Card is used to form the interface to the IMS.

Figure 6.1. The IMS Logic Master XL100

FPGA Processor Implementation for the Forward Kinematics of the UMDH 54

6.3 HQ208 Chip Carrier and Daughter Board

The Xilinx 4020E FPGA is contained in a Heat-sinked Quad Flat Pack (HQFP) 208 pin

package (Xilinx: 10-35). Because the device does not have pins that can be easily inserted into a

test circuit board, an adapter from Ironwood Electronics (see Appendix D) is used to mount the

FPGA to the test board. The adapter is wire-wrapped to a set of connectors which match up with

connectors installed on the IMS socket card. Figure 6.2 shows the completed test unit. Also

shown in Figure 6.2 is the Xilinx X-Checker cable for downloading the serial bit stream from the

host PC to the FPGA.

#i$Ä»^^^|

Figure 6.2. Completed Test Unit

There are 16 ground connections and seven +5 Volt connections to the adapter. The

power supply is external to the IMS to allow the FPGA to be programmed and hold its

configuration when the IMS is not cycling a test. When the IMS finishes a test and sits idle, it

removes all power to the device under test. This would erase the configuration every time the

FPGA Processor Implementation for the Forward Kinematics of the UMDH 55_

IMS stopped a test cycle because the configuration is stored in internal latches (Xilinx 13-39). By

keeping power supplied to the FPGA, even while idle, the configuration is retained. One possible

solution to the loss of configuration is to program a PROM device instead of the FPGA directly.

The PROM can then hold the configuration information even when the power is removed, and

transfer the data into the FPGA every time the system powers up.

Also connected to the adapter are control pins for the FPGA. The TCK pin is pulled up to

Vcc to prevent the device from entering into a boundary scan EXTEST during the download

process(Xilinx: 13-30). The MO, Ml, and M2 pins are also pulled up to Vcc to force the device

into Serial Slave mode. This mode is the simplest to implement. The Init, Done, Rst, and Prog

pins are all pulled up to Vcc. Combined those with the Din and Cclk from the X-Checker and we

have the setup shown in Figure (6.3) (Xilinx:5-18).

The remaining connections represent either input or output of the FPGA. The Ironwood

Electronics data sheet in Appendix C shows the 4020E pin name and number associated with the

adapter pin numbers and corresponding IMS connections.

There is a switch wired to the Prog pin to allow a forced reset of the FPGA. This causes

the configuration to be erased and the device will prepare for a new download. The small green

LED indicates power to the FPGA from the external supply. The red LED indicates that the IMS

has output 5 Volts on the J13 channel.

FPGA Processor Implementation for the Forward Kinematics of the UMDH 56

c
i
m

It
S o z
i2

Flying Leads /,&Q-
or

Header Connector// CCLK

HXIUNX'

\.

XChecker

y \.

t—i*sv

T
DONEMHXCMOO

xcaocaiKMoooNLY

XC4000
XC3000
XC2000

V
Target System

Figure 6.3. Slave Serial Download

y

6.4 Functional Unit Testing

The first design that was successfully tested was a combination AND/OR gate utilizing

four I/O pins and one CLB out of a total of 784. The AND/OR gate was modeled in VHDL and

pushed all the way through to implementation. Fastest speed rating on the gates was 11 ns, or

90.9MHz.

The second design was the half register file unit from Chapter 5. The only difference in

the process the second time was the addition of a UCF constraint file to force the I/O pins to

FPGA Processor Implementation for the Forward Kinematics of the UMDH 57_

predetermined locations. Even if the model changes and causes a resynthesis of the design, the

surrounding environment of the FPGA does not have to change.

The IMS tester allowed for a functionality and speed test of the FPGA. For the functional

test, the register file is reset and all 16 registers are output to the A and B bus in opposite orders.

Figure 6.4 shows the waveforms and indicates that all registers except number 1 is cleared to a

zero. If we recall from Chapter 4, the number 1 register always holds a numeric 1.0, and the

number 0 register always holds a numeric 0.0.

After the registers are cleared, all 16 registers are written to with a different bit. Once

again the two output buses A and B are given the values of each register in opposite order. The

waveform shows that both the A and B bus can retrieve the stored information from all registers,

with the exception of registers 0 and 1.

The speed test is performed by decreasing the IMS clock period until the above

functionality test fails. At 48.5 ns, the test fails. Because the cycle of the register file is two

cycles of the IMS, the actual failure time is a 97 ns clock period, or 10.3MHz.

FPGA Processor Implementation for the Forward Kinematics of the UMDH 58

ielJc
ire3et
latch
icO
id
jc2
•c3
jc4
icS
|c£
!c7
Ic8
!c9
IclO
icll
icl2
'Cl3
!cl4
jclS
|creg3
jcreg2
ieregl
IcregO
iaregS
jareg2
jaregl
iaregO
ibregS
jbreg2
ibregrl
JbregO
!b0
ibl

M
i£
M
hi

Ib9
iblO
Ibll
ibl2
!bl3
lb 14
!bl5
!a0
ial
la2
ja3
ia4
laS
a6
a7
a8
a9
alO
all
al2
al3
al4
alS

,y\A/W\/WVWW\AAAA/VW\^^

__r_
T"

-/~V

_rv _/"v_
_/ V.

_rv.

J _
_rv

,n
2E2I2_
xms_
xmx _r_
xxxxx _r_
wm j~v.
Txm W
SJSE2_
KXXVX J-\-
mM rv.
WTO?

"\-/-_ _r_ _rv
_r\

y_
xxxy,x _/-\.
1
SKK_
EffiX2_ y~L.
fflSL J-L

Figure 6.4. IMS Waveform Results of Register File

FPGA Processor Implementation for the Forward Kinematics of the UMDH 59

6.5 Conclusions

This chapter showed the physical implementation and electrical verification of only the half

sized register file that was synthesized in Chapter 5. A Xilinx 4020E FPGA was configured from

the host PC using a custom adapter board and electrically tested by using the IMS test station.

The entire FKP model could not be implemented because the size of the design. It would require

multiple 4020E FPGAs or possibly one FPGA from a higher density device, both of which were

not available at the time of implementation. However, the success of the half sized register file

indicates that the entire FKP model could have also been implemented successfully, assuming the

model is correct and a multi-device partitioner program is available.

FPGA Processor Implementation for the Forward Kinematics of the UMDH 60_

7. Conclusions and Recommendations for Future Work

7.1 Conclusions

The objective of this research was to implement the forward kinematic algorithm for the

Utah MIT Dexterous Hand (UMDH) by creating VHDL models and directly synthesizing them

into an FPGA. The forward kinematics of the UMDH were developed and analyzed and the

resulting algorithm shows that 12 separate equations each containing multiple mathematical

operations are needed. If common expressions are shared between equations, a total of 28

operations are required. These shared terms are stored in the register file unit and are sent to

either a cosine/sine unit, an adder/subtractor unit, or a multiplier unit as the algorithm proceeds.

The input (angles) and output (transformation matrix) are transferred through dedicated I/O

buses. The design results in a semi-autonomous Forward Kinematic Processor (FKP) that can

calculate the forward kinematics every time the surrounding system issues a run command. The

surrounding system does not deal with the intricacies of the algorithm and can tackle other system

tasks while the FKP is busy.

It was planned that the entire algorithm would fit into a single FPGA. However, without

the availability of high density FPGAs in the laboratory, only a small portion of the design was

able to become realized in hardware. The register file unit was chosen as the sub-model to

implement because it contains combinational logic similar to all the other units plus memory

storage. After a few iterations with the fJoorplanning tools, the register file itself proved to be

larger than one 4020E FPGA. The register file unit was reduced to half its size and resynthesized.

 FPGA Processor Implementation for the Forward Kinematics of the UMDH 61_

The new design successfully fit using 40% of the configurable logic blocks of the 4020E. The

design was programmed into a 4020E FPGA and tested using an IMS Logic Master XL.

Electrical verification shows an upper bound on the clock frequency to be 10.3 MHz, above

which the registers begin to hold incorrect data.

7.2 Lessons Learned

It can be concluded that small designs can accurately map into the FPGA and with short

turn-around times. The Xilinx 4020E does not have the capacity that was initially expected and

proved to be too small for the entire FKP design. The FKP core model and everything

underneath is completely synthesizable. This required some restrictions on the coding style to

avoid multiple signals in sensitivity lists, multiple wait statements in a process, and any reference

to a specific delay of time.

7.3 Recommendations

The first issue to be addressed is the optimization of the VHDL code for synthesis. Some

VHDL compilers support the use of in-line macro declarations for instantiation of complete

structures such as fast adders already designed into the device. The use of such structures can not

only speed up the design, but also take up less FPGA area. Secondly, this research focused solely

on Xilinx devices. Using other vendors products such as Altera's MAX Plus II software and their

FlexlOK series of FPGAs may produce better or worse results. Third, portions of the FKP itself

could be redesigned. The multiplier unit uses a 32-bit adder as on of its components. The

adder/subtractor unit is 16 bits by itself. The two units could be merged into an ALU, thus

eliminating the 16-bit adder and allowing all additions and subtractions to pass through the 32-bit

 FPGA Processor Implementation for the Forward Kinematics of the UMDH 62_

component of the ALU. The increased overhead to choose either multiplication or

addition/subtraction should be minimal compared to the area saved by removing the 16-bit

adder/subtractor unit. Fourth, investigation into partitioning tools for Xilinx devices may allow

the design to be spread across multiple FPGAs. Last, the microstore and contoller units are not

entirly synthesizable. Both need to be modified to adhere to the synthesis restrictions.

7.4 Ideas for Future Work

The architecture of the design could be modified to resemble more of a macropipeline

structure. The core could be divided into three parts. The first part would calculate the angles

needed. The second part would calculate the sines and cosines. The third part would perform the

multiplications, additions and subtractions. The result would be a higher throughput system but

with a two stage delay to get the answers. On the other hand, the two data buses, one input and

one output, could be merged into a single I/O bus.

The design was based on the idea of the functional units each being a separate state

machine and synchronously handshaking with the control unit. This allowed all timing

propagation delays within the CLBs, IOBs and routing to be ignored.The result is a design that

may waste time during a stage that is simple because the stage that requires the longest time

restricts the rest of the design from going any faster. A possible better approach would be a more

combinational, less state machine design. This would require knowledge of the delays of the

circuit as it is placed into the FPGA.

Different algorithms such as the inverse kinematics of the UMDH or a gross/fine motion

controller could be investigated using the same concepts and procedures developed here.

FPGA Processor Implementation for the Forward Kinematics of the UMDH 63

The investigation into PROM development for truly portable systems should be addressed.

The PROM device can serially download the configuration of the FPGA every time the system

powers up. This property of the FPGA also allows dynamic reconfiguration of parts of the

design, allowing the controller of the FKP to swap in and out functional units as needed.

FPGA Processor Implementation for the Forward Kinematics of the UMDH BIB-1

Bibliography

Ailes,JohnW. Automatic Digital Hardware Synthesis Using VHDL. MS Thesis, Naval Post
Graduate School, Monterey Ca, September 1990. (AD A246 976)

Cohen, Ben. VHDL Coding Styles and Methodologies: An In-Depth Tutorial. Norwell Ma:
Kluwer Academic Publishers, 1995.

Craig, JohnJ. Introduction to Robotics: Mechanics and Control. Reading Ma: Addison-Wesley,
1989.

Exemplar Logic. HDL Synthesis Guide: Release 4.0. AlamedaCa: 1996

—. Leonardo User's Guide: Release 4.0. AlamedaCa: 1996

Integrated Measurement Systems. Logic Master Series: Product Training Manual XL.
Beaverton Or: no date.

—. Verification Solutions: A Guide to Design Verification and Test. Beaverton Or: 1988.

Khosla, P. K. and D.B Stewart. Program Documentation. Chimera 3.1: The Real Time
Operating System for Reconfigurable Sensor Based Control Systems. Carnegie Mellon
University, The Robotics Institute, Department of Electrical and Computer Engineering:
1993.

Narasimhan, Sundar, David M. Siegel, and John M. Hollerbach. A Standard Architecture for
Controlling Robots. Massachusetts Institute of Technology, Artificial Intelligence
Laboratory. July 1988 (AD Al 95 929)

Raines, Rick Capt. USAF. Class Notes, CSCE 487, Intro to Digital System Design. School of
Engineering, Air Force Institute of Technology, Wright Patterson AFB OH, Summer
Quarter 1996.

Rattan, Kuldip. Class Notes, Ceg 456, Introduction to Robotics. Wright State University,
Dayton OH, Spring Quarter 1995.

Sarcos Incorporated. Hand Electronics Documentation Package. Salt Lake City Utah: March
1987.

Solanki, Ranvir Singh and Kuldip S. Rattan. A Kinematic Study of the Merlin 6500 Robot and
the UTAH/MIT Dexterous Hand and a Simulation on their Combined Behavior.
AAMRL-TR-88-059. Wright Patterson AFB, OH: Harry G. Armstrong Aerospace
Medical Research Laboratory, September 1988 (AD-A203 907).

FPGA Processor Implementation for the Forward Kinematics of the UMDH BIB-2

Synopsys. Iview On-line Documentation: Analyzer and Simulator V3.3b. Mountan View Ca:
1997

Synopsys. Iview On-line Documentation: FPGA Compiler. Mountan View Ca: 1994

Weste, Neil H. E. and Kamran Eshraghian. Principles of CMOS VLSI Design: A System
Perspective. Reading Ma: Addison-Wesley, 1993.

Wind River Systems. VX-Works. AlamedCa.

XACTstep. Version Ml, IBM, CDROM. Computer Software. Xilinx, San Jose Ca: 1997.

Xilinx. The Programmable Logic Data Book. San Jose Ca: 1996.

—. XACT Hardware & Peripherals Guide. San Jose Ca: April, 1994.

—• XACT User Guide. San Jose Ca: April, 1994.

—. Xilinx Alliance Series: Quick Start Guide vMl .3. San Jose Ca: 1997.

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP A-1

Appendix A: Code for behavioral Algorithm

A.1 C code

"umdh.h" c code header file
M, AA

r
I* umdh.h
I*
r Steve Parmley
/*—— ■ ___

/*
I* Defines kinematic parameters of umdh thumb manipulators.
r
Ht ********************«*******************************»*****^*******»

«define UMDH_AO (-0.75)
«define UMDH_A1 (0.375)
«define UMDH_A2 (1.7)
«define UMDH_A3 (1.3)
«define UMDH.D1 (3.125)
«defineUMDHD2 (0.0)
«define UMDH D3 (0.0)
«define UMDH_D4 (0.0)

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP A-2

"range.c" c code
/*■

r
r
r
r
/*•
r
i*
/*
/*
i*

range.c

Steve Parmley - UMHD forward kinematic function

Compute forward kinematics given current joint positions
and writes all temp values to disk
Compile with gcc range.c-Im

*/
*/
*/
*/
*/
*/
*/
*/
*/

Ht AA

/* include files

#include<math.h>
#include"umdh.h"
include <stdio.h>
#include <stdlib.h>

V
*/
*/

f **
umdhFwdKin Compute forward kinematics. */

««*»**A** He **■*#*****-

void umdhFwdKin(float *jtang, float *noap, FILE *rangeptr)

{
float a0,a1 ,a2,a3, d1 ,d2,d3,d4;
float d,c2, c3, c4;
floats1,s2,s3, s4;
float c23,s23,c234,s234;

aO = UMDH_AO;
a1 = UMDH_A1
a2 = UMDH_A2;
a3 = UMDH_A3;
d1 = UMDH_D1
d2 = UMDH.D2;
d3 = UMDH_D3;
d4 = UMDH_D4

s1 = sinOtang[0]); d = cos(jtang[0]);
s2 = sin(jtang[1]); c2 = cos(jtang[1]);
s3 = sin(jtang[2]); c3 = cos(jtang[2]);
s4 = sin(jtang[3]); c4 = cos(jtang[3]);
s23 = s2*c3 + c2*s3; c23 = c2*c3 - s2*s3;
s234 = sin(jtang[1]+jtang[2]+jtang[3]);
c234 = cosQtang[1]+jtang[2]+jtang[3]);

fprintf(rangeptr/'%f\n%f\n%f\n%f\n%fvi%f\n%f\n%f\n,',s1,s2,s3,s4,c1,c2,c3,c4);
fprintf(rangeptr,,'%f\n%f\n%f\n%f\n%f\n%f\n",s2*c3,c2*s3,s23,c23);

Tn vector '

noap[0] = d*c234;
noap[1] = s1*c234;
noap[2] = s234;

/* o vector

FPGA Processor Implementation for the Forward Kinematics of the UMDH Arr A-3

noap[3] = -d*s234;
noap[4] = -s1*s234;
noap[5] = c234;

I* a vector

noap[6] = s1;
noap[7] = -c1;
noap[8] = 0.0;

I* p vector */

noap[9] = aO + d*(a1 + a2*c2 + a3*c23);
noap[10] = s1*(a1 + a2*c2 + a3*c23);
noap[11] = a2*s2 + a3*s23 + d1;

fprintf(rangeptr,"%f\n%f\n%f\n%f\n%f\n",a3*c23,
a2*c2,
a1+a2*c2+a3*c23,
d*(a1+a2*c2+a3*c23),
s1*(a1+a2*c2+a3*c23));

return;
}

main ()
{
FILE *fp;
FILE *rangeptr;

float jtang[6];
float noap[12];
float step = 3.1415/8.0;

fp = fopen("fwdkin.dat" ,"w");
rangeptr = fopen("range.dat","w");

for (jtang[0]=-3.1415/4.0;jtang[0] < 3.1415 / 4.0*3.0; jtang[0]=jtang[0]+step)
for (jtang[1]=0.0;jtang[1] < 3.1415 / 3.0; jtang[1]=jtang[1]+step)
for (jtang[2]=0.0;jtang[2] < 3.1415 / 2.0; jtang[2]=jtang[2]+step)
for (jtang[3]=0.0;jtang[3] < 3.1415 / 2.0; jtang[3]=jtang[3]+step)

{
umdhFwdKin(jtang,noap,rangeptr);

fprintf(fp,"%fVt%f\t%f\t%f\n",jtang[0],jtang[1],jtang[2],jtang[3]);
fprintf(fp,"%f\t%f\t%f\t%f\n" ,noap[0],noap[3],noap[6],noap[9]);
fprintf(fp,"%fVt%f\t%f\t%f\n" ,noap[li,noap[4],noapr7],noap[10]);
fprintf(fp,"%f\t%f\t%f\t%fVi\n",noap[2],noap[5],noap[8],noap[11]);

}

fdose(fp);
fclose(rangeptr);

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP A-4

A.2 Matlab code

"fk.m" Matlab code
% Steve Parmley %
% Matlab code that loads data generated by C code %
% Plots positions of last joint and arc of fingertip %

clear;
close all;
load fwdkin.dat;
fori=1:599,

nx(i)=fwdkin(i*4+2,1);
ny(i)=fwdkin(i*4+3,1);
nz(i)=fwdkin(i*4+4,1);
ox(i)=fwdkin(i*4+2,2);
oy(i)=fwdkin(i*4+3,2);
oz(i)=fwdkin(i*4+4,2);
ax(i)=fwdkin(i*4+2,3);
ay(i)=fwdkin(i*4+3,3);
az(i)=fwdkin(i*4+4,3);
px(i)=fwdkin(i*4+2,4);
py(i)=fwdkin(i*4+3,4);
pz(0=fwdkin(i*4+4,4);

ppx(i) = px(i) + nx(i) * 1.125;
ppy(i) = py(i) + ny(i)* 1.125;
ppz(i) = pz(i) + nz(i)* 1.125;

end;

fori=1:24,
pxl(i) = px(i);
py1(i) = py(i);
pz1(i) = pz(i);
ppxl(i) = ppx(i);
ppy1(i) = ppy(i);
ppz1(i) = ppz(i);

px2(i) = px(i+24);
py2(i) = py(i+24);
pz2(i) = pz(i+24);
ppx2(i) = ppx(i+24);
ppy2(i) = ppy(i+24);
ppz2(i) = ppz(i+24);

px3(i) = px(i+49);
py3(i) = py(i+49);
pz3(i) = pz(i+49);
ppx3(i) = ppx(i+49);
ppy3(i) = ppy(i+49);
ppz3(i) = ppz(i+49);

px4(i) = px(i+74);
py4(i) = py(i+74);
pz4(i) = pz(i+74);
ppx4(i) = ppx(i+74);
ppy4(i) = ppy(i+74);
ppz4(i) = ppz(i+74);

px5(i) = px(i+149);
py5(i) = py(i+149);
pz5(i) = pz(i+149);
ppx5(i) = ppx(i+149);
ppy5(i) = ppy(i+149);
ppz5(i) = ppz(i+149);

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP A-5

px6(i) = px(i+224)
py6(i) = py(i+224)
pz6(i) = pz(i+224)
ppx6(i) = ppx(i+224)
ppy6{i) = ppy(i+224);
pp26(i) = ppz(i+224)

px7(i) = px(i+299);
py7(i) = py(i+299)
pz7(i) = pz(i+299)
ppx7(i) = ppx(i+299)
ppy7(i) = ppy(i+299)
ppz7(i) = ppz(i+299);

end;

plot3(ppx1 ,ppy1 ,ppz1 ,'-',px1 ,py1 ,pz1 ,,+',ppx2,ppy2,ppz2,•-,,px2,py2,pz2,,o,,ppx3,ppy3,ppz3,'-.,,px3,py3,pz3,,x,);
grid;
vjew(~45,10);
axis([-3 3-6 017]);
title ('UMDH Thumb Motion (joint 0 fixed)');
h=legend('Rngertip Positions (Joint 2 Location A)','Joint 3 Positions (Joint 2 Location A)','Fingertip Positions (Joint 2 Location B)','Joint 3
Positions (Joint 2 Location B)','Fingertip Positions (Joint 2 Location C)','Joint 3 Positions (Joint 2 Location C)');
axes(h);

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP A-6

"range.m" Matlab code
% Steve Parmley %
% Matlab code that loads data generated by C code %
% Plots positions of last joint and arc of fingertip %

load fwdkin.dat;
max(fwdkin)
min(fwdkin)

load range.dat;
max(range)
min(range)

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-1

Appendix B: VHDL Functional Unit Models
and Simulation Testbenches

B.l Cosine/Sine Unit

B.1.1 Cosine/Sine Model

- Project: Thesis
- Filename: cos_sin.vhd
- Other files required:
-Date: Sept 19 97
- Entity/Architecture Name: cos_sin_e/behavior
-Developer: Steve Pamnley

library IEEE;
use IEEE.std_logic_1164.all;

entity cos_sin_e is
port (cos sinjeset in std_ulogic;

cos sin elk in std_ulogic;
cos sin A bus in std_ulogic_vector(15 downto 0);
cos_sin_go in std_ulogic;
cos sin sei in std_ulogic;
cos sin wait in std_ulogic_vector(2 downto 0);
cos sin ready out std_ulogic;
cos sin C bus out std_ulogic_vector(15 downto 0);

- the following describes ti le connection to the rom
cos sin rom addr out std_ulogic_vector(12 downto 0);
cos_sin_rom_data in std_ulogic_yector(15 downto 0))

end cos_sin_e;

architecture behavior of cos_sin_e is
begin

lookup: process
variable state: integer;
variable wait_count, wait_counter: integer;

