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Abstract

The focus of this research was on the implementation of a forward kinematic algorithm for
the Utah MIT Dexterous Hand (UMDH). Specifically, the algorithm was synthesized from
mathematical models onto a Field Programmable Gate Array (FPGA) processor. This approach is
different from the classical, general-purpose microprocessor design where all robotic controller
functions including forward kinematics are executed serially from a compiled programming
language such as C. The compiled code and subsequent real-time operating system must be
stored on some form of nonvolatile memory, typically magnetic media such as a fixed or hard disk
drive, along with other computer hardware components to allow the user to load and execute the
software. With a future goal of moving the controllers to a portable platform like a dexterous
prosthetic hand for amputee patients, the application of such a hardware implementation is
impossible.

Instead, this research explores a different implementation based on a modular approach of
dedicated hardware controllers. The controller for the forward kinematics of the UMDH is used
as a test case. The resulting FPGA processor replaces a robotic system’s burden of repetitive and
discrete software system calls with a stand-alone hardware interface that appears more like a
single hardware function call. The robotic system is free to tackle other tasks while the FPGA

processor is busy computing the results of the algorithm.



FPGA Processor Implementation for the Forward Kinematics of the UMDH Xi

The forward kinematic algorithm for the UMDH was chosen as test case due to its
familiarity among the academic community. Although considerable time was spent deriving the
equations, the specifics of the UMDH algorithm itself was not the focus of this thesis. Rather, the
focus was on the implementation of such an extensive and complex algorithm onto an FPGA
processor. Forward kinematic algorithms from other portable robotic devices such as planetary
rovers, flight line bomb loaders, or teleoperation systems could have been implemented just as
well.

This thesis is divided into three parts. First, the UMDH is examined and the forward
kinematic equations for it are developed. This stage will be different for every robotic system, but
the process will remain the same. Second, the resulting equations are evaluated for maximum and
minimum numeric ranges and amounts of desired precision. This information is used in the third
part, where mathematical, memory storage, and controller functional units are developed.
Specifically, VHDL models are created, simulated, synthesized, and placed into an FPGA

Processor.
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1. Introduction

1.1 _Background

Although robotic devices have been in existence for many years, they were hindered due
to the high computational demands until the digital computer revolution came about. Today,
highly sophisticated control algorithms are written in software, usually with a real time operating
system such as Chimera(Khosla), VX-Works(Wind), or Condor(Narasimhan) and executing on a
VME based processor or similar dedicated hardware platform. Each part of the algorithm may be
executing concurrently with other parts and may be highly repetitive in nature.

One particular part that is highly repetitive is the calculation of the forward kinematics of
the device. The forward kinematics allow the angles of the device to be transformed to the spatial
position and orientation of the end of the device. Even a small motion at the base of the device
may cause considerable motion farther out on the tip of the device, so the transform must be

calculated repetively in order to keep track of the device in Cartesian coordinates.

1.2 Problem Statement

The forward kinematics of the Utah MIT Dexterous Hand (UMDH) (Sarcos) will be
developed and implemented on a Xilinx Field Programmable Gate Array (FPGA) (Xilinx). The
result is a Forward Kinematic Processor for the UMDH that will autonomously calculate the

results while the surrounding system performs more task specific operations.
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1.3 Assumptions

Although the process used to calculate the forward kinematics is the same for most
common robotic devices, there could exist a device or devices which would not easily map to the
algorithms discussed. On example is a parallel linkage device like a bomb loader. It is assumed
that the developed algorithm is for the UMDH specifically and that all UMDHs are mechanically

identical.

1.4 Approach

The design of the Forward Kinematic Processor starts with the development of the
forward kinematic algorithm specifically for the UMDH. This algorithm is evaluated for
arithmetic and transcendental properties and arranged such that a minimum amount of hardware
time is required. The required arithmetic and transcendental operations lead to the development
of functional units to process the numeric data. The functional units are then integrated into one

complete processing unit, and synthesized from VHDL code to logic blocks on a Xilinx FPGA.

1.5 Overview

The remaining chapters of this document describe the development and implementation of
the Forward Kinematic Processor. Chapter 2 reviews the mathematical foundation of general
forward kinematics and applies it to the specific nature of the UMDH. Chapter 3 looks at the
results of Chapter 2, particularly the equations for position and orientation, and evaluates them for
magnitude constraints, required precision, and operational occurrences. Chapter 4 descﬁbes the
development of a VHDL model that simulates the digital hardware implementation of an

application specific microprocessor that can compute the equations from Chapter 2. Chapter 5
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deals with synthesizing the model directly to an Xilinx FPGA. Chapter 6 evaluates the results and

Chapter 7 discusses recommendations and possible future work.
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2. Literature Review and Background

2.1 Review

As mentioned in Chapter 1, a typical robotics research environment consists of a real time
operating system supported by a relatively large hardware platform. The use of such a system
allows researchers to quickly change various parameters of the control structure for robotic
devices. Although dedicated hardware may show an increase in performance for a particular
application, to build and maintain it is sometimes too much overhead for researchers whose
primary focus is robotics, not hardware design (Narasimhan).

The concept of a dexterous prosthetic hand requires a contoller that moves with the
device. Obviously, a generalized hardware platform would be much too large to be portable.
Such area requirements may necessitate a custom hardware implementation (Narasimhan). With
the hopes of a stand-alone dexterous prosthetic hand and the advent and popularity of the FPGA,
it is now possible to merge the two technologies and create a truly portable solution. As the
controller algorithms in the research laboratory are upgraded, they can be downloaded into the

existing hardware of the hand using the reconfigurable properties of the FPGA (Xilinx).

2.2 Introduction

This chapter discusses a method to represent the mechanical attributes of a particular
manipulator. This representation is then used to determine the transformation from the relative
angles of each link to the 3-dimensional coordinate locations and orientations of the tip of the end

link. The process, known as forward kinematics, is then applied to the unique nature of the Utah
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MIT Dexterous Hand (UMDH). Specifically, the thumb mechanism of the UMDH is evaluated
and the resulting control equations will form the basis for FPGA implementation in the remaining
chapters.

2.3 Review of Forward Kinematic Computations and the Denavit-Hartenberg

Notation (Craig)

In order to represent the mechanical attributes of any general purpose manipulator, a
convention is formulated that will relate the various physical parts that make up the manipulator.
It is composed of rigid links connected by joints to allow for relative motion of the neighboring
links. Most manipulators have joints that are either revolute or prismatic as shown in Figure 2.1.
Revolute joints are typical hinge style joints and the unit of measurement is the joint angle
between the two halves of the joint. Prismatic joints are designed such that one half can slide
back and forth in relation to the fixed half. The measuring unit is the joint offset between the two
halves. Other possible joint configurations include cylindrical, planar, screw, and spherical
(Craig:69).

Link 0 is considered to be the immobile base of the manipulator. Link 1 is the first moving
part, followed by link 2, and so on out to the end link n. The axes of the joints which connect the
links are measured relative to the previous axis. Each joint axis defines a vector in which the next
link in the chain will rotate about. However, the link and its previous joint are given the same
index. This vector is based on the coordinate frame of the previous joint. There are two
quantities to measure the difference between the two axes as shown in Figure 2.2. First, the link

length 91 is the distance of the line that is mutually perpendicular to both axes. Second, the link
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Revolute Prismatic
L
Cylindrical Planar
Screw Spherical

Figure 2.1.  The Six Possible Joints
twist -1 is the angle between the i-1 axis and a parallel projection of the axis i onto the origin
point of the perpendicular line found earlier.

For links that have a common joint between them, there are two quantities that can be

measured. First, the link offset d, is the distance between the connection points of the two links
along the axis of the common joint. If this value is zero, then that implies a door like hinge. If the

value is non-zero, then that implies a sort of scissors-like hinge where the two links use the same
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Axisi -1 Axis i

Figure 2.2. Link Length and Link Twist
value is non-zero, then that implies a sort of scissors-like hinge where the two links use the same
joint but are slightly offset from each other. Secondly, the joint angle 4 is the rotational
difference between the two links about their common joint. These two quantities are shown in
Figure 2.3. Ifthe joint is revolute, then the link offset is fixed and the joint angle will be allowed
to vary. Similarly, if the joint is prismatic, then the joint angle is fixed and the link offset is

allowed to vary. For the first and last links, the fixed quantity will be set to zero (Craig:73).
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Linki: — 1
"D\

Link {

Figure 2.3. Link Offset and Joint Angle

These four quantities, link length %1, link twist 4.4, link offset d;, and joint angle 2,
allow for the unique description of any common manipulator. Together, they form a convention
known as the Denavit-Hartenberg notation (Craig:74). The four quantities are then regularly
placed into a DH table containing the information for all degrees of freedom of the manipulator
(Craig:68-82; Rattan:37-44).

The next step is to relate the frames of links i and i-1. To do this, three intermediate
frames are created to allow the transformation form one link to the next. Figure 2.4 shows the

addition of these three frames, denoted R, Q, and P (Craig:83).




FPGA Processor Implementation for the Forward Kinematics of the UMDH 9

Axisi—1 Axisi

Linki -1
D\

Linki

Figure 2.4  Intermediate Frames
First, the R frame is placed at the same origin as the i-1 frame but rotated about the x-axis
by the link twist -, amount. The Q frame is then placed in the same orientation as P but it is
shifted along the x-axis by the link length -1 amount towards the next link. The R frame is then
placed at the same origin as Q but rotated by the z-axis by the joint angle 4 amount. Finally, the
frame of link i has the same orientation as R but it is shifted along the z-axis by the link offset 4,

amount towards the next link (Craig:83-84;Rattan:45-52).
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Because moving from i-1 to R is a rotation, its rotational matrix is given by Equation 2.1.
The transformation from R to Q is given by the positional scaling vector of Equation 2.2.

Together, Equations 2.1 and 2.2 form the transformation matrix shown in Equation 2.3.

0 cos(e,) -sin(a.)

0 sin(a,) cos(a) |

Rotation about x-axis = L Equation 2.1

Scaling along x-asis =1L Equation 2.2
0 0 a._,

cos(ez_,) —-sin(a_) O

sin(a;,) cos(a,) O
0 0 1

Transform (i-1to Q) =" - Equation 2.3

SO O

Similarly, moving from Q to P is a rotation. Its rotational matrix is given by equation 2.4.
The transformation from P to i is given by the positional scaling vector of Equation 2.5.

Together, Equations 2.4 and 2.5 form the transformation matrix shown in Equation 2.6.
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cos(4) —sin(4) 0
sin(#) cos(4) O

Rotation about z-axis =L 0 0 1- Equation 2.4
0
0
: : d, :
Scaling along z-axis =L Equation 2.5

cos(#) —sin(4) 0
sin(#) cos(4) O
0 0 1
0 0 0

0
0
d;
1

Transform (Q to i) = Equation 2.6

The complete transformation is the matrix multiplication of Equations 2.3 and 2.6. This is

the transformation from the i-1 to the i link and is shown in Equation 2.7.

cos(#) —sin(#4) 0 a,,

sin( #)cos( ) cos(F)cos(a ) —sin(a,) -—sin(a,)d,

sin(#)sin( _,) cos(#)sin(a_ ) cos(a,) cos()d,
0 0 0 1

Transform (i-1 to i) =

Equation 2.7
To find the nth frame, simply multiply the transforms of each intermediate frame together
as in Equation 2.8a. Equation 2.8b shows the final transformation matrix from 0 to n. The result

is a 4 by 4 matrix that represents the orientation of frame n with respect to frame 0 and the
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location of the last link with respect to frame 0. The first column represents the normal vector N,
the second column represents the sliding vector S, the third column represents the approach
vector A, and the fourth column represents the position vector P. Due to the nature of the zeros
and ones in Equations 2.3 and 2.6, the fourth row will always be [0 0 0 1] (Craig:84-85;

Rattan:53, 55).

I =COODED.- G T

N, S

X X

S,
S
0

4

o = =
o B
— UYL

- = Equation 2.8b

If there is an extension from the last joint, such as a tool or a finger tip of length L in the
case of the UMDH, the orientation is the same as the joint itself, but the position is shifted by the
amount L along the normal vector n of the joint. Equations 2.9, 2.10, and 2.11 show the
modification to the position vector from the last joint to get the new position vector of the end of
the extension (Solanki and Rattan:72).

P =P +N,L

Equation 2.9

P} =15;,+NyL

Equation 2.10
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PZI=PZ+NZL

Equation 2.11

2.4 UMDH Forward Kinematic Computations

The UMDH shown in figure 2.5 is composed of three fingers and a thumb. The three
fingers are kinematically identical with the exception of their offsets at the knuckle locations. The
thumb is slightly different from the fingers and it is located between the first and second fingers on

the palm of the hand.

Figure 2.5. Utah MIT Dextrous Hand

Figures 2.6 and 2.7 show the top and side view of the UMDH respectively (Solanki and
Rattan:67-68). Notice how the Oth frame is located back towards the wrist. It is defined at this
Jocation because it is the intersection of the joint axis for both the thumb and the middle finger.
This could have been chosen at a different location but would result in more complicated

transformation matricies (Solanki and Rattan:66).
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Figure 2.6. Top View of UMDH (thumb extends out of page)
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Figure 2.7.

Side View of UMDH
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Because the three fingers and the thumb are almost kinematically identical, only one will

be further explored. The thumb mechanism alone represents a serial chain manipulator with four

degrees of freedom resulting from the four revolute joints. The DH table for the thumb of the

UMDH in this configuration is shown in Table 2.1 (Solanki and Rattan:69). Using these values

and Equation 2.7, each link relationship can be calculated. Replacing the i and i-1 variables with

the fixed quantities from the DH table results in much simplified versions of the transformation

matrices. Equations 2.12 through 2.15 shows each intermediate matrix (Solanki and Rattan:70).

Table 2.1. DH table for Thumb of UMDH
i link twist link length link offset joint angle
1 a=0° |a,=-0.75"| 4 =3125" A
2 =90 |a,=0375"| d4,=0" 4
3 a, =0° a, =1700" | 4 =0" 5{;
4 =0 |a,=1300"| d,=0" 4
(cos(F) —sin(4) 0 a]
07 sin(#) cos(&) 0 0O
! 0 0 1 d,
0 0 0 1]

Equation 2.12
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cos(#,) —sin(4) 0 a
0 0 -1
1 T —
2 sin(4,) cos(4,) O
- 0 0 0 - Equation 2.13
cos(4,) —sin(4) 0 a,
o sin(#) cos(4) 0 0
) 0 0 1
L 0 0 0 ! - Equation 2.14
(cos(4,) —sin(#,) O a, |
_— sin(#,) cos(4) 0 O
4 0 0 1 0
L 0 0 0 1 - Equation 2.15

These four transformation matrices are concatenated into one using Equation 2.8. The
result, after consecutive matrix multiplications, is shown in Equation 2.16 (Solanki and
Rattan:71).

cos(Z)cos(d, +4,+4,) —cos(F)sin(f,+&,+4,) sin(F) a,+oos(4 Xa +a, cos(4,)+a, co8(Z, +£,))
sin(Z))cos(4, + &, +4,) —sin(F,)sin(d, +F,+F,) —cos(4)  sin(4Xa, +a, cos(4,) +a, cos8(4, +4,))
sin(4, + &, +#,) cos(Z, +4,+8,) 0 a, sin(#,) + a; sin(#, +4,) + d,
0 0 0 1

=

Equation 2.16
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The elements within the matrix of Equation 2.16 are one to one equivalent to Equation
2.8b. The resulting twelve equations out of sixteen (four equations are a constant 0 or 1) can
now be used as the basis for the remaining chapters.

2.5 Conclusions

This chapter investigated a mathematical method for the calculation of the forward
kinematic equations of the thumb mechanism of the Utah MIT Dexterous Hand. The resulting
Equation 2.16 = 2.8b represents the locations and orientation of the last joint of the UMDH. It
does not directly give the location of the tip of the thumb. It will require the application of
Equations 2.9 through 2.11 to derive such information from 2.16. The L term can be fixed as the
length of the last link, or 1.3 inches if the desired answer is for the tip of the thumb. Other L
values can be used to represent tools attached to the tip. Such tools might be force or
temperature sensors. The remaining chapters will deal with the Equation 2.16 since this

represents the base configurations of all UMDHs.
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3. Algorithm Analysis and Profiling

3.1 Introduction

Before a physical computational architecture can be defined for implementation, the
twelve equations derived in Chapter 2 need to be evaluated in the context of the desired
performance of the UMDH. Only those hardware components that are absolutely necessary will
be implemented. It is proposed that the desired forward kinematic processor deals only with
mathematical operations and does not work with concepts such as character strings, addressing
modes, or conditional branches typically found in a general purpose microprocessor. Therefore,
this chapter deals with the trade-offs involved in finding an optimum hardware representation for

both high performance and low hardware overhead.

3.2 Numeric Magnitude

The first metric that is evaluated is the notion of numeric magnitude. We need to know
the highest valued (positive or negative) number that is ever used within any stage in the
calculation of the equation. This defines the amount of hardware needed to hold such a number.

To determine such a number, the algorithm was written in the C language as a procedure
call and is listed in Appendix A. The procedure is called by the main routine for many different
UMDH configurations. Each of the four joints of the UMDH are controlled by nested FOR loops
which cause the angles to sweep through each joint’s given range shown in Table 3.1 (Solanki and

Rattan:69). The results of the equations for each particular configuration were written to a data
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file. The data file was then imported into the Matlab environment and searched for the maximum
and minimum values as listed in Appendix A. The values of the angles, including intermediate
steps where up to three angles are added together, show that they never exceed the range +360 to
-360 degrees. Intermediate additions, subtractions, and multiplications never exceed -2.3864 to
+3.3750. The final results of the NSAP matrix never exceed -2.3864 to +5.6271.

Table 3.1.  Kinematic Range of UMDH

Joint Angle Range of motion in degrees
/7 -45 to 135
1
65; -15 to 60
2
Vi 6.5 to 90
3
£§7 0 to 90
4

The implementation of the integer portions of such numbers can be accomplished directly
with just four bits of hardware (three bits represent the integers 0 to 7 and one bit for the sign).
However, since the values obtained are just a sample of the results from entire range of the
UMDH, and not an exhaustive test. This represents the minimum hardware size required. Also,
the future expansion to another type of manipulator may require more than just four bits.

Therefore, at least four bits will be held for now for hardware implementation..
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3.3 Numeric Precision

The second metric used is the numeric precision required by the system. The UMDH was
designed with metal joints that are controlled remotely via a set of tendons running around plastic
pulleys. The coulomb friction of the joints and pulleys causes a motion deadband every time a
joint stops. The electronic control system of the UMDH attempts to track the desired position of
each joint, but it is limited by these mechanical properties. Consequently, simply turning up the
gains of the UMDH controller would not suffice because that causes the joints to become unstable
and to begin oscillating.

Therefore, in an attempt to avoid decreasing performance beyond that of the current
system and to avoid possible truncation problems at intermediate stages in the equations, the
number of decimal bits required is set to eight. This allows for a resolution of 0.003906250 per
least significant bit since the last bit is the placeholder for 2%, If the value is representative of an
angle, then it is clear that 0.003906250 degrees is much higher a precision than the UMDH could
ever track. If the value represents a Cartesian coordinate of the end of the finger, then the same
applies to 0.003906250 inches. Although the UMDH was modeled as an ideal body of rigid links,

all devices will inherently flex to some extent.

3.4 Mathematical Operator Usage

The 12 equations are examined for occurrences of additions/subtractions, multiplications,
or cosines/sines. A brute force approach by simply counting the number of operations found in
Equation 2.16 results in 22 additions, three subtractions, 12 multiplications, 11 cosines, and nine

sines. However, many of the terms in the 12 equations appear in more than one location.
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Therefore, the number of operations can be reduced by sharing these terms. Both the cosine and

sine of three angles are used three separate times. Similarly, the entire last half of Px and Py are

“identical. If the order of calculation for the 12 equations takes advantage of the common terms

then the number of operations can be reduced to seven additions, three subtractions, 10
multiplications, four cosines, and four sines. This is a 68.2% decrease in additions, 16.6%
decrease in multiplication, 63.6% decrease in cosines, and 55.5% decrease in sines. The

subtractions remain unchanged because of the negative signs on Py, S, and S;.

3.5 Conclusions

This chapter evaluated the equations from Chapter 2 to determine the best representation
of the numbers. We determined that the absolute largest number only required four bits but that
more bits for higher numbers may be required in future implementations. To keep the precision of
each number, eight bits are required for a minimum of 1/256th difference between each number.

Therefore, the implementation of the numbers in hardware are done with a total of eight
bits for the integer portion and eight bits for the decimal portion. Together, the 16 bits form the
basis for a fixed point number with the binary point in the center between the set of eight bits.

This results in a maximum number of +127.99609375 and a minimum number of -128.00000000.

Finally, we determined that the 12 equations can be calculated in just 28 operations if

common terms are reused. This is a decrease of 50.9% from the original 57 operations.
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4. VHDL Model

4.1 Introduction

This chapter discusses the first step in the implementation of the forward kinematic
processor. The step is the development of behavioral VHDL models for each of the required
mathematical operations found in Equation 2.16 as well as temporary register-based memory and
other structures used to route the data within the processor. Finally, a structural VHDL model
for the entire processor is developed. Each model is developed and simulated using the Synopsys

Analyzer and Simulator (Synopsys) before synthesis in Chapter 5.

4.2 Functional Units

In all models, the 16-bit fixed-point representation of all numeric data will be implemented
as a bit vector of size 15 down to 0. The binary point is implied to be at the center, between bits
8 and 9.

4.2.1 Cosine/Sine Unit.

The first functional unit developed was the cosine and sine unit. Both transcendental
functions are designed into one model as shown in Figure 4.1. The unit calculated the cosine or
sine by means of an external lookup table. An address is generated and sent to a ROM chip that
returns the result back to the cosine/sine unit. Since the specifications of the external ROM chip
were not known at the start of the design, the model incorporated the ability to set the delay
before the unit latches the results from the ROM. These wait states allow the possibility of the

use of slower ROM devices.
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sel go resct clk wait rcady

1

Wait

States

13-bit 16-bit
. data out
data in Address Data
16
16 Latch Losct
13 4 16 >

External EPROM 8K X 16 Lookup Table

.......................................

Figure 4.1. Cosine/Sine Unit Block Diagram

For example, if the system clock of the forward kinematic processor has a clock period of
40 ns (25 MHz) and the ROM device has an access time of only 150 ns, then the number of wait
states would be set to three. Three wait states causes three extra 40 ns clock cycles in addition to
the current cycle, for a total of 4 cycles or 160 ns. This prevents the cosine/sine unit from reading
in incorrect data early.

The state machine is shown in Figure 4.2. A reset signal during any state will force the
system to state 0. In state 0, the ready output signal is not asserted, the number of wait states are
calculated, the temporary counter is set to zero and look-up table address is formed and sent to

the external ROM. To form the address, the unit takes as input a 16-bit vector and strips off the
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lower 11 bits, representative of three bits of integer and eight bits of decimal. Also, the highest
bit, representing the sign, is also pulled out. Finally, an input signal called sel, that determines

cosine or sine, is also taken and these 13 bits form the address into the ROM lookup table

containing the results of both cosine and sine.

reset

1

ready =0
calculate wait states
create ROM address

stay here until
counter = wait states
counter = counter +1

2

latch data from ROM

and send it to ouput bus counter = wait states

Figure 4.2. Cosine/Sine Unit State Machine

The unit will stay in state 0 until the go input signal is asserted. Once in state 1, it will stay

there, incrementing the counter until it matches the precalculated number of wait states. It will

then move to state 2 where the results from the ROM look-up table are latched into the output

bus. The unit then transitions to state 3 at the next rising edge of the clock and the ready output

signal is asserted. The next transition on the rising edge of the clock is back to state 0, where it

waits for the next cycle.
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The behavioral VHDL model for the cosine/sine model is listed in Appendix B.1.1. The

VHDL testbench code and results for it are listed in Appendix B.1.2. The testbench sends the

unit through the eight possible wait states with a simulated external ROM. These results are

shown in Appendix B.1.3.

