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Preface 

This document includes an introduction to THETA, compares THETA to other distributed 
computing approaches, and describes some lessons learned from the current THETA develop- 
ment. The document is intended to be a high-level overview. Where more detail is necessary, 
pointers to the appropriate support documentation are provided. 

The Final Report for THETA is intended for people who wish to acquire a general concep- 
tual overview of the THETA system and the technical advancements that resulted from the 
research. The report defines the terminology and the basics of secure, distributed, object-ori- 
ented environments. Programming for the THETA system, administration, usage, and other 
related information is provided in the supporting documentation that is listed below. 

Organization of This Document 

Chapter 1 contains an introduction to THETA, explaining its security philosophy, architec- 
ture, and implementation. Chapter 2 provides a comparison of THETA and CORBA, and dis- 
cusses the potential for a CORBA-compliant version of THETA. Chapter 3 compares THETA 
and DCE, and explores approaches to integration. Chapter 4 presents a list of the accomplish- 
ments of the THETA project. Lessons learned from this effort are presented in Chapter 5. Pos- 
sibilities for future THETA development are outlined in Chapter 6. 

THETA Documentation Set 

THETA is a large system with many facets. The documentation set is split into logical parcels 
as follows: 

• Introduction to THETA - This document describes the THETA system, its architecture 
and capabilities. It is intended to be a high-level overview. 

• Other Documents - The documents listed below contain further details on specific 
topics. 

VI 



Manager Developer's Tutorial - This two volume document leads the programmer 
through the steps involved in developing, testing, debugging, and maintaining a man- 
ager. Volume II details the manager generation process. 

Software User's Manual (SUM) - This document describes how to interact with 
THETA in a consistent and coherent manner. "Tropic" is the main application dis- 
cussed in this document. 

Computer System Operator's Manual (CSOM) - This two part document defines the 
role of the THETA operator and describes administrative duties such as starting, main- 
taining, and stopping the THETA system; the second part is the installation guide for 
THETA, which describes the general concepts of setting up THETA on a host and then 
describes the different steps needed on each supported platform. 

Software Programmer's Manual (SPM) - This three volume document is a reference 
for THETA programmers. 

System Segment Specification (SSS) - This document discusses the various compo- 
nents of the THETA system and their respective functions. 

System Segment Design Document (SSDD) - This document lays out the design and 
proposed implementation of the components described in the System Segment Specifi- 
cation. 

Software Requirements Specification (SRS) - This three volume document states the 
software engineering requirements of the various THETA components. 

Interface Requirements Specification (IRS) - This document outlines the various 
requirements of the interfaces to the trusted computing base of the THETA system. 

Software Design Documents (SDD) - This collection of documents provides details on 
every software component of the THETA system down to the level of pseudo code. 

Interface Design Document (IDD) - This document describes the details of the various 
THETA kernel interfaces. 

Software Development Plan (SDP) - This document describes the software develop- 
ment cycle of THETA and its various components; it also details the software engi- 
neering techniques used to ensure code correctness and maintainability. 

Version Description Document (VDD) - This document specifies the version number 
of THETA in terms of its functionality, platform availability, known problems, and 
future work planned. 

Formal Security Policy Model (FSPM) - This document contains the THETA security 
policy and a formal model of that policy. It also states how the formal model clearly 
maps to the actual THETA implementation. 

Philosophy of Protection Report (POP) - This document contains the assurance argu- 
ments used to support THETA's claim of B3 compliance. 
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Descriptive Top Level Specification (DTLS) - This document describes the various 
THETA components at a high level. 

Covert Channel Analysis Report (CCA) - This document contains the results of covert 
channel analysis of the THETA system and its individual components. 

Trusted Computing Base Configuration Management Plan (TCBCMP) - This docu- 
ment describes the configuration management plan for the trusted computing base 
code. This configuration management plan is an important software engineering step 
that facilitates version identification. 

Trusted Computing Base Verification Report (TCBVR) - This document describes the 
formal methods used in designing the THETA kernel and the mechanisms used to 
implement the design. 

Security Test Plan (STP) - This document outlines the various tests that have been run 
on the THETA system to validate that the mandatory and discretionary access control 
policies are being enforced. 
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1    THETA Introduction 

1.1   Executive Summary 

This report provides an introduction to the Trusted Heterogeneous Architecture, which is 
commonly known as THETA. This section gives a condensed description of THETA and its 
key features. The remainder of the chapter explains the THETA philosophy, architecture, and 
implementation in much greater detail. 

1.1.1   System Overview 

THETA (Trusted HETerogeneous Architecture) is a distributed, heterogeneous, secure operat- 
ing system. It qualifies as an operating system because it controls access to the basic resources 
of a computer system. THETA is a distributed system since it allows access to resources that 
are spread across a network of systems. THETA handles the necessary translations between 
disparate operating systems and hardware architectures to permit seamless interoperability to 
the user and developer; thus, THETA is heterogeneous. THETA also enforces flexible, global 
access control policies over the network in accordance with Trusted Computer System Evalu- 

ation Criteria (TCSEC [4]) class B3; thus, THETA is secure.1 

All of these features are easily provided because the system is object oriented. The complexi- 
ties of security and heterogeneity are abstracted so that users can access the distributed 
resources in a coherent, uniform manner. A disparate set of hardware machines can be net- 
worked together, each contributing their own unique qualities and capabilities to the overall 
resource pool, and THETA provides the mechanism to access these various systems in a con- 
sistent fashion. 

THETA is under development at Odyssey Research Associates, Inc. (ORA). Work has been 
sponsored by the Air Force's Rome Laboratory since 1985. The design of THETA is based 
heavily on the design of Cronus, which is a distributed, heterogeneous operating system 
developed at BBN. 

1 Note that THETA has not undergone the official security evaluation process; however, the system 
has been designed to meet the TCSEC B3 criteria. 



1.1.2   Features 

Features of THETA are highlighted below. 

1.1.2.1 Coherent and Uniform 

The THETA system provides a coherent method of accessing and manipulating distributed 
processing resources. System services are available to the user through a uniform set of 
abstractions. Objects such as files, directories, processes, services, and I/O devices are refer- 
enced through a global naming facility and a common set of communication primitives. 

1.1.2.2 Heterogeneous 

Many distributed systems have evolved through the interconnection of existing stand-alone 
machines of possibly different hardware and software architectures. These machines may be 
connected by a local-area network (LAN) at a specific location or by a wide-area network 
connecting LANs at different locations. THETA facilitates interconnection among machines 
of differing architectures, which promotes the sharing of information and computing 
resources between organizations and increases reliability and availability of services. 

1.1.2.3 Evolvable 

THETA allows an organization to keep up with new technology without rendering the old sys- 
tems obsolete. New hardware can be added into the THETA network as it becomes available 
with minimal effort. However, hardware that predates 32 bit architecture and dated operating 
systems are problematic. Sixteen bit architecture and a lack of support for modern OS services 
are high risk and costly to port. New operating systems can plug into the THETA network, but 
this requires a porting effort, mainly of the Theta kernel, of about six months. 

1.1.2.4 Efficient 

Distributed resources are more effectively used because more resources are made available to 
a larger group of users. Also, THETA services are synchronous so that time-intensive opera- 
tions do not block requests and replies from other clients. 

1.1.2.5 Available 

Since THETA resources and services are distributed across several machines, probabilities of 
service availability are higher than on a single host. In cases when a few machines are dis- 
abled, the majority of the THETA system is still assessable; thus the outage may be totally 
invisible to the users. 



1.1.2.6 Reliable 

The THETA system maintains data integrity in spite of system failures. The THETA system 
allows database replication for essential data to provide fault-tolerance. Crucial information 
can be duplicated across several hosts in the network so in the case of system failures and net- 
work partitions, there is a greater chance that this crucial data is still accessible. 

1.1.2.7 Scalable 

The THETA system may be configured with different processing elements to accommodate a 
range of users and applications. THETA can incrementally expand, migrate, and mutate to 
meet the current demands for services and resources. 

1.1.2.8 Extensible 

No computer software system is ever complete; therefore, it is important to provide the means 
to extend THETA in a secure way. THETA provides tools to generate clients and servers using 
general purpose templates. These templates can be copied and tailored to serve new purposes. 
This sort of rapid prototyping is a core feature of THETA. 

1.1.2.9 Secure 

The THETA system has been designed to meet the TCSEC B3 functionality and assurance 

requirements.2 THETA enforces a consistent mandatory security policy and discretionary 
access control policy; provides reliable identification and authentication of users and their 
processes; audits user and system activity; and provides other distributed security services. A 
high-level discussion of THETA security features is in Chapter 1.4; however, for more exten- 
sive detail, see documents [30], [31], [33], and [37] that are listed in the Section "References" 
on page 91. 

1.1.2.10 Confidential Communication 

As a distributed system, THETA must send messages and data over a network. To ensure 
security, these messages over the network are protected via encryption. This network security 
is provided by TNET For details on the implementation and the extent of the protection pro- 
vided, reference [39], [40], and [41]. 

2 Although THETA has not been subjected to an official security evaluation, it has been designed to 
meet TCSEC B3 criteria. Discussion of assurance arguments to accompany the claim of B3 compliance 
appear in Section 1.5.5. 



1.1.3   Available Platforms 

THETA has been ported to an assortment of secure operating systems as well as some 
untrusted platforms. Currently supported THETA platforms are at TCSEC Bl level. Obvi- 
ously, THETA does not meet the TCSEC B3 criteria when running on platforms built at levels 
lower than TCSEC B3. Porting THETA to a high assurance platform is a future goal of our 
effort. THETA is available on the following operating systems: 

• HP-UX BLS 8.09+ - This system is designed to meet the TCSEC level Bl. THETA 
1.5 (excluding TNET) and 1.7b (excluding TNET) run on this system. 

• HP-UX 8.09 - This system is an untrusted operating system and does not meet stan- 
dards specified in TCSEC. THETA 1.5 (excluding TNET) and 1.7b (excluding TNET) 
run on this system. 

• Sun CMW 1.0 - The Sun Compartmented Mode Workstation is designed to meet the 
Compartmented Mode Workstation requirements, which are similar to requirements 
for TCSEC B1 systems; however, Compartmented Mode Workstations have additional 
criteria concerning windowing environments. See [43] in "References" on page 91. 
THETA 1.5 (including TNET) and 1.7b (excluding TNET) run on this system. 

• SunOS 4.1.X - This system is an untrusted operating system and does not meet stan- 
dards specified in TCSEC. THETA 1.5 (including TNET), 1.7b (excluding TNET), 
and 2.3 (excluding TNET) run on this system.. 

• AT&T System V MLS - This system is designed to meet TCSEC B1 criteria. THETA 
1.3a (excluding TNET) runs on this system. 

• Trusted Solaris 1.2 - This system is designed to meet TCSEC B1 criteria. THETA 2.3 
(excluding TNET) runs on this system. 



1.2   Distributed Computing 

1.2.1   Background 

Computing technology has migrated from large, expensive, stand-alone machines to highly 
specialized networks of machines composed of workstations and personal computers that far 
surpass the processing power of their monolithic predecessors. The variety of hardware avail- 
able today is vast and disparate. Machines differ in cost, speed, and functionality. Organiza- 
tions must assess their needs to select the best mix of computing resources. 

To maximize resource usage, machines are often networked together. Interconnections allow 
data sharing across hosts, which saves space and allows remote machines access to processing 
resources that would not be available in a stand-alone environment. These benefits do not 
come for free; while gaining data-sharing capabilities, networked systems lose ground in 
security. Sending data over a network creates more risks to data confidentiality, integrity, and 
availability. For more information on the dangers of networking and computing in general, see 
[28] in "References" on page 91. 

Despite the risks of open-computing, the benefits of reduced operational costs and increased 
efficiency have caused the computing industry to press on into the world of distributed com- 
puting. Now, not only data is shared across platforms, but processing power is too. Today's 
computing environment consists of a network of cooperative data resources and processes. 

Machines are becoming specialized to better perform their particular tasks; for example, there 
are super processing machines like Cray, graphics machines like Silicon Graphics, database 
machines like Teradata, and artificial intelligence machines like Symbolics. Many of these 
hardware architectures are targeted to perform a special function; however, some applications 
need a sampling of each machine's capabilities. Simply networking the machines together 
may not solve the processing requirements of some applications. One solution to using dis- 
tributed resources is to create a single distributed application that performs a portion of its 
processing on each specialized machine. 

1.2.1.1    The Need for Distributed Systems 

The following example illustrates the need for distributed systems. This scenario requires sev- 
eral specialized hardware architectures to complete a single task. Scientists are trying to pre- 
dict natural disasters in order to facilitate evacuations of the area. Weather monitoring 
instruments on satellites beam down massive amounts of data to collection centers where the 
raw data is processed by a supercomputer. The processed data is sent to specialized graphics 
stations as it becomes available and is also stored in a database machine for future reference. 
The scientists constantly monitor the data at the graphics stations. From there, the scientists 
analyze the information and send out hypothetical queries to an artificial intelligence machine. 
The artificial intelligence machine makes predictions of potential disasters and makes recom- 



mendations on efficient evacuation procedures, which are relayed back to the scientists at the 
graphics station. 
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Figure 1-1: Sample Network for the Distributed Application Example 

1.2.1.2    The Need for Secure Distributed Systems 

Modifying the above example slightly, security becomes a serious requirement. Instead of 
weather satellites, data is pouring in from classified intelligence satellites. The scientists are 
replaced by intelligence analysts who are tracking international troop movements. The artifi- 
cial intelligence system is used to predict potential military conflicts and provide logistics 
planning for military invasions rather than civilian evacuations. 

This scenario requires secure system communications. The data must not be compromised. 
What would happen if recommendations on military tactics were intercepted? The data must 



be correct. What is the impact if the satellite data was modified while being transported 
between the database machine and the graphics workstation? 

The THETA system could provide the secure, heterogeneous interoperability needed in the 
above example. THETA encrypts network communications to protect data confidentiality. 
THETA provides data replication to improve data integrity and availability. 

1.2.2   Technical Hurdles 

Moving from stand-alone systems to networks of distributed hosts introduces new problems 
due to physical separation and heterogeneity. Some of the technical problems that have to be 
resolved are: 

• Naming and identification of network resources. For processes to reference a resource 
in an access request, there must be some kind of common naming policy among the 
network hosts. 

• Protection and access control of resources. Permitting remote access of resources now 
requires remote authentication and authorization. 

• Data translation issues resulting from heterogeneous data encodings and data repre- 
sentations. Sharing data across different hardware architectures surfaces a new need 
for a translation layer between common external data representations used in network 
messages and local internal representations of data. For example, some machines 
organize bytes differently, some use "most-significant-byte first" and the others use 
"least-significant-byte first"; without a translation layer, all data transferred between 
these hosts would be garbage. Another more abstract example would be if two systems 
have different representations of a data file; a translation layer can provide the neces- 
sary mutations to allow sharing the file object between the two hosts. 

• Message based interprocess communication (IPC). IPC for remote processes needs to 
be message based since memory sharing is not practical between distributed compo- 
nents in most heterogeneous systems. 

• Service and resource structures need to be remodelled for remote accesses. Interfaces 
for important resources need to be clearly defined and may require redesign. 

• Errors and error recovery. Problems with distributed accesses are more difficult to dis- 
cern since there are more sources of errors and more components to the system. Also, 
error recovery actions may not be so clear. 

• Maintaining data consistency among multiple copies of data. To improve data avail- 
ability and survivability, it is common practice to keep a few copies of data on differ- 
ent hosts in case one host is unavailable at a crucial moment; however, it becomes 
more difficult to synchronize data modifications among all of the copies. 



• Synchronization and control problems. The state of the system is distributed and lock- 
ing up each host in order to get an accurate snap shot of the system is not always feasi- 
ble. 

• Accounting and administration issues. In a network, each host is controlled by a differ- 
ent administrator. Each of these administrators must cooperate for successful interop- 
erability. 

• Verification, debugging, and performance measurement. These issues are more com- 
plex. 

Despite this long list of concerns, it is not complete. Though it appears daunting, these prob- 
lems are mitigated through the use of layering, abstract objects, and message passing. 

1.2.3   Layering and Abstractions Ease the Burden 

Distributed computing is difficult. Dealing with the details of every different system can be 
overwhelming. As complexity of a computer system increases, the necessity for abstractions 
also increases. A modular, layered design removes the details of a particular system's internal 
structures, mechanisms, encodings, and algorithms. 

Complex systems can be broken down into logical units that are more easily understood. Each 
unit needs to be clearly defined in terms of the resources that it controls and the interfaces that 
allow access to those resources. This modular approach has the following advantages: 

• alternate implementations of a unit can coexist, 

• unit modifications are less noticeable to entities requesting resources (unless the 
changes were made to the unit's interfaces), and 

• verification, debugging, and testing is much easier on a per-unit basis than on a large, 
complex system. 

Abstractions that define information in terms of data characteristics and methods of accessing 
that data are often called objects. In the following chapter, we define and describe objects and 
object models. In Chapter 1.4, we describe THETA's layered architecture that implements its 
object model. 



1.3   Object Model 

Distributed systems are hard to design and build. Support for high-level abstractions helps 
disperse the difficulties inherent in distributed programming. An object oriented paradigm 
hides the internal complexities and differences of network resources and provides a uniform 
interface to all data objects in the system. 

An object model defines all activities in terms of accesses on objects. For example, when log- 
ging in to a system, the user is not interacting with the login daemon; rather, the user is per- 
forming the operation "login" on the object "console". Or perhaps, embellishing on the 
concept of abstraction, a user could be considered to be performing the action "open" (that is, 
login) on a "door" (the user's account) to a "room" (the console) using a "key" (the user's 
password). Object models exploit a powerful metaphor to make systems easier to conceptual- 
ize. 

1.3.1   What Is an Object? 

object 1 

methods data 

subject 

object n 

methods data 

Figure 1-2: THETA Object Model 

Objects are abstractions of resources like processors, memory, and devices. An object is a 
combination of data and methods used to access that data. Figure 1-2 depicts a subject, which 
in THETA is a principal or group, accessing an object's data through the methods defined for 



the object. We refer to methods of manipulating an object as operations. Subjects cannot do 
anything to an object unless the action is through a defined operation. 

Objects can be accessed only by invoking operations on them. THETA users (that is, princi- 
pals) start client programs to issue such invocations. Operations are implemented by object 
managers. A manager hides the internal representation of the objects it manages, and provides 
a precisely defined interface to these objects. Some or all of the internal representations of a 
manager's objects are stored in an object database (ODB). 

1.3.2   Object Types 

All THETA resources are organized into groups of objects that have similar characteristics. 
All objects with the same characteristics are said to be of the same object type. When an 
object type (or simply, a type) is defined, the developer specifies the common characteristics 
of a type, which include the data structures in the object, the operations that can be performed 
on objects of this type, and the rights needed to invoke the operations successfully. Figure 1-3 
shows a sample operation definition from the Set type specification file. In the example, we 
define the operation ShowSet to have the input parameter SetName and the return data Set- 
Cont. The access control checks are also stated. The MAC check is "mac test read\ which 
means the subject invoking the operation must dominate the level of the object being 
accessed. The DAC check is specified in the line "requires view". This requirement states that 

generic operation ShowSet mac test read 
(SetName:ASC;) 
returns 
(SetCont:SET_CONTENTS;) 
requires view; 

Figure 1-3: Example Operation Signature from the Set Object Specification 

the invoking subject must have the view right on the Set generic object1 to successfully per- 
form the operation ShowSet. For more information on type specifications and operation decla- 
rations, see the Manager Developer Tutorial for THETA, Volumes I and II [32]. 

1.3.2.1    Subtypes and Inheritance 

THETA types are hierarchical. Each type, with the exception of root type, Object, has exactly 
one parent. An object type inherits the attributes defined for the parent type and all other 
ancestral types. As shown in Figure 1-4, all types inherit the data attributes and operations that 
are defined for the ancestor type Object. Notice that Directory objects also inherit attributes 

Generic objects are explained more in Section 1.3.2.4. 
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Figure 1-4: Portion of the THETA Type Hierarchy 

from the Lookup Object type as well.The Lookup Object type is a subtype of Object, and 
Directory is a subtype of Lookup Object. 

Inheritance is the mechanism used to share type descriptions among several distinct types that 
have some similar attributes. The common attributes are defined in the parent type, or some 
other ancestor type. Operations defined for ancestor types do not need to be rewritten for sub- 
types; thus, inheritance promotes code-reuse. 

1.3.2.2    Styles of Types 

Each manager of an object type has a strategy for maintaining the databases. This strategy 
depends on the style of the type. In THETA, there are four type styles: 
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• ancestral - Ancestor types allow common data structures, operations, and other object 
attributes to be declared in one type specification file, yet these types can be imported 
and used by other types. See Section 1.3.2.1 for a description of inheritance and hier- 
archies. 

• primal - Primal types are types whose objects have meaning only on the system where 
they were created. For example, a memory address on one machine does not refer to 
the same information as a memory address on some other machine; thus, memory 
addresses are primal. Primal objects must remain on the machine where they were cre- 
ated because that is the only machine where the data makes sense. 

• distributed - Distributed types can have objects that reside on several hosts; however, 
the manager of the type does not enforce any data consistency rules. For example, say 
we have a distributed type File. If we copy a file object named Original from host A to 
host B, and then edit the copy on host B, the two files are no longer identical, yet they 
have the same name. 

• replicated - A replicated type has objects that have copies of the object image on sev- 
eral hosts. When a replicated object is created or modified, all copies are updated so 
that the collective object database across the network remains consistent. 

1.3.2.3 Object Instances 

Each object that is a member of a type is called an instance of that type. Operations can be 
performed on specific objects or the entire class of objects. A client must make it clear which 
object is the target of the operation. To distinguish the target when invoking an operation, the 
client must supply the identity of the exact object instance that is to be accessed. Object iden- 
tification is discussed further in Section 1.3.3. 

1.3.2.4 Generic Objects and Generic Operations 

A generic object is a single object that represents the class of objects of a type. The kinds of 
operations that are usually declared for the generic object of a type are create, delete, and 
search. In THETA, there is only one generic object per type per security level. The example 
shown in Figure 1-3 defines a search operation on the Set generic object. 

1.3.3   Object Identification 

THETA provides a global and location-transparent way to identify objects. By global, we 
mean an object name can be issued from any location to uniquely identify an object anywhere 
on the network. By location-transparent, we mean an object's location is not encoded directly 
in the object name. 
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There are two kinds of names for THETA objects: unique identifiers and Directory objects. 
The Unique Identifier (UID) is a machine-generated name; the Directory object is a user- 
selected symbolic name. Each THETA object has a single UID, which is stored with the 
object and is bound to the object at object creation time. A sample UID may look like 
{192.76.175.200:4:9:#UNCLASSIFIED:Principal}. The UID's awkward external representa- 
tion is due to optimizations made for internal handling by the machine. 

Identifying objects via their UIDs is not very intuitive for most users. Users typically want to 
refer to objects using symbolic strings that are meaningful to them. The Directory Manager 
provides a distributed and replicated service that maintains a mapping between user-defined 
symbolic names and system-maintained UIDs. The Directory type provides a hierarchical 
naming structure. An example of a symbolic name is: a:b:c where a and b are subdirectories 
and c is the object being referenced. Directories in this path are non-decreasing in security 
level. See the Software Design Document (SDD) for the Directory Manager [34] for more 
details on using a Directory object to reference another object. 