- create sinks for four bits not used of A_bus
variable tempi ,temp2,temp3,temp4: std_ulogic;

begin

if cos_sin_reset = '1' then
"state := 0;

end if;

wait until (cos_sin_clk'event and cos_sin_clk='1');

if state = 0 then
- turn off all signals
cos_sin_ready <= '0';

- calculate how many waits
wait_count := 0;
wait_counter := 0;
if cos_sin_wait(0) = '1' then

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-2

wait_count := wait_count +1;
end if;
if cos_sin_wait(1) = T then

wait_count := wait_count + 2;
end if;
if cos_sin_wait(2) = '1' then

wait_count := wait_count + 4;
end if;
- copy over lower 8 decimal bits and 3 LSBs of integer
cos_sin_rom_addr(10 downto 0) <= cos_sin_A_bus(10 downto 0);
- copy in sign bit
cos_sin_rom_addr(11) <= cos_sin_A_bus(15);
- copy in selector bit for cos or sin function
cos_sin_rom_addr(12) <= cos_sin_sel;

■ sink the 4 unused bits
tempi
temp2
temp3
temp4

cos_sin_A_bus(11)
cos_sin_A_bus(12)

= cos_sin_A_bus(13)
cos_sin_A_bus(14);

-wait for go signal
if cos_sinjjo = '1' then

state :=1;
end if;

end if;
if state 1then

- induce ran wait states for slower external devices
if wait_count = wait_counter then

state := 2;
else

wait_counter := wait_counter + 1;
end if;

end if;
if state = 2 then

- latch data
cos_sin_C_bus <= cos_sin_rom_data;
- indicate to control that the information is latched
cos_sin_ready <= '1';
- wait one cycle and
state := 3;

elsif state = 3 then
- ready signal
cos_sin_ready <= '0';
- start over
state := 0;

end if;

end process lookup;
end behavior;

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-3

B.1.2 Cosine/Sine Testbench

- Project:
- Filename:

Thesis
cos_sin-bench.vhd

- Other files required:
-Date:
- Entity/Architecture Name:
- Developer:

sept 19 97
cos_sin_tb/test
Steve Parmley

library IEEE;
use IEEE.std_logic_1164.all;

entity cos_sin_tb is
end cos_sin_tb;

architecture test of cos_sin_tb is

component cos_sin_e
port (cos_sin_reset

cos_sin_clk
cos_sin_A_bus
cos_sin_go
cos_sin_sel
cos_sin_wait
cos_sin_ready
cos_sin_C_bus

in std_ulogic;
in std_ulogic;
in std_ulogic_vector(15 downto 0);
in std_ulogic;
in std_ulogic;
in std_ulogic_vector(2 downto 0);
out std_ulogic;
out std_ulogic_vector(15 downto 0);

- the following describes the connection to the rom
cos_sin_rom_addr : out std_ulogic_
cos_sin_rom_data : in std_ulogic.

end component;

signal sys_reset, sys_clk, go, sei, ready: std_ulogic := '0';
signal waits : std_ulogic_vector(2 downto 0) := "000";
signal anglejn: std_ulogic_vector(15 downto 0);
signal result : std_ulogic_vector(15 downto 0);
signal rom_address: std_ulogic_vector(12 downto 0);
signal rom_result : std_ulogic_vector(15 downto 0);

begin
U1 : cos_sin_e

PORT MAP (sys_reset,
sys_clk,
anglejn,
go.
sei,
waits,
ready,
result,
rom_address,
rom_result);

vector(12 downto 0);
vector(15 downto 0));

clock: process
begin

sys_clk <= not(sys_clk);
wait for 10 ps;

end process clock;

rst: process
begin

sys_reset<=T;

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-4

wait for 5 ps;
sys_reset <= '0';
wait for 15000 ps;

end process rst;

exercise: process
variable wait_count: integer := 0;
begin

- do it again with more waits
casewait_countis

when 0 => waits <= "000";
whenl => waits <= "001"
when 2 => waits <= "010"
when 3 => waits <= "011
when 4 => waits <= "100";
when 5 => waits <= "101";
when 6 => waits <= "110"
when 7 => waits <= "111";
when others => wait until sys_clk'event and sys_clk='1

wait until sys_clk'event and sys_clk='1
wait until sys_clk'event and sys_clk-1
wait until sys_clk'event and sys_clk='1
wait until sys_clk'event and sys_clk='1
wait until sys_clk'event and sys_clk='1
ASSERT false

REPORT "DONE"
SEVERITY failure;

end case;

wait_count := wait_count + 1;

wait until sys_clk'event and sys_clk='0';
- processor is setting up input bus
angle_in(15 downto 1) <= "000100100011010";
angle_in(0) <= waits(O);
- set selection to sin or cos
sei <= waits(O);

-wait for a while
wait until sys_clk'event and sys_clk=T;
- and initiate function
go<=T;

- wait for function to report ready
wait until ready = T and readyevent;

wait until sys_clk'event and sys_clk-1';

- turn off go signal
go <= '0';

end process exercise;

ran: process
begin

wait until rom_address'event;

- make up some ran data (inverse of the address for now)
rom_result(12 downto 0) <= not(rom_address(12 downto 0));

- fill in the rest
rom_result(15 downto 13) <= "111";

end process rom;

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-5

end test;

CONFIGURATION cos_sin_c OF cos_sin_tb IS
FOR test

FOR ALL: cos_sin_e
USE ENTITY WORK.cos_sin_e(behavior);

END FOR;
END FOR;

END cos sine;

B.1.3 Cosine/Sine Results

SYS_RESET

SYS.CLK

GO

SEL

READY

rs- WAITS(2.0)

rr- ANGLEJN(15:0)

r- RESULT(15:0)

P> ROM ADDRESS{12:0)

t-- ROM RESULTC15:0;

F.J

|uu-|

saoooo 1000000

TonrFln ro n r n n i MI J] :r JTIXLP :.ö I
if" yi! r .j~ i.
■■"" r ~ "

* 1234 1235 1234

3

1235

FDCB

0234 «233

EDCA FDCB

0234 1235

I | "1 ']
4 S 6 7

| 1234 | 1235 1234 1235 j

EDCA FDCB | EDCA FDCB EDCA |

 1 0234 i 1235 0234 1235

' FDCB! EDCA FDCB EDCA FDCH EDCA FDCB EDCA

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-6

B.2 Adder/Subtractor Unit

B.2.1 Adder/Subtractor Model

- Project: Thesis
- Filename: adder.vhd
- Other files required:
-Date: sept 30 97
- Entity/Architecture Name: adder_e/behavior
-Developer: Steve Parmley
- Function:
- Limitations:
- History:
-Last Analyzed On:

library IEEE;
use IEEE.std_logic_1164.all;

entity adder_e is
port (adder_reset in std_ulogic;

adder elk in std_ulogic;
adder A bus in std_ulogic_vector(15 downto 0);
adder_B_bus in std_ulogic_vector(15 downto 0);
adder_go in std_ulogic;
adder_sel in std_ulogic;
adder done out std_ulogic;
adder C bus out std_ulogic_vector(15 downto 0))

end adder_e;

architecture behavior of adder_e is
Signal state: integer;
Signal Bxor: std_ulogic_vector(15 downto 0);
Signal Cout: std_ulogic_vector(15 downto 0);
Signal SUM: std_ulogic_vector(15 downto 0);

begin

addsub: process

begin

wait until adder_clk'event and adder_clk-1';

if adderjeset = T then
Itate <= 0;

end if;

if adder_go = Tthen

if state = 0 then
Bxor(0) <=
Bxor(1)<=
Bxor(2)<=
Bxor(3) <=
Bxor(4) <=
Bxor(5) <=
Bxor(6) <=
Bxor(7) <=
Bxor(8) <=
Bxor(9) <=
Bxor(10) <=

adder_B_bus(0) xor adder_sel;
adder_B_bus(1) xor adder_sel;
adder_B_bus(2) xor adder_sel;
adder_B_bus(3) xor adder_sel;
adder_B_bus(4) xor adder_sel;
adder_B_bus(5) xor adder_sel;
adder_B_bus(6) xor adder_sel;
adder_B_bus(7) xor adder_sel;
adder_B_bus(8) xor adder_sel;
adder_B_bus(9) xor adder_sel;
= adder_B_bus(10) xor adder_sel;

 FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-7

Bxor(11) <= adder_B_bus(11) xor adder_sel;
Bxor(12) <= adder_B_bus(12) xor adder_sel;
Bxor(13) <= adder_B_bus(13) xor adder_sel;
Bxor(14) <= adder_B_bus(14) xor adder_sel;
Bxor(15) <= adder_B_bus(15) xor adder_sel;
state <=1;

sis if ststs — 1 thsn
Cout(O) <= ((adder_A_bus(0) and Bxor(O)) or (adderjsel and (adder_A_bus(0) or Bxor(0))));
state <= 2;

ffterf ststs — 2 thsn
SUM(O) <= ((adder A_bus(0) and Bxor(0) and adder_sel) or ((adder_A_bus(0) or Bxor(0) or adder_sel) and (not Cout(0))));
Cout(1) <= ((adder~A_bus(1) and Bxor(1)) or (Cout(O) and (adder_A_bus(1) or Bxor(1))));
state <= 3;

gig if ftfaf6 z: 3 thsn
SUM(1) <= ((adder A_bus(1) and Bxor(1) and Cout(0)) or ((adder_A_bus(1) or Bxor(1) or Cout(0)) and (not Cout(1))));
Cout(2) <= ((adder~A_bus(2) and Bxor(2)) or (Cout(1) and (adder_A_bus(2) or Bxor(2))));
state <= 4;

etsif state = 4 then J/m.«
SUM(2) <= ((adder A_bus(2) and Bxor(2) and Cout(1)) or ((adder_A_bus(2) or Bxor(2) or Cout(1)) and (not Cout(2))));
Cout(3) <= ((adder~AJ)us(3) and Bxor(3)) or (Cout(2) and (adder_A_bus(3) or Bxor(3))));
state <= 5;

sis if stets -* 5 thsn
SUM(3) <= ((adder_A_bus(3) and Bxor(3) and Cout(2)) or ((adder_A_bus(3) or Bxor(3) or Cout(2)) and (not Cout(3))));
Cout(4) <= ((adder_A_bus(4) and Bxor(4)) or (Cout(3) and (adder_A_bus(4) or Bxor(4))));
state <= 6;

elsif state = 6 then ^„„
SUM(4) <= ((adder_A_bus(4) and Bxor(4) and Cout(3)) or ((adder_A_bus(4) or Bxor(4) or Cout(3)) and (not Cout(4))));
Cout(5) <= ((adder_A_bus(5) and Bxor(5)) or (Cout(4) and (adder_A_bus(5) or Bxor(5))));
state <= 7;

elsif state = 7 then
SUM(5) <= ((adder_A_bus(5) and Bxor(5) and Cout(4)) or ((adder_A_bus(5) or Bxor(5) or Cout(4)) and (not Cout(5))));
Cout(6) <= ((adder_A_bus(6) and Bxor(6)) or (Cout(5) and (adder_A_bus(6) or Bxor(6))));
state <= 8;

elsif state = 8 then
SUM(6) <= ((adder_A_bus(6) and Bxor(6) and Cout(5)) or ((adder_A_bus(6) or Bxor(6) or Cout(5)) and (not Cout(6))));
Cout(7) <= ((adder_A_bus(7) and Bxor(7)) or (Cout(6) and (adder_A_bus(7) or Bxor(7))));
state <= 9;

pjsjf stst© ~ 9 thöi
SUM(7) <= ((adder_A_bus(7) and Bxor(7) and Cout(6)) or ((adder_A_bus(7) or Bxor(7) or Cout(6)) and (not Cout(7))));
Cout(8) <= ((adder_A_bus(8) and Bxor(8)) or (Cout(7) and (adder_A_bus(8) or Bxor(8))));
state <= 10;

elsif state =10 then
SUM(8) <= ((adder_A_bus(8) and Bxor(8) and Cout(7)) or ((adder_A_bus(8) or Bxor(8) or Cout(7)) and (not Cout(8))));
Cout(9) <= ((adder_A_bus(9) and Bxor(9)) or (Cout(8) and (adder_A_bus(9) or Bxor(9))));
state <= 11;

filsif stats —11 thsn
SUM(9) <- ((adder_A_bus(9) and Bxor(9) and Cout(8)) or ((adder_A_bus(9) or Bxor(9) or Cout(8)) and (not Cout(9))));
Cout(10)<= ((adder_A_bus(10) and Bxor(10)) or (Cout(9) and (adder_A_bus(10) or Bxor(10))));
state <= 12;

sis if ststs —12 thsn
SUM(10) <= ((adder_A_bus(10) and Bxor(10) and Cout(9)) or ((adder_A_bus(10) or Bxor(10) or Cout(9)) and (not

Cout(10))));
Cout(11)<= ((adder_A_bus(11) and Bxor(11)) or (Cout(10) and (adder_A_bus(11) or Bxor(11))));
state <= 13;

sis if state —13 thsn
SUM(11) <= ((adder_A_bus(11) and Bxor(11) and Cout(10)) or ((adder_A_bus(11) or Bxor(11) or Cout(10)) and (not

Cout(11))));
Cout(12)<= ((adder_A_bus(12) and Bxor(12)) or (Cout(11) and (adder_A_bus(12) or Bxor(12))));
state <= 14;

elsif state = 14 then
SUM(12) <= ((adder_A_bus(12) and Bxor(12) and Cout(11)) or ((adder_A_bus(12) or Bxor(12) or Cout(11)) and (not

Cout(12))));
Cout(13)<= ((adder_A_bus(13) and Bxor(13)) or (Cout(12) and (adder_A_bus(13) or Bxor(13))));
state <= 15;

elsif state =15 then

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-8

SUM(13) <= ((adder_A_bus(13) and Bxor(13) and Cout(12)) or ((adder_A_bus(13) or Bxor(13) or Cout(12)) and (not
Cout(13))));

Cout(14)<= ((adder_A_bus(14) and Bxor(14)) or (Cout(13) and (adder_A_bus(14) or Bxor(14))));
state <= 16;

slsif stdts —16 thsn
SUM(14) <= ((adder_A_bus(14) and Bxor(14) and Cout(13)) or {(adder_A_bus(14) or Bxor(14) or Cout(13)) and (not

Cout(14))));
Cout(15)<= ((adder_A_bus(15) and Bxor(15)) or (Cout(14) and (adder_A_bus(15) or Bxor(15))));
state <= 17;

elsif state =17 then
SUM(15) <= ((adder_A_bus(15) and Bxor(15) and Cout(14)) or ((adder_A_bus(15) or Bxor(15) or Cout(14)) and (not

Cout(15))));
state <= 18;

elsif state =18 then
adder_C_bus <= SUM;
adder_done<=T;

end if;
else

adder_done <= '0';
state <= 0;

end if;

end process addsub;
end behavior;

B.2.2 Adder/Subtractor Testbench

- Project: Thesis
- Filename: adder-bench.vhd

- Other files required:
-Date: sept 30 97
- Entity/Architecture Name: adder tb/test
-Developer: Steve Parmley
— Function:
— Limitations:
- History:
-Last Analyzed On:

library IEEE;
use IEEE.std_logic_1164.all;

entity adder_tb is
end adderjtb;

architecture test of adderjtb is

constant AtestOO : std_ulogic_vector(15 downto 0)
constant AtestOI: std_ulogic_vector(15 downto 0) :=
constant Atest02 : std_ulogic_vector(15 downto 0)
constant Atest03: std_ulogic_vector(15 downto 0) :=
constant Atest04 : std_ulogic_vector(15 downto 0)
constant Atest05: std_ulogic_vector(15 downto 0) :=
constant Atest06 : std_ulogic_vector(15 downto 0)
constant Atest07 : std_ulogic_vector(15 downto 0) :=
constant Atest08 : std_ulogic_vector(15 downto 0)
constant Atest09: std_ulogic_vector(15 downto 0) :=

:= "OOOOOOOOOOOOOOOO1

"0000000000000001";
:= "0000000000000010"
"0000000000000011";
:= "0101010101010101";
"1010101010101010"
:= "1111111111111110";
"1111111101111111";
:="0111111111111111
"1111111111111111";

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-9

constant BtestOO : std_ulogic_vector(15downto0)
constant BtestOI: std_uTogic_vector(15 downto 0)
constant Btest02 : std_ulogic_vector(15 downto 0)
constant Btest03: std_ulogic_vector(15 downto 0) :=
constant Btest04 :std_ulogic_vector(15 downto 0)
constant Btest05: std_ulogic_vector(15 downto 0) :=

constant add: std_ulogic := '0';
constant sub:std_ulogic:='1';
component adder_e

port (adder_reset
adder_clk
adder_A_bus
adder_B_bus
adderjgo
adder_sel
adderjdone
adder_C_bus

end component;

signal sys_clk,sys_reset, go, set, done: std_ulogic := '0';
signal A,B7 result : std_ulogic_vector(15 downto 0);

"0000000000000000"
:= "0000000000000001"; - +/- 1
)) := "0000000000000010"; - +/- 2

"0000000100000000"; - +/- 256
:= "1000000000000000"; - +/- 32K
"1111111111111111";-+/-65534

-+/-0

in std_ulogic;
in std_ulogic;
in std_ulogic_vector(15 downto 0);
in std_ulogic_vector(15 downto 0);
in std_ulogic;
in std_ulogic;
out std_ulogic;
out std_ulogic_vector(15 downto 0))

begin
U1: adder_e

PORT MAP (sys_reset,
sys elk,
A,
B,
go,
sei,
done,
result);

clock: process
begin

sys_clk <= not(sys_clk);
wait for 10 ps;

end process clock;

exercise: process
variable inputA inputB: std_ulogic_vector(15 downto 0);
begin

sys_reset <= '0';

ForiinOtol loop
-add or sub

CASE i IS
WHEN 0 => sei <= add;
WHEN 1 => sei <= sub;

END CASE;

for j in 0 to 9 loop
for I in 0 to 5 loop

-pick a test
CASE j IS

WHEN 0 => inputA := AtestOO;
WHEN 1 => inputA := AtestOI
WHEN 2 => inputA := Atest02;
WHEN 3 => inputA := Atest03;

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-10

WHEN 4
WHEN 5
WHEN 6
WHEN 7
WHEN 8
WHEN 9

END CASE;
CASE I IS

WHENO
WHEN1
WHEN 2
WHEN 3
WHEN 4
WHEN 5

END CASE;

=> inputA:
=> inputA:
=> inputA:
=> inputA:
=> inputA:
=> inputA:

=> inputB:
=> inputB:
=> inputB:
=> inputB:
=> inputB:
=> inputB:

<Atest04;
= Atest05;
= Atest06;
= Atest07;
:Atest08:
:Atest09;

■■ BtestOO:
= BtestOI
■■ Btest02
■■ Btest03
: BtesttM
■ Btest05

go <= '0';

wait until done = '0';

end loop;
end loop;

end loop;

FOR k IN 0 TO 15 loop
A(k) <= inputA(k);
B(k) <= inputB(k);

end loop;

wait until sys_clk'event and sys_clk='0';

go<=T;

wait until done-1';

go^'O1;

wait until sys.
wait until sys.
wait until sys.
wait until sys.
wait until sys.
wait until sys.
wait until sys.
wait until sys.
wait until sys.
wait until sys.
wait until sys.
wait until sys.
wait until sys.
wait until sys.
wait until sys.
wait until sys.
wait until sys.
wait until sys.

.clk'event
clk'event
clk'event
.clk'event
.clk'event
.clk'event
.clk'event
.clk'event
.clk'event
.clk'event
.clk'event
.clk'event
.clk'event
.clk'event
..clk'event
_clk'event
.clk'event
clk'event

and sys.
and sys.
and sys.
and sys.
and sys.
and sys.
and sys.
and sys.
and sys.
and sys.
and sys.
and sys.
and sys.
and sys.
and sys.
and sys.
and sys.
and sys.

clk='0'
clk='0'
clk='0';
clk='0'
clk='0'
clk='0'
clk='0'
clk='0'
clk='0'
clk='0'
clk='0';
clk='0'
clk='0'
clk='0'
clk='0'
clk='0'
clk='0'
clk='0'

ASSERT false
REPORT "DONE"
SEVERITY failure;

end process exercise;
end test;

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-11

CONFIGURATION adder_c OF adderjb IS
FOR test

FORALL:adder_e
USE ENTITY WORK.adder_e(behavior);

END FOR;
END FOR;

END adder c;

B.2.3 Adder/Subtractor Results

1000000

SYS_CLK

GO

SEL

DONE

O A(15:0)

t B(15:Ol

c> RESULT(15:0)

1! IT

0000

0000 0001 0002 0100

2000000 3000000 400001
! 1 I l

mmf^^^^^^^^^^^

~1\ L~ t

0001

BOOO FFFF 0000 0001 0002 = 010O j J

UUUU ! 0000 0001 0002 0100 8000 FFFF 0001 0002

5000000 6000000
ill i I ■- 1 I j—I ,. . I ..I.

7000000
iii 1 i i—1_

0003 i C

800000

SYS CLK

GO

SEL

DONE

t> A(15;0)

p- B{15:0)

J
0001 0002

8000 FFFF 0000 O0O1 0002 0100 B000 FFFF 0000 0001

> RESULT<15:0) ! 0101 8001 0000 | 0002 j 00O3 | 0004 j 0102 8002 0001 ä 0003 Of

9000000
i i L_i i_

10000000
_i. i i : i i i J.

11000000
_l I_J..

120000C

SYSjCLK

GO

SEL

DONE

Ef A(15:0}

c> B<15:0}

rn""^^^! i" n, T II r "j
i

c 0003 5555

0002 0100 8000 FFFF 0000 0001 0002 . 0100 | 8000 FFFF

•■:■- RESULT(15:0} ' 0004 0005 0103 8003 0002 5555 5556 5557 5655 'j D555

Of.

55

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-12

13000000 14000000
i ill < ii (L-~L-_1~-J „

15000000
„I l L_ I L.

1600000
j i„. i -1-

SYS_CtK

GO

SEL

DONE

A(15:0)

B(15:0)

Is

S
flunfän FFFE

0000 0001 0002 0100 8000 FFFF i 0000 ' 0001 0002 0100 ! 80

RESULT{15:0) 5554 AAAA AAAB MAC ABAA 2AAA AAA9 i FFFE FFFF 0000 ! OOF

17000000
_i i i I—i

leoooooo
I I A L I l_

19000000 2000000t

SYS_CLK

GO

SEL

DONE

A(15:0)

B(15:0)

T~J i r

> FFFE FRF

L

8000 FFFF OO00 0001 0002 0100 8000 FFFF O0O0 OO01 ooc

RESULT(15:0) 0OFEI 7FFE FFFD FF7F FFSO I FF81 | 007F 7F7F FF7E 7FFF 800

21000000
I ■ , J.J i I

22000000
, i I __

23000000 24000000

SYS_CLK

GO

SEL

DONE

A(15:0)

B(15:0)

w, äg?§i^^P^^^ÄS
*%&&&$&.

i __f.
7FFF FFFF

0002 0100 8000 FFFF 0000 0001 8000

RESULT{15:0) 8000 8001 80FF FFFF 7FFE FFFF

O0O? | 0100

0000 0001 OOFF

FFFF OOOi

7FFF FFFE

25000000
 I : JL _ I .--J. - -I.

26000000
i i i

27000000
I i

28000000
I I I L„l_L_

SYS_CLK

GO

SEL

DONE

A(15:0)

6(15:0)

RESULT{15:0)

1

i_ a
oooo 0001

0000! 0001 0002 0100 8000 FFFF 0000 0001 0002 i 0100 ; 800C

FF' 0-300 FFFF FFFE FFOO 8000 0001 0000 ! FFFF FF01

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-13

29000000 30000000 31000000 32000000

SYSJDLK

GO

SEL

DONE

A{15:0)

B{15:0)

„J._.„U „J. .1 ! -;_J..--L--i- _1 I 1 L_l_

mt MiStSS
-J I.

