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ABSTRACT 

The diffractive optic imaging spectrometer, DOIS, is a high resolution, compact, 

economical, rugged, programmable, multi-spectral imager. The design implements a 

conventional CCD camera and emerging diffractive optical element (DOE) technology in an 

elegant configuration, adding spectroscopy capabilities to current imaging systems [Lyons 

1995]. 

One limitation of DOEs, also known as zone plate lenses, is abundant chromatic 

aberration. DOIS exploits this typically unwanted effect, utilizing a DOE to perform the 

imaging and provide the dispersion necessary to separate a multi-spectral target into 

separate spectral images. The CCD is stepped or scanned along the optical axis recording a 

series of these spectral images. This process is referred to as diffractive spectral sectioning. 

Under this dissertation, three-dimensional spectral/spatial DOE imaging theory was 

developed to describe and predict the system's performance. The theory was implemented 

in a software model to simulate DOIS image cubes. A visible spectrum DOIS prototype 

was designed, fabricated and characterized. The system's incoherent point spread function 

was theoretically modeled and experimentally determined. To verify the simulations, the 

prototype's performance was demonstrated with a variety of known targets and compared 

to simulated image cubes. To reconstruct the three-dimensional object cubes, various 

deconvolution algorithms; nearest neighbor, inverse filtering and constrained iterative 

deconvolution, were developed and applied to both computer generated and experimentally 

measured image cubes. The best results were obtained using an SVD inverse Fourier 

deconvolution algorithm with regularization for noise suppression. The results demonstrate 

a resolving power greater than 288 (?i/A?i=577nm/2nm). Finally, three additional DOIS 
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designs are presented as suggestions for future work, including a configuration with no 

moving parts which records the entire 3D image cube in one "snapshot". 

DOIS is a practical image spectrometer that can be built to operate at ultraviolet, 

visible or infrared wavelengths for applications in surveillance, remote sensing, medical 

imaging, law enforcement, environmental monitoring, and laser counter intelligence. 
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1. INTRODUCTION 

The field of multi- and hyper-spectral imaging, also known as Imaging 

Spectrometry, has a long history [Goetz 1995] and has been receiving increased attention 

for several years. As discussed elsewhere [Descour 1995], Imaging Spectrometry adds the 

ability to examine the spectral distribution of two-dimensional scenes to the fundamental 

power of imaging systems. The availability of known spectral radiance, reflectance and 

absorption curves coupled with an imaging spectrometer allows identification and 

classification of targets with an accuracy and resolution previously unknown. 

An entire chapter of the IR Handbook [Wolfe 1989] is dedicated to the spectral 

properties of natural sources. Recorded spectra can be compared to these and other known 

spectra to identify the material composition of a target. A spectrometer is an instrument for 

resolving and recording these spectra. The combination of an imager and a spectrometer, an 

imaging spectrometer, provides a conventional spatial image as well as the spectral content 

of each pixel, forming a three-dimensional spatial/spectral image cube. The result is a 

complete system capable of target detection, classification and identification. 

Image spectrometers can be built to operate in the ultra-violet (UV), visible or 

infrared (IR) spectrum and measure spectral reflectance, emission and/or absorption. 

Spectra can be used as a "fingerprint" to determine exactly what material or mix of materials 

is present. Whether the data is from the paint of a military tank, the plume of a missile, the 

ground in the desert or the air we breathe, spectral information can lead to recognition of a 

detected target or even detect the presence of unwanted materials. 

1.1  Image  Spectrometry 

The goal of an image spectrometer is to obtain a set of spectral images of a target to 

form an image cube. Each image represents a spectral band or channel, defined by a central 

15 



wavelength, Xc, and its spectral bandwidth, AX. The total number of channels is equal to 

the entire wavelength range divided by the channel bandwidth. 

# of channels = (X^ - X^/AX (1.1) 

Common image spectrometers include three components: a dispersion element, an 

imager and a detection device [Wolfe 1989]. Examples include a lens and color filter wheel 

in front of a two-dimensional detector array, or a single pixel aperture illuminating a 

diffraction grating, dispersing the light onto a linear detector array. The detector records 

one pixel at all wavelengths which is then scanned in the x and y directions to form an 

image. 

1.2 Figures of Merit 

When designing or comparing imaging spectrometers it is customary to discuss the 

spectral resolution of the system [Wolfe 1994]. Spectral lines usually have some 

predetermined shape, such as a Gaussian or Lorentzian. The line width, sometimes defined 

as the spectral slit width, is usually specified as the full width at half maximum (FWHM), 

as shown in Figure 1.1, noted as AX. 

spectral resolution = AX (1.2) 

The relative resolution is the spectral resolution divided by the center wavelength. 

relative resolution = AWkc (1.3) 

Since bigger is always better, the resolving power is defined as the reciprocal of the relative 

resolution. resolving power = XJAX (1.4) 
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Figure 1.1: Typical spectral line used to define spectral resolution. 

1.3  Common Image  Spectrometers 

The most simplistic image spectrometer is a standard camera (lens and detector) 

with various line-pass color filters. Typically the filters are placed on a wheel that is rotated 

so that they are in the optical path one at a time. Figure 1.2 shows that the data recorded is a 

series of two-dimensional (x,y) images stepped in wavelength. The number of filters 

determines how completely the spectra is sampled and the spectral resolution of each filter 

is the spectral resolution of the spectrometer. However, the system's size, complexity and 

cost are directly related to the number and quality of the filters, and the materials needed for 

some filters have limited availability. Additionally, once designed and built it is inflexible; 

interest in additional wavelengths will require an upgrade. 

AX 

Figure 1.2:   Three-dimensional  image cube for a color filter  wheel   image 
spectrometer. 
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Another popular design is the grating spectrometer. A narrow, rectangular entrance 

slit is imaged onto a linear diffraction grating and then on to a two-dimensional detector. 

The grating's dispersion is perpendicular to the long axis of the slit. The detector records a 

spatial image in one direction and the spectra along the other. The data is a set of 

spatial/spectral images, (x,X) or (y,X), that are recorded as the aperture is scanned along the 

scene in a pushbroom manner to form an image shown in the image cube of Figure 1.3. Its 

advantage is that there is a continuous spectra from the diffraction grating, so the resolution 

is determined by the optical magnification and detector size (parameters that a designer 

should have full control over). However, in order to view a conventional (x,y) image for 

target acquisition and tracking, it requires a scanning mechanism which can be sensitive to 

vibration and motion of the target. 

X 

Figure 1.3: Grating image spectrometer three-dimensional image cube. 
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A third design is a Michelson interferometer setup with an oscillating mirror in one 

path. As the mirror moves, the interference term varies as the cosine of the oscillation with 

a frequency of 2it/% for a monochromatic source. A source of a different wavelength or 

frequency will provide an interference pattern with a different frequency, 2%IX2- If the two 

are used at the same time then the pattern will be the sum of two cosines, each modified by 

its amplitude. With a multi-spectral source, the interferogram obtained as the mirror moves 

is the sum of a collection of monochromatic interference patterns, each with its own 

amplitude. The interference pattern is recorded over time, correlated to the optical path 

difference caused by the mirror, and Fourier transformed to yield the spectrum. A CCD 

focal plane array can be placed at the detection plane to simultaneously record the frequency 

spectrum of multiple pixels, forming an image once the transform is performed, as shown 

in Figure 1.4. This technique provides very high resolution data however it is sensitive to 

vibrations and target motion during recording. 

recorded 
over time 

Fourier Transfo 

Figure  1.4:   Three-dimensional  data cubes for a Fourier Transform  image 
spectrometer. 

1.4  Spectrotomography   Techniques 

Spectrotomography is a new branch of optical tomography where the three- 

dimensional   data  cube  is   integrated  along  various   axes  forming  two-dimensional 
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projections of the 3D data. These projections, containing integral data on the spectral and 

spatial properties of the object of interest, are recorded then processed with computer 

tomography algorithms to reconstruct the 3D data cube. Researchers use several techniques 

with various dispersion, scanning, and reconstruction methods for applying computer 

tomography to imaging spectrometry. A major advantage of these systems is high 

throughput efficiency. The projections integrate all possible photons and therefore no light 

is discarded, which is useful in low light scenarios. Although, the recorded data requires 

much processing to form a recognizable image cube. Also, much emphasis has been placed 

on the future ability to build a system with no moving parts and with a single snap-shot 

approach for moving targets [Descour 1995]. 

1.5 DOIS 

The diffractive optic image spectrometer design is a spectro-tomographic technique 

which integrates over a narrowband of the image cube. Shown in Figure 1.5, the DOE 

provides both the spatial imaging and the spectral dispersion in this image spectrometer 

[Hinnrichs 1995, Lyons 1995]. 

A panchromatic CCD camera is used for detection. This camera, mounted parallel to 

the DOE, is stepped along the optical axis, z. Each detector location z corresponds to a 

specific spectral channel of the target's image. As an example, Figure 1.6 lists the 

calculated image distance z. and magnifications for particular spectral slices of an object 

located 2fd from the DOE, where fd is the focal length at the DOE design wavelength Xd. 

The camera is interfaced to a frame grabber board within a computer for image capture, 

analysis, display and post detection processing. At each step along the optical axis, both an 

image frame and the corresponding detector location is recorded. 
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Object(x,y,>.) 

Figure 1.5: Three-dimensional Spectral imaging with a diffractive optical 
element (DOE). 

X [nm] Zi M Transverse 
M Longitudinal 

650 1.7fd 0.83 0.68 

600 1.9fd 0.96 0.92 

588 2.0fd 1.00 1.00 
550 2.3fd 1.15 1.32 

500 2.9fd 1.43 2.04 
450 3.8fd 1.88 3.55 

400 5.5fd 2.77 7.69 
Figure 1.6: The spectral image distances z, and magnifications for an object 
at z=2fd. 

The images captured by the CCD are a superposition of one channel's infocus 

image and defocused images of the surrounding channels. These defocused components 

cause blurring of the desired image. 

Like a color filter, DOIS integrates over a bandpass, dictated by the DOE's 

incoherent point spread function. However, DOIS can provide greater spectral resolution 

by scanning along the z axis, shifting the center of the bandpass and sampling the spectra at 

several spectral points for every point that the filter could sample. Once sampled, digital 

image restoration techniques can be applied to remove the blurred information and 

reconstruct the original spectra. 
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The DOE dispersion is so great that each image is an integral of data in only a 

narrow spectral band, not the entire spectrum. This leads to a system that is useful both 

with and without post-detection processing. Without processing DOIS provides spectral 

images with spectral resolution that rivals color filter wheels. The spectral resolution is 

defined by the region of spectral integration measured to be as good as 1.5nm for spatially 

unresolved targets [Chapter 7]. Higher resolving power is achievable with DOIS by 

applying digital image restoration algorithms which improve the resolution by eliminating 

spectral and spatial blur [Chapter 8]. 

1.6 Dissertation's   Objectives 

Parallel to the efforts under this dissertation, Michele Hinnrichs from Pacific 

Advanced Technology (PAT) conceived and patented the mechanical design of the 

diffractive optic image spectrometer described in this dissertation [Hinnrichs 1995]. 

Although an IR system had been built and demonstrated on real-world targets, there was a 

lack of analysis theory and understanding of spectral imaging with a diffractive optic. This 

theory was needed for analytical modeling and simulation of the image spectrometer 

design, and required to develop object reconstruction algorithms for imaging resolved 

targets with high spectral and spatial resolution. 

The objectives of this dissertation were to determine the theory behind diffractive 

spectral imaging, implement the theory in a software model to simulate DOIS image cubes, 

experimentally verify the simulated results with a hardware prototype imaging known 

spectral/spatial targets, and develop and apply object reconstruction algorithms to the 

simulated and experimentally measured image cubes. Additionally, an improved design 

was conceived to provide diffractive optic image spectrometry with constant magnification 

[Lyons 1997]. 
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In the next chapter, the capabilities of the diffractive optic image spectrometer are 

first demonstrated. A visible spectral range DOIS prototype imaged an AppleColor™ high 

resolution RGB computer monitor with the words AFMC ROME LAB spelled out in blue, 

green and red phosphor respectively. Although a much more analytical characterization is 

presented later in Chapter 7, this experiment is useful for discussion and introduction to 

DOIS's operation. 

Since the main component is a diffractive optical element (DOE) providing both 

imaging and dispersion for this image spectrometer, Chapter 3 details some important 

theory, design and characteristic equations, fabrication techniques and modeling schemes 

of the Fresnel Zone Plate which is the DOE used in DOIS. 

The theory of image formation with the diffractive optic is developed in Chapter 4. 

The three-dimensional image cube is collected by recording a set of images taken at 

sequential focal planes. By analogy with physical sectioning techniques, this method is 

called diffractive spectral sectioning. For convenience, Figure 1.7 lists the six Cartesian 

Coordinate systems used throughout this dissertation. 

object space => obj{x0,y0,X0) at z0 

Gaussian image space =» o(x,y,z) 

image space => i'(x,,y,,z,) 

isotomic image space =» t [x- ,y- ,z,') 

isotomic Gaussian image space => d (x' ,y' ,z') 

reconstructed object space => objr(x0,y0,X0) at z0 

Figure 1.7: The six Cartesian Coordinate systems used in DOIS. 

The DOIS prototype was fully characterized, first as individual components and 

then as a complete system. This characterization is presented in Chapter 5. 

Chapter 6 presents both computer generated (CG) and experimentally determined 

image sets of known targets. As you will see, the linear system theory of Chapter 4 
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accurately predicts output images formed by DOIS. The CG images are very similar to 

those determined experimentally. 

A multi-spectral, multi-spatial four target testbed was designed and built to further 

test the performance of DOIS. The four targets include a Tungsten-Halogen greybody 

source, a multi-line Mercury source and two Helium Neon lasers, a 632.8nm HeNe and a 

542nm GreNe. Chapter 7 summarizes the testbed's known spectral characteristics and 

includes a collection of spectral images and spectral radiance curves measured with DOIS. 

Appendix A is a catalog of almost 600 images of the four targets that were recorded with 

the DOIS prototype. The most compelling results are the images and spectral plots of the 

Mercury doublet at 577nm and 579nm. Without any post-detection processing this doublet 

is resolved, demonstrating a spectral resolution of less than 2nm! 

Chapter 8 presents the object reconstruction algorithms to generate in-focus spectral 

images, spectral distributions, and full three-dimensional representations. Since not all 

applications require the same spectral resolution, processing techniques which fall in three 

general categories are presented, each providing different amounts of deblurring at various 

computational expense; nearest neighbor, inverse filtering and constrained iterative 

deconvolution. 

The algorithms were implemented in Mathematica and applied to reconstruct both 

CG and experimentally measured objects. The Nearest Neighbor algorithm estimates any 

spectral image with only three "snapshots" and minimal computational expense. However, 

greater resolution can be obtained using an SVD inverse Fourier deconvolution with 

regularization for noise suppression. For completeness, constrained iterative deconvolution 

is presented, although in practice this method has a relaxation function which must be 

optimized to a particular application. 

All of the deconvolution algorithms provide improved resolution and remove the 

effects of large targets, higher diffraction orders and stray light. The choice between 
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reconstruction approaches will ultimately depend on the application dictating such issues as 

the required spectral/spatial resolution, data storage, computation time and memory. 