A THETA object is not required to have a symbolic name. An object may have no, one, or 
more then one symbolic name. If there is no symbolic name for an object, the object must be 
accessed using its UID. 

1.3.4   Object Replication 

THETA provides reliability and availability by supporting replication of objects at multiple 
sites. A replicated object is one for which more than one copy is being maintained, and the 
replicas reside on more than one host. Each replica of the object has the same UID. The object 
may be accessed through a manager on any of the hosts where it resides. 

Data consistency of replicated objects is maintained by the version vector scheme (see [22] in 
"References" on page 91). The classic problems of availability and consistency are resolved 
by allowing read and write quorums to be set for each replicated type at type definition time. 
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1.4   THETA Architecture 

THETA uses a layered architecture to implement the object model, which is discussed in 
Chapter 1.3. The THETA clients, managers, and kernel are implemented on top of an existing 
secure Constituent Operating System (COS). THETA has two major design goals with respect 
to COS systems. First, THETA must be incorporated into the host system without modifica- 
tions to the COS. Second, THETA must be able to operate on a network of heterogeneous 
hosts. 

A COS must meet TCSEC B3 security and assurance requirements for the THETA system to 
be B3. The following features are expected of the COS: 

• Assured process separation - MAC, DAC, and user and process identification mecha- 
nisms of the COS control all direct interprocess communication (IPC). No IPC mecha- 
nisms are permitted to override these checks. 

• Non-interference with process operation - No untrusted process is permitted to inter- 
fere with THETA processes responsible for security. As stated above, the COS mecha- 
nisms that enforce non-interference are MAC, DAC and user and process 
identification. 

• Stable storage - The COS file system, file permissions, and COS MAC labels protect 
the data needed for enforcing security and for maintaining object databases. 

• IPC support - THETA IPC primitives and protocols rely on trusted path, local IPC, and 
TCP/IP facilities of the COS. 

• Device support - COS device drivers are used for device support. 

1.4.1   THETA Components 

The THETA object model is implemented in layers. A simplified view of the hardware and 
software components of the THETA system is depicted in Figure 1-5. The major pieces are 

• Constituent Operating System 

• Network software and hardware 

• THETA kernel 

• THETA managers 

• Objects 

• THETA clients 

In the diagram, the THETA kernel does not completely obscure access to the COS. The pic- 
ture is drawn this way on purpose to stress the fact that THETA managers, clients, and users 
can still interact directly with the COS if desired. 
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Figure 1-5: Implementation of the THETA Object Model 

1.4.1.1    Constituent Operating System 

THETA provides abstractions of system resources for higher level applications. These 
abstractions must eventually map to some real system resource like processors, storage, and 
devices. The COS is the true controller of these real system resources. THETA interacts with 
the COS to manipulate the THETA objects (which are abstract views of real system resources) 
in the manner declared in the object type specifications. THETA relies on the system calls of 
the COS to be implemented correctly and for the COS security mechanisms (MAC, DAC, 
privilege schemes, etc.) to be enforced on those system calls. 
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Consult the vendor-supplied documentation for more information about the security mecha- 
nisms, their implementation, and the assurance arguments for the COSs on a THETA network. 

1.4.1.2 Network Software and Hardware 

For THETA to be a distributed system, it must operate over a network. THETA relies on the 
network hardware of each machine (the Ethernet cards, the cables, the routers, etc.) and on the 
software and configuration files that implement the protocol. 

As a networked service, rogue processes may snoop data transmissions that are sent over the 
network. To combat this threat, THETA implements its own packet encryption of messages. 
When secure networks and secure protocols become more stabilized and more readily avail- 
able, we will remove encryption from the THETA processes and rely on secure COS network 
services. 

1.4.1.3 THETA Kernel 

The THETA kernel is responsible for authenticating COS users and their associated processes, 
registering those processes, enforcing MAC checks on IPC messages and replies, supplying 
location-transparent access to objects, message forwarding, and message upgrading. 

Currently, there are two different implementations of the THETA kernel. Their architectures 
are different enough that it is beyond the scope of this introduction to discuss them here. Con- 
sult the Software Design Document (SDD) for the THETA Kernel [34] for details on the two 
architectures, their components, and their interactions. 

1.4.1.4 THETA Managers 

For each object type, there is a THETA manager that regulates accesses to the object instances 
of the type. When clients invoke operation requests on objects that are regulated by the man- 
ager, the manager first verifies that the request passes all MAC and DAC checks. If the request 
is valid, the manager accesses the object database that is maintained in secondary storage on 
the local host. The THETA manager relies on COS mechanisms like file ownership, group 
ownership, file permissions, and MAC labels to protect the object database from being 
accessed outside of THETA interfaces. 

When a manager is created, a Program Support Library (PSL) of operation function calls is 
generated. This library contains the code that client programs should use to invoke operations 
on objects of a given type. 

For details on the components and workings of the THETA managers, consult the Software 
Design Document for THETA [34]. 
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1.4.1.5 Objects 

As stated in the previous chapter, an object contains data and the methods used to access that 
data. In THETA, we often refer to the data portion of the object as the object itself. THETA 
objects are kept in object databases (ODBs) on COS file systems. COS and THETA mecha- 
nisms protect the data from improper accesses. 

1.4.1.6 THETA Clients 

THETA clients use the common interface protocols defined in various PSLs to invoke opera- 
tions on objects. A client can use the services of several THETA managers that reside on sev- 
eral nodes on the network without knowing the details of object location or data 
representation. The managers and kernels mask the complexities of the object away from the 
client and user so that the system is easier to program and easier to use. 

1.4.2   THETA Communications 

In a distributed, object-oriented system, client processes access information by sending 
requests to manager processes. To the client, data accesses are simple. The THETA client 
needs to get input, prepare the THETA operation, invoke the operation via the PSL routines, 
wait for the response, and process the output. The only THETA-specific step is the PSL call 
that provides location-transparent access to the requested objects. PSL is a synchronous com- 
munication request; however, the client program can be written to use the lower communica- 
tion levels within the PSL to achieve asynchronous processing. 

Figure 1-6 shows the path of the PSL call through the THETA system. The diagram is very 
simple. The first step of the PSL call is to register with the THETA kernel. The kernel verifies 
the identity of the user who is running the process. If the user is known in the THETA config- 
uration, and the MAC level of the invocation is within the range of the user, registration suc- 
ceeds. After successful registration, the PSL sends the invocation request on to the kernel; part 
of the request must indicate the UID of the target object, which also specifies the type of the 
object. To process the request, the kernel must determine which manager controls objects of 
this type and where a manager (at the chosen MAC level) is running on the network. The ker- 
nel sends out a locate request to the other kernels on the network to find a manager service at 
the appropriate level. Each kernel checks to see if it can service the locate request. If it can, it 
responds to the original kernel with a found message. The original kernel then sends the PSL 
call on to the kernel that had the service available. The remote kernel passes the request on to 
the manager. The manager performs any DAC checks that may have been specified for the 
operation. If the user that invoked the request from the remote client has the necessary privi- 
leges, the manager processes the request and sends a reply back to the kernel. This kernel for- 
wards the reply to the original kernel who then sends the information back to the client. 
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1.5   Security Policy 

The THETA security policy is stated in the Software Requirements Specification for THETA 
[35] and formally addressed in the Formal Security Policy Model for THETA [31]. However, 
we briefly cover some important aspects here. The security policy for THETA adheres to the 
specifications described by the TCSEC for level B3 systems. The policy can be categorized 
into the following: 

• A discretionary access control (DAC) policy that is designed to restrict operations on 
data objects according to the identity and privileges of the client. 

• A mandatory access control (MAC) policy that controls the flow of information 
according to the security levels of client and object. 

• Some additional policy rules that define the security configuration, guarantee of 
trusted paths, etc. 

The MAC and DAC policies are clearly separated. In fact, they operate at different granulari- 
ties in the object model. The mandatory policy is enforced largely at the message passing 
level. The discretionary policy is enforced at the object level. The MAC and DAC policies 
state global constraints for the entire system rather than for individual hosts. 

In all secure systems, the amount of code that performs trusted operations should be kept to a 
minimum. In THETA, the kernel performs trusted operations. All THETA system managers 
contain trusted code. In general, any MLS manager has trusted code regardless of whether it is 
provided as part of THETA or by the user. The reason for this is that the ACG automatically 
generates trusted code so that the manager can be run at single level or MLS. In THETA, the 
system relies on the constituent operating system (COS) security mechanisms whenever pos- 
sible to enforce the security policy rather than duplicating code. 

1.5.1   Mandatory Access Control 

A distributed operating system mandatory policy must be defined in terms of message passing 
between active entities, rather than the traditional Bell and LaPadula read and write operations 
of an active entity on a passive entity. In THETA's object-oriented paradigm, data is accessed 
through a well-defined set of methods. When a subject wishes to perform some operation on 
an object, the access request is sent as a message from a client process (acting on behalf of the 
subject) to a manager process. So, the object is not a passive entity; it can be accessed only by 
making regulated requests to the managing process, that is, via messages. 

The THETA MAC policy has two components: 

• Rules for message passing to prevent direct downgrade of information. 

• A policy for multilevel entities to prevent compromise of information via covert chan- 
nels. 
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The multilevel security policy is based on a theory of information flow security developed at 
ORA. This theory is detailed in [13] and [11]; however, we provide a brief description below. 
The policy defines information flow in terms of deductions that can be made about unseen 
(higher security level) events in a system's history. This policy is called "restrictiveness". The 
restrictiveness policy defines security as follows: a system component is secure provided it 
does not allow information to flow from high security levels to lower ones. 

1.5.1.1    MAC Labels of Subjects and Objects 

In order to enforce the mandatory access control policy, the THETA system must compare the 
MAC label of the invoking process with the MAC label of the target object. The MAC tests 
are dependent on the type of operation. A process may view an object that is at or below its 
level, and a process may write to an object that is at or above its level. MAC labels of pro- 
cesses and objects are set at the time they become "known" to THETA. 

When a process registers with the THETA kernel, the process is "stamped" with the identity 
and security level of the user who started the application. If the process is started over a range 
of levels, there is one "currently active level" that is within the range and all invocations are 
marked with the MAC label of this active level. 

A THETA object is created when a successful create invocation is processed by the manager. 
The create invocation is a message, which comes into the manager at a single MAC level 
from a registered THETA process. The manager creates the object at the MAC level of the 
create message. The MAC level becomes part of the identifier of the object, and the object is 
fixed at that level for the duration of its existence. 

1.5.2   Discretionary Access Control 

Since object managers are the entities that implement operations on objects and DAC restricts 
operation executions, all THETA managers enforce discretionary access control on their 
objects. As a part of each object, an access control list (ACL) is maintained to indicate which 
users may perform what operations on that object. The DAC policy is necessarily object- 
dependent since operations and their semantics vary according to their type. 

1.5.2.1    Access Control Lists 

As stated above, every object has an access control list. An ACL is a list of subjects1 and their 
corresponding access rights to the object. Just because a subject has access rights on an object 
does not mean that the subject can perform any arbitrary action on the object. Accesses are 
restricted as part of the definition of a type. Every object is a member of some type, and as part 

In THETA, subjects are principals and groups. 
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of the definition of a type, the operations that can be performed and the rights required to 
invoke the operation are specified. Therefore, a subject that is attempting to access an object 
using a particular method must have the access right required to perform that operation. 

To clarify, for each operation, the required privilege is specified as part of the signature of the 
operation. An ACL contains a list of subjects and their access rights for a single object. When 
a subject invokes an operation, the operation signature is consulted to determine what access 
rights are needed, and then the ACL of the object is checked to see if this particular subject 
has the necessary privileges. 

other data of the 
object instance 

access control list 

subject access rights 

fred modify 

ann read, write 

staff_group view 

... 

Figure 1-7: An Access Control List within an Object Instance 

1.5.2.2    Access Group Sets 

An access group set (AGS) is a principal and a list of groups that have that principal as a 
member. The principal (and any processes that the principal starts) inherits the access rights of 
all groups specified in the AGS. 
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1.5.2.3    Process Bindings 

When a principal starts a process that registers with the THETA kernel, the process is bound 
with the AGS of the principal. By bound, we mean that the access rights of the process are 
restricted or bound by the value of the AGS. 

1.5.3 Other Forms of Access Control 

More restrictive access control schemes like "unique operator"2 requirements can be enforced 
in the operation code within a manager. Security checks in the operation code must be added 
by the developer. Note that the security checks can become more restrictive only by adding 
code to the manager operations. THETA MAC and DAC checks cannot be overridden. 

1.5.4 Encryption 

THETA operates over a network and is therefore subject to the standard risks of networking. 
One of the main threats operating over a network is wire-tapping. To combat this risk, THETA 
provides encryption of datagrams that are sent over the net. For more information about the 
trusted networking capabilities, see [39], [40], and [41]. 

1.5.5 Assurance Arguments 

THETA has a layered trusted computing base (TCB) consisting of a message TCB and an 
object TCB. The TCB size depends on how the administrator configures the system. There is 
a trade-off of assurance versus trusted application flexibility. To meet B3 criteria, only the 
message TCB can run multilevel. 

Despite THETA's long existence, there are still no standards for evaluating secure, distributed 
operating systems. We have had to interpret the TCSEC and the TNI to forge our own criteria. 
As a result, THETA's approach to security engineering has combined traditional, conservative 
methods with more liberal, experimental practices. We have tried for the best of both worlds, 
and we have had considerable success. 

The THETA kernel development emphasized the traditional approach. It implements the basic 
functions of the Cronus kernel, but is completely redesigned and reimplemented. The code 
that is trusted is minimized. Sizes of the various kernel components are detailed in the Com- 
puter Systems Operator's Manual for THETA [29]. 

Unique operator" requirements come up in various separation of duty scenarios. For example, in a 
banking scenario, a check may need to be signed by two unique supervisors before it can be cashed. 
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Figure 1-8: THETA Trusted Computing Base Boundaries 

The THETA manager development focuses on trusted extensibility, which is the idea that 
THETA may be developed and adapted to new applications by adding new trusted software. 
Several managers, trusted and untrusted, have been autogenerated for the fielded THETA sys- 
tem. New managers may be created by users and installed in THETA at any time. 

The key THETA advance is the structuring of the manager autogeneration process to simplify 
the arguments that must be made for security assurance of new trusted managers. Trusted 
extensibility is discussed more in Section 1.5.6 below. 

23 



Running a manager as a multilevel process does increase the amount of trusted code, which 
may not always be acceptable. THETA managers are designed so they can be run either as 
untrusted, single level managers or as trusted multilevel managers. Changing from one to the 
other is a mere matter of getting the THETA operator and THETA administrator to shut the 
system down, adjust a configuration file, and re-boot. Despite this simple procedure, managers 
should not be run across multiple levels unless the code has been carefully written, inspected, 
and rigorously tested. 

THETA is actually two systems in one: 

• the trusted THETA, which includes the kernel and the suite of MLS managers; 

• the development THETA, which includes untrusted autogeneration tools for creating 
new MLS and MSL managers and an untrusted universal application interface. 

The development tools are not themselves trusted, because the trusted managers they produce 
are subject to manual inspection and testing before delivery. However, there is the possibility 
of having trusted manager development tools in the future. 

Assurance of THETA's multilevel security is based on a formal security policy called restric- 
tiveness. Restrictiveness limits the ways in which information can flow within a system, and 
when applied to multilevel security, it prohibits information flow from high security levels to 
lower ones. In the restrictiveness policy, information flow is defined in terms of facts that can 
be deduced based on observations of a system's behavior. 

THETA is unique in its use of restrictiveness in its security policy. This choice of policy has 
several advantages. 

• An information flow policy is superior to access control policies (e.g., Bell-LaPadula) 
in that it provides a framework for discovering covert channels. 

• Restrictiveness is superior to most information flow policies in that it offers compos- 
ability: communicating restrictive components form a restrictive system. This property 
is essential for security analysis of distributed systems. 

Two restrictive (that is, secure) subsystems can be hooked together to form a larger restrictive 
system. The THETA policy requires the THETA TCB to be restrictive. Since restrictiveness is 
a composable property, it is sufficient to demonstrate that the components of the TCB are 
restrictive. The fact that security verification can be decomposed in this fashion is a tremen- 
dous advantage when trying to build a distributed secure system such as THETA. Compos- 
ability can also be exploited to add multilevel services and hosts to a distributed system in a 
secure manner without the need for re-verification of the entire system. 

We used Romulus (a tool developed at ORA) to formally model and prove the restrictiveness 
security properties of the THETA kernel. Previously, ORA developed techniques for demon- 
strating compliance with restrictiveness using the Gypsy Verification Environment (see [42]). 
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1.5.6   Secure Extensions 

As new types are defined and new managers and clients are built, the THETA system is 
extended. It is important that extensibility be a simple exercise that does not compromise 
security. 

The mandatory policy constraint on information flow is that the THETA system be restrictive. 
Processes outside the TCB are at a single-level and therefore are trivially restrictive. Because 
restrictiveness is composable, it is sufficient to show that every component of the TCB is 
restrictive. 

The key problem for secure extensibility is guaranteeing that new MLS managers added to the 
system are restrictive. Managers are usually complex software. It is legitimate to ask: why 
should any manager be part of the TCB? This question has been considered in [24]. The 
advantages of having some MLS managers are increased efficiency and greater functionality. 
The efficiency is gained at the cost of assuring that software added with new managers 
enforces the THETA security policy. 

A large portion of a manager's functionality is independent of the types managed. So, a signif- 
icant amount of a manager's design and implementation is invariant over types and can be 
reused. If a manager was generated using the ACG tools, only the type-specific functionality 
would need to be supplied by the manager programmer, and thus, only that newly supplied 
code would need to be verified. For example, the security and audit checks required for spe- 
cific manager operations are autogenerated. The assurance of security is then divided between 
the manager generation tool, which is a one-time assurance effort, and the manager opera- 
tions, whose assurance must be determined on a manager by manager basis. 
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1.6   Object Managers 

An object manager is a process that controls a database of objects of a given type (or types) 
and regulates the accesses made on objects of that type. Clients access objects by making 
requests to the manager of the object type, and the manager then honors or denies the request 
depending on the access rights of the client and the rights required to perform the operation. 

1.6.1 Tools for Generating Managers 

THETA provides the programmer with a set of tools for manager generation. The programmer 
creates a type specification and a manager specification. The specification files are then pro- 
cessed by the manager generation tools. Successful processing produces several files of code 
that make up an object manager skeleton. The skeleton implements message packing and 
unpacking, conversion from canonical to internal representations of data and vice-versa, man- 
datory and discretionary access checks that may be necessary for an operation, and many 
other routines common to most managers. To finish implementing a manager, the programmer 
fills in code for the specific operations that the manager supports. 

These tools have been used to generate all THETA managers. 

For extensive detail about the specification grammars, the autogeneration process, and the 
generated code, see the Manager Developer Tutorial for THETA, Volumes I and II [32]. 

1.6.2 System Managers versus Application Managers 

Managers are often classified according to the type of object managed. THETA defines a 
small number of types likely to be of importance to every application. These types are some- 
times called system, types, to distinguish them from other types that can be added by THETA 
developers. System managers control system types and application managers control other 
non-essential types. There is no fundamental difference between system and application man- 
agers; the distinction is in the role they play in the system rather than any implementation dif- 
ference. More specifically, application managers may assume the existence of system 
managers. 

1.6.3 Security Range Options 

A manager may run in a single level or across a range of security levels. A single-level man- 
ager manages objects only at its security level and is implemented as a single-level process. A 
multilevel object manager can handle operations over a range of security levels. A multilevel 
manager may be designed as a single multilevel secure (MLS) manager process or multiple 
single-level (MSL) manager processes. If it is implemented as a MLS process, then the man- 
ager is part of the mandatory TCB and is trusted to perform mandatory access checks. 
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When a service is needed across levels, should the manager be multilevel or multiple single 
level? There is a fundamental difference between the two approaches. The MLS manager is 
trusted, and it can, therefore, enforce a security policy different from that of the constituent 
operating system. The MSL managers, on the other hand, are bound by the COS's security 
policy. 

When installing a manager service into the THETA system, the THETA administrator and site 
security officer must assess the functionality desired against the trade off of increasing the 
TCB size. Installing a manager to run across many security levels as a single process increases 
the size of the TCB; however, installing a manager to run at several single levels limits the 
capabilities of the manager and uses more system resources. With the introduction of each 
new service, the system administrators must weigh the consequences of each type of installa- 
tion and decide which is best on a per-manager basis. 

Because objects of the system types will most likely be used by clients at all levels, THETA 
system managers are implemented as multilevel services. As a part of the TCB, these MLS 
managers must undergo the necessary certification procedures. 

1.6.4   System Managers 

Below, we briefly highlight the features of the current THETA system managers. 

1.6.4.1    Audit Manager 

The Audit Manager collects information about the actions of all THETA processes, including 
the managers, clients, and the kernel. Audit data is used to detect and locate attempts to cir- 
cumvent the THETA security mechanisms. 

Every secure system starts with the intention to prevent security compromises by imposing a 
sufficiently strict security policy and by implementing that policy correctly. However, for 
practical reasons, this intention is not always realized. The security policy may be inaccurate 
or inadequate for reasons not originally foreseen. Programmer oversight may cause the policy 
not to be implemented exactly. Small compromises (e.g., covert channels) may be tolerated to 
improve performance or to give more functionality. Whatever the reason, sometimes system 
security is breached; therefore, it is wise to have an audit trail to track attempts to penetrate 
the system. Penetration attempts typically rely on unusual circumstances and actions to defeat 
a system's security mechanisms; the attempt can be detected if these circumstances and 
actions are noticed. 

THETA is a distributed system, and attempts to defeat its security may involve actions at 
many different locations. To detect a penetration attempt, it is best to collect these distributed 
events at a single location where they can be analyzed as a complete, synchronous list of 
events. The THETA Audit Manager is responsible for maintaining the audit repository. 
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What actions are deemed "security relevant" and require auditing? Each THETA manager 
must decide which of its operations are security-relevant, for which values of its arguments, 
and for which kinds of reply. The level of auditing is determined by the THETA administrator 
when a manager is installed. However, this scheme is very static and doesn't allow for any 
trouble shooting during runtime, i.e., if the administrator notices some activity warranting fur- 
ther investigation, he has to reinstall to get a finer grain or change any of the audit parameters. 
Managers send the Audit Manager data as THETA invocations on the generic object of type 
"Audit". 

When are audit events sent? We have made the basic design decision that the Audit Manager 
will not solicit audit reports, but will depend on the managers to send them accurately and 
promptly. 

For more detail on the specific operations, see the Software Design Document (SDD) for the 
Audit Manager and the Manager Skeleton [34]. The SDD for the Audit Manager describes the 
data types and operations that are particular to the audit services. The SDD for the Manager 
Skeleton details data types and operations that are common to all managers. 

1.6.4.2    Authentication Manager 

The Authentication Manager, also designated authen, manages five types, listed here with 
their abbreviations: Principal (prin), Group (group), THETA AccessGroupSet (thags), Regis- 
try (reg), and Authentication Data (acdb). These types and operations directly or indirectly 
support THETA discretionary access control policy. 