"J IT

0001 0002

RESULT(15:0) FF* 8001

SYS_CLK

GO

SEL

DONE

A(1S:0)

B(15:0)

8O0O FFFF | 0000 | 0001 0002

0002

0100

0001

8000 | FFFF 0000 ! 0001

0003

0002

0CXX) FFO? 8DD2 0002

33000000 34000000
 _J I i.... i >

35000000 3SOO0OOO
-J i I L_

pyy&li >$%£&
'<$&>&■

mmmmgm

0003 5555

00* I 0100 8000 FFFF >I 0000 ' 0001 j 0002 0100 8000 FFFF 0000

RESULTS 5:0> 00" 0001 FF03 8003 0004 555S 5554 5553 j 54SS D555 i 5556

37000000
J 1 i L

38000000 39000000 40000000
I I I I I I I I [I _ J_ _4__-JL.

SYS.CLK

GO

SEL

DONE

A<15:0)

B(15:0)

T?x*:W-^%:a^^

AAAA FFFE

00*! 0001~' 000? 0100 8000 FFFF ; 0000 0001 0002 \ 0100 | 8000

RESULT{15:0) 15' AAAA ~MAQ AAA3 | A9AA 2AAA AAAB FFFE FFFD FFFC FEFE

41000000
.. I I ; . I -I 1 L

42000000
 I ■ . i

43000000
__i i i.. .i. .

SYS_CLK

GO

SEL

DONE

A(15:0)

B{t5:0)

44000000
...I 1- I U—I

1
FFFE FF7F 7F

8' FFFF 0000 0001 0002 0100 8000 FFFF 0000 0001 i^J
RESULT(15:0) H 7FFE FFFF FF7F FF7E FF70 FE7F ' 7F7F | FF80 j 7FFF_ 7FFE

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-14

mmm
45000000
 ..._l L .. J.. -X 1 1 L

4€000000 47000000
i i i i L_i,._i.. J-.

fÄMÄSÄ

48000000

L-
SYS CLK

GO

SEL

DONE

&• A(15;0)

P B(15:0)

i> RESULT{15:0) *| 7FFD~"^£FFT7FFF 8000 ' FFFF FFFE | FFFD | FEFF | 7FFF [0000

I r ' ; I
7FFF FF

0*; 0100 8000 FFFF 0000 0001 0002 | C

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-15

B.3 Multipler Unit

B.3.1 Multiplier Model

■ Project:
- Filename:
-Otherfiles required:
-Date:
- Entity/Architecture Name:
■Developer
- Function:
- Limitations:
- History:
- Last Analyzed On:

Thesis
adder32.vhd

sept 30 97
adder32_e/behavior
Steve Parmley

library IEEE;
use IEEE.std_logic_1164.all;

entity adder32_e is
port (adder_reset

adder_clk
adder_A_bus
adder_B_bus
adderjjo
adder_sel
adder_done
adder_C_bus

end adder32_e;

architecture behavior of adder32_e is
Signal state: integer;
Signal Bxor: std_ulogic_vector(31 downto 0)
Signal Cout: std_ulogic_vector(31 downto 0);
Signal SUM: std_ulogic_vector(31 downto 0)

in std_ulogic;
in std_ulogic;
in std_ulogic_vector(31 downto 0);
in std_ulogic_vector(31 downto 0);
in std_ulogic;
in std_ulogic;
out std_ulogic;
out std_ulogic_vector(31 downto 0))

addsub: process

begin

wait until adder_clk'event and adder_clk=T;

if adder_reset = '1' then
state <= 0;

end if;

if adder_go = "T then

if state = 0 then
Bxor(0) <=
Bxor(1) <=
Bxor(2) <=
Bxor(3) <=
Bxor(4) <=
Bxor(5) <=
Bxor(6) <=
Bxor(7) <=
Bxor(8) <=
Bxor(9) <=
Bxor(10) <=

adder_B_bus(0) xor adder_sel;
adder_B_bus(1) xor adder_sel;
adder_B_bus(2) xor adder_sel;
adder_B_bus(3) xor adder_sel;
adder_B_bus(4) xor adder_sel;
adder_B_bus(5) xor adder_sel;
adder_B_bus(6) xor adder_sel;
adder_B_bus(7) xor adder_sel;
adderJ5_bus(8) xor adder_sel;
adder_B_bus(9) xor adder_sel;
= adder_B_bus(10) xor adder_sel;

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-16

Bxor(11) <= adder_B_bus(11) xor adder_sel;
Bxor(12) <= adder_B_bus(12) xor adder_sel;
Bxor(13) <= adder_B_bus(13) xor adder_sel;
Bxor(14) <= adder_B_bus(14) xor adder_sel;
Bxor(15) <= adder_B_bus(15) xor adder_sel;
Bxor(16) <= addeTB_bus(16) xor adder_sel;
Bxor(17) <= adder_B_bus(17) xor adder_sel;
Bxor(18) <= adder_B_bus(18) xor adder_sel;
Bxor(19) <= adder_B_bus(19) xor adderjsel;
Bxor(20) <= adder_B_bus(20) xor adder_sel;
Bxor(21) <= adder_B_bus(21) xor adder_sel;
Bxor(22) <= adder_B_bus(22) xor adder_sel;
Bxor(23) <= adder_B_bus(23) xor adder_sel;
Bxor(24) <= adder_B_bus(24) xor adder_sel;
Bxor(25) <= adder_B_bus(25) xor adder_sel;
Bxor(26) <= adder_B_bus(26) xor adder_sel;
Bxor(27) <= adder_B_bus(27) xor adder_sel;
Bxor(28) <= adder_B_bus(28) xor adder_sel;
Bxor(29) <= adder_B_bus(29) xor adder_sel;
Bxor(30) <= adder_B_bus(30) xor adder_sel;
Bxor(31) <= adder_B_bus(31) xor adder_sel;
state <=1;

filsif ststs -* i th©n
Cout(0) <= ((adder_A_bus(0) and Bxor(0)) or (adder_sel and (adder_A_bus(0) or Bxor(0))));
state <= state + 1;

elsif state = 2 then
SUM(state-2) <= ((adder_A_bus(state-2) and Bxor(state-2) and adder_sel) or ((adder_A_bus(state-2) or Bxor(state-2)

or adder_sel) and (not Cout(state-2))));
Cout(state-1) <= ((adder_A_bus(state-1) and Bxor(state-1)) or (Cout(state-2) and (adder_A_bus(state-1) or Bxor(state-

1))));
state <= state+1;

elsif state >= 3 and state <= 32 then
SUM(state-2) <= ((adder_A_bus(state-2) and Bxor(state-2) and Cout(state-3)) or ((adder_A_bus(state-2) or Bxor(state-

2) or Cout(state-3)) and (not Cout(state-2))));
Cout(state-1) <= ((adder_A_bus(state-1) and Bxor(state-1)) or (Cout(state-2) and (adder_A_bus(state-1) or Bxor(state-

D)));
state <= state+1;

filsif ststfi = 33 thfin
SUM(31) <= ((adder_A_bus(31) and Bxor(31) and Cout(30)) or ((adder_A_bus(31) or Bxor(31) or Cout(30)) and (not

Cout(31))));
state <= state+1;

elsif state = 34 then
adder_C_bus <= SUM;
adder_done <= '1';

end if;
else

adder_done <= '0';
state <= 0;

end if;

end process addsub;
end behavior;

• Project: Thesis
- Filename: mult.vhd
-Otherfiles required:
-Date: Oct10 97
■ Entity/muft_A_busrchitecture Name: mult32_e/behavior
■ Developer: Steve Parmley
- Function:
- Limitations:

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-17

- History:
-Last Analyzed On:

library IEEE;
use IEEE.std_logic_1164.all;

entity mult_e is
port (mult reset in std_ulogic;

mult elk in std_ulogic;
mult A bus in std_ulogic_vector(15 downto 0);

mult B bus in std_ulogic_vector(15 downto 0);

mult_go in std_ulogic;
mult done out std_ulogic;
mult_C_bus out std_ulogic_vector(15 downto 0));

end mul t_e;

architecture behavior of mult_e is

Signal state, state2: integer,
Signal result00,result01 ,result02,result03,result04,result05,resuft06,result07,

result08,result09,result10,result11 ,result12,result13,result14,result15
: std_ulogic_vector(31 downto 0);

signal sys_clk, sys_reset, go, sei, done: std_ulogic := '0';
signal AB, result : std_ulogic_vector(31 downto 0);

component adder32_e
port (adder_reset

adder_clk
adder_A_bus
adder_B_bus
adder_go
adder_sel
adder_done
adder_C_bus

end component;

in std_ulogic;
in std_ulogic;
in std_ulogic_vector(31 downto 0);
in std_ulogic_vector(31 downto 0);
in std_ulogic;
in std_ulogic;
out std_ulogic;
out std_ulogic_vector(31 downto 0))

U1: adder32_e
PORT MAP (sys_reset,

sys_clk,
A
B,
90,
sei,
done,
result);

sys_clk <= mult_clk;
sei <= '0';
sys_reset <= mutt_reset;

addsub: process

begin

wait until mult_clk'event and mult_clk='1';

ifmult_reset = '1'then
state <= 0;

end if;

if mult_go = Tthen

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-18

if state = 0 then
resultOO <= "OOOOOOOOOOOOOOXJOOOOOOOOOOOOOOOO'';
resultOI <= "00000(XXX)00000(X)0000000000000000";
result02 <= "00000000000000000000000000000000";
result03 <= "OOOOOOCWOOOOOOCXXXJOOOOOOOOOOOOOO";
result04 <= "0CJ00000CIO000CIO00000O000000000000";
result05 <= "OOOOOOOCXXXWfJOOOOOOOOOOOOOOOOOOO";
resultt» <= "00000000000000000000000000000000";
result07 <= "00000000000000000000000000000000";
resultt» <= "OOOOOOOOOOOCJOOCWOOOOOOOOOOOOOOOO";
resultt» <= "OOCJOOXJOOOOOOCIOOOOOCIOOOOOOOOOOOOO'';
resultIO <= "00000000000000000000000000000000";
resultH <= "CIO(XX)000(X)OC)OOOOOOOOC)OOC)00000000";
result12 <= "C)C)C)OC)OOOC)00000000000000000000000,';
resuK13 <= "OC)OC)()OOC)0000(XXXXXXX)000000000000'';
result14 <= "00000000000000000000000000000000";
resultl 5 <= "00000000000000000000000000000000";

state <=1;
elsif state = 1 then

for i in 0 to 15 loop
if murt_B_bus(i) = '1' then

case i is

end if;
end loop;
state <= 2;

when 0 => result00(15 downto 0) <= mult_A_bus;
when 1 => resurt01(16 downto 1) <= mult_A_bus;
when 2 => resurt02(17 downto 2) <= mult_A_bus;
when 3 => result03(18 downto 3) <= mult_A_bus ;
when 4 => result04(19 downto 4) <= murt_A_bus ;
when 5 => result05(20 downto 5) <= mult_A_bus;
when 6 => resurt06(21 downto 6) <= mult_A_bus;
when 7 => result07(22 downto 7) <= mult_A_bus;
when 8 => result08(23 downto 8) <= mult_A_bus;
when 9 => result09(24 downto 9) <= mult_A_bus;
when 10 => result10(25 downto 10) <= mult_A_bus ;
when 11 => resultl 1 (26 downto 11) <= mult_A_bus;
when 12 => result12(27 downto 12) <= mult_A_bus ;
when 13 => result13(28 downto 13) <= murt_A_bus;
when 14 => result14(29 downto 14) <= mult_A_bus ;
when 15 => resultl 5(30 downto 15) <= mult_A_bus;
when others =>

end case;

elsif state = 2 then
go<='0';
if done = '0'then

A <= resultOO;
B<= resultOI;
state <= 3;

end if;
elsif state = 3 then

go<=T;
if done = '1' then

state <= 4;
state2 <= 0;

end if;

elsif state >= 4 and state <= 15 then
if state2 = 0 then

go <= '0';
if done = '0" then

A <= result;

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-19

case state is
when 4 => B <= resuR02;
when 5 => B <= result03;
when 6 => B <= result04;
when 7 => B <= result05;
when 8 => B <= result06;
when 9 => B <= resutt07;
when 10 => B <= result08;
when 11 => B <= result09;
when 12 => B <= resultIO;
when 13 => B <= resultl 1
when 14 => B <= result12;
when 15 => B <= resultl 3;
when 16 => B <= result14;
when 17 => B <= result15;
when others =>

end case;
state2<=1;

end if;
elsif state2 = 1 then

go<=T;
ifdone = '1'then

state2 <= 0;
state <= state +1;

end if;
end if;

elsif state =18 then
mult_C_bus <= result(23 downto 8);
mult_done<=,1';

end if;
else

mult_done <= '0';
state <= 0;

end if;

end process addsub;
end behavior;

B.3.2 Multiplier Testbench

- Project:
- Filename:
- Other files required:
-Date:
- Entity/Architecture Name:
-Developer
- Function:
- Limitations:
- History:
-Last Analyzed On:

Thesis
adder32-bench.vhd

sept 30 97
adder32Jb/test
Steve Parmley

library IEEE;
use IEEE.std_logic_1164.all;

entity adder32Jb is
endadder32 tb;

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-20

architecture test of adder32_tb is

constant AtestOO : std_ulogic_vector(31 downto 0)
constant AtestOI: std_uTogic_vector(31 downto 0) :=
constant Atest02 : std_ulogic_vector(31 downto 0)
constant Atest03: std_ulogic_vector(31 downto 0) :=
constant Atest04 : std_ulogic_vector(31 downto 0)
constant Atest05: std_ulogic_vector(31 downto 0) :=
constant AtestOS : std_ulogic_vector(31 downto 0)
constant Atest07: std_uTogic_vector(31 downto 0) :=
constant Atest08 : std_ulogic_vector(31 downto 0)
constant Atest09: std_ulogic_vector(31 downto 0) :=

:= "OOOOOOOOOTJOOOOOOOOC10000000000000'
"00000000000000000000000000000001";
:= "0(XXX)000000000000000000000000010";
"OOOCKXXXXXXXI00000000000000000011"
= "01010101010101010101010101010101";
"10101010101010101010101010101010";
:= "11111111111111111111111111111110"
"11111111011111111111111101111111";
:= "01111111111111111111111111111111";
"11111111111111111111111111111111'

constant BtestOO : std_ulogic_vector(31 downto 0)
constant BtestOI : std_ulogic_vector(31 downto 0) :=
constant Btest02 : std_ulogic_vector(31 downto 0)
constant Btest03: std_ulogic_vector(31 downto 0) :=
constant Btest04 : std_ulogic_vector(31 downto 0)
constant Btest05: std_ulogic_vector(31 downto 0) :=

:= "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO";
"OOCKXXXXXX)C)00OOOOOOO0OO0OOOO00Or;
:= "000O000CJ0O0O00O0OO00OO000O0O0010";
"00000000000000000000000100000000";
:= "1(K)OC)OOOOOC)000000000000000000000";
"11111111111111111111111111111111";

constant add: std_ulogic := '0';
constant sub: std_ulogic := T;
component adder32_e

port (adder_reset
adder_clk
adder_A_bus
adder_B_bus
adderjjo
adder_sel
adder_done
adder_C_bus

end component;

in std_ulogic;
in std_ulogic;
in std_ulogic_vector(31 downto 0);
in std_ulogic_yector(31 downto 0);
in std_ulogic;
in std_ulogic;
out std_ulogic;
out std_ulogic_vector(31 downto 0));

signal sys_clk,sys_reset, go, sei, done: std_ulogic := '0';
signal A,B7 result : std_ulogic_vector(31 downto 0);

begin
U1 : adder32_e

PORT MAP (sys_reset,
sys_clk,
A
B,
go,
sei,
done,
result);

clock: process
begin

sys_clk <= not(sys_clk);
wait for 10ps;

end process clock;

exercise: process
variable inputA, inputB: std_ulogic_vector(31 downto 0);
begin

sys_reset <= '0';

For i in 0 to 1 loop
— add or sub

CASE i IS

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-21

WHEN 0 => sei <= add;
WHEN 1 => sei <= sub;

END CASE;

forjin0to9loop
for I in 0 to 5 loop

- pick a test
CASE j IS

WHEN 0 => inputA := AtestOO;
WHEN 1 => inputA := AtestOI
WHEN 2 => inputA := AtestCG;
WHEN 3 => inputA := Atest03;
WHEN 4 => inputA := Atest04;
WHEN 5 => inputA := Atest05;
WHEN 6 => inputA := Atest06;
WHEN 7 => inputA := Atest07;
WHEN 8 => inputA := Atest08;
WHEN 9 => inputA := Atest09;

END CASE;
CASE I IS

WHEN 0 => inputB := BtestOO;
WHEN 1 => inputB := BtestOI
WHEN 2 => inputB := Btest02;
WHEN 3 => inputB := Btest03;
WHEN 4 => inputB := Btest04;
WHEN 5 => inputB := Btest05;

END CASE;

go <='<>';

wait until done = '0';

FOR k IN 0 TO 31 loop
A(k) <= inputA(k);
B(k) <= inputB(k);

end loop;

wait until sys_clk'event and sys_clk='0';

go<=T;

wait until done =T;

end loop;
end loop;

end loop;

go <= '0';

wait until sys.
wait until sys.
wait until sys.
wait until sys.
wait until sys.
wait until sys.
wait until sys.
wait until sys.
wait until sys.
wait until sys.
wait until sys.
wait until sys.
wait until sys.

clk'event
.clk'event
.clk'event
.clk'event
.clk'event
.clk'event
.clk'event
.clk'event
.clk'event
.clk'event
.clk'event
.clk'event
clk'event

and sys.
and sys.
and sys.
and sys.
and sys.
and sys.
and sys.
and sys.
and sys.
and sys.
and sys.
and sys.
and sys.

clk='0';
clk='0';
clk='0';
clk='0';
clk='0';
clk='0';
clk='0';

_clk='0';
clk='0';
clk='0';
clk='0';
clk='0';
clk='0';

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-22

wait until sys_clk'event and sys_clk='0';
wait until sys_clk'event and sys_clk='0';
wait until sys_clk'event and sys_clk='0';
wait until sys_clk'event and sys_clk-0';
wait until sys_clk'event and sys_clk='0';

ASSERT false
REPORT "DONE"
SEVERITY failure;

end process exercise;
end test;

CONFIGURATION adder32_c OF adder32_tb IS
FOR test

FORALL:adder32_e
USE ENTITY WORK.adder32_e(behavior);

END FOR;
END FOR;

END adder32_c;

- Project: Thesis
- Filename: mult-bench.vhd
- Other files required:
-Date: oct10 97
- Entity/Architecture Name: multjb/test
-Developer: Steve Parmley
- Function:
- Limitations:
- History:
- Last Analyzed On:

library IEEE;
use IEEE.std_logic_1164.all;

entity multjb is
end multjtb;

architecture test of mult tb is

constant AtestOO :std_ulogic_vector(15downto0)
constant AtestOI: std_ulogic_vector(15 downto 0) :=
constant Atest02 :sTd_ulogic_vector(15 downto 0)
constant Atest03: std_ulogic_vector(15 downto 0) :=
constant Atest04 : std_ulogic_vector(15 downto 0)
constant Atest05: std_ulogic_vector(15 downto 0) :=
constant Atest06 : std_ulogic_vector(15 downto 0)
constant Atest07: std_ulogic_vector(15 downto 0) :=
constant Atest08 :std_ulogic_vector(15 downto 0)
constant Atest09: std_ulogic_vector(15 downto 0) :=

:= "0000000000000000"
"oorjoooooooooooor;
:= "0000000000000010"
"0000000000000011";
:= "0101010101010101"
"1010101010101010";
-"1111111111111110"
"1111111101111111";
:= "0111111111111111":
"1111111111111111"

constant
constant
constant
constant
constant
constant

BtestOO : std_ulogic_vector(15 downto 0) := "0000000000000000"; - +/- 0
BtestOI: std_uTogic_vector(15 downto 0) := "0000000000000001"; - +/-1
Btest02 : std_ulogic_vector(15 downto 0) := "0000000000000010";
Btest03: std_ulogic_vector(15 downto 0) := "0000000100000000"; ■
Btest04 : std_ulogic_vector(15 downto 0) := "1000000000000000'

-+/-2
+/-256
-+/-32K

Btest05: std_ulogic_vector(15 downto 0) := "1111111111111111"; - +/- 65534

constant add : std_ulogic := '0';

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-23

constant sub: std_ulogic := '1'
component mult_e

port (mult_reset in std_ulogic;
mult elk in std_ulogic;
mult A bus in std_ulogic_vector(15 downto 0);
mult B bus in std_ulogic_vector(15 downto 0);
multjgo in std_ulogic;
mult done out std_ulogic;
mult_C_biis out std_ulogic_vector(15 downto 0))

end component;

signal sys_clk,sys_reset, go, done: std_ulogic := '0';
signal A,B7result : std_ulogic_vector(15 downto 0);

begin
U1 : mult_e

PORT MAP (sys_reset,
sys_clk,
A,
B,
9°.
done,
result);

clock: process
begin

sys_clk <= not(sys_clk);
wait for 10 ps;

end process clock;

exercise process
variable inputA inputB : std_ulogic_vector(15 downto (

begin

sys_reset <= '0';

for j in 0 to 9 loop
for I in 0 to 5 loop

-pick a test
CASE j IS

WHEN 0 => inputA := AtestOO
WHEN 1 => inputA := AtestOI
WHEN 2 => inputA := Atest02
WHEN 3 => inputA := Atest03
WHEN 4 => inputA := AtesttM
WHEN 5 => inputA := Atest05
WHEN 6 => inputA := AtestOS
WHEN 7 => inputA := Atest07
WHEN 8 => inputA := Atest08
WHEN 9 => inputA := Atest09

END CASE;
CASE 1 IS

WHEN 0 => inputB := BtestOO
WHEN 1 => inputB := BtestOI
WHEN 2 => inputB := Btest02
WHEN 3 => inputB := Btest03
WHEN 4 => inputB := Btest04
WHEN 5 => inputB := Btest05

END CASE;

go <= '0';

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-24

wait until done = '0';

FOR k IN 0 TO 15 loop
A(k) <= inputA(k);
B(k) <= inputB(k);

end loop;

wait until sys_clk'event and sys_clk='0';

go<='1';

wait until done =T;

go <= '0';
end loop;

end loop;

wait until sys.
wait until sys.
wait until sys.
wait until sys.
wait until sys.
wait until sys.
wait until sys.
wait until sys.
wait until sys.
wait until sys.
wait until sys.
wait until sys.
wait until sys.
wait until sys.
wait until sys.
wait until sys.
wait until sys.
wait until sys.