Chapter 9 summarizes the conclusions drawn during the course of this research, 

recommending the most effective approach to transition this work into a fieldable image 

spectrometer. The advantages of DOIS over conventional image spectrometers are 

discussed. Finally, three designs for future DOIS systems are presented; a dual-waveband 

design for simultaneous spectral imaging in two spectral bands, such as the mid IR (3 to 

5|im) and far IR (8 to 12^tm), and two configurations that perform image spectrometry 

with no moving parts including a design which records the entire 3D image cube 

simultaneously in one "snapshot". 
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2. DOIS - DIFFRACTIVE OPTIC IMAGE SPECTROMETER 

The principle shortcoming of DOEs for polychromatic imaging is abundant 

chromatic aberration. This chapter presents a patented design that exploits this typically 

unwanted effect to create an image spectrometer [Hinnrichs 1995, Lyons 1995]. Under this 

dissertation a visible regime Diffractive Optic Image Spectrometer (DOIS), shown in Figure 

2.1, was designed, simulated, fabricated, demonstrated and characterized. A DOIS can be 

designed to operate at ultraviolet, visible or infrared wavelengths for multispectral and 

hyperspectral imaging in medicine, forensics, industrial and environmental monitoring, as 

well as military applications. 

From Chapter 1, the goal of an image spectrometer is to obtain a set of spectral 

images of a target, forming an image cube. Each spectral image represents a spectral band 

or channel, defined by a central wavelength, \, and its spectral bandwidth, AX. Referring 

to equation (1.1), the total number of channels is equal to the total wavelength range 

divided by the channel bandwidth. 

# of channels = (lmax - l^J/AX 

2.1 Basic Scenario 

A color computer monitor serves as the polychromatic source object; it will be 

referred to as the target. The DOE provides both the spatial imaging and the spectral 

dispersion in this image spectrometer. A conventional monochromatic CCD camera is used 

to record the image cube. This camera, mounted parallel to the DOE, is stepped along the 

optical axis, z. Each detector location, z, corresponds to a specific spectral channel of the 

image cube. At each step both an image frame and the corresponding detector location is 

recorded. 
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DOE at z=0 

Peak Phosphor 
emissions: 
P22R = 625 nm 
P22G = 520 nm 
P22B = 450 nm 

note: images will be inverted 

CCD steps along the optical axis Az 

\ 

z,=Si ,«,=20.63 cm 

z2=Si areen=25.30 cm AFMC 

ZFS, biue=29.75 cm| 

Figure 2.1: DOIS - Diffractive Optic Image Spectrometer basic scenario. 

The camera is interfaced to a frame grabber board within a computer for image 

capture, analysis, display and post detection processing. The images captured by the CCD 

are a superposition of one channel's infocus image and defocused images of the 

surrounding channels. These defocused components cause blurring of the desired image. 

Post-detection, digital image restoration algorithms [Gonzalez 1987] are used to remove the 

unwanted blurred components, improving the imager's spatial and spectral resolution 

[Chapter 8]. 

The diffractive optic 1st order imaging equation relating spectra and the object and 

image distances , sg and st is given in equation (2.1) [see Chapter 3 for the derivation]: 

J 1_ 
A   s0 

X 

Kfä (2.1) 

where fx is the focal length at wavelength X, calculated from/,, and Xd the DOE design focal 

length and wavelength. 
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solving for wavelength: ^ - Kfd 
1       1 

if*0««»thenjtt=/A: 
sa 

i _ Kfd 

fx 

(2.2) 

(2.3) 

Figure 2.2 shows the use of equation (2.2) for the scenario in Figure 2.1. 

With the target relatively close to DOIS as in the laboratory demonstration, it is best 

to keep the DOE fixed and the detector stepping, since an accurate target to DOE distance s0 

is required. The practical field implementation would be designed for far range targets, 

s^oo. At infinite conjugates the object distance s0 isn't sensitive to changes in the lens 

location, the DOE can be scanned and the detector can be kept stationary, a preferable 

scenario. 

s0 = 7ft fd = 20 cm \ = 588 nm 

sn = 20.63cm 

K ~ Kfd — + — 

Aj = 588 * 20 

Aj = 625nm 

1 1 
- + - 

20.63    213.36 

si2 = 25.3cm 

^=588 

f\      1N 

\sn     so J 
+ — 

*20|- l 1 

U5.3    213.36 

&2 = 520nm 

si3 = 29.73cm 

A, = 588*20| 

1      1 
— + — 

\Si3       SoJ 

1 1 
- + - 

29.75    213.36 

A, = 450nm 
Figure 2.2: Algorithm for calculating wavelength from image distance, S;. 

When a target such as AFMC ROME LAB spelled out on a black background in 

blue, green and red respectively, is imaged with DOIS, each color or word will come to 

focus in a different position zx. The chromatic focal shift, A/ =        ^ , is so severe that 

the separation between a blue AFMC and a red LAB is almost 10 cm. This extreme fall off 

with color provides this image spectrometer with a FWHM spectral bandwidth ranging 

from 1 to 1.5 nm throughout the visible spectrum and over 100 possible spectral channels 

without post detection image processing. Once a series of images is captured, the image 
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cube can be displayed as series of spectral images, a normalized spectral radiance curve 

(intensity verses wavelength) for each pixel of interest or a two-dimensional spatial/spectral 

cross-section, xzx or yzx, of the image cube. The stepping can be controlled to tune to one 

particular channel, to step through a narrowband, wideband or the entire visible range in 

equal increments of dz, dX, or any variation of user controlled steps. With proper control, a 

continuous video can be recorded matching the frame and scan rates, to calibrate the 

wavelength to time or frame number. 

2.2 Experimental Demonstration with a RGB monitor 

The Image Spectrometer of Figure 2.1 was built and demonstrated at Rome 

Laboratory's Photonic Center and is described below. This monitor demonstration is 

presented to facilitate an understanding of the basic operation and performance of DOIS. A 

much more analytical testing of the characteristics, performance and limitations of this 

Image Spectrometer is found in the following chapters; Chapter 5. Prototype 

Characterization and Chapter 7. Prototype demonstration with four targets. 

The DOE is a 5 cm diameter, BK-7, 2 level phase grating with a design focal 

length, fa = 20 cm at the design wavelength, Aj = 588 nm. The CCD camera is a SONY 

XC-75, monochrome video camera. The sensing area is 1/2 inch with 768 (H) x 494 (V) 

pixel elements. Each pixel is 8.4 (im x 9.8 \im. The approximate pixel size of 10 \im x 10 

|im will be used for simplicity and to account for dead space between pixels. The camera 

was connected to a framegrabber board in a Macintosh PowerPC 8100/100AV. The images 

were recorded and displayed with MacPhase by Otter Solution, an image capture, analysis 

and visualization software package. 
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The target simulation monitor used in this demonstration is an AppleColor™ High 

Resolution RGB monitor. Each pixel of an RGB monitor is a cluster of three phosphor 

dots: a red, a green and a blue. All colors displayed on the monitor are a combination of 

these three basic colors. For instance, white is equal amounts of all three, bright yellow is 

equal amounts of red and green, pink is blue and red, and turquoise is blue and green. 

Adobe Photoshop™ is a software program which allows precise selection of text colors 

and was used to create the display target. The words AFMC ROME LAB were spelled out 

in Photoshop™ on a black background. The color picker was used to select 100% blue font 

color for the AFMC, and 100% green and red for the ROME and LAB respectively. Figure 

2.3 is an example of the color picker window in Adobe Photoshop™ shown here with 

100% blue for the AFMC text. 

Figure 2.3: Example o 
the blue AFMC target. 

the color picker window in Adobe Photoshop™ for 

Figure 2.4 shows the relative spectral emission curves of the red, green & blue 

phosphors. The general wideband spectral emission curves for the three phosphors; blue 

P22B, green P22G and red P22R [Fink 1989]. Experimental characterization of the 

monitor's spectral radiance was performed with an Oriel grating monochrometer and 

Newport power meter . This characterization confirmed the wide band spectral emissions 

of the blue and green phosphors. However, the red phosphor emitted in narrow lines, with 

two strong red lines, 625 and 617 nm, a few orange lines around 594 nm and even a few 

blips in the green region. Since the red emission differed so greatly from the textbook 
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P22R spectral curve, both are plotted in Figure 2.4. Unsuccessful attempts were made to 

verify the spectral radiance of the monitor with the manufacturer. The line nature of the red 

could indeed be from the P22R phosphor or a possible coating or filter on the monitor 

screen, and the lines in the green region could be from misalignment of the electron beam 

accidentally exciting the green phosphor dots. In any event, the band and line emission of 

this monitor makes an excellent demonstration target. 

The horizontal curve in Figure 2.4 is the DOIS minimum detection threshold. DOIS 

is able to detect a faint green, an orange and the two strong red lines of the red phosphor 

and the continuous wideband emissions of the blue and green. 

Monitor Spectral Curve 

400    450    500    550 

Wavelength [nm] 

600 650 

Figure 2.4: Phosphor emission curves for red (P22R), green (P22G), and 
blue (P22B) phosphor, the measured blue and green agree with wideband 
textbook curves however the measured red differs dramatically. 

Spectral images of the monitor taken with DOIS are shown in Figure 2.5. These are 

raw (256 x 256) images, displayed without any processing. The images depict the band 

emission of P22B, P22G and the line nature of P22R. Scanning from 400nm to 650nm the 

blue AFMC is present alone (a) from 400nm to 490nm, at 490 the green ROME cuts on 

and both AFMC and ROME can be seen in varying intensities (b) until the blue falls off 

completely at 540nm. The green ROME is continually present until 595nm. The intensity of 
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Figure 2.5: Spectral images recorded with 
DOIS. The target is text displayed on an 
AppIeColor™ high resolution RGB monitor. 

(a) A, = 452 nm, blue AFMC, mid blue focus. Blurring 
is from the wide band emissions of P22B. 

(b) X = 520 nm, green ROME, mid green focus with the 
blur from the band emissions of P22G. Note that 
corresponding to Figure 2.4, P22B is still emitting. 

(c) X = 594 nm, green ROME and red LAB. Both P22G 
and P22R have slight emissions at this orange line. 

(d) X = 617 nm, red LAB. First strong P22R line with a 
halo from 625 nm line. 

(e) X = 625, red LAB. Strongest P22R line. Note that 
P22G is completely cutoff. 
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the red LAB pops in and out as the scan progresses from 540nm to 650nm. A very dim 

LAB shows up at 542nm, then again at 594nm as in (c). It is absent until 615, with a crisp 

focus at 617 and 625nm, finally disappearing at 630nm. 

2.2.1 Blue Background Demonstration 

The monitor demonstration was repeated with a blue background instead of the 

black. This simulates a scenario with a target surrounded by a bright background (the sky). 

Figure 2.6: Images from green ROME and red LAB on a blue background 
(a) blue focus (b) green (c) red. 

As shown above, DOIS is able to distinguish the targets. The defocused blue light 

adds to the noise floor and decreases the SNR. Notice that the green ROME is clear even 

though the blue phosphor is still emitting in that region. 
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2.3  Continuous Magnification 

Recall from Figures 1.5 and 1.6 that the magnification changes with wavelength. 

Since the CCD pixel configuration is fixed, the image cube is recorded with non-uniform 

sampling. This creates problems in registering target information between spectral slices 

and limits the accuracy of image reconstruction algorithms. 

2.3.1  Post-detection image resampling 

To compensate for the changing magnification the image cube can be resampled to 

approximate constant magnification. Illustrated in Figure 2.7, a pixel footprint or field-of- 

view (FOV) is defined at the smallest magnification. Each spectral image is then resampled 

by integrating over the same pixel FOV, Qpixe]. 

red focal plane blue focal plane 

Figure 2.7: Define a pixel footprint Qpixel. 

A 
"■pixel Q.. ,= pixel 2 

^•smallest 

o     _ \ixd _ integration area 
z, z2 

~     _ I0\im x 10|im _ integration area 
*"' ~      20cm2       "        iÖ^m1 

,2 

(2.4) 

(2.5) 

(2.6) 

(2.7) integration area = 225u.m2 = 1.5pixels 

In order to form a constant magnification image cube with each spectral image 

having 256x256 spatial pixels, the red image at z=20cm is recorded with 256x256 and the 
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blue image at z=30cm will need to be recorded with 384x384 pixels, then interpolated to fit 

the 256x256 spectral slices of the image cube. 

Problems can arise with this technique. Resampling the detected image cube 

requires averaging a non-integral number of pixels. This can cause blurring of edges and 

inaccurate pixel registration. A more accurate optical method of obtaining an image cube 

with constant magnification is presented in section 2.3.2. 

2.3.2 Optical designs for constant magnification 

A second approach to DOIS imaging with constant magnification is a redesigned 

optical train. A refractive lens is added between the DOE and CCD to relay and magnify the 

DOE images [Lyons 1997]. The relay lens is the scanned element, and its position dictates 

the spectrum of the recorded image. 

Figure 2.8: Relay DOIS design with minimal magnification change. 

Shown in Figure 2.8, the total tube length or optical train length, T, is held 

constant. The DOE still performs the dispersion and forms an image space, however a 

refractive, non-dispersive lens is placed after the DOE image space relaying the DOE 

images to the CCD camera. The images formed by this intermediate lens on the CCD will 
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be erect and the spectra will depend on the lens' position, /, and the target's object distance, 

sotarger The following equations derive the relationship between spectra and lens location. 

Starting from equation (2.2):       X = Xjd 

f   1 1    ^  +  
V, SiDOE        ^otarget J 

SiDOE ~ '      So!ens 

olens 

f   y       J lens  Hens 

Hens      J lens 

= T-l Hens 

c — 
olens 

JiDOE 
l       flenS(J-l)   _lT-l2-2fleJ-flmJ 

~~*— Jlens *—l — flms 

* = Kfa 
T-l-LnS + ■ 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 
11        I 2jknJ.       flensT       ^otargety 

The selected wavelength X is calculated in equation 2.13 from the DOE design constants 

Xfd, the tube length T, the focal length of the relay lens y^, the target's object distance 

somrget> and the lens position /. 
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Figure 2.9:   Magnification  change vs.   wavelength   for original,   relay  and 
zoom   designs. 

The change in magnification verses wavelength for this relay design is plotted in 

Figure 2.9 along with that of the original design. Notice that although the magnification 

isn't constant, the change over the entire spectral band is substantially reduced to less than 

10%. To further improve the changing magnification, the relay lens can be replaced with a 

pair of lenses forming a zoom lens, shown in Figure 2.10. The constant magnification of 

the zoom lens design is shown as a dotted line in Figure 2.9. 

550 700r 

Figure 2.10: Zoom DOIS design with constant magnification. 
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3. DIFFRACTIVE OPTICAL ELEMENTS 

The three main considerations in designing an optical system are cost, weight and 

performance. Diffractive optical elements (DOEs) have the potential to improve all three. 

DOEs have a spectral dispersion inversely proportional to wavelength, whereas refractive 

optical elements have dispersion proportional to wavelength. Typically lens designers 

combine these dispersion characteristics to obtain an achromat [Ward 1971, Stone 1990]. 

However in this system the DOE dispersion is used alone, and exploited to create an 

imaging spectrometer. 

3.1 Fresnel Zone Plate 

The potential usefulness of diffractive optical elements has been known for years. 

[Miyamoto 1961, Lesem 1969]. The problem with implementing them in real systems has 

been the lack of a process that can design and reliably produce the elements to the required 

tolerances necessary for high diffraction efficiency. Figure 3.1 (a) shows an example of a 

Fresnel zone plate phase profile needed to achieve high efficiency. The 2TC phase depth 

corresponds to a material etch depth of about 2um for midinfrared radiation and l|im for 

visible. Several research teams are exploring techniques to produce this continuous phase 

profile with laser writers or greyscale masks [Morris 1994, O'Shea 1994]. However, it is 

common practice to approximate the continuous phase profile by quantized discrete phase 

levels [Goodman 1970, Swanson 1989]. Figures 3.1 (b), and (c) show the Fresnel zone 

plate phase profile quantized into two and four phase levels, respectively. The two level 

profile results in an efficiency of 40% and the four level profile results in an efficiency of 

81%. For most systems, it is necessary to achieve diffraction efficiency of 99% or greater, 

this can be achieved with 16 levels created with 4 masks. Figure 3.2 shows the diffraction 

efficiency as a function of the number of phase levels and required masks. Since this 
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dissertation is only meant as a proof-of-concept, 40% is tolerable and a 2 level phase plate 

was fabricated with one mask. 