4.2.2 Adder/Subtractor Unit.

The adder and subtractor are contained within one functional unit. The subtractor is

implemented using the adder model and inverting the secondary input before applying it to the

adder. In both cases, two 16-bit numbers are input into the unit and one 16-bit number is output

as shown in Figure 4.3. There are no provisions for overflow or underflow conditions because of

the nature of the operands. At no time should there occur an overflow or underflow condition.

reset scl

2O

done

/

A Bus Input

[16

B Bus Input Xor Circuit
E for Inverting

B Bus for
Subtraction

N
—m_J‘>

L

Ripple

Canry

Adder

€ Bus Output

>

Figure 4.3. Adder/Subtractor Unit Block Diagram
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The unit starts at idle in state 0 shown in Figure 4.4. When the go input signal is asserted,
the unit starts by calculating the sum and carry terms of Equation 4.1 and 4.2 for the least
significant bits, where A and B are inputs bits and C is the carry in from the previous bit.

(Weste and Eshraghian:517). Each clock tick causes the unit to progress to the next state and
calculate the next bit. After sixteen clock ticks, all sums have been calculated and the result is
sent to the output bus. A done output signal is asserted indicating completion and the state

machine returns to state 0 in preparation for another addition or subtraction.

18 Calculate B Bus

Move sums to output Disassert done

Calculate Cout of
Least Significant Bit

Assert done

17 2

Calculate Most Significant
Bit of Sum

Calculate Sum of
ama Least Significant Bit
:" and Cout of next bit

_--~
wa_.-’

Figure 4.4. Adder/Subtractor Unit State Machine

Carry = AB + C(A+B) Equation 4.1

Sum = ABC + (A+B+C)Carry Equation 4.2
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Typically, an adder/subtractor would not be implemented as a state machine requiring at
least 16 clock ticks. However, since the target platform is an FPGA, and the timing of the
synthesized design will not be known until Chapter 5, it is impossible to determine how long it
will take to allow all the sum and carry terms to ripple their results to the final result. Therefore,
the unit indicates to the surrounding system when it has completed the final state by asserting the
done signal. If at any time the reset signal is asserted, the unit is forced back to state 0.

The behavioral VHDL model for the adder/subtractor model is listed in Appendix B.2.1.
The VHDL testbench code for it is listed in Appendix B.2.2. The testbench sends the unit
through 30 different additions and 30 different subtractions. These results are shown in Appendix
B.2.3.

4.2.3 Multiplier Unit.

The multiplier unit has the same data interface as the adder/subtractor unit. Figure 4.5
shows the two 16-bit inputs and one 16-bit result. Once again there are no provisions for
overflow or underflow. Typically two 16-bit numbers multiplied together would result in a 32-bit
result, but in this specific implementation, the numbers should never exceed 16-bits, a constraint
of the 16-bit architecture.

The multiplier actually uses a modified copy of the adder/subtractor inside its design. The
adder/subtractor is extended to 32-bits to handle the accumulation of the partial products. The
multiplier follows the same basic data flow as the adder/subtractor except that it requires many

more states to calculate the result. Figure 4.6 shows the state machine for the multiplier unit.
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Figure 4.5. Multiplier Unit Block Diagram

Figure 4.6. Multiplier Unit State Machine
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It stays idle in state 0 until the go input signal is asserted. Each of 16 partial products are
calculated and then repetitively added up to form the final result. Similar to the adder/subtractor
unit, when the final state is reached, an output signal ready is asserted to indicate to the
surrounding system that multiplication is complete. If at any time the reset signal is asserted, the
unit is forced back to state 0.

The behavioral VHDL model for the multiplier model is listed in Appendix B.3.1. The
VHDL testbench code for it is listed in Appendix B.3.2. The testbench sends the unit through the
same 30 inputs as the adder/subtractor but multiplies rather than adds or subtracts. These results
are shown in Appendix B.3.3.

4.2.4 Register File Unit.

The register file unit is used to store the starting angles of the UMDH, certain constants
from the DH table, temporary and intermediate calculations, and the 12 equation results. It is
designed to hold the 16-bit numbers in any of 32 different locations, except for the first two
locations. The first location is hard wired to always hold a zero value and the second location
holds a hard wired one value. This was designed early on because of the expected need to
increment by one or to allow for moves from one location to another through the adder/subtractor
unit with one of the inputs being zero.

It is designed with one 16-bit input bus called the C bus and two 16-bit output buses
called the A and B bus as shown in Figure 4.7. The data of the C bus is written to any of the

remaining 30 locations by use of the C bus address and a latch signal. Data can be read from any
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of the 32 locations to both A and B bus by using the A and B address. If the reset signal is

asserted, the 30 locations are forced to zero.

C address Clatch reset  clk A address B address

. LA

A Bus Output
16 bit wide 16
d 32 word long ala
[ (3 [ -]
C Bus Input c Resisier i c c
16 ° e € of| o
d d| d
¢ e | e
r r r
B Bus Output
16
\. _J

Figure 4.7. Register File Unit Block Diagram
The behavioral VHDL model for the register file model is listed in Appendix B.4.1. The
VHDL testbench code for it is listed in Appendix B.4.2. The testbench has three parts. In the
first part, a reset is asserted and the zero register and one register are verified as well as that the
remaining 30 were forced to zero. In the second part, all 32 registers are given test values. In the
third part, all 32 registers are evaluated again showing that all but the two hard wired registers

accepted the values. These results are shown in Appendix B.4.3.
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4.2.5 Latches and Multiplexors.

The latches and multiplexors are required in the design as glue logic between the other
functional units. To start, there is a 16-bit latch as shown in Figure 4.8. When its latch signal is
asserted, the input bus is transferred to the output and held at that value until the next time this
latch is asserted. This design requires two latches as described in the next section. The
behavioral model for the latch is found in Appendix B.5.1 and its testbench is located in B.5.2.

The results of the testbench are found in Appendix B.5.3.

Latched Output Bus

Input Bus
> >

B OO e

—

Figure 4.8. Latch Unit Block Diagram
Also required is a multiplexor as shown in Figure 4.9. It directs one of four inputsto a
single output. The multiplexor is 16 bits wide for all inputs and outputs and is controlled by two

input signals determining the one of four paths.
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Figure 4.9. Multiplexor Unit Block Diagram

The behavioral VHDL model for the multiplexor is founc’I in Appendix B.6.1 and its
testbench is located in B.6.2. The results of the testbench are found in Appendix B.6.3.

4.2.6 FKP Core.

The functional units designed so far are brought together to form the core of the Forward
Kinematic Processor (FKP). This core encapsulates the functional units such that they appear like
a single large functional unit. Two latches and one multiplexor are used to glue the other
functional units together so that data can travel from unit to unit in a productive manner. Figure
4.10 shows the connections of the units inside the core. There is one 16-bit data input bus which
is routed to the input data latch. From there, the data is passed though the multiplexor and back
around to the register file for storage. Once data is loaded into the registers, they can be sent to

the cosine, sine, addition, subtraction, or multiplication units and rolled back around to the
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register file via the multiplexor again. When the desired computations are complete, the data in a
register is sent to the output latch and then to the output bus. To control the dataflow, all of the
control signals from each of the functional units are passed as control signals for the core unit.

This model does not handle the actual control of the core, but rather gives one concise shell for

everything inside it.
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Figure 4.10. FKP Core Block Diagram
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The structural VHDL model of the FKP core is shown in Appendix B.7.1 with the
testbench in B.7.2. The testbench performs the actions described above on some data. It was
designed to prove functionality of the core since each subunit has already been verified. The
results are shown in Appendix B.7.3.

4.2.7 Microcode Store.

This section defines the instruction set of the processor. Because this is an application
specific design, the instruction set contains only commands for moving data in and out, and
performing one of the arithmetic or transcendental operations. Table 4.1 shows all possible
instructions utilized within the processor. The microcode for each instruction is derived from the
testbench of the FKP core. Since the FKP core does not supply autonomous control over the
functional units, each simulated instruction was hard coded in sequence. The microcode store has
taken each simulated instruction and formed each into a procedure (opcode) call with its
parameters (operands) being the passed into the procedure. All procedures are contained in a
package model that can be called by the control unit of the next section.

The behavioral VHDL package model of the instructions are shown in Appendix B.8.1
with the testbench in Appendix B.8.2 performing the same operations as the FKP core testbench.
The results in Appendix B.8.3 show that the replacement of the autonomous microcode performs

identically to the hard coded testbench of the FKP core.
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Table 4.1. FKP Instruction Set

Instruction

Description

move_in (R, data)

Latch input bus, pass data through multiplexor to register R

move_out (data, R)

Move data out of register R, through output latch to output bus

add (R1, R2, R3) | Send data from two registers (R2 and R3) to two inputs of
adder/subtractor unit, add, send result back to register R1
sub (R1, R2, R3) | Send data from two registers (R2 and R3) to two inputs of
adder/subtractor unit, subtract, send result back to register R1
mult (R1, R2, R3) | Send data from two registers (R2 and R3) to two inputs of multiplier unit,
multiply, send result back to register R1
cos (R1,R2) Send data from register R2 to input of cosine/sine unit, perform cosine,
send result back to register R1
sin (R1, R2) Send data from register R2 to input of cosine/sine unit, perform sine, send

result back to register R1

4.2.8 Control Unit.

The control unit can now utilize the microcode store package to make the FKP core

perform the various instructions without the burden of worrying about dataflow on every single

clock tick. The control unit allows interface with the outside world via an six bit control port and

a seven bit command port as shown in Table 4.2 and 4.3 respectively. The control unit is a shell

for the microcode store and the FKP core as shown in Figure 4.11.

Table 4.2. Control Port

Bit # 5 4 3 2 1 0
Name Clock Reset Strobe Ready DataGetValid | DataGetAck
IN/OUT IN IN IN ouT ouT IN
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Table 4.3. Command Port

16

CORE

AN

Figure 4.11. FKP System Block Diagram

Command Port

0

Control Port

Description | CMD1 | CMD0 A4 A3 A2 Al A0
bit # 6 5 4 3 2 1 0
Set Register 0 0 A4 A3 A2 Al A0
Get Register 0 1 A4 A3 A2 Al A0
Run 1 0 X X X X X
External EPROM Lookup Table
Data IN Data OUT
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The clock input is the overall system clock for the processor. The reset is the overall
system reset for the processor. The remaining bits of the control port are utilized in conjunction
with the command port. After system reset, the ready output signal is asserted, indicating that the
processor is available to perform one of the three functions: set register, get register, or run. The
user sets the CMDO and CMD1 bits to correspond to the desired function and asserts the strobe
input signal. The processor will deassert the ready signal, evaluate the command port and take
the appropriate action. When the function is complete, the ready signal is reasserted.

If the function is a set register, then the 16-bit input data bus is latched in and routed to
the register designated by bits A4-A0 of the command port. If the function is a get function, then
the register designated by bits A4-A0 are sent through the output latch and to the 16-bit data
output bus. Finally, if the function is run, then the A4-A0 bits are ignored and the predetermined
sequence of instructions is executed.

The sequence is arranged to take advantage of any common terms found in the 12
equations of Chapter 2. Chapter 3 evaluated the equations and determined that there would be
seven additions, three subtractions, 10 multiplication’s, four cosines, and four sines. This would
require a total of 28 instructions. However, this did not count for the data moves into and out of
the processor using the set and get functions. Table 4.4a shows the operations involved with
moving in the angles and possibly some constants into the registers. The register locations that
hold this constant data is fixed due to the fact that the run function will expect the correct data in

these locations. The first time theses data values are loaded, both constants (a’s) and angles (b’s)
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are required. But from then on, only the new set of angles are needed because the constants do

not change and are not written over unless due to power loss or system reset.

Table 4.4a. Operations Involved with the Set Function

Step # | Register # Instruction and Description
la 2 move_in (2, a0) = move link length 0 into register 2
2a 3 move_in (3, al) = move link length 1 into register 3
3a 4 move_in (4, a2) = move link length 2 into register 4
4a 5 move_in (5, a3) = move link length 3 into register 5
S5a 6 move_in (6, d1) = move link offset 1 into register 6
1b 7 move_in (7, 61) = move theta 1 into register 7
2b 8 move_in (8, 62) = move theta 2 into register 8
3b 9 move_in (9, 63) = move theta 3 into register 9
4b 10 move_in (10, 64) = move theta 4 into register 10

With the constants and angles loaded, the run function can be initiated. Table 4.4b shows
the internal steps involved with calculating the results of the twelve equations. There is one extra
add of step 18 due to the internal move of the zero in the zero register to register 28.

Figure 4.4b. Internal Operations During Run Function

Step # | Register # Instruction and Description

2 11 cos(11, 7) = cos(61)

3 12 sin(12, 7) = sin(62)
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4 13 cos(13, 8) = cos(02)

5 14 add(14,8, 9) = 62+03

8 add(14, 14, 10) = 02+03+04

6 15 sin(15, 14) = sin(62+63)

7 16 cos(16, 14) = cos(82+03)

19 17 mult(17, 4, 13) = a2 cos(02)
21 add(17, 17, 18) = a2 cos(02) + a3 cos(02+03)
22 add(17, 17, 3) = al + a2 cos(62) + a3 cos(02+63)
20 18 mult(18, 5, 16) = a3 cos(02+03)
23 mult(18, 17, 11) = cos(01)( al + a2 cos(62) + a3 cos(62+03))
26 19 mult(19, 4, 12) = a2 sin(062)

11 20 mult(20, 11, 25) = cos(61)cos(02+63+64)

12 21 mult(21, 26, 25) = sin(61)cos(02+03+64)

9 2 sin(22, 14) = sin(62+03+04)

13 23 mult(23, 11, 22) = cos(81)sin(02+03+04)

14 sub(23, 0, 23) = -( cos(01)sin(62+63+04))

15 24 mult(24, 26, 22) = sin(01)sin(02+03+64)

16 sub(24, 0, 24) = -( sin(81)sin(82+03+04))

10 25 cos(25, 14) = cos(62+03+04)

1 26 sin(26, 7) = sin(01)
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17 27 sub(27, 0, 11) = -cos(01)

18 28 add(28, 0, 0) =0

24 29 add(29, 18, 2) = a0 + cos(01)( al + a2 cos(02) + a3 cos(62+63))
25 30 mult(30, 17, 26) = sin(1)( al + a2 cos(02) + a3 cos(62+63))

27 31 mult(31, 5, 15) = a3 sin(62+03)

28 add(31, 31, 19) = a2 sin(62) + a3 sin(02+63)

29 add(31, 31, 6) = a2 sin(02) + a3 sin(02+63) + d1

The get functions can now be used to retrieve the last 12 registers for the results of the 12
equations. Each value is moved out one at a time and in any order the user desires.

The structural VHDL model of the Forward Kinematic Processor is shown in Appendix
B.9.1.

4.3 Conclusions

This chapter developed the models of each of the required functional units. Each model
was tested as a stand-alone design before integration into the Forward Kinematic Processor.
Once the initial five constants are loaded in, the processor takes four instructions to load the
angles, 29 instructions to calculate the results, and 12 instructions to get them out, for a total of
45 instructions. The processor was then tested from the top most level of the design model. With
the simulation of the processor complete, the next step in the implementation is synthesis to an

FPGA. This is described in Chapter 5.
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5. VHDL To FPGA Synthesis

5.1 Introduction

The goal of this chapter is to move the FKP design modeled in the hardware description
language straight to an FPGA implementation. The models were behavioral descriptions of the
functional units with a top level structural description of the entire processor. At this level of
abstraction, there is no implied physical architecture. We have not even worked with a gate level
representation of the design. The synthesis into an FPGA induces an explicit physical architecture

based on the target device; in this case the Xilinx 4020E.

5.2 VHDL Source Restrictions

VHDL was originally designed as a simulation and modeling language. The concept of
synthesis directly from the model was not included in the design of the language. Therefore, some
of the constructs found in VHDL are not synthesizable. The most obvious limitation is the use of
specific time delays. For example, the statement “wait for 10ns” or “A <= B after 5ns” has no
meaning to a synthesis tool because there is no on-chip clock to direct when the action is to take
place. Also, constructs such as access types, records, recursive subprograms, and
multidimensional arrays are non-synthesizable (Raines; Ailes:21).

Most of these restrictions were known when beginning the development of the models
from Chapter 4, but some unexpected and potentially detrimental constraints appeared as the
design moved on. First was the use of more than one signal inside of process sensitivity list.

Typically, many signals can be listed in the sensitivity list of the process, indicating execution of
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the process if any of the listed signals changes state. The synthesis tools could only handle one
signal in the list. A process that is dependent on both the clock and the reset signal would cause
errors during synthesis. To work around this problem, most all sensitivity lists became empty
forcing continuous execution, with the clock events being listed as a separate wait statement
within the process body. The second problem pertains to the need to assert a signal for one clock
period and then deassert it on the next clock period. Such an event infers a clock wait between
the two transitions, but only one wait statement is allowed on each pass through the process body.
The result is a streamlined hardware description such as “A<=B; wait until clock tick;
A<=not(B); wait until clock tick” being unrolled to an explicit state machine where the execution
through the\ process body takes a different path for each state. Each state then contains a unique

command for “A<=B” or “A<=not(B)” and there is only one wait statement for all paths.

5.3 _ Design Flow

There are four major tools used to perform the synthesis step. The Synopsys VHDL
analyzer is used to compile the VHDL code. This includes compilation of the testbenches for
each functional unit. The functional units are then simulated with the Synopsys VHDL simulator.
These two tools together, both executing on a UNIX platform, form the primary development
tools of the models (Synopsys). Because both the Analyzer and Simulator do not aim towards
synthesis, the restrictions from section 5.2 are ignored and pushed aside for later tools. The other
three major tools are Synopsys Design Analyzer and Exemplar Leonardo for synthesis, and Xilinx

XACTstep for mapping.
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5.3.1 Synopsys Design Analyzer

The Synopsys Design Analyzer started out as the primary UNIX synthesis tool. Within
the Design Analyzer is a feature called the FPGA Compiler. It accepts VHDL as input and
attempts to produce a hybrid Synopsys/Xilinx netlist. The drawback to using this tool is its
turnaround time. Typically, a small model such as the cosine/sine unit will take upwards of two
hours to generate the netlist (Synopsys).

5.3.2 Exemplar Leonardo

The PC/Windows 95 based Exemplar Leonardo application turned out to be quicker than
Synopsys and much easier to learn and use. The following sequence describes the path used to
generate a correctly targeted netlist (Exemplar). First, the program is loaded and the startup

screen is shown in Figure 5.1.

Fle |0 Optimize Report Higrarchy Iools Options

Flow Guide... Toolbar... Schematic Viewer... Design Browser... l Quit... !
xmplr :
Leonardo - V4.0.3 :E

Copyright 1990-1996 Exemplar Logic. Inc. All rights reserved.

»%% Pelcome to Interactive Leonardo Version V4.0.3 #==
Hews i
* Enter "help” to get an overview of all commands
* Enter <command> -help to get ussge of each command

Ceszion history will be logged to file 'esxesnplar his’
LECNARDO{1}: .

Al

|

Figure 5.1. Exemplar Logic Leonardo Startup Screen
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The first action taken is to click on the Flow Guide button. The Flow Guide shown in
Figure 5.2 appears. Because we wish to customize certain aspects of the design, the Customize
Flow Guide button is clicked. Another window appears that allows us to inform the tool that the
design consists of multiple VHDL files because many of the functional units depend on a package
or header file. We also select the option of packing the configurable logic blocks (CLB) of a
Xilinx FPGA, decomposition of Look Up Tables (LUT), and reporting of area used as shown in
Figure 5.3. The result is a variation of Figure 5.2 with the extra steps added into the design Flow

Guide of Figure 5.4.

e e e o e P T e =TT

o

Load = . Read Pre ‘ = Optimize -P Report -? Replm -) Whte ,'
lerary ‘ e ﬂpmmze ' ' 7 Area Delay i
Leonardo Flow Guide

Welcome to Leonardo Flow Guide. Your commands and their output will be shown on the main command
window. You may exit Flow Guide at any time by pressing "Exit Flow Guide".

Click on the first button to start.

Customize Flow Guide Exit Flow Guide

Figure 5.2. Leonardo Flow Guide
The first button, Load Library, is selected and we choose the 4000E family as shown in
Figure 5.5. The second button is used repetitively to read in and analyze the VHDL files. A
window appears that allows the filename to be input as shown in Figure 5.6. As each file is being

read in, any warning messages are displayed regarding synthesis problems.




FPGA Processor Implementation for the Forward Kinematics of the UMDH 45

Check all boxes that apply to your design:

Input Flow: B Multiple VHDL or Verilog Input Files
4 Attera EDIF input file

_} Design with instantiated modgen cell

Oplimize Flow: | & Technelogy specific module generation
M Extract counters, decoders and rams
1 Specify constraints for optimizationtiming optimization
| Timing Optimization |

M Pack CLBs (Xilinx)

Reporting How: | Report Area

1 Report Delay

Output Flow: M Decompose LUTs (FLEX, ORCA, Xilinx 3k/4k/5k)
_] Load balancing for Actel, QuickLogic and ASICs

_I Generate timespec for Xilinx

J Altera EDIF output file

Run Flow Guide Cancel l

Figure 5.3. Customize Flow Guide

Once all the VHDL files are loaded in, the design is elaborated based on the top level
entity description. Figure 5.7 shows the Elaborate window. Clicking the elaborate button
automatically determines what the top level is and considers its port declaration as the 1/0 of the
design. Next, the Pre-Optimize step is accomplished, shown in Figure 5.8, followed by the
selection of the Modgen Library in Figure 5.9, and the resolution of the Modgens shown in Figure

5.10.
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= ‘Elaborate | =~ Pre- - | ="' Load | = Resohe | P
: ‘ - Optimize ~ Modgen- i-Modgen

Leonardo Flow Guide

Welcome to Leonardo Flow Guide. Your commands and their output will be shown on the main cornmand
window. You may exit Flow Guide at any time by pressing "Exit Flow Guide".

Click on the first button to start.

Customize Flow Guide Exit Flow Guide | -

Figure 5.4. Customized Flow Guide

Technology: [Xilinx 4000e

Tech Type: FPGA Enhanced -

J Filename: F::!exemplarhwurldrem Bireg_file_pkg_16.vhd ;@J

Work Library: fwork

Format: ¥ Auto ~s VHDL w Verilog

|t | Avances- | _gncel |

Load | Advanced.. ] canicel J

Figure 5.5. Load Library Figure 5.6. Analyze



Architecture: |

Work Library:  [work

Parameters: |

Generics: ;

file_16_e.behavior

Jworkcreg

M Share common fogic
M Remove unused (dangfing) logic
M Extract counters, decoders and rams ‘

_i Perform operation on only a singe level of hierar chy

Jaborate

a1

Cancel

Pre-Optimize t Cancel '

Figure 5.7. Elaborate

Modgen Library: [Xilinx 4K

Lucent DRCA-2A Al
Lucemnt ORCA-2C o
nx 3K

General ASIC Technologies
General FPGA Technologies

.

Figure 5.9. Load Modgen Library

Desigm:

Swiltches:

Figure 5.8. Pre Optimize

|.vmrk.reg_ﬁ|e_1 6_e.behavior

| Preserve hierarchy
| Default Resolving

1 Perform resohing only at the top level of hierarchy

Resohve I

Advanced... Ccancel I

Figure 5.10. Resolve Modgen

The heart of this design flow is the Optimize step, where we can choose what type of

optimization to do. The exhaustive selection will require multiple hours to complete. On the

other hand, a quick optimization may only require five to 10 minutes. Because we are primarily

concerned with area and not with speed, the area optimization box is checked as shown in Figure

5.11. The results of the optimization are shown in Figure 5.12, but the numbers are not entirely

accurate. The critical path is listed as 29ns. However, the design has not yet been placed and

routed on the chip. We will see later in Chapter 6 that the critical path is closer to 100ns.
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Design: Jworkreg_file_16_e behavior

Target: 4 Xilinx 4000¢

Effort: s Remap v Quick v Standard 4 Exhaustive
Mode: 4 Chip ~ Macro

Optimize: = & Area - Defay

PassLimits: ¢ RunABPasses < RunOnlyMarked Passes . Skip Marked Passes

Switches: {,J Optimize only a single level of hierarchy }

Optimize | Advanced... { __g:n_oeLJ

Figure 5.11. Optimize

—— Start optimization for design work .reg_file 16_e.bshavior

Pass Area Delay DFF=s Pls POs —CPU~——
{FGs) {ns) min:sec
1 809 29 256 31 32 00:54

Resource Use Estimate

Technology: xide

Area: 809 Function Generators
Critical Path: 29 ns

DFFs: 256 {in CLBs or IOBs)
I0FFs: 32 (in IOBs)

HY ClLBs: 0

Input Pins: 31

Output Pins: 32

Figure 5.12. Results of Optimization
The optimized design is then packed into the CLBs by using the window shown in Figure

5.13, followed by decomposing the LUTs within the CLBs shown in Figure 5.14.