Principals. THETA principals loosely correspond to user names in traditional operating sys- 
tems. A Principal object is maintained for each legitimate THETA user. When a COS user 
launches a THETA process, THETA kernel configuration files are consulted as well as other 
databases, and the COS user is authenticated. Part of the authentication process is to map the 
identity of the COS user to the identity of a THETA principal. 

A principal can never have more than one COS user per host; however, a principal may have 
no COS user counterpart for a particular host in the network. The THETA system administra- 
tor is responsible for maintaining this information. See the Software Design Document (SDD) 
for the Kernel [34] and the Computer System Operator's Manual for THETA [29] for details. 

Groups. A THETA group is a collection of principals and other groups. 

Access Group Sets. An access group set is a set of groups that a principal wants enabled. In 
other words, even though the principal may be a member of several groups, the user may want 
membership only in a particular subset to be active for purposes of DAC. A principal's access 
rights on objects are determined by the active group memberships, that is, the access group 
set. For an in-depth discussion on DAC checks, see the Software Design Document (SDD) for 
the Manager Skeleton [34]. 
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Registry. The THETA Registry type supplies an easy way to reference principals and groups. 
There are no objects of this type and the generic objects of type principal and group are used 
to store the name spaces. This type is used to supply a set of operations that manipulate the 
principal and group name spaces. 

Authentication Data. This data type is maintained for backward compatibility to Cronus; it 
serves no purpose in the THETA system. 

For more detail on the specific operations, see the Software Design Document (SDD) for the 
Authentication Manager and the Manager Skeleton [34]. The SDD for the Authentication 
Manager describes the data types and operations that are particular to the identification and 
authentication services. The SDD for the Manager Skeleton details data types and operations 
that are common to all managers. 

1.6.4.3 Automatic Code Generator 

The Automatic Code Generator (ACG) Manager (formerly Type Definition Manager) is a tool 
for developers to generate (possibly multilevel) managers. Programmers write specifications 
for the object type and the manager that will regulate access to that type, and then process 
those specifications by making invocations on the ACG. Successful processing of the specifi- 
cation files produces a skeleton of code that the programmer must then tailor by adding code 
to implement operation semantics. For extensive detail about the specification grammars, the 
generation process and autogenerated code, reference the Manager Developer Tutorial for 
THETA, Volumes I and II [32]. 

For more detail on the specific operations, see the Software Design Document (SDD) for the 
Automatic Code Generator Manager and the Manager Skeleton [34]. The SDD for the Auto- 
matic Code Generator Manager describes the data types and operations that are particular to 
the manager generation services. The SDD for the Manager Skeleton details data types and 
operations that are common to all managers. 

1.6.4.4 Configuration Manager 

The THETA Configuration Manager is designed to store information about nodes on the 
THETA network and the manager services that are available on those nodes. The purpose of 
the Configuration Manager is to provide the THETA administrator a useful tool for managing 
the network and THETA services. 

The Configuration Manager manages three types: Host_Configuration, Service, and 
ActiveServiceList. Host_Configuration objects contain information about the hosts on the net- 
work. Such information would include hostname, Internet address, and the hardware architec- 
ture of the host. Service objects contain information about the managers that are installed on 
the network. Such information would include the manager name, the types managed, and 
whether the manager can be run across multiple levels. ActiveServiceList objects contain 
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information about all currently registered managers that are available on the network. This 
data includes the names of the managers, what hosts they are running on, and at what security 
levels. 

Each network of THETA hosts needs only one Configuration Manager; however, if there is 
more than one instance, the data must be kept consistent across all platforms. To maintain data 
coherence, all types managed by the Configuration Manager are replicated. 

The Configuration Manager monitors information about the state of the THETA network and 
keeps that information in a database. This information may be useful to other processes like 
the Primal Process Manager, in order to perform actions such as automatically starting a man- 
ager process at a particular level on a certain host. The THETA Operator may also query the 
databases to get a view of the services available on the network. 

The THETA Operator has another more user-friendly tool available, known as dream, that 
monitors the state of the THETA network. The dream application is a graphical application 
that allows the Operator to monitor and control the THETA processes on the network through 

"point-and-click" and "drag-and-drop" actions.1 The information from the dream application 
is not stored in databases, and ceases to exist when the application is exited. 

For more detail on the specific operations, see the Software Design Document (SDD) for the 
Configuration Manager and the Manager Skeleton [34]. The SDD for the Configuration Man- 
ager describes the data types and operations that are particular to the THETA network config- 
uration services. The SDD for the Manager Skeleton details data types and operations that are 
common to all managers. 

1.6.4.5    Directory Manager 

The Directory Manager provides a hierarchical name-space for THETA objects. The name- 
space is organized into directories and directory entries in a similar fashion to that of the 
UNIX file system, except that any object, not just files, can be named. A directory object con- 
tains entries associating symbolic names with arbitrary object UIDs, but it can also contain 
entries that associate names with other directory objects known as "subdirectories". All direc- 
tory objects managed by the Directory Manager are connected together in this fashion into a 
directory tree with a single "root" directory. The unique full name, or "pathname", of an 
object then starts with the name of the root directory and includes the names of all the subdi- 
rectories that are part of the "path" between the root directory and the entry for the named 
object. A "relative pathname" starts in some non-root location (the "current" directory) and 
ends with the name of the object. If the directory entry for the object is contained in the cur- 
rent directory, the relative pathname becomes just the object name itself. 

1 The dream interface is documented in the Computer System Operators Manual for THETA [29]. 
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An example of a full pathname could be ":usr:theta:object_l". In this pathname, "usr" is the 
name of a directory, "theta" the name of a subdirectory of "usr", and "object_l" is the name of 
an arbitrary THETA object that is represented by an entry in directory "theta". The colons, 
except the first one, are separators used to keep the names in the path distinct. The leading 
colon, by convention, represents the name of the root directory, ":", so "usr" is actually a sub- 
directory of the root directory, which can in turn be thought of as a subdirectory of the generic 
directory object. Directory Manager generic operations operate on the root directory. 

For more detail on the specific operations, see the Software Design Document (SDD) for the 
Directory Manager and the Manager Skeleton [34]. The SDD for the Directory Manager 
describes the data types and operations that are particular to the THETA cataloging services. 
The SDD for the Manager Skeleton details data types and operations that are common to all 
managers. 

1.6.4.6 Primal Process Manager 

The THETA Primal Process Manager is designed to provide information about processes that 
have registered with the THETA kernel. A successful registration leads to the creation of a 
primal process object on the host on which the process registered. COS processes are not 
migratory entities in THETA, and so the primal process objects created to represent them do 
not migrate either. Primal process objects contain the data that prevents repudiation of actions 
recorded in the audit log. In particular, the identity of the COS user that started a process that 
caused audit events can be learned only by obtaining this information from this manager. 

For more detail on the specific operations, see the Software Design Document (SDD) for the 
Primal Process Manager and the Manager Skeleton [34]. The SDD for the Primal Process 
Manager describes the data types and operations that are particular to the tracking services for 
local THETA processes. The SDD for the Manager Skeleton details data types and operations 
that are common to all managers. 

1.6.4.7 THETA File Manager 

The THETA File Manager implements a file system for THETA file objects. This manager is 
responsible for managing objects of type "Theta_File", which implement a distributed file 
system. The THETA File Manager provides functionality of conventional file systems, like 
create, read, write, open, close, and remove. Clients can access file objects throughout the 
THETA system. 

File objects are not replicated and stay on the host on which they were created; in the THETA 
terminology, this type is primal. In addition, file objects are stored entirely on a single host. 
Large file objects cannot be split into pieces and then stored at different sites. (Programmers 
can, of course, write managers and/or applications that provide this sort functionality.) 
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For more detail on the specific operations, see the Software Design Document (SDD) for the 
THETA File Manager and the Manager Skeleton [34]. The SDD for the THETA File Manager 
describes the data types and operations that are particular to the THETA file services. The 
SDD for the Manager Skeleton details data types and operations that are common to all man- 
agers. 

1.6.5   Application Managers 

The application manager suite consists of managers that provide a user service rather than a 
system service. The system managers provide services needed by the THETA system to oper- 
ate correctly and safely. The application managers provide users with their required services 
and functionality. 

1.6.5.1 Account Manager 

The Account Manager was created to test role-based access control policies using THETA's 
flexible access control mechanisms. The scenario is modelled after a "separation of duty" pol- 
icy that one may find in a bank. Several distinct users must cooperate in order for cash 
voucher to be honored. The Account Manager controls two types, a persistent object type 
(account) and a transient object type (voucher). Voucher objects have a particular set of opera- 
tions that must be performed in a certain order by specific privileged users. The Account Man- 
ager uses many THETA mechanisms like MAC, DAC, ACLs, and AGSs to enforce this 
complicated role-based access control policy. See [23] for a description of the manager and 
the scenario. 

1.6.5.2 Mission Planning and Tracking Managers 

Trusted Information Systems developed a mission planning and tracking demonstration for 
THETA. It is comprised of several managers listed below. 

1.6.5.2.1 Bulletin Board Manager 

The Bulletin Board Manager is part of the Mission Planning and Tracking demonstration 
application that was developed by Trusted Information Systems. This manager behaves like a 
mail program, but a user can only post a message to one of the predefined groups. See [38] for 
more information. 

1.6.5.2.2 Downgrade Manager 

The Downgrade Manager is part of the Mission Planning and Tracking demonstration applica- 
tion that was developed by Trusted Information Systems. This manager submits bulletin board 

32 



postings (that are managed by the Bulletin Board Manager) to the Regrade Manager to be 
reviewed. See [38] for more information. 

1.6.5.2.3 Logistics Database Manager 

The Logistics Database Manager is part of the Mission Planning and Tracking demonstration 
application that was developed by Trusted Information Systems. The database contains infor- 
mation about Air Force missions, flight plans, legs of flights, drop sites, etc. See [38] for more 
information. 

1.6.5.2.4 Regrade Manager 

The Regrade Manager is part of the Mission Planning and Tracking demonstration application 
that was developed by Trusted Information Systems. This manager cooperates with the 
Downgrade Manager and the Bulletin Board Manager in order to downgrade textual informa- 
tion safely. For a piece of information to be successfully downgraded, a privileged user must 
approve the submission. This privileged operation is regulated by the Regrade Manager. See 
[38] for more information. 

1.6.5.3 Inventory Manager 

The Inventory Manager maintains a database of information about stock supplies. 

1.6.5.4 Mail Manager 

The Mail Manager allows users to send textual information to other users. This manager oper- 
ates at a single level only. 

1.6.5.5 Set Manager 

The Set Manager handles groups of object identifiers. These groups, known as sets, can con- 
tain object identifiers of any type. Standard set operations may be performed on set objects. 
For example, sets can be unioned and intersected, elements of a set can be added, deleted, etc. 
Also, each set may contain elements from lower security levels, thus making a "multilevel" 
object. Note that the object is not truly multilevel; the set object as a whole is marked at the 
highest security level, but each component of the object maintains its original security mark- 
ing. 

1.6.5.6 Thing Manager 

The Thing Manager is a simple manager that implements and tests the operations on the basic 
object type "Object". The "Object" type is the superclass of all other types; that is, all types in 
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the THETA system inherit the attributes of the type "Object". The Thing Manager is used for 
verifying that the basic type and its operations are implemented correctly. 

1.6.5.7    Tutorial Manager 

The Tutorial Manager manages a test type created as part the Manager Developer Tutorial for 
THETA [32]. This very basic manager helps demonstrate some of the features of the THETA 
system and shows the developer some simple programming techniques of the system. 
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1.7   Summary 

As explained in the previous portions of this document, THETA is a distributed, heteroge- 
neous, secure operating system. As a distributed system, THETA has increased extensibility, 
availability, and resource sharing over centralized systems. Being heterogeneous, THETA 
provides greater availability to more hosts in a consistent manner. And, as a secure system, 
THETA protects data confidentiality and integrity. 

An operating system provides abstractions by which applications may use, share, and control 
the resources of the underlying machine. THETA provides control of these COS resources in a 
distributed manner. A distributed operating system presents its users and applications with a 
set of uniform abstractions for the resources at multiple, independent processing locations. 
THETA is a secure distributed operating system that permits access to resources only if this 
access is consistent with a security policy. 

THETA is intended particularly to support Air Force Command and Control (C2) applications, 
though it is flexible enough to accommodate several other needs. C2 applications provided 
several challenges. First, C2 applications span many types of computer systems and require 
survivability, scalability, and interoperability. Second, they involve diverse aspects of the use 
of classified information including collection, selection, aggregation and analysis. Last, these 
applications involve monitoring and controlling physical devices that collect and use classi- 
fied information. 

Developing distributed services and applications is traditionally a very difficult exercise; how- 
ever, THETA provides a suite of development tools that makes this task easier once they are 
trained in the art of programming in a secure OS environment. Development time is reduced 
since the programmer no longer needs to deal with the complexities of interprocess communi- 
cation, interhost communication, data finding, access control, multitasking, and data storage. 

THETA is an object-oriented environment by design. Because of its object-oriented nature, 
many of the hard concepts of distributed processing are abstracted away from the user, pro- 
grammer, and administrator. Accesses to objects and services are consistent across all plat- 
forms on the THETA network. 

1.7.1   Current Status 

THETA is composed of several software components, a variety of hardware platforms, and 
operating systems that are native to the various machines. 

The software components consist of the kernel, which provides the message passing facility 
between hosts and locally running processes; managers, which provide access to data objects 
in a regulated manner; and clients, which make access requests on objects by way of invoking 
operations on manager processes. 
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The hardware platforms presently maintained include the HP 700 series, Sun SPARCStations, 
and AT&T 386s. The processors used in these machine are PA-RISC chips, SPARC RISC 
chips, and 386 chips, respectively. 

THETA runs on a variety of platforms, both trusted and untrusted. Though untrusted operat- 
ing systems cannot support THETA functionality at the B3 level, they can still be included in 
a network of THETA machines as long as they are run at a single level. THETA is supported 
on the following operating systems: 

• HP-UX BLS 8.09+ - This system is designed to meet the TCSEC level Bl. THETA 
1.5 (excluding TNET) and 1.7b (excluding TNET) run on this system. 

• HP-UX 8.09 - This system is an untrusted operating system and does not meet stan- 
dards specified in TCSEC. THETA 1.5 (excluding TNET) and 1.7b (excluding TNET) 
run on this system. 

• Sun CMW 1.0 - The Sun Compartmented Mode Workstation is designed to meet the 
Compartmented Mode Workstation requirements, which are similar to requirements 
for TCSEC B1 systems; however, Compartmented Mode Workstations have additional 
criteria concerning windowing environments. See [43] in "References" on page 91. 
THETA 1.5 (including TNET) and 1.7b (excluding TNET) run on this system. 

• SunOS 4.1 .X - This system is an untrusted operating system and does not meet stan- 
dards specified in TCSEC. THETA 1.5 (including TNET), 1.7b (excluding TNET), 
and 2.3 (excluding TNET) run on this system.. 

• AT&T System V MLS - This system is designed to meet TCSEC B1 criteria. THETA 
1.3a (excluding TNET) runs on this system. 

• Trusted Solaris 1.2 - This system is designed to meet TCSEC B1 criteria. THETA 2.3 
(excluding TNET) runs on this system. 

1.7.2   Future Plans 

There are three major goals to be met in the long-term. We wish to create a successful demon- 
stration and research testbed in the government community, to refine THETA to a production- 
quality development environment, and to conform to emerging commercial standards on 
object-oriented technology. 

An immediate goal has been inspired by the Joint Directors of Laboratories (JDL) Security 
Evaluation Program (SEP). THETA is becoming a rich demonstration and research testbed. 
The framework is being put in place for each military service to produce their own THETA 
services and applications with the goal of interoperating securely over a wide-area network 
with the other military services. This experiment will demonstrate the feasibility of realistic 
THETA applications and will test the usability of the THETA development environment. 
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Development of THETA began as an experiment in secure distributed networking. We feel the 
research has been successful; however, the resulting system is not yet polished enough to con- 
sider it production-quality. To provide a foundation for the previously mentioned goal, we 
plan to enhance the administrative tools to support multicluster operation of separate adminis- 
trative domains. We also plan to increase large-scale wide-area network support in the areas of 
secure database interfaces, auditing, replication, invocation tracking, multilevel atomic trans- 
actions, and network packet encryption. 

Last, we are working towards compatibility with commercial distributed computing stan- 
dards. As a member of the Object Management Group, we are actively participating in defin- 
ing security specifications for the Common Object Request Broker Architecture (CORBA) 
[17]. Because THETA's architecture and philosophy are very similar to CORBA's, we believe 
that a CORBA-compliant version of THETA is the logical next step. We foresee THETA- 
CORBA interoperability to be an attainable goal, and with that, we achieve accessibility for 
THETA within the commercial marketplace. 

1.7.3   Published Papers 

For more information on various aspects of THETA, this section lists the papers that have 
been published as a result of the THETA research project. 

• McCullough, D. "A Hookup Theorem for Multilevel Security", IEEE Transactions on 
Software Engineering, 16(6):563-568, June 1990. 

• McCullough, D. "Foundations of Ulysses: The Theory of Security", Technical Report 
RADC-TR-87-222, Rome Air Force Development Center, May 1988. 

• McEnerney, J., Weber, D., Browne, R., and Varadarajan, R. "Automated Extensibility 
in THETA" Proceedings of the 13th National Computer Security Conference, October 
1990. 

• Pascale, R., and McEnerney, J. "Using THETA to Implement Access Controls for Sep- 
aration of Duties", Proceedings of the 17th National Computer Security Conference, 
1994. 

• Proctor, N., and Wong, R. "The Security Policy of the SDOS Prototype", Proceedings 
of the 5th Annual Computer Security Applications Conference, December 1989. 

• Seager, M., Guaspari, D., Stillerman, M., and Marceau, C. "Formal Methods in the 
THETA Kernel", Proceedings of the Symposium on Research in Security and Privacy, 
May 1995. 

• Varadarajan, R., et al. "SDOS-An Overview", 1989 Mission Critical Operating Sys- 
tems Workshop, September 1989. 

• Weber, D. G., and Lubarsky, R. S. "The SDOS Project - Verifying Hook-up Security", 
Proceedings of the 12th National Computer Security Conference, October 1989. 
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Wong, R., et al. "The SDOS System: A Secure Distributed Operating System Proto- 
type", Proceedings of the 12th National Computer Security Conference, October 1989. 

"Application of Formal Methods", edited by Hinchey and Bowen, Prentice Hall, 1995, 
pp. 285-306. 
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2   THETA and CORBA Comparison 

The Common Object Request Broker Architecture (CORBA) specification is a rapidly emerg- 
ing standard that appears particularly relevant to THETA. In this chapter we provide a com- 
parison of THETA and CORBA, and judge the potential for a CORBA-compliant THETA. 
We first provide some background on the Object Management Group (OMG) and give an 
overview of the Object Management Architecture (OMA). We then discuss THETA as an 
example of an OMA and describe how THETA components map to the OMA. Next we com- 
pare the evolving security requirements of CORBA with the THETA security architecture. We 
then describe the steps required to develop a CORBA-compliant THETA, and conclude with a 
discussion of the potential for such a system in non-DoD applications. 

2.1   CORBA Overview 

2.1.1   Object Management Group 

The OMG, consisting of over 500 software vendors, software developers, and end users, is the 
world's largest software development consortium. All of the large computer vendors are rep- 
resented, including IBM and Microsoft. The mission of OMG is to promote the development 
of object technology for distributed computing systems. The goal of OMG is to provide a 
common architecture framework for object-oriented applications based on widely available 
interface specifications. 

In 1991, the OMG released the first version of the CORBA specification, which defines the 
architecture of the Object Request Broker (ORB). The ORB provides the interoperability 
mechanisms that allow objects and applications to communicate in a heterogeneous distrib- 
uted environment. The ORB is part of the overall OMA, as described in Section 2.1.2. The 
ORB and OMA specifications continue to be refined and updated by adding new functionality 
and features, including security. 

Responding to a growing need for security in distributed systems, the OMG Object Services 
Task Force Security Working Group released a Request For Proposal for CORBA Security 
Services (known as OSTF RFP3) [15]. OSTF RFP3 has a very flexible view of security. The 
OMG would like CORBA-compliant systems to be able to support a wide variety of security 
policies, from high-assurance DoD access control to relatively weak mechanisms required in 
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many commercial applications. The challenge of considering THETA in this context is to 
investigate whether it is feasible for THETA to maintain its Trusted Computing Base (TCB) 
architecture for providing assurance, yet still be interoperable with CORBA-compliant prod- 
ucts. 

2.1.2   Object Management Architecture 

The OMA defines the overall OMG view of an object-based distributed environment [14]. As 
shown in Figure 2-1, there are four main pieces to the OMA: the ORB, Application Objects, 
Object Services, and Common Facilities. The ORB provides the uniform interface that allows 
objects to interact regardless of the programming language, operating system, hardware, or 
network. End-user application client and server programs are defined as Application Objects 
within the OMA. The Object Services are the objects that perform low-level fundamental sys- 
tem operations, such as namespace and persistence services. Object Services are typically 
supplied by the ORB vendor. Finally, Common Facilities are application-level functions that 
are common across many users, such as printing, databases, and compound documents. 

Application Objects Common Facilities 

Object Request Broker 

l r 

66 
Object Services 

Figure 2-1: Object Management Architecture 

All communication among Application Objects, Object Services, and Common Facilities is 
through the ORB. The structure of the ORB is shown in Figure 2-2. The ORB is responsible 
for handling all requests that are sent by a client to an object implementation, as well as any 
subsequent replies back to the client [17]. The ORB must find the appropriate object imple- 
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mentation for the request, get the object implementation ready to handle the request, and then 
ensure that the request data is transmitted to the object implementation. 

Dynamic 
Invocation 

Client 

IDL 
Stubs 

Object 
Implementation 

ORB 
Interface 

IDL 
Skeleton 

Object 
Adapter 

ORB Core 

Figure 2-2: Structure of ORB Interfaces 

For a client to make a request to an object implementation, the client can use either an Inter- 
face Definition Language (IDL) stub or the Dynamic Invocation interface. An DDL stub is a 
statically defined interface that is compiled into the client code. Clients can also access object 
interfaces at runtime through the Dynamic Invocation interface to construct requests on the 
fly. These object interfaces are stored in the Interface Repository. The object implementation 
receives a request from the client in the form of an up-call through the IDL skeleton. 

IDL defines the interface to objects by describing object operations as well as the parameters 
to those operations. Tools supplied by the vendor along with the ORB translate IDL specifica- 
tions into the IDL stubs for use by clients as well as the IDL skeletons for use by object imple- 
mentations. In this manner, clients and object implementations can communicate through the 
BDL-defined interface even when running on different platforms. 

The object adapter provides the interface for ORB services to the object implementation. 
ORB services provided by the object adapter typically include: handling of object references 
(unambiguous object identifiers), method invocation, security, and registration, among others. 
There may be many varieties of object adaptors to support various specialized object imple- 
mentations, such as 00 database adapters. The Basic Object Adapter (BOA) is available on 
every ORB implementation and provides a general set of functions that are useful for many 
object implementations. 
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The ORB interface is the same for all ORBs and provides a direct interface to a few operations 
that are common across all objects. These operations may be used by both clients and imple- 
mentation objects. 