FRESNEL ZONE PLATE PHASE PROFILES 

E 
P 
T 

o 

2n 

H(o n^^^^*^g%__    Hi!      Im. 

RADIAL DISTRIBUTION 

100% 

40% 

81% 

Figure 3.1: Fresnel zone plate phase profiles. 

MULTI-LEVEL ZONE PLATE 
1ST ORDER DIFFRACTION EFFICIENCY 

100 T 

3 4 5 6 7 8 

NUMBER OF PHASE LEVELS 

2 3 
N UMBER OF MASKS 

Figure 3.2: Diffraction efficiency vs. number of masks and phase levels. 
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3.2 DOE design and characteristic equations 

Figure 3.3 Ray trace that determines zone radii 

The zones of the Fresnel Zone Plate are defined when the optical path difference 

between adjacent zones is A/2, causing constructive interference, shown in Figure 3.3 and 

characterized by equation 3.1 [Hecht 1989]. From Pythagorean's theorem, the radius of the 

m  zone, r , is: 

r2+f m       J f + m- 

IftnX + m'1 

,2, 
(3.1) 

where m is the zone counter, rm is the value of the mth radius, A is the design wavelength, 

and f is the primary focal length, corresponding to the 1st diffractive order. 

since m— « f 
2 (3.2) 
r2

m = fmX 

Solving for f: 
/ = mX (3.3) 
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The zone radii are calculated to focus a particular design wavelength, Xd, at a design focal 

length, fd. 

Once the DOE is fabricated with these fixed zones determined from the design parameters, 

the focal position at wavelengths other than the design wavelength can be found from 

substituting equation (3.4) into (3.3): 

mX       mX 

m KU 
X (3.5) 

This wavelength dependence is seen as chromatic aberration where the effective 

focal length is inversely proportional to wavelength. Adding it to the Gaussian lens formula 

yields the diffractive optic 1st order imaging equation: 

_J___1 }_ = A 1 
Si(X)    f{X)    s0    XJd    s0 (3-6) 

where s0 is the object distances and s^X) is the spectral image distance. 

A critical figure of merit for this application is the first order diffraction efficiency, 

Tip It is dependent on the etch depth, the operational wavelength and the number of phase 

levels etched into the grating. The diffraction efficiency can be calculated from equation 

(3.7) below, and is plotted in Figure 3.4 for a 2 level zone plate and a high efficiency 16 

level DOE [Swanson 1989]. 

■n; 

sin 7C 
V 

(n-l)d 
-m 

f(n-l)d 
K\ -—— m 

sin 7t 
(n-l)d W 

7C 
(n-l)d 

IN (3.7) 
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where: d=Xd/(n-l) 

T| is the diffraction efficiency 
n is the refractive index of the substrate 
d is the etch depth 
m is the diffracted order of interest, typically m=l 
A.d is the design wavelength 

X is the operational wavelength 
N is the number of levels in the grating, DOIS prototype is 2 

1st order 

0.2       0.4       OB       OB       1.0       12       1.4       1.6       1.8       2.0       2.2       2.4       2.6      2.8       3.0 

Figure 3.4: Diffraction Efficiency vs. Wavelength for N=2 and N=16. 

The curve in Figure 3.4 is useful in selecting the proper design wavelength for 

applications where it is important to have high efficiency through a spectral range and not at 

just one wavelength, such as in DOIS. Note that the efficiency falls off much faster for 

smaller wavelengths, therefore Xd should be selected near the shorter wavelength end of the 

range not simply the center wavelength. 

An interesting note is that the peak for the two level grating is not at X/Xd=l but at 

1.3. This leads to the conclusion that calculation for etch depth, d, which is formulated for 

a continuous grating, isn't optimal when you have only 2 levels. 
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3.3  Fabrication  of Multilevel Profiles 

Swanson and Veldkamp developed a scheme that can accurately and reliably 

produce these multilevel diffraction surfaces with diffraction efficiencies in excess of 90% 

[Veldkamp 1989]. Their technique takes advantage of technology the integrated circuit 

industry has developed for the miniaturization of circuits. Three essential tools that were 

developed are electron beam pattern generators, reactive ion etchers, and mask aligners. E- 

beam pattern generators are capable of drawing binary amplitude patterns with feature sizes 

of 0.1 \im and positioning the features to an even greater accuracy. Reactive ion etchers can 

etch a binary profile to depths of a few microns with an accuracy on the order of tens of 

angstroms. Mask aligners are used routinely to align two patterns with an accuracy of 

fractions of a micron. These are key technological advances that make it possible to 

produce the high quality diffractive phase profiles. 

Electron beam pattern generators produce masks that have binary transmittance 

profiles. A thin layer of chrome on an optically flat quartz substrate is patterned by the e- 

beam machine. The input to the e-beam pattern generator is a file stored on a computer tape 

and properly formatted for the particular machine. For multilevel diffractive elements the 

number of phase levels in the final diffractive element constructed from these masks is 2n, 

where n is the number of masks. For example, only four masks will produce 16 phase 

levels, resulting in an efficiency of 99%. 

The binary amplitude masks produced from the pattern generator are actually low 

efficiency zone plates themselves, but are used to construct the multilevel optical element. 

The fabrication process using the first mask is shown in Figure 3.5 . The optical surface on 

which the diffractive profile is to be etched is coated with a layer of photoresist. The e- 

beam generated mask is then placed over the substrate and illuminated with a standard UV 

photoresist exposure system. The photoresist is then developed, resulting in a properly 
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patterned layer of photoresist. The photoresist acts as an etchstop for the reactive ion 

etching. 

BINARY ELEMENT FABRICATION 

•BINARY AMPLITUDE MASK 

^-PHOTORESIST 

"«-SUBSTRATE 

0 EXPOSE AND WET ETCH 

JJ REACTTVE ION ETCH 

u 
rri'T^flJHUHUr 

REMOVE PHOTORESIST 

BINARY PHASE ELEMENT 

Figure 3.5: Photolithography multilevel fabrication algorithm. 

Reactive ion etching is a process in which an RF electric field excites a gas, 

producing ions. The ions react with the material of the substrate and etch away the surface 

at a controlled rate. The reactive ion etching process is anisotropic, so the vertical side walls 

of the discrete phase profile are retained. Typical etch rates are on the order of 100Ä to 
o 

200A per minute. As an example, the required first-level etch depth for a BK-7 substrate to 

be used at a wavelength of .588 urn is 1.176|im. The necessary etch time is on the order of 

an hour. Numerous elements can be etched simultaneously. After the pattern of the first 

mask has been etched into the substrate, any residual photoresist is stripped away. 

For multilevel structures the same procedure is then repeated on the optical 

substrate, only this time the second mask and etching to one-half the depth of the first etch. 

For the second and subsequent masks an additional complication arises. These masks have 

to be accurately aligned to the already existing pattern produced from the first etch. 

44 



Commercially available mask aligners are capable of aligning two patterns to a fraction of a 

micron. This accuracy is sufficient to retain diffraction-limited performance for most 

multilevel structures designed to operate in the visible and infrared. 

This technique was used at The Nanofabrication Facility at Cornell University to 

fabricate a DOE lenses for a DOIS prototype [Lyons 1994].. The DOE is a BK-7, 2 level 

Fresnel Phase Plate with approximately 2200 zones and a minimum feature size of 2.5ftm. 

Figure 3.6 is two scanning electron microscope (SEM) photos of the rings. 

Figure  3.6:   SEM  photos   of  DOE rings,   (a)   Top   view,   feature   size   is 
=10(im. (b) Side view of the outermost rings, feature size is « 2.5\im. 
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3.4 The Incoherent Point Spread Function 

The key parameter for a successful simulation and reconstruction is an accurate psf, 

h. Since the equivalence between DOEs and lenses has been established [Sweatt 1979], the 

three-dimensional psf of a lens can be adapted to the DOE. The theoretical diffraction 

limited and experimentally measured intensity point spread functions are presented below. 

3.4.1 Diffraction limited incoherent psf 

Born and Wolf describe the normalized three-dimensional distribution of intensity 

in the neighborhood of focus, I(v,u), for a rotationally symmetric optical system as a 

convergent series of Bessel functions with the two equivalent expressions [Born 1989]. 

h(v, u) = 

h(v, u) = I(v, u) = (-) ft/,2 (v, u) + U\ (v, u)l 
\u) J 

1 + V0 (v, u) + Vl (v, u) - 2 V0 (v, u) cos\ \ \ u + — ] I - 2 V, (v, u) sink u + — 
V       " J 

(3.8) 

(3.9) 

tf>,«0 = Z(-i)'H    J~M 
where: s=0 

«+2.9 

/    \ n+2s (3.10) 

K(v.«) = S(-lW-       7B+2l(v) 
s=0 

lizia^ 

\uj 

u = 
\fj 

or Ar/ 
In \a 

v = 
In 

T 
U^ 

r = 
2na 4* 2+y2 or     r = Af/ 

- Iv 
V«. 

(3.11) 

(3.12) J)      ¥  v        " In 

Figure 3.7 is a density plot of equation (3.8), in terms of the dimensionless 

variables u and v, and the scaled dimensions r[\im] and z[^im] calculated from the specific 

parameters of the DOIS  prototype design.  In three-dimensions  h(v,u)  is circularly 

symmetric about the optical axis, u. When evaluated with specific design parameters, X, f, 
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and aperture radius, a, the intensity point spread function will be scaled but maintain the 

fundamental spheroidal form. 

Figure 3.7: A density plot of the diffraction limited intensity psf, h(v,u), it 
is rotationally symmetric around the u axis. 

For graphical analysis it is appropriate to look at three different views or cross- 

sections. The first is a two-dimensional spatial psf in the plane perpendicular to the optical 

axis at focus, h(v,0). Shown in Figure 3.8, this is a cross-section of an infocus 

monochromatic point source. It displays the expected amount of image degradation or 

blurring applied to spatially adjacent coordinates and is a limiting factor in determining the 

spatial resolution. Substituting u=0 into equation (3.8): 

"27, (vy2 

h(v,0) = (3.13) 
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Figure 3.8: A theoretical plot of h(v,0) in the focal plane. 

When rotated around the optical axis this pattern is known as the airy disk. The 

majority of the intensity falls between the first zeros of the Bessel function at 

Ar=±1.22W#. For the F/4 DOE designed for the prototype 4r«5.7jim. This is smaller 

than the 10u.ni pixels of the CCD detector. Therefore, once detected, the infocus diffraction 

limited incoherent psf will look like a delta function. 

The second view of interest is an intensity plot through focus, h(0,u), along the 

optical axis, normally considered the depth of focus! Since DOIS interprets z as 

wavelength, h(0,u) represents the expected amount of blurring applied to adjacent spectral 

slices. It is the limiting factor that determines the spectral resolution and bandwidth. 

Substituting v=0 into equation (3.9): 

(3.14) 

Figure 3.9: A theoretical plot of h(0,u) along the optical axis. 
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In Figure 3.9, the first zero in intensity along the axis is at Az=±8XF/#2. For the 

prototype Az = ±75/im, predicting a theoretical incoherent diffraction limited spectral 

resolution of AX^.256\im. 

The third view of the psf is along the geometrical boundary, where u=v, Calculated 

in equation (3.15) and plotted in Figure 3.10, h(v,v) dictates the blur seen from coordinates 

that are different in both spectra and spatial location. Substituting u=v into equation (3.9): 

h(v,v)- 
l-270(v)cosv + 7» (3.15) 

/ 

-4K \*— 

•2it\ 
/A     f 

/ u 
\    /           U 

2JI  \\ 

4it\ 

6^V 

Figure 3.10: A theoretical plot of h(v,v) where u=v. 

3.4.2 Experimentally measured incoherent psf 

Unfortunately, because of aberrations, noise and other errors, the blurring 

encountered in real systems is greater than predicted by the diffraction limited intensity 

point spread function. Another approach to obtain the three-dimensional incoherent psf is 

by direct experimental measurement using a laser illuminated pinhole to simulate a 

monochromatic point source. The following discusses the validity of simulating the 

incoherent intensity psf with images of a coherent pinhole. 

3.4.2.1  Coherent vs.  Incoherent Imaging 

Coherent imaging is described by the amplitude convolution equation [Goodman 

1968]: 
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Um{xi.y,) =jj %• -x0.yi -y0pobi(xo>yo)dx0dy0 (3.16) 

where Uim represents the amplitude distribution in image space from the amplitude 

distribution in object space Uobj, and h(x(,y) is the coherent or amplitude impulse 

response. However it is actually the image's intensity Iim which is detected: 

coherent: /*,(*,-, ?/) = xi - xo> yt - y0pobJ(x„, y0)dx0dy0 (3.17) 

Incoherent imaging is a linear mapping of intensity described by the intensity 

convolution integral: 

incoherent: ijx.,y.) = jj|%. -Xg,y. -y0)
2Iobj(x0,y0)dx0dyo (3.18) 

where Iobj is the object's intensity distribution equal io\Uobj\
2, and/z(jc,.,y.) is the 

incoherent or intensity impulse response, previously represented by hfx^yj. 

To find the impulse response, the input object Uobj(x0,yJ is a perfect point source 

represented by a delta function, S(x0,yJ. Substituting the delta function into equation 

(3.17) for coherent imaging yields: 

coherent: (3.19) 
4,(*.-' yd = jjKxi - xo> yt - y0)s{x0, y0)dx0dy0 

2 

= Kxi>y,) 

Likewise for incoherent imaging, substituting the delta function into equation (3.18) 

where Iobj{x0,y0) = \ö(x0,y0f = S(x0,y0): 
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incoherent: 

2 

U*.-'yi)=l\ %• - x°'y> ~ y°) ö(x°' yofady,, 

Rxi.yi) 

(3.20) 

Showing that if the input object was indeed a delta function point source, the 

recorded  intensity   would  represent  the  incoherent  or  intensity   impulse   response, 

h(xey)= h(xityi) , of the system. However in practice every target has some finite width, 

thus the perfect delta function point source does not exist. 

The implications of the difference between coherent and incoherent illumination can 

be seen if the object being imaged is a pair of delta function point sources separated by the 

Rayleigh distance denoted by xr [Gaskill 1978]. If the two sources are incoherent, the total 

image irradiance is simply the sum of the image irradiance distributions of the individual 

sources: 

incoherent: /,m(x,, v,) = h(xt, y,)   + h(xt - xr, y,) (3.21) 

On the other hand if the two sources are mutually coherent, the overall image 

irradiance is given by the square modulus of the sum of the amplitude responses of the 

individual sources. If the phase difference between the two sources is O than the irradiance 

may be expressed as: 

4, (*,-. y,) = %. y,)+**% ~ xr> yt) 

coherent: (3.22) = h(xi,yi)   +h(xi-xr,yi) 

+ e-i*h{xi,yi)h*{xi-xr,yi) + ei*h*{xi,yi)h{xi -*„?,) 

Notice that this is the incoherent result of equation (3.21) with additional interference 

terms. It is these interference terms which create the difference in images formed from 
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coherent and incoherent targets and the difference between the images of a laser illuminated 

pinhole and the desired incoherent intensity point spread function. 