Design: Jworkreg_fie_16_e.behavior Design: + Jworkreg_file_16_e.nehavior

Switches: l _ Operate on single level of hierarchy J Switches: _i Create newviews for each decomposed lookup table

i Pack Cancel I
i

_1 Opoerate on single level of hierarchy

Decompose Cancel I

Figure 5.13. Pack CLBs Figure 5.14. Decompose LUTs
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The final step is the writing of the Xilinx Netlist Format (XNF) file to disk as shown in

Figure 5.15.

Filename: !C:!exemplarmvn rkireg16ireg 1 6.xnf @;;J

Format: v Auto ~ VHDL - Verilog ~, EDIF % XNF - SDF
Switches: _1 Don't write any warnings or info messages

1 Write only the top level of hierarchy to file

Figure 5.15. Write XNF

5.3.3 Xilinx XACTstep M1

The Xilinx XACTstep program picks up where the Exemplar tools stop. It inputs the
XNF file and sets up a project manager screen that keeps track of the version and revision of the

design as shown in Figure 5.16. Once loaded in as a project the design is implemented as shown

Figure 5.16. XACTstep Design Manager
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in Figure 5.17. The target device is chosen, along with the current version and revision number.
Additional options shown in Figure 5.18 allow a constraint file to be added to the design. In this
case, a UCF file is used to lock certain I/O names to actual pins on the FPGA. Also, the
configuration template can be edited from this screen. Figure 5.19 shows the configuration
options screen. Both the inputs and the outputs are set to CMOS thresholds and the DONE, MO,

M1, and M2 mode pins are set to have an internal pull-up resistor.

Figure 5.17. Implementation Window Figure 5.18. Implementation Options
The Flow engine is now invoked and the process of translating, mapping, placing and
routing, and configuring is performed. Figure 5.20 shows the Flow Engine and the results of a

synthesized design. The result is a BIT file that is ready for download into the FPGA.
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Figure 5.20. Flow Engine

5.4 Bitstream file to FPGA

The BIT file is downloaded to the FPGA using the Hardware Debugger utility of the
XACTstep program. An X-Checker cable is used between the FPGA and the host computer’s
serial port. The Hardware Debugger then sends the proper headers, frames of data, and trailers

down the X-Checker cable and into the FPGA.
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5.5 Conclusions

This chapter discussed the procedures for synthesizing VHDL models to FPGA
implementations. The process works, however the FKP processor cannot fit entirely on the target
4020E FPGA. If the target FPGA was much larger in capacity than the 4020E, then in theory, the
entire design could be placed into one device. Instead, half of the register file unit is pushed
through Exemplar Leonardo and Xilinx XACTstep and programmed into the 4020E that is
available in the laboratory. Figure (5.21) shows the CLB and routing layout for the register file in
the 4020E. This design used 40% of the total available CLBs, 27% of the total available IOBs,
and 12% of the total CLKIOBs of the 4020E. A text log of the XACTstep process from XNF

format to BIT format is listed in Appendix C.
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Figure 5.21. 4020E CLB and Routing for the Half Register File Unit
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6. FPGA Verification

6.1 Introduction

This chapter investigates the physical implementation of one of the functional unit models
into a Xilinx 4020E FPGA. The Logic Master XL100 by Integrated Measurements Systems
(Integrated) will serve as the testbed for the programmed device. Because the 4020E package is
not directly compatible with the IMS, a custom adapter is developed.

6.2 IMS Logic Master XL100 tester

The IMS Logic Master X1.100, shown in Figure 6.1, can support up to 100MHz data and
clock rates with up to 224 I/O channels. To test the 4020E FPGA, one XL PGA Auto Socket

Card is used to form the interface to the IMS.

Figure 6.1. The IMS Logic Master XL.100
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6.3 HOQ208 Chip Carrier and Daughter Board

The Xilinx 4020E FPGA is contained in a Heat-sinked Quad Flat Pack (HQFP) 208 pin
package (Xilinx:10-35). Because the device does not have pins that can be easily inserted into a
test circuit board, an adapter from Ironwood Electronics (see Appendix D) is used to mount the
FPGA to the test board. The adapter is wire-wrapped to a set of connectors which match up with
connectors installed on the IMS socket card. Figure 6.2 shows the completed test unit. Also
shown in Figure 6.2 is the Xilinx X-Checker cable for downloading the serial bit stream from the

host PC to the FPGA.

Figure 6.2. Completed Test Unit

There are 16 ground connections and seven +5 Volt connections to the adapter. The
power supply is external to the IMS to allow the FPGA to be programmed and hold its
configuration when the IMS is not cycling a test. When the IMS finishes a test and sits idle, it

removes all power to the device under test. This would erase the configuration every time the
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IMS stopped a test cycle because the configuration is stored in internal latches (Xilinx 13-39). By
keeping power supplied to the FPGA, even while idle, the configuration is retained. One possible
solution to the loss of configuration is to program a PROM device instead of the FPGA directly.
The PROM can then hold the configuration information even when the power is removed, and
transfer the data into the FPGA every time the system powers up.

Also connected to the adapter are control pins for the FPGA. The TCK pin is pulled up to
Ve to prevent the device from entering into a boundary scan EXTEST during the download
process(Xilinx:13-30). The M0, M1, and M2 pins are also pulled up to Vcc to force the device
into Serial Slave mode. This mode is the simplest to implement. The Init, Done, Rst, and Prog
pins are all pulled up to Vec. Combined those with the Din and Cclk from the X-Checker and we
have the setup shown in Figure (6.3) (Xilinx:5-18).

The remaining connections represent either input or output of the FPGA. The Ironwood
Electronics data sheet in Appendix C shows the 4020E pin name and number associated with the
adapter pin numbers and corresponding IMS connections.

There is a switch wired to the Prog pin to allow a forced reset of the FPGA. This causes
the configuration to be erased and the device will prepare for a new download. The small green
LED indicates power to the FPGA from the external supply. The red LED indicates that the IMS

has output 5 Volts on the J13 channel.



FPGA Processor Implementation for the Forward Kinematics of the UMDH 56

N
vCcC )
Fiying Leads /o] o
or O L
Header Connector ‘
E DONE FOR XCa000
t —E wcn.v
[+ XCI000 & XCA000 ONLY
o = XILNX™
o & XILINX™ i3 - e
@ « XC3000
3 o 0] XC2000
H o 0}
x od 0]
e :
L]
m
(0]
0]
U /7 \\ /
\/ \/
x2033 XChecker Target System

Figure 6.3. Slave Serial Download

6.4 _Functional Unit Testing

The first design that was successfully tested was a combination AND/OR gate utilizing
four I/O pins and one CLB out of a total of 784. The AND/OR gate was modeled in VHDL and

pushed all the way through to implementation. Fastest speed rating on the gates was 11 ns, or

90.9MHz.

The second design was the half register file unit from Chapter 5. The only difference in

the process the second time was the addition of a UCF constraint file to force the I/O pins to
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predetermined locations. Even if the model changes and causes a resynthesis of the design, the
surrounding environment of the FPGA does not have to change.

The IMS tester allowed for a functionality and speed test of the FPGA. For the functional
test, the register file is reset and all 16 registers are output to the A and B bus in opposite orders.
Figure 6.4 shows the waveforms and indicates that all registers except number 1 is cleared to a
zero. If we recall from Chapter 4, the number 1 register always holds a numeric 1.0, and the
number 0 register always holds a numeric 0.0.

After the registers are cleared, all 16 registers are written to with a different bit. Once
again the two output buses A and B are given the values of each register in opposite order. The
waveform shows that both the A and B bus can retrieve the stored information from all registers,
with the exception of registers 0 and 1.

The speed test is performed by decreasing the IMS clock period until the above
functionality test fails. At 48.5 ns, the test fails. Because the cycle of the register file is two

cycles of the IMS, the actual failure time is a 97 ns clock period, or 10.3MHz.



FPGA Processor Implementation for the Forward Kinematics of the UMDH 58

icl
2
il
'td
ie5
iof
ie?

icd
e
ielll
wll
w1l
ks
icld
w1k
'rrpg?
C[Ug'a
ccpgl
icregl
areqd
lareqgl
areql
isregll
bregd
bregl
bregl

3
b?
%b?
hif
ki1
hiz
13
bh1d
Ri8
@l
ial
i3l
‘a3
iad
ab
ab
al
a8
ald
all
all
all
al3
ald
als

N A aaVaVaVaVaVaV N sV VAV eV VAV VAV A VaVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVATAVAVAS

Ty ,
N ! \ A
Y = o —
AR ¥’ o d

, AN ' N
5\ S (U
AR — (U
" I (I
AN — LI
I 7 QR pan
N N r S e
1’—'\ 5 N T
M 5 N
PR LU
- o S
/—‘\_/ —
o S
)‘F_——___——-—' * ‘——f__\——
~ —
e W e U e W S
VeV W WaWa e — " —
k k s [ S——
| VAR VA I e U S N A
PR S N A W A Y AR I s VU 2 VAN 2 W A
\___n_/—K_JFWLJerJrﬂLJFﬂLJrﬂLaf_ng COP AR ARV A W U A W AN S W '
/ Y
/ o LA N
__*/"_"K.~_f'——g__JF—"\ 72 N S WA S WY S WS ’
/ (T AW AR N A U AN AR U AR AR AN NV A U S AR NV A N A T A U
s

e
Yy
e
FARN
I
LA
S AR ™
T
™ T I
Fam
PN
s
LA

REREX A
TIRER i)
TERIR AR _ 3
TRERY I ]
IRER TN 3
RREEL Fy H
XER¥R I\ i
RERER FanY 3
RRERE__ /X / LUV FY % 3
KERYY A 3
TER. I\ b
FRRER S A i
EREXR WA 3
AN AR 3
RREZR FERY ]
TIRER. PR 3

Figure 6.4. IMS Waveform Results of Register File
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6.5 Conclusions

This chapter showed the physical implementation and electrical verification of only the half
sized register file that was synthesized in Chapter 5. A Xilinx 4020E FPGA was configured from
the host PC using a custom adapter board and electrically tested by using the IMS test station.
The entire FKP model could not be implemented because the size of the design. It would require
multiple 4020E FPGAs or possibly one FPGA from a higher density device, both of which were
not available at the time of implementation. However, the success of the half sized register file
indicates that the entire FKP model could have also been implemented successfully, assuming the

model is correct and a multi-device partitioner program is available.
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7. Conclusions and Recommendations for Future Work

7.1 Conclusions

The objective of this research was to implement the forward kinematic algorithm for the
Utah MIT Dexterous Hand (UMDH) by creating VHDL models and directly synthesizing them
into an FPGA. The forward kinematics of the UMDH were developed and analyzed and the
resulting algorithm shows that 12 separate equations each containing multiple mathematical
operations are needed. If common expressions are shared between equations, a total of 28
operations are required. These shared terms are stored in the register file unit and are sent to
either a cosine/sine unit, an adder/subtractor unit, or a multiplier unit as the algorithm proceeds.
The input (angles) and output (transformation matrix) are transferred through dedicated I/O
buses. The design results in a semi-autonomous Forward Kinematic Processor (FKP) that can
calculate the forward kinematics every time the surrounding system issues a run command. The
surrounding system does not deal with the intricacies of the algorithm and can tackle other system
tasks while the FKP is busy.

It was planned that the entire algorithm would fit into a single FPGA. However, without
the availability of high density FPGAs in the laboratory, only a small portion of the design was
able to become realized in hardware. The register file unit was chosen as the sub-model to
implement because it contains combinational logic similar to all the other units plus memory
storage. After a few iterations with the floorplanning tools, the register file itself proved to be

larger than one 4020E FPGA. The register file unit was reduced to half its size and resynthesized.
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The new design successfully fit using 40% of the configurable logic blocks of the 4020E. The
design was programmed into a 4020E FPGA and tested using an IMS Logic Master XL.
Electrical verification shows an upper bound on the clock frequency to be 10.3 MHz, above

which the registers begin to hold incorrect data.

7.2 Lessons Learned

It can be concluded that small designs can accurately map into the FPGA and with short
turn-around times. The Xilinx 4020E does not have the capacity that was initially expected and
proved to be too small for the entire FKP design. The FKP core model and everything
underneath is completely synthesizable. This required some restrictions on the coding style to
avoid multiple signals in sensitivity lists, multiple wait statements in a process, and any reference

to a specific delay of time.

7.3 Recommendations

The first issue to be addressed is the optimization of the VHDL code for synthesis. Some
VHDL compilers support the use of in-line macro declarations for instantiation of complete
structures such as fast adders already designed into the device. The use of such structures can not
only speed up the design, but also take up less FPGA area. Secondly, this research focused solely
on Xilinx devices. Using other vendors products such as Altera’s MAX Plus II software and their
Flex10K series of FPGAs may produce better or worse results. Third, portions of the FKP itself
could be redesigned. The multiplier unit uses a 32-bit adder as on of its components. The
adder/subtractor unit is 16 bits by itself. The two units could be merged into an ALU, thus

eliminating the 16-bit adder and allowing all additions and subtractions to pass through the 32-bit
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component of the ALU. The increased overhead to choose either multiplication or
addition/subtraction should be minimal compared to the area saved by removing the 16-bit
adder/subtractor unit. Fourth, investigation into partitioning tools for Xilinx devices may allow
the design to be spread across multiple FPGAs. Last, the microstore and contoller units are not

entirly synthesizable. Both need to be modified to adhere to the synthesis restrictions.

7.4 Ideas for Future Work

The architecture of the design could be modified to resemble more of a macropipeline
structure. The core could be divided into three parts. The first part would calculate the angles
needed. The second part would calculate the sines and cosines. The third part would perform the
multiplications, additions and subtractions. The result would be a higher throughput system but
with a two stage delay to get the answers. On the other hand, the two data buses, one input and
one output, could be merged into a single I/O bus.

The design was based on the idea of the functional units each being a separate state
machine and synchronously handshaking with the control unit. This allowed all timing
propagation delays within the CLBs, IOBs and routing to be ignored.The result is a design that
may waste time during a stage that is simple because the stage that requires the longest time
restricts the rest of the design from going any faster. A possible better approach would be a more
combinational, less state machine design. This would require knowledge of the delays of the
circuit as it is placed into the FPGA.

Different algorithms such as the inverse kinematics of the UMDH or a gross/fine motion

controller could be investigated using the same concepts and procedures developed here.
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The investigation into PROM development for truly portable systems should be addressed.
The PROM device can serially download the configuration of the FPGA every time the system
powers up. This property of the FPGA also allows dynamic reconfiguration of parts of the

design, allowing the controller of the FKP to swap in and out functional units as needed.
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Appendix A: Code for behavioral Algorithm

“umdh.h” ¢ code header file

A.1 Ccode
umdh.h
Steve Parmley

FEFTFIIFTIYE

Defines kinematic parameters of umdh thumb manipulators.

#define UMDH_AO
#define UMDH_A1
#define UMDH_A2
#define UMDH_A3
#define UMDH_D1
#define UMDH_D2
#define UMDH_D3
#define UMDH_D4

(-0.75)
(0.375)
(1.7
(1.3)
(3.125)
(0.0)
(0.0)
(0.0

*
*
*
*
*
*
*
*
*/
*!
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“range.c” ¢ code

range.c

Steve Parmley - UMHMD forward kinematic function

Compute forward kinematics given current joint positions
and writes all temp values to disk
Compile with gcc range.c -im

TFIEIIFIIFIITFFII:

r
r include files
/*

#include <math.h>
#include "umdh.h"
#include <stdio.h>
#include <stdlib.h>

id umdhFwdKin(float *jtang, float *noap, FILE *rangeptr)

"‘5 SRR

float a0,a1,a2,a3, d1,d2,d3,d4;
float c1, ¢2, c3, c4;

float 51, 82, §3, s4;

float ¢23,523,c234,5234;

a0 = UMDH_AQ;
at = UMDH_A1;
a2 = UMDH_A2;
a3 = UMDH_A3;
d1=UMDH_D1;
d2 = UMDH_D2;
d3 =UMDH_D3;
d4 = UMDH_D4;

s1 = sin(jtang[0]); ¢1 = cos(jtang[0]);

s2 =sin(jtang[1]); ©2 = cos(jtang[1]);

$3 = sin(jtang[2]); ¢3 = cos(jtang{2]);

84 = sin(jtang[3]); c4 = cos(jtang[3]);

823 = s2*c3 + ¢2*s3; €23 =c2°c3 - s2*s3;
§234 = sin(jtang[11+jtang[2]+jtang[3]);

¢234 = cos(jtang[1]+jtang[2}+jtang]3]);

fprintf(rangeptr,"%fn%MAn%An%An%An%An%An%An",s1,52,83,84,¢1,c2,3,c4);

fpn'ntf(rangeptr,"%f\n%ﬂn%f\n%f\n%f\n%f\n",sz*c3,c2*53,s23,c23);

I* n vector */
noapl0] = c1*c234;

noap[1] = s1*c234;
noap[2] = $234;

I* o vector *!

umdhFwdKin Compute forward kinematics.

*
*
*
*
*
*
*
*
*
*
*

*1
*
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noap[3] = -c1*s234;
noap[4] = -s1*s234;
noap[5] = c234;

* avector *

noap[6] = s1;

noapf7] = -¢1;

noapi8] = 0.0;

/* p vector *

noap[9] = a0 + c1*(al + a2*c2 + a3*c23);

noap[10] = s1*(a1 + a2*c2 + a3*c23),
noap[11] = a2*s2 + a3*s23 + d1;

fprintf(rangeptr,"%An%An%An%An%An",a3*c23,

a2*c2,
al+a2*c2+a3*c23,
c1*(al+a2*c2+a3*c23),
s1*(al+a2*c2+a3*c23)),
return;

}

main ()

{

FILE *fp;

FILE *rangeptr;

float jtang[6];
float noap[12};
float step =3.1415/8.0;

fp = fopen("fwdkin.dat","w");
rangeptr = fopen("range.dat","w");

for (jtang[0}=-3.1415/4.0;jtang[0] < 3.1415/4.0*3.0; jtang[O]=jtang[O]+step)
for (jtang[1]=0.0;jtang[1] < 3.1415 / 3.0; jtang[1]=jtang[1]+step)
for (jtang[2]=0.0;jtang[2] < 3.1415 / 2.0; jtang[2]=jtang[2]+step)
for (jtang[3]=0.0;jtang[3] < 3.1415 / 2.0; jtang[3]=jtang[3}+step)

{

umdhFwdKin(jtang,noap,rangeptr);
fprintf(fp,"%Mt%A%AL%AN" jtang[0] jtang[ 1] jtang[2] jtang[3]);
fprintf(fp,"%M\t%M%M%AN" ,noap[0},noap{3],noapl6],noap[9]);
fprintf(fp,"%Mt%At%MA%AN" noap]1},noap[4],noapl7],noap{10});
fprintf(fp,"%At%At%At%An\n", noap{2},noap(5],noap(8},noap{11});

felose(fp);
fclose(rangeptr);

}
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A.2 Matlab code

% Steve Parmley

“fk.m” Matlab code
%

% Matiab code that loads data generated by C code %
% Plots positions of last joint and arc of fingertip %

clear;

close all;

load fwdkin.dat;

for i=1:599,
nx(i)=fwdkin(i*4+2,1);
ny(i)=fwdkin(i*4+3,1);
nz(i)=fwdkin(i*4+4,1),
ox(i)=fwdkin(i*4+2,2);
oy(i)=fwdkin(i*4+3,2);
oz(i)=fwdkin(i*4+4,2);
ax(i)=fwdkin(i*4+2,3);
ay(i)=fwdkin(i*4+3,3),
az(i)=fwdkin(i*4+4,3);
px(i)=fwdkin(i*4+2,4);
py(i)=fwdkin(i*4+3,4),
pz(i)=fwdkin(i*4+4,4);

ppx(i) = px(i) + nx(i) * 1.125;
ppy() = py(i) + ny(i) * 1.125;
ppz(i) = pz(i) + nz(i) * 1.125;

end;

for i=1:24,
px1(i) = px(i);
Py1(i) = py(i);
pz1(i) = p(i);
pext(i) = ppx(i);
ppy1(i) = ppy(i);
ppz1() = ppz(i);

PX2(i) = px(i+24);
pY2(j) = py(i+24);
p22(i) = pz(i+24);
ppx2(i) = ppx(i+24);
PPY2(i) = ppy(i+24);
pp22(i) = ppz(i+24);

px3(i) = px(i+49);
py3() = py(i+49),
pz3(i) = pz(i+49);
ppx3(i) = ppx(i+49);
ppy3(i) = ppy(i+49);
ppz3(i) = ppz(i+49);

pxa(i) = px(i+74);
py4() = py(i+74);
pz4(i) = p(i+74);
ppx4(i) = ppx(it74);
ppy4(i) = ppy(i+74),
ppz4(i) = ppz(i+74);

px5(i) = px(i+149);
py5(i) = py(i+149);
p25(i) = pz(i+149);
ppx5(i) = ppx(i+149);
pPY5(i) = ppy(i+149);
ppz5(i) = ppz(i+149);
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px6(i) = px(i+224);
pyS(i) = py(i+224);
pz6(i) = pz(i+224);
pPPX6(i) = ppx(i+224);
PpY8(i) = ppy(i+224);
pp26(i) = ppz(i+224);

pX7(i) = px(i+299);
py7(i) = py(i+299);
pz7(j) = pz(i+299);
ppX7(i) = ppx(i+299),
ppy7(i) = ppy(i+299);
ppz7(i) = pp2(i+299);

end;

pl_oéa(ppx1 -Ppy1 ' pZ1 1"'IPX1 ,Py1 -pZ1 :""‘:pp)exppyzvppzzx""fpxz:pyzypzz-lo':Pp)Gvppy3:PpZ3:"-'xp)('5-py3:pZ3v'X');
gnd;
view(-45,10);
axis(-33-6017);
title ("UMDH Thumb Motion (joint O fixed)'),
=legend('Fingertip Positions (Joint 2 Location Ay,'Joint 3 Positions (Joint 2 Location A)','Fingertip Positions (Joint 2 Location BY,'Joint 3
Positions (Joint 2 Location B)','Fingertip Positions (Joint 2 Location C)','Joint 3 Positions (Joint 2 Location C)');
axes(h);
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“range.m” Matlab code
% Steve Pammiey %
% Matlab code that loads data generated by C code %
% Plots positions of last joint and arc of fingertip %

load fwdkin.dat;
max(fwdkin)
min(fwdkin)

load range.dat;
max(range)
min(range)
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Appendix B: VHDL Functional Unit Models
and Simulation Testbenches

B.1 Cosine/Sine Unit

B.1.1 Cosine/Sine Model

— Project: . Thesis

- Filename: cos_sin.vhd

— Other files required:

— Date: Sept 19 87

-~ Entity/Architecture Name: cos_sin_e/behavior
-- Developer: Steve Parmley
library |IEEE;

use IEEE.std_logic_1164.all;

entity cos_sin_eis

port (cos_sin_reset : in std_ulogic;
cos_sin_ck : in std_ulogic;
cos_sin_A_bus : in std_ulogic_vector(15 downto 0);
cos_sin_go : in std_ulogic;
cos_sin_sel : in std_ulogic;
cos_sin_wait : in std_ulogic_vector(2 downto 0);
cos_sin_ready : out std_ulogic;
cos_sin_C_bus : out std_ulogic_vector(15 downto 0);

— the following describes the connection fo the rom
cos_sin_rom_addr out std_ulogic_vector(12 downto 0);
cos_sin_rom_data : in std_ulogic_vector(15 downto 0));
end cos_sin_e;

architecture behavior of cos_sin_e is
begin

lookup: process
variable state : integer,
variable wait_count, wait_counter : integer;

— create sinks for four bits not used of A_bus
variable temp1,temp2,temp3,temp4 : std_ulogic;

begin

if cos_sin_reset ="'1' then
state ;= 0;
end if;

wait until (cos_sin_clk'event and cos_sin_clk="1");

if state = 0 then
~ turn off all signals
cos_sin_ready <="'0';

— calculate how many waits
wait_count := 0;
wait_counter := 0;

if cos_sin_wait(0) = '1' then
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wait_count ;= wait_count + 1,
end if;
if cos_sin_wait(1) ='1' then
wait_count := wait_count + 2;
end if;
if cos_sin_wait(2) ='1' then
wait_count := wait_count + 4,
end if;
— copy over lower 8 decimal bits and 3 LSBs of integer
cos_sin_rom_addr(10 downto 0) <= cos_sin_A_bus(10 downto 0);
- copy in sign bit
cos_sin_rom_addr(11) <= cos_sin_A_bus(15);
— copy in selector bit for cos or sin function
cos_sin_rom_addr(12) <= cos_sin_sel;