The ORB core is the inner ORB component that moves the request from the client to the 
object adapter that is appropriate for the target object implementation. 

2.2   THETA as an Object Management Architecture 

With the exception of THETA security mechanisms, the structure of THETA and CORBA are 
very similar. In this section, we make a general comparison of THETA and CORBA function- 
ality without considering the security of each architecture. We describe the mapping of 
THETA components to the OMA. The general functional comparison in this section provides 
the background to address THETA and CORBA security issues in Section 2.3. 

The mapping of THETA components to the OMA is straightforward. Since both are distrib- 
uted OO architectures that are designed to work in heterogeneous environments, they neces- 
sarily contain many of the features. Furthermore, THETA is derived from BBN's Cronus, 
which in turn was driven by many of the same ideas that originally motivated the authors of 
CORBA. 

The basic object models of CORBA and THETA are identical. The concepts of clients, 
objects, requests, types, interfaces, and operations are equivalent. CORBA object references 
correspond to THETA unique identifiers. THETA objects are accessed through managers. 
This implementation style corresponds to the CORBA BOA implementation style called the 
persistent server activation policy. THETA also supports object replication, which is planned 
for a future version of CORBA. 

As described previously, the principle components of the OMA are the ORB, Application 
Objects, Object Services, and Common Facilities. In THETA, ORB functions are provided by 
a combination of the THETA Kernel, portions of the managers, and the Program Support 
Library (PSL). OMA Application Objects correspond to THETA application clients and man- 
agers (e.g., the Mission Planning and Tracking application implemented by Trusted Informa- 
tion Systems). OMA Object Services correspond to several of the THETA system managers, 
including the Authentication Manager, the Configuration Manager, the Directory Manager, 
the Primal Process Manager, and the THETA File Manager. Both the OMA and THETA pro- 
vide support for object persistence and name services. OMA Common Facilities correspond to 
the application-level THETA system managers, such as the Audit Manager and Automatic 
Code Generator (ACG) Manager. 

The CORBA IDL is roughly equivalent to the THETA type and manager specifications. 
Although the language syntax is different, both define object types, operations, and parame- 
ters, and provide class inheritance. CORBA IDL supports multiple inheritance, while THETA 
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type specifications provide single inheritance. IDL supports a number of mappings in imple- 
mentation languages, while THETA specifications only map to C. Like CORBA, THETA 
generates (using the ACG manager) client stub and object implementation skeleton code. The 
ACG manager also provides a facility similar to the CORBA Interface Repository by making 
object interfaces available at runtime. The mapping of the THETA architecture onto the ORB 
interfaces is shown below in Figure 2-3. 
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Figure 2-3: Mapping of THETA Architecture onto ORB Interfaces 

CORBA object adapter and ORB interface functions are provided in THETA by a combina- 
tion of THETA Kernel services and THETA library code. Within this code, services are pro- 
vided for handling unique object identifiers, method invocation, security checks (discussed 
further in the Section 2.3), and registration. Both CORBA and THETA support synchronous 
remote procedure call (RPC) style invocations, although THETA also supports asynchronous 
invocations (planned for a future version of CORBA). 

Finally, the ORB core corresponds to the set of THETA Kernels running on various hosts, 
which handle dynamic object location and transmission of the request from client to manager. 

In summary, the architectures of CORBA and THETA are already very similar. The primary 
differences are due primarily to choices in the style of interfaces rather than distinctions in the 
conceptual object model. 
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2.3   Security Requirements of CORBA vs. THETA 

The greatest difference between CORBA as it now exists and THETA is in the area of secu- 
rity. The current definition of CORBA is essentially silent on the topic of security. Although 
some ORB vendors provide basic security mechanisms, there has been no consistent approach 
to security within the OMA. The OMG recognized this serious deficiency, and as a result 
released OSTF RFP3 [15], which asks for vendors to propose general solutions for security 
within the OMA. A set of three submissions by major vendors and their partners were merged 
into one security standard known as the CORBA Security Standard. The standard was voted 
on and accepted in January, 1996. ORA's role in the standard was to contribute to group dis- 
cussions and to write two appendices-the conformance evaluation and vulnerabilities and 
threats. 

Although the security requirements for CORBA have not been conclusively defined, it is defi- 
nitely not too early to plan how THETA security relates to CORBA. The existing submissions 
for RFP3 are sufficiently similar that there is a good indication of what security means for 
CORBA. Furthermore, THETA serves as an excellent yardstick for judging the adequacy of 
CORBA security requirements. If a system similar to THETA cannot be implemented within 
the CORBA guidelines, then we believe that CORBA will not be capable of supporting high- 
assurance MLS policies. As a co-author of a submission for OSTF RFP3, ORA has already 
used THETA as a guide to justify requirements for CORBA security features. 

THETA can also drive CORBA security by continuing to stay at least one step ahead of the 
security defined in existing OMG standards. By serving as a demonstration vehicle for 
advanced security technology, THETA can help OMG avoid poor security design choices and 
thus facilitate emergence of high quality commercial 00 distributed security products. 

In this section, we first give an overview of the direction of OSTF RFP3 and then describe 
how THETA security relates to this evolving standard. We do not compare and contrast the 
details of each of the OSTF RFP3 submission because these details are currently subject to 
change. Instead, we give general impressions of the security requirements of RFP3, particu- 
larly as they relate to assurance. 

2.3.1   Object Services Task Force RFP3 

The philosophy of the final OSTF RFP3 submission is likely to emphasize flexibility. Consis- 
tent with the approach of other OMG documents, RFP3 will be inclusive of many variations 
of security architectures rather than exclusive. This style of specification is driven by market 
demand—vendors don't want to be forced into highly constraining security architectures 
because many end-users think that security gets in the way of accomplishing their work. At 
the same time, vendors perceive that in many vertical markets (e.g., finance, healthcare) there 
is a growing demand for better distributed security mechanisms, and they know that CORBA 
must address these needs in order to be competitive. 
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As a result, RFP3 submissions are described in terms of a security framework. The framework 
is sufficiently general to allow confidentiality, integrity, accountability, and availability poli- 
cies for a broad array of vertical markets. The framework provides this flexibility by allowing 
customization of the access checking code within the ORB, Object Services, Client, and 
Object Implementation. In this manner, the submission attempts to address both DoD MLS 
security requirements as well as much less stringent requirements in areas such as business 
automation. 

An illustrative candidate security reference model is shown below in Figure 2-4. The model 
depicted provides a simple framework for many different access control security policies. 
This framework consists of two layers: an application access policy and an object invocation 
access policy. 
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Figure 2-4: CORBA Access Control Model 

The application access policy governs the performance of object operations on behalf of cli- 
ents. The application access policy is enforced within the client and/or the object implementa- 
tion. If the client or object enforce such a policy, then that portion of the system is inherently 
trusted to correctly implement and enforce the policy. Note that a valid instantiation of this 
framework is for both client and object to be security unaware; in this case all mediation 
would be performed by the ORB. 

The object invocation access policy governs the delivery of messages between authenticated 
clients and objects. This policy is enforced within the ORB although mediation decisions and 
support may be carried out by other portions of the OMA, in particular the Object Services. 
All instantiations of the security reference model place at least some trust in the ORB to 
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enforce the object invocation access policy. Even in architectures where the access control 
mediation occurs solely within the client and object, the ORB is still required to validate the 
request parameters and ensure message delivery. Mediation of object replies is similar to 
requests, so for simplicity we do not explicitly address replies as a special case. 

The access control model shows the client invoking an operation as specified in the request R. 
The client first tests the request against the application access policy (specified by the client's 
Access Decision Function, i.e., ADFcIient) before passing the request to the ORB. ORBc then 
tests the request against the client side object invocation policy (ADF0C), and if the test suc- 

ceeds, transforms R to R' and passes the request R' to ORBs ORBs then tests the request 

against the server side object invocation policy (ADF0S), and if the test succeeds, transforms 

R' to R" and passes the request R" to the object. The object finally tests the request R" 
against the application access policy (ADFobject) before executing the method specified in the 
request. By instantiating ADFclient, ADFobject, ADF0C, and ADF0S differently, this framework 
could support many different policies. For example, ADF0C, and ADF0S could be defined to 
enforce an MLS property in some systems, or an ACL access check in others. 

The flexibility of a security framework comes at the cost of complexity. Although a flexible 
architecture potentially allows developers to customize security for a wide variety of markets, 
the complexity of this approach could increase ORB vendor cost and risk. For this reason, 
most initial instantiations of CORBA security are likely to be systems with modest built-in 
authorization and authentication controls. 

In addition, a framework of this complexity could jeopardize applications requiring assurance 
such as MLS. Typical security evaluation tasks, such as identifying the TCB boundary and the 
security reliance on the underlying OS and network, could become very difficult when secu- 
rity mechanisms are potentially distributed throughout the CORBA security architecture. 

2.3.2   Relationship of THETA to CORBA OSTF RFP3 

The CORBA security framework appears to be sufficiently general to support the THETA 
security policy. The CORBA object access policy (ADF0C and ADF0S) would support the 
THETA MAC policy enforced by the THETA Kernel, while the CORBA application access 
policy (ADFclient and ADFobject) would support the THETA DAC policy enforced by 
THETA managers. 

Our experience with the THETA architecture and its assurance argument is directly relevant to 
the CORBA framework. In THETA, access checking code is carefully structured to minimize 
trusted code while still allowing extensible application security policies. To have a valid archi- 
tecture in CORBA, the same argument would need to be made. Thus, it must be possible to 
structure the ORB so that it contains a minimum of trusted code. It must also be feasible to use 
the protection mechanisms of the underlying operating system and hardware to demonstrate 
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that this distributed TCB has all of the usual properties of a reference monitor: it must be 
tamperproof, always invoked, and sufficiently simple to be subject to thorough test and analy- 
sis. 

Although the OSTF RFP3 submission definitely does not require that this structure exist in all 
CORBA security architectures, so far we have seen nothing in the RFP3 submissions that pro- 
hibit this style of structure and analysis. 

2.4   Steps to Reach a CORBA-Compliant THETA 

CORBA compliance is the next logical step for THETA development. Proceeding in this 
direction meets several objectives. As described earlier, THETA can encourage high quality 
commercial 00 distributed security products by serving as a demonstration vehicle for 
advanced security technology. Given the strong commercial market motivation of OMG, it is 
unlikely that any ORB vendors will be willing to risk the investment to build an MLS distrib- 
uted ORB in the near term. THETA development may be the most effective way to demon- 
strate MLS distributed OS technology. CORBA compliance is major step toward 
interoperation of THETA with commercial distributed systems, thus allowing experimenta- 
tion with interoperability between trusted and untrusted domains. Finally CORBA compliance 
will serve to mature the THETA environment. 00 technology has evolved significantly since 
it was used to produce Cronus and THETA. By building a CORBA-compliant THETA, we 
will replace the 00 model in THETA with the much more clean and elegant model contained 
within CORBA. 

In the remainder of this section, we outline the steps suggested to develop a CORBA-compli- 
ant THETA. 

2.4.1   Object Interface 

The first phase of development would be to produce a CORBA-compliant interface as speci- 
fied in [17] and OSTF RFP3. This effort would require interface modifications to the Kernel, 
THETA libraries, and the ACG manager to match the CORBA interface specifications for the 
Dynamic Invocation interface, the IDL stubs, ORB interface, IDL skeleton, and Basic Object 
Adapter. As part of the ACG modifications, it may be feasible to use Sun's public domain 
front-end to parse CORBA IDL. 

The largest part of this effort would be to update the existing THETA system and application 
managers and clients to use this new interface. This effort would not be difficult, but it would 
be very time-consuming due to the very large amount of existing manager code. Updates 
should be prioritized to ensure that the most critical system managers (i.e., authentication and 
primal process) are running first to allow early experimentation. 
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The security policy enforced in this phase would be essentially identical to the current global 
THETA DAC and MAC mechanisms. 

2.4.2 Secure Interoperability 

The second phase of this effort would be to address secure interoperability between a 
CORBA-compliant THETA and a commercial ORB product. Because secure interoperability 
standards are unlikely to be resolved within the RFP3 submission, this effort would serve as a 
feasibility demonstration for OMG for how secure interoperability could be supported. The 
interoperability protocol could be based either on extensions to the Internet Inter-ORB Proto- 
col (IIOP) or the DCE Inter-ORB protocol [16]. The access control policy supported across 
the ORBs would handle a fixed discretionary access control policy and mutual authentication. 

2.4.3 Extensible Policies 

The third development phase would be to support extensible authentication and authorization 
policies, as well as multiple policy, trust, and technology domains. These capabilities will be 
documented in the RFP3 submission, but early secure ORBs are unlikely to fully exercise this 
capability. Extensible access policies would allow developers to tailor ORB security to spe- 
cific applications. Security domains allow secure interoperation across separate enterprise and 
administrative organizations. THETA development in this area would be to demonstrate to 
vendors that such higher-risk implementations were feasible, thus encouraging faster develop- 
ment of commercial ORB products designed for multipolicies. 

2.5  Potential for THETA Use in Non-DoD Applications 

THETA security policy is specifically designed to support high-assurance military applica- 
tions. Commercial users are not likely to be willing to run on MLS platforms to obtain the 
additional protection assurance that is available in that environment. 

Although non-military use of THETA as it exists is doubtful, there are two principle ways that 
THETA technology can support non-DoD applications. First, THETA technology can be used 
to drive CORBA security, as discussed earlier. Because of the widespread interest in using 
CORBA for commercial applications within the OMG user community, getting THETA secu- 
rity mechanisms adapted within OMG is one of the most effective ways to result in non-DoD 
use of THETA. Second, developing a CORBA-compliant THETA with an extensible policy 
opens many avenues for commercial uses. By providing customized security services beyond 
MLS (e.g., integrity, role-based access control) as well as interoperability to other ORB plat- 
forms, THETA could serve as an "intelligent" firewall for restricting access between two ORB 
domains. 
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3    THETA and DCE 

3.1   Introduction 

THETA and the Open Software Foundation (OSF) Distributed Computing Environment 
(DCE) [21] are both systems of distributed client/server application programs which can run 
on a variety of underlying operating system and hardware. There are a number of overall sim- 
ilarities between the two systems. Both consist of: 

• An Interface Description Language (DDL) and DDL tools which generate client and 
server stub code; 

• Supporting servers which provide user authentication and object naming and location; 

• Supporting software which provides a Remote Procedure Call (RPC) infrastructure for 
client/server communication, and which supports access control by encoding client 
user identities; 

• Supporting server software which performs access control on objects; 

• Supporting server software which enables multi-threading; 

• A file server. 

While THETA's architecture does not specifically call out the above as components, DCE's 
architecture is more oriented toward these functional areas. DCE consists of the following 
capabilities: 

Remote Procedure Call (RPC): a runtime system consisting of library software that uses 
network protocols and, optionally, an RPC server and security and directory services. 
All DCE components interact with one another and with clients via RPC. DCE RPC is 
compared with THETA in Section 3.5, along with the security and directory services. 

Security: a service consisting of two parts: the Security Server which allows clients and 
servers to authenticate and obtain identifying credentials; and part of the RPC mecha- 
nism whereby these credentials can then be passed in RPCs so that the recipient can 
identify the sender. In the case of servers which perform access control, the client cre- 
dentials are compared with the Access Control List (ACL) appropriate to the client's 
request. Security service is described further in Sections 3.4 and 3.5. 
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Directory Service: performs object name resolution and location for callers of RPCs. 
Though not strictly required for RPC, Directory service is closely related to RPC, as 
described in Section 3.2. 

Distributed File System (DFS): The DFS is a DCE application built upon the infrastruc- 
ture of the other DCE components. Unlike the other components which are interdepen- 
dent to some degree, DFS is not used by any other component and as such is in principle 
simply one of many possible distributed client/server applications built with DCE. The 
THETA file manager has exactly the same role in THETA as DFS in DCE. It is not an 
essential THETA server, in that THETA developers may, but need not, use the file 
manager for storage service that is independent of COS-specific file service APIs. In 
practice, DFS has not been widely used, partly because it is only just becoming fully 
available, and partly because it is only just gaining commercial-quality robustness and 
functionality. DFS has a richer set of functionality than the THETA file manager, due 
to its evolution from the Andrew File System (AFS) and due to its commercial orienta- 
tion. Such functionality includes: a separate local file system for efficient local access 
and quick recovery; sophisticated client-side software for caching and cache consisten- 
cy; file grouping for cloning, relocation, quota restrictions, backup/restore, and replica- 
tion; and Unix file system interoperability. Although DFS's replication mechanism is 
not as flexible as THETA's (DFS uses master/slave arrangement with a specific single- 
image consistency policy) DFS replication is tuned to its other areas of functionality 
(e.g., fault recovery, relocation). This document says no more about DFS. 

Time: a service provided by the DCE time server, and client software for accessing the 
server. The purpose is to provide a common time frame for servers on a common LAN. 
DCE directory and security servers use time for coordinating and sequencing shared 
computation. Time service is also available to new applications with common timing 
needs. There is no comparable service in THETA, and THETA components have no 
requirements for common time. This document says no more about the DCE Time ser- 
vice. 

Threads: a library which implements multiple threads of execution within one address 
space. The DCE Thread package is largely based on POSIX Pthreads, but is intended 
to provide a common API across multiple heterogeneous O/Ss, some of which may not 
support Pthreads. The DCE Thread package is similar in function to THETA's manager 
tasking package, except that the latter is more tightly coupled to the THETA manager 
architecture, and is used only in managers. DCE Threads are not an integral part of DCE 
servers, but may be used by both clients and servers. 

3.2   Object Naming, Location, and Invocation 

The different object models of THETA and DCE are fundamental to other differences. 
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In THETA, all a manager's resources are divided among discrete objects which are separately 
identified (using a globally unique identifier, or UID) and access controlled. As a separate 
matter, objects may be given names; the directory manager keeps a mapping from items in a 
usual hierarchical name space to the UID of each item. Accessing an object by name is actu- 
ally two separate steps: first contacting the directory manager to obtain the UID of a name; 
and second, using the UID to request an operation on the object. If a client already has the 
UID, the first name resolution step is not necessary. The directory manager, of course, has no 
name, and must be contacted via its UID. Such UIDs, which denote an entire type (as services 
are called in THETA) are called generic UIDs. 

THETA object location is entirely based on UIDs and hence is divorced from naming issues. 
Object location is performed by the THETA kernel as part of its central function of switching 
all messages from the sender to the recipient. Each THETA message has a UID as its target, 
and the THETA kernel is responsible for locating the target object denoted by the UID. Some 
location operations involve searching for the target object on other hosts, by sending location 
messages to location components on other hosts. The resulting remote location data are kept 
in a cache for later use. Therefore, the only location operations that require remote searching 
are those in which the target object is not in the location cache. 

However, the details of this location activity are invisible to THETA message senders. In 
every case, the sender gives the message to the THETA kernel, which locates the target object 
and forwards the message to the recipient associated with the target, e.g. the object manager 
that manages the object denoted by the UID. 

In DCE, naming and location are more tightly entwined. Each DCE service has both a hierar- 
chical name and a globally unique identifier, or UUID. Thus a DCE service UUID is analo- 
gous to a THETA generic UID. Below the service API, client stub code contacts the Cell 
Directory Server (CDS) to determine how to contact a server that provides the desired service. 
For the server that implements the RPC called by the client, the stub code specifies the server 
by UUID. However, clients may also specify servers by name- for example, when using secu- 
rity services. 

Whether given a name or UUED, the CDS looks up the host-ID of a server running the 
requested service. This host-ID is obtained not by searching for a host running the service, as 
the THETA locator does. Rather, the CDS will have already obtained the host-ID from the 
server itself: it is the responsibility of each DCE server to register itself with the CDS. The 
CDS returns host-IDs to callers, which use the host-ID to contact a server directly. However, 
the caller needs more information that the host-ID; it also needs a communication endpoint on 
that host. Therefore the RPC caller consults the endpoint map on the host specified by the 
CDS. 

The endpoint map is maintained by the RPC server. The CDS and RPC server are separate 
because endpoint mappings are specific to each individual host, and as a result, there must be 
a RPC server on each host. The CDS's mapping between names and hosts is, in contrast, glo- 
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bally meaningful data, and as a result may kept by a single CDS rather than requiring a CDS 
in each host. (Although CDSs may be replicated for high availability, the cost of a replica on 
each host would outweigh the benefit in a but the smallest cells). 

The nature of an endpoint is dependent on the network transport mechanisms supported by the 
server. However, in most or all DCE implementations an endpoint is a TCP or UDP port. Hav- 
ing obtained the endpoint, the caller can then connect to the server and send the RPC message 
directly to it. In addition, the binding is retained so that subsequent messages can be sent 
directly to the server without the intervention of the CDS and the RPC server. 

Note that there must be a method for clients to bind to the RPC server, which in turns tells the 
client how to bind to other servers. This is accomplished by the simple means of the RPC 
server using a single well-known port; clients can bind to that port without any further infor- 
mation. 

In summary, there are several differences between DCE and THETA in the area of naming 
and location: 

• In THETA names and UIDs are separately used, with only UIDs being relevant to 
location of an object. In DCE both names and UIDs are identifiers used by the CDS. 

• In THETA, there is a locator component on every host. In DCE the primary location 
component, the CDS, runs only on one or a few hosts. 

• In THETA, once an object has been located, the THETA kernel sends the message to 
its destination, using THETA internal communication mechanisms built on common 
network protocols. In DCE, the location is returned to the caller, which uses it to con- 
tact the server directly using common network protocols. 

• In THETA, each operation is targeted at a specifically identified object, which the 
THETA kernel must locate in order to forward the operation message. Any optimiza- 
tions of location processing (e.g. caching of location data) are the responsibility of the 
THETA kernel. In DCE, services are named and located, but subsequent RPCs can be 
targeted to a specific previously located server to which the client has a direct commu- 
nication channel. Optimizations of RPC traffic (e.g. caching of communication chan- 
nels for later RPCs) are the responsibility of the DCE runtime software that is part of 
every DCE client or server. 

With respect to the last point, it should be pointed out that DCE servers may function as true 
object managers in the manner of THETA, with individually named and uniquely identified 
objects and with RPCs that implement operations on an object. Although this approach is sup- 
ported by DCE's notion of object UUIDs, this approach is not part of DCE mechanisms. Fur- 
ther DCE support for an object model (similar to that of THETA) is provided by CORBA 
systems built on DCE. 
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Despite these differences in mechanism, both DCE and THETA provide the same basic func- 
tionality of transparent distributed access to remote objects. In THETA, the transparency is 
implemented by one component, the THETA kernel, which performs all location functional- 
ity, hides from both the client and server their relative locations, and thereby hides the dynam- 
icism of the distributed environment in which objects and/or services may move. The same in 
true in DCE, but transparency is implemented by the combination of the RPC server, the CDS, 
and the DCE runtime software's use of them. That is, a DCE service's client stubs (the equiv- 
alent of THETA PSL calls) use a library of DCE runtime software both to call on the RPC 
server and CDS to locate a server, and to send the RPC to the server. In THETA, the analo- 
gous functionality is concentrated in the THETA kernel, which handles all location and mes- 
sage transmission on behalf of THETA processes. 