.clk'event

.clk'event
clk'event
clk'event
.clk'event
.clk'event
..clk'event
.clk'event
..clk'event
.clk'event
.clk'event
.clk'event
.clk'event
.clk'event
.clk'event
.clk'event
.clk'event
clk'event

and sys.
and sys.
and sys.
and sys.
and sys.
and sys.
and sys.
and sys.
and sys.
and sys.
and sys.
and sys.
and sys.
and sys.
and sys.
and sys.
and sys.
and sys.

clk='0';
clk='0';
clk='0'
clk='0';
clk='0'
clk='0'
clk='0'
clk='0'
clk='0';
clk='0'
clk='0'
clk='0'
clk='0'
clk='0'
clk='0'
clk='0'
clk='0'
clk='0'

ASSERT false
REPORT "DONE"
SEVERITY failure;

end process exercise;
end test;

CONFIGURATION mult_c OF multjb IS
FOR test

FOR ALL: mult e
USE ENTITY WORK.mult__e(behavior);

END FOR;
END FOR;

END mult c;

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-25

B.3.3 Multiplier Results

(Adder32)

SYS_CLK

SYS_ME$£T

GO

S6L

DONE

► Afttfl)

*» RESULTS .-o)

4000000

1 1 1 1
00000000 0*j

00300000 00000001 00000002 | 00000100 80000000 FFFFFFFF oj

uuuuuuuu 00000000 0Q0OÖ0Q1 00000002 00000100 80000000 FJ

SVS_CtK

SYSJ*ESET

GO

set

DONE

*■ A<31;0)

*■ B^SUO)

► RESULTS ft)

£000000 8000000

i r r —1[— ! I

i i 1 L
00000001 °Ii

OOOOOOOO 0OO0OOO1 00000002 00000100 80000000 FFFFFFFF OJ

FFFFFFFF 00000001 00000002 | 00000003 j 00000101 80000001 Jso*

SYS.GLK

$YSJ»ESET

00

SEL

DONE

* A{31:05

► B(31:0)

*■ RE£ULTC31:0)

12000000

r r
00000002

00000000 00000001 00000002 0OOOO1O0 80000000

T

FFFFFFFF B
OOOOOOOO 00000002 00000003 00000004 00000102 80000002

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-26

SYSJXK

SYSJESET

GO

SEL

DONE

> A(31:0)

*• Ft£SULT(31:0)

i«oooooo

1
OOOOOQ03

oooooooo 00000001 00000002 00000100

00000001 00000003 00000904

55*

80000000 FFFFFfFF 80*

00000005 00000103 80000003 00*!

SYSJXK

SYSJIESFT

©0

SEL

GONE

► A(31:0)

+■ epi*)

* R£SUtTC3!:0)

00000000 00000001

20000000

5S5S5555

00000002 00000100 B00O0OO0

W!

FFFFFFFF 00*

00000002 I S555555S 55555556 S5SS5557j 5S5S565S 055SSSSS 55*1

SYSJ3LK

SYS„RESET

QO

SEL

OON£

► A(31;0)

► B{31;0)

► RESULTS m

00000000

24000000

AAAAMAA

0O0O0001 00000002 00000100

260Q0C

IFPI

80000000 FFFffFFF 00*!

555SSS54 MAAAAAA AAAAAAAB MMAMO AAAAABM | 2AAAAMA fAA'j

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-27

28000000

«V&JCUC

S¥5J£SET

<3Q

SEL

mm

8(31 $)

RESüLT(3l:D)

i—i-~nr

FFFFFFFI

oooooooo 00000001 00000002 OOOOOtOO

30000000

—r

IfF*

80000000 FFFFFFFF

JWüSJÜÜ^ | 00000000 OOOOQOFE j ^^FE f FF'.

8YS_CLK

SYS_HESET

GO

SEL

DOME

*■ A(3t;05

*■ S{31:0)

* RESUtT(3t:0)

34000000

IT

FFFFFFFD FF7FFF7F FF7FFFW FF7FFF81 FF8O0O7F 7F7FFF7F

36000000

SYS.CLK

SYS_HE§CT

GO

SEL

vom
P> Af31:0)

► 8(31:0)

*> flEStM-T(31«)

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-2o

SYS„CLK

SYS„RESET

00

SEL

DOME

P- B(31;0J

» R6SULT{3t;0)

42000000

~1 T" nr^nr

^FFPFgP§ FFFFFFFF

44000000 •6000000

ffFFFFFf jaOQOJ

r
FFFFFP 00WG0Q0 FFFFFFFF FFFFFFFE FFFFFFOO B0Q0MO0

50000000 saoooo

SYS_OK

8YSJ*ESET

GO

set

DONE

» R£5ULT{31.0)

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-29

56000000

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-30

68000000

[FFFFF| FF7FFF7F \ FF7FFRE | FFTFFFmJf^^^JZFrFFf7F lFF7F-TJ

FPGA Processor Implementation for the Forward Kinematics of the UMDH Arr D-31

80000000 82000000

SYS_OK

SY5J1ESET

GO

SEL

DONE

► AßlO)

+■ B{3t:0)

*• R£SULT(31:Q)

r ■ i i L-

i i J 1 I 1
FFFFFFFF j

00000* 00000001 00000002 00000100 80000000 FFFFFFFF |

80000* FFFFFFFF FFFFFFFE FFFFFFFD FFFFFEFF 7FFFFFFF [oOOjH

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-32

B.4 Register Unit

B.4.1 Register Model

- Project: Thesis
- Filename: reg_file_pkg.vhd
-Otherfiles required:
_ Date: sept 23 97
- Entity/Architecture Name: na
- Developer Steve Parmley

library IEEE;
use IEEE.std_logic_1164.all;

package reg_file_pkg is

subtype addr is integer range 31 downto 0;

end reg_file_pkg;

- Project: Thesis
- Filename: reg_file.vhd
- Other files required: reg file_pkg.vhd
-Date: sept 23 97
- Entity/Architecture Name: reg_file_e/behavior
-Developer Steve Parmley

library IEEE;
use IEEE.std_logic_1164.all;

use WORK.reg_file_pkg.all;

entity reg_f ile_e is
port (reg_file_reset

reg_file_clk
reg_file_C_bus
reg_file_C_regJatch
reg_file_C_reg_addr
reg_fiie_A_bus
reg_file_A_reg_addr
reg_file_B_bus
reg_file_B_reg_addr

end reg_file_e;

architecture behavior of reg_file_e is
begin

registers: process
subtype reg is std_utogic_vector(15 downto 0);
type bank is array(31 downto 0) of reg;
variable regs: bank;

begin

in std_ulogic;
in std_ulogic;
in std_ulogic_vector(15 downto 0)
in std_ulogic;
in addr;
out std_ulogic_vector(15 downto 0)
in addr;
out std ulogic_vector(15 downto 0)
in addr);

if reg_file_reset = '1' then
for index in 31 downto 2 loop

regs(index) := "0000000000000000"
end loop;

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-3 3

end if;

- force reg 0 and 1 to zero and one values
regs(O) := "0000000000000000";
regs(1) := "0000000100000000";

wait until (reg_file_clk'event and reg_file_clk-1');

- take care of write function first
ifregjile C regjatch = T then

~rf7reg_file_C_reg_addr = 0) or (reg_file_C_reg_addr = 1) then
- can not write to the zero and 1 registers

else
regs(reg_file_C_reg_addr) := reg_file_C_bus;

end if;
end if;

- now do A bus
reg_file_A_bus <= regs(reg_file_A_reg_addr);

- now do B bus
reg_file_B_bus <= regs(reg_file_B_reg_addr);

end process registers;
end behavior;

B.4.2 Register Testbench

- Project:
- Filename:
- Other files required:
-Date:
- Entity/Architecture Name:
-Developer

Thesis
regjile-bench.vhd
reg_file_pkg.vhd, reg_file.vhd
sept 23 97
reg_file_tb/test
Steve Parmley

library IEEE;
use IEEE.std_logic_1164.all;

use WORK.reg_flle_pkg.all;

entity reg_file_tb is
end reg_file_tb;

architecture test of reg_file_tb is

component reg_file_e
port (reg_file_reset

reg_file_clk
reg_file_C_bus
reg_file_C_reg_latch
reg_file_C_reg_addr
reg_file_A_bus
reg_file_A_reg_addr
reg_file_B_bus
reg_file_B_reg_addr

end component;

signal sys_reset, sys_clk: std_ulogic := '0';
signal bus_C, bus_A bus_B: std_ulogic_vector(15 dcwntoO);
signal reg_addr_A reg_addr_B, reg_addr_C: addr;
signal reg_latch_C: std_ulogic;

in std_ulogic;
in std_ulogic;
in std_ulogic_vector(15 downto 0)
in std_ulogic;
in addr;
out std_ulogic_vector(15 downto 0)
in addr;
out std ulogic_vector(15 downto 0)
in addr);

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-34

begin
IM: reg_file_e

PORT MAP (sysjeset,
sys_clk,
bus_C,
reg_latch_C,
reg_addr_C,
bus_A,
reg_addr_A,
bus_B,
reg_addr_B);

clock: process
begin

sys_clk <= not(sys_clk);
wait for 10 ps;

end process clock;

rst: process
begin

sys_reset <= '1';
wait for 5 ps;
sysjeset <= '0';
waiTfor 15000 ps;

end process rst;

exercise: process
begin

reg_latch_C <= '0';
bus_C <='
reg_addr_A<=15;
reg_addr_B <= 15;
reg_addr_C <= 0;
wait until sys_clk'event and sys_clk -0';

- verify that all regs are clear (except for zero regs 0 and 1)
for i in 31 downto 0 loop

reg_addr_A <= i;
- get B in reverse order to show dual bus works
reg_addr_B<=31-i;
wait until sys_clk'event and sys_clk ='0';

end loop;

reg_addr_A<=15;
regIaddr_B <= 15;
reg_addr_C<=15;

wait until sys_clk'event and sys_clk ='0'
wait until sys_clk'event and sys_clk ='0':
wait until sys_clk'event and sys_clk ='0'

- write some info to the regs
reg_addr C <= 0;
bus_C «= "0100000000000001";
wait until sys_clk'event and sys_clk ='0';
reg_latch_C<=T;
wait until sys_clk'event and sys_clk ='0';
reg_latch_C <= '0';

reg addr_C<=1;
bus_C <= "0100000000000010";
wait until sys_clk'event and sys_clk ='0';
reg_latch_C<='1';

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-3 5

wait until sys_clk'event and sys_clk ='0';
reg_latch_C <= '0';

reg_addr_C <= 2;
bus_C <= "0100000000000011";
waifuntil sys_clk'event and sys_clk -0';
reg_latch_C<='1';
waituntil sys_clk'event and sys_clk ='0';
reg_latch_C <= '0';

reg_addr_C <= 3;
bus_C <= "0100000000000100";
wait until sys_clk'event and sys_clk ='0';
reg_latch_C <= '1';
wait until sys_clk'event and sys_clk ='0';
reg_latch_C <= '0';

reg_addr_C <= 4;
bus_C <= "0100000000000101";
wait until sys_clk'event and sys_clk ='0';
reg_latch_C<='1';
wait until sys_clk'event and sys_clk ='0';
reg_latch_C <= '0';

reg_addr C<=5;
bus_C <= "0100000000000110";
wait until sys_clk'event and sys_clk -0';
reg_latch_C <= T;
wait until sys_clk'euent and sys_clk ='0';
reg_latch_C <= 'ff;

reg_addr_C <= 6;
bus_C <= "0100000000000111";
wait until sys_clk'event and sys_clk ='0';
reg_latch_C<='1';
wait until sys_clk'event and sys_clk ='0';
regJatch_C<='0';

reg_addr_C <= 7;
bus_C <= "0100000000001000";
wait until sys_clk'event and sys_clk ='0';
reg_latch_C<=T;
wait until sys_clk'event and sys_clk ='0';
regJatch_C<='0';

reg_addr_C <= 8;
bus_C <= "0100000000001001";
wait until sys_clk'event and sys_clk ='0';
reg_latch_C<=T;
wait until sys_clk'event and sys_clk ='0';
reg_latch_C <= '0';

reg_addr C <- 9;
bus_C <= "0100000000001010";
wait until sys_clk'event and sys_clk ='01;
regJatch_C«'1';
wait until sys_clk'event and sys_clk -0';
reg_latch_C <= '0';

reg addr_C<=10;
bus_C <= "0100000000001011";
wait until sys_clk'event and sys_clk ='0';
reg_latch_C<='1';
wait until sys_clk'event and sys_clk -0';
reg_latch_C <= '0';

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-36

reg_addr C<=11;
bus_C <= "0100000000001100";
wait until sys_clk'event and sys_clk -0';
reg_latch_C <= T;
wait until sys_clk'event and sys_clk ='0';
reg_latch_C <= '0';

reg_addr_C <= 12;
bus_C <= "0100000000001101";
wait until sys_clk'event and sys_clk ='0';
reg_latch_C <= '1';
wait until sys_clk'event and sys_clk ='0';
reg_latch_C <= '0';

reg_addr_C <= 13;
bus_C <= "0100000000001110";
wait until sys_clk'event and sys_clk ='0';
reg_latch_C <= '1';
wait until sys_clk'event and sys_clk ='0';
reg_latch_C <= '0';

reguaddr_C <= 14;
bus_C <= "0100000000001111";
wait until sys_clk'event and sys_clk ='0';
reg_latch_C<=T;
wait until sys_clk'event and sys_clk ='0';
reg_latch_C <= '0';

reg_addr_C<=15;
bus_C <= "0100000000010000";
wait until sys_clk'event and sys_clk ='0';
regJatch_C <= T;
wait until sys_clk'event and sys_clk -0';
reg_latch_C <= '0';

reg_addr_C <= 16;
bus_C <= "1000000000000001";
wait until sys_clk'event and sys_clk -0';
teg_latch_C <= '1';
wait until sys_clk'event and sys_clk -0';
reg_latch_C <= '0';

reg_addr C<=17;
bus_C <= "1000000000000010";
wait until sys_clk'event and sys_clk ='0';
reg_latch_C<=T;
wait until sys_clk'event and sys_clk ='0';
reg_latch_C <= '0';

reg addr C<=18;
bus_C <= "1000000000000011";
wait until sys_clk'event and sys_clk ='0';
reg_latch_C<='1';
wait until sys_clk'event and sys_clk ='0';
regJatch_C <= '0';

reg_addr_C <= 19;
bus_C <= "1000000000000100";
wait until sys_clk'event and sys_clk ='0';
reg_latch_C<=T;
waiTuntil sys_clk'event and sys_clk ='0';
reg_latch_C <= '0';

reg_addr_C <= 20;

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-37

bus_C <= "1000000000000101";
waiTuntil sys_clk'event and sys_clk ='0';
reg_latch_C <= '1';
waiTuntil sys_clk'event and sys_clk ='0';
n3g_lalch_C <= '0';

reg_addr_C<=21;
bus_C <= "1000000000000110";
wait until sys_clk'event and sys_clk ='0';
reg_latch_C<=T;
waiTuntil sys_clk'event and sys_clk ='0';
reg_latch_C<='0';

reg_addr_C <= 22;
bus_C <= "1000000000000111";
wait until sys_clk'event and sys_clk -0';
reg_latch_C <= '1';
wait until sys_clk'event and sys_clk -0';
reg_latch_C <= '0';

reg_addr_C <= 23;
bus_C <= "1000000000001000";
wait until sys_clk'event and sys_clk ='0';
reg_latch_C <= '1';
wait until sys_clk'event and sys_clk -0';
reg_latch_C <= '0';

reg_addr_C <= 24;
bus_C <= "1000000000001001";
wait until sys_clk'event and sys_clk ='0';
reg_latch_C<=,1';
wait until sys_clk'event and sys_.dk ='0';
regJatch_C <= '0';

reg_addr_C <= 25;
bus_C <= "1000000000001010";
wait until sys_clk'event and sys_clk -0';
reg_latch_C <= '1';
wait until sys_clk'event and sys_clk -0';
negJatch.C^'O';

regL_addr_C <= 26;
bus_C <= "1000000000001011";
wait until sys_clk'event and sys_clk ='0';
reg_latch_C<=T;
wait until sys_clk'event and sys_clk ='0';
rea_latch_C <= '0';

regL_addr_C <= 27;
bus_C <= "1000000000001100";
wait until sys_clk'event and sys_clk ='0';
reg_latch_C <= '1';
wait until sys_clk'event and sys_clk -0';
reg_latch_C <= '0';

reguaddr_C <= 28;
bus_C <= "1000000000001101";
waiTuntil sys_clk'event and sys_dk ='0';
reg_latch_C<='1';
wait until sys_clk'event and sys_clk ='0';
reg_latch_C <= '0';

reg_addr_C <= 29;
bus_C <= "1000000000001110";
wait until sys_clk'event and sys_clk -0';

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-3 8

reg_latch_C <= '1';
waituntil sys_clk'event and sys_clk ='0';
reg_latch_C <= '0';

reg_addr_C <= 30;
bus_C <= "1000000000001111";
wait until sys_clk'event and sys_clk - 0";
reg_latch_C<=T;
wait until sys_clk'event and sys_clk ='0';
reg_latch_C <= '0';

reg_addr_C<=31;
bus_C <= "1000000000010000";
waifuntil sys_clk'event and sys_clk ='0';
reg_latch_C <= T;
wait until sys_clk'event and sys_clk ='0';
reg_latch_C <= '0';

reg_addr_C <= 15;
wait until sys_clk,event and sys_clk ='0';
wait until sys_clk'event and sys_clk -0'
wait until sys_clk'event and sys_clk ='0'

- verify that all regs are correct (except for zero regs 5 and 6)
for i in 31 downto 0 loop

reg_addr_A <= i;
reg_addr_B <= 31-i;
wait until sys_clk'event and sys_clk -0';

end loop;

wait until sys_clk'event and sys_clk -1';

ASSERT false
REPORT "DONE"
SEVERITY failure;

end process exercise;
end test;

CONFIGURATION reg_file_c OF reg_file_tb IS
FOR test

FOR ALL: reg file_e
USE ENTITY WORK.reg_file_e(behavior);

END FOR;
END FOR;

END reg_file_c;

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-3 9

B.4.3 Register Results

$YS_RESET

SYS_CLK

t- BUS_C{15:0)

p.- BUS_A.(t5:0J

E> BUS.J(1S:0)

REQ_AOOn„A

REGJU50R3

REG..ADDR_C

REG..LATCH..C

j UHU" i

[uuMoaar-oioo;-

X5- 3t I 30 ; <®
. '.i I

iis! 0 ' 1 2

100000
... . i -.1... ..' . .a

200000

ziiz
oooo

aooooo

] n r

oooa

23

3

27

4

26 j ZS

5 ; 6

24

7

S3

9

22 j 21

9

20 i 1&
 .j. .

10 i It j 1? j 13 |14 j 15

1« I 17 ! 16 j IS

16
..! .

I

400000 500000 600000
...L.....J. . . \ !.....£ .,,1. „..1- „.!.. ~.\:.,

SYS .RESET
! 1 j SYS_CLK n ' ■ r

.. .1 ! !... J n n [1 !" j i
r '"I t—

LI ll
ft- 8US„,C(1£:0j L ...„.„

:- ••-•■•-.- ----- .---
00»

zzzz

fr BUSJW&O) joioo]

{>• BUS_B(15:0} \ 00» , , ... ,_

REG_AJ>OH.A jisi M 13 12 ft 10 9 \ e ; 7 ; 6 : 5 j A \ 3 ; a 1 j 0

BEO..AODRB he; i7 ie !9 20 21 22 ; 23 ■. 2*
S 25 : 26 !
i .. .„ !

27 ! Zfi ; ?9 30 ! 31

ft£G...AO0ft„.C 0

REG_LATCH_C

700000 800000 900000
. ,...i ;

SYS_.ftESET

yTTT Tin \ * 1 F"l
I I i TO SYS_OLK.

n :
.It!

"; !'\ i j | [

fr BUS,G((5ü)

r> BUS_A{15:0)

i -i._
4001 j 40O2 ! 4003 4004 4005 ; 4006

0000

C- BilS„.P{15:0) 0000

RiO..ADPR.A 15

REG A0PR.B

1 ! z 3 4

is

REO_AODR_C '5 I 0 | 1 s

REO_lATCH_C
i. j l i

 J
j i

! 1

1000000

4007 400»

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-40

sYsjF?eser

SYS_CLK

i> BUS„C(1S;0)

?:; BL»S.AC15::0)

P- BUS_,a{15:0}

REGAPPR.,A

REG.ADW B

RES_LATCH_C

SYS..RESET

SYS.,CLK

i> BUS_Cf150)

i> BÜS_Af15:0)

&■ 6US_B05:&}

R£G_ADDR..A

R£G_ADDRJB

REG .AOOft.C

HEG.XATCH.C

SYS_RESET

SVS.CLK

i> BUS_G(15:0)

> BtfS_A(t5«)

!> BUS .0(15«)

REG.ADDR.A

F.EG ADfJfijS

REG..ADDR,=.C

REG„LATCH,.C

i*Q08' 4003

iiooooo

400A

14Ö0Q00

eoai 8002

16 17

1700000

120QÜ00
1 ,

1300*00

m ' 4COC j 400D 400E
.llliJi

«OF] 401

0000

0000
 __„.. ._

15

15

10 11 IS

1S0O0ÖÖ

.,,....,.......-—.....—,-.....!....
13 14 .1 * 1

I ! .! 1 1 L
1600000
 1...1 ..- .<.

170

8003 aood 8Q05 8006 800?

4010

soo* 800*

16 19 »

4010

15

15

21 } 22 23 24

1800000 1900000 zoooaoo

i8009! 8ÖOA 8Ö06 80QC 8000

54 25 26 Z7 aa

I 8Q0£

4010

4010

15

15

29

aooF
j L..I 1 i | j

30 31

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-41

2100000
.. .. l - - -

2200000 2360000

SYS..RESET

SYS„CLK

!> BUS_.WS:0)

r* BUS„B(1S;0)

HEG_ADDR_A

REG_ADOT_B

REGAODfl C

HEG„.LATCH_C

$YS„RESET

SVS_CLK

t> BÜS,_C{15:Ö)

F> BUS,J3(15:OJ

HEG„ADÖFLA

REG.ADOfLB

REG.ADDR...C

BEQ.,LATCH.C

j_..