- sink the 4 unused bits

temp1 := cos_sin_A_bus(11);
temp2 = cos_sin_A_bus(12);
temp3 := cos_sin_A_bus(13);
temp4 := cos_sin_A_bus(14);

— wait for go signal
if cos_sin_go ="1"then
state :=1;
end if;
end if;
if state = 1 then
— induce rom wait states for slower external devices
if wait_count = wait_counter then
state ;= 2;
else
wait_counter := wait_counter + 1;
end if;
end if;
if state = 2 then
- latch data
cos_sin_C_bus <= cos_sin_rom_data;
- indicate to control that the information is latched
cos_sin_ready <='1;
-~ wait one cycle and
state .= 3;
elsif state = 3 then
~— ready signal
cos_sin_ready <=0,
- start over
state == 0;
end if,

end process lookup;
end behavior;
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B.1.2 Cosine/Sine Testbench

~ Project: Thesis

— Filename: cos_sin-bench.vhd
— Other files required:

- Date: sept 19 97

- Entity/Architecture Name: cos_sin_tb/test

— Dewveloper: Steve Parmiey
library IEEE;

use IEEE std_logic_1164.all;

entity cos_sin_tb is
end cos_sin_tb;

architecture test of cos_sin_tb is

component cos_sin_e

port (cos_sin_reset : in std_ulogic;
cos_sin_clk : in std_ulogic;
cos_sin_A_bus : in std_ulogic_vector(15 downto 0);
cos_sin_go : in std_ulogic;
cos_sin_sel : in std_ulogic;
cos_sin_wait : in std_ulogic_vector(2 downto 0);
cos_sin_ready : out std_ulogic;
cos_sin_C_bus : out std_ulogic_vector(15 downto 0);
— the following describes the connection to the rom

cos_sin_rom_addr : out std_ulogic_vector(12 downto 0);
cos_sin_rom_data : in std_ulogic_vector(15 downto 0));

end component;

signal sys_reset, sys_clk, go, sel, ready : std_ulogic :='0’;

signal waits : std_ulogic_vector(2 downto 0) := "000";

signal angle_in : std_ulogic_vector(15 downto 0);

signal result : std_ulogic_vector(15 downto 0);

signal rom_address : std_ulogic_vector(12 downto 0);
signal rom_result : std_ulogic_vector(15 downto 0);

begin
U1 : cos_sin_e
PORT MAP (sys_reset,

sys_clk,
angle_in,
go,
sel,
waits,
ready,
result,
rom_address,
rom_resulit);

clock : process

begin
sys_clk <= not(sys_clk);
wait for 10 ps;

end process clock;

rst : process
begin
sys_reset <='1",
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wait for 5 ps;
sys_reset <=0
wait for 15000 ps;

end process rst;

exercise . process
variable wait_count : integer := 0;

begin

- do it again with more waits

case wait_count is
when 0 => waits <= "000";
when 1 => waits <="001";
when 2 => waits <="010";
when 3 => waits <="011";
when 4 => waits <= "100";
when 5 => waits <="101";
when 6 => waits <="110";
when 7 => waits <= "111";

when others => wait untit sys_clk'event and sys_clk='1";
wait until sys_clk'event and sys_clk="1";
wait until sys_clk'event and sys_clk='1";
wait until sys_clk'event and sys_clk='1";
wait until sys_clk'event and sys_clk='1";
wait until sys_clk'event and sys_clk='1";

ASSERT false
REPORT "DONE"
SEVERITY failure;
end case;

wait_count = wait_count + 1;

wait until sys_clk'event and sys_clk='0';

— processor is setting up input bus

angle_in(15 downto 1) <= "000100100011010";
angle_in(0) <= waits(0);

-- set selection to sin or cos

sel <= waits(0);

- wait for a while

wait until sys_clk'event and sys_clk="1";
- and initiate function

go <= '1';

- wait for function to report ready
wait until ready ='1' and ready'event;

wait until sys_clk'event and sys_clk="1";

— turn off go signal
go <= Iol;

end process exercise;

rom : process

begin

wait until rom_address'event;

— make up some rom data (inverse of the address for now)
rom_result(12 downto 0) <= not(rom_address(12 downto 0));

— fill in the rest
rom_result(15 downto 13) <="111",

end process rom;
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end test;

CONFIGURATION cos_sin_c OF cos_sin_tb IS
FOR test
FOR ALL: cos_sin_e
USE ENTITY WORK cos_sin_e{(behavior);
END FOR;
END FOR;
END cos_sin_c;

B.1.3 Cosine/Sine Results

0 500000 1000000
SYS_RESET ] ) B R
§Y5 CLK RN %L:_JU‘&_U U Uﬂfﬂ i ﬂ_ U, RN U]HJ T IO
6o U 1 o 1 I
SEL I e o [
READY i %r i [ i N
F WAITSI2.0) I 1 3 4 | 5 & 7
r ANGLE_IN[15:0) |—1234[ 1235 I 1234 ' 28 i
I+ RESULT(15:0) Luul FUCB [ Enoh FDCB | EDCA FcR | EDCA | FDCB [ ‘Enca_
r BOM ADDRESS{120) [ 02347[ 235 0234 120 0224 | 1235 0284 i“'T.i:“Ess ]
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B.2 Adder/Subtractor Unit

B.2.1 Adder/Subtractor Model

- Project: Thesis

— Filename: adder.vhd

- Other files required:

- Date: sept 30 97

— Entity/Architecture Name: adder_e/behavior

~ Developer: Steve Parmiey

- Function:

~ Limitations:

— History:

— Last Analyzed On:

fibrary IEEE;

use IEEE.std_logic_1164.all;
entity adder_e is
port (adder_reset : in std_ulogic;

adder_clk : in std_ulogic;
adder_A_bus : in std_ulogic_vector(15 downto 0);
adder_B_bus : in std_ulogic_vector(15 downto 0);
adder_go : in std_ulogic;
adder_sel : in std_ulogic;
adder_done : out std_ulogic;
adder_C_bus : out std_ulogic_vector(15 downto 0));

end adder_e;

architecture behavior of adder_e is

Signal state : integer;

Signal Bxor : std_ulogic_vector(15 downto 0);
Signal Cout : std_ulogic_vector(15 downto 0);
Signal SUM : std_ulogic_vector(15 downto 0);

begin
addsub : process
begin
wait until adder_clk'event and adder_clk="1";

if adder_reset ='1' then
state <= 0;
end if;

if adder_go ='1" then

if state = O then
Bxor(0) <= adder_B_bus(0) xor adder_se!;
Bxor(1) <= adder_B_bus(1) xor adder_se!;
Bxor(2) <= adder_B_bus(2) xor adder_sel;
Bxor(3) <= adder_B_bus(3) xor adder_sel;
Bxor(4) <= adder_B_bus(4) xor adder_sel;
Bxor(5) <= adder_B_bus(5) xor adder_sel,
Bxor(6) <= adder_B_bus(6) xor adder_sel;
Bxor(7) <= adder_B_bus(7) xor adder_sel;
Bxor(8) <= adder_B_bus(8) xor adder_sel;
Bxor(9) <= adder_B_bus(9) xor adder_se!;
Bxor(10) <= adder_B_bus(10) xor adder_sel;
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Bxor(11) <= adder_B_bus(11) xor adder_se;
Bxor(12) <= adder_B_bus(12) xor adder_se;
Bxor(13) <= adder_B_bus(13) xor adder_sel;
Bxor(14) <= adder_B_bus(14) xor adder_se!;
Bxor(15) <= adder_B_bus(15) xor adder_sel;
state <=1,
elsif state = 1 then
Cout(0) <= ((adder_A_bus(0) and Bxor(0)) or (adder_se! and (adder_A_bus(0) or Bxor(0)) ));
state <=2;
eisif state = 2 then
SUM(0) <= ((adder_A_bus(0) and Bxor(0) and adder_sel) or ((adder_A_bus(0) or Bxor(0) or adder_sel) and (not Cout(0))));
Cout(1) <= ((adder_A_bus(1) and Bxor(1)) or (Cout(0) and (adder_A_bus(1) or Bxor(1)) ));
state <= 3;
elsif state = 3 then
SUM(1) <= ((adder_A_bus(1) and Bxor(1) and Cout(0)) or ((adder_A_bus(1) or Bxor(1) or Cout(0)) and (not Cout(1))));
Cout(2) <= ((adder_A_bus(2) and Bxor(2)) or (Cout(1) and (adder_A_bus(2) or Bxor(2)) ));
state <= 4;
elsif state = 4 then
SUM(2) <= ((adder_A_bus(2) and Bxor(2) and Cout(1)) or ((adder_A_bus(2) or Bxor(2) or Cout(1)) and (not Cout(2))));
Cout(3) <= ((adder_A_bus(3) and Bxor(3)) or (Cout(2) and (adder_A_bus(3) or Bxor(3)) ));
state <= 5;
elsif state = 5 then
SUM(3) <= ((adder_A_bus(3) and Bxor(3) and Cout(2)) or ((adder_A_bus(3) or Bxor(3) or Cout(2)) and (not Cout(3))));
Cout(4) <= ((adder_A_bus(4) and Bxor(4)) or (Cout(3) and (adder_A_bus(4) or Bxor(4)) ));
state <=6;
elsif state = 6 then
SUM(4) <= ((adder_A_bus(4) and Bxor(4) and Cout(3)) or ((adder_A_bus(4) or Bxor(4) or Cout(3)) and (not Cout(4))));
Cout(5) <= ((adder_A_bus(5) and Bxor(5)) or (Cout(4) and (adder_A_bus(5) or Bxor(5)) ));
state <= 7;
elsif state = 7 then
SUM(5) <= ((adder_A_bus(5) and Bxor(5) and Cout(4)) or ((adder_A_bus(5) or Bxor(5) or Cout(4)) and (not Cout(5))));
Cout(6) <= ((adder_A_bus(6) and Bxor(6)) or (Cout(5) and (adder,_A_bus(6) or Bxor(6)) ));
state <= §;
elsif state = 8 then
SUM(B) <= ((adder_A_bus(8) and Bxor(6) and Cout(5)) or ((adder_A_bus(6) or Bxor(6) or Cout(5)) and (not Cout(6))));
Cout(7) <= ((adder_A_bus(7) and Bxor(7)) or (Cout(6) and (adder_A_bus(7) or Bxor(7)) });
state <= 9;
elsif state = 9 then
SUM(7) <= ((adder_A_bus(7) and Bxor(7) and Cout(6)) or ((adder_A_bus(7) or Bxor(7) or Cout(6)) and (not Cout(7))));
Cout(8) <= ((adder_A_bus(8) and Bxor(8)) or (Cout(7) and (adder_A_bus(8) or Bxor(8)) ));
state <= 10,
elsif state = 10 then
SUM(8) <= ((adder_A_bus(8) and Bxor(8) and Cout(7)) or ((adder_A._bus(8) or Bxor(8) or Cout(7)) and (not Cout(8))));
Cout(9) <= ((adder_A_bus(9) and Bxor(9)) or (Cout(8) and (adder_A_bus(9) or Bxor(9)) ));
state <= 11;
elsif state = 11 then
SUM(Q) <= ((adder_A_bus(9) and Bxor(S) and Cout(8)) or ((adder_A_bus(9) or Bxor(9) or Cout(8)) and (not Cout(9))));
Cout(10)<= ((adder_A_bus(10) and Bxor(10)) or (Cout(®) and (adder_A_bus(10) or Bxor(10)) ));
state <= 12;
elsif state = 12 then
SUM(10) <= ((adder_A_bus(10) and Bxor(10) and Cout(9)) or ((adder_A_bus(10) or Bxor(10) or Cout(9)) and (not
Cout(10))));
Cout(11)<= ((adder_A_bus(11) and Bxor(11)) or (Cout(10) and (adder_A_bus(11) or Bxor(11)) ));
state <= 13;
elsif state = 13 then
SUM(11) <= ((adder_A_bus(11) and Bxor(11) and Cout(10)) or ((adder_A_bus(11) or Bxor(11) or Cout(10)) and (not
Cout(11)));
Cout(12)<= ((adder_A_bus(12) and Bxor(12)) or (Cout(11) and (adder_A_bus(12) or Bxor(12)) ));
state <= 14,
elsif state = 14 then
SUM(12) <= ((adder_A_bus(12) and Bxor(12) and Cout(11)) or ((adder_A_bus(12) or Bxor(12) or Cout(11)) and (not
Cout(12))));
Cout(13)<= ((adder_A_bus(13) and Bxor(13)) or (Cout(12) and (adder_A_bus(13) or Bxor(13)) ));
state <= 15;
elsif state = 15 then
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SUM(13) <= {(adder_A_bus(13) and Bxor(13) and Cout(12)) or ((adder_A_bus(1 3) or Bxor(13) or Cout(12)) and (not
Cout(13))));
Cout(14)<= ((adder_A_bus(14) and Bxor(14)) or (Cout(13) and (adder_A_bus(14) or Bxor(14)) ));
state <= 16;
elsif state = 16 then
SUM(14) <= ((adder_A_bus(14) and Bxor(14) and Cout(13)) or {(adder_A_bus(14) or Bxor(14) or Gout(13)) and (not
Cout(14))));
Cout(15)<= ((adder_A_bus(15) and Bxor(15)) or (Cout(14) and (adder_A_bus(15) or Bxor(15)) ));
state <=17;
elsif state = 17 then
SUM(15) <= ((adder_A_bus(15) and Bxor(15) and Cout(14)) or ((adder_A_bus(15) or Bxor(15) or Cout(14)) and (not
Cout(15)));
state <= 18;
elsif state = 18 then
adder_C_bus <= SUM;
adder_done <="'1";
end if;
else
adder_done <=0,
state <= 0;

end if;

end process addsub;
end behavior;

B.2.2 Adder/Subtractor Testbench

~ Project: Thesis

- Filename: adder-bench.vhd
- Other files required:

- Date: sept 30 97

~ Entity/Architecture Name:  adder_tob/test

— Developer: Steve Parmley
— Function:

— Limitations:

- History:

~ Last Analyzed On:

library IEEE;
use IEEE.std_logic_1164.all;

entity adder_tb is
end adder_tb;

architecture test of adder_tb is

constant Atest00 : std_ulogic_vector(15 downto 0) := "0000000000000000";
constant Atest01 : std_ulogic_vector(15 downto 0) := "0000000000000001";
constant Atest02 :std_ulogic_vector(15 downto 0) := "0000000000000010";
constant Atest03 : std_ulogic_vector(15 downto 0) := "0000000000000011";
constant Atest04 : std_ulogic_vector(15 downto 0) :="0101010101010101%;
constant Atest05 : std_ulogic_vector(15 downto 0) := "1010101010101010"
constant Atest06 : std_ulogic_vector(15 downto 0) :="1111111111111110",;
constant Atest07 : std_ulogic_vector(15 downto 0) := "1111111101111111";
constant Atest08 : std_ulogic_vector(15 downto 0) :="0111111111111111";
constant Atest09 : std_ulogic_vector(15 downto 0) :="1111111111111111";
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constant BtestOD : std_ulogic_vector(15 downto 0) := "0000000000000000"; — +/- 0
constant Btest01 : std_ulogic_vector(15 downto 0) := "0000000000000001"; — +/- 1

constant Btest02 : std_ulogic_vector(15 downto 0) := "0000000000000010"; — +/- 2
constant Btest03 : std_ulogic_vector(15 downto 0) := "0000000100000000"; — +/- 256

constant Btest04 : std_ulogi

c_vector(15 downto 0) := "1000000000000000"; -~ +/- 32K

constant Btest05 : std_ulogic_vector(15 downto 0) := "1111111111111111"; — +/- 65534

constant add : std_ulogic :='0';

constant sub : std_ulogic :="1
component adder_e
port (adder_reset

adder_clk
adder_A_bus
adder_B_bus
adder_go
adder_sel
adder_done
adder_C_bus

end component;

in std_ulogic;

in std_ulogic;

in std_ulogic_vector(15 downto 0);
in std_ulogic_vector(15 downto 0);
in std_ulogic;

in std_ulogic;

aut std_ulogic;

out std_ulogic_vector(15 downto 0));

signal sys_clk,sys_reset, go, sel, done : std_ulogic :='0’;

signal AB, result  : std_ulogi

begin
U1 : adder_e
PORT MAP (sys_reset,

sys_clk,
B,
go,
sel,
done,
result);

clock : process

begin

ic_vector(15 downto 0);

sys_clk <= not(sys_clk);

wait for 10 ps;
end process clock;

exercise . process
variable inputA, inputB : std_ul
begin
sys_reset <='0";

Foriin 0to 1 loop
--add or sub

CASEIiIS

logic_vector(15 downto O,

WHEN 0 => sel <= add;
WHEN 1 => sel <= sub;

END CASE;

forjin O to 9 loop
forlin 0to 5 loop
~ pick atest
CASEjlIs

WHEN 0 => inputA := Atest00;
WHEN 1 => inputA := AtestO01;
WHEN 2 => inputA := Atest02;
WHEN 3 => inputA := Atest03;
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WHEN 4 => inputA := Atest04;
WHEN 5 => inputA := Atest05;
WHEN 6 => inputA := Atest06;
WHEN 7 => inputA := Atest07;
WHEN 8 => inputA := Atest08;
WHEN 9 => inputA := Atest09;

END CASE;

CASE | IS
WHEN 0 => inputB := Btest00;
WHEN 1 => inputB := Btest01;
WHEN 2 => inputB := Btest02;
WHEN 3 => inputB := Btest03;
WHEN 4 => inputB := Btest04;
WHEN 5 => inputB := Btest05;

END CASE;

go <= '0";

wait until done ='0';

FORKkIN 0 TO 15 loop
A(K) <= inputA(k);
B(k) <= inputB(K);
end loop;

wait until sys_clk'event and sys_clk='0";
go <= l1l;
wait until done ='1",

go<='0,
end loop;
end loop;
end loop;

wait until sys_clk'event and sys_cik='0",
wait until sys_clk'event and sys_clk='0",
wait until sys_clk'event and sys_clk='0';
wait until sys_clk'event and sys_clk="0’;
wait until sys_cik'event and sys_clk="0";
wait until sys_clk'event and sys_clk='0";
wait until sys_clk'event and sys_clk="0",
wait until sys_clk'event and sys_clk="0’;
wait until sys_clk'event and sys_cik="0",
wait until sys_clk'event and sys_clk='0";
wait until sys_clk'event and sys_clk="0';
wait until sys_clk'event and sys_clk="0',;
wait until sys_clk'event and sys_ctk='0";
wait until sys_clk'event and sys_clk='0",
wait until sys_clk'event and sys_clk='0",
wait until sys_clk'event and sys_clk="0;
wait until sys_clkevent and sys_ck="0",
wait until sys_clk'event and sys_clk='0";

ASSERT false
REPORT "DONE"
SEVERITY failure;
end process exercise;
end test;
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CONFIGURATION adder_c OF adder_tb IS
FOR test
FOR ALL: adder_e
USE ENTITY WORK .adder_e(behavior);
END FOR;
END FOR;
END adder_c;

B.2.3 Adder/Subtractor Results
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B.3 Multipler Unit

B.3.1 Multiplier Model

~ Project: Thesis

- Filename: adder32.vhd
- Other files required:

— Date: sept 30 97

-- Entity/Architecture Name: adder32_e/behavior
— Developer: Steve Parmley
— Function:

-- Limitations:

~— History:

- Last Analyzed On:

library IEEE;

use IEEE. std_logic_1164.all;

entity adder32_e is

port (adder_reset in std_ulogic;
adder_clk in std_ulogic;
adder_A_bus in std_ulogic_vector(31 downto 0);
adder_B_bus in std_ulogic_vector(31 downto 0);
adder_go : in std_ulogic;
adder_sel : in std_ulogic;
adder_done : out std_ulogic;
adder_C_bus out std_ulogic_vector(31 downto 0));
end adder32_e;

architecture behavior of adder32_e is

Signal state : integer;

Signal Bxor : std_ulogic_vector(31 downto 0);
Signal Cout : std_ulogic_vector(31 downto 0);
Signal SUM : std_ulogic_vector(31 downto 0);

begin
addsub : process
begin
wait until adder_clk'event and adder_clk="1";

if adder_reset = '1' then
state <= 0;
end if;

if adder_go ='1’' then

if state = 0 then
Bxor(0) <= adder_B_bus(0) xor adder_sel;
Bxor(1) <= adder_B_bus(1) xor adder_se;
Bxor(2) <= adder_B_bus(2) xor adder_sel;
Bxor(3) <= adder_B_bus(3) xor adder_sel;
Bxor(4) <= adder_B_bus(4) xor adder_sel;
Bxor(5) <= adder_B_bus(5) xor adder_sel;
Bxor(6) <= adder_B_bus(6) xor adder_sel;
Bxor(7) <= adder_B_bus(7) xor adder_sel,
Bxor(8) <= adder_B_bus(8) xor adder_sel;
Bxor(9) <= adder_B_bus(9) xor adder_sel;
Bxor(10) <= adder_B_bus(10) xor adder_sel;
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Bxor(11) <= adder_B_bus(11) xor adder_se;
Bxor(12) <= adder_B_bus(12) xor adder_sel;
Bxor(13) <= adder_B_bus(13) xor adder_se!;
Bxor(14) <= adder_B_bus(14) xor adder_se!;
Bxor(15) <= adder_B_bus(15) xor adder_sel;
Bxor(16) <= adder_B_bus(16) xor adder_se!;
Bxor(17) <= adder_B_bus(17) xor adder_sel;
Bxor(18) <= adder_B_bus(18) xor adder_se!;
Bxor(19) <= adder_B_bus(19) xor adder_sel;
Bxor(20) <= adder_B_bus(20) xor adder_se!;
Bxor(21) <= adder_B_bus(21) xor adder_sel,
Bxor(22) <= adder_B_bus(22) xor adder_se!,
Bxor(23) <= adder_B_bus(23) xor adder_sel;
Bxor(24) <= adder_B_bus(24) xor adder_sel;
Bxor(25) <= adder_B_bus(25) xor adder_se!;
Bxor(26) <= adder_B_bus(26) xor adder_sel;
Bxor(27) <= adder_B_bus(27) xor adder_se!;
Bxor(28) <= adder_B_bus(28) xor adder_sel;
Bxor(29) <= adder_B_bus(29) xor adder_sel;
Bxor(30) <= adder_B_bus(30) xor adder_sel;
Bxor(31) <= adder_B_bus(31) xor adder_sel;
state <= 1;

elsif state = 1 then
Cout(0) <= ((adder_A_bus(0) and Bxor(0)) or (adder_sel and (adder_A_bus(0) or Bxor(0)) ));
state <= state + 1,

elsif state = 2 then

SUM(state-2) <= ((adder_A_bus(state-2) and Bxor(state-2) and adder_sel) or ((adder_A_bus(state-2) or Bxor(state-2)
or adder_sel) and (not Cout(state-2))));
Cout(state-1) <= ((adder_A_bus(state-1) and Bxor(state-1)) or (Cout(state-2) and (adder_A_bus(state-1) or Bxor(state-

mM
state <= state + 1;
elsif state >= 3 and state <= 32 then

SUM(state-2) <= ((adder_A_bus(state-2) and Bxor(state-2) and Cout(state-3)) or ((adder_A_bus(state-2) or Bxor(state-
2) or Cout(state-3)) and (not Cout(state-2))));
Cout(state-1) <= ((adder_A_bus(state-1) and Bxor(state-1)) or (Cout(state-2) and (adder_A_bus(state-1) or Bxor(state-

m)
state <= state + 1;
elsif state = 33 then
SUM(31) <= ((adder_A_bus(31) and Bxor(31) and Cout(30)) or ((adder_A_bus(31) or Bxor(31) or Cout(30)) and (not
Cout(31))));
state <= state +1,
elsif state = 34 then
adder_C_bus <= SUM;
adder_done <="'1";
end if;
else
adder_done <='0";
state <=0;

end if;

end process addsub;

end behavior;

— Project: Thesis

— Filename: mutlt.vhd

— Other files required:

- Date: Oct 1097

— Entity/mult_A_busrchitecture Name:  muit32_e/behavior
— Developer: Steve Parmley