Appendix A provides a step-by-step summary of DCE location and invocation mechanisms, 
and the relation to the use of credentials for secure RPCs. 

3.3   Mandatory Policies and Communication 

Another key point about DCE location is that it is not required for client/server communica- 
tion via RPC. A client and a server may rendezvous by purely conventional means, e.g. by the 
client's including the knowledge of the server, and the server being available for binding at a 
well-known port known to the client. CDS and RPC services merely provide a flexible com- 
mon mechanism for clients to bind to servers, but any client/server application could imple- 
ment its own mechanism. 

Therefore, the most significant difference between DCE and THETA is that DCE has no 
mechanism for mediating the communication between clients and servers, as there is in 
THETA. Any attempt to add mediation functionality to the CDS and the RPC server would be 
fruitless because of their optional role in client/server communication. In THETA, by contrast, 

the THETA kernel switches all messages1 and implements a mandatory policy of information 
flow. 

Note that such an architecture is not the only means of implementing a mandatory policy. 
Another approach is for client/server communication to be by means of protected capabilities 
which are doled out by the TCB in accordance with a policy, but which can then be used for 
direct communication. Such an approach is equally inapplicable to current DCE implementa- 
tions, because endpoint bindings are simply numbers (TCP or UDP ports) rather than pro- 
tected capabilities. 

1 An exception to message switching is direct connections between clients and servers, but the setup 
of these is also mediated by the THETA kernel. 
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Because of the lack of multi-level and/or capability-based network protocols to underlie cli- 
ent/server communication, there does not appear to be any feasible means of performing 
THETA-style message policies in a DCE system. 

3.4 Access Control 

Besides implementing a mandatory sensitivity policy on client/server communication, 
THETA also provides similar mandatory and discretionary policies on objects, using label- 
based and ACL-based access control mechanisms. As described above, DCE services need 
not have a similar object model, so access controls of DCE servers need not be oriented 
towards objects. DCE does provide a server framework which includes an ACL manager 
component which can implement the responsibility for access controls based on ACLs. How- 
ever, there is considerable latitude concerning what DCE ACLs specify the access to. Each 
THETA ACL, in contrast, always describes access to a THETA object. 

DCE does not have a general-purpose ACL manager. Different servers implementing different 
services may need different types of ACLs, e.g. with different modes. If an application devel- 
oper's needs are not met by an existing ACL manager, then the application may need to 
develop a new one. THETA, by contrast, has a single, general, extensible ACL component of 
the general THETA manager skeleton. This ACL mechanism can be extended or customized 
by statements in the THETA IDL e.g. those defining new access modes. 

Additionally, DCE does not have a label-checking access control module analogous to the 
ACL manager. However, the DCE ACL mechanism is general enough that a specific server 
could implement an ACL manager that performs MAC checks as well. Note that such an 
approach, applied to a DCE server that imposes access controls on a per-object basis, could 
yield DCE servers that function in a manner similar to THETA MLS managers with a range of 
system-low to system-high. However, because of the lack of message mediation, there is no 
potential DCE equivalent of multiple single level (MSL) servers, or MLS servers with a lim- 
ited range. (For MSL managers, THETA message mediation functions to constrain each indi- 
vidual manager's operation to a single level where mandatory mediation by the manager is not 
needed. The same is true for limiting partial-range MLS managers' operation to the range 
within which it does perform mandatory mediation.) 

3.5 Secure Remote Procedure Call 

DCE security can be used with DCE RPC to implement a secure RPC mechanism that is sim- 
ilar to messaging in THETA. Note, however, that security is an option; clients can choose 
whether or not to authenticate their messages, and servers can choose whether to require that 
messages be authenticated. 
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As with THETA messages, DCE secure RPC messages contain information identifying the 
sender of the message. In THETA messages, however, the sender identity is both unprotected 
and implicitly vouched for by the THETA component sending the message. There are differ- 
ent mechanisms for assuring the correctness of message sender identity, in local and network 
messages. For THETA local messages, there is the assurance that the message was received 
by the client or server from the THETA system itself, which is trusted with respect to correct 
identification and authentication. For THETA network messages, assurance of correct sender 
identity comes from application-level cryptographic protection. This protection ensures the 
authenticity of the remote THETA system as the conveyor of the message, and ensures the 
integrity of the message and the message sender indentity enclosed in it. Message privacy is 
also an option, on a host-to-host basis. 

Thus, correct message authentication and operation authorization depends on (a) secure oper- 
ation of THETA on each host, to avoid local spoofing and snooping, and (b) secure key man- 
agement and protection of each host's cryptographic key used to ensure message security. 

In other words, THETA uses authenticators (data that describes an identity) that consist of 
some plaintext in THETA messages; THETA uses local host trust and host-to-host cryptogra- 
phy to protect interhost message streams as a whole. Specifically, the plaintext is the UID of 
the principal associated with a client request or server reply. 

In contrast, DCE uses cryptographic authenticators in the manner of the Kerberos system. 
Individual messages contain authenticators which can be subjected to cryptographic analysis 
to determine veracity. In addition, the cryptographic techniques used to protect the message 
authenticator may also be used to protect the privacy and/or integrity of the message as a 
whole. 

In other words, DCE uses message-level cryptography to protect individual authenticators 
and, optionally, individual messages. 

Note, however, that the security of DCE messages rests on storage of individual client session 
keys in the local host operating system. The same is true of the THETA key which is used to 

encrypt traffic between THETA kernels.2 Fundamentally, both system's security rests on the 
ability of the host O/S to protect key data. The main difference is that with DCE the domain of 
usage of each keys is much smaller, and the results of compromise more limited. That is, each 
key stored on a client host is a session key for one client session. For THETA, each key is 
used for traffic between all THETA kernels. In addition, the key management in THETA is ad 
hoc. 

Therefore, THETA's cryptosystem does not scale as well as DCE's Kerberos approach 
(although Kerberos has scaling problems as well). The two cryptosystems have comparable 

2 Actually, there is more than one key. For each security level in the system, there is a key that all 
hosts share to protect traffic at that level. 
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risks with respect to reliance on a base O/S for key protection, but in THETA the risks become 
more concentrated as systems scale up in size. 

Appendix B provides a high-level summary of the cryptographic credentials that DCE uses as 
authenticators. Appendix A describes how these are used in a typical scenario of DCE service 
location and invocation. 

3.6  DCE Mechanisms and THETA 

Aside from the use of DCE's Pthreads-based threads, little of DCE could be considered for 
use in THETA because of fundamental differences in message authentication and object loca- 
tion. It would not be possible for THETA to adopt DCE's approach to object naming and loca- 
tion, without foregoing the ability to enforce a mandatory policy on information flows 
resulting from messages between parties of potentially different mandatory attributes. 

However, there are some possibilities for THETA/DCE interoperation and/or THETA use of 
DCE mechanisms in a limited way. Each of the following subsections provides a brief sketch 
of one possibility and some of its key issues. 

3.6.1   Kerberos User Authentication 

One possible use of DCE technology in THETA is in the area of authentication. DCE has 
extended the Kerberos framework of cryptographic authentication and service tickets to 
include the notion of a more complex credential which identifies a user and vouches for addi- 
tional security-relevant user data, such as group membership. 

One new approach to THETA authentication would be to "Kerberize" THETA as a whole, so 
that it uses a similar Kerberos-based approach to user authentication data in messages. Such a 
change would replace the current THETA approach in which user and group data is encoded 
in unprotected identifiers (THETA Principal and Access Group Set identifiers). The current 
approach requires the cryptographically secure THETA-kernel-to-THETA-kernel communi- 
cation provided by TNET, as part of a chain of authenticity from a server back to a remote cli- 
ent: the COS allows local servers to have assurance of the authenticity of messages from the 
local THETA server; TNET provides one THETA kernel with assurance of the authenticity of 
messages from a remote THETA kernel; on such a remote host, the COS allows the THETA 
kernel to have assurance of the identity of a client. 

In a Kerberos-based approach, this chain of authenticity is replaced by the scheme in which 
servers assurance of client identity is derived from the cryptographic credentials enclosed in 
messages from the client. Thus, in a Kerberized THETA system, the THETA kernel would 
still perform its required message mediation function, but would not be trusted to convey 
authentication data. Rather, the THETA kernel would simply forward successfully mediated 
messages with the sender's credentials intact. 
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The main new security issue in a Kerberized THETA would be the method by which THETA 
processes obtain their credentials. DCE processes directly contact the security server to 
engage in a dialog that results in the generation of credentials. Such direct dialog would be 
problematic in THETA, for two reasons: first, THETA's communication architecture requires 
the THETA kernel to be the mediator of all communication; second, because of the non-MLS 
nature of the existing DCE security server, and the multiplicity of sensitivity levels of THETA 
processes requiring credentials. To cope with this situation, the intermediary role of the 
THETA kernel would have be applied to communication between THETA processes and the 
security server, in a manner which would be invisible to the security server. Essentially, the 
THETA kernel (or some new, closely allied component) would have to act as a proxy for 
THETA processes on its host, and use DCE security server client stub on behalf of these pro- 
cesses; and it would have to perform downgrade and upgrade of information passing between 
THETA clients and the security server. 

Finally, note that even in a Kerberized THETA system, there would still be a requirement for 
secure communication between THETA kernels. When a THETA kernel receives a forwarded 
message from a remote THETA kernel, the message meta-data includes information that the 
receiving THETA kernel needs to perform proper message mediation. This data must be 
securely transmitted. To meet this security requirement, security could be provided either by 
the current TNET approach, or by using Kerberos authentication on messages between 
THETA kernels. 

3.6.2   Kerberos Kernel Authentication 

A less ambitious use of Kerberos would be restricted to the area of communication between 
THETA kernels. Part of the above approach is securing this communication. One approach to 
doing so is embedding DCE credentials in messages between THETA kernels, rather than the 
current TNET approach. This change could be made without Kerberizing THETA as a whole, 
or could be done as an exploratory first step. 

To use such a scheme, there would have to be a DCE security server (or a set of them) that 
would be accessible by every THETA kernel to obtain credentials for itself. No MLS exten- 
sions to a DCE security server would be required, but the server would become part of the 
TCB, being relied upon to correctly facilitate THETA kernel's authentication of one another. 

However, this approach would not provide privacy and integrity of THETA kernel network 
messages. To meet this requirement, the THETA kernels could use a similar mechanism used 
by DCE RPC: make secrecy or integrity use of the session key enclosed in the Kerberos cre- 
dential. Therefore, in addition to embedding DCE credentials in THETA Kernel Service Pro- 
tocol (KSP) messages, the KSP would be also be extended to encrypt the payload (or just a 
one-way hash of it, for integrity only). Alternatively, the THETA kernel could use DCE RPC 
itself, leaving the KSP alone, but transporting KSP messages within DCE secure RPCs mes- 
sages rather than the current approach of transporting them on TCP connections. 
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Note that the THETA kernel can directly contact the DCE security server just as a normal 
DCE client could, without the security problem described above for THETA processes 
directly contacting the security server. Unlike an arbitrary THETA process which could have a 
single sensitivity label not matching that at which the security server is running, the THETA 
kernel operates at a range of labels which, to facilitate interoperability, would be set to include 
the level of the security server. 

3.6.3   THETA Client DCE Interoperation 

Some amount of interoperability might be feasible between DCE and THETA. It is certainly 
possible for programs running on THETA hosts to call DCE stub code as well as THETA PSL 
calls. 

The main issue to be dealt with is that such clients would be directly communicating with 
DCE servers. Clearly, mandatory controls on information flow would be required, very much 
in the manner that MLS systems currently interact with system-high-mode systems. One such 
approach assumes that all DCE services are on separate, non-MLS hosts that are accessible 
via network protocols to THETA processes. O/S-level controls on network protocol use would 
ensure that single-level THETA process may only use network protocols to communicate with 
single-level hosts with the same level as the THETA process. Depending on the COS, it may 
be that some amount of THETA involvement would be necessary to enforce such mandatory 
restrictions. If so, THETA would be involved to implement a mechanism very similar to that 
currently used for large messages. Thus, this approach uses MLS COS mechanisms to permit 
DCE interoperability without significant changes to THETA itself. 

Even with this approach there are still issues of coordination of identity. A THETA process 
may well be able to use a PSL call to gain service of a THETA manager, and to call a DCE 
RPC to gain service of a DCE server. However, in the first case, the process's identity would 
be described by a principal object of the THETA authentication manager, which in the second 
case it would be described by an entry in the database of the DCE security server. The THETA 
manager would base access control decisions on the principle UID, while the DCE server 
would base access control decisions on the DCE credential issued by the security server. 

In order for a uniform security policy to be enforced on these clients, there would have to be 
coordination of the authentication databases of the THETA and DCE portions of a system. 
Administratively, a THETA cluster would be embedded in a DCE cell, and the user identities 
and groups defined in the THETA Principle and Group Managers would be the same as in the 
DCE Security Server. Technologically, the THETA Principle and Group Managers could be 
privileged clients of the Security Server, in order to extract and copy back information from 
the DCE database to the THETA database. Clearly, there would be many details to work out, 
but the basic approach may well be technically feasible. 
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3.6.4 THETA Server DCE Interoperation 

The previous section addressed the ability of programs running on a THETA host (and poten- 
tially acting as THETA clients or servers) to work with DCE servers on other hosts, by using 
DCE client stub software. By a similar arrangement, a THETA manager could also act as a 
DCE server by receiving DCE RPC messages for RPCs which correspond to operations on the 
type managed by the manager. As with the THETA client, the manager would be using net- 
work protocols to communicate with processes on remote non-MLS hosts, and the MLS COS 
must enforce suitable access controls on the use of the network. 

Unlike client interoperation, however, meaningful multi-level service can be provided. 
THETA clients, being single-level, could only communicate with DCE servers of the same 
level. A THETA MLS manager, however, could be permitted to accept connections from DCE 
clients at any level within the manager's range. 

Again, authentication and authorization are the central issues. If a THETA manager incorpo- 
rated DCE server RPC stubs, then it would need to interpret DCE credentials, and map the 
information in them to the THETA authentication information required for THETA authoriza- 
tion checks. The THETA authentication database would have to be synchronized with the 
databases of any security server used by any DCE client that contacts a THETA manager. 

3.6.5 Interoperation vs. Integration 

With the approaches described in the above two sections, THETA/DCE interoperation would 
provide the full amount of THETA client/server functionality (with the exception of write-up 
operations) by means of eliminating the need for most THETA kernel functionality. The 
THETA kernel's location function for THETA clients of DCE services is replaced by client 
use of DCE's location mechanism. The THETA kernel's location function for DCE clients of 
THETA services is replaced by the THETA manager advertising itself (and perhaps its 
objects) in the DCE name space. The THETA kernel's message mediation function is not 
needed because of separate MLS controls on client/server communication. 

Stated in this way, it almost sounds as though little of the THETA kernel functionality is 
required. However, this is not so. The relative lack of involvement of the THETA kernel stems 
from the basic nature of DCE interoperation as interoperation with processes on non-MLS, 
system-high mode untrusted systems. In order for the features of an MLS system- and partic- 
ularly a heterogeneous group of them- to be harnessed, THETA is the necessary trust technol- 
ogy. The techniques discussed in previous sections are really general techniques applicable to 
any MLS system with requirements for local processes to interoperate via a network with 
remote processes on non-MLS hosts. The applicability to THETA of these techniques simply 
demonstrates that the benefits of a trusted MLS client/server distributed system can be com- 
bined with controlled interoperation with untrusted distributed client/server software. 
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The benefits of such limited interoperation— benefits including small impact on the existing 
THETA system— should not obscure the difference between interoperation and integration. It 
might be reasonable to integrate THETA and DCE, but this would be a much greater technical 
undertaking, with a different purpose: applying THETA technology to the implementation of 
DCE on a MLS system. Note also that such a project would still not obviate the need for DCE 
interoperability with non-MLS hosts operating in system-high mode, as discussed above. 

3.6.6   Integration Approaches 

There are two basic architectures to integration of DCE and THETA. The two architectures 
stem from two approaches to the central security problem: DCE allows arbitrary client/server 
communication without regard for information flow restrictions. One approach is to route 
through a new component the setup of all client-server connections, in a manner similar to the 
THETA kernel's mediation of large message facilities. COS security mechanisms would be 
needed to prevent clients and servers from making direct use of network protocols to form 
direct connections. This approach has a more THETA-like architecture, and would require 
modification or redesign of existing DCE components related to the current DCE RPC server. 

To avoid such redesign, the second architecture permits clients to initiate connections to serv- 
ers without mediation of a THETA-kernel-like component. Rather, COS security mechanisms 

would be needed to mediate the establishment of connections to servers.3 As a result, DCE 
RPC software would continue to use COS services for networking, and implementations 
would not have to be changed unless the MLS COS interface required it. Thus, the MLS COS 
must provide some functionality for limiting or mediating access to networking, e.g. a MLS 
TCP/IP implementation. Furthermore, the feasibility of this approach may be effected by the 
heterogeneity requirement, for these mandatory access controls on network protocol interface 
to be enforced by a group hosts which may be running different MLS O/Ss. 

DCE server development could also be used. Used as is, the DCE IDL and related tools would 
only be capable of supporting the implementation of single-level managers without a coherent 
ACL mechanism. However, the DCE IDL and related tools could be extended with THETA 
technology (or alternative THETA-influenced versions of these DCE tools could be provided) 
to support generation of MSL and MLS DCE servers. The DCE IDL could be augmented with 
notations for security attributes (e.g., read and write interfaces, new access modes). Rather 
then simply generating server stubs, the IDL tools could generate a whole server skeleton 
which uses the stubs to implement MLS or MSL functionality as in THETA. The manager 
skeleton would also allow all THETA/DCE managers to have the same ACL checking func- 
tionality. 

In this context, connection establishment would be either connecting to a TCP port, or sending a 
UDP datagram. That is, each datagram would be mediated. 
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3.7   Summary Comparison 

Although THETA and DCE share many fundamental principles and architectural features, 
there are four very fundamental differences. 

1. The mechanisms for message authentication are quite different, DCE's relying on a 
whole Kerberos-based security service and infrastructure, THETA's relying on plain- 
text authenticators protected by a simple end-to-end encryption mechanism. 

2. The communication models are fundamentally different, with THETA relying on a 
message switch to implement message communication mediation, and with DCE 
allowing direct unmediated client-server communication. 

3. The object models are very different, with THETA having an object model that is inte- 
gral with access control mechanisms, while DCE does not include an object model. 

4. Security functions are optional in DCE servers, though of course servers can be writ- 
ten which rigorously use them. 

As a result of these differences, there is limited scope for use of DCE mechanisms in THETA, 
although there are possibilities for limited interoperation, i.e. access to DCE services from a 
THETA system, and access of THETA services by DCE. However, closer integration of 
THETA and DCE requires either significant changes to existing DCE components, or a solu- 
tion to the problem of access control on network connections between heterogeneous MLS 
systems. 

There are four areas in which THETA offers a superior approach to DCE. 

• THETA provide high assurance MLS protection for untrusted clients and servers, 
something that is not possible with the current DCE architecture. 

• THETA IDL tools produce an entire server skeleton to which only operation process- 
ing code needs to be added to fill in the stubs. DCE DDL tools also produces server 
RPC stubs that need to be filled in, but developers must write the structure of the 
whole server in which the stubs are embedded. 

• The THETA manager skeleton and accompanying library code allow easy reuse of 
object access control functionality. Access control information is simply specified in 
the THETA DDL, and no additional software need be developed. DCE server's ACL 
management only partly matches the access control functionality of THETA servers. 

• The THETA manager skeleton and accompanying library code allow easy reuse of a 
flexible replication mechanism. Replication information is simply specified in the 
THETA IDL, and no additional software need be developed. Reusable object replica- 
tion functionality is not part of reusable DCE server code. Developing a replicated 
server (as in the CDS and Security Server) and developing a server with replicated 
objects (as with DFS) has been an ad hoc process in DCE, requiring significant techni- 
cal effort. 

THETA techniques in these areas would make valuable additions to DCE server technology. 
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4   Accomplishments 

The THETA project has brought networking technology, advanced operating system concepts, 
and advanced security theory together with security engineering practice. This chapter pre- 
sents our main successes in pursuit of this ambition. Problems, lessons learned (from both 
successes and failures), and future tasks are presented in following chapters. 

In previous phases of the project, we achieved the following list: 

• We developed a prototype multilevel secure distributed operating system for research, 
demonstration, and evaluation. 

• ORA joined the Object Management Group (OMG) and worked on a security frame- 
work for CORBA. 

• We designed and implemented an architecture that feasibly incorporates multilevel 
security into a contemporary distributed operating system (Cronus) without substantial 
loss of functionality or efficiency. The architecture also makes extensive use of the 
security controls of the underlying operating system thus avoiding duplication in 
THETA. 

• We combined traditional and experimental engineering methods in the development of 
the system with some good results. 

In the most recent phase of the project, our accomplishments include: 

We redesigned and formally modelled the kernel. 

We improved the usability of the THETA system for the developer, administrator, and 
user. 

We extended the specification grammar and enhanced the generated code for multi- 
level manager development. 

We completed an assurance guideline for CORBA ORBs and a vulnerability analysis 
guide based on our THETA experience. 

We achieved THETA technology transfer to the commercial world through our 
CORBA work. 

The following sections describe each of the above listed accomplishments. 
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4.1 Secure Distributed Systems 

Among secure networked systems, THETA is unusual in that it is also a secure distributed 
operating system. It differs from other secure networks in that security is addressed not just 
for interactions between network nodes, but also for applications that span many nodes. These 
applications may not even recognize that they are using distributed network resources, their 
security depends on global security properties of THETA. 

THETA's security is distributed between layers of communications protocols. Networks usu- 
ally address security at a relatively low protocol layer, like secure sockets and ports. In 
THETA, security is addressed at the higher protocol layers. THETA assumes security proper- 
ties of low protocol layers in order to assure security properties of higher layers. Together, 
THETA is able to maintain secure communications without duplicating the services of the 
network. 

4.2 Architecture 

THETA's distributed, object-oriented architecture is taken without essential change from the 
Cronus distributed operating system. THETA's design is therefore an example that security 
can be incorporated into that architecture without sacrificing its advantages. Those advantages 
include allowing uniform access to resources of heterogeneous operating systems; organizing 
resources according to a type hierarchy, with inheritance of one type's operations by another; 
and extensibility of the operating system by addition of new types and managers for them. For 
details on THETA's architecture, see Section 1.4. 

The key security problems solved in the THETA design were developing a secure protocol for 
supporting distributed systems; relating THETA security controls to local COS security con- 
trols for each kind of COS; minimizing the trusted kernel complexity; and retrofitting security 
to existing Cronus managers by building it into the manager autogeneration process. 

4.3 Security Engineering 

THETA's approach to security engineering has combined traditional, conservative methods 
with more experimental practices. The THETA kernel development emphasized the tradi- 
tional approach. The functionality of the Cronus kernel was maintained, but the implementa- 
tion was radically modified to implement mandatory access control and to meet the 
minimization requirement of the TCSEC. The THETA manager development focuses on 
trusted extensibility, which is the idea that THETA may be developed and adapted to new 
applications by adding new trusted and untrusted software. 