Reynolds et ah, depict the difference between the coherent and incoherent 

illumination of a slit object in the book, The New Physical Optics Notebook: Tutorials in 

Fourier Optics, which is reprinted in Figure 3.11. The theoretical intensity distribution of 

the coherent and incoherent images of a slit is shown in (a), notice the coherent illumination 

fringes caused by the interference terms of equation (3.22). 

COHERENT UdUMNATON 
WCOHSWITIUJUMNM1CN ÜÜ 

(a) (b) 
Figure 3.11: (a) The theoretical intensity distribution in the coherent and 
incoherent images of a slit, (b) the recorded image of a coherent slit, 
(reprinted from Reynolds 1989, page 115) 

For this dissertation, the image distribution from a coherently illuminated 5u,m 

diameter pinhole is detected, which is a circularly symmetric version of the slit. The 

diffraction limited intensity distribution in the coherent and incoherent images of various 

pinholes was calculated using the diffraction limited coherent and incoherent impulse 

responses from Figure 3.12. 
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x[um 

(a) The coherent or amplitude impulse responseh[xt, v,). 

x[Um] 

(b) The incoherent or intensity impulse response Mx^y) = h(xt, yt) 

Figure 3.12: The diffraction limited impulse response for (a) coherent and 
(b) incoherent illumination. 

Figure 3.13 shows cross-sections of various magnified pinholes in the left column 

(MT=-.l), alongside the resulting diffraction limited intensity distributions from coherent 

and incoherent illumination plotted together in the right column. Notice that for a large 

löO^im pinhole, Figure 3.13(a), the distribution resembles the slit image of Figure 3.11(a). 

The incoherent image (thin line) is a smoothed, slightly expanded version of the pinhole's 

rectangle function, where as the coherent image (bold line) has additional ringing about the 

incoherent distribution due to the interference terms of equation (3.22).  For smaller 

pinholes such as the 20|Lim in (d), the image distribution looks less like the slit image and 

more like the incoherent intensity impulse response. For the 5|j,m pinhole used in the 

experimental psf measurement shown in (e), the intensity distribution matches the intensity 
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Figure 3.13: Cross-sections of various magnified pinholes, MT=-.l, (left column), alongside 
the resulting diffraction limited intensity distributions from coherent (bold line) and 
incoherent (thin line) illumination plotted together (right column). 
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impulse response and the difference between the coherent and incoherent illumination is 

negligible. 

Another experimental consideration is that the detector pixels are lOum wide. This 

creates a scenario where all of the distributions of Figure 3.13 are unresolved. The 

diffraction limited images of pinholes smaller than lOO^im fall entirely within the 

boundaries of one pixel. Therefore, the interference effects of the coherent source aren't 

resolved and the coherent illumination can accurately simulate incoherent illumination. 

3.4.2.2  Experimentally  measured results 

A set of images of the coherent illuminated 5um pinhole taken at different levels of 

defocus is shown in Figure 3.14. For this data set the CCD was stepped along the optical 

axis with a step size of dz=0.125 mm. This series shows the effect of aberrations on the 

incoherent point spread function. The predominate aberration is spherical, visualized as 

lack of symmetry about best focus. The spherical aberration caustic creates a hard ring of 

intensity on the marginal side of focus and a softer, more evenly distributed blurring on the 

paraxial side of focus. Theoretically the coherent source will causes interference fringes on 

top of the aberrated intensity distributions, however again they are unresolved by the lOum 

pixels and average to an appropriate representation of the incoherent intensity impulse 

response. 

marginal <- best focus -> paraxial 

Figure   3.14:   Series   of   images   (32   x   32   pixels)    of   a  5   |xm   pinhole 
illuminated by a HeNe laser recorded with DOIS through focus. 

A measured 3D incoherent intensity point spread function was assembled from 

stacking 32x32 pixel images of a pinhole illuminated with a 542nm GreNe laser at 32 

stages of defocus. The incremental step size was dz=0.125mm, corresponding to a 
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wavelength step size cR=0.25nm. A cross-section of the psf cube, h(r,z), is plotted in 

Figure 3.15 as (a) a density plot and (b) a three-dimensional plot. The 3D distribution is 

circularly symmetric about the r=0 optical axis. 

lamda[nm] 

0.16 

0.08 

r [mm] 0 

-0.08 

psf c 

r[nral] 

-0.16   

-2 -1 

(a) (b) 
Figure 3.15: The experimentally measured intensity point spread function 
h(r,z), (a) a density plot (b) a 3D plot. 

The measured spectral intensity point spread function, h(z(X))=h(0,u) , is plotted in 

Figure 3.16 with the theoretical h(z(l)) determined from both geometric and diffraction 

limited theory. The z axis labels include the spectral conversion. The full width at half max 

(FWHM) represents the spectral bandwidth of DOIS. The FWHM diffraction limited 

bandwidth is A?i=0.06nm and the measured spectral bandwidth is AA,=1.5nm,  both 

determined at >,=542nm. See Chapter 5 for more on the experimental characterization of 

DOIS. 
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Figure 3.16: The theoretical and measured on-axis/spectral intensity psf, 

h(z(k)=h(0,u). 

The three-dimensional intensity psf of Figure 3.15 can be Fourier transformed to 

yield the three-dimensional optical transfer function (OTF) shown in Figure 3.17. The OTF 

is required for several of the digital image restoration techniques in Chapter 8. It is 

important to note that there is a significant difference in the behavior of the experimental 

and theoretical OTFs. Thus it is extremely important to use the experimental OTF wherever 

possible. As there is probably less difference between similar DOE lenses than there is 

between experimental and theoretical functions, it is reasonable to simply interpolate from 

experimental curves to correct for changes in the design parameters. 
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Figure 3.17: The experimentally measured OTF(p,Q, (a) a density plot (b) a 
3D plot. 
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4. THREE DIMENSIONAL IMAGE FORMATION WITH A 
DIFFRACTIVE OPTICAL ELEMENT (DOE) 

The Diffractive Optic Image Spectrometer (DOIS) approach to image spectrometry 

has been broken into the series of coordinate transformations and operators that are 

depicted in the flow chart of Figure 4.1, [Sitter 1990, Frieden 1967, Barrett 1981] The top 

box represents imaging with the diffractive optical element (DOE) in DOIS and is described 

in section 4.1. The DOE performs two operations, Gaussian imaging with a Spectral 

Gaussian Coordinate Transform and image degradation characterized by Three-dimensional 

Shift Variant Transfer Theory. The image space is then sampled by the CCD camera. 

The acronyms used below include coordinate transform (CT), shift variant (SV) 

and shift invariant (SIV). 

object =$• obj(x0, y0, X0) at z0 

•U- Spectral Gaussian CT 

Gaussian image => o(x, y, z) 

li- 3D SV Transfer Theory 

image => i(x], y,-, zt)     

<—narrow waveband I 
approximate"isotome 

full spectrum-» 

' shift invariant imaging 

•LL SIV Reconstruction 

Gaussian image => o(x, y, z) 

■11 Inverse Spectral Gaussian CT 

reconstructed object => objr{x0,y0,X0) atz0  

lforf shift invariant model for Tshift variant imaging 

U Isotome CT 

isotomic image => f (x/, y,-', z,') 

U SIV Reconstruction 

isotomic Gaussian image => d (x! ,y' ,z') 

•U Inverse Spectral CT 

reconstructed object => objr (x0, y0, X0) at z0 

Figure 4.1: A flow chart depicting the manipulation of the three- 
dimensional object cube as it is imaged, and reconstructed. 

Image processing can be applied to reconstruct the object under one of two 

conditions, shown as two possible paths. Selection of a path will depend on the extent of 
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the waveband desired. The left path can be taken within a narrowband image volume called 

an isotome and is discussed in section 4.2. In an isotome the point spread function (psf) is 

approximately unchanging and is considered shift invariant for modeling and reconstruction 

algorithms. It will be shown in section 4.2.2 that achievable isotomes have a bandwidth up 

to 20nm in the visible range prototype built for this dissertation. 

When the spectra of interest includes the entire visible range it is necessary to 

perform the coordinate transform (CT) shown in the right path of Figure 4.1 and discussed 

in section 4.3. The CT converts the image space with a shift variant (SV) psf into an 

alternate coordinate system with a shift invariant (SIV) psf. The coordinate transform 

designed for this system is called the Isotome Coordinate Transform. Once applied, 

reconstruction algorithms using linear SIV filtering techniques can be applied to obtain an 

isotomic Gaussian image. The final step is to again transform the data. This time an Inverse 

Spectral Coordinate Transform is used to reconstruct the object. 

4.1 Imaging with a Diffractive Optic 

Although one normally thinks of a diffractive optical element (DOE) as a 

monochromatic imaging device, they can be used to image polychromatic sources. Sweatt 

has shown a mathematical equivalence between a diffractive optical element and an ultra 

high index lens [Sweatt 1979]. The DOE performs as a lens with severe chromatic 

aberration. It is this aberration which provides the dispersion for DOIS. 

It is important to remember that all imaging systems are imperfect, introducing 

aberrations which distort the image. Although high-quality, diffractive/refractive optical 

kinoforms can be designed to minimize image distortion and aberrations such as spherical 

and coma [Stone 1988], the DOIS spectral sectioning technique is plagued with defocus 

from the chromatic aberration. This results in errors in the recorded spectral slices which 

have to be corrected with post-detection image processing. 

60 



.pt(VA?0 
• pttt,) 

•pt(VAX) 

psf(X,-AX) 
psf(V 

psf(X,)     psfCXj)        ps^Xg) 

psf(y"l 
psf(Xj-AX) 

figure 4.2: A diffractive optical element imaging various spectral point 
sources. 

A good place to start this discussion is to consider imaging a point source. Figure 

4.2 shows a DOE imaging point sources of various wavelengths. Notice that the DOE does 

several things. The spectra is spread out along the optical axis and the magnification is 

different in each focal plane. These functions are described by  Gaussian imaging. 

Additionally, the images of the point sources are not perfect delta functions. Each is a 

spheroidal intensity distribution around the "ideal" Gaussian image point. This blurring is 

described by  three-dimensional transfer theory.  The spheroid intensity  distributions 

represent the three-dimensional point spread functions of the DOE, and cause both spatial 

(transverse) and spectral (longitudinal) blurring. 

4.1.1 Spectral Gaussian Coordinate Transform 

The imaging can be represented by a coordinate transform, performing both a 

scaling function and transforming the spectral data into a spatial coordinate, z. Starting with 

the imaging equation: 

1 _-J_   I 
Jo ^0 ^ 

(4.1) 
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where f0 is the focal length at Xg, z0 is the object distance and z is the Gaussian image 

distance. Introducing the diffractive optic spectral response [Swanson 1989]: 

f _/A_*> 
Jo (4.2) 

0    A.    K 

D is the DOE design constant where fd is the design focal length at the design wavelength, 

Ad. Substituting (4.2) into (4.1) results in the diffractive optic imaging equations: 

ö    z„    z 

A =D <=>    z = 
\Kz0-Dj 

(4.3) 

(4.4) 

The conversion between spectra and image distance, z, at a fixed object distance, z0, is 

described by equation (4.4). 

The transverse and longitudinal magnification, MT and ML, are: 

Mr=-— = — 
D 

and Mt = 
(    V 1 z ' 

vz«y 
= -M; (4.5) 

Z0 KZo~D 

Notice that the magnification is dependent on the design constant, D, and the fixed object 

distance, z0, leaving wavelength, \, as the only variable. 

The DOE transforms the object objr(x0,y0,X0) at z0,  into a Gaussian image, 

o(x,y,z), with the following Spectral Gaussian Coordinate Transform: 

o(x, y, z) = obj(MTx0 ,MTyB,-MTz0) 

\     f (f 
o(x,y,z) = obj 

-D 

KKZ0-D 

\    f 
x -D 

\KZo-D. 
y0' 

D 

\Kz„-Dj 
z, 

(4.6) 

(4.7) 
J 
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4.1.2 Three-dimensional Transfer Theory 

As previously mentioned, the actual image of a point source formed by a DOE is a 

blurred version of the Gaussian point, seen in Figure 4.2. The blurring is represented by 

Three-dimensional Transfer Theory, based upon the assumptions of (1) superposition and 

(2) stationary. It is well known that these conditions are met in two-dimensions by an 

object which radiates incoherently from an "isoplanatic" area of an object plane. These 

conditions can be extended to three-dimensional imaging within "isotomic" volumes of the 

object space [Frieden 1967]. Frieden's theory is extended below to describe the DOIS 

three-dimensional spectral/spatial system. 

The theory of superposition implies that since the object is assumed to be 

incoherent, the intensities from different elements of the object, o(x, y,z), are additive. The 

total intensity in the image, i(xn v,,z,), is given by: 

Kxi»yi'zi)= JIJ Kx>y'z>'xi'yi'Zi)°(x>y>z)dxdydz (4-8) 

where /I(JC,V,Z;JC,,V,,Z,) is the space variant incoherent impulse response or psf. This 

impulse response physically represents the intensity distribution in image space from the 

illumination by a monochromatic point source in object space. It is particularly important 

for estimating the image degradation caused by surrounding coordinates. The three- 

dimensional psf predicts cross-talk and blurring from coordinates both within the same 

spectral image and from surrounding spectra. 

Classical two-dimensional transfer theory defines an "isoplanatic" plane where the 

psf is slowly varying and approximately stationary. For DOIS an "isotomic" volume of the 

object or Gaussian image space, called an isotome, can be defined where the three- 

dimensional psf is dependent on the displacement from the Gaussian point and not the 

location of the Gaussian point itself, described by equation (4.9). 
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/i(x,y,z;x,.,y,,z,.) = h(x{ -x,y - y,z. - z) (4.9) 

Physically, this requires that the psf must remain invariant under changes in 

position of the Gaussian point. This will be true if each point within an isotome has 

essentially the same wave aberrations and magnification. 

Image space can be broken into several isotomic volumes, V. Each isotome, which 

represents a narrow waveband, can be treated by linear shift invariant filtering theory. If a 

particular spectral image or a narrowband spectral curve is needed, the detection and 

processing can be confined to an isotome following the left path of Figure 4.1. 

4.2 Isotomic Imaging in a narrow waveband 

Substituting equation (4.9) into (4.8), the way in which an arbitrary incoherent 

spectral image is distorted can be predicted from the resulting intensity convolution 

equation. It describes the convolution of the Gaussian image with the incoherent psf in an 

isotome. 

Kxi»>.-.*,■) = J J J Kxi -x>yt -y»*,- -*M*.y>z)dxdydz (4.1 o> 

in short hand notation: 

Kxi>y,-.Zi) = h(x,y,z)*** o(x,y,z) (4.11) 

Applying the Fourier Integrals: 

0(Z,yr,() = ] J ]o(x,y,z)e^»*>dxdydz 

I{Z,V,Q = J J ]i{xl,y,,zt)*^'+'»'*')dxldyidzl (4.12) 

//(&Vr,0 = J J ^{x^zY^^dxdydz 
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The Fourier transform of the psf, H(%, y/, Q, is called the optical transfer function 

(OTF), or in three-dimensional microscopy texts, the contrast transfer function (CTF). 

%WX) = H(^WX)0(^WX) (4.13) 

Here capitals are used to refer to the Fourier transforms and the convolution is now 

simplified to a multiplication. In matrix form, dropping the variables: 

I = HO (4.14) 

If the isotome object and psf are known, the image can be modeled with equation (4.14), 

finishing with: 

i = InverseFourier{I} 
(4.15) 

i(xt, V;,z() = InverseFourier[l(^,y/,Q\ 

This will simulate the image without the errors and noise introduced by detection. 