— Function:

-- Limitations:
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— History:

— Last Analyzed On:

library |EEE;

use IEEE.std_logic_1164.all;
entity mult_e is
port (mult_reset in std_ulogic;

mutt_clk in std_ulogic;
mult_A bus in std_ulogic_vector(15 downto 0);
mult_B_bus in std_ulogic_vector(15 downto 0);
mult_go in std_ulogic;
mult_done out std_ulogic;
mult_C_bus out std_ulogic_vector(15 downto 0));

end mult_e;

architecture behavior of mult_e is

Signal state, state2 : integer;

Signal result00,result01, result02, result03, result04, result0s, result08, result7,
result08, resuft09,result10, resuit11,result12 result13,result1 4, result1s
: std_ulogic_vector(31 downto 0);

signal sys_clk, sys_reset, go, sel, done : std_ulogic :='0';
signal AB, result  : std_ulogic_vector(31 downto 0);

component adder32_e

port (adder_reset in std_ulogic;
adder_clk in std_ulogic;
adder_A_bus in std_ulogic_vector(31 downto 0);
adder_B_bus in std_ulogic_vector(31 downto 0);
adder_go : in std_ulogic;
adder_sel : in std_ulogic;
adder_done : out std_ulogic;
adder_C_bus out std_ulogic_vector(31 downto 0));
end component;
begin
U1: adder32_e
PORT MAP (sys_reset,
sys_clk,
A,
B,
go,
sel,
done,
result);

sys_clk <= mult_clk;
Sel <= Iol;
sys_reset <= mult_reset,
addsub : process
begin
wait until mult_clk'event and mult_clk="1";
if mult_reset = '1' then
state <= 0;
end if;

if mult_go ="1"then
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if state = 0 then
result00 <= "00000000000000000000000000000000";
resultd1 <= "00000000000000000000000000000000",
result02 <= "00000000000000000000000000000000";
result03 <= "00000000000000000000000000000000";
resultd4 <= "00000000000000000000000000000000";
resultd5 <= "00000000000000000000000000000000";
result0s <= "00000000000000000000000000000000";
resultd7 <= "00000000000000000000000000000000";
resulto8 <= "00000000000000000000000000000000";

result09 <= "00000000000000000000000000000000";
result10 <= "00000000000000000000000000000000";
result11 <= "00000000000000000000000000000000";

result12 <= "00000000000000000000000000000000";
result13 <= "00000000000000000000000000000000";
result14 <= "00000000000000000000000000000000";
result15 <= "00000000000000000000000000000000";

state <=1,
elsif state = 1 then
foriinOto 15 loop
if mult_B_bus(i) = '1' then
caseiis
when 0 => result00(15 downto 0) <= mult_A_bus ;
when 1 => result01(16 downto 1) <= mult_A_bus ;
when 2 => result02(17 downto 2) <= mult_A_bus ;
when 3 => result03(18 downto 3) <= mult_A_bus ;
when 4 => result04(19 downto 4) <= muit_A_bus ;
when 5 => result05(20 downto 5) <= mult_A_bus ;
when 6 => result06(21 downto 6) <= mult_A_bus ;
when 7 => result07(22 downto 7) <= mult_A_bus ;
when 8 => result08(23 downto 8) <= mult_A_bus ;
when 9 => result08(24 downto 9) <= mult_A_bus ;
when 10 => result10(25 downto 10) <= mult_A_bus ;
when 11 => result11(26 downto 11) <= muit_A_bus ;
when 12 => result12(27 downto 12) <= mult_A_bus ;
when 13 => result13(28 downto 13) <= mult_A_bus ;
when 14 => result14(29 downto 14) <= mult_A_bus ;
when 15 => result15(30 downto 15) <= mult_A_bus ;
when others =>
end case,
end if;
end loop;
state <= 2,

elsif state = 2 then
go<='0"
if done = '0' then
A <= result00;
B <= result01;
state <= 3;
end if;
elsif state = 3 then
go<="1",
if done ='1' then
state <= 4;
state2 <=0;
end if;

elsif state >= 4 and state <= 15 then
if state2 = 0 then
go <= ‘0';
if done ="0' then
A <= result;
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case state is
when 4 => B <= result02;
when 5 => B <= resuli03;
when 6 => B <= result04;
when 7 => B <= result05;
when 8 => B <= result06;
when 9 => B <= result07;
when 10 => B <= result08;
when 11 => B <= result09;
when 12 => B <= result10;
when 13 => B <= result11;
when 14 => B <=result12;
when 15 => B <= result13;
when 16 => B <=resuit14;
when 17 => B <= result15;

when others =>
end case;
state2 <=1,
end if;
elsif state2 = 1 then
go<="",
if done ='1' then
state2 <=0;
state <= state +1;
end if;

end if;

elsif state = 18 then
mult_C_bus <= result(23 downto 8);
mult_done <="1,
end if;
else
mult_done <='0",
state <=0;
end if;

end process addsub;
end behavior;

B.3.2 Multiplier Testbench

~ Project: Thesis

— Filename: adder32-bench.vhd
~ Other files required:

~ Date: sept 30 97

- Entity/Architecture Name: adder32_tbftest

- Developer: Steve Parmiey

~ Function:

- Limitations:

~ History:

- Last Analyzed On:

library IEEE;
use IEEE.std_logic_1164.all;

entity adder32_tb is
end adder32_tb;
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architecture test of adder32_tb is

constant
constant
constant
constant
constant
constant
constant
constant
constant
constant

constant
constant
constant
constant
constant
constant

constant

Atest00

AtestO1 :

Atest02

Atest03 :

Atest04

Atest05 :

Atest06

Atest07 :

Atest08

Atest09 :

Btest00

Btest01 :

Btest02

Btest03 :

Btest04

Btest05 :

 std_ulogic_vector(31 downto 0) := "00000000000000000000000000000000";
std_ulogic_vector(31 downto 0) := "00000000000000000000000000000001";

: std_ulogic_vector(31 downto 0) := "00000000000000000000000000000010";
std_ulogic_vector(31 downto 0) := "00000000000000000000000000000011";

+ std_ulogic_vector(31 downto 0) := "01010101010101010101010101010101";
std_ulogic_vector(31 downto 0) :="10101010101010101010101010101010";

: std_ulogic_vector(31 downto 0) := "11111111111111111111111111111110%,
std_ulogic_vector(31 downto 0) :="11111111011111111111111101111111";

: std_ulogic_vector(31 downto 0) := "01111111111411111111111111111111";
std_ulogic_vector(31 downto 0) := "111111111111111111111111111111117,

: std_ulogic_vector(31 downto 0) := "00000000000000000000000000000000";
std_ulogic_vector(31 downto 0) := "00000000000000000000000000000001™;

- std_ulogic_vector(31 downto 0) := "00000000000000000000000000000010";
std_ulogic_vector(31 dewnto 0) := "00000000000000000000000100000000";

: std_ulogic_vector(31 downto 0) := "10000000000000000000000000000000";
std_ulogic_vector(31 downto 0) ="1111111 11111111 1111111111111 11

add : std_ulogic :='0";

constant sub : std_ulogic :='1";
component adder32_e
port (adder_reset : in std_ulogic;
adder_clk : in std_ulogic;
adder_A_bus : in std_ulogic_vector(31 downto 0);
adder_B_bus : in std_ulogic_vector(31 downto 0);
adder_go : in std_ulogic;
adder_sel : in std_ulogic;
adder_done : out std_ulogic;
adder_C_bus : out std_ulogic_vector(31 downto 0));
end component;

signal sys_clk,sys_reset, go, sel, done : std_ulogic == '0';
signal A,B, result

begin

U1 : adder32_e
PORT MAP (sys_reset,

clock : process

begin

end process clock;

exercise :

: std_ulogic_vector(31 downto 0);

sys_clk,
B,

goy

sel,
done,
result);

sys_clk <= not(sys_clk);
wait for 10 ps;

process

variable inputA, inputB : std_ulogic_vector(31 downto 0);

begin

sys_reset <=0,

ForiinOto 1 loop
~ add or sub

CASEIi IS
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WHEN 0 => sel <= add;
WHEN 1 => sel <= sub;
END CASE;

for j in 0 to 9 loop
for lin O to 5 loop
- pick a test

CASEjIS
WHEN 0 => inputA := Atest00;
WHEN 1 => inputA := Atest01;
WHEN 2 => inputA := Atest02;
WHEN 3 => inputA := Atest03;
WHEN 4 => inputA := Atest04;
WHEN 5 => inputA := Atest05;
WHEN 6 => inputA := Atest06;
WHEN 7 => inputA := Atest07;
WHEN 8 => inputA = Atest08;
WHEN 9 => inputA := Atest0S;

END CASE;

CASE IS
WHEN 0 => inputB := Btest00;
WHEN 1 => inputB := Btest01;
WHEN 2 => inputB := Btest02;
WHEN 3 => inputB := Btest03;
WHEN 4 => inputB := Btest04;
WHEN 5 => inputB := Btest05;

END CASE;

go <= lol;

wait until done ='0';

FOR Kk IN 0 TO 31 loop
A(K) <= inputA(k);
B(k) <= inputB(k);
end loop;

wait until sys_clk'event and sys_clk="0";
go<='1}
wait until done ='1";

go c lol;
end loop;
end loop;
end loop;

wait until sys_cik'event and sys_clk='0";
wait until sys_clk'event and sys_clk="0",
wait until sys _clk'event and sys_clk="0";
wait until sys_clic'event and sys_clk='0";
wait until sys_clk'event and sys_clk='0",
wait until sys_clk'event and sys_clk='0",
wait until sys_clk'event and sys_clk="0",
wait until sys_clk'event and sys_clk="0';
wait until sys_clk'event and sys_clk="0",
wait until sys_clk'event and sys_clk='0",
wait until sys_clk'event and sys_clk='0';
wait until sys_clk'event and sys_clk='0";
wait until sys_clk'event and sys_clk="0",
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wait until sys_clk'event and sys_clk='0";
wait until sys_clk'event and sys_clk='0",
wait untit sys_clk'event and sys_clk='0",
wait untit sys_clk'event and sys_clk="0",
wait until sys_clk'event and sys_clk='0",

ASSERT false
REPORT "DONE"
SEVERITY failure;
end process exercise;
end test;

CONFIGURATION adder32_c OF adder32_tb IS
FOR test
FORALL: adder32 e
USE ENTITY WORK adder32_e(behavior);
END FOR;
END FOR;
END adder32_c;

-~ Project: Thesis

- Filename: mult-bench.vhd
— Other files required:

- Date: oct 1097

- Entity/Architecture Name: mult_tb/test

— Developer: Steve Parmley
— Function:

— Limitations:

— History:

— Last Analyzed On:

library IEEE;
use |EEE.std_logic_1164.all;

entity mult_tb is
end mult_tb;

architecture test of mult_tb is

constant Atest00 : std_ulogic_vector(15 downto 0) := "0000000000000000";
constant Atest01: std_ulogic_vector(15 downto 0) = "0000000000000001%;
constant Atest02 : std_ulogic_vector(15 downto 0) := "0000000000000010",
constant Atest03 : std_ulogic_vector(15 downto 0) := "0000000000000011";
constant Atest04 :std ulogic_vector(15 downto 0) := "0101010101010101";
constant Atest05 : std_ulogic_vector(15 downto 0) :="1010101010101010"
constant Atest06 : std_ulogic_vector(15 downto 0) :="1111111111111110";
constant Atest07 : std_ulogic_vector(15 downto 0) :="1111111101111111%;
constant Atest08 : std_ulogic_vector(15 downto 0) :="0111111111111111";
constant Atest09 : std_ulogic_vector(15 downto 0) :="1111111111111111";

constant Btest00 : std_ulogic_vector(15 downto 0) := "0000000000000000"; — +/- 0
constant BtestO1 : std_ulogic_vector(15 downto 0) := "0000000000000001"; — +/- 1
constant Btest02 : std_ulogic_vector(15 downto 0) := "0000000000000010"; —~ +/- 2
constant Btest03 : std_ulogic_vector(15 downto 0) := "0000000100000000"; — +/- 256
constant BtestO4 : std_ulogic_vector(15 downto 0) = "1000000000000000"; — +/- 32K
constant Btest05 : std_ulogic_vector(15 downto 0) :="1111111111111111"; — +/- 65534

constant add : std_ulogic :='0;
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constant sub : std_ulogic :='1",
component mult_e

port (mult_reset : in std_ulogic;
mutt_clk : in std_ulogic;
mult_A_bus : in std_ulogic_vector(15 downto 0);
mult_B_bus : in std_ulogic_vector(15 downto 0);
mult_go : in std_ulogic;
mult_done : out std_ulogic;
mult_C_bus : out std_ulogic_vector(15 downto 0));

end component;

signal sys_clk,sys_reset, go, done : std_ulogic :='0',
signal A,B, result  : std_ulogic_vector(15 downto 0);

begin
U1 :mult_e
PORT MAP (sys_reset,

sys_clk,
A,
B,
go,
done,
result);

clock : process

begin
sys_clk <= not(sys_clk);
wait for 10 ps;

end process clock;

exercise : process

variable inputA, inputB : std_ulogic_vector(15 downto 0);
begin
sys_reset <=0
for jin 0 to 9 loop
for1in 0 to 5 loop
- pick a test
CASEj IS

WHEN 0 => inputA := Atest00;
WHEN 1 => inputA := Atest01;
WHEN 2 => inputA := Atest02;
WHEN 3 => inputA := Atest03;
WHEN 4 => inputA := Atest04;
WHEN 5 => inputA := Atest05;
WHEN 6 => inputA := Atest06;
WHEN 7 => inputA := Atest07;
WHEN 8 => inputA := Atest08;
WHEN 9 => inputA := Atest0S;

END CASE;

CASE S
WHEN 0 => inputB := Btest00;
WHEN 1 => inputB := Btest01;
WHEN 2 => inputB := Btest02;
WHEN 3 => inputB := Btest03;
WHEN 4 => inputB := Btest04;
WHEN 5 => inputB := Btest05;

END CASE;

go <= |0|;
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wait until done ='0";

FORkKINQ TO 15 loop
A(k) <= inputA(K);
B(k) <= inputB(k);
end loop;

wait until sys_clk'event and sys_clk='0";
go <= '1';
wait until done ='1";

go<= ‘04
end loop;
end loop;

wait until sys_clk'event and sys_clk="0";
wait until sys_clk'event and sys_clk="0",
wait until sys_clk'event and sys_clk='0";
wait until sys_clk'event and sys_clk='0";
wait until sys_clikevent and sys_clk='0";
wait until sys_clk'event and sys_clk='0",
wait until sys_clk'event and sys_clk="0";
wait until sys_clk'event and sys_clk='0";
wait until sys_clk'event and sys_clk="0';
wait until sys_clk'event and sys_clk="0";
wait until sys_clk'event and sys_clk='0";
wait until sys_clk'event and sys_clk='0";
wait until sys_cik'event and sys_clk='0";
wait until sys_clk'event and sys_clk='0";
wait until sys_clk'event and sys_clk='0";
wait until sys_clk'event and sys_clk="0",
wait until sys_clicevent and sys_clk='0";
wait until sys_clk'event and sys_clk='0",

ASSERT false
REPORT "DONE"
SEVERITY failure;
end process exercise,
end test;

CONFIGURATION mult_c OF mult_tb IS
FOR test
FOR ALL: mult_e
USE ENTITY WORK.mult_e(behavior),
END FOR;
END FOR;
END mult_c;
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B.3.3 Multiplier Results
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B.4 Register Unit

B.4.1 _Register Model

— Project: Thesis

- Filename: reg_file_pkg.vhd
-- Other files required:

- Date: sept 23 97

- Entity/Architecture Name:  na

- Developer: Steve Parmiey
library IEEE;

use IEEE.std_logic_1164.all;

package reg_file_pkg is
subtype addr is integer range 31 downto O;

end reg_file_pkg;

— Project: Thesis

— Filename: reg_file.vhd

- Other files required: reg_file_pkg.vhd

— Date: sept 23 97

— Entity/Architecture Name:  reg_file_e/behavior
— Developer: Steve Parmley
library IEEE;

use lEEE.std_iogic_J 164.all;
use WORK reg_file_pkg.all;

entity reg_file_e is

port (reg_file_reset : in std_ulogic;
reg_file_clk : in std_ulogic;
reg_file_C_bus : in std_ulogic_vector(15 downto 0);
reg_file_C_reg_latch : in std_ulogic;
reg_file_C_reg_addr : in addr;
reg_file_A_bus : out std_ulogic_vector(15 downto 0);
reg_file_A_reg_addr : in addr,
reg_file_B_bus : out std_ulogic_vector(15 downto 0);
reg_file_B_reg_addr : in addr);

end reg_file_e;

architecture behavior of reg_file_e is
begin

registers: process
subtype reg is std_ulogic_vector(15 downto 0);
type bank is aray(31 downto 0) of reg;
variable regs : bank;
begin

if reg_file_reset ='1" then
for index in 31 downto 2 loop
regs(index) := "0000000000000000";
end loop;
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— force reg 0 and 1 to zero and one values
regs(0) := "0000000000000000";
regs(1) := "0000000100000000";

end if;

wait until (reg_file_cik'event and reg_file_clk='1);

— take care of write function first

if reg_file_C_reg_latch ='1' then

if (reg_file_C_reg_addr = 0) or (reg_file_C_reg_addr = 1) then
— can not write to the zero and 1 registers

else
regs(reg_file_C_reg_addr) := reg_file_C_bus;
end if;
end if;
- now do A bus
reg_file_A_bus <= regs(reg_file_A_reg_addr);
— now do B bus

reg_file_B_bus <= regs(reg_file_B_reg_addr);

end process registers;
end behavior,

B.4.2 Register Testbench

- Project: Thesis

- Filename: reg_file-bench.vhd

- Other files required: reg_file_pkg.vhd, reg_file.vhd
— Date: sept 23 97

— Entity/Architecture Name:  reg_file_tb/test

— Developer: Steve Parmley

library IEEE;

use IEEE std_logic_1164.all;
use WORK reg_file_pkg.all;

entity reg_file_tbis
end reg_file_tb;

architecture test of reg_file_tb is

component reg_file_e

port (reg_file_reset : in std_ulogic;
reg_file_clk : in std_ulogic;
reg_file_C_bus : in std_ulogic_vector(15 downto 0);
reg_file_C_reg_latch : in std_ulogic;
reg_file_C_reg_addr : in addr;
reg_file_A_bus : out std_ulogic_vector(15 downto 0);
reg_file_A_reg_addr : in addr;
reg_file_B_bus : out std_ulogic_vector(15 downto 0);
reg_file_B_reg_addr : in addr),

end component;

signal sys_reset, sys_clk : std_ulogic :='0";

signal bus_C, bus_A, bus_B : std_ulogic_vector(15 downto 0);
signal reg_addr_A, reg_addr_B, reg_addr_C : addr;

signal reg_latch_C : std_ulogic;



FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-34

begin
U1 :reg_file e
PORT MAP (sys_reset,
sys_clk,
bus_C,
reg_latch_C,
reg_addr_C,
bus_A,
_addr_A,
bus_B,
reg_addr_B);

clock : process

begin
sys_clk <= not(sys_clk);
wait for 10 ps;

end process clock;

rst : process

begin
sys_reset <='1,, -
wait for 5 ps;
sys_reset <='0',
wait for 15000 ps;

end process rst;

exercise : process

begin

reg_latch_C <='0",

bus_C <="ZZZ7277727777777",
reg_addr_A <=15;

reg_addr_B <= 15;

reg_addr_C <=0;

wait until sys_clk'event and sys_clk ='0";

— verify that all regs are clear (except for zero regs 0 and 1)
for i in 31 downto O loop
reg_addr A <=i;
- get B in reverse order to show dual bus works
reg_addr_B <= 31-i;
wait until sys_clk'event and sys_clk ='0';
end loop;

reg_addr_A <= 15;
reg_addr_B <=15;
reg_addr_C <= 15;

wait until sys_clk'event and sys_clk ='0';
wait until sys_clk'event and sys_clk ='0';
wait until sys_clk'event and sys_clk ='0";

— write some info to the regs
reg_addr_C <=0;

bus_C <= "0100000000000001",

wait until sys_clk'event and sys_clk ='0";
reg_latch_C <='1",

wait until sys_clk'event and sys_clk ='0",
reg_latch C <='0;

reg_addr_C<=1;

bus_C <="0100000000000010";

wait until sys_clk'event and sys_clk ='0';
reg_latch_C <="1';



wait until sys_clk'event and sys_clk ='0';
reg_latch_C <='0',

reg_addr_C <=2;

bus_C <= "0100000000000011";

wait until sys_clk'event and sys_clk ='0';
reg_latch_C <="1"

wait until sys_clk'event and sys_clk ='0";
reg_latch_C <='0";

reg_addr_C <=3;

bus_C <="0100000000000100";

wait until sys_clk'event and sys_clk ='0';
reg_latch_C <="1",

wait until sys_clk'event and sys_clk ='0';
reg_latch_C <=0

reg_addr_C <=4;

bus_C <= "0100000000000101";

wait until sys_clk'event and sys_clk ='0';
reg_latch_C <='1";

wait until sys_clk'event and sys_clk ='0';
reg_latch_C <="'0",

reg_addr_C <=5;

bus_C <= "0100000000000110";

wait until sys_clk'event and sys_clk ='0';
reg_latch_C <="'1",

wait until sys_clk'event and sys_clk ='0';
reg_latch_C <=0

reg_addr_C <=6;

bus_C <= "0100000000000111";

wait until sys_clk'event and sys_clk ='0';
reg_latch_C <='1";

wait until sys_clk'event and sys_clk ='0";
reg_latch_C <='0',

reg_addr_C <=7,

bus_C <= "0100000000001000";

wait until sys_clk'event and sys_clk =0,
reg_latch_C <='1",

wait until sys_clk'event and sys_clk ='0";
reg_latch_C <='0"

reg_addr_C <= 8;

bus_C <= "0100000000001001",

wait until sys_clk'event and sys_clk ='0";
reg_latch C <="1";

wait until sys_clk'event and sys_clk ='0';
reg_latch_C <='0",

reg_addr_C <=9;

bus_C <= "0100000000001010";

wait until sys_clk'event and sys_clk ='0";
reg_latch_C <="1",

wait until sys_clk'event and sys_clk ='0';
reg_latch_C <='0";

reg_addr_C <= 10,

bus_C <= "0100000000001011";

wait until sys_clk'event and sys_clk ='0';
reg_latch_C <=1,

wait until sys_clk'event and sys_clk ='0;
reg_latch_C <='0"
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reg_addr_C <= 11;

bus_C <= "0100000000001100";

wait until sys_cli'event and sys_clk =0';
reg_latch_C <=1,

wait until sys_clk'event and sys_clk ='0';
reg_latch_C <='0';

reg_addr_C <=12,

bus_C <="0100000000001101";

wait until sys_clk'event and sys_clk ='0';
reg_latch_C <='1",

wait until sys_clk'event and sys_clk ='0';
reg_latch _C <='0"

reg_addr_C <=13;

bus_C <= "0100000000001110";

wait until sys_clk'event and sys_clk ='0';
reg_latch_C <="'1',

wait until sys_clk'event and sys_clk ='0';
reg_latch_C <="'0',

reg_addr_C <= 14;

bus_C <= "0100000000001111",

wait until sys_clk'event and sys_clk ='0’;
reg_latch C <="1";

wait until sys_clk'event and sys_ctk ='0',
reg_latch_C <="0",

reg_addr_C <= 15;

bus_C <= "0100000000010000";

wait until sys_clk'event and sys_clk ='0';
reg_latch_C <="'1",

wait until sys_clk'event and sys_clk ='0';
reg_latch_C <='0';

reg_addr_C <= 16;

bus_C <= "1000000000000001";

wait until sys_clik'event and sys_clk ='0';
reg_latch_C <='1,

wait until sys_clk'event and sys_clk ='0;
reg_latch_C <=0

reg_addr_C <= 17,

bus_C <= "1000000000000010";

wait until sys_cik'event and sys_clk ='0";
reg_latch_C <='1",

wait until sys_clk'event and sys_clk ='0',
reg_latch_C <=0

reg_addr_C <=18;

bus_C <= "1000000000000011";

wait until sys_clk'event and sys_clk ='0",
reg_latch_C <=1,

wait until sys_clk'event and sys_clk ='0’;
reg_latch_C <='0",

reg_addr_C <= 19;

bus_C <= "1000000000000100",

wait until sys_clk'event and sys_clk ='0";
reg_latch_C <="'1",

wait until sys_clk'event and sys_clk ='0';
reg_latch_C <='0",

reg_addr_C <= 20;
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bus_C <="1000000000000101";

wait until sys_clk'event and sys_clk ='0';
reg_latch_C <='1';

wait untit sys_clk'event and sys_clk ='0";
reg_latch_C <='0',

reg_addr_C <= 21,

bus_C <= "1000000000000110",

wait untit sys_clk'event and sys_clk ='0';
reg_latch_C <='1",

wait until sys_clk'event and sys_clk ='0";
reg_latch_C <=0,

reg_addr_C <= 22,

bus_C <= "1000000000000111",

wait until sys_clk'event and sys_clk ='0';
reg_latch_C <="17

wait until sys_clk'event and sys_clk ='0';
reg_latch_C <='0',

reg_addr_C <=23;

bus_C <= "1000000000001000",

wait until sys_clkevent and sys_clk ='0';
reg_latch_C <=1,

wait until sys_clk'event and sys_clk ='0';
reg_latch_C <=0

reg_addr_C <= 24;

bus_C <= "1000000000001001";

wait until sys_clk'event and sys_clk ='0’;
reg_latch_C <="1',

wait until sys_clk'event and sys_clk ='0';
reg_latch_C <="0';

reg_addr_C <=25;

bus_C <= "1000000000001010";

wait until sys_clk'event and sys_clk =0’
reg_latch_C <="1,

wait until sys_clk'event and sys_clk ='0";
reg_latch_C <='0";

reg_addr_C <= 26;

bus_C <= "1000000000001011",

wait until sys_clk'event and sys_clk ='0";
reg_latch_C <="1',

wait until sys_clk'event and sys_clk ='0;
reg_latch_C <=0,

reg_addr_C <= 27,

bus_C <= "1000000000001100";

wait until sys_clk'event and sys_clk ='0';
reg_latch_C <='1",

wait until sys_clk'event and sys_clk ='0";
reg_latch_C <='0";

reg_addr_C <=28;

bus_C <= "1000000000001101";

wait until sys_clk'event and sys_clk ='0’;
reg_latch_C <="1",

wait until sys_clk'event and sys_clk ='0';
reg_latch_C <='0",

reg_addr_C <= 29;
bus_C <= "1000000000001110";
wait until sys_clk'event and sys_clk ='0';
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reg_latch_C <="1",
wait until sys_clk'event and sys_clk ='0";
reg_latch_C <="'0";

reg_addr_C <=30;

bus_C <= "1000000000001111",

wait until sys_clk'event and sys_clk =0';
reg_latch_C <='1",

wait until sys_clk'event and sys_clk ='0';
reg_latch_C <='0',

reg_addr_C <=31;

bus_C <= "1000000000010000";

wait untif sys_clk'event and sys_clk ='0";
reg_latch_C <="1",

wait until sys_clk'event and sys_clk ='0";
reg_latch_C <='0",

bus_C <="Z22277777777772777",
reg_addr_C <= 15;

wait until sys_clk'event and sys_clk ='0’;
wait until sys_clk'event and sys_clk ='0";
wait until sys_clk'event and sys_clk ='0;