A major THETA advance is the manager autogeneration process which simplifies the assur- 
ance arguments of new trusted managers. We have designed the THETA managers so they can 
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be run either as untrusted, single level managers or as trusted multilevel managers. Depending 
on the level of risk that is acceptable in a given environment, the managers may be instanti- 
ated appropriately. 

For a more detailed discussion of the security features of the THETA system, see Section 1.5, 
in particular Section 1.5.5. 

4.4 Redesigned Kernel 

At the beginning of this project, our major goals were to incorporate multilevel security into 
an existing system (Cronus). At the time, we had targeted a single secure platform (AT&T 
System V MLS). The target platform severely limited our design. We have since moved onto 
other secure platforms (e.g. Sun Trusted Solaris and HP-UX BLS) which has permitted us to 
revisit our previous design decisions. The current effort included redesigning the THETA ker- 
nel. The primary goal of this redesign was to improve portability of the software, but, the new 
design also provides for higher assurance of security. 

The new design addresses portability in several ways. First, since some of our potential target 
architectures have limited space in their process tables, we reduced the number of necessary 
kernel processes. Next, we was also improved portability by encapsulating operating system 
specific calls, such as interprocess communications, within modules. Finally, reliance on some 
details of COS identification and authentication was reduced by introducing a THETA login 
mechanism. 

Experience with the prototype kernel has shown us which aspects of kernel functionality are 
fundamentally multilevel. As a result, the new kernel design has better segregation of the code 
responsible for MAC enforcement, which must be privileged with respect to the COS. This 
TCB minimization results in a clearer, easier security assurance argument. 

4.5 General Improvements 

The latest phase of the project has concentrated on making THETA more usable for all users 
involved, namely the developer, the site administrator, the THETA system administrator, and 
the end-user. The main improvements include restructured source code, better configuration 
management tools, increased and improved administration tools, expanded and improved doc- 
umentation on all aspects of THETA, and concise configuration files to permit flexible, yet 
secure, management of the system. The biggest administration improvement has been the 
addition of a GUI interface (called Dream) which provides the administrator with the ability 
to view the status of the distributed managers/clients and perform some management of 
THETA entities. 

Restructured Source Code. The layout of the source code is more intuitive and follows de 
facto conventions of UNIX applications. The source directory tree has "flattened" out. Previ- 
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ously, many directories had files that were links to or copies of other files in other directories, 
which caused several problems when installing and updating. These "cross directory" refer- 
ences have been removed by combining all logically related files into a single directory. In 
instances where logically unrelated files were still referenced, we created general "export" 
directories as a repository for these miscellaneous files. 

For example, initially, the top level of the THETA source tree has several empty directories 
like etc and include. When the code is compiled, these directories become populated with 
"exported" files that various portions of the code reference and share. Therefore, modifica- 
tions to any shared file can be made in a single place. 

Another major improvement during the code restructuring was the revamping of the Makefile 
hierarchy. Previously, Makefile dependencies were passed along the chain via command line 
parameters. If a Makefile along the chain had an improperly set internal parameter or the 
parameter was missing, the remainder of the compilation could become corrupted. The Make- 
files are now very readable, well documented, and follow the format of a common template. 
Also, global changes can be made easily in the single, master top level Makefile, which is 
included in all other Makefiles. This master Makefile is different for each platform. The 
THETA distribution comes with a sample master Makefile, named thconf ig.mk, for each 
supported hardware platform. 

Configuration Management. The THETA source code is under a more rigorous configura- 
tion management system. The configuration management plan, which is described in detail in 
[36], makes use of several vendor supplied tools. They are the Revision Control System 
(RCS), Concurrent Versions System (CVS), and RAZOR. 

RCS is a public domain software tool suite that implements version control and modification 
logging on a per file basis. It implements version control by maintaining a control file in 
which a developer can check-out a specific version of the file, modify it, and check-in the 
modified file as a new version, logging the modification with a descriptive note. RCS provides 
a comprehensive tool suite for maintaining revision control on a single file. However, it lacks 
support for entire directories of files. CVS provides the capability of version control on direc- 
tories by using the RCS tool suite. The sole purpose of RCS in this configuration management 
plan is to support CVS. 

CVS is a public domain tool that implements version control and logging based on a directory 
tree structure of files. CVS also maintains a history database, in which all of its commands, 
check-out, check-in, tag, etc., are logged. 

RAZOR is a tool sold by Tower, Inc. It is a configuration management tool suite that imple- 
ments issue tracking with source code version control. It contains the Issues tool with which 
developers create bug reports, reports on design flaws, or development notes. 
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The combination of these tools and the particular configuration management strategy defined 
in [36] provide a solid configuration management plan with which to identify, release, and 
patch versions of the THETA system while concurrently working on mainline development. 

Administration Tools. The administrative tools have been greatly expanded to minimize the 
effort required by the system administrator for such common activities as installing THETA, 
adding a new manager, creating / resetting manager working directories, adding a new user, 
and bootstrapping manager databases. A future goal is to enhance the tool set even more. 

Documentation. The documentation set for the THETA system has been greatly expanded 
and updated. The following list of documents are particularly useful and have been much 
improved from their previous versions. 

• Introduction to THETA - This document describes the THETA system, its architecture 
and capabilities. It is intended to be a high-level overview. 

• Manager Developer's Tutorial - This two volume document leads the programmer 
through the steps involved in developing, testing, debugging, and maintaining a man- 
ager. Volume II details the manager generation process. 

• Software User's Manual (SUM) - This document describes how to interact with 
THETA in a consistent and coherent manner, tropic is the main application dis- 
cussed in this document. 

• Computer System Operator's Manual (CSOM) - This two part document defines the 
role of the THETA operator and describes administrative duties such as starting, main- 
taining, and stopping the THETA system; the second part is the installation guide for 
THETA, which describes the general concepts of setting up THETA on a host and then 
details the different steps needed on each supported platform. 

• Software Programmer's Manual (SPM) - This three volume document is a reference 
for THETA programmers. 

• Software Design Documents (SDD) - This collection of documents provides details on 
every software component of the THETA system down to the level of pseudo code. 

• Version Description Document (VDD) - This document specifies the version number 
of THETA in terms of its functionality, platform availability, known problems, and 
future work planned. 

• Formal Security Policy Model (FSPM) - This document contains the THETA security 
policy and states how the formal model clearly maps to the actual THETA implemen- 
tation. 

• Descriptive Top Level Specification (DTLS) - This document describes the various 
THETA components at a high level. 

• Trusted Computing Base Configuration Management Plan (TCBCMP) - This docu- 
ment describes the configuration management plan for the trusted computing base 
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code. This configuration management plan is an important software engineering step 
that facilitates version identification. 

Flexibility. Portability of the THETA manager and library code have been greatly increased. 
Within manager code and its support libraries, there were many directory paths and file names 
that were hard coded. These have since been substituted with utilities that allow flexible, rela- 
tive paths. Also, formerly, some unique identifiers for certain key principals were hard coded 
into some managers. These have been removed where possible. The Authentication Manager 
still contains a hard link to the principal theta who is given the privilege of administrator 
within the THETA database realm. 

Configuration Files. The THETA system relies on several configuration files. Previously, 
those files were interdependent, and modifications to these files often led to inconsistent 
installations. The dependencies between files have been removed, and the files have become 
much more understandable. Another vast improvement in the configuration files is that the 
data is now (mostly) in human-readable format, unlike the previous hex numbers. 

Examples of configuration files, which are detailed in [29], are found under the top-level 
source directory in src/conf /<operating_system>. The currently supported plat- 
forms, HP-UX, HP_BLS, SUN_OS, and SUN_CMW, are the options to enter in place of 
<operating_system>. The configuration files found here are 

Low THETA lowest COS level specification 

Levels THETA levels and mapping to COS levels 

Categories THETA categories and mapping to COS categories 

RangeCompartments THETA range compartments 

Users THETA principals, their attributes, and mapping to COS users 

Managers THETA managers' specifications 

DefaultAuditEvents Default auditing events 

Networks THETA network specifications 

tnet.config TNET configuration parameters 

Labels For unlabeled OSs - name to sensitivity label mapping 

Clearances For unlabeled OSs - user clearances 

4.6   Manager Development 

The Automatic Code Generation (ACG) manager has been enhanced to allow greater expres- 
sion in the manager specifications. The developer can now attach security levels to various 
data types, data elements, and operations. The ACG manager is responsible for parsing the 
multilevel specifications and producing code that can safely handle multilevel data. In order to 
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assure safe handling of multilevel data, the generated code should have the following 
attributes. 

• Small size, in terms of the number of lines of code, contributes an obvious benefit 
since this provides a reasonable bound to any certification effort. Since programs that 
manipulate data at various levels are necessarily part of the TCB, minimization of pro- 
gram size is a requirement for high B level certification. 

• Simple coding makes software more readable, understandable, and verifiable. If the 
code is clear and concise, then it much easier for an analyst to identify security proper- 
ties of the program and verify their correctness. 

• Layering of software by building programs up from small, simple modules simplifies 
security analysis by allowing evaluators to follow a divide and conquer methodology. 
Each module can be evaluated separately and then the higher layer can be evaluated 
for its contribution to the program as well as its use of the modules. Once each mod- 
ule's security properties are determined, the analyst can concentrate on the higher 
layer without having to include the raw code from each module. Layering has the 
effect of making software, with a large global line count, small and simple when 
viewed layer by layer. 

THETA MLS managers support objects and multilevel data over a range of security levels. 
Since such managers reside in a single process address space and cannot employ hardware 
mechanisms to enforce separation of data by security level. The guarded data structure 
method (GDSM) is provided to compensate for the lack of hardware enforcement. The GSDM 
method uses level factoring of data and information hiding to separate data and objects by 
security level, as well as to limit access to multilevel data structures. This method is described 
in much greater detail in [32]. 

4.7   OMG 

Based on our CORBA and THETA efforts, we have identified a number of critical issues in 
secure distributed object systems. These issues include definition and maintenance of dynamic 
security policies across domains, security enforcement, security administration, and assur- 
ance. Many of the same issues we dealt with in THETA surfaced in our work in defining the 
security framework for CORBA. Our experience with THETA proved invaluable in discuss- 
ing these issues with the security submitters group: As the only MLS ORB implementor, ORA 
was relied upon by the standards group to represent and defend the government security 
requirements. 

Based on ORAs discussion of assurance issues, ORA developed an outline for an assurance 
criteria for ORBs. The vendors will be required to supply this product profile to convince 
potential users that security is enforced by their product. 
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5    Lessons Learned 

A quick summary of the lessons learned is listed below. 

Mapping THETA's general security policies onto platform specific policies introduces 
several technical and administrative difficulties. 

In contrast to our initial view, we now view the THETA kernel as a relatively non-por- 
table component. 

System maintenance for distributed systems inherently have some consistency prob- 
lems, and these problems are compounded with heterogeneous platforms with diverse 
security policies. 

Better configuration management tools would ease some of the complex configuration 
management policies that we currently implement. 

Formal modelling of the new kernel design has provided several new insights. 

The replication protocol has proven to be rather complex in a multilevel environment, 
and it currently does not work in THETA version 2.2. 

The Trusted Networking (TNET) component has a design problem for which we offer 
some solutions. 

Several issues should be investigated before choosing a new platform on which to port 
THETA. 

As the first extensive user of the THETA system outside of ORA, TIS has provided 
several insights into the design and implementation of THETA. 

5.1   Layering Security 

There is sufficient difference between THETA and UNIX security policies to cause technical 
and administrative difficulties. THETA's security policy permits multilevel processes with 
restrictions on the range of levels; not all secure operating systems permit this such as Sun 
CMW. THETA permits degrees of trust in processes; some secure UNIX systems insist that a 
process run single level, or else the UNIX kernel foregoes all security checking by permitting 
the process to have unlimited access to all information in the system. 
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5.1.1 Mandatory Access Control 

The main problem we had to solve in layering THETA mandatory security on UNIX was how 
to represent THETA processes with limited trust (restricted ranges) on a UNIX host that had 
no notion of such a thing. We chose to map each range of THETA levels onto some individual 
UNIX level. 

Mapping of THETA level-ranges to UNIX levels places trust in specific integrity properties of 
the COS that the COS vendor may not have intended or given sufficient assurance; thus, our 
solution is not ideal. Despite this disadvantage, mapping THETA level-ranges to UNIX levels 
seemed to be the best approach for demonstrating range restrictions in the prototype. This 
demonstration gives a realistic simulation of a COS that does enforce range restrictions and 
thus gives the user an opportunity to experiment using THETA on a such a system. However, 
this approach is acceptable only for demonstration purposes. For a fielded THETA system, if 
the COS does not support range restrictions for processes, then THETA should not. That is, 
THETA should never be used to add new security features; it should be used only to extend 
security features to an object-oriented environment. A consequence of heterogeneity may be 
that the full generality and flexibility of THETA's security policy may not be available on 
some hosts if the COS does not have the right enforcement mechanisms to support a THETA 
abstraction. 

5.1.2 Discretionary Access Control 

Layering THETA discretionary security mechanisms is much easier since it does not require 
anything special of UNIX. Since each THETA manager has a separate UNIX identity, it is a 
trivial matter to set up THETA managers so they are the UNIX owner of all object database 
files that they manage. The UNIX protections can be set so that only the owner (manager) has 
any access to the object databases containing relevant THETA objects. This ensures that the 
manager mediates all accesses to the THETA objects since there is no direct access via UNIX 
by unauthorized parties. 

5.2  Portability 

THETA Kernel Portability. When the development effort began, THETA's design was 
strongly influenced by the target platform. Restrictions imposed by the operating system pro- 
duced a somewhat awkward implementation. In the current phase of the project, we had the 
opportunity to rethink the design, especially with the goal of developing a portable kernel. We 
have improved the kernel to lessen the burden of the porting process by encapsulating low- 
level operating system dependencies as much as possible. Despite our redesign, the kernel 
porting effort remains higher than other THETA software components. The effort is necessar- 
ily larger than any other piece of THETA since the kernel is the software that must integrate 
the various capabilities of the local operating system. However, the extra time needed to port 
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the kernel eases the burden for the managers and clients, since the kernel abstracts the operat- 
ing system differences from those components. 

Manager Portability. In developing the Cronus object managers, BBN adopted a software 
development philosophy that has resulted in highly portable code. Inheriting those Cronus 
features, THETA object managers are also highly "self-contained" and rely little on software 
outside the manager itself. This aspect of managers, more than any other, provides substantial 
portability both in Cronus and in THETA. 

The best example illustrating these ideas is the manager tasking package. Largely because of 
the manager tasking package, a THETA object manager is a complete operating system in its 
own right. Concurrency is implemented as set of communicating tasks: this approach is well- 
known and flexible. 

Although Cronus and THETA managers share the features described so far, the manager task- 
ing package developed for THETA is very different than that used in Cronus. In designing 
multilevel, multitasking facilities for THETA object managers, there was a choice: use the 
multitasking of an underlying COS, or simply build a complete multitasking facility. In 
THETA, we built our own multitasking facility which resulted in highly portable software 
since manager tasking facilities have negligible dependence on the underlying COS. If we had 
elected to implement multitasking directly on the COS, the power and portability of the man- 
ager tasking facilities would have a strong dependency on the strengths and weaknesses of the 
equivalent COS facilities—the portability would be easy or hard depending on the COS. 

5.3 System Maintenance 

As a distributed, heterogeneous system, THETA has a fairly complex configuration and it is 
difficult to administer due to its heterogeneous nature. Properly maintaining the configuration 
files for a particular installation is essential for the security of the system. We have extended 
the tools for the administrator to ensure that the security integrity remains intact throughout 
the migration of the system installation guide. See [29]. A future goal of THETA is to remove 
as much administrative complexity as possible and to provide tools to check for network-wide 
consistency. 

5.4 Configuration Management 

In the most recent phase of the contract, we have focused on configuration management of the 
source code as well as the system set up files. We have surveyed several configuration man- 
agement tools, and we are actively looking for better ones. We are not completely satisfied 
with our current tools set, however, we have adapted our configuration policies to compensate 
for the problems with the tools. 

71 



We are using RCS to maintain updates to individual files, CVS to maintain updates to entire 
directory structures, and RAZOR to track and document the modifications and bug reports. 
Each individual tool does provide each desired function; however, no single tool is good at all 
of them. Therefore, we have adopted a configuration plan that utilizes the tool that is best for 
each particular function. This plan is further described in [36]. 

5.5   Formal Modelling of the Ada Kernel 

A new THETA kernel was designed and implemented in Ada. A formal specification of the 
kernel using the Larch/Ada specification language was part of this effort. This section 
describes this work in detail. The C version of the THETA kernel remains the system produc- 
tion version. 

The new design had three aims: to make THETA more portable, to make THETA easier to 
maintain, and to simplify and clarify the assurance argument—the combination of formal and 
informal arguments offered as evidence that the information protection mechanisms succeed. 
We are using formal techniques, principally formal specifications, to help achieve both porta- 
bility and a high assurance of correctness. A key requirement for portability is a precise defi- 
nition of the interfaces between the kernel and its applications, its host operating system, and 
the network. 

Our goals for the formal specification of the kernel include the following: to clarify our own 
understanding of the design and implementation, to guide writing the documentation, to aid 
long-term maintenance (which includes the training of new implementors), to help define a 
security policy, and to provide the basis for an assurance argument which shows that the ker- 
nel implements the policy. A description of this work appears in a chapter of a book entitled 
Applications of Formal Methods [6]. 

5.5.1   Methods 

No ready-made formalism existed that would easily accommodate all aspects of the kernel 
from its top-level view as a distributed system down to the Ada implementation of individual 
code modules. Thus, certain understandings about the function of the system would remain 
informal. Therefore, our final model contained both formal and informal arguments. 

Consider a bottom-up view: At the bottom of the system are modules of Ada code. To repre- 
sent their integration into the distributed THETA kernel, one must go outside the semantic 
model of Ada, which defines the meaning of a single program, not of a collection of programs 
that cooperate. We decided that the best available techniques for specifying and reasoning 
about Ada code were the Larch/Ada specification language and the Penelope system for for- 
mally verifying Ada code [5]. These techniques apply to a subset of sequential Ada. The chal- 
lenge was to map specifications of properties of distributed systems into Ada code. 
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Now consider the view from the top down: The end-user sees a system that offers a set of 
transparent services and applications. The fact that the system is distributed is hidden from the 
user. One step below that is the level that concerns us, a more concrete view in which the sys- 
tem is manifestly distributed (and therefore concurrent). That is the level at which the kernel 
appears. The challenge here is to map specifications at the user layer to the distributed OS 
layer, and to the kernel layer. 

The kernel's message routing involves elaborate protocols that, among other things, search 
through the system for migratory objects. The mechanics of the kernel-to-kernel protocols can 
be naturally described in a process algebra semantics such as LOTOS [2,3], which was 
devised specifically for such purposes. We decided, that a process algebra specification would 
involve too much detail and detail of the wrong kind. For example, the details of the "locator" 
protocols are largely irrelevant to understanding the system-wide properties we considered. 
The strategy actually used to locate recipients—broadcast queries, consulting caches of previ- 
ous replies, etc.—is largely ad hoc, arrived at by experimental tinkering to improve perfor- 
mance. For our purposes the important point was not to describe or predict the precise route of 
a message or the precise way in which that route would be chosen, but rather to describe the 
invariants that any satisfactory route must maintain—invariants such as "the host on the path 
of each leg of the journey must have an appropriate security range." But the notion of state is 
not directly or conveniently expressible in typical process algebras. 

Our needs suggested a state machine model in which we could express invariants on states 
and on histories (sequences of state transitions). That still leaves open the question of how 
best to express the desired invariants. We could explicitly construct the domains of states, 
transitions, and histories, and use ordinary logic to define the predicates of interest. Alterna- 
tively, we could represent the model in a temporal logic, where states are defined explicitly 
and histories are present implicitly in the semantics of the temporal operators. Our previous 
experience suggested that temporal logic would not be appropriate, since it seemed better 
suited for describing the behavior of reactive systems—behavior such as "Every time A hap- 
pens, the system must do B before the next C"—than the kinds of invariants we wished to 
enforce. 

These considerations, justified the following plan: A simple formalism expressed in terms of 
state machines and ordinary logic would be suitable for the most abstract representation of the 
system. That model could be expressed straightforwardly in many of the formal notations 
such as Larch Shared Language (LSL), Z, or PVS. Larch/Ada, described below, seemed the 
obvious choice for describing the code modules themselves, though it could not fully describe 
modules whose behavior is essentially concurrent. The Penelope system could be used to 
develop both the abstract state machine description in LS, and the specification of code mod- 
ules in Larch/Ada. Penelope would also support formal verification of the code. Whatever 
hierarchy of refinements we provided between these two pictures would have to contain a gap, 
bridged by informal explanations gluing the distributed modules together outside the semantic 
model of Penelope and Ada. 
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We concluded that we should use our own collection of Ada methods and tools—particularly 
since we wanted to leave open the possibility of formally verifying modules of the code. 
There seemed to be no theoretical grounds for thinking that any other methods would be supe- 
rior and the practical advantages would be considerable: In house experts would be available 
and training would either be unnecessary or easily arranged. It would also be possible to ask 
for (small) modifications of the tools to meet our needs. 

5.5.2   Formal Methods Tools 

We wrote specifications in Larch [7, 8, 9] (a notation for first-order logic) and Larch/Ada [18, 
19] (a formal specification language for sequential Ada). The code, specification, and English- 
language documentation are maintained in noweb [25, 27]. We used the Penelope system [5] 
to check the syntax and static semantics of the specifications—and, to prove a limited number 
of properties of the specifications and to prove the correctness of the corresponding Ada code. 

We applied other off-the-shelf formal techniques opportunistically, whenever it seemed con- 
venient to do so. We built a simple model of THETA in Romulus [20], which can be used to 
check that components of the design satisfy a particular composable security property called 
restrictiveness [12, 13]. We also checked the Ada code with AdaWise [1], which automates 
tests for certain common dynamic semantic errors. 

These methods and tools are briefly described below. 

Larch. Formally, the Larch Shared Language (LSL) is a notation for describing axiomatic 
theories in a well-organized, modular way. Its great virtue is simplicity: An LSL trait defines a 
theory of ordinary first-order logic, together with certain assertions about that theory, such as 
the assertion that it implies some other theory. The structuring constructs are few and almost 
self-explanatory. We have found it convenient to extend Larch somewhat, and in what follows 
"Larch" and "LSL" refer to our extended language. 

Larch is a general methodological program that has two parts: developing a reusable library of 
mathematics (expressed in LSL) that is independent of any programming language, and devel- 
oping specification notations, called interface languages, that are tailored to particular pro- 
gramming languages. An interface language provides a way to specify a program by relating 
its behavior to the behavior of abstractions defined in LSL. For example, we can define the 
abstract notion of an unbounded stack in an LSL trait and use that notion to specify a bounded 
stack package in Ada along lines suggested by the following informal description of "push": if 
the stack is full, the executable push operation raises an exception; otherwise, pushing updates 
the stack as does the mathematical push operation defined in LSL. The same LSL trait could 
be used to specify a push operation in C, where an attempt to push an element onto a full stack 
is signalled not by raising an exception, but by returning an appropriate integer status code. 
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This style of specification is called "two-tiered" specification. The specification of a particular 
program module consists of a mathematical tier (a theory defined in LSL) and an interface 
tier (annotations defined in the appropriate shared language). 