4.2.1   Reconstruction 

Within the isotome, if the recorded spectral images, i(x-,y,,z,), the object distance, 

z0 and the OTF are known, an Inverse Shift Invariant Filter and Inverse Spectral Gaussian 

Coordinate Transform can be applied to reconstruct the object, objr(x0,y0,Xo) at z0. The 

above transfer theory can be applied in reverse using: 

0 = HxI (4.16) 

o = InverseFourier{Ö} 

o{x,y,z) = InverseFourier{0(?;,yf£)j 

where I=I(%, y/,Q is the Fourier transform of the image, *'(.*., y,-,z,), and H'1 is the inverse 

of the OTF matrix which when applied as an inverse filter performs the required 

decon volution. 
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To convert o(x,y,z) into a reconstructed spectral/spatial object, objr(x0,yg,X0) at 

z0, the following Inverse Spectral Gaussian Coordinate Transform has been derived. 

atz„ obJr{xn,y0,K) = o 

obJr{x0,y0,K) = o 

1     1 
- + — 

Vz     ZoJ) 

z       z 

z0+z W 

V   ZZo    J) 

(4.18) 

(4.19) 

4.2.2 Define isotome bandwidth 

To determine which path of Figure 4.1 should be taken, it must be determined if the 

image cube, or bandwidth of the image cube, can be modeled as a shift invariant isotome. 

To define an isotome the invariance on h must be quantified [Frieden 1967]. Refer to 

section 3.4.1 for the theoretical description of the incoherent point spread function h.. The 

invariance over the isotome can be measured by the invariance of h(u,o) and h(0,v) under 

changes Az or AX. This can be quantified by the differential radial distance Ar=Rv to the 

first zero of h(v,0) in equation (3.13), and the axial distance Az= Zu to the first zero of 

h(0,u) in equation (3.14): 

Ar=R =+1.22A ^|or=± 
2a 

Az=zu =±n m or =± 

1.22z,.A 
2a 

2z,D 

(4.20) 

(4.21) 

recall that D is the design constant fd\,. The differentials Al^and AZU measure the variance: 

A^ = Az,.A 

AZ.. A^     AM 

Zi M 

(4.22) 

(4.23) 
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In practice, Frieden defines an isotome as a region where the magnification changes 

less than 10% (AML /ML<10%). Therefore, over small spectral regions or small amounts of 

axial translation the image space can be considered isotomatic and SIV linear filtering 

algorithms will hold. Using the differentials in equation (4.22) and (4.23), which are 

plotted in Figure 4.3, see that for a target at an image distance of zo>10f and a bandwidth, 

AX/k, up to 5%, that the variance AR/R<1% and AZ/Z<6%. This indicates that the 

conditions for an isotome hold within a spectral region up to a 20nm bandwidth. 

N < 
II 

DC **. 
DC < 

1.0% 

0.8% 

0.6% 

0.4% 

0.2% 

 A5nm 
 A10nm 
  A20nm 

< 
II 
N 
N < 

6% 

5% 

4% 

3% 

2% 

-- 1% 

0.0% -I 

-A5nm 
-A10nm 

A20nm 

-&%- 
700 600 500 

X[mn] 
40C 700 600 

(a) 
X[nm] 

(b) 

500 400 

Figure 4.3: The variance on (a) Rv, and (b) Z„, at zo=10fo. 

4.3 Full Spectrum Imaging 

The technique of section 4.2 can be applied to individual isotomes to model and 

reconstruct data from a narrowband source. However, when the spectra of interest includes 

the entire visible range, it is necessary to perform the coordinate transform shown in the 

right path of Figure 4.1, which creates a shift invariant model for shift variant imaging . 

Barrett and Sitter introduced a technique to model the shift variant blurring on three- 

dimensional images [Barrett 1981, Sitter 1990]. The model consists of a coordinate 

transformation of the object followed by a shift invariant blur operation, which is in turn 
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followed by a second coordinate transformation of the image. This technique can be 

rederived to apply to the reconstruction of the object when the image space is shift variant. 

Recall from equation (4.8), if an imaging system is not isotometric, it is modeled by 

the shift variant integral of the form: 

Kxi' y>> zi) = J J j h(x> y> z> xi' y» h)°(x- y> z)dxdydz 

where *'(*,,y,,z,) represents the image space distribution, o(x,y,z) is the Gaussian object 

distribution and /i(jc,y,z;x;,y.,z() is the space variant incoherent psf. Sitter showed that for 

incoherent imaging systems, there exist coordinate transformations from object space and 

image space to an intermediate space (which will be denoted by primed quantities) where 

the integral of equation (4.8) can be expressed as a convolution. That is, there exists a 

coordinate transformation from i(*«»>.■»*«) t0 *(*,•'.y/.z/) and from o(x,y,z) to 

o'(x',y',z') so that: 

*'(*,■'- yt '> z,-') = J J ]h'(x', y', z';x,', y.', z, ')o'(x', y', z')dx'dy'dz'        (4.24) 

where: K (x' ,y' ,z' ;x/ ,y.' ,Zi') = K (x/ -x' ,yt' -y' ,Zi' -z') (4.25) 

resulting in: 

'"(*,- '• Vi '< Z/') = J J ]h'(Xi •-x', yt '-y', z. '-z')o'(x', y', z')dx'dy'dz'       (4.26) 

where i [x- ,y. ,z-) and ö (x' ,y' ,z') are the coordinate transformed irradiance distributions 

and h' is the incoherent psf in the transformed space. 

4.3.1 Isotome Coordinate Transform 

A coordinate transform was derived for the DOE to transform the shift variant 

image space / to the shift invariant isotome V with the assumption that aberrations are 
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minimized and that magnification is the major cause of the space variance. The isotome 

coordinate transform applies an inverse magnification transforming a polygon shaped space 

with variable magnification into a unit magnification space pictured in Figure 4.4. 

.. 1 v 

Isotome CT 
-'A r' i 

z z' 

A zis vari able Az' is constant 

Figure 4.4: Visual representation of the isotome coordinate transform 
forming an image space with unit magnification 

In order to remove the variable magnification which is a function of z/Aj, the 

following coordinate transform is used: 

ML=- _£ 

\ZoJ 
= -Mi 

(4.27) 

( 

'to^Httt. 
= i(^xi,^yi,-(^-fzl) 

(4.28) 

h'{x',y',z') = i MT  MT  MJ (429) 

Equations 4.28 and 4.29 completely reverse the magnification of the Gaussian 

imaging. However in some applications it may be practical to transform the image cube to a 

intermediate magnification, such as to match the magnification of the measured image cube 

to the magnification of a measured point spread function. 
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4.3.2   Reconstruction 

Now that the image space is essentially all one isotome, the entire full spectrum 

object cube can be reconstructed with the inverse transfer reconstruction that was used in 

section 4.2.1, substituting the primed variables: 

*"(*,■ '• yt '> Zi') = h'{x', y, z')*** o'(x', y, z') (4.30) 

o' = InverseFourier{ö } 

d (x' ,y ,z') = InverseFourier\p (^,\f/X)} 

(4.31) 

(4.32) 

(4.33) 

4.3.3 Inverse Spectral Coordinate Transform 

The magnification from the *. and y,. coordinates was removed in the coordinate 

transform of equation (4.28). The final coordinate transform reconstructs the spectral 

information A0 from z-, using equation (4.4). 

atz„ °bJr{
xo>yo>K) = °' x',y, 

D 

\Zo 
(4.34) 
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5. PROTOTYPE CHARACTERIZATION 

5.1  DOIS Prototype 

A prototype of the DOIS described in Chapter 2 was assembled and characterized at 

Rome Laboratory's Photonics Center. Figure 5.1 is a photo of the DOIS prototype. The 

DOE is on the right and connected to the CCD camera with a tubular baffle. Although a 

system designed for field use would include electronic control translation stages, the 

laboratory prototype is manually controlled. The DOE is mounted on an Oriel rail carrier 

which slides on a 60 cm Oriel rail marked with a metric scale for location measurement. 

DOE 

Figure 5.1: Photo of the DOIS prototype. 

The camera is first secured to a micropositioning translation stage for fine control, 

then on another rail carrier. Each carrier is marked with a graduated rule for positioning on 

the rail within 1 mm, and the micropositioning vernier on the detector is accurate to .001 

inches (25.7 |im). Manual translation of the camera or DOE is possible. With a target at 

infinity, the lens would be moved without adversely impacting the object distance s0 and 
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the detector to DOE distance sa for each wavelength would be the spectral focal distance, 

six = f5i- However, for target distances restrained by the dimensions of the laboratory, the 

best results are obtained by keeping the DOE stationary and moving the detector. The 

detector carrier is stepped with coarse increments, dz = 1 mm, corresponding to spectral 

step size <& ranging from lnm to 3nm, at 400nm and 650nm respectively. For finer 

spectral measurements, the detector carrier was placed at a set position and the 

micropositioning vernier was tuned with dz = .005", corresponding to a <& of .lnm to 

.4nm depending on the wavelength region. 

5.2  The Diffractive  Optic Element 

The DOE fabricated for this prototype is a single etch Fresnel Zone Phase Plate. 

Figure 5.2 lists the figures of merit for the DOE in DOIS. The dominant effect of only a 

single etch DOE is the low first order diffraction efficiency. This limits the amount of light 

which is properly imaged and increases the minimum detectable target radiance, but it 

performs sufficiently for this proof of concept, laboratory demonstration. A well designed 

DOIS would incorporate a high efficiency phase grating with TI « 100% at the design 

wavelength. The DOE could be a multilevel, N > 16 photolithography phase plate, or a 

continuous profile grating generated by holography, diamond turning or a laserwriter as 

discussed in Chapter 3. 
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DOE type 

Fabrication at the National 
Nanof abdication Facility of Cornell 

University 

substrate 

diameter 

design focal length f0 

design wavelength X0 

theoretical diffraction efficiency , T| 

experimentally measured TJ 

MTF @ 7e 
Figure 5.2: DOE 

2 level, phase etched, zone plate 

ebeam mask generation 

contact lithography exposure 

ion reactive etched 

BK-7 optical flat, 3mm thick 

2", 5 cm clear aperture 

200 mm 

588 nm 

40 % at 588 nm 

27% at 670 nm laser diode 

35 % at 632.8 nm HeNe 

30 % at 542 nm GreNe 

32 lp/mm 

igures of Merit 

Figure 5.3: A partial image of the DOE rings. 
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The ring pattern of Figure 5.3 was recorded by illuminating DOIS with a high 

intensity HeNe beam. The first order focus is super saturated and is seen on the bottom 

left. The DOE's zero order diffraction efficiency is approximately 5% at 633nm. The 

resulting zero order beam has no optical power, passing straight through the lens. It adds 

background photon noise but is normally not intense enough to be detected as signal. 

However, when illuminated with the laser beam, the undiffracted light projects a shadow of 

the zone plate on the detector. 

The first order diffraction efficiency is a measure of the percentage of the light 

collected that is imaged to the desired detector location. This figure of merit dictates the 

minimum target radiance that will be detected. The setup in Figure 5.4 was used to 

experimentally determine the DOE's diffraction efficiency. To determine the spectral 

dependence of the diffraction efficiency the DOE was characterized at three wavelengths. A 

laser diode was used which emitted at 670 nm and measurements were obtained at 632.8 

nm and 542nm with two Helium Neon lasers. Figure 5.5 shows the experimental results 

plotted along with the theoretical spectral first order diffraction efficiency [Chapter 3]. 

The laser beam was directed into an integrating sphere/detector apparatus and the 

power was recorded, Ptotal Iaser. The DOE was then placed in the beam and the integrating 

sphere was aligned to collect only the first diffracted order and again the power was 

recorded, Plstorder. The diffraction efficiency is the ratio of these two values. 

^0^=—^ (5.1) 
total laser 

To account for the efficiency at different radii and zone spacing, r\ was determined with the 

beam hitting the DOE at half radius and repeated at almost full aperture. The two radii 

measurements were averaged. 
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LASER 

LASER 

LASER 

aperature 

Power Meter 

Figure 5.4: Diffraction efficiency experimental setup (a) determine the total 
power, (b) first order power at r/2. (c) first order power at full aperture. 

Spectral Diffraction Efficiency of DOE 

40 - 

■n 

— theory 
*    measured 

365   400 500   542     600633 670700 

wavelength [nm] 
Figure 5.5: Theoretical and measured diffraction efficiency vs. wavelength. 
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The DOE MTF was measured at the Diffractive Optics Test Facility at Rochester 

Photonics Corporation, RPC. This is an automated testbed that measures the MTF of a 

diffractive optic using a double knife edge technique [Faklis 1993]. Figure 5.6 (a) shows 

the measured tangential and sagital MTFs of the DOE at 540 nm, as well as the diffraction 

limited MTF. The dramatic drop from the DC term is due to the low diffraction efficiency 

of the DOE. The second curve (b) is the MTF normalized with the diffraction efficiency. 

Warren Smith, in his book on lens design [Smith 1992], gives the goal of a MTF of 50% at 

50 lp/mm for high quality photographic lenses and 20% at 30 Ip/mm over 90% of the field. 

This DOE falls well below this requirement, however Figure 5.6(c) is the measured MTF 

of a well designed, high efficiency DOE lens and is presented to show that this technology 

can greatly exceed standard design requirements. Additionally, the DOE design can be 

optimized using computer design codes such as ZEMAX to reduce aberrations both on and 

off axis. The substrate surface curvatures are used for minimizing aberrations by producing 

a kinoform, which adds a low power refractive surface for balancing aberrations such as 

spherical and coma. 
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Figure 5.6: DOE MTF, 
measured at RPC Diffractive 
Optic Testing Facility. 

(a) measured and diffraction limited 
MTF at 540 nm. 

(b) Normalized 546 nm MTF, 
MTF/r|. 

(c) MTF performance of a well 
designed high efficiency DOE 
measured at 559 nm, provided as 
an example of the technology's 
capability. 
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5.3 The CCD camera 

The CCD camera in the prototype is a SONY XC-75 whose specifications are 

found in Figure 5.7. 

SONY CCD Monochrome Video Camera 

Pickup device 

effective picture elements (pixels) 

sensing area 

XC-75 

Interline-transfer CCD 

768 x 494 (horizontal / vertical) 

CCD drive frequency 

pixel size 

chip size 

scanning 

gain settings 

video S/N ratio 

minimum illumination 

1/2 inch 

15.7 kHz vertical 

14.3 kHz horizontal 

8.4 x 9.8 |Lim (horizontal / vertical) 

7.95 x 6.45 mm (horizontal / vertical) 

525 lines, 2:1 interlace 

AGC automatic gain control 

F fixed or M manual 

56 dB 

3.0 lux 
sensitivity 400 lux with AGC ON 

Figure 5.7: DOIS camera specifications. 

The CCD camera was used without the conventional lens attachment, and the DOE 

was mounted » 200 mm away from the camera with a homemade baffle of concentric 

tubes, depicted in Figure 5.1, blocking most stray photons from the room. The output of 

the camera was connected to a monitor, a framegrabber board and a video recorder. The 

images were recorded digitally, one image at a time. The computer has the capability of 

recording many frames consecutively, but memory constraints prevented this. The low 

efficiency of the DOE made it necessary to have the automatic gain control on for most of 

the experimental demonstrations. This is unfortunate because the capability of absolute 

intensity readings is lost. However, the AGC did a wonderful job of automatically 

adjusting to the spectral efficiency r\x of the DOE and camera. In an improved system, the 
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gain will be set constant and the intensity will be corrected by dividing the spectral intensity 

data by the DOE spectral efficiency, %, and the camera spectral response curve, measured 

below. 