— verify that all regs are correct (except for zero regs 5 and 6)
for i in 31 downto 0 loop

reg_addr_A <=1

reg_addr_B <= 31-i;

wait until sys_clk'event and sys_clk ='0';
end loop;

wait until sys_clk'event and sys_clk ='1";

ASSERT false
REPORT "DONE"
SEVERITY failure;

end process exercise;
end test;

CONFIGURATION reg_file_c OF reg_file_tb IS
FOR test
FOR ALL: reg_file e
USE ENTITY WORK reg_file_e(behavior),
END FOR,;
END FOR;
END reg_file_c;
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B.4.3 Register Results
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B.5 Latch

B.5.1 Latch Model

- Project: Thesis
- Filename: latch.vhd
- Other files required:
— Date: Oct 17 97
~ Entity/A_busrchitecture Name: latch_e/behavior
- Developer: Steve Parmiley
- Function:
~ Limitations:
— History:
- Last Analyzed On:
library IEEE;
use IEEE std_logic_1164.all;
entity latch_e is
port (latch_en : in std_ulogic;
latch_A_bus : in std_ulogic_vector(15 downto 0);
latch_O_bus : out std_ulogic_vector(15 downto 0));
end latch_e;

architecture behavior of latch_e is
begin
latch : process (latch_en, latch_A_bus)
begin
if latch_en = '1' then
latch_O_bus <= latch_A_bus;
end if;
end process latch;
end behavior;

B.5.2 Latch Testbench

- Project: Thesis

— Filename: mux4_1-bench.vhd
— Other files required:

~ Date: Oct 17 97

~ Entity/Architecture Name:  mux4_1_tb/test
~ Developer: Steve Parmley
— Function:

~— Limitations:

- History:

- Last Analyzed On:

library IEEE;

use IEEE.std_logic_1164.all;

entity latch_tb is
end latch_th;



FPGA Processor Implementation for the Forward Kinematics of the umpH APP B-43

architecture test of latch_tb is

constant Atest0 : std_ulogic_vector(15 downto 0) := "0000000000000000";
constant Atest1 : std_ulogic_vector(15 downto 0) := "010101010101 0101";
constant Atest2 :std_ulogic_vector(15 downto 0) == "1111111111111111";
constant Afest3 : std_ulogic_vector(15 downto 0) := "1010101010101010";

component latch_e

port (latch_en : in std_ulogic;
latch_A_bus : in std_ulogic_vector(15 downto 0);
latch_O_bus : out std_ulogic_vector{15 downto 0));
end component;
signal en : std_ulogic :="'0";
signal A,O : std_ulogic_vector(15 downto 0);
begin
U1 :latch_e
PORT MAP (en,
0’);

exercise : process
begin
wait for 5 ps;

For jin O to 3 loop

CASEjis
WHEN 0 => A <= Atest0;
WHEN 1 => A <= Atestt;
WHEN 2 => A <= Atest2;
WHEN 3 => A <= Atest3;
end CASE;

wait for 5 ps;
en<='1"

wait for 5 ps;
en<='0

wait for 20 ps;

end loop;

ASSERT false
REPORT "DONE"
SEVERITY failure;
end process exercise,
end test;

CONFIGURATION latch_c OF latch_tb IS
FOR test
FOR ALL: fatch_e
USE ENTITY WORK latch_e(behavior),
END FOR;
END FOR;
END latch_c;
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B.5.3 Latch Results
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B.6 Multiplexor

B.6.1 Multiplexor Model

— Project: Thesis

- Filename: mux4_1.vhd
- Other files required:

- Date: Oct 17 97

- Entity/A_busrchitecture Name: mux4_1_e/behavior
— Deweloper: Steve Parmley
~ Function:

- Limitations:

~ History.

- Last Analyzed On:

library {EEE;

use |[EEE.std_logic_1164.all;

entity mux4_1_eis

port (mux_clk : in std_ulogic;
mux_sel : in std_ulogic_vector(1 downto 0);
mux_A_bus : in std_ulogic_vector(15 downto 0);
mux_B_bus : in std_ulogic_vector(15 downto 0);
mux_C_bus : in std_ulogic_vector(15 downto 0);
mux_D_bus : in std_ulogic_vector(15 downto 0);
mux_O_bus : out std_ulogic_vector(15 downto 0));

end mux4_1_e;

architecture behavior of mux4_1_e is
begin

mux : process
begin
wait until mux_clk'event and mux_clk="1";
case mux_sel is
when "00" => mux_O_bus <= mux_A_bus;
when "01" => mux_O_bus <= mux_B_bus;
when "10" => mux_O_bus <= mux_C_bus;
when "11" => mux_O_bus <= mux_D_bus;
when others => mux_O_bus <= mux_A_bus;
end case;
end process mux;
end behavior;

B.6.2 Multiplexor Testbench

- Project: Thesis

- Filename: mux4_1-bench.vhd
- Other files required:

— Date: Oct 17 97

— Entity/Architecture Name:  mux4_1_tb/test

— Developer: Steve Parmiey

— Function:

- Limitations:

— History:

— Last Analyzed On:
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library IEEE;
use IEEE.std_logic_1164.al!;

entity mux4_1_tb is
end mux4_1_tb;

architecture test of mux4_1_tb is

constant Atest0  : std_ulogic_vector(15 downto 0) := "0000000000000000";
constant Btest0 : std_ulogic_vector(15 downto 0) = "0101010101010101";
constant Ctest0 : std_ulogic_vector(15 downto 0) := "1111111111111111%,
constant Dtest0 : std_ulogic_vector(15 downto 0) := "1010101010101010",
constant Atestt :std_ulogic_vector(15 downto 0) := "0000111100001111";
constant Btest1 : std_ulogic_vector(15 downto 0) := "1111000011110000";
constant Ctest! :std_ulogic_vector(15 downto 0) :="1100110011001100";
constant Dtest1 : std_ulogic_vector(15 downto 0) := "0011001100110011";

constant A_sel : std_ulogic_vector := "00";
constant B_sel : std_ulogic_vector :="01";
constant C_sel : std_ulogic_vector := "10";
constant D_sel : std_ulogic_vector :="11",
component mux4_1_e
port (mux_clk : in std_ulogic;
mux_sel : in std_ulogic_vector(1 downto 0);
mux_A_bus : in std_ulogic_vector(15 downto 0);
mux_B_bus : in std_ulogic_vector(15 downto 0);
mux_C_bus : in std_ulogic_vector(15 downto 0);
mux_D_bus : in std_ulogic_vector(15 downto 0);
mux_O_bus : out std_ulogic_vector(15 downto 0));
end component;
signal sel : std_ulogic_vector(1 downto 0) :="11",
signal AB,C,D,0 : std_ulogic_vector(15 downto 0);
signal sys_clk : std_ulogic :='0";
begin
Ul:mwd_1_e
PORT MAP  (sys_clk,
sel,
A,
B,
C,
Dl
0);
clock : process
begin
sys_clk <= not(sys_clk);
wait for 10 ps;
end process clock;
exercise : process
begin
wait for 20 ps;
ForjinOto 1 loop
CASE jis
WHEN 0 => A <= Atest0;
B <= Btest0;

C <= Ctest0;
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D <= Dtest0;
WHEN 1 => A <= Atest1;

B <= Btest1;

C <= Ctestt;

D <= Dtest1;
end CASE;

Foriin Oto 3 loop
CASEIilIS
WHEN 0 => gel <= A_sel;
WHEN 1 => sel <= B_sel;
WHEN 2 => sel <= C_se};
WHEN 3 =>sel <=D_sel;
END CASE;

wait until sys_clk'event and sys_clk ='1";
end loop;
end loop;

ASSERT false
REPORT "DONE"
SEVERITY failure;
end process exercise;
end test;

CONFIGURATION mux4_1_c OF mux4_1_tb IS
FOR test
FORALL: muwé4_1_e
USE ENTITY WORK.mux4_1_e(behavior),
END FOR;
END FOR;
END mux4_1_c;

B.6.3 Multiplexor Results
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B.7 FKP Core

B.7.1 FKP Core Model

-~ Project: Thesis
— Filename: fkp_core_core.vhd
- Other files required: all FKP files
— Date: Oct 17 97
— Entity/Architecture Name: fkp_core_e/behavior
- Developer: Steve Parmley
- Function:
— Limitations:
~— History:
- Last Analyzed On:
library IEEE;
use IEEE std_logic_1164.all;
use WORK reg_file_pkg.all;
entity fkp_core_e is
port (fkp_core_cik in std_ulogic;

_core_reset in std_ulogic;
fkp_core_data_in in std_ulogic_vector(15 downto 0);
fkp_core_data_out out std_ulogic_vector(15 downto 0);

_core_data_in_latch in std_ulogic;
fkp_core_data_out_latch in std_uiogic;
fkp_core_c_reg_latch in std_ulogic;
fkp_core_c_reg_addr in addr;
fkp_core_a_reg_addr in addr;
fkp_core_b_reg_addr in addr;
fkp_core_cos_sin_ready out std_ulogic;
fkp_core_cos_sin_go in std_ulogic;

_core_cos_sin_sel in std_ulogic;
fkp_core_cos_sin_wait in std_ulogic_vector(2 downto 0);
fkp_core_rom_addr out std_ulogic_vector(12 downto 0);
fkp_core_rom_data in std_ulogic_vector(15 downto 0);
fkp_core_adder_go in std_ulogic;
fkp_core_adder_sel in std_ulogic;
fkp_core_adder_done out std_ulogic;
fkp_core_mult_go in std_ulogic;
fkp_core_mult_done out std_ulogic;
fkp_core_mux_sel in std_ulogic_vector(1 downto 0));

end fkp_core_e;

architecture structural of fkp_core_eis

—~ SIGNALS

signal cos_sin_to_mux, adder_to_mux, mult_to_mux, dat

signal mux_to_regs, A_bus, B_bus

- COMPONENTS
component adder_e
port (adder_reset
adder_clk
adder_A_bus
adder_B_bus
adder_go
adder_sel

a_in_to_mux : std_ulogic_vector(15 downto 0);

: std_ulogic_vector(15 downto 0);

std_ulogic;
std_ulogic;
std_ulogic_vector(15 downto 0);
std_ulogic_vector(15 downto 0);
std_ulogic;
std_ulogic;
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adder_done : out std_ulogic;
adder_C_bus : out std_ulogic_vector(15 downto 0));
end component;
component mult_e
port (muit_reset in std_ulogic;
mult ckk : in std_ulogic;
mult_A_bus : in std_ulogic_vector(15 downto 0);
mult_B_bus : in std_ulogic_vector(15 downto 0);
mult_go : in std_ulogic;
mult_done : out std_ulogic;
mult_C_bus : out std_ulogic_vector(15 downto 0));
end component;
component cos_sin_e
port (cos_sin_reset: in std_ulogic;
cos_sin_clk : in std_ulogic;
cos_sin_A_bus : in std_ulogic_vector(15 downto 0);
cos_sin_go : in std_ulogic;
cos_sin_sel : in std_ulogic;
cos_sin_wait : in std_ulogic_vector(2 downto 0);
cos_sin_ready : out std_ulogic;
cos_sin_C_bus : out std_ulogic_vector(15 downto Q);

— the following describes the connection to the rom
cos_sin_rom_addr. out std_ulogic_vector(12 downto 0);
cos_sin_rom_data: in std_ulogic_vector(15 downto 0));

end component;

component reg_file_e
port (reg_file_reset

reg_file_clk
reg_file_C_bus
reg_file_C_reg_latch
reg_file_C_reg_addr
reg_file_A_bus
reg_file_A_reg_addr
reg_file_B_bus
reg_file_B_reg_addr

end component;

component latch_e
port (latch_en : in
latch_A_bus : in
latch_O_bus : out
end component;

component mux4_1_e

port (mux_clk : in

mux_sel : in
mux_A_bus : in
mux_B_bus : in
mux_C_bus : in
mux_D_bus : in
mux_O_bus : out

end component;

begin

U_adder_1: adder_e
PORT MAP (fkp_core_reset,
fkp_core_clk,
A_bus,
B_bus,
fkp_core_adder_go,
_core_adder_sel,

std_ulogic

in std_ulogic;

in std_ulogic;

in std_ulogic_vector(15 downto 0);
in std_ulogic;

in addr;

out std_ulogic_vector(15 downto 0);
in addr;

out std_ulogic_vector(15 downto 0);
in addr);

std_ulogic_vector(15 downto 0),
std_ulogic_vector(15 downto 0));

std_ulogic;

std_ulogic_vector(1 downto 0);
std_ulogic_vector(15 downto 0);
std_ulogic_vector(15 downto 0);
std_ulogic_vector(15 downto 0);
std_ulogic_vector(15 downto 0);
std_ulogic_vector(15 downto 0));
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fkp_core_adder_done,
adder_to_mux);

U_mult_1:mult_e
PORT MAP  (fkp_core_reset,

fkp_core_clk,
A_bus,
B_bus,
fkp_core_mult_go,
fkp_core_mult_done,
mult_to_mux);

U_cos_sin_1 : cos_sin_e
PORT MAP (fkp_core_reset,
_core_clk,
A_bus,
fkp_core_cos_sin_go,
fkp_core_cos_sin_sel,
fkp_core_cos_sin_wait,
fkp_core_cos_sin_ready,
cos_sin_to_mux,
fkp_core_rom_addr,
fkp_core_rom_data);

U_reg_file_1:reg_file_e
PORT MAP (fkp_core_reset,

_core_clk,

mux_to_regs,

fkp_core_c_reg_latch,

fkp_core_c_reg_addr,

A_bus,

fkp_core_a reg_addr,

B_bus,

fkp_core_b_reg_addr);

U_muxd_1_1:mwd_1_e
PORT MAP  (fkp_core_clk,

fkp_core_mux_sel,
cos_sin_to_mux,
adder_to_mux,
mult_to_mux,
data_in_to_mux,
mux_to_regs);

U_latch_in : latch_e
PORT MAP (fkp_core_data_in_latch,
fkp_core_data_in,
data_in_to_mux);

U_latch_out : latch_e
PORT MAP (fkp_core_data_out_latch,
B_bus,
fkp_core_data_out);

end structural;




B.7.2 FKP Core Testbench

—~ Project: Thesis

- Filename: fkp_core-bench.vhd
~ Other files required: _core.vhd

-~ Date: Oct 20 97

— Entity/Architecture Name: _core_thitest

— Developer: Steve Parmley
library IEEE;

use IEEE std_logic_1164.all;
use WORK reg_file_pkg.all;
entity fkp_core_tb is
end fkp_core_tb;
architecture test of fkp_core_tb is

component fkp_core_e
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port (fkp_core_ck : in std_ulogic;
fkp_core_reset : in std_ulogic;

_core_data_in in std_ulogic_vector(15 downto 0);
fkp_core_data_out out std_ulogic_vector(15 downto 0);
fkp_core_data_in_latch in std_ulogic;
fkp_core_data_out_latch in std_ulogic;
fkp_core_c_reg_latch in std_ulogic;

_core_c_reg_addr in addr;
fkp_core_a_reg_addr in addr;
fkp_core_b_reg_addr in addr;
fkp_core_cos_sin_ready out std_ulogic;
fkp_core_cos_sin_go in std_ulogic;

_core_cos_sin_se! in std_ulogic;
fkp_core_cos_sin_wait in std_ulogic_vector(2 downto 0);
fkp_core_rom_addr out std_ulogic_vector(12 downto 0);
fkp_core_rom_data in std_ulogic_vector(15 downto 0);
fkp_core_adder_go in std_ulogic;
fkp_core_adder_sel in std_ulogic;
fkp_core_adder_done out std_ulogic;
fkp_core_mult_go in std_ulogic;
fkp_core_mutlt_done out std_ulogic;
fkp_core_mux_sel in std_ulogic_vector(1 downto 0));

end component;

signal sys_reset, sys_clk : std_ulogic :='0';

signal a_reg_addr, b_reg_addr, c_reg_addr : addr,

signal data_in, data_out : std_ulogic_vector(15 downto 0);

signal data_in_latch, data_out_latch, c_reg_latch, cos_sin_ready : std_ulogic;

signal cos_sin_go, cos_sin_sel, adder_go, adder_sel, adder_done : std_ulogic;

signal mult_go, mult_done : std_ulogic;
signal cos_sin_wait : std_ulogic_vector(2 downto 0);

signal rom_addr : std_ulogic_vector(12 downto 0);

signal rom_data : std_ulogic_vector(15 downto 0);

signal mux_se! : std_ulogic_vector(1 downto 0);

type opcode is (illegal, movein, moveout, move, cosine, sine, addition, subtraction, muttiplication),
signal instruction : opcode;

begin
U1 : fkp_core_e
PORT MAP (sys_clk,
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sys_reset,
data_in,
data_out,
data_in_Jatch,
data_out_latch,
c_reg_latch,
c_reg_addr,
a_reg_addr,
b_reg_addr,
cos_sin_ready,
cos_sin_go,
cos_sin_sel,
cos_sin_wait,
rom_addr,
rom_data,
adder_go,
adder_sel,
adder_done,
mult_go,
muif_done,
mux_sel);

clock : process
begin

sys_clk <= not(sys_clk);
wait for 10 ps;
end process clock;

rst : process

begin
sys_reset <='1";
wait for 40 ps;
sys_reset <='0}
wait for 50000 ps;

end process rst;

exercise . process

begin

- quick test
instruction <= illegal;
data_in_latch <="'0';
data_out_latch <="0";
c_reg_latch <="0",
cos_sin_go <=0
cos_sin_wait <="111";
adder_go <='0';
mult_go <='0";
a_reg_addr <= 15;
b_reg_addr <= 15;
c_reg_addr <= 15;
mux_sel <= "00",
wait for 60 ps;
wait until sys_clk'event and sys_clk='1",

~MOVE IN
instruction <= mowein;
data_in <= "0000000000000101",
wait until sys_clk'event and sys_clk="1";

mux_sel <="11";

c_reg_addr <=2,

data_in_latch <=1,

wait until sys_clk'event and sys_clk='1";
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data_in_latch <="0";
c_reg_latch <="1";
wait until sys_clkevent and sys_clk="1",

¢_reg_latch <="'0';

~ END MOVE IN

- MOVE OUT

instruction <= moveout;
b_reg_addr <=2
wait until sys_clk'event and sys_clk="1";

data_out_latch <="1",
wait until sys_clk'event and sys_clk='1";

data_out_latch <='0",

— END MOVE OUT

-~ MOVE IN

instruction <= mowvein;
data_in <= "0000000001001011";
wait until sys_cik'event and sys_clk="1";

mux_sel <="11";

c_reg_addr <= 3;

data_in_latch <="1,

wait until sys_clk'event and sys_clk="1",

data_in_{atch <="0";
c_reg_latch <="'1";
wait until sys_cli'event and sys_clk="1";

¢_reg_latch <='0",

- END MOVE IN

-~ MOVE OUT

instruction <= moveout;
b_reg_addr <= 3;
wait until sys_clk'event and sys_clk="1";

data_out_latch <="'1",
wait until sys_clk'event and sys_clk='1";

data_out_latch <=0,

-~ END MOVE OUT

- ADD

instruction <= addition;

a_reg_addr <=2,

b_reg_addr <=3;

¢_reg_addr <= 10;

adder_sel <='0",

mux_sel <="01"

wait until sys_clk'event and sys_clk="1",

adder_go <= '1",
wait until adder_done ='1",

adder_go <=0,
c_reg_latch <='1";
wait until sys_clk'event and sys_clk="1";

c_reg_latch <='0";



~ END ADD

- MOVE OUT

instruction <= moveout;
b_reg_addr <=10;
wait until sys_clk'event and sys_clk='"1";

data_out_latch <='1",
wait until sys_clk'event and sys_clk="1";

data_out_latch <='0';

— END MOVE OUT

~MOVE

instruction <= move;

a_reg_addr <= 0;

b_reg_addr <= 10,

c_reg_addr <= 11;

adder_sel <='0";

mux sel  <="01";

wait until sys_clk'event and sys_clk="1",

adder_go <=1
wait until adder_done ='1";

adder_go <='0';
¢_reg_latch <=1,
wait untit sys_clk'event and sys_clk="1",

¢_reg_latch <=0,

- END MOVE

foriin Oto 3 loop

- SuUB

instruction <= subtraction;

a_reg_addr <= 11;

b_reg_addr <=1;

c_reg_addr <= 11,

adder_sel <='1';

mux_sel <="01";

wait until sys_clk'event and sys_clk="1";

adder_go <="'1"
wait until adder_done ='1";

adder_go <=0}
¢_reg_latch <='1;
wait until sys_clk'event and sys_clk="1",

c_reg_latch <="0";

—END ADD

- MOVE OUT

instruction <= moveout;
b_reg_addr <= 11;
wait until sys_clk'event and sys_clk="1",

data_out_latch <="'1",
wait until sys_clk'event and sys_clk="1";

data_out_latch <="0;
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end loop;

|
|
— END MOVE OUT
-~ Muttiply
instruction <= multiplication;
a_reg_addr <=2;
b_reg_addr <=3;
c_reg_addr <= 31;
mux_sel  <="10"
wait until sys_clk'event and sys_clk="1";
mult_go <="1",
wait until mult_done ="'1";

mult_go <='0;
c_reg_latch <="'1",
wait until sys_clk'event and sys_clk="1";

c_reg_latch <='0";
- END ADD

foriin 0 to 31 loop
- MOVE OUT
instruction <= moveout;
b_reg_addr <=i;
wait until sys_clk'event and sys_clk="1",

data_out_latch <="1";
wait until sys_clk'event and sys_clk='1";

data_out_latch <='0';
— END MOVE OUT
end loop;