Two-tiered specifications pay an extra dividend on THETA: We have written very little Larch/ 
Ada and a great deal of LSL, and we expect to reuse the LSL for specifying the kernel's 
implementation in C. (There is an interface language for C, called LCL [9].) 

Larch/Ada. Larch/Ada is an interface language for Ada. Our specifications used features of 
Larch/Ada that are in draft form and not currently supported by Penelope. 

Penelope. Penelope [5] is an interactive tool that permits the incremental development of 
Larch/Ada specifications, Ada code implementing those specifications, and machine-checked 
proofs that the code is correct. The underlying formal model of Ada semantics covers virtu- 
ally all of the machine-independent features of sequential Ada. Penelope currently imple- 
ments a subset of that model, which includes generics, packages and private types, and 
exception-raising and -handling. 

Ada Wise. AdaWise can be regarded as a kind of super-lint for Ada programs. It checks, for 
example, whether a program depends on the order in which its constituent modules are elabo- 
rated (roughly speaking, initialized) at program start-up. That order is implementation-depen- 
dent. Penelope does not make AdaWise redundant AdaWise accepts arbitrary Ada programs 
and does its checks automatically; though the corresponding checks in Penelope, when appli- 
cable, are more powerful. 

noweb. noweb [27] is a simplified variant of Knuth's Web [10], which supports "literate pro- 
gramming"—documentation that organizes the description of specification fragments and 
code fragments in the most informative expository order. We maintain a single marked-up set 
of source files containing specification, English-language commentary, and Ada. The noweb 
tools can "weave" these source files to produce LaTeX source for printing documentation 
organized for readability and can "tangle" these source files to produce code and specification 
in syntactically and semantically legal form. 

We have successfully used a version of Web to maintain the code for the Penelope system 
through several years of implementation and many changes in the team of implementors [26]. 

Romulus. Romulus allows a user to model a system as a collection of interconnected pro- 
cesses, to show that the components are secure, and then to apply a somewhat sophisticated 
theory of composable security properties to show that the overall system is secure. 

5.5.3   Evaluation and Conclusions 

The portable kernel is currently incomplete since it does not implement all the kernel's func- 
tions. It has been successfully tested on a network of two machines, one of them running the 
existing complete THETA kernel, and the other running the partial portable kernel and pro- 
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cesses that simulate the actions of managers and clients. Our lessons learned from this experi- 
ence are in the process and the supporting tools areas. 

Process. Due to time and resource constraints, writing the formal specification did not con- 
tribute as much to creating the design as had been hoped. With a better understanding of what 
the specification effort should provide, we could have utilized the results more efficiently. Our 
formal methods experiment started from scratch, so that the experience base developed— 
understanding the application domain, developing libraries of specification concepts, etc. will 
provide a useful base for the future. We are past the initial learning curve, and we feel that 
future formal methods experiments will be far more useful and effective due to out past expe- 
rience. 

Tools. The tools that we used were adequate in their own right, but did not make up a coherent 
development environment. Since, in particular, some of them were predominantly batch-pro- 
cessors and some (to varying degrees) incremental, it would have been difficult ever to make 
them work together well. Similar difficulties arise in integrating noweb with an Ada debugger 
or an Ada library system. (The reason for integrating with the Ada library is to avoid unneces- 
sary recompilations of library units.) 

The problem with tools is both pragmatic and theoretical. The immediate pragmatic problem 
for a user of formal methods is to choose some technique whose tools can be made to work 
reasonably well with the rest of a development environment that is already in place and cannot 
be radically changed. The more theoretical problem is that one often wishes to apply different 
specification techniques to different aspects of a problem or to different levels of abstraction, 
and there is little support for this activity, either conceptual or automated. 

Conclusion. We used these methods to improve the quality of our system, satisfy our cus- 
tomer about that quality, and help with the long-term maintenance of the kernel. We also hope 
that the experience acquired by doing the formal work will be useful in future work on distrib- 
uted systems. 

The main benefit to date has been a well-organized understanding of the kernel and its role. In 
particular, we have a standardized and rationalized vocabulary for describing the kernel and 
the security properties we want to guarantee. We have good reason to attribute much of that 
success to the formal work. 

5.6   Replication Complications 

During our extensive modifications to THETA, the replication capability was given a lower 
priority in comparison to the goal of encapsulation and usability. In the midst of massive over- 
hauls of the system, we have disturbed the delicate balance in the replication protocols. We 
had some problems with replication on large datatypes before, however now, replication does 
not work reliably on even the smallest of objects. 
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Under our current code configuration, replication worked once under very particular condi- 
tions, which are minimal CPU usage on the involved machines, very small object size (i.e., 
UID only, no other data), the machine running the manager with the original database has the 
debug flag on (to slow it down on purpose), and the database to be replicated is the generic 
only. Replication also works usually if both managers are started with the "/nodac" option. 

From the series of tests performed, we believe that there is a timing problem and possibly a 
memory problem. Since replication works when discretionary access control checks are 
turned off, we investigated that portion of the code in detail. 

While processing a replication request, it appears that the manager is denied access to its own 
databases. A timing problem occasionally causes a null access group set to be returned during 
a regular DAC check, thus the manager denies itself access to its databases. The symptoms are 
fickle and difficult to duplicate exactly, thus this problem has been tough to identify more spe- 
cifically. 

Another possible timing problem may occur when the host holding the original database sends 
the response sooner than the receiver is expecting. Thus the receiving process drops the pre- 
mature response, then wakes up, too late, and times out, and the replication request fails. 

5.7   TNET Experiences 

This section specifies certain aspects of the Trusted NETwork (TNET) communication service 
as delivered by Trusted Information Systems (TIS). We also list a few bugs that were fixed by 
ORA, as well as some areas to consider redesigning for improved correctness and efficiency. 

5.7.1   TNET Overview 

TNET is designed and implemented as a sublayer of the THETA kernel. The TNET sublayer 
provides a trusted communications service that protects all data transmitted between pairs of 
THETA kernels connected to the LAN. TNET does not protect communications between indi- 
vidual clients and managers and the THETA kernel. 

The TNET design incorporates cryptographic-based security services directly within the 
THETA kernel. Four basic security services are provided. 

• Data integrity: unauthorized modification (including insertion or deletion) of data sent 
across the LAN can be detected. 

• Data confidentiality: data is protected from unauthorized disclosure. 

• Source authentication: the destination THETA kernel is assured that it is communicat- 
ing with a peer THETA kernel. 
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•    Multilevel secure separation of message traffic: messages are assured to be at a sensi- 
tivity label within the range of security levels for which the THETA host is authorized. 

TNET uses an encapsulation technique to apply data protection mechanisms (i.e., encryption 
and cryptographic checksum) to the THETA KSP messages. TNET provides these services on 
a THETA kernel-to-kernel basis using symmetric (i.e., secret) key technology which makes 
use of cryptographic keys and secret key cryptographic algorithms. The cryptographic keys 
are uniquely associated with one or more entities and must not be made public. The use of the 
term "secret" in this context does not imply a classification level, but rather implies the need 
to protect the keys from disclosure or substitution. 

Sets of secret cryptographic keys (one per security level) are shared among the kernels con- 
nected via the LAN. Security labeling of the KSP messages is enforced by THETA and the 
underlying COS. The TNET communications service computes a cryptographic checksum for 
the message data and seals it using a secret key associated with the security label stored in the 
Kernel Reliable (KREL) or Kernel Service Protocol (KSP) Header. The protected THETA 
message is encapsulated with the TNET Header and passed to the COS Transport Layer proto- 
cols. Source authentication and multilevel separation of messages is provided by acquiring the 
key identifier associated with the security level of the KREL/KSP Header. Data integrity and 
confidentiality is provided through the use of the cryptographic library routines. The TNET 
header is described in detail in the Kernel SDD document [32]. 

5.7.2   TNET Enhancements 
Performance. The current implementation can improve performance through more efficient 
data handling. In the TNET tsend function, the implementation disassembles the packet by 
copying most data into separate data structures and then filtering it through checksumming 
and encryption phases. The tsend call then reassembles the data in a new contiguous packet 
allocated from the heap, and then sends that new packet down the stream. 

The tsend call can be made more efficient by taking the buffer apart, calling the encryption 
and checksumming functions, placing the converted data in static buffers, and then sending 
the parts down the stream in the proper order, without reconstructing the packet in contiguous 
memory. 

Communication misconception. The implementation was based on a design that assumed 
data which was sent on stream channels worked much the same way as data sent and received 
on datagram channels. If a UNIX send call of a certain small buffer was sent, it was assumed 
to be received in its entirety. Between two exact same machines (SunOS on Sparc 2s) with an 
unloaded network, communication would synchronize in this fashion, due to the similarity of 
speed and implementation of the underlying operating systems and hardware. However, when 
using disparate architectures, e.g., AT&T PCs and SunOSs, this assumption was no longer 
correct. The implementation, based on this design, sends a TNET header and expects a com- 
plete message to be received on the other end. The receiving end would extract buffer length 
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information and, assuming that the next incoming buffer was being sent in a contiguous 
chunk, it would be received that way. This type of buffer framing is not guaranteed with com- 
munication on a loaded network; even the relatively small TNET header could not be guaran- 
teed to be received as a whole. The result caused many communication "drops" at ORA, 
especially when using the HP BLS, a different, faster architecture, and caused the THETA 
system to ultimately fail. 

ORA patched the implementation by generating a function, called guaranteed_recv, that 
polls the stream channel until the requested length of data was received. This effectively 
makes a non-blocking channel a blocking channel. 

TNET and non-blocking communication. THETA was designed for stream communication 
to be non-blocking. TNET bases itself on packetized encryption, both in datagram and stream 
communication. Packetizing works properly for the datagram communication as long as the 
length encrypted and checksum packets are less than the maximum UDP packet size. For 
stream communication in THETA, however, messages must be received along the stream in 
their entirety before they can be decrypted. This violates the non-blocking requirement for the 
THETA communication, as the TNET trecv call must effectively read the entire packet pos- 
sibly using multiple UNIX recv calls before giving control back to the caller. This problem 
effectively creates a blocking read on a non-blocking communication channel. 

Key management: Encryption keys are kept in a file on each THETA system, and this file 
must be the same for all THETA implementations on the same network in order to communi- 
cate. Distribution and management of these keys becomes a physical problem. To ward 
against decryption analysis attacks, keys should be changed periodically. To change an 
encryption key, all THETA nodes must be shutdown, the key file redistributed by some secure 
method, and all THETA nodes rebooted with the new key file. 

This distribution method is not practical and is difficult to administer. The limitation has been 
acknowledged by TIS. TIS chose this distribution method to expedite the development with 
the intent to change it to be more robust in future releases. 

5.7.3   Solutions for Non-Blocking Communication 

The problem that results from packetizing stream based communication hampers the THETA 
system enough that we must consider some alternative implementations. There are two possi- 
ble solutions; however, both require a considerable amount of re-engineering. We will sum- 
marize both, but first, we will briefly discuss the current encryption model. The model for 
TNET was created with the purpose of installing a network encryption scheme into THETA 
without affecting THETA's operation. TNET was designed so that its interfaces modelled the 
interfaces for UNIX communication system calls. For example, TNET has tsend for UNIX 
send, trecv for UNIX recv, etc. The model is illustrated Figure 5-1. This model demon- 
strates that an encryption scheme, if tailored to the interfaces of UNIX, could be slipped in 
without much difficulty. 
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Figure 5-1: Current TNET Encryption Model 

Solution 1 - New encryption model. The first approach is to change the encryption model to 
move TNET encryption off to the side, as shown in Figure 5-2. Communication would remain 
packet based and dependant on the structure of the KSP packet. This model permits end to end 
encryption to be easily retrofitted. A packet going out is specially encrypted by the KSP. The 
packet is then sent out on the usual THETA mechanisms that adhere to the non-blocking 
requirement for communication. 

This solution involves modifying the dirsendrecv CSU which is relatively easy to do in 
the NetMessageOutAndStatusO function. This function can call an encryption and checksum 
routine, creating a new buffer to be sent over the network. However, the methods used for 
receiving the message, in NetMessageBodyInAndStatus(), break up the receiving of KSP 
packets from the network into two parts, first the KSP header is read, then the body of the 
packet read, based on different attributes in the previously read header. Since the entire packet 
would have to be received in order to be decrypted, this function must also be aware of the 
TNET header. Another option is to have NetMessageOutAndStatusO encrypt the KSP header 
and body separately. In that case, both functions would have to coordinate separate encryption 
and decrypting of headers and bodies. These modifications result in a considerable engineer- 
ing effort. 

Solution 2 - Same model, slightly different strategy. The second solution is to modify the 
current TNET implementation to not continuously poll the communication for any receives. 
This change can be done by having the TNET also implement the select() call differently for 
encrypted streams. This change would effectively treat incompletely received packets as 
"ready to read", thereby fooling the NetworkIsReady() call in the dirsendrecv CSU that 
there is data pending on the stream channel. However, to get this to work correctly, the subse- 
quent recv() call must return an indication of 0 bytes read when it cannot construct the com- 
plete packet. This would require a change to the diresendrecv call, not to equate 0 bytes 
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Figure 5-2: Alternate Encryption Model 

read with an error. The THETA system is fooled into believing that there is a packet ready to 
be received, however it is not yet completely received. THETA will continue to poll the 
TNET trecv call until the packet is received. So, TNET will not return any incomplete 
packets, just complete decrypted KSP packets, or a zero bytes read status. This effort would 
require modifications to the dirsendrecv process, only on the receiving side, and some 
modification to the TNET code in order to "remember" the incomplete packet between TNET 
trecv calls. 

5.7.4   Summary 

Solution 1 is preferable. It has the drawback of modifying existing THETA code to be encryp- 
tion aware. However, modifications to make THETA encryption aware, at least for packet 
style communication, should be of a standard nature so that other encryption systems may be 
easily retrofitted in TNET's place. 

Solution 2 is probably the quickest solution for the short term; however, the ramifications of 
creating a TNET select call for NetworklsReadyO, or possibly changing the entire logic of the 
receive process must be investigated. 

5.8   Porting Experiences 

We have had some difficult experiences in a few of porting attempts which may have been 
prevented had we had more foresight. We have learned that much more investigation should 
go into selecting new platforms to support THETA. For example, available operating system 
resources and THETA's resource requirements should be well understood and clearly stated 
when choosing potential platforms. Also, proprietary claims of the commercial vendors 
should be thoroughly investigated before making a final decision to port to a particular plat- 
form. Our strategy was to initially run THETA on the AT&T machine. The development envi- 
ronment of AT&T was so primitive that we ported the development to SunOS and did most of 



the work there. Upon completion of major milestones, we moved the code to the AT&T for 
testing. Once the AT&T port was complete, we then ported to the CMW and HP. From the 
CMW, we did a fairly straightforward port to the Trusted Solaris platform. 

5.8.1 Trusted Xenix Experiences 

The port to Trusted Xenix was hampered by lack of sufficient operating system functionality 
that was taken for granted by the THETA system. For example, socket calls required by 
THETA communication were not supported by the Trusted Xenix operating system; thus, the 
necessary functionality needed to be added to Trusted Xenix. Tailoring communication mech- 
anisms quickly became very expensive and time consuming. 

A second major problem was mismatches in very low level system features. For example, 
there were differences between THETA and Trusted Xenix's word sizes and macro sizes. 
Also, THETA had large memory requirements which needed to be mapped into Trusted 
Xenix's memory model. The frustration associated with these issues was that they consumed 
much more time than anticipated, but were vital to the completion of the port. 

Trusted Xenix was an old PC based operating system and did not provide sufficient services 
necessary to run THETA. Furthermore, Trusted Xenix lacked the necessary development tools 
to perform this task. Finally, TIS began the port with an older version of THETA. These prob- 
lems resulted in an incomplete porting effort of THETA to the Trusted Xenix platform 

5.8.2 Lock Experiences 

Proprietary claims on hardware, software, training materials and documentation were asserted 
by Secure Computing Corporation (SCC) after their equipment was purchased. As a result of 
those claims, our subcontractor, Trusted Information Systems, was not permitted access to 
necessary information and equipment in order to be trained on SCC's Lock system. After this 
problem surfaced, the government made the decision not to port THETA to the Lock system. 
Being made aware of these proprietary claims in advance would have prevented this unfortu- 
nate outcome. 

5.9  Application Development Comments 

TIS was the first extensive users and developers of applications for THETA outside of ORA. 
The following section provides useful experience and feedback on the design and implemen- 
tation of THETA. ORA had continuous contact with TIS during their development process; 
therefore, we were able to address several of their modification suggestions when we restruc- 
tured the system. Rome Lab, NRaD and CECOM also installed the system. We will note the 
areas where particular problems have been addressed and note others that are still unresolved. 
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Manager Generation Mechanism. The manager autogeneration mechanism worked very 
well, and implementation of simple THETA managers was fairly easy. The type definition and 
manager specification languages are easy to understand and use and well-documented. The 
manager development process is extremely well structured, in that the whole framework is 
automatically generated and only the operation stubs need to be filled in. The manager code 
examples from ORA were especially helpful. Once one type and an operation had been 
defined and implemented, the definition and implementation of additional types and opera- 
tions was very straightforward. 

THETA Installation. There was very little documentation for THETA installation and 
application development; existing documentation was either incomplete or out-of-date. This 
was improved in the latest version of THETA. The installation process is documented in [29] 
and several labor-savings utilities have been created for the administrator and the application 
developer to ease the process of maintaining the system. Although these were necessary 
improvements, Rome Lab felt that they still needed to be very familiar with the underlying OS 
and THETA. They annotated the manual with additional notes before sending it to NRaD and 
CECOM. Clearly, more needs to be done in this area. 

Administration Complexities. The administration of a THETA system is non-trivial and 
requires improved diagnostic tools. As stated above, THETA has vastly increased and 
improved the tools for installing, maintaining, monitoring, and modifying the THETA system. 
Error reporting of these new tools still needs to be improved. 

Debugging: THETA needs better debugging tools to improve the application manager devel- 
opment process. 

Manual Alteration of Generated Code: The Regrade Manager is a very simple manager, 
the sole interesting feature of which is the use of the General Purpose Demon (GPD) feature 
of the THETA manager skeleton. The regrade manager's GPD code calls a PSL routine of 
another manager. However, the normal autogenerated PSL did not function correctly within 
the GPD and had to be re-written. Ideally, PSL calls should work the same in GPD code as in 
the main body of manager code, without needing to be rewritten. 

Lack of Manager Support for the Unix System(3) Call: Since the dBase IV DBMS (DB4) 
did not provide a programmatic interface, rather it only provided a user-oriented interface, it 
was necessary to invoke DB4 from within a THETA manager using Unix shell commands. 
However, THETA manager implementation had side-effects on the Unix interface, so that the 
system(3) library routine did not function properly. The programming workaround of using 
fork-and-exec was fairly simple to put in place. 

Locator Bug: For reasons never clearly articulated, it was necessary to explicitly inform the 
THETA locator that system manager object resided locally. To do so, we used scripts of tropic 
locate commands that were routinely performed after starting the THETA kernel and the 
authen, process, and audit system managers. Without this step, THETA would sometimes not 
function correctly to support the demonstration application. The locator bug is still under 
investigation. 
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Registration Error: Occasionally, registering with the THETA kernel resulted in the follow- 
ing error on the CMW: 

Refer to Trusted Facility Manual Appendix to identify unknown error 
codes. THETA Process with UNIX ID 1481 exiting — can't create log 
file. KERR_Startup:fopen:: Permission denied 

Attempting to register again will usually succeed. The failure is due to an attempt to create a 
log file which already exists (re-use problem). Kernel log files should use both the process id 
and date/time in constructing their names or some other scheme to avoid name conflicts. This 
error has been corrected in the most recent release of THETA (versions 1.7 and above). 
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6    Future Tasks 

THETA has been a successful experiment in trusted, distributed operating system develop- 
ment. Below we provide a quick summary of the possible future tasks. 

• Modify THETA to conform to emerging standards, namely the CORBA standard ver- 
sion 1.2. As part of this task, THETA must be improved in several cosmetic areas, 
which are described in Section 6.1. 

Address issues raised in the wide-area network study. 

Rework TNET 

Integrate a commercial, secure network facility into the THETA kernel. 

Fix replication. 

Replace dBase IV with COTS Trusted DBMS 

6.1   Compliance with Standards 

A major goal of THETA is to become compliant with emerging standards in the object-ori- 
ented world, in particular CORBA. Achieving this goal will make THETA far more usable, 
especially with the commercial world. As a part of this goal, we are participating in meetings 
to design the security framework for ORBs (Object Request Brokers) which will be compati- 
ble to the security policies and mechanisms in THETA. 

As THETA becomes compatible and interoperable with commercial software, it must become 
more polished. General improvements must be made in several areas. For example: 

• More administrator utilities need to be developed, and they should be more intuitive. 
Also, error reporting in the current set of tools needs to be improved to return more 
clear and concise diagnostic information. 

• The functionality of THETA managers should be enhanced to make THETA services 
more responsive to the needs of users. 

• The THETA manager skeleton should be reworked to better satisfy the TCSEC TCB 
minimization criteria. 
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• The THETA software libraries should be trimmed to remove obsolete functionality 
and redesigned to separate code needed for trusted operation from that needed for 
untrusted purposes. 

• The user interfaces needs improvements. For example, most client applications are 
currently line-based where a graphical interface would be much nicer. 

• Better configuration management tools and policies need to be put in place. 

• Documentation, although it has been greatly improved in the last phase of this task, 
could still be more complete. 

6.2 Secure Networks 

THETA would benefit from using a commercial secure networking product. Removing net- 
work-dependent functionality from THETA will remove a few layers of complexity from the 
THETA kernel and would make the TCB smaller. We should survey the secure network prod- 
ucts that are currently in evaluation and determine which would be most suited for THETA. 

6.3 Replication 

We must fix the database replication protocol that has been disrupted. 

6.4 Scalable System 

The wide area network (WAN) study looked into issues involved in running THETA over a 
wide area network versus its standard local area network environment. Some results of the 
WAN experiments have been addressed in this last phase of the project (e.g., improved net- 
work communication schemes). Several areas identified in the WAN study still need to be 
addressed. The list includes 

• Develop security database analysis tools. Maintaining consistent security databases is 
a major concern for THETA WAN configurations. We wish to develop powerful tools 
to give administrators a clear view of THETA's static configuration and dynamic oper- 
ation. Future THETA security analysis tools should be based on a DBMS and should 
support full consistency analysis of THETA and COS security databases. 

• Revamp THETA auditing. To support a WAN environment, THETA should allow both 
centralized and distributed auditing. Also, the administrator would benefit greatly 
from an audit analysis application that would possibly incorporate some intrusion 
detection technology. 

• Invocation tracking should be an added THETA feature. At present, THETA develop- 
ers cannot determine the fate of timed-out invocations. Without this ability, developers 
will have great difficulty developing and debugging reliable THETA WAN applica- 
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tions. A Request Manager could be created to maintain status information about invo- 
cations and make it available to appropriate clients and managers. 