The camera spectral response was measured using a Tungsten Halogen lamp and an 

Oriel grating monochrometer. Figure 5.8 is the relative spectral response of the CCD 

camera in its original packaging. This curve suggested that there was a filter on the camera, 

possibly to mimic the response of the human eye. After careful removal of the faceplate, a 

filter was found between the protective window and the CCD chip. Figure 5.9 is the 

spectral response of the same CCD with the unknown filter removed. The image of Chapter 

2 were recorded with this filter, but the analytical demonstration in the next chapter was 

performed after the filter was removed. 

Camera   Response   with   filter 

400 500 600 

Wavelength   (nm) 

700 

Figure 5.8: the experimentally determined spectral response curve of the 
SONY CCD. The dashed line is the raw data, and the solid line has the 
spectral curve of the lamp and monochrometer grating divided out. 
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Camera   Response   without   filter 

Wavelength 

Figure 5.9: the experimentally determined spectral response curve of the 
SONY CCD after the removal of a factory placed filter. The dashed line is 
the raw data, and the solid line has the spectral curve of the lamp and 
monochrometer grating divided out. 

5.4 DOIS prototype  characteristics 

Since imaging is a large part of the requirements of the system, and many readers 

may not have seen the imaging capabilities of a simple Frensel Zone Plate, a 256 x 256 

image of the Air Force Resolution Target is included as Figure 5.10. The resolution target 

used was made of chrome on glass. It was illuminated with the Tungsten Halogen lamp 

and filtered with a 10 nm line width filter at 550 nm. The resolution target was placed over 

ground glass so that the target and not the filament was imaged. The resolution target was 

12.5 x 12.5 mm, S0=219.5 cm and S; = 23.5 cm. These distances correspond to a 

wavelength of 552 nm. The x and y extents of the image were measured in MacPhase to be 

134 x 134 pixels, corresponding to a transverse magnification of 0.107 with lOum pixels. 

M„ Sj     _ X; 

S        x 

23.5cm 

219.5cm 
134 pixels *10|im 

12.5mm 

(5.2) 

= -0.107 
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These measurements confirm that the spectral imaging and transverse magnification 

equations hold true for this diffractive optic. 

Figure 5.10: A pictorial representation of the system's MTF, a DOIS image 
of an Air Force Resolution Target. 

DOE offset 
-1.5 cm Detector offset 

+ 3 cm 
r3* 

vernier 

-z 
11111111:1111111111 liii ill 111111111111111111 ^ i ■ i r 111111 1111111 ■ 111 
0 ruled railing    i—: z"*" 60 cm 

"^i—^f^OE 

Det scale 
 »- 

Figure 5.11: Schematic of DOIS. 

It is necessary to determine the exact location of both the DOE and detector to 

properly determine the spectral value. Figure 5.11 is a schematic diagram of DOIS and 

illustrates the distances used in the excel spreadsheet, Figure 5.12, which calculates A, from 

S0, the DOE and detector positions. Precise offsets between the carrier markings and the 

DOE and CCD surfaces are required. These were first roughly determined from the 

mounting parameters and then calibrated with the known HeNe and GreNe wavelengths. 

81 



Once set at -1.5 cm and +3 cm, they remained accurate for a variety of source targets, 

wavelengths and distances. 

S0 
[cm] 

DOE 
scale 
[cm] 

Det 
scale 
[cm] 

Inch 
scale 
[in] 

-data is entered here ~ 

calculated 
A)OE 
[cm] 

DOE scale 

-1.5 offset 
A)OE 

calculated 
7 

Detector 

[cm] 
Det scale 

+ 3 offset 
- inscale*2.57 

A)et£ 

calculated 
Si 

[cm] 

Detector 

7 
-^DOE 

calculated 
lamda 
[nm] 

f 

= Vd*Cl + D 
So     ^ 

Figure  5.12:   Excel  spreadsheet   calibrating  the DOE and detector  carrier 
locations z, to a corresponding wavelength, X. 

5.5 Spatial and Spectral point spread function (psf) 

Figure 5.13 is a series of images (32 x 32 pixels) of a 5 jun pinhole illuminated by 

a HeNe laser recorded with DOIS through focus. The separation between each image is 

dz= .005", which is approximately a spectral step size of dA,= 0.4 nm. Each image is 

plotted with its own min, max plot range to maximize the contrast and boldly show the spot 

diagram pattern. The geometrical image at best focus is contained within one pixel, so this 

will experimentally represent the system's spatial psf for various stages of defocus. These 

images not only tell us the amount of blur added to our image, but they also graphically 

demonstrate the dominant lens aberration, third order spherical. The spot diagrams 

correspond to under corrected spherical aberration. Notice the soft even blur as the images 

progress into focus, but then the hard ring of light after focus. Figure 5.14 is a collection of 

the cross sections of each of these psfs grouped as "approaching focus" and "leaving 

focus" respectively, and plotted as greyscale intensity value verses pixel number. The 

spectral images are each 32x32 pixels. Notice that the 255 greylevel maximum of the psf is 

centered on pixel number 16 and falls of quickly to a greylevel of zero within 6 pixels on 

either side (shown are pixel numbers 10 through 22, beyond them the psf is zero). 
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beyond focus approaching focus 

Figure   5.13:   Series   of   images   (32   x   32   pixels)   of   a  5   fim   pinhole 
illuminated by a HeNe laser recorded with DOIS through focus. 

leaving focu s appro achingfocus 

gieylevel 
250 

Figure 5.14: Spatial Impulse response h(r) at 632.8 nm, plotted as 
greylevel vs. pixel number for locations (a) approaching focus, (b) leaving 
focus. 

Another important system parameter can be obtained from this data set. Plotting the 

intensity distribution of one pixel through focus becomes a measure of the influence of one 

slice of the data on the next plane of data. In 3D microscopy this measures the degradation 

in image quality of one spatial plane z on the next, but in this configuration it is a measure 

of the degradation of one wavelength by the surrounding spectral channels. This translates 

into the spectral impulse function which determines spectral bandwidth or resolution of the 

system. The experimentally determined coherent spectral impulse function h(k) is plotted in 

Figure 5.15, the intensity distribution of the center pixel through focus at (a) 632.8 nm 

HeNe and (b) 542 nm GreNe. 

83 



Spectralfeandwidth @ Greife 

£31 632 633 634 
wavelength [nm] 

(a) 

635    636 540    541 542    543    544 

wavelength [nm] 
(b) 

545 546 

Figure 5.15: Spectral Impulse response h(k), plotted as intensity of one 
pixel through focus (a) for 632.8 nm. (b) for 542 nm. 

calibration 
source 

center 
wavelength 

spectral 
resolution 

relative 
resolution 

resolving 
power 

^c Al Al/Xc XJ&K 

HeNe 632.8 nm 1.25 nm 

-0.25 and +1 

0.197 % 527 

GreNe 542 nm 1.45 nm 

-0.55 and +0.9 

0.267 % 373 

Figure 5.16: The experimentally determined spectral resolution. 

These spectral psfs can be scaled with wavelength to translate through the entire 

visible range. Each step size is dz=.005"=.127 mm, HeNe dz/zx=.0127/20.93-.06%, 

GreNe dz/zx=.0127/24.91=.05%. To use the experimentally determined GreNe psf data 

increments of dz/zx=-05% should be used. For example, to filter properly at 450 nm, 

z=29.4 cm, the step size dz should be equal to 0.15 mm ~ .006". 
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6. IMAGE FORMATION 

The previous chapters have concentrated on describing DOIS's operation 

theoretically. At this point it is useful to try and verify that the theory does indeed predict 

the image formation function of DOIS. This Chapter presents both computer generated 

(CG) and experimentally determined image sets of known targets. As you will see, the 

linear system theory of Chapter 4 accurately predicts output images formed by DOIS. The 

CG images are very similar to those experimentally measured, which verifies that the 

theory is appropriate. 

6.1 Mercury 577/579 nm doublet with an X aperture 

An excellent example of DOIS's performance is its ability to resolve a two 

nanometer doublet (577/579nm) from a Mercury Lamp. To test both spectral and spatial 

imaging, a known aperture was placed in front of the lamp. The aperture was two crossed 

slits in metal that make an X. The lamp was positioned at the same object distance that the 

GreNe pinhole psf images were recorded at and images were recorded every dz=0.125mm 

corresponding to a spectral step size of d^=0.3nm. 

The algorithm in section 4.2 was implemented in Mathematica and used to simulate 

the experimental scenario. Figure 6.1 highlights the Mathematica code for this model. It 

creates a three-dimensional (32x32x32) image matrix, from 2 three-dimensional input 

matrices, a spectral object matrix and the measured psf matrix [Figure 2.12]. Each is 

formed by stacking 32 images that are 32 by 32 pixels in dimension. 

OBJ=centeredFourier[Flatten[object]] (6.1) 

OTF=centeredFourier[Flatten[psf]] (6.2) 

IMAGE = OTF * OBJ (6.3) 

image=Partition[Abs[centeredInverseFourier[IMAGE]]] (6.4) 
Figure 6.1: Mathematica code that implements the linear system algorithm. 
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For this simulation it was assumed that Mercury emits two narrow lines at 577 nm 

and 579 nm. Pictured in Figure 6.2 is the series of assumed input objects, paired with the 

CG output images that were generated from the Mathematica linear system algorithm, along 

side the experimentally measured images. The input object was assumed to have non-zero 

values in channels 7,8,9 and 14,15,16 exclusively, corresponding to wavelengths of 

576.6, 576.9, 577.2, 578.7, 579.0 and 579.3 nm. The corresponding object spectral 

radiance curve is Figure 6.3(a) showing emission only around 577 nm and 579 nm. The 

experimentally measured OTF matrix from Figure 2.14 was used. 

The images created by this algorithm accurately depict the image formation 

properties of DOIS. In Figure 6.2 you can see the excellent correlation between the CG and 

the experimentally recorded images of the third columns. The spectral radiance curve of the 

CG images is Figure 6.3(b). As expected the psf does degrade the spectral separation of the 

doublet. Yet, the doublet can still be detected and can be restored with various 

deconvolution techniques [Chapter 8]. The corresponding spectral curve from the 

experimental image set is Figure 6.3(c), which shows even better spectral separation. 
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assumed       CG 
object   ->   image 

experimental 
image 

assumed       CG 
object   ->  image 

experimental 
image 

Object 574.8 

object 5 75 

Object 575.4 

object 57 

Object 57 5.,, 

Object 576.3 

object 577 5 

object 577.8 

object 5 

object 578.4 

Obje01 578.7 

object > 

object 5766 

object 577 2 

K ■ s 
object 

object 

object 

object, 

object 

579.3 

579.6 

579.9 

580.2 

t 5 80.5 

Figure   6.2:   Simulated   spectral   object   &  image   channels   of  a  Mercury 
doublet X, using experimentally measured psf(x,y,z(?0). 
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Figure 6.3: Spectral radiance plots of a Mercury doublet 577/579nm (a) the 
assumed input source object, (b) the computer generated results, (c) the 
experimental result. 
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6.2  Spectral/spatial analysis 

The above target demonstrated high spectral resolution by being able to discern a 

2nm doublet while imaging the narrow slits of the X. Small targets encounter only minimal 

blurring; however as the target increases, so does the spectral/spatial blurring. This is 

investigated by generating CG images of targets of varying spatial extent with the Fourier 

model using the measured OTF. 

The data can be displayed in many ways. A conventional representation is a series 

of spectral images like Figure 6.2, or a spectral curve at one pixel, Figure 6.3. However to 

visualize the spectrayspatial relationship, the following discussion will utilize a 

spectral/spatial cross-section image. Figure 6.4 shows two three-dimensional data cubes. 

The cross-section is formed as a z^x or zxy plane ,shown as the images above the cubes. 

Notice that the monochromatic z^y image looks like a slit and the image from the 

doublet emission looks like a double slit. The height of the slit represents a dimension of 

the aperture of the target and the width is the spectral bandwidth of the emission line. 

Figure 6.5 presents the spectral/spatial on-axis cross-sections of the point spread functions 

used during this project. The contrast has been enhanced to show features. 
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Figure 6.4: 3D object cube and zy view of a rectangular aperture emitting 
(a) monochromatic ly (b) a doublet source. 

90 



spectral step # z 
(a) measured psf 

spectral step # z 
(b) geometric psf 

spectral step # z 
(c) combination psf 

Figure 6.5: Cross-sections of the three-dimensional point spread functions 
used in CG image formation and object reconstruction. 
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6.2.1 Monochromatic target, increasing aperture 

Linear system theory was used to model the images formed by DOIS of a 

monochromatic target with six rectangular apertures of different sizes. The cross-sections 

are shown in Figure 6.6. The images were generated by forming a 3D matrix, 32x32x32 

where the only non-zero elements are a square of ones in the 16th plane, simulating a square 

monochromatic target. The size of the square is increased from 1 pixel to the full 32x32 

plane (1, 2,4, 8, 16 and 32 pixels respectively). As expected, as the target size is increased 

its total radiance is increased, causing increased blurring in both the spectral and spatial 

directions. Each two-dimensional image is a 32x32 z^y cross-section of the total three- 

dimensional cube with the corresponding spectral curve plotted below it. 

Figure 6.6: Computer generated monochromatic target of increasing size. 

6.2.2 Doublet target, increasing aperture 

A more interesting target is the same increasing square aperture in front of a 

doublet. The images in Figure 6.7(a) are the CG assumed input sources with the square 
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aperture at z=14 and 20. The series in Figure 6.7(b) are the CG images which were 

calculated with the measured OTF. For comparison a mercury lamp with 577nm and 579 

nm line emissions illuminated various apertures. The measured z,y images were extracted 

from the measured cubes and shown in Figure 6.7(c). Notice the strong agreement between 

the simulated and experimental images and curves. 

Figure 6.7: Computer generated (CG) and experimentally recorded doublets 
of increasing size. 
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Looking at the experimentally measured image of the 50|im and 100|Lim apertures 

on the left side of Figure 6.7, notice that the target drifted to a lower pixel in the y direction 

as the detector was scanned along the z axis. This misregistration visualizes the effect of 

both a changing magnification and off axis aberrations which skew the orientation of the 

point spread function, Figure 6.8. This artifact can be eliminated with a constant 

magnification design which is optimized for minimum aberrations. 

spectral step tt s 
Figure 6.8: A point spread function askew from off-axis aberrations. 

Another instance to be discussed while investigating targets of increasing size is 

when the target is image to the edge pixels of the CCD. If the target is imaged to the edge of 

the detector array field-of-view (FOV), the information about the target which is blurred 

outside of the FOV will be lost. Additionally, the simulation and reconstruction algorithms 

are  based   on   transfer   theory   assuming   a   shift-invariant   point   spread   function. 

Mathematically this assumes that the psf and OTF matrices are circulant, that each row has 

equivalent elements where the values are shifted and the end value wrap around to the other 

side as shown in equation (6.5). 
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a b c d~ 

d a b c 

c d a b 

b c d a 

(6.5) 

Figure 6.9 shows the wrap around in the y direction that is assumed if the psf is on the 

edge of the field. A field stop is proposed to limit the FOV to be smaller than the useable 

detector area. Pixels outside of the FOV will record the blurred intensity from targets 

imaged to the edge of the FOV. By recording the fully blurred target the reconstruction will 

be improved. 

spectral step # z 

Figure 6.9: The psf of a pixel at the edge of the detection area. 
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7. PROTOTYPE DEMONSTRATION WITH FOUR TARGETS 

The DOIS Prototype was demonstrated with four known multi-spectral/spatial 

targets. The sources include a Tungsten Halogen lamp, a Mercury lamp, a HeNe laser and 

a GreNe laser. For complete control, each source illuminated a known template which 

became the target. Figure 7.1 is a view of the targets imaged by a conventional lens and 

recorded with the monochrome CCD camera. 