- COSINE
instruction <= cosine;
cos_sin_sel <='0";
a_reg_addr <=2;
mux_se! <= "00";
¢_reg_addr <= 15;
wait until sys_clk'event and sys_clk="1";

cos_sin_go <="1",
wait until cos_sin_ready="1",

cos_sin_go <='0";
c_reg_latch <=1
wait until sys_clk'event and sys_clk="1"

¢_reg_latch <=0,

- MOVE OUT
instruction <= moveout;
b_reg_addr <= 15;
wait until sys_clk'event and sys_clk="1";

data_out_latch <=1,
wait until sys_clk'event and sys_clk='1";

data_out_latch <="0";
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— SINE
instruction <= sine;
cos_sin_sel <='1";
a_reg_addr <= 3;
mux_sel <="00";
c_reg_addr <= 16;
wait untit sys_clk'event and sys_clk="1",

cos_sin_go <='1",
walt until cos_sin_ready="1";

cos_sin_go <=0}
¢_reg_latch <="1",
wait until sys_clk'event and sys_clk="1";

c_reg_latch <=0,

- MOVE OUT
instruction <= moveout;
b_reg_addr <= 16;
wait until sys_clk'event and sys_clk="1";

|

— END MOVE OUT
|

|

|

|

1 data_out_latch <='1";

} wait until sys_clk'event and sys_clk="1";
| data_out_latch <='0;

-- END MOVE OUT

wait until sys_clk'event and sys_clk="1",
wait until sys_clk'event and sys_clk="1",
wait until sys_clk'event and sys_clk="1",

ASSERT false
REPORT "DONE"
SEVERITY failure;

end process exercise;

rom : process
begin

wait until rom_addr'event;

— make up some rom data (inverse of the address for now)
rom_data(12 downto 0) <= not(rom_addr(12 downto 0)),

— fill in the rest
rom_data(15 downto 13) <= "000",
end process rom;

end test;

CONFIGURATION fkp_core_c OF fkp_core_tb IS
FOR test
FOR ALL: fkp_core_e
USE ENTITY WORK fkp_core_e(structural);
| END FOR,;
‘ END FOR;
END fkp_core_c;
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B.7.3
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B.5 Microstrore

B.5.1 Microstrore Model

- Project: Thesis

— Filename: microstore_head.vhd
-~ Other files required:

— Date: Oct 3197

— Entity/Architecture Name:  n/a

- Developer: Steve Parmley
library |EEE;

use IEEE.std_logic_1164.all

use WORK reg_file_pkg.all;

Package MICROSTORE is

procedure move_in  (SIGNAL reg: in addr;

SIGNAL sys_clk: in std_ulogic;

SIGNAL mux_set: out std_ulogic_vector(1 downto 0);
SIGNAL ¢c_reg_addr: out addr;

SIGNAL data_in_latch: out std_ulogic;

SIGNAL c_reg_latch: out std_ulogic);

procedure move_out (SIGNAL reg: in addr,

SIGNAL sys_clk: in std_ulogic;
SIGNAL b_reg_addr: out addr;
SIGNAL data_out_latch: out std_ulogic);

procedure add (SIGNAL reg1, reg2, reg3: in addr;

SIGNAL sys_clk: in std_ulogic;

SIGNAL adder_done: in std_ulogic;

SIGNAL a_reg_addr, b_reg_addr, c_reg_addr: out addr;
SIGNAL adder_sel: out std_ulogic;

SIGNAL mux_sel: out std_ulogic_vector(1 downto 0);
SIGNAL adder_go: out std_ulogic;

SIGNAL c_reg_latch: out std_ulogic);

procedure sub (SIGNAL reg1, reg2, reg3: in addr;

SIGNAL sys_clk: in std_ulogic;

SIGNAL adder_done: in std_ulogic;

SIGNAL a_reg_addr, b_reg_addr, c_reg_addr: out addr;
SIGNAL adder_sel: out std_ulogic;

SIGNAL mux_sel: out std_ulogic_vector(1 downto 0);
SIGNAL adder_go: out std_ulogic;

SIGNAL ¢_reg_latch: out std_ulogic);

procedure mult  (SIGNAL reg1, reg2, reg3: in addr;

SIGNAL sys_clk: in std_ulogic;

SIGNAL muit_done: in std_ulogic;

SIGNAL a_reg_addr, b_reg_addr, c_reg_addr. out addr;
SIGNAL mux_sel: out std_ulogic_vector(1 downto 0);
SIGNAL mutt_go: out std_ulogic;

SIGNAL c_reg_latch: out std_ulogic);

procedure cos {SIGNAL reg1, reg2:in addr,

SIGNAL sys_clk: in std_ulogic;
SIGNAL cos_sin_ready: in std_ulogic;
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SIGNAL cos_sin_sel: out std_ulogic;

SIGNAL a_reg_addr, c_reg_addr: out addr;

SIGNAL mux_sel: out std_ulogic_vector(1 downto 0);
SIGNAL cos_sin_go: out std_ulogic;

SIGNAL c_reg_latch: out std_ulogic);

procedure sin (SIGNAL reg1, reg2:in addr;
SIGNAL sys_clk: in std_ulogic;
SIGNAL cos_sin_ready: in std_ulogic;
SIGNAL cos_sin_sel: out std_ulogic;
SIGNAL a_reg_addr, c_reg_addr: out addr;
SIGNAL mux_sel: out std_ulogic_vector(1 downto 0);
SIGNAL cos_sin_go: out std_ulogic;
SIGNAL ¢_reg_latch: out std_ulogic);

end MICROSTORE;

— Project: Thesis

- Filename: microstore.vhd
— Other files required:

- Date: Oct 3197

— Entity/Architecture Name:  n/a

— Developer: Steve Parmley
library IEEE;

use |IEEE.std_logic_1164.all;

use WORK reg_file_pkg.all;

Package body MICROSTORE is

— MOVE_IN (reg) assume that data is present on input of latch
procedure move_in  (SIGNAL reg: in addr;
SIGNAL sys_clk: in std_ulogic;
SIGNAL mux_sel: out std_ulogic_vector(1 downto 0);
SIGNAL ¢_reg_addr: out addr;
SIGNAL data_in_latch: out std_ulogic;
SIGNAL c_reg_latch: out std_ulogic) is

begin
— set mux to allow data in latch to reg
mux_sel <="11",

- set up register to write to
C_reg_addr <= reg;

— latch the data already present on the input of the fatch
data_in_latch <=1

wait until sys_clk'event and sys_clk="1",

— hold latched value
data_in_latch <="0';

- and copy it into register file
c_reg_latch <="1",

wait until sys_clk'event and sys_clk="1",

- hold it in register file
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¢_reg_latch <="'0;
end move_in;

- MOVE_OUT (reg)
procedure move_out (SIGNAL reg: in addr;
SIGNAL sys_clk: in std_ulogic;
SIGNAL b_reg_addr: out addr;
SIGNAL data_out_latch: out std_ulogic) is
begin
- set up register to write to
b_reg_addr <= reg;

wait until sys_clk'event and sys_clk="1";

- latch the data from the register file to the output
data_out_latch <='1";

wait until sys_clk'event and sys_clk="1",

- hold it on the output
data_out_latch <='0";
end move_out;

-~ ADD (reg1, reg2, reg3)
procedure add (SIGNAL reg1, reg2, reg3: in addr,
SIGNAL sys_clk: in std_ulogic;
SIGNAL adder_done: in std_ulogic;
SIGNAL a_reg_addr, b_reg_addr, c_reg_addr: out addr;
SIGNAL adder_sel: out std_ulogic;
SIGNAL mux_sel: out std_ulogic_vector(1 downto 0);
SIGNAL adder_go: out std_ulogic;
SIGNAL c_reg_latch: out std_ulogic) is
begin

— set up two terms from reg file

a_reg_addr <= reg2;

b_reg_addr <= reg3;

— set up new register to hold result
c_reg_addr <= regi;

— set adder/subtractor to add
adder_sel <='0',

— set mux to allow add result to go to register
mux_sel  <="01"

wait until sys_clk'event and sys_clk="1";

— initiate adder unit
adder_go <='1';

wait unti! adder_done ='1,
wait until sys_clk'event and sys_clk='1";

- release adder unit
adder_go <="0';

— latch resuilt into regiter
c_reg_latch <=1,

wait until sys_clk'event and sys_clk="1";

— hold resutt in register
c_reg_latch <="'0",
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end add;

— SUB (reg1, reg2, reg3)
procedure sub (SIGNAL reg1, reg2, reg3: in addr;

begin

SIGNAL sys_clk: in std_ulogic;

SIGNAL adder_done: in std_ulogic;

SIGNAL a_reg_addr, b_reg_addr, ¢_reg_addr: out addr;
SIGNAL adder_se!: out std_ulogic;

SIGNAL mux_sel: out std_ulogic_vector(1 downto 0);
SIGNAL adder_go: out std_ulogic;

SIGNAL c_reg_latch: out std_ulogic) is

— set up two terms from reg file
a_reg_addr <= reg2;
b_reg_addr <= reg3;

- set up new register to hold result
C_reg_addr <=regt;

- set adder/subtractor to sub
adder_sel <='1";

—~ set mux to allow add result to go to register
mux_sel  <="01"

wait until sys_clk'event and sys_clk="1";

— initiate adder unit
adder_go <="1

wait until adder_done ='1";
wait until sys_clk'event and sys_clk='1"

— release adder unit
adder_go <="0",

— latch result into regiter
c_reg_latch <="1",

wait until sys_clk'event and sys_clk="1";

- hold result in register
¢_reg_latch <=0,

end sub;

— MULTIPLY (reg1, reg2, reg3)
procedure mult  (SIGNAL reg1, reg2, reg3: in addr,

begin

SIGNAL sys_clk: in std_ulogic;

SIGNAL mult_done: in std_ulogic;

SIGNAL a_reg_addr, b_reg_addr, c_reg_addr: out addr;
SIGNAL mux_set: out std_ulogic_vector(1 downto 0),
SIGNAL mult_go: out std_ulogic;

SIGNAL c_reg_latch: out std_ulogic) is

— set up two terms from reg file
a_reg_addr <= reg2;
b_reg_addr <= reg3;

- set up new register to hold result
c_reg_addr <= reg1,

- set mux to allow mult resuti to go to register
mux _sel  <="10"



wait until sys_clk'event and sys_ctk="1",

— initiate multiplier unit
mult_go <=1

wait until mult_done ="1";
wait untii sys_clk'event and sys_clk="1";

— release mult unit
mult_go <='0";

— latch resuits into register
¢_reg_latch <='1}

wait until sys_clk'event and sys_clk='1";

- hold results in register
c_reg_latch <='0";

end mult;

— COS (reg1, reg2)
procedure cos (SIGNAL reg1, reg2:in addr,

begin

SIGNAL sys_clk: in std_ulogic;

SIGNAL cos_sin_ready: in std_ulogic;

SIGNAL cos_sin_sel: out std_ulogic;

SIGNAL a_reg_addr, c_reg_addr: out addr;

SIGNAL mux_sel: out std_ulogic_vector(1 downto 0;
SIGNAL cos_sin_go: out std_ulogic,

SIGNAL c_reg_latch: out std_ulogic) is

- set unit to do cosine
cos_sin_sel <='0"

- set input to A register
a_reg_addr <=reg2;

— set up mux to allow cos/sin unit to go to registers
mux_sel <= "00";

~ set up new register to put result
¢_reg_addr <=reg1;

wait until sys_clk'event and sys_clk="1";

- initiate unit
cos_sin_go <='1",

wait until cos_sin_ready="1",
wait untif sys_clk'event and sys_clk="1",

- release unit
cos_sin_go<='0"

— latch result into register
c_reg_latch <='1",

wait until sys_clk'event and sys_clk="1";

— hold result in register
c_reg_latch <='0",

end cos;

— SIN (reg1, reg2)
procedure sin (SIGNAL reg1, reg2:in addr,
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SIGNAL sys_clk: in std_ulogic;

SIGNAL cos_sin_ready: in std_ulogic;

SIGNAL cos_sin_sel: out std_ulogic;

SIGNAL a_reg_addr, ¢_reg_addr: out addr;

SIGNAL mux_sel: out std_ulogic_vector(1 downto 0);
SIGNAL cos_sin_go: out std_ulogic;

SIGNAL c_reg_latch: out std_ulogic) is

begin
- set unit to do sine
cos_sin_sel <='1"

- set input to A register
a_reg_addr <= reg2;

— set up mux to allow cos/sin unit to go to registers
mux_sel <= "00";

—~ set up new register to put result
c_reg_addr <=reg1;

wait until sys_clk'event and sys_clk="1";
~— initiate unit
cos_sin_go <='1";

wait until cos_sin_ready='1";
wait until sys_clk'event and sys_clk='1",

— release unit
cos_sin_go <='0";

| - latch result into register
‘ c_reg_latch <="1";

wait until sys_clk'event and sys_clk="1";
c_reg_latch <="0}
end sin;

end MICROSTORE;

B.5.2 Microstrore Testbench

— hold result in register
\
1

— Project: Thesis
— Filename: microstore-bench.vhd
— Other files required: microstore.vhd
— Date: Oct 3197
— Entity/Architecture Name:  microstore_tb/test
— Developer: Steve Parmiey
library IEEE;
use IEEE.std_logic_1164.all,
use WORK reg_file_pkg.all;
use WORK microstore.all;

entity microstore_tb is
end microstore_tb;

architecture test of microstore_tb is
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component fkp_core_e

port (fkp_core_clk in std_ulogic;
fkp_core_reset in std_ulogic;
fkp_core_data_in in std_ulogic_vector(15 downto 0);
fkp_core_data_out out std_ulogic_vector(15 downto 0);

_core_data_in_latch in std_ulogic;
fkp_core_data_out_latch in std_ulogic;
fkp_core_c_reg_latch in std_ulogic;
fkp_core_c_reg_addr in addr,
fkp_core_a_reg_addr in addr;

_core_b_reg_addr in addr;
fkp_core_cos_sin_ready out std_ulogic;
fkp_core_cos_sin_go in std_ulogic;

)_core_cos_sin_sel in std_ulogic;

_core_cos_sin_wait in std_ulogic_vector(2 downto 0),;
fkp_core_rom_addr out std_ulogic_vector(12 downto 0);
fkp_core_rom_data in std_ulogic_vector(15 downto 0);
fkp_core_adder_go in std_ulogic;

_core_adder_sel in std_ulogic;
fkp_core_adder_done out std_ulogic;
fkp_core_mult_go in std_ulogic;
fkp_core_mult_done out std_ulogic;
fkp_core_mux_sel in std_ulogic_vector(1 downto 0));

end component;

signal sys_reset, sys_clk : std_ulogic :='0";

signal a_reg_addr, b_reg_addr, ¢_reg_addr : addr;

signal data_in, data_out : std_ulogic_vector(15 downto 0);

signal data_in_latch, data_out_latch, c_reg_latch, cos_sin_ready : std_ulogic;

signal cos_sin_go, cos_sin_sel, adder_go, adder_sel, adder_done : std_ulogic;

signal mutt_go, mult_done : std_ulogic;
signal cos_sin_wait : std_ulogic_vector(2 downto 0);

signal rom_addr : std_ulogic_vector(12 downto 0);

signal rom_data : std_ulogic_vector(15 downto 0);

signal mux_sel : std_ulogic_vector(1 downto 0);

type opcode is (illegal, movein, moveout, move, cosine, sine, addition, subtraction, multiplication);

signal instruction : opcode;
signal reg1, reg2, reg3 : addr;

begin
U1 : fkp_core_e
PORT MAP (sys_clk,

sys_reset,
data_in,
data_out,
data_in_latch,
data_out_latch,
c_reg_latch,
¢_reg_addr,
a_reg_addr,
b_reg_addr,
cos_sin_ready,
cos_sin_go,
cos_sin_sel,
cos_sin_wait,
rom_addr,
rom_data,
adder_go,
adder_sel,
adder_done,
muit_go,
muit_done,
mux_sel);
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clock : process

begin
sys_clk <= not(sys_clk);
wait for 10 ps;

end process clock;

rst : process

begin
sys_reset <='1",
wait for 40 ps;

sys_reset <='0'
wait for 50000 ps;
end process rst;

exercise : process
begin

instruction <= illegal;
data_in_latch <="0;
data_out_latch <="0";
c_reg_latch <='0",
cos_sin_go<='0';
cos_sin_wait <="111";
adder_go <='0"
mult_go <=0,
a_reg_addr <= 15;
b_reg_addr <= 15;
¢_reg_addr <= 15;
mux_sel <= "00";

wait for 60 ps;

wait until sys_cik'event and sys_clk="1";

-~ MOVE IN
instruction <= movein;
data_in <= "0000000000000101";
regt <=2;
wait until sys_clk'event and sys_clk="1";
move_in(reg1,sys_clk,mux_sel,c_reg_addr.data_in_latch,c_reg_latch);
— END MOVE IN

- MOVE OUT
instruction <= moveout;
regl <=2
wait until sys_clk'event and sys_clk="1";
move_out(reg1,sys_clk.b_reg_addr,data_out_latch);
- END MOVE OUT

—MOVE IN
instruction <= mowein;
data_in <= "0000000001001011";
regl <=3;
wait until sys_clk'event and sys_clk="1";
move_in(reg1,sys_clk,mux_sel,c_reg_addr,data_in_latch,c_reg_latch);
- END MOVE IN

-~ MOVE OUT
instruction <= moveout;
regl <=3;
wait until sys_clk'event and sys_clk="1",
move_out(reg1,sys_clk,b_reg_addr.data_out_latch);
~ END MOVE OUT



FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-72

instruction <= addition;
regt <= 10;
reg2 <=2,
reg3 <=3,
wait until sys_clk'event and sys_clk="1";
add(reg1,reg2,reg3,sys_clk,adder_done,a_reg_addr, b_reg_addr,c_reg_addr,
adder_sel,mux_sel,adder_go,c_reg_latch);
- END ADD

—~ MOVE OUT
instruction <= moveout;
regl <=10;
wait until sys_clk'event and sys_clk='"1";
move_out(reg1,sys_clk,b_reg_addr,data_out_latch);
— END MOVE OUT

~ MOVE
instruction <= move;
regl <= 11;
reg2 <=0;
reg3 <= 10;
wait until sys_clk'event and sys_clk="1";
add(reg1,reg2,reg3,sys_clk,adder_done,a_reg_addr,b_reg_addr,c_reg_addr,
adder_sel, mux_sel,adder_go,c_reg_latch);
~ END MOVE

foriin 0 to 3 loop

- SuB
instruction <= subtraction;
regl <= 11;
reg2 <= 11,
reg3d <=1;
wait until sys_clk'event and sys_clk="1";
sub(reg1,reg2,reg3,sys_clk,adder_done,a_reg_addr,b_reg_addr,c_reg_addr,
adder_sel,mux_sel,adder_go,c_reg_latch);
—END ADD

-- MOVE OUT
instruction <= moveout;
regl <= 11,
wait until sys_clk'event and sys_clk="1",
move_out(reg1,sys_clk,b_reg_addr,data_out_latch);
- END MOVE OUT

end loop;

— Multiply
instruction <= multiplication;
regl <= 31;
reg2 <=2;
reg3 <= 3;
wait until sys_clk'event and sys_clk='1",
mult(reg1,reg2,reg3,sys_clk,mutt_done,a_reg_addr,b_reg_addr,c_reg_addr,
mux_sel, mult_go, c_reg_latch);

— END ADD
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foriin O to 31 ioop
—~ MOVE OUT
instruction <= moveout;
regl <=
wait until sys_clk'event and sys_clk="1";
move_out(reg1,sys_clk,b_reg_addr,data_out_latch);
— END MOVE OUT
end loop;

— COSINE
instruction <= cosine;
reg2 <= 2;
| reg1 <= 15;
| wait until sys_clk'event and sys_clk="1";
| cos(reg1,reg2, sys_clk,cos_sin_ready,cos_sin_sel,a_reg_addr,
c_reg_addr, mux_sel,cos_sin_go,c_reg_latch);

|

|

|

- MOVE OUT
instruction <= moveout;

| regl <= 15;

| wait until sys_clk'event and sys_clk="1";

| move_out(reg1,sys_clk,b_reg_addr,data_out_latch);

i — END MOVE OUT

|

|

- SINE
instruction <= sine;
@2 <=3;
regl <= 16;
wait until sys_clk'event and sys_clk="1";
sin(reg1,reg2, sys_clk,cos_sin_ready,cos_sin_sel,a_reg_addr,
¢_reg_addr, mux_sel,cos_sin_go,c_reg_latch);

—MOVE OUT
instruction <= moveout;
regl <= 16;
wait until sys_clk'event and sys_clk="1",
move_out(reg1,sys_clk,b_reg_addr,data_out_latch);
~ END MOVE OUT

wait until sys_clk'event and sys_clk='1",
wait untit sys_clk'event and sys_clk='1",
wait until sys_clk'event and sys_clk='1";

ASSERT false
REPORT "DONE"
SEVERITY failure;

end process exercise;
rom : process
begin
wait until rom_addrevent;

— make up some rom data (inverse of the address for now)
rom_data(12 downto 0) <= not(rom_addr(12 downto 0));

— fill in the rest
rom_data(15 downto 13) <= "000";
end process rom;

end test;
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CONFIGURATION microstore_c OF microstore_tb IS
FOR test
FOR ALL: fkp_core_e
USE ENTITY WORK fkp_core_e(structural);
END FOR;
END FOR,;
END microstore_c;

B.5.3 Microstrore Results
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B.9 Control

B.5.9 Control Model

— Project: Thesis
~ Filename: fkp.vhd
— Other files required: all FKP files
— Date: Oct 17 97
~ Entity/Architecture Name: fkp_e/behavior
~ Developer: Steve Parmley
~ Function:
— Limitations:
— History:
- Last Analyzed On:
library IEEE;
use IEEE.std_logic_1164.all;
use WORK reg_file_pkg.all;
use WORK microstore.all;
entity fkp_e is
port (fkp_cntprt7_clock : in
fkp_cntprt6_reset : in
fkp_cntprt5_strobe : in
fkp_cntprt4_ready : out
fkp_cntprt3_dgv : out
_cntprt2_dga : in
- fkp_cntprt1_dsv : in
- fkp_cntprtO_dsa : out
fkp_cmdprt6_cmd1 : in
fkp_cmdprts_cmd0 : in
fkp_cmdprt4_ad : in
fkp_cmdprt3_a3 : in
fkp_cmdprt2_a2 : in
fkp_cmdprti_al : in
fkp_cmdprt0_a0 : in
fkp_data in : in
fkp_data_out : out
fkp_rom_addr : out
_rom_data : in
end fkp_e;

architecture structural of fkp_eis

- SIGNALS

signal sys_reset, sys_clk : std_ulogic :='0';

signal a_req_addr, b_reg_addr, c_reg_addr : addr;

signal data_in, data_out : std_ulogic_vector(15 downto 0);

std_ulogic;
std_ulogic;
std_ulogic;
std_ulogic;
std_ulogic;
std_ulogic;
std_ulogic;
std_ulogic;

std_ulogic;
std_ulogic;
std_ulogic;
std_ulogic;
std_ulogic;
std_ulogic;
std_ulogic;

std_ulogic_vector(15 downto 0);
std_ulogic_vector(15 downto 0);

std_ulogic_vector(12 downto 0);
std_ulogic_vector(15 downto 0));

signal data_in_latch, data_out_atch, ¢_reg_latch, cos_sin_ready : std_ulogic;
signal cos_sin_go, cos_sin_sel, adder_go, adder_sel, adder_done : std_ulogic;

signal mult_go, mult_done

signal cos_sin_wait : std_ulogic_vector(2 downto 0);
signal rom_addr : std_ulogic_vector(12 downto 0);
signal rom_data : std_ulogic_vector(15 downto 0);
signal mux_sel : std_ulogic_vector(1 downto 0);

: std_ulogic;

type opcode is (illegal, movein, moveout, move, cosine, sine, addition, subtraction, multiplication);
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signal instruction : opcode;
signal reg1, reg2, reg3 : addr;

signal state : integer;