THETA should be adapted to permit separate administrative domains. 
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A   DCE RPC Scenario 

This appendix provides a step-by-step summary of the interactions between a client and a 
server of a DCE application, and the various DCE components that support secure client/ 
server communication. The summary is in the form of a scenario in which there is a payroll 
application divided into client and server parts, distributed on different hosts so that payroll 
functions can be performed by individuals on various different workstations. The scenario 
consists of several hosts: 

• Host C on which a user is running a payroll client program. 

• Host P on which the payroll server is running. 

• Host D on which a Cell Directory Server (CDS) is running. 

• Host S on which a Security Server is running. 

In addition, each host has an RPC server running on it, to maintain the endpoint map for that 
host. 

The scenario begins when the client makes a procedure call to a client RPC stub. From then 
until the end of the scenario, all the events described herein take place "under the covers" of 
the RPC interface. These events are interactions between the DCE RPC runtime library of the 
client and the various servers. 

After the client calls the RPC stub, the DCE runtime library (DRL) checks to see if it has a 
binding to a server for the UUID associated with the called RPC stub. This UUID is part of 
the state built into the client, to enable the client to use the CDS to locate a server that imple- 
ments the RPC. In this case, the DRL finds no binding. This could be because this is the first 
RPC, or because the binding lapsed, perhaps due to network failure, host failure, or server 
failure. In this case, the reason is that this is the client's first RPC. Therefore, the steps below 
will also include the steps necessary to obtain credentials for the payroll server. 

The first step in obtaining a binding to the payroll server is to find a host that is running a 
CDS. One method involves checking part of the configuration data of the client's host. In this 
case, part of Host C's configuration is the information that Host D is running a CDS. In addi- 
tion to the service UUID and the CDS host ID, there is one other piece of initial information 
that the client has: the fact that port 135 is the standard communication endpoint for any RPC 
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server on any host. This standard allows the RPC server to be bound to by any client without 
any further information, so that the client can then obtain RPC data about dynamic endpoint 
bindings for other servers. 

Armed with this initial information, the DRL performs several bindings and RPCs. 

1. Binding to port 135 on Host D to contact the RPC server on that host. 

2. An RPC to the RPC server on Host D to obtain an endpoint for the CDS running on 
that host; the return value is in this case port 987. 

3. Binding to port 987 on Host D to contact the CDS. 

4. An RPC to the CDS to obtain the host ID of a host running the security server; the 
return value is S. 

5. Binding to port 135 on Host S to contact the RPC server on that host. 

6. An RPC to the RPC server on Host S to obtain an endpoint for the security server run- 
ning on that host; the return value is in this case port 876. 

7. Binding to port 876 on Host S to contact the security server. 

8. A secure RPC to the security server to obtain credentials for access to the payroll 
server. This secure RPC uses a special previously obtained credential, in order obtain 
the client credential for the payroll server. (See below for more details). 

9. An RPC to the CDS to obtain the host ED of a host running the payroll server; the 
return value is P. 

10. Binding to port 135 on Host P to contact the RPC server on that host. 

11. An RPC to the RPC server on Host P to obtain an endpoint for the payroll server run- 
ning on that host; the return value is in this case port 234. 

12. Binding to port 234 on Host P to contact the payroll server. 

At this point, the role of the DRL is finished. The RPC stub has a binding and the appropriate 
credentials for the payroll server. The RPC stub then sends the RPC parameters, and waits for 
the RPC return data from the payroll server. When this arrives, the data is copied into the out- 
put parameters of the RPC stub procedure, which returns to the payroll client software. The 
payroll client software takes the output data and displays them on the screen for the user to 
see. Subsequent RPCs between the client and the server re-use the payroll credentials, rather 
than acquiring them again for every RPC. 

With regard to security, there are several points to note. Firstly, credentials are on a per-server 
basis, and are sometimes called tickets, to indicate that each is for a specific server. A creden- 
tial for one service does not grant access to another service. 

Secondly, credentials are obtained from the security server, which itself requires a credential. 
This initial credential is used in RPCs to obtain other credentials, and is called a ticket-grant- 
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ing ticket (TGT). This is the special credential referred to in step 8 above. A TGT is most 
often obtained at the beginning of a user login session, and used throughout the session for 
any clients the user runs. This is why the TGT in step 8 was previously obtained, and can be 
used to obtain a ticket for payroll service in step 8. 

Thirdly, none of the above-described location and endpoint RPCs are secure RPCs, i.e. con- 
tain no credentials. The host location and endpoint data are freely available with no restric- 
tions on the acquisition of these data; no authentication or other message security is required. 
In this case, it is very important that neither the RPC server nor the CDS require credentials, 
because these servers are needed to obtain the location of the security server, in order to 
acquire credentials in the first place. 

Finally, there are the details of the TGT acquisition, described in the next appendix. 
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B   Summary of Ticket Acquisition and 

Usage 

TGT acquisition is an RPC to the security server, which is done at the beginning of a user 
login session. As a result, this RPC is often called the DCE login. Another reason for this term 
is that the user must supply a password. When the DCE login is performed at the same time as 
the user's operating system login, then the DCE password is the same as the operating system 
login password. Although in this sense it is a password, the term is misleading because it is 
not used as a password by the security server. 

The TGT-acquisition RPC is a non-authenticated RPC which requests a credential for the user 
on whose behalf the client is running, for example the user Mary. The security server returns 
Mary's TGT to the client. Note that any client can request Mary's TGT. However, only Mary's 
clients can use the credential, because it is encrypted with a secret key known only to Mary 
and to the security server. This key is specific to Mary, and was set up when Mary's account 
was created, or the last time Mary changed it by interacting with the security server. 

Because Mary must remember her key and keep it secret to ensure that only she can success- 
fully authenticate as Mary to the security server, the key must be easy to remember. As a 
result, the user actually remembers not a key but a word (often the same as her login pass- 
word). This word is used as the basis for a computation to produce a DES key. Note that the 
keyword/password is used solely for local computation, and is never sent of over the network. 
It is not sent to the security server for a password comparison. Rather, it used to construct a 
secret shared with the security server, without sending the secret over the network. The basis 
of the authentication is not password comparison, but the possession of this shared secret, the 
key. 

After performing this first RPC, the DRL performs cryptographic computation on the RPC 
return data sent from the security server. As mentioned above, the return data is encrypted 
with Mary's key. Therefore, the DRL uses Mary's password to construct the key, and then 
uses the key to decrypt the RPC return data. This decrypted RPC return data contains two 
items: the TGT, and a session key K\ to be used for future interaction between a Mary client 
and the security server. 
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The TGT itself is nothing more than the pair of K\ and Mary's ID, both encrypted by the secu- 
rity server's key. Therefore, future RPCs between a Mary client and the security server will 
include two things: the TGT, and the RPC parameter data encrypted with K\. When receiving 
such an RPC, the security server can decrypt Mary's TGT to obtain the session key K\, and 
use K\ to decrypt the RPC parameter data. The security server knows that message came from 
Mary, because only a Mary client could have obtained and used K\, which was sent as part of 
the return data of the TGT-acquisition RPC. 

(Note: this account is actually a simplification, in that there is a second step involving another 
ticket and another session key, used to get a more complex kind of TGT, a PTGT. This PTGT 
and yet another session key are used for requests like that in step 8 above. However, in the 
interests of simplicity, we pass over these details. Also, the payroll server's authentication of 
Mary in involves more details than described below.) 

Now we can better understand the payroll-ticket-acquiring RPC in step 8 above, and the sub- 
sequent use of the ticket. The client encrypts the payroll-ticket request with K\ and adds the 
TGT, to authenticate as Mary to the security server. The security server then sends back both a 
ticket for the payroll service, and also a session key K2 for Mary's client to use with the pay- 
roll service. The payroll service ticket is encrypted with the payroll server's key, and contains 
the following: Mary's ID, other authorization data such as Mary's group memberships, and a 
copy of K2. 

Therefore, Mary can send authenticated RPCs to the payroll server by encrypting the RPC 
parameter data with K2, and adding the payroll ticket. The payroll server can decrypt the 
ticket using its own key, and thereby gain assurance that the ticket really came from the secu- 
rity server, which is the only other party that knows the payroll server's key. After decrypting 
the ticket, the payroll server has K2, and uses it to decrypt the RPC data. The ticket data iden- 
tifies Mary as the caller. The payroll server has assurance that the RPC really came from Mary 
because only a Mary client could have received K2 from the security server, which embedded 
K2 in the payroll service ticket along with Mary's ID. Finally, the payroll server uses Mary's 
ID and groups to make an authorization decision about Mary's request. 
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C   Acronyms 

This section contains a list of acronyms and abbreviations used in the THETA documentation. 

ACG Automatic Code Generator 

ACK Acknowledgment 

AFS Andrew File System 

AGS Access Group Set 

API Application Programming Interface 

BBN Bolt, Beranek, and Newman, Incorporated 

BLS B Level Secure operating system 

BOA Basic Object Adapter 

CDRL Contract Deliverables Requirements List 

CDS Cell Directory Server 

CMW Compartmented Mode Workstation 

CORBA Common Object Request Broker Architecture 

COS Constituent Operating System 

CSC Computer Software Component 

CSCI Computer Software Configuration Item 

CSOM Computer System Operator's Manual 

CSU Computer Software Unit 

DAC Discretionary Access Control 

DCE Distributed Computing Environment 

DFS Distributed File System 

DRL DCE Runtime Library 

DID Data Item Description 

DoD Department of Defense 

C-l 



DTLS 

HP-UX 

IHP 

ID 

IDL 

IP 

IPC 

ITC 

JDL 

KSP 

LAN 

MAC 

MIP 

MLS 

MSL 

NACK 

NCSC 

NSA 

OMA 

OMG 

OP 

ORA 

ORB 

OSF 

OSTF RFP3 

PSL 

RPC 

SDD 

SEP 

SLM 

SPM 

SRS 

Descriptive Top Level Specification 

Hewlett Packard UNIX operating system 

Inter-host protocol 

Identifier 

Interface Definition Language 

Inter-net Protocol 

Inter-process Communications 

Inter Task Communication 

Joint Directors of Laboratories 

Kernel Service Protocol 

Local Area Network 

Mandatory Access Control 

Message in Progress 

MultiLevel Secure 

Multiple Single Level 

Non-acknowledgment 

National Computer Security Center 

National Security Agency 

Object Management Architecture 

Object Management Group 

Operation Protocol 

Odyssey Research Associates, Inc. 

Object Request Broker 

Open Software Foundation 

Object Services Task Force Request For Proposal 3 

Program Support Library (per manager) 

Remote Procedure Call 

Software Design Document 

Security Evaluation Program 

Single Level Manager 

Software Programmer's Manual 

Software Requirements Specification 
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SSDD System Segment Design Document 

SSS System Segment Specification 

STP Security Test Plan 

SUM Software User's Manual 

TCB Trusted Computing Base 

TCP/IP Transmission Control Protocol / Internet Protocol 

TCSEC Trusted Computer System Evaluation Criteria 

TGT Ticket-Granting Ticket 

THETA Trusted Heterogeneous Architecture 

TNI Trusted Network Interpretation 

UID Unique Identifier 

UNO Unique Number 

UUID Universal Unique Identifier 

WAN Wide Area Network 
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D   Glossary 

This glossary is meant to offer the reader a quick definition to words that appear in THETA 
documentation. It is not intended to be exhaustive and can be supplemented by the glossary 
found in the TCSEC. 

abstraction: A description of the external appearance of an entity that avoids defining and 
describing its internal details. 

access control: The mechanisms used to protect objects from unauthorized access. Access 
control determines who may access an object and how. 

access control list: An access control list (ACL) is a part of each THETA object's internal 
structure. An ACL is a set that specifies the rights that principals and groups have for 
accessing the object. 

access group set: A THETA access group set (AGS) consists of a principal unique identifier 
and a list of group unique identifiers. The value of an AGS determines a principal's 
access rights. 

ACL: See access control list. 

AGS: See access group set. 

ancestor: When used in the context of THETA types, ancestor refers to a type in the hierarchy 
between a given type and the root type Object. When used in the context of THETA 
groups, groups that contain other groups are referred to as ancestor groups. 

asynchronous: Events that occur in an indeterminate order. Asynchronous operation invoca- 
tions execute concurrently and complete in an arbitrary order. 

atomic transaction: An action or set of actions that occur without interruption. 

audit: Audit is the nickname for the Audit Manager, which is responsible for collecting infor- 
mation about security related events in THETA. 
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audit event: An audit event is a security related action that must be recorded by the Audit 
Manager. 

audit log: This name is given to the Audit Manager's database, which is a collection of audit 
events. 

authen: Authen is the name of the THETA manager that governs the objects used to grant dis- 
cretionary access to THETA objects. 

bindings: Each THETA process has several pieces of information bound to it as part of regis- 
tration with the THETA kernel; these process bindings are the principal unique identi- 
fier associated with the COS user, the access group set unique identifier to be used for 
discretionary access control checks and the unique identifier of the process itself 
(which is assigned by the THETA kernel). 

broadcast: An addressing mechanism that causes a message to be sent to all hosts on a net- 
work simultaneously. 

canonical type: Canonical types provide a common format for data representation across all 
THETA hosts despite diverse internal representations of different machines. Canonical 
types are used in message construction, as operation argument and result types, and to 
define the characteristic form of data stored by objects of various THETA types. Note 
THETA types are not the same as canonical types. THETA types contain declarations 
of canonical types. 

cantype: See canonical type. 

client: A program or process that runs on behalf of a user and makes requests of other pro- 
grams or processes, called servers. These client requests cause the server's process to 
perform some well-defined action called a service. 

concurrent: Events that happen at the same time are said to be concurrent. 

constituent operating system: This general term applies to any underlying operating system 
that supports THETA. Currently supported operating systems include Sun OS 4.1.X, 
Sun CMW 1.0, HP-UX 8.09, HP-UX BLS 8.09+, and AT&T System V/MLS. 

core TCB: The THETA system is very flexible and can be configured to support multilevel or 
multiple single level processing. As a result, the trusted components vary depending 
on the configuration chosen. However, there is a core portion of these components that 
is always trusted, and this portion is called the core TCB. The core TCB is a subset of 
the THETA kernel and is identified specifically in the Computer System Operator's 
Manual for THETA. 

COS: See constituent operating system. 
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Cronus: Cronus is the untrusted predecessor of THETA. 

crosspoint: A Crosspoint is the name given to the shared memory-based communications 
implemented by UNIX-based THETA kernels. 

DAC: See discretionary access control. 

dir: Dir is the nickname of the Directory Manager that controls objects used to reference 
THETA objects by a symbolic means rather than the external representation of unique 
identifiers. 

direct operation: A direct operation is THETA's implementation of distributed trusted path; 
this is detailed in the Software Programmer's Manual for THETA. 

discretionary access control: This is a means of restricting access to objects based on lists of 
user identities and their access rights. The access control is considered discretionary 
since access rights are under the control of users rather than under the non-negotiable 
control of system labels (i.e., mandatory access control checks). 

dominate: THETA level LI is said to be dominated by THETA level L2 if and only if all cat- 
egories of LI are included in the set of categories of L2 and the hierarchical classifica- 
tion of LI is less than or equal to that of L2. 

downgrade: See write down. 

edit: Data accesses that may require read and write access are known as "edits". If one opens 
a file for edit, one may read it, write it, or do both. Edit captures the combined idea 
expressed here better than "modify", which has the connotation of a required write or 
change. 

generic object: An object that represents a type or the collection of objects of that type. 

group: In THETA, a group is a list of principal unique identifiers and other group unique 
identifiers. Intuitively, a group is simply a list of THETA users. 

host: A computer connected to the network. 

host address: A 32-bit integer that uniquely identifies a host on the network. 

incarnation number: A 24-bit integer that indicated the number of times that THETA has 
been brought up on a particular host. This number is one of the components of a 
unique number. 

inheritance: New object types can adopt attributes from previously defined object types 
through inheritance. 
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instance: An instance refers to a specific, existing object. 

internal representation: A data representation that is particular to a specific machine archi- 
tecture. 

invoke: To request the execution of an operation on an object. 

kernel: The THETA kernel is a body of software that deals mainly with communications 
between THETA processes. It implements a trusted communications protocol (see ker- 
nel service protocol) that helps make the location of various THETA objects transpar- 
ent to THETA applications. 

kernel service protocol: The trusted communications protocol implemented by the THETA 
kernel. It is a session layer protocol that provides mandatory message security and 
supports THETA identification and authentication mechanisms. 

key: THETA message construction and decomposition uses keys, which are numerical codes 
that THETA routines use as location markers in messages. The Software Program- 
mer's Manual for THETA provides an extensive discussion of this concept. 

KSP: See kernel service protocol. 

levels: See security levels. 

locate: An operation that searches the nodes of the network for the location of a particular 
object. 

locator: A component of the THETA kernel that performs the locate request. 

manager: A server process that handles operation invocations on objects that are in its (the 
manager's) domain. 

MAC: See mandatory access control. 

mandatory access control: This kind of access control uses security levels that are assigned 
to objects and users in order to mediate access. 

messages: A THETA message is a sequence of key-cantype-value triples that provide both the 
structure and the information content of data transmitted between registered THETA 
processes. 

migratory: A type is considered migratory if it is able to move among managers of the same 
object type on other hosts. 

multicast: An addressing mechanism in which a given message can be sent to a group of log- 
ically related hosts. 
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node: Same as host. A computer connected to the network. 

object: An abstract entity that can contain, transmit, or even process data. Normally, objects 
are thought of as structured repositories of data. 

object cache: A list in the kernel that describes where objects with particular unique identifi- 
ers were found in the network most recently. 

object database: An area on the local host's disk that stores the data values of objects of a 
particular type. 

object manager: A process that regulates accesses to objects of one (or more) type(s) on a 
specific host. 

object model: The conceptual framework in which all interactions are described by opera- 
tions that are invoked on objects. 

object type: The collection of all objects that have the same structure and have the same 
access mechanisms. 

object-oriented system: A system that is built around an object model. 

operation: An action involving objects performed by a server (or manager), on behalf of a cli- 
ent (application or manager). 

persistent object: An object is considered persistent if the data is stored on some media (like 
in a file on a disk) and can be accessed again at some later point in time. 

primal: Primal types are types whose objects have meaning only on the system where they 
were created. Primal objects must remain on the machine where they were created 
because that is the only machine where the data makes sense. 

principal: A THETA principal is a COS user for whom a THETA authentication object is cre- 
ated and maintained. Data accesses are granted or denied depending on the principal 
and its access rights. 

process: An executing program is referred to as a process. 

program support library: This suite of routines is created by the autogeneration software to 
supply a client interface to manager operations. PSL calls insulate THETA program- 
mers from the details of invocation message construction and reply message parsing. 
Each manager supplies new PSL routines. 

PSL: See program support library. 

read: Performing a read on an object is viewing the contents of a piece of data. 
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read down: In a secure system, a subject at a high security level can read data from a low 
level repository. This kind of read is permitted in the THETA security policy. 

read up: In a secure system, a subject at a low level or incomparable level reads data from a 
high level repository. This kind of read is a forbidden in the THETA security policy. 

readwrite: Readwrite refers to the combination of reading and writing actions performed on 
data, that is, editing. In a secure system, such editing demands that the subject and the 
object be at the same security level. 

registration: This refers to the action taken by a COS process in order to be recognized by the 
THETA kernel. 

registry: A registry in THETA is a special name space used in conjunction with authentica- 
tion objects such as principals and groups. These name spaces are different from that 
supplied by the directory manager and associate symbolic names with unique identifi- 
ers. 

replication: In distributed systems, this term refers to the act of copying or otherwise dupli- 
cating an object on a host other than the one on which it was created. Replication pro- 
duces survivable application programs and facilitates recovery from data corruption. 

restrictiveness policy: The restrictiveness policy is a formalization of the requirement that 
information in a multilevel secure system can flow only upward in security level. 

rights: In THETA, this term refers to the discretionary access control privileges required to 
perform operations on objects. Rights are granted by a privileged user to other users or 
collections of users. 

security labels: A sensitivity level assigned to a piece of information. 

security levels: A combination of a hierarchical classification and a collection of categories 
that describe the sensitivity of information. 

sequence number: A 24-bit unsigned integer that is increased by the kernel. This number is 
one of the components of a unique number. 

server: A process that performs requests on behalf of other processes. 

signature: A list of arguments and return values to a procedure, function, or operation. 

synchronization: Ensuring that multiple copies of an object are kept consistent. 

thfile: This is the nickname of the THETA File Manager. 
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transient object: An object is considered transient if it exists only for a brief period of time 
(for example, for the lifetime of the process that created it) and then disappears with- 

out a trace. 

tropic: The tropic program is part of the THETA command set; tropic provides a universal 
client interface to all THETA managers. See the Software User's Manual for more 

details. 

type definition: A type definition defines a class of objects in terms of data structures and 
operations that can be performed on those data structures. 

type hierarchy: A tree-structured organization that shows the flow of type inheritance. 

UID: See unique identifier. 

unique identifier: In THETA, a unique identifier (UID) is a unique number (UNO) and a 
numerical type code that uniquely identifies an object in the THETA system. UIDs are 
used to identify THETA objects and in a very real sense should be considered to be an 

address. 

unique number: In THETA, a UNO refers to a 14 byte long integer. A UNO can be decom- 
posed into subfields that may provide information about THETA kernel incarnation 
and sequence numbers, a host address, and what security level is being referenced. The 
host address is 32 bits and can be used to encode the Internet address in future versions 
of the system, if need be. UNOs are the main constituent of unique identifiers. 

UNO: See unique number. 

upgrade: The THETA kernel raises the security level of some messages based on the level of 
the target object in the message and the level of the sender. 

user interface: A collection of programs and subprograms organized to give a user a means to 
interact with THETA. 

write: Any action by a subject that changes the contents of an object is considered to be a 
write to that object. In addition, any action that affects any other user's view of an 
object must also be considered a write. 

write down: In secure systems, the act of writing data by a process at a high security level to 
an object at a lower or incomparable level is considered to be a write down. This 
downgrading of information is forbidden in THETA. 

write up: In secure systems, the act of writing data by a process at a low security level to an 
object at a higher level is considered to be a write up. This upgrading is permitted by 
THETA security policy. 
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MISSION 
OF 

ROME LABORATORY 

Mission. The mission of Rome Laboratory is to advance the science and 
technologies of command, control, communications and intelligence and to 
transition them into systems to meet customer needs. To achieve this, 
Rome Lab: 

a. Conducts vigorous research, development and test programs in all 
applicable technologies; 

b. Transitions technology to current and future systems to improve 
operational capability, readiness, and supportability; 

c. Provides a full range of technical support to Air Force Material 
Command product centers and other Air Force organizations; 

d. Promotes transfer of technology to the private sector; 

e. Maintains leading edge technological expertise in the areas of 
surveillance, communications, command and control, intelligence, reliability 
science, electro-magnetic technology, photonics, signal processing, and 
computational science. 

The thrust areas of technical competence include: Surveillance, 
Communications, Command and Control, Intelligence, Signal Processing, 
Computer Science and Technology, Electromagnetic Technology, 
Photonics and Reliability Sciences. 