Mercury 
x 1 in m cross 

Tungsten Halogen 
50 urn pinhole 

HeNe 
5 |am pinhole 

GreNe 
10 |im pinhole 

Figure 7.1: The four targets: a Tungsten Halogen Lamp, a Mercury Lamp, a 
HeNe and a GreNe. 

7.1   Testbed  Specifications 

The Tungsten Halogen lamp is a broadband source, as shown in Figure 7.2. It 

illuminated a 50 (im pinhole, creating a several pixel object and preventing images of the 

filament. The spectral emission of the Mercury lamp is shown in Figure 7.3. Mercury 

makes an excellent spectrometer target; it is a multi-line emitter with six major lines in the 

DOIS spectral range. Of particular interest are a pair of emission lines, called a doublet, at 

577nm and 579nm. DOIS can resolve this doublet, demonstrating that the system's spectral 
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resolution is better than 2nm! The aperture used with the Mercury lamp is a 1 x 1 mm 

cross, X, with 10 |im slits. The remaining sources were two Helium Neon lasers. The 

HeNe emits at 632.8 nm and the GreNe at 542 nm. They illuminated a 5\im and lOum 

pinhole respectively, simulating monochromatic point sources. 

visible spectrum 

*0B* 
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radiance 

300      400     500     600     700   800 
wavelength [nm] 

(a) 
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4 1 
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wavelengt h [nm] 

700.00 800.0 

(b) 
Figure 7.2: Spectral Distribution of the Newport Tungsten Halogen Lamp 
(a) reprinted from the Newport operations manual, (b) measured with 
DOIS. 
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Figure 7.3: Spectral radiance curve of the Mercury Lamp (a) reprinted from 
Applied Optics, (b) measured with DOIS. 
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The four targets were placed an equal distance from DOIS and beamsplitters were 

aligned to create the illusion that they were all in the same object plane. Figure 7.3 is the 

schematic of the demonstration testbed. The Tungsten Halogen lamp was directly in line 

with DOIS. The Mercury and laser sources were reflected into the field of view with 

beamsplitters. The object distance s0 was 91.5" and the DOE was held constant. The CCD 

camera was manually scanned and the detector carrier location and inch scale readings were 

recorded for each spectral image. The 256x256 monochromatic images of each target at 

different wavelengths is given in Figure 7.5. 

HeNe- 

Pinhole (5^m) 

GreNe- 

Pinhole^v 
(10jun)   \ 

Carriers 

Mercury Source 

Front View 

• Carriers • 

Optical Rail 

Beam Splitters 

Pinhole (50|a.m) 

■ Diffractive Lens 

CCD Camera 

■ Tungsten Source 

Figure 7.4: Schematic of the four target testbed. 
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578 Lamp & Mercury 600nm Tungsten Halogen Lamp     632.8nm Lamp & HeNe 

Figure 7.5: Sample of the key spectral DOIS images in this demonstration. 

100 



7.2   Results 
DOIS was used to image the multi spectral/spatial targets. As previously discussed, 

the DOE was kept stationary and the detector was stepped through a wide range of 

distances. As the detector was moved, the various targets popped in and out of the image 

depending on their spectral content, as seen in Figure 7.5. However, since Tungsten 

Halogen is a greybody emitting over the entire visible range, the image of the 50\im pinhole 

was present continuously in the z range for X from 383nm to 650nm. The Tungsten 

pinhole's intensity grew at longer wavelengths and its center shifted several pixels because 

of the magnification changes. The best focus of each spectral line was determined and the 

corresponding detector locations were recorded. The table in Figure 7.6 shows the 

calculation of the emission line peak wavelengths from this experiment. The results 

correspond perfectly to the known emissions of the lasers and the Mercury lamp of Figure 

7.4, and are remarkably precise considering the manual stepping and reading of the carrier 

location. 

source s0   [cm] DOE 
carrier 

Det carrier 
[cm] 

Inch scale 
[in] 

s;   [cm] emission line 
peak wavelength 

[nm] 

HeNe 232.41 7 24 0.508 20.2 633 

Hg Lamp 232.41 7 26.1 0.515 22.3 579 

Hg Lamp 232.41 7 26.1 0.481 22.4 577 

Hg Lamp 232.41 7 27.5 0.4875 23.8 546 

GreNe 232.41 7 27.7 0.504 23.9 542 

Hg Lamp 232.41 7 34.3 0.488 30.6 435 

Hg Lamp 232.41 7 36.8 0.51 33.0 407 

Hg Lamp 232.41 7 36.8 0.396 33.3 404 

Hg Lamp 232.41 7 41 0.43 37.4 365 

Figure 7.6: Peak spectral lines of the target, calculated from the locations 
of best focus. 
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Attempts were made to experimentally verify the Mercury lamp's spectral emission 

curve with the grating monochrometer. Of particular interest is the doublet at 577 nm and 

579 nm. The signal from the lamp was low and the smallest useable exit slit width was ~ .2 

mm corresponding to a bandwidth of 5 nm making the results unusable. However, this 

emphasizes the usefulness of even this inefficiently designed DOIS. 

To determine the spectral radiance curves of the targets, series of images were 

recorded with known increments of dz. The spectral radiance is defined as the intensity 

value of the image at various wavelengths. A C program was written to open each image 

and record the value of a specific pixel in a list. This list was plotted against wavelength 

creating a measured spectral radiance curve. A different approach needed to be implemented 

when the change in magnification throughout the spectral range caused the image to drift 

across several pixels. Under this condition, a window was defined around the image 

location and the value extracted for each image is the maximum pixel value in the window. 

The experiment was executed twice, each time with a different spectral resolution. 

The first data run was low resolution, testing the entire visible spectrum. It incorporated 

manual translation of the detector carrier in increments of dz=0.1mm. The inch scale 

vernier was at a constant setting. The second was high resolution, concentrating on a 

limited spectral range around each emission line. The detector carrier was kept stationary 

and the inch vernier was adjusted in 0.005" or 0.01" increments. 

The results from the dz=0.1mm, low resolution recording of the Mercury Lamp are 

plotted in Figure 7.4(b). There is excellent agreement between the measured and known 

spectral emission lines of the characteristic curve 7.4(a) from Applied Optics[Levi 1968]. 

However, the DOE diffraction efficiency [Figure 5.5] weighted the relative intensity of 

each spectral line. 

The results from the Tungsten Halogen pinhole are found in Figure 7.7. Included 

are 6 spectral images clipped from the full images to show just the 50(im pinhole. The 
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spectral radiance plot is constructed from data recorded in low resolution steps. The 

measured data points are plotted as * and a line represents the best fit. An artifact of the 

changing magnification is that the image drifts from a condition of being centered on a pixel 

to one where the image straddles several pixels, as shown in Figure 7.8. This alignment 

problem explains the ripple effect on the intensity verses wavelength curve. 

X =   400nm 

greylevel 

200 

175 

150 

125 

100 

75 

50 

25 

0 

450nm       500nm       550nm 
(a) 

Tungsten Halogen 

600nm 650nm 

^^WK^Wfl^^"^ | 

saturation 

data points 
best fit to data 

400 450        500        550        600 
wavelength [nm] 

(b) 

650 

Figure   7.7:   Tungsten   Halogen   Data   (a)   spectral   images   of   the   50[im 
pinhole. (b) the measured spectral radiance curve. 

Maximum when the image 
is centered on a pixel 

Minimum when the image 
is between pixels 

Figure 7.8: Sketch of image drifting between pixels. 
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Another difficulty of this data run was that the signal beyond 525nm saturated the 

detector array. A more accurate plot of the Tungsten Halogen is found in Figure 7.3(b). 

The experiment was run again with a larger source whose image was several pixels, 

avoiding pixel hopping, and with the gain set to prevent saturation. The results accurately 

measure the spectral radiance when compared to the handbook curve in Figure 7.3(a). 

The results from the GreNe and HeNe laser sources are shown in Figures 7.9 and 

7.10. In addition to the spectral radiance plots, a representative series of images is given in 

each figure. The images are 32x32 windows which have been clipped from the 256x256 

recorded images. As expected DOIS recorded narrowband high intensity spikes for both. 

Figure 7.9 shows the HeNe narrowband spectral curve centered at 632.9nm. Figure 7.10 

shows the same for the GreNe at 542nm. Notice that with constant spatial steps, 

dz=0.005", the change in magnification causes the spectral step size to change within the 

spectral range. At 634nm, the spectral steps were 0.4nm, yet at 541.5nm, d?t=0.2nm. 

X= 631.8        632.2 632.6 

greylevel 
200 
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0 

632.9        633.3 
(a) 

HeNe 633m, 

633.7 634.0    634.4nm 

fl 

610 620 630 640 
wavelength [nm] 

(b) 

650 

Figure 7.9: HeNe Data (a) spectral images of the 5\im pinhole. (b) the  
measured spectral radiance curve (dz=0.005"=0.0125cm, dX-0.3-0.4nm). 
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wavelength [nm] 

(b) 

550 

Figure 7.10: GreNe Data (a) spectral images of the lO^m pinhole. (b) the 
measured spectral radiance curve (dz=0.005"=0.0125cm, d3i«0.2-0.3nm). 

The Mercury target was examined a second time with small step sizes around each 

Hg emission line. Figure 7.11 shows the resulting spectral curves for the 365, 404, 435, 

546 and 577/579nm lines with the clipped infocus spectral images. 

Close observation of the 576.9nm image in Figure 7.11(e) reveals a focused cross 

with a highly defocused cross, and a the center that looks like a diamond. Moving to 

579nm, the diamond comes to focus as the center of the 579nm image, and the 577 cross 

defocuses and disappears. This corresponds to the computer generated images in Chapter 

6.1. This recorded data around the 577nm and 579nm Hg doublet shows that the doublet is 

resolved without processing. However, still greater discrimination is obtained with the 

processing applied in Chapter 8. 
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(c) 435nm line, (d) 546nm line, (e) 577/579nm doublet. 

106 



8. OBJECT RECONSTRUCTION ALGORITHMS 

The results in Chapter 7 show that DOIS performs image spectrometry. The image 

quality and spectral resolution available directly from DOIS will be useful in many 

applications. Notwithstanding, applying an object reconstruction algorithm can improve 

DOIS's performance by removing the blur from surrounding channels, resulting in a more 

accurate representation of the target's object cube. Several object reconstruction/ 

deconvolution techniques are presented here. They have been applied to both computer 

generated (CG) and experimentally measured 3D DOIS image cubes. 

In Chapters 1 and 4, DOIS was described as a diffractive spectral sectioning device. 

The output of the DOE, described by the Spectral Gaussian Coordinate Transform, is an 

image space which is mathematically equivalent to the output image space of a three- 

dimensional imaging microscope, described as spatial sectioning microscopy. 

There are proven digital image restoration techniques used in 3D microscopy that 

eliminate blurring from out-of-focus adjacent slices of the 3D object. It follows that these 

same techniques can be adapted and applied to DOIS images to remove blurring caused by 

the out-of-focus spectral images. This chapter reviews the algorithms which have been 

adapted and applied to DOIS. 

Since not all applications require the same resolution, three general processing 

techniques will be discussed in this chapter; nearest neighbor, inverse filtering and 

constrained iterative deconvolution. Each approach provides different amounts of 

deblurring at various computational expense 

The nearest neighbor algorithm reconstructs an image by looking only at the impact 

from the adjacent images on either side. This requires very little prior knowledge and could 

be applied in real time. 
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Inverse filtering tries to eliminate the effect of the instrument function on the output 

image cube. The system OTF must be known from either theoretical prediction or direct 

measurement. The main task is to invert the OTF and multiply the image set by this inverse. 

Variations include applying an apodization or regularized inverse filter for noise 

suppression. Additionally, tools such as singular value decomposition may be required to 

invert the large, possibly singular, OTF matrix. Inverse filtering reconstruction is limited 

by the cutoff frequencies of the OTF; frequencies beyond the cutoff can't be recovered. 

Iterative techniques which apply physical constraints, such as positivity, to the 

reconstructed object can theoretically reconstruct frequencies beyond the OTF cutoff. An 

additional advantage of iterative algorithms is that they don't require the possibly difficult 

task of inverting the OTF matrix. 

These algorithms should provide equal or greater reconstruction to the DOIS 

spectral sectioning system than available with spatial sectioning 3D microscopy because of 

two advantages. First, when imaging a 3D spatial object such as a photo-luminescent cell, 

the cell itself will cause blurring and information loss due to absorption and scattering 

through the object. The spectral dimension in DOIS won't cause this degradation. 

Secondly, 3D microscopy has the demanding task of removing the blur from slices with 

very low z-spatial resolution. The spatial image in the z direction is normally on the order 

of the psf blur, requiring reconstruction in the very low and noisy regions of the OTF. 

However in DOIS the dispersion is so great that the total spectral range translates into a dz 

spatial region which is many orders of magnitude greater than the spatial z width of the psf, 

with a ratio similar to the radial x,y spatial imaging. Therefore, in most situations 

reconstruction around and beyond the OTF cutoff isn't necessary. 

It is important to note that even the simplest nearest neighbor method produces a 

substantial improvement. However the most accurate results are obtained with the SVD 

Inverse Filtering algorithm. 
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8.1  Digital Representation 

In Chapter 4 the object and image cubes were represented as continuous functions 

of x,y,z and X. However as seen in Figure 2.1, the images are sampled in x and y by the 

detector array and in z by stepping the array along the optical axis. This is best modeled by 

discrete object and image functions. In practice the object, image and psf cubes are more 

accurately represented by three-dimensional matrices. Recall equation (4.10): 

oo   oo   oo 

Kxi >yi>zi)=l\j °(*> ?' zXxi -x' yi - y> z> ~ ^y^ 

this equation can be written as summations rather than integrals with discrete axis intervals 

Ax, Ay and Az. 

j(/Ax.,pAy,>;'Az,) = ^%%o{mAx,qAy,kAzXltei-mAx,pbyi-qAyJtei-kte)(&.l) 
m=\ q=\ k=\ 

using subscripts to describe the Az location: 

N     N     N 

*,(*>?) ^ZX0*^***^-*^) (8-2) 
m=\ q=\ k=\ 

where x= lAxt and mAx, and y= pAyt and qAy. The value of j-k represents the number of 

steps of defocus. 

8.2  Nearest Neighbor Reconstruction 

The Nearest Neighbor technique is routinely used in three-dimensional microscopy 

for deblurring optically sectioned image sets using data from a single focal plane above and 

a single focal plane below to correct the central plane. This is a reasonable approximation 

for two reasons. First, since spectral images from adjacent focal planes will contribute most 

strongly to the central plane, their effects are most important to consider. Secondly, these 

adjacent image planes are actually a collection of all of the object channels with various 
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amounts of defocus. This rationale was first used by Castleman [1979] and later by Agard 

[1989] to justify using only the nearest neighbors: 

Simplifying equation (8.2) by dropping the x and y variables, models the system as 

a series of spatial slices: 

Ar-; 

-1 N-j 
iJ=°i *K + I>*+, *K + IX; *hk (8.4) 

k=\-j k=\ 

-1 N-j 

°j*K=ij- Lok+j * hk - ^ok+j * hk (8.5) 

<',=5>**V* = %ok+j*hk (8.3) 
*=1 k=\-j 

This simply states that the/ image is a sum of convolutions of the various object spectra 

with the appropriate defocus psfs. Pulling out and solving for the in-focus k=0 term: 

N-j 

2 
k=\-j k=\ 

N-j 

■!■ 
k=\-j t=l 

The h0 is the in-focus psf of the DOE. This equation states that the object at;, convolved 

with the in-focus psf, is given by the image at level j minus a sum of adjacent object 

channels that have been blurred by out-of-focus psfs hk. 