- COMPONENTS
component fkp_core_e
port (fkp_core_clk
_core_reset

fkp_core_data_in
fkp_core_data_out
fkp_core_data_in_latch
fkp_core_data_out_latch
fkp_core_c_reg_latch
fkp_core_c_reg_addr
fkp_core_a_reg_addr
fkp_core_b_reg_addr
fkp_core_cos_sin_ready
fkp_core_cos_sin_go
fkp_core_cos_sin_sel
fkp_core_cos_sin_wait
fkp_core_rom_addr
fkp_core_rom_data
fkp_core_adder_go
fkp_core_adder_sel

| fkp_core_adder_done

| fkp_core_mult_go

| fkp_core_mult_done

fkp_core_mux_sel
end component;

begin
U1 : fkp_core e
PORT MAP (sys_ckk,
sys_reset,
data_in,
data_out,
data_in_latch,

data_out_latch,

c_reg_latch,
C_reg_addr,
a_reg_addr,
b_reg_addr,

cos_sin_ready,

cos_sin_go,
cos_sin_sel,
cos_sin_wait,
rom_addr,
rom_data,
adder_go,
adder_sel,
adder_done,
mult_go,
mult_done,
mux_sel);

controller : process
variable r1 : integer;
begin

sys_clk <= fkp_cntprt7_clock;

- system wide reset ?

std_ulogic;

std_ulogic;
std_ulogic_vector(15 downto 0);
std_ulogic_vector(15 downto 0);
std_ulogic;

std_ulogic;

std_ulogic;

addr;

addr;

addr,

std_ulogic;

std_ulogic;

std_ulogic;

std_ulogic_vector(2 downto 0);
std_ulogic_vector(12 downto 0);
std_ulogic_vector(15 downto 0);
std_ulogic;

std_ulogic;

std_ulogic;

std_ulogic;

std_ulogic;

std_ulogic_vector(1 downto 0));
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if fkp_cntprt6_reset ='1' then
sys_reset <='1',
wait until sys_clk'event and sys_clk="1";
sys_reset <='1",

-~ ready to accept command
if state = 0 then
— either set, get, or run
if fkp_cntprt5_strobe = '1' then

fkp_cntprtd_ready <='1",
fkp_cntprt3_dgv <="'0";

if fikp_cmdprt6_cmd1="0' and fkp_cmdprt5_cmd0="0" then

— set not ready flag
fkp_cntprt4_ready <= '0';

~ set the register designated by the a4-a0 bits to
- the data from the input data bus

- MOVE IN
instruction <= mowvein;
data_in <= fkp_data _in;

-- transform bits to integer

=0

if fkp_cmdprt4_ad ='1' then
r1:=rt+16;

end if;

if fkp_cmdprt3_a3 ='1' then
rM=r1+8;

end if;

if fkp_cmdprt2_a2 ='1" then
rl1:=r1+4

end if;

if fkp_cmdprt1_al ='1' then
r1:=r1+2

end if;

if fkp_cmdprt0_a0 = '1" then
M:=r+1,;

end if;

— set target register
regl <=r1;

wait untif sys_clk'event and sys_clk="1";

move_in(reg,sys_clk,mux_sel,c_reg_addr.data_in_latch,c_reg_latch);
— END MOVE IN

wait until fkp_cntprt5_strobe = '0';

- set ready flag
fkp_cntprtd_ready <='1';

g
elsif fkp_cmdprt6_cmd1="0' and tkp_cmdprt5_cmd0="1" then

— set not ready flag
fkp_cntprt4_ready <='0',

— get the register designated by the a4-a0 bits to
- the data from the input data bus

-~ MOVE OUT
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instruction <= moveout;

-- transform bits to integer

=0

if fkp_cmdprt4_a4 ='1' then
rM:=r1+16;

end if;

if fkp_cmdprt3_a3 ='1' then
rM:=r1+8§;

end if;

if fkp_cmdprt2_a2 = '1' then
ri=rl+4

end if;

if fkp_cmdprti_al ='1' then
M=rl+2;

end if;

if fkp_cmdprt0_a0 = '1" then
M=ri+1,

end if;

— set target register
regl <=r1,;

wait until sys_clk'event and sys_clk='1",
move_out(reg1,sys_clk,b_reg_addr,data_out_latch);
~ END MOVE OUT

fkp_data_out <= data_out;

- let user know data is valid
fkp_cntprt3_dgv <="1";

wait until fkp_cntprt2_dga ='1";
— user has data

-- release dgv
fkp_cntprt3_dgv <=0}

wait until fkp_cntprt5_strobe =0,

— set ready flag
fkp_cntprt4_ready <='1";

- run

elsif fkp_cmdprt6_cmd1="1" and fkp_cmdprt5_cmd0='0' then
-- set not ready flag
fkp_cntprtd_ready <='0',

— ASSUME that the 5 constansts are located in r2,r3,r4,r5,r6
—~ ASSUME that the 4 angles are located in r7,/8,r9,r10
- this was accomplished using the set function

- See table 4.4b of Thesis for order of operations

— v STEP 1 *

- desc: reg 26 = sin of theta 1

instruction <= sine;

regl <= 26;

regZ <=7,

wait until sys_clk'event and sys_clk='1",

sin(reg1,reg2, sys_clk,cos_sin_ready,cos_sin_sel,a_reg_addr,
¢_reg_addr, mux_sel,cos_sin_go,c_reg_latch);

—rox STEP2
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- desc: reg 11 = cos of theta 1

instruction <= cosine;

regl <= 11,

regQ <=7:

wait until sys_clk'event and sys_clk="1";

cos(reg1,reg2, sys_clk,cos_sin_ready,cos_sin_sel,a_reg_addr,
c_reg_addr, mux_sel,cos_sin_go,c_reg_latch);

s RRE STEP 3 *dkk

—desc: reg 12 = sin of theta 2

instruction <= sine;

regl <=12;

reg2 <= 8,

wait until sys_clk'event and sys_clk="1";

sin(reg1,reg2, sys_clk,cos_sin_ready,cos_sin_sel,a_reg_addr,
¢_reg_addr, mux_sel,cos_sin_go,c_reg_latch);

— *hkN STEP 4 Rhhk

-desc: reg 13 = cos of theta 2

instruction <= cosine;

reg! <= 13;

reg2 <= 8;

wait until sys_clk'event and sys_clk="1",

cos(reg1,reg2, sys_clk,cos_sin_ready,cos_sin_sel,a_reg_addr,
¢_reg_addr, mux_sel,cos_sin_go,c_reg_latch);

g STEP 5 ki

- desc: reg 14 =theta 2 + theta 3

instruction <= addition;

regl <= 14,

reg2 <= 8,

reg3 <=9,

wait until sys_clk'event and sys_clk="1";

add(reg1.reg2,reg3,sys_clk,adder_done,a_reg_addr,b_reg_addr,c._reg_addr,
adder_sel,mux_sel,adder_go,c_reg_latch);

— o STEP 6

-desc: reg 15 = sin of theta 243

instruction <= sine;

regl <= 15;

reg2 <= 14;

wait until sys_clk'event and sys_clk='1";

sin(reg1,reg2, sys_clk,cos_sin_ready,cos_sin_sel,a_reg_addr,
c_reg_addr, mux_sel,cos_sin_go,c_reg_latch);

- STEP 7 ™

~desc: reg 16 = cos of theta 2+3

instruction <= cosine;

reg1 <= 16;

reg2 <= 14;

wait until sys_clk'event and sys_clk="1",

cos(reg1,reg2, sys_clk,cos_sin_ready,cos_sin_sel,a_reg_addr,
c_reg_addr, mux_sel,cos_sin_go,c_reg_latch);

-t STEP 8 ™

—desc: reg 14 =theta 2 + theta 3 + theta 4

instruction <= addition;

regl <= 14;

reg2 <= 14;

reg3 <= 10,

wait until sys_clk'event and sys_clk="1";

add(reg1,reg2,reg3,sys_clk,adder_done,a_reg_addr,b_reg_addr,c_reg_addr,
adder_sel,mux_sel,adder_go,c_reg_latch),

— -+ STEP 9 ™
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- desc: reg 22 = sin of theta 2+3+4

instruction <= sine;,

regt <= 22;

reg2 <= 14;

wait until sys_clk'event and sys_clk='1";

sin(reg1,reg2, sys_clk,cos_sin_ready,cos_sin_sel,a reg_addr,
c_reg_addr, mux_sel,cos_sin_go,c_reg_latch);

- dedkekk STEP 10 Wekkk

--desc: reg 25 = cos of theta 2+3+4

instruction <= cosine;

reg1 <= 25,

reg2 <= 14;

wait until sys_clk'event and sys_clk='1";

cos(reg1,reg2, sys_clk,cos_sin_ready,cos_sin_sel,a_reg_addr,
¢_reg_addr, mux_sel,cos_sin_go,c_reg_latch);

— Khkk STEP 11 dekkk

— desc: reg 20 = cos (th1) * cos (th2+th3+th4)

instruction <= multiplication;

reg1 <= 20;

reg2 <= 11,

reg3 <= 25,

wait until sys_clk'event and sys_clk='1",

mult(reg1,reg2,reg3,sys_clk,mult_done,a_reg_addr,b_reg_addr,c_reg_addr,
mux_sel, mult_go, ¢_reg_latch);

— ¥ STEP 12 **

— desc: reg 21 = sin (th1) * cos (th2+th3+th4)

instruction <= multiplication;

regt <=21;

reg2 <= 26;

reg3 <= 25;

wait until sys_clk'event and sys_clk='1",

mult(reg1,req2,reg3,sys_clk,mult_done,a_reg_addr,b_reg_addr,c_reg_addr,
mux_sel, mult_go, c_reg_latch);

— Rekkk STEP 13 Ekdk

—~desc: reg 23 = cos (th1) * sin (th2+th3+th4)

instruction <= multipfication;

regl <= 23,

reg2 <= 11,

reg3 <= 22;

wait until sys_cik'event and sys_clk="1",

mult(reg1,reg2,reg3,sys_clk,mult_done,a_reg_addr,b_reg_addr.c_reg_addr,
mux_sel, mult_go, c_reg_latch);

-+ STEP 14 ***

—desc: reg 23 = -(cos(th1) * sin(th2+th3+th4)

instruction <= subtraction;

regl <= 23;

reg2 <=0;

reg3 <= 23;

wait until sys_clk'event and sys_clk="1",

sub(reg1,reg2,reg3,sys_clk,adder_done,a_reg_addr,b_reg_addr,c_reg_addr,
adder_sel,mux_sel,adder_go,c_reg_latch);

-+ STEP 15 ***

- desc: reg 24 = sin (th1) * sin (th2+th3+th4)

instruction <= muttiplication;

regl <= 24,

reg2 <= 26,

reg3 <= 22,

wait until sys_clk'event and sys_clk='"1";
mult(reg1,reg2,reg3,sys_clk,mult_done,a_reg_addr,b_reg_addr,c_reg_addr,
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mux_sel, mult_go, c_reg_latch),

— hhhk STEP 16 Irkkk

— desc: reg 24 = -(sin(th1) * sin(th2+th3+th4)

instruction <= subtraction;

regl <= 24;

reg2 <=0;

reg3 <= 24;

wait until sys_clk'event and sys_clk="1";

sub(reg1,reg2,reg3,sys_clk,adder_done,a_reg_addr,b_reg_addr,c_reg_addr,
adder_sel,mux_sel,adder_go,c_reg_latch);

— kkkR STEP 17 hhhk

~desc: reg 27 = -(cos{th1))

instruction <= subtraction;

reg1 <= 27,

reg2 <= 0;

reg3 <=11;

wait until sys_clk'event and sys_clk="1";

sub(reg1,reg2,reg3,sys_clk,adder_done,a_reg_addr,b_reg_addr,c_reg_addr,
adder_sel,mux_se),adder_go,c_reg_latch);

-~ STEP 18 ™

~desc: reg28=0

instruction <= addition;

reg1 <= 28;

reg2 <=0,

reg3 <=0;

wait until sys_clk'event and sys_ctk="1";

sub(reg1,reg2,reg3,sys_clk,adder_done,a_reg_addr, b_reg_addr,c_reg_addr,
adder_sel,mux_sel,adder_go,c_reg_latch);

-~ STEP 19 ™

—desc: reg 17 = a2 * cos (th2)

instruction <= multiplication;

regt <= 17,

reg2 <= 4;

reg3 <= 13;

wait until sys_clk'event and sys_clk="1",

mult(reg?,reg2,reg3,sys_clk,mult_done,a_reg_addr,b_reg_addr,c_reg_addr,
mux_sel, mult_go, c_reg_latch);

—*** STEP 20 ****

- desc: reg 18 = a3 * cos (th2+th3)

instruction <= multiplication;

regl <= 18;

reg2 <= 5;

reg3 <= 16;

wait until sys_clk'event and sys_clk="1",

mult{reg1,reg2 reg3,sys_clk,mult_done,a_reg_addr,b_reg_addr,c_reg_addr,
mux_sel, mult_go, ¢_reg_latch);

— Sk STEP 21 *htk

—~desc: reg 17 = a2*cos(th2) + a3*cos(th2+th3)

instruction <= addition;

regt <= 17,

reg2 <= 17,

reg3 <= 18;

wait until sys_clk'event and sys_clk='1",

sub(reg1,reg2,reg3,sys_clk,adder_done,a_reg_addr,b_reg_addr,c_reg_addr,
adder_sel,mux_sel,adder_go,c_reg_latch);

— v STEP 22 ¥
—~desc: reg 17 = a1 + a2*cos(th2) + a3*cos(th2+th3)
instruction <= addition;



FPGA Processor Implementation for the Forward Kinematics of the UMDH APP B-86

regl <= 17,

reg2 <= 17,

reg3 <=3;

wait until sys_clk'event and sys_clk="1",

sub(reg1 ,regz,regs,sys_clk.adder_done,a_reg_addr,b_reg_addr,c_reg__addr,
adder_sel,mux_sel,adder_go,c_reg_latch);

- ¥+ STEP 23 ***

—desc: reg 18 = cos(th1) * (a1 + a2*cos(th2) + a3 * cos (th2+th3))

instruction <= multiplication;

regt <= 18;

reg2 <= 17,

reg3 <= 11,

wait until sys_clk'event and sys_clk="1";

mult(reg1,reg2,reg3,sys_clk,mult_done,a_reg_addr,b_reg_addr,c_reg_addr,
mux_sel, mult_go, c_reg_latch);

- STEP 24 ****

—desc: reg 29 = a0 + cos(th1)*(at + a2*cos(th2) + a3"cos(th2+th3)

instruction <= addition;

regl <= 29;

reg2 <= 18;

reg3 <= 2;

wait until sys_clk'event and sys_clk="1";

sub(reg1,reg2,reg3,sys_clk,adder_done,a_reg_addr,b_reg_addr,c_reg_addr,
adder_sel,mux_sel,adder_go,c_reg_latch),

— kehk STEP 25 ekkd

—desc: reg 30 = sin(th1) * (a1 + a2*cos(th2) + 83 * cos (th2+th3))

instruction <= multiplication;

regt <= 30;

reg2 <= 17,

reg3 <= 26;

wait untit sys_clk'event and sys_clk="1";

mult(reg1,reg2,reg3,sys_clk,mult_done,a_reg_addr,b_reg_addr,c_reg_addr,
mux_sel, mult_go, c_reg_latch);

- v STEP 26 ****

~desc: reg 19 = a2*sin(th2)

instruction <= muiltiplication;

reg1 <= 19,

reg2 <= 4;

reg3 <= 12;

wait until sys_clk'event and sys_clk="1",

mult(reg1,reg2,reg3,sys_clkmult_done,a_reg_addr,b_reg_addr,c_reg_addr,
mux_sel, mult_go, c_reg_latch);

— ¥ STEP 27

—desc: reg 31 = a3 * sin (th2+th3))

instruction <= multiplication;

regl <= 31;

reg2 <= 5;

reg3 <= 15;

wait until sys_clk'event and sys_clk="1",

mult{reg1,reg2,reg3,sys_clk,mult_done,a_reg_addr,b_reg_addr,c_reg_addr,
mux_sel, muit_go, ¢_reg_latch);

- Rtk STEP 28 wekkdk

- desc: reg 31 = a2 * sin(th2) + a3 * sin (th2+th3))

instruction <= addition;

regl <=31;

reg2 <= 31;

reg3 <= 19;

wait until sys_clk'event and sys_clk='1",

mult(reg1 ,reg2,reg3,sys_clk,mult_done,a_reg_addr,b_reg_addr,c_reg_addr,
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mux_sel, mult_go, ¢_reg_latch);

— ¥ STEP 29

—desc: reg 31 = a2 * sin(th2) + a3 * sin (th2+th3)) + d1

instruction <= addition;

regt <= 31;

reg2 <= 31;

reg3 <=6,

wait until sys_clk'event and sys_clk="1";

add(reg1,reg2 reg3,sys_clk,adder_done,a_reg_addr,b_reg_addr.c_reg_addr,
adder_sel,mux_sel,adder_go,c_reg_latch);

wait until fkp_cntprt5_strobe ='0';

- set ready flag
fkp_cntprtd_ready <="1",

end if;

end if;

end if;

end process controller;
end structural;
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Appendix C: XACTstep Synthesis Log File for Register File

ngdbuild -p xc4000e C:\exemplariworkireg16\reg16.mf xc4000e.ngd
ngdbuild: version M1.3.7
Copyright (c) 1995-1997 Xilinx, Inc. All rights reserved.

Command Line: ngdbuild -p xc4000e C:\exemplariworkireg16\reg16.xmf xc4000e.ngd

Launcher: Using rule XNF_RULE
Launcher: reg16.ngo being compiled because it does not exist
Launcher: Running xnf2ngd from C:\exemplariwork\reg16\xproj\ver1\

Launcher: Executing xnf2ngd -p xc4000e -u "C:\exemplariwork\reg16\reg16.xnf"

"reg16.ngo”

xnf2ngd: version M1.3.7

Copyright (c) 1895-1997 Xilinx, Inc. All rights reserved.
using XNF gate model
reading XNF file "C:/exemplar/work/reg16/reg16.xnf" ...
Writing NGO file "reg16.ngo" ...

Launcher: "xnf2ngd" exited with an exit code of 0.

Reading NGO file "C:/exemplar/iwork/reg16/xprojiver1/reg16.ngo” ...
Reading component libraries for design expansion...

Running Timing Specification DRC...
Timing Specification DRC complete with no errors or warnings.

Running Logical Design DRC...
Logical Design DRC complete with no errors or warnings.

NGDBUILD Design Results Summary:
2148 total blocks expanded.
Writing NGD file "xc4000e.ngd" ...

Writing NGDBUILD log file "xc4000e.bid"...
NGDBUILD Done.

map -p xc4020e-3-hq208 -0 map.ncd ../xc4000e.ngd reg16.pcf

map: version M1.3.7

Copyright (c) 1995-1997 Xilinx, Inc. All rights reserved.

Reading NGD file "../xc4000e.ngd"...

Using target part "4020ehq208-3".

MAP xc4000e directives:

Partname="xc4020e-3-hq208".
No Guide File specified.

No Guide Mode specified.
Covermode="area".
Coverlutsize=4.
Coverfgsize=4.

Perform logic replication.

Pack CLBs to 97%.

Processing logical timing constraints...

Running general design DRC...

Verifying F/HMAP validity based on pre-trimmed logic...

Removing unused logic...

Processing global clock buffers...

WARNING:baste:24 - All of the external outputs in this design are using
slew-rate-limited output drivers. The delay on speed critical outputs can be
dramatically reduced by designating them as fast outputs in the criginal
design. Please see your vendor interface documentation for specific
information on how to do this within your design-entry tool.

Optimizing...

Removed Logic Summary:
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Design Summary:
Number of warnings: 1
Number of errors: 0
Number of CLBs: 315 out of 784
Flops/latches: 224
4 input LUTs: 621
3input LUTs: 183
Number of bonded I0Bs: 63 out of 160
Number of clock I0Bs: foutof 8
10 flops/latches: 32

Number of primary CLKs:  1outof 4
Writing design file "map.ncd”...

par -w - 4 -d 0 map.ncd reg16.ncd reg16.pcf
PAR: Xilinx Place And Route M1.3.7.
Copyright (c) 1995-1997 Xilinx, Inc. All rights reserved.

Constraints file: reg16.pcf
Placement level-cost: 4-1
Loading device database for application par from file "map.ncd”.
"reg16” is an NCD, version 2.27, device xc4020e, package hq208, speed -3
Loading device for application par from file '4020e.nph’ in environment

d:xilinx.
Device speed data version: x1_0.79 PRELIMINARY.

Device utilization summary:

10 63/224  28% used
63/160  39% bonded

LOGIC 315/784 40% used
SPECIAL 1/3023 0% used

CLKIOB 1/8 12% used
ioB 62/224 27% used
CcLB 315/784 40% used
PRI-CLK 1/4 25% used

Starting initial Placement phase. REAL time: 13 secs
Finished initial Placement phase. REAL time: 14 secs

Starting Constructive Placer. REAL time: 15 secs .
Placer score = 1081980
Placer score = 977380
Placer score = 886140
Placer score = 853480
Piacer score = 783540
Placer score = 705220
Placer score = 634260
Placer score = 577740
Placer score = 486240
Placer score = 439200
Placer score = 375240
Placer score = 332160
Placer score = 298500
Placer score = 284400
Placer score = 271260
Placer score = 260940
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Placer score = 255660
Placer score = 252840
Placer score = 248700
Placer score = 246900
Placer score = 245640
Placer score = 244680
Placer score = 244320
Placer score = 242160
Placer score = 241920
Placer score = 241140
Placer score = 240240
Placer score = 239220
Placer score = 238920
Placer score = 238560
Placer score = 237900
Finished Constructive Placer. REAL time: 11 mins 30 secs

Dumping design to file "reg16.ncd".

Starting Optimizing Placer. REAL time: 11 mins 31 secs
Optimizing ......

Swapped 30 comps.

Xilinx Placer [1] 235080 REAL time: 12 mins 40 secs
Optimizing .....

Swapped 5 comps.

Xilinx Placer [2] 234840 REAL time: 13 mins 45 secs
Finished Optimizing Placer. REAL time: 13 mins 45 secs

Dumping design to file "reg16.ncd".

Total REAL time to Placer completion: 13 mins 47 secs
Total CPU time to Placer completion: 13 mins 47 secs

0 connection(s) routed; 2231 unrouted.

Starting router resource preassignment

Completed router resource preassignment. Real time: 13 mins 49 secs
Starting iterative routing.

End of iteration 1

2231 successful; 0 unrouted; (0) real time: 14 mins
Constraints are met.

Power and ground nets completely routed.

Dumping design to file "reg16.ncd".

Starting cleanup

End of cleanup iteration 1

2231 successful; 0 unrouted; (0) real time: 15 mins 17 secs
Dumping design to file "reg16.ncd".

Total CPU time 15 mins 18 secs

Total REAL time: 15 mins 18 secs

Completely routed.

End of route. 2231 routed (100.00%); O unrouted.

No errors found.

Total REAL time to Router completion: 15 mins 20 secs
Total CPU time to Router completion: 15 mins 20 secs

Generating PAR statistics.
Timing Score: 0

Dumping design to file "reg16.ncd".

All signals are completely routed.

Total REAL time to PAR completion: 15 mins 28 secs
Total CPU time to PAR completion: 15 mins 28 secs
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PAR done.
bitgen reg16.ncd -1 -w -f bitgen.ut

Loading device database for application Bitgen from file "reg16.ncd".

“reg16" is an NCD, version 2.27, device xc4020e, package hq208, speed -3
Loading device for application Bitgen from file '4020e.nph’ in environment
d:Adlinx.

BITGEN: Xilinx Bitstream Generator M1.3.7
Copyright (c) 1995-1897 Xilinx, inc. All rights reserved.

Running DRC.

DRC detected 0 errors and O wamings.
Saving |l file in "reg16.1I".

Creating bit map...

Saving bit stream in "reg16.bit".

xcpy reg16.bit C:\exemplariworkireg16\reg16.bit

xcpy reg16.1l C:\exemplar\work\reg16\reg16.Ii
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Appendix D: Ironwood Electronics Adapter to IMS
and FPGA Pinouts

Ironwood Electronics, Inc.
PO Box 21151 » St Paul, MN 55121 ¢ (612) 4528100 ¢ Fax (612) 452-8400
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Ironwood Electronics, Inc.
PO Box 21151 » St Paul, MN 55121 « (612) 452-8100 ¢ Fax (612) 452-8400
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FPGA processor is busy computing the results of the algorithm.
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