ZZZ2

" «10 [»10 »OF BÖGE B00O WQCl«>0B 80OA 8009 WB BOO? «X» »05 «KM 8003 BOG? »

'' ;;;" ' 3!] 30 ! 29 I 28 ; 27" 26 ''» j 24 j 23 j 22 r 21 j 20 \ 19 ; 18 j 17 } 16 ;

0 i 1 I t 3 ' 1 ' 5 T 6 | T | 9 I 9 ; » j_" ! « I13 l ,4 I 1S i
IS

15

2400000 3500000 2600000 27O00

I i

Z22Z

Pf'is": «yw'Ti?'i n'| io'j 5 M ? ; « ' & ; 4 j 3...[. s L'._.L.0 - i
•'« 1$' ""tV 1 IS ' 19 '< 20 i 21 I n • &3 ' 24 i 25 : 26 2? \ 2« : 2« . 3° L31.. I

,:'v : 15 ;

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-42

B.5 Latch

B.5.1 Latch Model

- Project: Thesis
- Filename: latch.vhd
- Other files required:
-Date: Oct17 97
- Entity/A_busrch'rtecture Name: latch_e/behavior
-Developer Steve Parmtey
- Function:
- Limitations:
— History:
-Last Analyzed On:

library IEEE;
use IEEE.std_logic_1164.all;

entity latch_e is
port (latch_en in

latch_A_bus in
latch_0_bus out

end latch_e;

architecture behavior of latch_e is
begin

latch: process (latch_en, latch_A_bus)
begin

if latch_en = '1' then
latch_0_bus <= latch_A_bus;

end if;
end process latch;
end behavior;

std_ulogic;
std_ulogic_vector(15 downto 0);
std_ulogic_vector(15 downto 0));

B.5.2 Latch Testbench

- Project:
- Filename:
- Other files required:
-Date:
- Entity/Architecture Name:
-Developer:
- Function:
- Limitations:
- History:
-Last Analyzed On:

Thesis
mux4_1 -bench, vhd

Oct 17 97
mux4_1_tb/test
Steve Parmley

library IEEE;
use IEEE.std_logic_1164.all;

entity latchjb is
end latchjb;

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-43

architecture test of latchjb is

constant AtestO : std uiogic_vector(15 downto 0) := "0000000000000000";
constant Atestl : std_uiögic_vector(15 downto 0):= "0101010101010101";
constant Atest2 : std_ulogic_vector(15 downto 0):= "1111111111111111";
constant Atest3 :std ulogic vector(15 downto 0):= "1010101010101010";

component latch_e
port (latchjen

latch_A_bus
latch_0_bus

end component;

in std_uiogic;
in std_ulogic_vector(15 downto 0);
out std2ulogic_vector(15 downto 0));

signal en
signal A,0

begin
U1 : latch_e

PORT MAP (en,

: std_ulogic := '0';
: std_ulogic_vector(15 downto 0);

A,
O);

exercise: process
begin

wait for 5 ps;

For j in 0 to 3 loop

CASE j is
WHEN 0 => A <= AtestO;
WHEN 1=> A <= Atestl
WHEN2=>A<=Atest2;
WHEN3=>A<=Atest3;

end CASE;

wait for 5 ps;

en <= '1';

wait for 5 ps;

en <= '0';

wait for 20 ps;

end loop;

ASSERT false
REPORT "DONE"
SEVERITY failure;

end process exercise;
end test;

CONFIGURATION latch_c OF latchjb IS
FOR test

FORALL:latch_e
USE ENTITY WORK.Iatch_e(behavior);

END FOR;
END FOR;

END latch c;

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-44

B.5.3 Latch Results

0 50000 100000

EN | ; I r J

> A(15:0) !uu* 0000 5555 FFFF AAAA

£> 0(15:0) ! uuuu! 0000 | 5555
I

... I FFFF AAAA

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-45

B,6 Multiplexor

B.6.1 Multiplexor Model

- Project: Thesis
- Filename: mux4_1.vhd
- Other files required:
-Date: Oct 17 97
- Entity/A busrchitecture Name mux4_1. e/behavior
-Developer Steve Parmley
— Function:
— Limitations:
- History:
-Last Analyzed On:

library IEEE;
use IEEE.std_logic_1164.all;

entity mux4_1_e is
port (mux elk in std_ulogic;

mux sei in std_ulogic_vector(1 downto 0);
mux A bus in std_ulogic_vector(15 downto 0);
mux B bus in std_ulogic_vector(15 downto 0);
mux C bus in std_ulogic_vector(15 downto 0);
mux D bus in std_ulogic_vector(15 downto 0);
mux_0_bus out std_ulogic_vector(15 downto 0))

end mux4_1_e;

architecture behavior of mux4_1 eis
begin

mux: process
begin
wait until mux_clk'event and mux_clk-1';
case mux_sel is

when "00" => mux_0_bus <= mux_A_bus;
when "01" => mux_0_bus <= mux_B_bus;
when "10" => mux_0_bus <= mux_C_bus;
when "11" => mux_0_bus <= mux_D_bus;
when others => mux_0_bus <= mux_A_bus;

end case;
end process mux;

end behavior;

B.6.2 Multiplexor Testbench

-Project:
- Filename:
- Other files required:
-Date:
- Entity/Architecture Name:
-Developer:
- Function:
- Limitations:
- History.
-Last Analyzed On:

Thesis
mux4_1-bench.vhd

Oct 17 97
mux4_1Jb/test
Steve Parmley

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-46

library IEEE;
use IEEE.std_logic_1164.all;

entity mux4_1_tb is
end mux4_1_tb;

architecture test of mux4 1_tbis

constant AtestO :std_ulogic_vector(15downto0)
constant BtestO :std_ulogic_vector(15downto0):=
constant aestO :std_ulogic_vector(15downto0)
constant DtestO : std_ulogic_vector(15 downto 0) :=
constant Atestl :std_ulogic_vector(15 downto 0)
constant Btestl : std_ulogic_vector(15 downto 0)
constant Ctesrl : std_ulogic_vector(15 downto 0)
constant Dtestl :std_ulogic_vector(15 downto 0):=

constant A_sel: std_ulogic_vector := "00"
constant B_sel: std_ulogic_vector := "01"
constant C_sel:std_ulogic_vector:="10'
constant D_sel: std_ulogic_vector := "11'

component mux4_1_e
port (mux_clk

mux_sel
mux_A_bus
mux_B_bus
mux_C_bus
mux_D_bus
mux_0_bus

end component;

signal sei : std_ulogic_vector(1 downto 0) := "11"
signal A,B,C,D,0 : std_ulogic_vector(15 downto 0);
signal sys_clk : std_ulogic := '0';

:= "0000000000000000";
"0101010101010101";
:= "1111111111111111
"1010101010101010";
:= "0000111100001111
"1111000011110000";
:= "1100110011001100";
"0011001100110011";

in std_ulogic;
in std_ulogic_
in std_ulogic_
in std_ulogic_
in std_ulogic.
in std_ulogic_
out std_ulogic.

vector(1 downto 0);
vector(15 downto 0);
vector(15 downto 0)
vector(15 downto 0)
vector(15 downto 0)
_vector(15 downto 0))

begin
U1: mux4_1 e

PORT MAP (sys_clk,
sei,
A
B,
C,
D,
O);

clock: process
begin

sys_clk <= not(sys_clk);
wait for 10 ps;

end process clock;

exercise: process
begin

wait for 20 ps;

ForjinOtol loop

CASE j is
WHEN 0=> A «AtestO;

B <= BtestO;
C <= CtestO;

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-47

D <= DtestO;
WHEN1=>A<=Atest1;

B<=Btest1;
C<=Ctest1;
D<=Dtest1;

end CASE;

For i in 0 to 3 loop
CASE i IS

WHENO=>sel<=A_sel;
WHEN 1 => sei <= B_sel;
WHEN 2 => sel<= Cjsel;
WHEN 3 => sei <= D_sel;

END CASE;

end loop;
end loop;

wait until sys_clk'event and sys_clk = '1';

ASSERT false
REPORT "DONE-
SEVERITY failure;

end process exercise;
end test;

CONFIGURATION mux4_1_c OF mux4_1_tb IS
FOR test

FOR ALL: mux4_1_e
USE ENTITY WORK.mux4_1_e(behavior);

END FOR;
END FOR;

END mux4_1_c;

B.6.3 Multiplexor Results

0 50000
i i i i i I > i > ' i „i.- -j

L00000
i i

t> SEL(1:0) 3 j 0 t | 2 3 0 1 2 3

> A(15:0) UU* 0000 OFOF

P> B(15:0) uu* 5555 FO FO

CC t> C(15:0) uu* FFFF CC

E> D(15:0)

> 0(15:0)

UU*

uu*: 0000

AAAA

5555 FFFF AAAA OFOF

3333

FOFO j CCCC 3333

FPGA Processor Implementation for the Forward Kinematics of the UMDH AP" B-48

B.7 FKP Core

B.7.1 FKP Core Model

- Project:
- Filename:
-Otherfiles required:
-Date:
■ Entity/Architecture Name:
■ Developer.
- Function:
- Limitations:
- History:
-Last Analyzed On:

library IEEE;
use IEEE.std_logic_1164.all;

use WORK.reg_filej5kg.all;

Thesis
fkp_core_core.vhd
all FKP files
Oct17 97
fkp_core_e/behavior
Steve Parmley

entity fkp_core_e is
port (fkp_core_clk

fkp_core_reset
fkp_core_data_in
fkp_core_data_out
fkp_core_data_in_latch
fl^_a>re_data_outJatch
fkp_core_c_reg_latch
fkp_core_c_reg_addr
fkp_core_a_reg_addr
fkp_core_b_reg_addr
fkp_core_cos_sin_ready
fkp_core_cos_sin_go
fkp_core_cos_sin_sel
fkp_core_cos_sin_vrait
fkp_core_rorn_addr
fkp_core_rom_data
fkp_core_adder_go
fkp_core_adder_sel
fkp_core_adder_done
fkp_core_mult_go
fkp_core_mult_done
fkp_core_mux_sel

end fkp_core_e;

architecture structural of fkp_core_e is

-SIGNALS
signal cos_sin_to_mux, adder_to_mux, mult_to_mux, data_in_to_mux: std_ulogic_vector(15 downto 0);
signal mux_to_regs, A_bus, B_bus : std_ulogic_vector(15 downto 0);

in std_ulogic;
in std_ulogic;
in std_ulogic_vector{15 downto 0);
out std_ulogic_vector(15 downto 0);

: m std_ulogic;
; in std_ulogic;

in std_ulogic;
in addr;
in addr;
in addr;
out stdjjlogic;
in std_ulogic;
in std_ulogic;
in std_ulogic_vector(2 downto 0);
out std_ulogic_vector(12 downto 0);
in std_ulogic_vector(15 downto 0);
in std_ulogic;
in std_ulogic;
out std_ulogic;
in std_ulogic;
out std_ulogic;
in std_ulogic_vector(1 downto 0));

-COMPONENTS
component adder_e

port (adder_reset
adder_clk
adder_A_bus
adder_B_bus
adderjgo
adder sei

in std_ulogic;
in std_ulogic;
in std_ulogic_vector(15 downto 0)
in std_ulogic_vector(15 downto 0)
in std_ulogic;
in std_ulogic;

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-49

adder_done out stdjjlogic;
adder_C_bus out stdjilogic_vector(15 downto 0));

end component;

component mult_e
port (mult_reset 1 n std_ ulogic;

mult_clk : i n std_ulogic;
mult_A_bus in std_ulogic_vector(15 downto 0);
mult_B_bus in std_ulogic_vector(15 downto 0);
mult_go in std_ulogic;
mult_done out stdjjlogic;
mult_C_bus out std_ulogic_vector(15 downto 0));

end component;

component cos_sin_e
port (cos_sin_reset: n std_ ulogic;

cos_sin_clk in std_ulogic;
cos_sin_A_bus in std_ulogic_vector(15 downto 0);
cos_sin_go in std_ulogic;
cos_sin_sel in stdjjlogic;
cos_sin_wa'it in std_ulogic_vector(2 downto 0);
cos_sin_ready out std_ulogic;
cos sin_C_bus out std_ulogic_vector(15 downto 0);

- the following describes the connection to the rom
cos_sin_rom_addr: out std_ulogic_vector(12 downto 0);
cos~sin_rom_data: in std_ulogic_vector(15 downto 0));

end component;

component reg_file_e
port (reg_file_reset

reg_file_clk
reg_file_C_bus
reg_file_C_reg_latch
reg_file_C_reg_addr
reg_file_A_bus
reg_file_A_reg_addr
reg_file_B_bus
reg_file_B_reg_addr

end component;

in stdjjlogic;
in stdjjlogic;
in std_ulogic_vector(15 downto 0)
in std ulogic;
in addr;
out stdjiiogicj/ector(15 downto 0)
in addr;
out std ulogic vector(15 downto 0)
in addr);

component latch_e
port (latchjsn

latch_A_bus
latchjD_bus

end component;

component mux4_1_e
port (mux_clk

mux_sel
mux_A_bus
muxjB_bus
mux_C_bus
mux_D_bus
mux_0_bus

end component;

stdjjlogic;
stdjjlogic_vector(15 downto 0);

vector(1 downto 0);
vector(15 downto 0);
.vector(15 downto 0):
vector(15 downto 0)
vector(15 downto 0);
yector(15 downto 0))

in stdjjlogic.
out stdjjlogic.

in stdjjlogic;
in stdjjlogic.
in stdjjlogic.
in stdjjlogic.
in stdjjlogic.
in stdjjlogic.
out stdjjlogic.

begin
U_adder_1: adder_e

PORT MAP (fkpjxirejeset,
fkp_core_clk,
A_bus,
B_bus,
fkp_core_adderjgo,
fkp_core_adderj5el,

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-50

fkp_core_adder_done,
adder_to_mux);

U_mult_1: mult_e
PORT MAP (fkp_core_reset,

fkp_core_clk,
A_bus,
B_bus,
fkp_core_multjgo,
fkp_core_mult_done,
mult_to_mux);

U_cos_sin_1: cos_Sin_e
PORT MAP (fkp_core_reset,

fkp_core_clk,
A_bus,
fkp_core_cos_sin_go,
fkp_core_cos_sin_sel,
fkp_core_cos_sin_wait,
fkp_core_cos_sin_ready,
cos_sin_to_mux,
fkp_core_rom_addr,
fkp_core_rom_data);

U_reg_file_1: reg_file_e
PORT MAP (fkp_core_reset,

fkp_core_clk,
mux_to_regs,
fkp_core_c_reg_latch,
fkp_core_c_reg_addr,
A_bus,
fkp_core_a_reg_addr,
B_bus,
fkp_core_b_reg_addr);

U mux4_1_1 : mux4_1_e
PORT MAP (fkp_core_clk,

fkp_core_mux_sel,
cos_3in_to_mux,
adder_to_mux,
mult_to_mux,
data_in_to_mux,
mux_to_regs);

UJatchJn: latch_e
PORTMAP (fkp_cote_dataJn_latch,

fkp_core_data_in,
data_in_to_mux);

UJatch_out: latch_e
PORT MAP (fkp_core_data_out_latch,

B_bus,
fkp_core_data_out);

end structural;

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-51

B.7.2 FKP Core Testbench

- Project:
- Filename:
- Other files required:
-Date:
- Entity/Architecture Name:
-Developer:

Thesis
fkp_core-bench.vhd
fkp_core.vhd
Oct20 97
fkp_core_tb/test
Steve Parmley

library IEEE;
use IEEE.std_logic_1164.all;

use WORK.reg_file_pkg.all;

entity fkp_core_tb is
end fkp_core_tb;

architecture test of fkp_core_tb is

component fkp_core_e
port (fkp_core_clk

fkp_core_reset
fkp_core_data_in
fkp_core_data_out
fkp_core_data_in_latch
fkp_core_data_oüt_latch
fkp_core_c_reg_latch
fkp_core_c_reg_addr
fkp_core_a_reg_addr
fkp_core_b_reg_addr
fkp_core_cos_sin_ready
fkp_core_cos_sin_go
fkp_core_cos_sin_sel
fkp_core_cos_sin_wait
fkp_core_rom_addr
fkp_core_rom_data
fkp_core_adderjjo
fkp_core_adder_sel
fkp_core_adder_done
fkp_core_mult_go
fkp_core_mult_done
fkp_core_mux_sel

end component;

signal sys_reset, sys_clk: std_ulogic := V;
signal a_reg_addr, b_reg_addr, c_reg_addr: addr,
signal datajn, data_out: std_ulogic_vector(15 downto 0);
signal data_in_latch, data_out_latch, c_reg_latch, cos_sin_ready: std_ulogic;
signal cos_sin_go, cos_sin_sel, adder_go, adder_sel, adder_done : std_ulogic;
signal muitjgo, mult_done : std_ulogic;
signal cos_sin_wait: std_ulogic_vector(2 downto 0);
signal rom_addr: std_ulogic_vector(12 downto 0);
signal rom_data: std_ulogic_vector(15 downto 0);
signal mux_sel : std_ulogic_vector(1 downto 0);

type opcode is (illegal, movein, moveout, move, cosine, sine, addition, subtraction, multiplication);
signal instruction: opcode;

begin
U1: fkp core_e

PORTMAP (sys_clk,

in std_ulogic;
in std_ulogic;
in std_ulogic_vector(15 downto 0);
out std_ulogic_vector(15 downto 0);

: in std_ulogic;
in std_ulogic;
in std_ulogic;
in addr;
in addr;
in addr;
out std_ulogic;
in std_ulogic;
in std_ulogic;
in std_ulogic_vector(2 downto 0);
out std_ulogic_vector(12 downto 0)
in std_ulogic_vector{15 downto 0);

: in std_ulogic;
in std_ulogic;
out std_ulogic;
in std_ulogic;
out std_ulogic;
in std_ulogic_vector(1 downto 0));

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-52

sys_reset,
data_in,
data_out,
data_in_latch,
data^outjatch,
c_reg_latch,
c_reg_addr,
a_reg_addr,
b_reg_addr,
cos_sin_ready,
cos_sinjgo,
cos_sin_sel,
cos_sin_wait,
rom_addr,
rom_data,
adderjjo,
adder_sel,
adder_done,
multjgo,
mult_done,
mux_sel);

clock: process
begin

sys_clk <= not(sys_clk);
wait for 10 ps;

end process clock;

rst: process
begin

sysjreset <= T;
wait for 40 ps;

sys_reset <= '0';
wait for 50000 ps;

end process rst;

exercise: process
begin

-quiektest
instruction <= illegal;
data_in_latch <= '0';
dataloutjatch <= '0';
c_reg_latch <= '0';
cos_sin^go <= '0';
cos_sin_wait <= "111";
adderjgo <= '0';
multjgo <= '0';
a_reg_addr<=15;
b_reg_addr<=15;
c_reg_addr<=15;
mux_sel <= "00";
wait for 60 ps;
wait until sys_clk'event and sys_clk='1';

• MOVE IN
instruction <= movein;
data_in <= "0000000000000101";
wait until sys_clk'event and sys_clk='1';

mux_sel<="11";
c_reg_addr <= 2;
data_in_latch <= '1';
wait until sys_clk'event and sys_clk=T;

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-53

datajnjatch <= '0';
cjegjätch <= '1';
wait until sys_clk'event and sys_clk=T;

c_reg_latch <= '0';
- END MOVE IN

- MOVE OUT
instruction <= moveout;
b_reg_addr<=2;
wait until sys_clk'event and sys_clk=T;

data_outJatch<='1';
wait until sys_clk'event and sys_clk=T;

data_out_latch <= '0';
-ENDMOVE OUT

- MOVE IN
instruction <= movein;
data_in <= "0000000001001011";
wait until sys_clk'event and sys_clk=T;

mux_sel<="11";
c_reg_addr <= 3;
datajnjatch <=T;
wait until sys_clk'event and sys_clk=T;

datajnjatch <= '0';
cjegjatch <= '1';
wait until sys_clk'event and sys_clk='1';

c_regjatch <= '0';
- END MOVE IN

-MOVEOUT
instruction <= moveout;
bjegjxldr <= 3;
wait until sys_clk'event and sys_clk=T;

datajxrtJatch<=T;
wait until sys_clk'event and sys_clk-1';

data_outJatch <= '0';
- END MOVE OUT

-ADD
instruction <= addition;
ajegjaddr <= 2;
bjeg_addr <= 3;
c_reg_addr<=10;
adder sei <= '0';
muxjsel <= "01";
wait until sys_clk'event and sys_clk='f;

adderjgo<='1';
wait until adder_done = 'T;

adderjgo <= '0';
c_regjatch <= '1';
wait until sys_clk'event and sys_clk='1';

cjegjatch <= '0';

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-54

-END ADD

■ MOVE OUT
instruction <= mcveout;
b_reg_addr<=10;
wait until sys_clk'event and sys_clk=T;

data_out_latch <= '1';
wait until sys_clk'event and sys_clk=T;

data outjatch <= '0';
- END MOVE OUT

■MOVE
instruction <= move;
a_reg_addr <= 0;
bjreg_addr <= 10;
c_regL_addr<=11;
adder_sel <='0';
mux_sel <= "01";
wait until sys_clk'event and sys_clk=T;

adderjgo <=T;
wait until adder_done = '1';

adderjgo <= '0';
c_reg_latch <= T;
wait until sys_clk'event and sys_clk=T;

c_regLlatch <= '0';
- END MOVE

for i in 0 to 3 loop

-SUB
instruction <= subtraction;
a_reg_addr<=11;
b_reg_addr<=1;
c_reg_addr<=11;
adder_sel <='1';
mux_sel <= "01";
wait until sys_clk'event and sys_clk-1';

adder_go <= '1';
wait until adder_done = '1';

adderjgo <= '0';
cjegjatch <= T;
wait until sys_clk'event and sys_clk=T;

c_reg_latch <= '0';
-END ADD

- MOVE OUT
instruction <= moveout;
b_reg_addr<=11;
wait until sys_clk'event and sys_clk-1';

data_out_latch<=T;
wait until sys_clk'event and sys_clk=T;

data out latch <= '0';

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-55

- END MOVE OUT

end loop;

- Multiply
instruction <= multiplication;
a_reg_addr <= 2;
b_reg_addr <= 3;
c_reg_addr<=31;
mux_sel <= "10";
wait until sys_clk'event and sys_clk=T;

multjgo<=T;
wait until mult_done = '1';

mult_go <= '0';
cjregjatch <= T;
wait until sys_clk'event and sys_clk=T;

c_reg_latch <= '0';
-END ADD

for i in 0 to 31 loop
- MOVE OUT

instruction <= moveout;
b_regL_addr <= i;
wait until sys_clk'event and sys_clk='1';

data_.out_latch <= '1';
wait until sys_clk'event and sys_clk=T;

data_out_latch <= '0';
- END MOVE OUT

end loop;

-COSINE
instruction <= cosine;
cos_sin_sel <= '0';
a_reg_addr <= 2;
mux_sel <= "00";
c_reg_addr<=15;
wait until sys_clk'event and sys_clk='1';

cos_sinjgo <= '1';
wait until cos_sin_ready=T;

cos_sinjgo <= '0';
c_reg_latch <= '1';
wait until sys_cik'event and sys_clk='1';

c_reg_latch <= '0';

■MOVEOUT
instruction <= moveout;
b_reguaddr<=15;
wait until sys_clk'event and sys_clk='T;

data_out_latch <= '1';
wait until sys_clk'event and sys_clk=T;

data out latch <= 'ff;

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-56

- END MOVE OUT

-SINE
instruction <= sine;
cos_sin_sel <= '1';
a_reg_addr <= 3;
rnux_sel<="00";
c_reg_addr<=16;
wait until sys_clk'event and sys_clk=T;

cos_sinjgo<='1';
wait until cos_sin_ready=T;

cos_sinjgo <= '0';
c_reg_latch<='1';
wait until sys_clk'event and sys_clk=T;

cjegjatch <= '0';

- MOVE OUT
instruction <= moveout;
b_reg_addr<=16;
wait until sys_clk'event and sys_clk='1';

data_.out_latch<=T;
wait until sys_clk'event and sys_clk=T;

data outjatch <='0';
- END MOVE OUT

wait until sys_clk'event and sys_clk=T
wait until sys_clk'event and sys_clk-1
wait until sys_clk'event and sys_clk='1

ASSERT false
REPORT "DONE"
SEVERITY failure;

end process exercise;

rom: process
begin

wait until rom_addr'event;

- make up some rom data (inverse of the address for now)
rom_data(12 downto 0) <= not(rom_addr(12 downto 0));

- fill in the rest
rom_data(15 downto 13) <= "000";

end process rom;

end test;

CONFIGURATION fkp_core_c OF fkp_core_tb IS
FOR test

FOR ALL: fkp_core_e
USE ENTITY WORK.fkp_core_e(structural);

END FOR;
END FOR;

END fkp_core_c;

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-57

B.7.3 FKP Core Results

400000

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-58

SYS.restr

SYSJW

MEft>O0fl

*- MTAJNifficOt

E- 0«T*Jxm«J«

MTAJNJUTCH

BMAJXIUATCH

OOBJMJM

«BEfl.OO

HDCEFLStL

UKERJXME

MUIT.GO

UUPJXWE

e> HCM_OATA(i5*(

MSTWCTION

1000000 1100000
i J i ■ « J ...I t.-J—i.~~l„.,.J ..i..J.~J-.—I—i—!..-*-

1300000 1300000
* ' i i i—i—1—i—fi—i—i~J—i—t—i=»a-~4—J—L-

II
..i J;—i—i—i—i

f—1

"i r
i r

uuuu

1

u

SYSJWäT

tmjax

B» MTAJN|HcCQ

IS. DATA_OUT{IS«1

(WnjNJJiTCH

OMJUWJUSTCH

0OBJW-WW

OHUM.OO

«*j»Lsa

«MEMO

Moau».
MWERJKNE

IM.T.O0

HULTJQCW

is. RGMJMTAIIM)

1400000 1S0OOOO 1(00000
ft I f »■ ■ t ,,,,-j , J. .A.-..J, ,r.tr-.--i.^.-l.,.-«-^tl^r-.*»,..t...F.t]1«.jt-g

1700000 1800000
■ ■ ■ 1 1 i I I In 1-J > I t I I ■—«-

_T~L
J~L

UfM

UOVKXJT 1 SUeriucriON

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-59

SYSJC6ET

SrtLCUS

CJSGLWOR

I* MTAJM(iMK

fe- (MT*.«JT(15il)

WKPUMM*
D»T*_0«TJ^TC»*

OOM*(jB»W

«»JSWjBO

Mxxa.00

AOOEAJSR.

MCBUW*

MW.T.00

HULT.OOW

p.. ODS.SH_W«HSW

is- H»K_sa(ifl)

NBTRUCtlON

2000600
_LJU .*- J—i—i—t

2100000 3300000
. . I .

330000

L.__

SUBfRAClC« '1 UOttOW SUBTRACT««

SVS.CLK

AJffiCMOOA

BJBSÜjWOft

». (»TAJNOS.**

S- pATA_Wf|Kdt

DArA.«.UICH

MTA.OUIJATCH

CJEOJ.HTCH

CDS.Sm.00

cossw_sa
NWBUX)

mmnjB-
AOOBUWNE

MULTJ»

UULTJKNE

t 0OS.SW.*MTftfl)

6» RDMJUXWfc«

NSfflUCTlON

3100000
J 1 i 1 1 L 1 1 I 1

3500000
._i i L..i,.—L-

2600000 2700000

K^rf/*"- ■ "JgPffiPKfWMBWi
11

1 -""T-srT"... 1

"'"■'•'■ a~■I"""""' "-"• ■'" H

 '—•J-~—- -
0MB

FES« i_ __ row „,, :

m_

«50 SAW

SUSTfUCTKW SUClftK-TlOM

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-60

MüSSET

SV8„CU<

K/mjam
Bjmaja»
CJCGJUWR

t- D*T*JN(ISfll

OATAJNJLMCH

M«JWT.UTCH

CJEMAKH

«6J$»UCW

COS.SM.QO

COS.WJSEL

«1OEH.00

KXXRJS&

HBKHJKm

MU.TJ5CP

MJITJDONE

j> oosjMLWwreat

E- ROUMTAttStt

i> Mux.S£i(m)

WSTBUCIB«

StfSJSSFT

srs.cut

» OAT*JN|(S.«

DMAJMIATCH

(UT*.OUI_LAICW

CJ!Eß.t*TCH

COSJSW.OO

CO»JSWJSCL

«ooeft.oo

AOOERStl

U»EH_OOHE

MULTJ30

HUTJWNE

■> BOMJMT«(tSfl

O UULSEUIttl

MSIflUCTON

2800000 2900000 3000000
 1 1 J.—.X-

3100000
J.„JL^&~ i-<

3300000

J L

J~~L

UOM

IT.
SU8HWCTKW

9300000
J.

MQVEOVT MULT1PUCHTKW

9400000 9S00000
. I i i .J...J_1—J-J._i 1 1 1 1 1 L_

9600000

,,-J

97

J~~L-„.

r~u
7

MULTIPlJC»TIO«

ZD

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-61

Bvsjwser

8VSJ3LK

AJHEBJUHfl

I» MT*JKl5fl)

t> DM*.CUT|»5fl$

(MTAJN.UTCH

DMA.OUT_Li«CH

cj_ö_utfcH

COCJSMJXI

eosjswjsa

MW0U»

«ooen.seL
MSOCTJONE

MMJJSO

_■ OOS_SH.WWT(S:(»

fo l*UX_Sfrf*0»

MSTRUCTION

9700000 9800000
■ * ' ' ■ I 1 I 1 1 1 i : 1 1 ' ——

9900000 10000000 10100000
„4_.,4__£~-8-J-.

' TilTHZTTZr"" 11T~LJ " T__n._T~L _ri.__n._T~L

Z3
WOO*

uuuu

I

MOviÖuT

«HU-KT

srejcu

BJKJMM»

ojteoj-Ofi
B* MTAJHMSft

ts> n*T*_OUr(IS:D)

DATAJH.UTCH

U*T*.OUrjL*TCH

CJK6.WTCH

cos.s»i_nwcv

OOS.Sn.00

oos.8W.aa.

Hxeuao

M0BU-.

MXt&UKMG

MU.T.QO

MUJ.OONE

e- e«„SW_w«re«

C- MUX.SB(lslt

NSTRUCIIOH

10200000
__ ■ I ■ _■_

10300000
...i J—i—i—t—i—

10400000
. . I . L .

10500000
„ ,_.■„._ ™._-™t^,.X-~i-~t-

10C000

iHi:n^:nLri::ri:.;:ri T_ri r~__T~i_r

TTZZI
 "11
_1"_U

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-62

SVSJSSET

SWLOK

w>w

CREfLtfOR

I- OAT*_HlSfl)

t> &»TA_OUT(tS«

MT*JHJ>TCM

MT*,Otir_UTCM

COSJÄJIEW

C0SJS*U3D

ws_B«jsa

«OOEMGNE

IM.TJ30

UULTJDONE

p- eos.s»(.w«T(s-.i9

i> MMJHR|u.«!l

r> «MJS*T*(ilMS

(NsumicnoN

10900000
I i 1 I 1 1 1 L-

11000000
_] 1. .1 , I I 1—

iiJTirTj_izr~L_ri_r~Lj—L

UM»

uuwT
3

MÖVSHTT

3 : !■.„—x

uoooooo 11100000
„ri„^^^_—< , „ i

SWJKSCT

SVS.OK

tLBEGjlDO«

CJEOJDM

> wi»,ouniscri [^

MMJNUWTGH

MiA_owiJiTeH [_
CPEGUUTCH _____

«6j»U**W

cos_s»i_sa

MJOERJ»

JOOERJB-

«OOER.DCNE

MULTjeOME

IS- F*DM_*D0B(1!0|

HSfftUCIICW

cxrxijiuiu^^ :UZL

EZL

112000«

wos

»IT
Iö

MOv" T MOVKWt"

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-63

311300000
. i *

11400000

SV3.KSEI

StSJSX

AjWSUWOB

BJWOJUOR

CJWJOBR

t> DATAJH||S«)

fc> B*T*_OUti(1S«|

MTAJULATCH

WmUWUATCH

CJWSJATCH

cos_s«,ne««

OOSjWUOO

cosjNNja

woen.00

«DCOUSEl

woBuxxm
M»T_»

»M.TJD0«

& BC*l.«JOfi(l20t

t> ftOM.DATMlSO)

b. «juxjsao*
MSTFiUCTION

_n_j~'T_j~i._j_u~i ~i_n_ru i_n_j~L.
3

IS JL *
1«

«MB

IFF* | «FB4

"L_

IflfT* I

L:

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-64

B.5 Microstrore

B.5.1 Microstrore Model

-Project:
- Filename:
- Other files required:
-Date:
- Entity/Architecture Name:
-Developer

Thesis
microstoreJiead.vhd

Oct3197
n/a
Steve Parmley

library IEEE;
use lEEE.stdJogicJ 164.all;

use WORK.reg_filej3kg.all;

Package MICROSTORE is

procedure movej'n (SIGNAL reg: in addr;
SIGNAL sys_clk: in stdjjlogic;
SIGNAL mux_sel: out std_ulogic_vector(1 downto 0);
SIGNAL c_reg_addr out addr;
SIGNAL data_injatch: out std_ulogic;
SIGNAL cjegjatch: out stdjjlogic);

procedure move_out (SIGNAL reg: in addr;
SIGNAL sys_clk: in std_ulogic;
SIGNAL b_reg_addr out addr;
SIGNAL data_out_latch: out std_ulogic);

procedure add (SIGNAL reg1, reg2, reg3: in addr;
SIGNAL sys_clk: in std_ulogic;
SIGNAL adder_done: in std_ulogic;
SIGNAL a_reg_addr, b_reg_addr, c_reg_addn out addr;
SIGNAL adder_sel: out std_ulogic;
SIGNAL muxjsel: out std_ulogic_vector(1 downto 0);
SIGNAL adder_go: out std_ulogic;
SIGNAL cjegjatch: out stdjjlogic);

procedure sub (SIGNAL reg1, reg2, reg3: in addr;
SIGNAL sys_clk: in stdjjlogic;
SIGNAL adderjlone: in stdjjlogic;
SIGNAL a_reg_addr, b_reg_addr, c_regjaddr: out addr;
SIGNAL adder_sel: out stdjjlogic;
SIGNAL muxjsel: out std_ulogic_vector(1 downto 0);
SIGNAL adder_go: out stdjjlogic;
SIGNAL cjegjatch: out stdjjlogic);

procedure mult (SIGNAL regl, reg2, reg3: in addr;
SIGNAL sysjclk: in stdjjlogic;
SIGNAL mult_done: in stdjjlogic;
SIGNAL ajegjaddr, bjeg_addr, cjegjaddr: out addr;
SIGNAL muxjsel: out std jjlogic_vector(1 downto 0);
SIGNAL multjgo: out stdjjlogic;
SIGNAL cjegjatch: out stdjjlogic);

procedure cos (SIGNAL regl, reg2:in addr;
SIGNAL sys_clk: in stdjjlogic;
SIGNAL cosjsinjeady: in stdjjlogic;

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-65

SIGNAL cos_sin_sel: out std_ulogic;
SIGNAL a_reg_addr, c_regLaddr: out addr;
SIGNAL müxiel: out std_ulogic_vector(1 downto 0);
SIGNAL cos_sin_go: out std_ulogic;
SIGNAL c_reg_latch: out std_ulogic);

procedure sin (SIGNAL regl, reg2:in addr,
SIGNAL sys_clk: in std_ulogic;
SIGNAL cos_sin_ready; in std_ulogic;
SIGNAL cos_sin_sel: out std_ulogic;
SIGNAL a_reg_addr, c_reg_addr: out addr;
SIGNAL mux_sel: out std_ulogic_vector(1 downto 0);
SIGNAL cos_sin_go: out std_ulogic;
SIGNAL c_reg_latch: out std_ulogic);

end MICROSTORE;

- Project:
-Filename:
- Other files required:
-Date:
- Entity/Architecture Name:
-Developer

Thesis
microstore, vhd

Oct 31 97
n/a
Steve Parmley

library IEEE;
use IEEE.std_logic_1164.al

use WORK.reg_filej3kg.all;

Package body MICROSTORE is

- MOVEJN(reg) assume that data is present on input of latch
procedure move_in (SIGNAL reg: in addr;

SIGNAL sys_clk: in std_ulogic;
SIGNAL mux_sel: out std_ulogic_vector(1 downto 0);
SIGNAL c_reg_addr. out addr;
SIGNAL dataj'njatch: out std_ulogic;
SIGNAL c_reg_latch: out std_ulogic) is

begin
- set mux to allow data in latch to reg
mux_sel<="11";

- set up register to write to
c_reg_addr <= reg;

- latch the data already present on the input of the latch
data_jnJatch<=T;

wait until sys_clk'event and sys_clk=T;

- hold latched value
datajnjatch <= '0';

- and copy it into register file
c_reg_latch<=T;

wait until sys_clk'event and sys_clk=T;

-hold it in register file

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-66

cjegjatch <= '0';
end move in;

- MOVE_OUT (reg)
procedure move_out (SIGNAL reg: in addr;

SIGNAL sys_clk: in std_ulogic;
SIGNAL b_reg_addr: out addr;
SIGNAL data_out_latch: out std_ulogic) is

begin
- set up register to write to
b_reg_addr <= reg;

wait until sys_clk'event and sys_clk=T;

- latch the data from the register file to the output
data_out_latch <= T;

wait until sys_clk'event and sys_clk='1';

- hold it on the output
data_out_latch <= '0';

end move_out;

- ADD (reg1, reg2, reg3)
procedure add (SIGNAL regl, reg2, reg3: in addr;

SIGNAL sys_clk: in std_ulogic;
SIGNAL adder_done: in std_ulogic;
SIGNAL a_reg_addr, b_reg_addr, c_reg_addr out addr;
SIGNAL adder_sel: out std_ulogic;
SIGNAL mux_sel: out std_ulogic_vector(1 downto 0);
SIGNAL adderjgo: out std_ulogic;
SIGNAL c_reg_latch: out std_ulogic) is

begin
- set up two terms from reg file
a_reg_addr <= reg2;
b_reg_addr <= reg3;

- set up new register to hold result
c_reg_addr<=reg1;

- set adder/subtractor to add
adder_sel <='0';

- set mux to allow add result to go to register
mux_sel <= "01";

wait until sys„clk'event and sys_cik=T;

- initiate adder unit
adder_go <= T;

wait until adder_done = '1';
wait until sys_clk'event and sys_clk=T;

- release adder unit
adderjgo <= '0';

- latch result into regiter
cjegjatch <= '1';

wait until sys_clk'event and sys_clk=T;

- hold result in register
c_reg_latch <= '0';

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-67

end add;

-SUB(reg1,reg2, reg3)
procedure sub (SIGNAL regl, reg2, reg3: in addr;

SIGNAL sys_clk: in std_ulogic;
SIGNAL adderjdone: in std_ulogic;
SIGNAL a_reg_addr, b_reg_addr, c_reg_addr out addr;
SIGNAL adder_sel: out std_ulogic;
SIGNAL mux_sel: out std_ulogic_vector(1 downto 0);
SIGNAL adderjgo: out std_ulogic;
SIGNAL c_reg_latch: out std_ulogic) is

begin
- set up two terms from reg file
a_reg_addr <= reg2;
b_reg_addr <= reg3;

- set up new register to hold result
c_reg_addr <= regl;

- set adder/subtracter to sub
adder_sel <=T;

- set mux to allow add result to go to register
mux_sel <="01";

wait until sys_clk'event and sys_clk="T;

- initiate adder unit
adderjgo <=T;

wait until adder_done = '1';
wait until sys_clk'event and sys_clk=T;

- release adder unit
adder_go <= '0';

- latch result into regfter
c_reg_latch <= '1';

wait until sys_clk'event and sys_clk='1';

- hold result in register
c_reg_latch <= '0';

end sub;

- MULTIPLY (regl, reg2, reg3)
procedure mult (SIGNAL regl, reg2, reg3: in addr;

SIGNAL sys_clk: in std_ulogic;
SIGNAL muifdone: in std_ulogic;
SIGNAL a_reg_addr, b_reg_addr, c_reg_addr: out addr;
SIGNAL mux_sel: out std_ulogic_vector(1 downto 0);
SIGNAL multjgo: out std_ulogic;
SIGNAL c_reg_latch: outstd_ulogic) is

begin
- set up two terms from reg file
a_reg_addr <= reg2;
b_reg_addr <= reg3;

- set up new register to hold result
c_reg_addr <= regl;

- set mux to allow mult resutl to go to register
mux_sel <="10";

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-68

wait until sys_clk'event and sys_clk=T;

- initiate multiplier unit
mult_so<=T;

wait until mult_done - T;
wait until sys_clk"event and sys_clk=T;

- release mult unit
multjgo <= '0';

- latch results into register
c_reg_latch<=T;

wait until sys_clk'event and sys_clk='1';

- hold results in register
cjegjatch <= '0';

end mult;

-COS(reg1,reg2)
procedure cos (SIGNAL reg1, reg2:in addr;

SIGNAL sys_clk: in std_ulogic;
SIGNAL cos_sin_ready: in std_ulogic;
SIGNAL cos_sin_sel: out std_ulogic;
SIGNAL a_reg_addr, c_reg_addr: out addr;
SIGNAL mux_sel: out std_ulogic_vector(1 downto 0);
SIGNAL cos_sinjjo: out std_ulogic;
SIGNAL cjegjatch: out stdjilogic) is

begin
- set unit to do cosine
cos_sin_sel <= '0';

- set input to A register
a_reg_addr <= reg2;

- set up mux to allow cos/sin unit to go to registers
mux_sel <= "00";

- set up new register to put result
c_reg_addr <= regl;

wait until sys_clk'event and sys_clk=T;

- initiate unit
cos_sin_go <= T;

wait until cos_sin_ready=T;
wait until sys_clk'event and sys_clk='1';

- release unit
cos_sinjjo <= 'O'l

- latch result into register
cjegjatch <= T;

wait until sys_clk'event and sys_clk=T;

- hold result in register
cjegjatch <= '0';

end cos;

-SIN(reg1,reg2)
procedure sin (SIGNAL regl, reg2:in addr;

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-69

begin

SIGNAL sys_clk: in std_ulogic;
SIGNAL cos_sin_ready: in std_ulogic;
SIGNAL cos_sin_sel: out std_ulogic;
SIGNAL a_reg_addr, c_reg_addr: out addr;
SIGNAL mux_sel: out std_ulogic_vector(1 downto 0);
SIGNAL cos_sin_go: out std_ulogic;
SIGNAL c_reg_latch: out std_ulogic) is

-set unit to do sine
cos_sin_sel <= '1';

- set input to A register
a_reg_addr <= reg2;

- set up mux to älow cos/sin unit to go to registers
mux_sel<="00";

- set up new register to put result
c_reg_addr<=reg1;

wait until sys_clk'event and sys_clk=T;

- initiate unit
cos_sin_go <= '1';

wait until cos_sin_ready=T;
wait until sys_clk'event and sys_clk=T;

- release unit
cos_sinjjo <= '0';

- latch result into register
c_reg_latch <= '1';

wait until sys_clk'event and sys_clk=T;

- hold result in register
cjegjatch <= '0';

end sin;

end MICROSTORE;

B.5.2 Microstrore Testbench

- Project:
- Filename:
- Other files required:
-Date:
- Entity/Architecture Name:
-Developer

Thesis
microstore-bench.vhd
microstore, vhd
Oct3197
microstore_tb/test
Steve Parmley

library IEEE;
use IEEE.std_logic_1164.all;

use WORK.reg_file_pkg.all;
use WORK.microstore.all;

entity microstorejb is
end microstorejb;

architecture test of microstorejb is

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-70

component fkp_core_e
port (fkp_core_clk in std_ulogic;

fkp_core_reset in std_ulogic;
fkp_core_data_in in std_ulogic_vector(15 downto 0)
fkp_core_data_out out std_ulogic_yector(15 downto 0);
fkp_core_data_in_latch in std_ulogic;
fkp_cofB_data_out_latch in std_ulogic;
fkp_core_c_reg_latch in std_ulogic;
fkp_core_c_reg_addr in addr;
fkp_core_a_reg_addr in addr;
fkp_core_b_reg_addr in addr;
fkp_core_cos_sin_ready out std_ulogic;
fkp_core_cos_sinjgo in std_ulogic;
fkp_a>re_cos_sin_se! in std_ulogic;
fkp_core_cos_sin_wait in std_ulogic_vecton;2 downto 0);
fkp_core_rom_addr out std_ulogic_vector(12 downto 0)
fkp_core_rom_data in std_ulogic_vector(15 downto 0)
fkp_core_adderjgo in std_ulogic;
fkp_core_adder_sel in std_ulogic;
fkp_core_adder_done out std_ulogic;
fkp_core_multjgo in std_ulogic;
fkp_core_mult_done out std_ulogic;
fkp_core_mux_sel in std_ulogic_vector(1 downto 0));

end component;

signal sysjeset, sys_clk: std_ulogic := '0';
signal a_reg_addr, b_reg_addr, c_reg_addr: addr;
signal dätajn, data_out: std_ulogic_vector(15 downto 0);
signal data_injatch, data_oiitJatch, c_reg_latch, cos_sin_ready: std_ulogic;
signal cos3>njgo, cos_sin_sel, adder_jgo, adder_sel, adder_done : std_ulogic;
signal mult_go, mult_done : std_ulogic;
signal cos_sin_wait: std_ulogic_yector(2 downto 0);
signal rom_addr: std_ulogic_vector(12 downto 0);
signal rom_data: std_ulogic_vector(15 downto 0);
signal muxlsel : std_ulogic_vector(1 downto 0);

type opcode is (illegal, movein, moveout, move, cosine, sine, addition, subtraction, multiplication);
signal instruction: opcode;

Ireg1,reg2, reg3:addr;

begin
U1: fkp core_e

PORT~MAP (sys_clk,
sys_reset,
data_in,
datajxit,
data_in_latch,
data_out_latch,
c_reg_latch,
c_reg_addr,
a_reg_addr,
b_reg_addr,
cos_sin_ready,
cos_sinjgo,
cos_sin_sel,
cos_sin_wait,
rom_addr,
rom_data,
adder_go,
adder_sel,
adder_done,
multjgo,
mult_done,
mux_sel);

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-71

clock: process
begin

sys_clk <= not(sys_clk);
wait for 10 ps;

end process clock;

rst: process
begin

sys_reset <= T;
wait for 40 ps;

sys_reset <= '0';
wait for 50000 ps;

end process rst;

exercise: process
begin

instruction <= illegal;
data_in_latch <= '0';
data_out_latch <= 'ff;
cjegjatch <= '0';
cos_sinjgo <= '0';
ccs_sin_wait <= "111";
adderjgo <= '0';
multjgo <= '0';
a_reg_addr<=15;
b_reg_addr<=15;
c_reg_addr<=15;
rnux_sel <= "00";
wait for 60 ps;
wait until sys_clk'event and sys_clk=T;

- MOVE IN
instruction <= movein;
datajn <= "0000000000000101";
regl <= 2;
wait until sys_clk'event and sys_clk=T;
movejn(reg1,sys_clk,mux_sel,c_reg_addr,data_inJatch,c_reg_latch);

- END MOVE IN

- MOVE OUT
instruction <= mcveout;
regl <=2;
wait until sys_clk'event and sys_clk='1';
move out(reg1 ,sys_clk,b_reg_addr,data_outJatch);

-END MOVE OUT

■MOVEIN
instruction <= movein;
datajn <= "0000000001001011";
regl <=3;
wait until sys_clk'event and sys_clk='1';
move_in(reg1,sys_clk,mux_sel,c_reg_addr,data_inJatch,c_reg_latcri);

- END MOVE IN

- MOVE OUT
instruction <= mcveout;
regl <= 3;
wait until sys_clk'event and sys_clk=T;
move_out(reg1,sys_clk,b_reg_addr,data_out_latch);

-END MOVE OUT

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-72

-ADD
instruction <= addition;
regl <= 10;
reg2 <= 2;
reg3 <= 3;
wait until sys_clk'event and sys_clk='1';
add(reg1,r^2,reg3,sys_dk,ado^_done,a_reg_addr,b_reg_addr,c_reg_addr,

adder_sel,mux_sel,adderjgo,c_reg_latch);
•END ADD

• MOVE OUT
instruction <= moveout;
regl <=10;
wait until sys_clk'event and sys_clk='1';
move_out(reg1,sys_clk,b_reg_addr,data_out_latch);

- END MOVE OUT

-MOVE
instruction <= move;
regl <=11;
reg2 <= 0;
reg3 <= 10;
wait until sys_clk'event and sys_clk=T;
add(reg1,reg2,reg3,sys_clk,adder_done,a_reg_addr,b_reg_addr,c_reg_addr,

adder_sel,rnux_sel,adderjgo,c_reg_latch);
- END MOVE

for i in 0 to 3 loop

-SUB
instruction <= subtraction;
regl <=11;
reg2<=11;
reg3<=1;
wait until sys_clk'event and sys_clk='1';
sub(reg1,i^2,reg3,sys_clk,adder_done,a_reg_addr,b_reg_addr,c_reg_addr,

adder_sel,mux_sel,adderjo,c_reg_latch);
-END ADD

-MOVEOUT
instruction <= moveout;
regl <=11;
wait until sys_clk'event and sys_clk=T;
move_out(reg1,sys_clk,b_reg_addr,data_outjatch);

- END MOVE OUT

end loop;

— Multiply
instruction <= multiplication;
regl <=31;
reg2 <= 2;
reg3 <= 3;
wait until sys_clk'event and sys_clk=T;
mult(reg1,reg2,reg3,sys_clk,mult_done,a_reg_addr,b_reg_addr,c_reg_addr,

mux_sel, multjgo, c_reg_latch);

- END ADD

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-73

for i in 0 to 31 loop
- MOVE OUT

instruction <= moveout;
regl <= i;
wait until sys_clk'event and sys_dk=,1';
move_out(reg1,sys_clk,b_regLaddr,data_outJatch);

- END MOVE OUT
end loop;

■ COSINE
instruction <= cosine;
reg2 <= 2;
regl <= 15;
wait until sys_clk'event and sys_clk=T;
cos(reg1 ,reg2, sys_clk,cos_sin_ready,cos_sin_sel,a_reg_addr,

c_regLaddr, mux_sel,cos_sinjgo,c_reg_latch);

■ MOVE OUT
instruction <= moveout;
regl <=15;
wait until sys_clk'event and sys_clk=T;
move_out(reg1,sys_clk,b_regLaddr,data_out_latch);

- END MOVE OUT

-SINE
instruction <= sine;
reg2<=3;
regl <= 16;
wait until sys_clk'event and sys_clk-1';
sin(reg1 ,reg2, sys_clk,cos_sin_ready,cos_sin_sel,a_regLaddr,

c_reg_addr, mux_sel,cos_sinjgo,c_reg_latch);

-MOVEOUT
instruction <= moveout;
regl <= 16;
wait until sys_clk'event and sys_clk=T;
move_out(reg1,sys_clk,b_reg_addr,data_out_latch);

- END MOVE OUT

wait until sys_clk'event and sys_clk=T;
wait until sys_clk'event and sys_clk=T:
wait until sys_clk'event and sys_clk=T

ASSERT false
REPORT "DONE"
SEVERITY failure;

end process exercise;

rom: process
begin

wait until rom_addr'event;

- make up some rom data (inverse of the address for now)
rom_data(12 downto 0) <= not(rom_addr(12 downto 0));

- fill in the rest
rom_data(15 downto 13) <= "000";

end process rom;

end test;

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-74

CONFIGURATION microstore_c OF microstore_tb IS
FOR test

FOR ALL: fkp_core_e
USE ENTITY WORK.fkp_core_e(structural);

END FOR;
END FOR;

END microstorec;

B.5.3 Microstrore Results

toot

SYS.CLK

AJHEQJUKKt

cjeajmn
t> MTAJNOSffl

B- WTJV.OUTlt&ffl

DATA.OJTJU11CH

QOS_gfUt£NW

COS„SN_GO

«OBUSO

*wenjsa
MSBUXME

1M.I.O0

MULTJJOME

t- COS_SIN_W«T(20]

o ncuju»n<i:a)

Msnufcmon
nesi
«OS

a
n __JI ._
 n J i
_j~i__rL_

LUUUUI

_TL

FT

WF*

cxirv
UEQ*L MOVE« jUOVEOUT

31

UOUEM SMOYEOUT

31

2

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-75

800000 1000000
_ J L.ui.--* (. 1

1200000
I , 1 I J JU* .*■-■ ■

1400000
J I L

«0<

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-76

StiJIESB

SVBJCIK

6jeajum
CjeOJBMt

B> CMTAJNIlfcOl

& 0*T#_OUniMl

0*I»JKJU»TW

OATJLOUIJJMM

CJffi6JA«H

006JSWJSO

w»jmjs&

MKR.00

«oeua
WOBUW*

MUtT.OO

UULrjDGNE

t> <WlMO0B(itt>!

i» »WI»jn»T«(t5fl!i

& uuxusafl«)
MSIWCIWN

met

REO?

fl££B

svs.sesei

SVS.CLK

AJtEGJUHM

CJKUWW»

fr- <KM_0VTIWSI

MWJUAICN

MTKjOlirjUlfCM

CJ«5JATCH

cos.aw.oo

ewuwua

Mxxfua
«OOBUMME

MULT.OO

MULtJOONE

C, COS_StLW«tC! 01

t» nou.*oontiso(

HS7PUCT10N

S6S1

«et

A«»

_J1-

UEäö

?I*F

UO»

Wf

JMOWOVT} SUBTRACTION ZZ]
ZJ

3200000
„J.„.I.._J„.. A.,.* ...-J 4.

3400000 3600000
t a J ... -i.-.. i 1—J—~J—X * J * L

z

_rr

UC6»

tff*

SUBTRACTION MOVEOUT j MUUtlPUUTON

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-77

SYS_nSET

SYSJ&K

AJE8JMWH

BJSMMB

CJCOUWW

I» MTAJNHS»

6» C*TA_0UT{15:9

MTAJNJ>TCH

■UTMXflUATOH

C.REG.LAICH

oas.8NJCM)nr

cos.3H.ao

COSJWJKl

«OBtOO

WOERjKl

«OEft.CC*«

MET.00

MM.fJMNC

t GQS_HN.WMTG:OI

i> BOM.«OOHClJ«)

fr ROM.OAIAdSOV

NSTRUCTiON

HEGI

DECO

svs.Msn

SYS.CLK

AJtfQjtiM

«LflESJlOOfl

► MTAJNfttffl

t> WTA.OUT|taO)

D*r*.K_uren

WTH.OUTJWTCH

CJEGJATCH

COS_SHLGO

COS_SMJSB.

ACOER/SO

«*en.«a

«KBjOOW

MAT.»

MULTJDO*

p. G0S_SN_W«»«!l1»

HgTRUCTON

HEGl

RE«

SB»

9600000 »»90000
™t-rJ~..i-. ...4,„_4„4:—i 1 1 U

10000000
_J 1 1 u-

10200000
^L-. i, J i—t—a. ,,4„.,.,,j.

Hi

i « 1 « 1 «T

0000 j 0100 | 0006 3

n.i i JL„J

cnzzn

~u_
r~L_ —

n n~n.zn~ .r"L_j"L_.rL j'i. j"i_n_r"

2

uoveotiT

> ; in ! "ii [' « j ' "« .'I'"'1*-^—*— X-LJ

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-78

SY3_f*SET

SYS.CIK

AJtEOJtOGft

BJWOJWOR

> MTAJNHM»

OOTAJtUAUCH

D»T*.OUrjUtCH

CJttOJJWCH

008.HHJN£Wr

COS_SHLOO

MMOU»

«wcnum

Aoocn.oac

MMLI.OO

HULTJXME

> COS_SM_W«Tt2.01

.-» noujinows!«

>. RCU,OAT*IIS<l>

> MUX_SB4t«

KSmUCTtOH

BEÜI

RÖ5?

HB33

SV8.RESET

sus.cm

AMajtnü

BLKCUtBOR

CJK6y*OW

ft- OMUNl«*»

t» 0*M_.CIrt<«;0)

OATAJN.UKH

0»T*.OUTJAtC»l

CJ*<UA»CH

oaajmjKMH

COS.S«LÖO

cas.aHj!B.

•MEFLOO

WOEfUXK

MULT.OO

UUIT.D0M

E> oos.att.wAn'Bflj

t> ROMJUXmi»»

t:. BOU.0*T(MlS«(

RCGI

BEG?

UBS

11200000 11400000 11800000
-i ■ ■ L , ,.

11000000

TLjrT':n:..i i.J r;jT_-n_ri-- n.. n

Z]

r " ::.

t

inns

2

~ IKWSOUI

K »

1

J

se ! » Ort

UOOOOOO 13300000 12400000
-■- I ■ .JL,

12800000
■i- I, I .„1..-.X.

n n fL™

 ~1

ooos

IF« WW

HOVEOUT

~M I ill

UOYKJUr

IG

9

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-79

B.9 Control

B.5.9 Control Model

- Project:
- Filename:
-Otherfiles required:
-Date:
- Entity/Architecture Name:
-Developer:
- Function:
- Limitations:
- History:
-Last Analyzed On:

Thesis
fkp.vhd
allFKP files
Oct 17 97
fkp_e/behavior
Steve Parmley

library IEEE;
use lEEE.stdJogicJ 164.all;

use WORK.regLfile_pkg.all;
use WORK.microstore.all;

entity fkp_e is
port (fkp_cntprt7_clock

fkp_cntprt6_reset
fkp_cntprt5_strobe
fkp_cntprt4_ready
fkp_cntprt3_dgv
fkp_cntprt2_dga

- fkp_cntprt1_dsv
- fkp_cntprtO_dsa

fkp_cmdprt6_cmd1
fkp_cmdprt5_cmd0
fkp_cmdprt4_a4
fkp_cmdprt3_a3
fkp_cmdprt2_a2
fkp_cmdprt1_a1
fkp_cmdprtO_aO

fkp_data_in
fkp_data_out

fkp_rom_addr
fkp_rom_data

end fkp_e;

architecture structural of fkp_e is

-SIGNALS
signal sysjreset, sys_clk: std_ulogic := '0';
signal a_reg_addr, b_reg_addr, c_reg_addr: addr;
signal datajn, data_out: std_ulogic_vector(15 downto 0);
signal data_in_latch, data_out_latch, c_reg_latch, cos_sin_ready: std_ulogic;
signal cos_sin_go, cos_sin_sel, adder_go, adder_sel, adder_done : std_ulogic;
signal mult_go, mult_done : std_ulogic;
signal cos_sin_wait: std_ulogic_vector(2 downto 0);
signal rom_addr: std_ulogic_vector(12 downto 0);
signal rom_data: std_ulogic_vector(15 downto 0);
signal mux_sel : std_ulogic_vector(1 downto 0);

in std_ulogic;
in std_ulogic;
in std_ulogic;
out std_ulogic;
out std_ulogic;
in std_ulogic;
in std_ulogic;
out std_ulogic;

in std_ulogic;
in std_ulogic;
in std_ulogic;
in std_ulogic;
in std_ulogic;
in std_ulogic;
in std_ulogic;

in std_ulogic_vector(15 downto 0);
out std_ulogic_vector(15 downto 0);

out std_ulogic_yector(12 downto 0);
in std_ulogic_vector(15 downto 0));

type opcode is (illegal, movein, moveout, move, cosine, sine, addition, subtraction, multiplication);

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-80

signal instruction: opcode;
signal regl, reg2, reg3: addr;

signal state: integer;

-COMPONENTS
component fkp_core_e

port (fkp_core_clk
fkp_core_reset
fkp_core_data_in
fkp_core_data_out
fkp_core_data_in_latch
fkp_core_data_out_latch
fkp_core_c_reg_latch
fkp_core_c_reg_addr
fkp_core_a_reg_addr
fkp_core_b_reg_addr
fkp_core_cos_sin_ready
fkp_core_cos_sin_jgo
fkp_core_cos_sin_sel
fkp_core_cos_sin_wait
fkp_core_rom_addr
fkp_core_rom_data
fkp_core_adderjgo
fkp_core_adder_sel
fkp_core_adder_done
fkp_core_multjgo
fkp_core_mult_done
fkp_core_mux_sel

end component;

in std_ulogic;
in std_ulogic;
in std_ulogic_vector(15 downto 0)
out std_ulogic_vector(15 downto 0)
in std_ulogic;
in std_ulogic;

; in std ulogic;
in addr;
in addr;
in addr;
out stdjjlogic;
in std_ulogic;
in std_ulogic;
in std_ulogic_vector(2 downto 0);
out std_ulogic_vector(12 downto 0)
in std_ulogic_vector(15 downto 0)
in std_ulogic;
in std_ulogic;
out std_ulogic;
in std_ulogic;
out std_ulogic;
in std_ulogic_vector(1 downto 0));

begin
U1 : fkp_core_e

PORT MAP (sys.clk,
sys_reset,
data_in,
data_out,
datajnjatch,
data_out_latch,
c_reg_latch,
c_reg_addr,
a_reg_addr,
b_reg_addr,
cos_sin_ready,
cos_sin_go,
cos_sin_sel,
cos_sin_wait,
rom_addr,
rom_data,
adderjjo,
adder_sel,
adder_done,
multjgo,
mult_done,
mux_sel);

controller: process
variable r1 : integer;

begin
sys_clk <= fkp_cntprt7_clock;

• system wide reset ?

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-81

if fkp_cntprt6_reset = '1' then
sysjeset <= '1';
wait until sys_clk'event and sys_clk=T;
sysjeset <= '1';
state <= 0;
fkp_cntprt4_ready <= '1';
fkp_cntprt3_dgv <= '0';

end if;

- ready to accept command
if state = 0 then

- either set, get, or run
if fkp_cntprt5_strobe = '1' then

-set
if fkp_cmdprt6_cmd1='0' and fkp_cmdprt5_cmd0='0' then

-set not ready flag
fkp_cntprt4_ready <= '0';

- set the register designated by the a4-a0 bits to
- the data from the input data bus

- MOVE IN
instruction <= movein;
data_in <= fkp_data_in;

- transform bits to integer
r1 := 0;
if fkp_cmdprt4_a4 = '1' then

r1 := r1 + 16;
end if;
if fkp_cmdprt3_a3 = '1' then

r1 := r1 + 8;
end if;
iffkp.

end if;
iffkp.

cmdprt2_a2 = '1' then
r1 := r1 + 4;

cmdprt1_a1=Tthen
r1 := r1 + 2;

end if;
iffkp cmdprtO_aO = Tthen

M :=r1 + 1;
end if;

- set target register
regl <=r1;

wait until sys_clk'event and sys_clk-1';

mowe_in(reg1,sys_clk,mux_sel,c_reg_addr,datajnJatch,c_reg_latch);
- END MOVE IN

wait until fkp_cntptt5_strobe = '0';

- set ready flag
fkp_cntprt4_ready <= '1';

-get
elsif fkp.cmdprte.cmdl^O' and fkp_cmdprt5_cmd0='1' then

-set not ready flag
fkp_cntprt4_ready <= '0';

- get the register designated by the a4-a0 bits to
- the data from the input data bus

- MOVE OUT

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-82

instruction <= moveout;

- transform bits to integer
r1 := 0;
if fkp_cmdprt4_a4 = '1' then

r1 := r1 + 16;
end if;
if fkp_cmdprt3_a3 = '1' then

r1 := r1 + 8;
end if;
if fkp_cmdprt2_a2 = 'V then

r1 := r1 + 4;
end if;
if fkp_cmdprt1_a1 = '1' then

r1 := r1 + 2;
end if;
iffkp cmdprtO a0 = '1'then

r1:=^r1 + 1;
end if;

-settarget register
reg1 <=r1;

wait until sys_clk'event and sys_clk='1';
move_out(reg1,sys_clk,b_reg_addr,data_out_latch);
- END MOVE OUT

fkp_data_out <= data_out;

- let user know data is valid
fkp_cntprt3_dgv <= T;

wait until fkp_cntprt2_dga -1';
- user has data

- release dgv
fkp_cntprt3_dgv <= '0';

wait until fkp_cntprt5_strobe = '0';

-set ready flag
fkp_cntprt4_ready <= '1';

-run
elsif fkp_cmdprt6_cmd1='1' and fkp_cmdprt5_cmd0='0' then

-set not ready flag
fkp_cntprt4_ready <= '0';

- ASSUME that the 5 constansts are located in r2,r3,r4,r5,r6
- ASSUME that the 4 angles are located in r7,r8,r9,r10
- this was accomplished using the set function

- See table 4.4b of Thesis for order of operations

- **** STEP 1 ****
-desc: reg 26 = sin of theta 1
instruction <= sine;
reg1 <= 26;
reg2 <= 7;
wait until sys_clk'event and sys_clk=T;
sin(reg1 ,reg2, sys_clk,cos_sin_ready,cos_sin_sel,a_reg_addr,

c_regL.äddr, mux_sel,cos_sinjgo,c_reg_latch);

_**** STEP 2 **"

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-83

-desc: reg 11 =cosoftheta1
instruction <= cosine;
regl <=11;
reg2 <= 7;
wait until sys_clk'event and sys_clk=T;
cos(reg1 ,reg2, sys_clk,cos_sin_ready,cos_sin_sel,a_reg_addr1

c_reg_addr, mux_sel,cos_sinjo,c_reg_latch);

-**** STEP 3 ****
-desc: reg 12 = sinoftheta2
instruction <= sine;
regl <= 12;
reg2 <= 8;
wait until sys_clk'event and sys_clk=T;
sin(reg1 ,reg2, sys_clk,cos_sin_ready,cos_sin_sel,a_reg_addr,

c_reg_addr, mux_sd,cos_sinjgo,c_reg_latch);

_**** STEP 4 ****
-desc: reg 13 = cosoftheta2
instruction <= cosine;
regl <= 13;
reg2 <= 8;
wait until sys_clk'event and sys_clk="1';
cos(reg1 ,reg2, sys_clk,cos_sin_ready,cos_sin_sel,a_reg_addr,

c_reg_addr, mux_sel,cos_sin_go,c_regjatch);

- **** STEP 5 ****
-desc: reg 14 = theta2 + theta3
instruction <= addition;
regl <= 14;
reg2 <= 8;
reg3 <= 9;
wait until sys_clk'event and sys_clk='1';
add(reg1,reg2,reg3,sys_clk,adder_done,a_reg_addr,b_reg_addr,c_reg_addr,

adder_sel,mux_sel,addeMgo,c_reg_latch);

_**** STEP 6 ****
-desc: reg 15 = sin of theta 2+3
instruction <= sine;
regl <= 15;
reg2 <= 14;
wait until sys_clk'event and sys_clk-1';
sin(reg1 ,reg£ sys_clk,cos_sin_ready,cos_sin_sel,a_reg_addr,

c_reg_addr, mux_sel,cos_sin^go,c_reg_latch);

 **** CTCD 7 ****

- desc: reg 16 = cos of theta 2+3
instruction <= cosine;
regl <= 16;
reg2 <= 14;
wait until sys_clk'event and sys_clk='1';
cos(reg1 ,reg2, sys_clk,cos_sin_ready,cos_sin_sel,a_reg_addr,

c_reg_addr, mux_sel,cos_sinjo,c_reg_latch);

-***♦ STEP 8 ****
- desc: reg 14 = theta 2 + theta 3 + theta 4
instruction <= addition;
regl <= 14;
reg2 <= 14;
reg3 <= 10;
wait until sys_clk'event and sys_clk='1';
add(reg1,reg2,reg3,sys_clk,adder_done,a_reg_addr,b_reg_addr,c_reg_addr,

adder_sel,mux_sel,adderjgo,c_reg_latch);

- **** STEP 9 ****

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-84

-desc: reg 22 = sin of theta 2+3+4
instruction <= sine;
regl <= 22;
reg2 <= 14;
wait until sys_clk'event and sys_clk=T;
sin(reg1 ,reg2T sys_clk,cos_sin_ready,cos_sin_sel,a_reg_addr,

c_reg_addr, mux_sel,cx>s_sinjgo,c_regJatch);

-**** STEP 10 ****
-desc: reg 25 = cos of theta 2+3+4
instruction <= cosine;
regl <= 25;
reg2 <= 14;
wait until sys_clk'event and sys_clk=T;
cos(reg1 ,reg2, sys_clk,cos_sin_ready,cos_sin_sel,a_regu.addr,

c_reg_addr, mux_sel,cos_sin_jgo,c_reg_latch);

-**** STEP 11 ****
- desc: reg 20 = cos (th1) * cos (th2+th3+th4)
instruction <= multiplication;
regl <= 20;
reg2<=11;
reg3 <= 25;
wait until sys_clk'event and sys_clk=T;
mult(reg1,reg2Teg3,sys_clk,mult_done,a_reg_addr,b_reg_addr,c_reg_addr,

mux_sel, mult_go, cjegjatch);

__ **** CTCQ HO ****

- desc: reg 21 = sin (th1) * cos (th2+th3+th4)
instruction <= multiplication;
reg1<=21;
reg2<=26;
reg3 <= 25;
wait until sys_clk'event and sys_clk-1';
mult(reg1,reg2,reg3,sys_clk,mult_done,a_reg_addr,b_reg_addr,c_reg_addr,

muxsel, multjgo, c_reg_latch);

_**** STEP 13 "**
- desc: reg 23 = cos (th1) * sin (th2+th3+th4)
instruction <= multiplication;
regl <= 23;
reg2<=11;
reg3 <= 22;
wait until sys_clk'event and sys_clk='1';
mult(reg1,reg2,reg3,sys_clk,mult_done,a_reg_addr,b_reg_addr,c_reg_addr,

mux_sel, multjgo, c_reg_latch);

- **** STEP 14 **"
- desc: reg 23 = -(cos(th1) * sin(th2+th3+th4)
instruction <= subtraction;
regl <= 23;
reg2<=0;
reg3 <= 23;
wait until sys_clk'event and sys_clk-1';
sub(reg1,reg2,reg3,sys_clk,adder_done,a_reg_addr,b_reg_addr,c_reg_addr,

adder_sel,mux_sel,adder_go,c_regJatch);

_**** STEP 15 ****
- desc: reg 24 = sin (th1) * sin (th2+th3+th4)
instruction <= multiplication;
regl <= 24;
reg2 <= 26;
reg3 <= 22;
wait until sys_clk'event and sysjclk-1';
mult(reg1,reg2,reg3,sys_clk,mult_done,a_reg_addr,b_reg_addr,c_reg_addr,

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-85

mux_sel, mult_go, c_reg_latch);

 **** CTCP ifi ****

- desc: reg 24 = -(sin(th1) * sin(th2+th3+th4)
instruction <= subtraction;
regl <= 24;
reg2 <= 0;
reg3 <= 24;
wait until sys_clk'event and sys_clk='1';
sub(reg1,i^2,reg3,sys_clk,adder_done,a_regLaddr,b_tBg_addrlc_reg_addr,

adder_sel,rnux_sel,adder_go,c_regJatch);

_**** STEP 17 ****
-desc: reg27 = -(cos(th1))
instruction <= subtraction;
regl <= 27;
reg2 <= 0;
reg3<=11;
wait until sys_clk'event and sys_clk=T;
sub(reg1,reg2,reg3,sys_clk,adder_dcfle,a_reg_addr,b_reg_addr,c_reg_addr,

adder_sel,mux_sel,adder_go,c_reg_latch);

_**** STEP 18 ****
-desc: reg28 = 0
instruction <= addition;
regl <= 28;
reg2 <= 0;
reg3 <= 0;
wait until sys_clk'everrt and sys_clk='1';
sub(reg1,reg2,r^3,sys_clk,ackier_done,a_reg_addr,b_reg_addr,c_reg_addr,

adder_sel,mux_sel,adderjgo,c_regJatch);

-**** STEP 19 **"
-desc: reg 17 = a2* cos (th2)
instruction <= multiplication;
regl <= 17;
reg2 <= 4;
reg3<=13;
wait until sys_clk'event and sys_clk=T;
mult(reglTeg2,reg3,sys_clk,mult_done,a_reg_addr,b_reg_addr,c_reg_addr,

mux_sel, multjgo, c_reg_latch);

_**** STEP 20 ****
- desc: reg 18 = a3 * cos (th2+th3)
instruction <= multiplication;
regl <= 18;
reg2 <= 5;
reg3<=16;
wait until sys_clk'event and sys_clk='1';
mult(teg1,reg2,reg3,sys_clk,muH:_dcine,a_reg_addr,b_reg_addr,c_reg_addr,

mux_sel, mult_go, c_reg_latch);

_**** STEP 21 ****
- desc: reg 17 = a2*cos(th2) + a3*cos(th2+th3)
instruction <= addition;
regl <= 17;
reg2<=17;
reg3<=18;
wait until sys_clk'event and sys_clk=T;
sub(reg1,reg2>reg3,sys_clk)adder_done,a_reg_addr,b_reg_addr,c_reg_addr,

adder_sel,mux_sel,adder_go,c_reg_Iatch);

_**** STEP 22 ****
- desc: reg 17 = a1 + a2*cos(th2) + a3*cos(th2+th3)
instruction <= addition;

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-86

regl <= 17;
reg2<=17;
reg3 <= 3;
wait until sys_clk'event and sys_clk='1';
sub(reg1,reg2,r^3,sys_clk,adder_done,a_regLaddr,b_reg_addr,c_reg_acldr,

adder_sel,mux_sel,adderjgo,c_regJatch);

_ *««* 3"fEP 23 ****
- desc: reg 18 = cos(th1) * (a1 + a2*cos(th2) + a3 * cos (th2+th3))
instruction <= multiplication;
regl <=18;
reg2 <= 17;
reg3<=11;
wait until sys_clk'event and sys_clk='1';
mult(reg1,i^,r^3,sys_clk,mult_dcfie,a_reg_addr,b_reg_addr,c_rieg_addr,

mux_sel, mult_go, c_reg_latch);

-**** STEP 24 ****
- desc: reg 29 = aO + cos(th1)*(a1 + a2*cos(th2) + a3*cos(th2+th3)
instruction <= addition;
regl <= 29;
reg2 <= 18;
reg3 <= 2;
wait until sys_clk'event and sys_clk-1';
sub(reg1,reg2,reg3,sys_clk,adder_done,a_reg_addr,b_reg_addr,c_reg_addr,

adder_sel,nriux_sel,adder_go,c_reg_latch);

-**** STEP 25 ****
- desc: reg 30 = sin(th1) * (a1 + a2*cos(th2) + a3 * cos (th2+th3))
instruction <= multiplication;
regl <= 30;
reg2 <= 17;
reg3 <= 26;
wait until sys_clk'event and sys_clk-1';
mult(i^1,reg2,reg3,sys_clk,mult_done,a_reg_addr,b_reg_addr,c_reg_addr,

mux_sel, multjgo, c_reg_latch);

-**** STEP 26 ****
-desc: reg 19 = a2*sin(th2)
instruction <= multiplication;
regl <=19;
reg2 <= 4;
reg3 <= 12;
wait until sys_clk'event and sys_clk='1';
mult(reg1,reg2,reg3,sys_clk,mult_done,a_reg_addr,b_reg_addr,c_reg_addr,

mux_sel, muftjgo, c_reg_latch);

-**** STEP 27 ****
- desc: reg 31 = a3 * sin (th2+th3))
instruction <= multiplication;
regl <=31;
reg2 <= 5;
reg3<=15;
wait until sys_clk'event and sys_clk=T;
mult(reg1,reg2,reg3,sys_clk,mult_done,a_reg_addr,b_reg_addr,c_reg_addr,

mux_sel, multjgo, c_reg_latch);

_**** STEP 28 ****
- desc: reg 31 = a2 * sin(th2) + a3 * sin (th2+th3))
instruction <= addition;
regl <=31;
reg2<=31;
reg3<=19;
wait until sys_clk'event and sys_clk=T;
mult(reg1,reg2,reg3,sys_clk,mult_done,a_reg_addr,b_reg_addr,c_reg_addr>

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-87

end if;
end if;

mux_sel, multjgo, c_reg_latch);

_♦*** STEP 29 ****
- desc: reg 31 = a2 * sin(th2) + a3 * sin (th2+th3)) + d1
instruction <= addition;
reg1 <=31;
reg2<=31;
reg3 <= 6;
wait until sys_clk'event and sys_clk='1';
add(i^1,reg2,i^3,sys_clk,adder_done,a_reg_addr,b_reg_addr,c_reg_addr,
adder_sel,mux_sel,adder_5o,c_reg_latch);

wait until fkp_cntprt5_strobe = '0';

-set ready flag
fkp_cntprt4_ready <= '1';

end if;

end process controller;
end structural;

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP C -1

Appendix C: XACTstep Synthesis Log File for Register File

ngdbuild -p xc4000e C:\exemplar\work\reg16\reg16.xnfxc4000e.ngd
ngdbuild: version M1.3.7
Copyright (c) 1995-1997 Xilinx, Inc. All rights reserved.

Command Line: ngdbuild -p xc4000e C:V3xemplar\work\reg16\reg16.xnf xc4000e.ngd

Launcher: Using ruleXNF_RULE
Launcher: reg16.ngo being compiled because it does not exist
Launcher: Running xnf2ngd from C:\exemplar\work\reg16\xproj\veri\
Launcher Executing xnf2ngd -p xc4000e -u "C:\exemplar\work\reg16\reg16-xnf'
"reg16.ngo"
xnf2ngd: version M1.3.7
Copyright (c) 1995-1997 Xilinx, Inc. All rights reserved.

using XNF gate model
reading XNF file "C:/exemplar/work/reg16/reg16.xnf'...
Writing NGO file "reg16.ngo"...

Launcher: "xnf2ngd" exited with an exit code of 0.

Reading NGO file "C:/exemplar/wo^k/reg16/xproj^er1/reg16.ngo"...
Reading component libraries for design expansion-

Running Timing Specification DRC...
Timing Specification DRC complete with no errors or warnings.

Running Logical Design DRC...
Logical Design DRC complete with no errors or warnings.

NGDBUILD Design Results Summary:
2148 total blocks expanded.

Writing NGD file "xc4000e.ngd"...

Writing NGDBUILD log file "xc4000e.bld"...

NGDBUILD Done.

map -p xo4020e-3-hq208 -o map.ncd ../xc4000e.ngd reg16.pcf
map: version M1.3.7
Copyright (c) 1995-1997 Xilinx, Inc. All rights reserved.
Reading NGD file "../xc4000e.ngd"...
Using target part "4020ehq208-3".
MAP xc4000e directives:

Partname="xc4020e-3-hq208".
No Guide File specified.
No Guide Mode specified.
Covermode="area".
Coveriutsize=4.
Coverfgsize=4.
Perform logic replication.
PackCLBsto97%.

Processing logical timing constraints...
Running general design DRC...
Verifying F/HMAP validity based on pre-trimmed logic...
Removing unused logic...
Processing global clock buffers...
WARNING:baste:24 - All of the external outputs in this design are using

slew-rate-limited output drivers. The delay on speed critical outputs can be
dramatically reduced by designating them as fast outputs in the original
design. Please see your vendor interface documentation for specific
information on how to do this within your design-entry tool.

Optimizing...
Removed Logic Summary:

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP C-2

Design Summary:
Number of warnings: 1
Number of errors: 0
Number of CLBs: 315 out of 784

Flops/latches: 224
4 input LUTs: 621
3inputLUTs: 183

Number of bonded lOBs: 63 out of 160
Number of clock lOBs: lout of 8

10 flops/latches: 32
Number of primary CLKs: 1 out of 4

Writing design file "map.ncd"...

par -w -14 -d 0 map.ncd reg16.ncd reg16.pcf
PAR: Xilinx Place And Route M1.3.7.
Copyright (c) 1995-1997 Xilinx, Inc. All rights reserved.

Constraints file: reg16.pcf

Placement level-cost: 4-1

Loading device database for application par from file "map.ncd".
"reg16" is an NCD, version 2.27, device xc4020e, package hq208, speed -3

Loading device for application par from file '4020e.nph' in environment
d:/xilinx.
Device speed data version: x1_0.79 PRELIMINARY.

Device utilization summary:

IO

LOGIC
SPECIAL

63/224
63/160
315/784
1/3023

28% used
39% bonded
40% used
0% used

CLKIOB
IOB

1/8
62/224

12% used
27% used

CLB 315/784 40% used

PRI-CLK 1/4 25% used

Starting initial Placement phase. REAL time: 13 sees
Finished initial Placement phase. REAL time: 14 sees

Starting Constructive Placer. REAL time: 15 sees .
Placer score =1081980
Placer score = 977380
Placer score = 886140
Placer score = 853480
Placer score = 783540
Placer score = 705220
Placer score = 634260
Placer score = 577740
Placer score = 486240
Placer score = 439200
Placer score = 375240
Placer score = 332160
Placer score = 298500
Placer score = 284400
Placer score = 271260
Placer score = 260940

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP C -3

Placer score = 255660
Placer score = 252840
Placer score = 248700
Placer score = 246900
Placer score = 245640
Placer score = 244680
Placer score = 244320
Placer score = 242160
Placer score = 241920
Placer score = 241140
Placer score = 240240
Placer score = 239220
Placer score = 238920
Placer score = 238560
Placer score = 237900
Finished Constructive Placer. REAL time: 11 mins30secs

Dumping design to file "reg16.ncd".

Starting Optimizing Placer. REAL time: 11 mins 31 sees
Optimizing
Swapped 30 comps.
Xilinx Placer [1] 235080 REAL time: 12 mins 40 sees
Optimizing
Swapped 5 comps.
Xilinx Placer [2] 234840 REAL time: 13 mins 45 sees
Finished Optimizing Placer. REAL time: 13 mins 45 sees

Dumping design to file "reg16.ncd".

Total REAL time to Placer completion: 13 mins 47 sees
Total CPU time to Placer completion: 13 mins 47 sees

0 connection(s) routed; 2231 unrouted.
Starting router resource preassignment
Completed router resource preassignment. Real time: 13 mins 49 sees
Starting iterative routing.
End of iteration 1
2231 successful; 0 unrouted; (0) real time: 14 mins
Constraints are met.
Power and ground nets completely routed.
Dumping design to file "reg16.ncd".
Starting cleanup
End of cleanup iteration 1
2231 successful; 0 unrouted; (0) real time: 15 mins 17 sees
Dumping design to file "reg16.ncd".
Total CPU time 15 mins 18 sees
Total REAL time: 15 mins 18 sees
Completely routed.
End of route. 2231 routed (100.00%); 0 unrouted.
No errors found.

Total REAL time to Router completion: 15 mins 20 sees
Total CPU time to Router completion: 15 mins 20 sees

Generating PAR statistics.
Timing Score: 0

Dumping design to file "reg16.ncd".

All signals are completely routed.

Total REAL time to PAR completion: 15 mins 28 sees
Total CPU time to PAR completion: 15 mins 28 sees

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP C-4

PAR done.

bitgen reg16.ncd -I -w -f bitgen.ut

Loading device database for application Bitgen from file "reg16.ncd".
"reg16" is an NCD, version 2.27, device xc4020e, package hq208, speed -3

Loading device for application Bitgen from file '4020e.nph' in environment
d:/xilinx.

BITGEN: Xilinx Bitstream Generator M1.3.7
Copyright (c) 1995-1997 Xilinx, Inc. All rights reserved.

Running DRC.
DRC detected 0 errors and 0 warnings.
Saving II file in "reg16.H".
Creating bit map...
Saving bit stream in "reg16.bit".

xcpy reg16.bit C:\exernplar\work\reg16\reg16.bit

xcpy reg16.ll C:\exemplar\work\reg16\reg16.ll

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP D-1

Appendix D: Ironwood Electronics Adapter to IMS
and FPGA Pinouts

9 Ironwood Electronics, Inc.
PO Box 21151 • St Paul, MN 55121 • (612)452*100 • Fax (612)452*400

PA-QFE208SB2-C-Z^02(W) Map
RevB

1,25 49,61 69,87 105,123 141,149 161,185 185,161 149,141 123,105 87,69 61,49 25,1

24,48 60,68 86,104 122,140 148,160 184,208

Top View

I lit iLmimm—wrwwjJr -i I! I
OO OO OO OO OO OO
OO OO OO OO OO OO
OO OO OO OO OO OO
on 00„ ooooooo OOO OOOO 0 .OO 00
OO O 0 □ooooo oooooooe o O OO
OO O o ooooooo =000000000 O OO
OO OO OO o a

OO
no ° ° % OO OO % oo
nn 0 ° OO OO o " » 00
OO Ö O ° OO OO o ° ° OO
OO o OO OO ° 0 S OO
OO 0 OO OO o CO

OO OO OO o ° ° 00
00

a °
OO OO 0 %

; oo
OO o OO OO ; oo
OO i. 0 g OO OO a ° 0 OO
OO % t o OO OO 0 ° ; oo
OO ° OO OO oo
nn 0 ° oooo ooo

00000000
OO Q 00

OO o c 000000 c
ooo oooo o • o oo

OO OO oooooo JOOOOOOOOOQQ oo
OO OO OO OO OO oo
OO OO OO OO OO oo
no 00 OO OO OO 00 : I

208,184 160.148 140,122 104,86 68,60 48,24

Bottom View

I QFE Base |
¥«0 x>s

— 1 153
6N02 144
— 3 151
Q.k4 154

5 143
6 150
7 152
8 149

TCfr9 141
10 142 An
11 123 ß«
12 124 O
13 126 O'-i

£tfßl4 125
15 127
16 128
17 129
18 109

['QFE-!, ,r JBäs«. j
Vo>o

19 108 A.j
20 107 ß,i
21 130 Cn
22 no fl(1
23 106 i.,3
24 111 Rj

GW025 112
v/«.26 105

27 87 6-.J
28 94 M.j
29 88
30 93
31 92
32 89
33 76
34 90
35 75
36 91

T<*ij ifo>o z*>j
itjDn 74

38 71 A,
39 73 fit
40 72 A i
41 69 Aw
42 70 A*
43 62 A.
44 49 A,
45 61 A«
46 52
47 63

rru48 50
6«ti49 54
N\0 50 64
- 51 51
- 52 53
- 53 2
— 54 5

I QFE ! Base |
yo>o r«~s
\ltc 55 4
/tl»56 26

57 30
rt/*58 29

59 1
60 31
61 6

LOt 62 25
63 32
64 7
65 27
66 33

GM067 8
68 3
69 34
70 9
71 28
72 35

"-— Mo Co*««

FPGA Processor Implementation for the Forward Kinematics of the UMDH APP D-2

9 Ironwood Electronics, Inc.
PO Box 21151 • St Paul, MN 55121 • (612)4524100 • Fax (612)452-8400

PA-QFE208SA1-C-2M>1, C1788 Map
RevB

I QFE Base |
HOP« T-t^i

73 10
74 95
75 36
76 11

J^Tr77 77
•J., 78 12
Crtigl9 13

80 78
81 37
82 14
83 96
84 38
85 15
86 45
87 39
88 16
89 22

£ivo90 40
91 17 6.
92 46 A,
93 41 ß\
94 18 fli
95 48 Ai
96 42 &i
97 19 &i
98 24 &,
99 43
100 44

ÄMfllOl 47
- 102 20

Oa*103 21
- 104 23
- 105 56

VJ«106 65

IsÄ-l 'Base- ■ |
Ho3<3 r>~&
- 107 58

<£}108 55
109 66 r,
110 59 J,
111 57 St
112 60 £i
113 68 k,
114 67 k)
115 86 Kj
116 85 KH

117 83
118 84

6AID119 82
120 81
121 80
122 100 n.
123 101 (*»
124 102 f"i
125 79 f*N
126 99 r*i
127 103 A1»
128 98 /Y«T

129 97 (*i
<Jc 130 104
<*vd31 122

132 115
(&1133 121

134 116
135 117
136 120
137 133
138 119
139 134
140 118

|> ÖFE f Base \ 1 QFE 1 Base |
HoOo X~i VQJ» jh«i

141 135
GwM42 138

143 136 (Js
144 137 Nt

145 140 ft
146 139 Nn
147 147 N.
148 160 A/l
149 148 Hi
150 157 Mt

0,wl51 146
152 159

CCLH53 155
U-, 154 145
- 155 158
- 156 156
- 157 207
— 158 204

159 205
CA/D160 183

161 179
162 180
163 208 P,
164 178 A,
165 203 Pi
166 184 ^
167 177 r«
168 202 Pc.
169 182 P-7
170 176 ft

G*fll71 201
172 206
173 175
174 200/V.i

175 181 £,X
176 174 6»
177 199 D.S.
178 114 Cs
179 173 /-.s
180 198 fe
181 132 H«

6*0182 197
t./.,183 196

184 131
185 172
186 195
187 113
188 171
189 194
190 164
191 170
192 193
193 187

6*v/>194 169
195 192
196 163
197 168
198 191
199 161
200 167
201 190
202 185
203 166
204 165

i/*<.205 162
_ 206 189
- 207 188
- 208 186

Vita

Mr. Steven M. Parmley was born on June 10, 1971 in Dayton, Ohio.

He graduated from Miamisburg Sr. High in 1989 and started undergraduate

studies at Wright State University. He earned a Bachelor of Science in

Computer Engineering in December 1995. He earned a full scholarship from

the Dayton Area Graduate Studies Institute and is a candidate for a Masters

of Science in Electrical Engineering from the Air Force Institute of

Technology, Wright Patterson Air Force Base.

His relevant experience started at Energy Innovations, Inc. with

supervisory control and data acquisition systems. He then worked for the

Southwestern Ohio Council for Higher Education performing real-time system

development in the Robotics and Automation Applications Group of the Air

Force Institute of Technology followed by a similar task for the American

Society for Engineering Education. In May 1997, he became a DoD

employee for the Hardware/Software Division of the Avionics Directorate of

Wright Laboratories, Wright Patterson Air Force Base.

REPORT DOCUMENTATION PAGE
Farm Approved

OMB No. 0704-0188

PuWe nponng btirdtn tor this collKtnfl of information is astmatad to avsraga 1 hour par rasponsa. including the tana lor reviewing nstructions. sairching eitstng data sources, galhmnf and maaiteininfl ttw data naadaal and coflipleteig and fewtwmg
lha coKactnn of information. Sand cornnanti tigariMg thu burden nimm or any othat aspect ol trui collection of «formation. Kfcxtng uggsstions lot reducnj ttaa butden, ta Washnjton Haadqiiartara Serras. OirKtorata lot Inlorniaiion
Opatalioni and Reports. 1215 Jallation Oaw Highway. Stall 1204. Arlington. V» 22202-4302. and to tha Oflka ol Management and Budgal. Paperwork Aaductm Pro««! 10704-018«). Waintigtoii. DC 20503.

1. AGENCY USE ONLY (leave blank) I. REPORT DATE

December 1997

3. REPORT TYPE AND DATES COVERED

Master's Thesis

4. TITLE AND SUBTITLE

FPGA Processor Implementation for the Forward Kinematics of the UMDH

6. AUTHORISI

Steven M. Parmley

S. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAMEISI AND ADDRESS(ES)

Air Force Institute of Technology
2750 P Street
WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFrT/GE/ENG/97D-21

9. SPONSORING/MONITORING AGENCY NAMEISI AND AODRESS(ES)

AFRL/IFTA
Bldg 620 Suite 32
2241 Avionics Circle
WPAFB OH 45433-7765

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

The focus of mis research was on the implementation of a forward kinematic algorithm for the Utah MTT Dexterous Hand (UMDH). Specifically, the
algorithm was synthesized from mathematical models onto a Field Programmable Gate Array (FPGA) processor. This approach is different from the classical,
general-purpose microprocessor design where all robotic controller functions including forward kinematics are executed serially from a compiled
programming language such as C. The compiled code and subsequent real-time operating system must be stored on some form of nonvolatile memory,
typically magnetic media such as a fixed or hard disk drive, along with other computer hardware components to allow the user to load and execute the
software. With a future goal of moving the controllers to a portable platform like a dexterous prosthetic hand for amputee patients, the application of such a
hardware implementation is impossible.

Instead, this research explores a different implementation based on a modular approach of dedicated hardware controllers. The controller for the forward
kinematics of the UMDH is used as a test case. The resulting FPGA processor replaces a robotic system's burden of repetitive and discrete software system
calls with a stand-alone hardware interface that appears more like a single hardware function call. The robotic system is free to tackle other tasks while the
FPGA processor is busy computing the results of the algorithm.

14. SUBJECT TERMS

UMDH, Utah MIT Dextrerous Hand, FPGA Field Programmable Gate Array, Forward Kinematics, Synthesis, Xilinx

IS. NUMBER OF PAGES
178

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL

Standard Form 298 {Rev. 2-891IEG)
Priscriwd by »NSI Std. 239.18
Desqntd using Partorm Pro, WHSffllOR. Oct 94