This suggests that the object at channel j can be recovered by subtracting from the 

image at channel; a series of adjacent objects blurred by the defocus transfer function. If a 

simultaneous solution approach is abandoned, the adjacent object channels ov . are not 
k+j 

available. However, the adjacent images ik+j are available. From equation (8.4) each image 

contains the corresponding object channel plus a sum of defocused adjacent object 

channels. Furthermore ignore the effect of the in-focus psf, and recognize that both the 

recorded image j+1 and image j_, contain the out-of-focus contributions from the entire 

stack. In the positive direction, blurring image j+1 by one step of defocus provides a good 

approximation to the out-of-focus contributions that contaminate i.. Combining this with a 

similar defocus in the negative direction: 
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Oj^ij-c^^h^+i^*^) (8.6) 

where h} and h+] are psfs that approximate the blurring due to defocus by one step in either 

direction (-Az and +Az), and c is an adjustable constant (c=0.45 was found to be 

appropriate). This suggests that the defocused structures can be partially removed by 

subtracting images from adjacent planes that have been convolved with the appropriate 

defocus psf. 

The nearest neighbor algorithm of equation (8.6) was implemented in Mathematica 

and applied it to twenty 2D spectral images of the Mercury doublet. The code is shown in 

Figure 8.1. The resulting reconstructed objects are shown along side the recorded images 

in Figure 8.2. This technique significantly reduced the image blurring and greatly improved 

the spectral resolution. The original and reconstructed spectral radiance curves of a pixel are 

in Figure 8.3. The dip between 577nm and 579nm was increased from 20% in (a) to 55% 

in (b). Additionally, since the psf is non-symmetric around focus, the recorded data had an 

incorrect higher value at 579 nm. The use of separate psfs for opposite defocus steps Az= 

+1 and -1 reconstructed the equal intensities of each line. The best results were obtained 

with the section 3.4.2 experimentally measured psf images, one from each side of the 

infocus plane, for h_} and h+1. 

The nearest neighbor algorithm is particularly useful when one specific spectral 

image is needed. It is very fast and requires little memory. Computations could be done 

using generally available image processing hardware. Thus, it should be possible to do the 

all of the required calculations in essentially real time. While one cannot expect this 

technique to recover the object function exactly, it does promise to improve images and 

spectral resolution at reasonable expense. 
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For[z=l, z<=20, z++, 
IMAGE[[z]]=cfft[image[[z]]];] 

For[i=l, i<=32, i++, 
For[j=l,j<=32,j++, 

IMAGEPl[[l,iJ]]=IMAGE[[l,ij]]OTFl[[ij]]; 
MAGEPl[[2,i,j]]=IMAGE[[2)i)j]]OTFl[[i1j]]; 
IMAGEPl[[3,ij]]=IMAGE[[3,ij]]OTFl[[i,j]]; 

MAGEPl[[20,i,j]]=IMAGE[[20)i,j]]OTFl[[i,j]];]] 

For[i=l, i<=32, i++, 
For[j=l,j<=32,j++, 

MAGENl[[l,i,j]]=IMAGE[[l>ij]]OTFnl[[ij]]; 
IMAGENl[[2,ij]]=IMAGE[[2,i,j]]OTFnl[[i,j]]; 
MAGENl[[3,i,j]]=IMAGE[[3,i,j]]OTFnl[[ij]]; 

MAGENl[[20,i,j]]=IMAGE[[20,ij]]OTFnl[[ij]];]] 

For[z=l, z<=20, z++, 
imagenl[[z]]=Abs[cinfft[IMAGENl[[z]]]]; 
imagepl[[z]]=Abs[cinffi[IMAGEPl[[z]]]];] 

For[z=2, z<=19, z++, 
estimate[[z]]=image[[z]] - n * (imagenl[[z-l]]+imagepl[[z+l]]);] 

estimated l]]=image[[l]] - 2n * imagepl[[l+l]]; 
estimate[[20]]=image[[20]] - 2n * imagenl[[20-l]]; 

Figure 8.1: Mathematica implementation of the Nearest Neighbor algorithm 
for 20 images. 
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images       objects 

A,= 574.8nm 

X,= 575.1nm 

A,= 575.4nm 

X = 575.7 nm 

X,= 576.0nm 

X = 576.3 nm 

X=576.6nm 

A,= 576.9nm 

X=577.2nm 

X=577.5nm 

X = 577.8 nm 

>. = 578.1 nm 

X = 578.4 nm 

A, = 578.7nm 

X = 579.0 nm 

X = 579.3 

X = 579.6 

X = 579.9 nm 

X = 580.2 nm 

X= 580.5 nm 

Figure 8.2:  Recorded Mercury images  and corresponding  restored objects 
with Nearest Neighbor technique. 
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Figure 8.3: Restoration of Mercury spectral radiance curve with Nearest 
Neighbor technique, (a) the recorded spectra, and the reconstructed spectra 
with  (b) n=0.45. v 

The Nearest Neighbor technique worked for the above application; however, it is 

important to recognize that the doublet X target has only a few high spatial and spectral 

frequencies. The computer simulation of section 6.2 predicts that this target would create 

little blurring, but as the target size increases and the emission broadens the blurring 

becomes stronger and the reconstruction more challenging. It becomes important to choose 

an algorithm which takes into account the influence of the whole image cube, not just the 

adjacent slices, such as Inverse Filtering. 
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8.3 Inverse Filtering 

A more accurate approach to remove the out-of-focus information requires that the 

full contributions of all of the observed data be utilized. The most direct way to utilize the 

entire image cube is to perform the inverse filter operations presented in section 4.2 and 

4.3. 0 = HJI 

Starting with the object, image and point-spread function three-dimensional data 

cubes, recall equation 4.11: 

i(x,y,z) = h(x,y,z) * * * o(x,y,z) 

A technique used in representing multi-dimensional data sets is lexicographical 

ordering. Each three-dimensional matrix, such as o(x,y,z), can be converted to an N3 x 1 

column vector by using a stacking operator [Hunt 1977]. Applying lexigraphical ordering 

to 32x32x32 data cubes forms vectors with 32768 elements each, leaving a one 

dimensional convolution: 

i(v) = h(v)*o(v) (8.7) 

Taking the Fourier transform of each vector: 

I(y/) = H(y/)0(\i/) (8.8) 

The object's Fourier spectrum vector 0(y/) can be computer from: 

O(V0 = ^- (8-9) 

An inverse Fourier transform is applied to 0(y/) to reconstruct o(v), which can be 

repartitioned in three dimension. 

The three-dimensional matrix calculation has been reduced to a scalar division. 

Notice that consideration must be given to the possibility of dividing by zero. Another 
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concern is that the regions in the image spectrum where the OTF values are very small 

correspond to frequencies that are mainly noise. Dividing these frequencies by the low 

values of the OTF would cause an over amplification of noise. Two methods are generally 

used to deal with this: apodization and applying a regularized inverse filter. 

8.3.1  Apodization Inverse Filter 

Apodization is a technique to deal with dividing the image spectrum with the lowest 

values of the OTF, by simply setting a maximum for the value of    l    equal to a constant 
H(¥) 

a. Values greater than a are set to zero [Erhardt 1985]. 

 if  <a 
H(Y) (8.10) 

0    if  >o 

1 

H(¥) 

An apodized inverse filter was implemented in Mathematica. The code is presented 

in Figure 8.4. The lexigraphical ordering function is performed by the command Flatten[ 

] and was used throughout the image processing, allowing the data cubes to be 

"unwrapped". The function Partition[ ] is used after the processing has been performed 

to regenerate the three-dimensional organization of the data cube. Erhardt used this 

approach with a theoretical OTF. However, the differences between experimental and 

theoretical OTFs are significant; hence better results were obtained using the experimental 

OTF of Figure 3.17. Figure 8.5 contains plots of lexicographical vector versions of the 

measured 3D psf and OTF. Figure 8.6 shows the results obtained from applying the 

apodized inverse filter to the challenging iris target and its computer generated 16 pixel 

counterpart. 
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For[p=l, p<=5,p++, 
For[m=l., m<=32768, m++, Är¥wr   in If[Abs[l./FLATOTF[[m]]]<=(20*(p-l)+10),INOTF[[p,m]]=l./FLATOTF[[m]], 

INOTF[[p,m]]=0.];];]; 

FLATMMAGE=cflatfft[Hatten[timage3D]]; 
FLATMIMAGE=cflatffl[Flatten[iris]]; 

For[m=l., m<=5, m++, 
OBJ=FLATMMAGE*INOTF[[m]]; 
obj=Abs[cflatinfft[OB J]]; 
parimagemono=Partition[obj, 1024]; 

For[k=l., k<=32, k++, 
obj3D[[m,k]]=Partition[parimagemono[[k]],32]; 
tobj3D[[m,k]]=Transpose[RotateRight[Transpose[RotateRight[obj3D[[m,k]],16]],16JJ;J; 

For[z=l, z<=32, z++, 
trans[[z]]=Transpose[tobj3D[[m,z]]]; 
heightrecon[[m,z]]=trans[[z,16]]; 
zrrecon[[m,z]]=tobj3D[[m,z,16]];]; 
heightrecon[[m]]=Transpose[heightrecon[[m]]]; 
zrrecon[[m]]=Transpose[zrrecon[[m]]];]; 

Figure 8.4: The Mathematica code for inverse reconstruction with 
apodization. 

5000 10000 15000 20000 25000 3000032768  0 

vector element # v 
5000 10000 15000 20000 25000 30000 32768 

vector element # v 

(a) (b) 

Figure 8.5: List Plot of the flattened (a) psf. (b) OTF. 
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Figure 8.6: Object results from apodization reconstruction with CG images 
(left column) and recorded iris images (right column). 
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8.3.2 Regularized Inverse Filter 

In inverse filtering situations, it is standard practice to use a regularized inverse 

filter to minimize the effects of noise that can dominate at high spatial frequencies [Sezan 

1992]. The form of the regularized inverse filter for the scalar equation (8.9) is: 

(   mwr    ^ 
O(yr) I(yr) (8.11) 

H(yf)*H(yr) + a, 

where a is a constant whose choice is based on the signal-to-noise ratio of the data and 

should be in the range of 0.001 to 0.1. In the experimental reconstruction a value of 

a=0.005 was found to be appropriate. Notice that like the apodization technique, the a in 

the denominator of equation (8.11) essentially sets a threshold maximum of _J_to deal 
H(y/) 

with the low values of the OTF. 

A regularized inverse filter can also be applied in the three-dimensional inverse 

equation: 

(X&V.0 = HO^O-'KI, V,0 (8-12) 

O($,¥r,0 = [H«,vr,0,H{$,vr,C) + a]"1H(§,vr,0,lB,^0 (8-13) 

however this requires taking the inverse of the [H*H+a] matrix, a task which can be 

difficult if the data is singular. Further discussion can be found below in section 8.3.3. 

The scalar regularized inverse filter of equation (8.11) was implemented in 

Mathematica and applied it to the 32x32x32 recorded image cube of the same Mercury X 

target. The code is printed in Figure 8.7. 
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flatimage=Flatten[image]; 
flatpsf=Flatten[psf]; 

FLATIMAGE=cfft[flatimage]; 
FLATOTF=cfft[psf]; 

a=.005; 

FLATOBJ=FLATIMAGE*Conjugate[FLATOTF]/((FLATOTF*Conjugate[FLATOTF])+a); 

flatobj=Abs[cinfft[FLATOB J]]; 

parobj=Partition [flatobj, 1024]; 

3Dobj=Table[0.,{z,32},{x,32},{y,32}]; 
For[j=l.,j<=32)j++, 
3Dobj[ü]]=Partition[parobj[ü]],32];]; 

t3Dobj=Table[0.,{z,32},{x,32},{y,32}]; 
For[j=l.,j<=32,j++, 
t3Dobj [[j]]=Transpose[RotateRight[Transpose[RotateRight[3Dobj [[j]], 16]], 16]];]; 

Figure 8.7: Mathematica code for the regularized inverse filter. 

The results from applying the regularized inverse filter to the Mercury X target are 

presented in Figure 8.8. Pictured in Figure 8.8(a) when oc=0 the regularized inverse filter 

defaults to standard inverse filter of equation (8.9). The results show that the reconstruction 

is ineffective because of the noise. The addition of the regularized inverse filter noise term, 

a, significantly improved the image quality. The image sets in Figure 8.8 (b), (c) and (d) 

show the reconstructed object sets with a equal to 0.1, 0.01 and 0.005 respectively. A 

large a such as 0.1 in Figure 8.8 (b) is similar to a low pass filter. Setting a to a smaller 

number increases the band pass for better reconstruction but also increases the possibility 

of noise. Figure 8.9 shows the normalized spectral radiance of one pixel before and after 

processing. 

120 



(a)cc=0 

(b)oc=0.1 

(c) a=0.01 

(d) a=0.005 
Figure 8.8: Resulting object sets after regularized inverse reconstruction 

with various a. 

Figure 8.9: Spectral Radiance of pixel 16,16 before and after (bold) 
regularized inverse reconstruction with a =0.005. 

Continuing the exploration of the spectral/spatial relationship this algorithm was 

applied to both the computer generated and experimentally measured increasing aperture 

doublet targets from Figure 6.7. The results are pictured in Figures 8.10, 8.11 and 8.12. 

As before, each 2D image is a z(k) vs. y cross-section of a 3D data cube with a 

corresponding spectral curve plotted below it. 
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z{X) (a) computer generated doublet objects 

J»L wki* UwL 1JJL Luk, k JA/ 
z(^) -»  (c) Inverse reconstruction without regularized noise reduction 

z(X)~*        (d) Regularized inverse reconstruction with a=0.0005 

JLULLiLLiLLiLLi 
z(X-) ->       (e) Regularized inverse reconstruction with a=0.00005 

Figure 8.10: CG doublet objects, images and reconstructed objects 
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aperture: 50|xm lOOum       400um 500^m rectangle 

/VL/kL/^k\l£X 
Z(X,) -» (b) Regularized inverse reconstruction with q=0.005 

Figure 8.11: Measured and regularized inverse reconstructed Hg doublet images. 

400^m 
I 

t 

ins 
I 

Z(X,) ->       (a) a=0.0001 too much noise 
z(A,)-> 

t A 
__^^_       z(X)-> M^H^H       z(A,)-> 

(b) a=0.001 noise and reconstruction balanced but not very good 
ll ■■■H 

_ z(k)-> B^^^^      z(^)-» 
(c) a=0.005 low noise but poor reconstruction 

■■   ll 
t Zk         z(Ä,)-> i^^HH      zA)-> 

(d) a=0.01 low noise little reconstruction 
Figure 8.12: Results of regularized inverse filter on measured 400(xm and 
iris  images. 
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This lexicographic regularized inverse filter worked very well on the measured X 

images of Figure 8.8 and the CG data of Figure 8.7. Even the long 32 pixel aperture of the 

right hand column is reconstructed. However, it was ineffective on the experimentally 

measured image cubes of the increasing apertures shown in Figures 8.11 and 8.12. Notice 

the unpredicted peaks at the edges of the spectral curves caused by both the apodization in 

Figure 8.6, and regularized inverse filter applied to measured image cubes. These peaks are 

artifacts of an invalid assumption during lexigraphical ordering that the psf is shift invariant 

and circular. The limited success that has been achieved is due to the fact that the targets 

have been spatially and spectrally located in the center of our 3D data cube, similar to being 

padded with zeros. However, as our target increased, i.e. the iris aperture, the circular 

approximation is seen as the psf wrapping around to the other side of our data cube. This 

problem is addressed by not making the circular assumption, by explicitly performing the z 

dimension matrix multiplication and implementing an SVD algorithm which also addresses 

probable difficulties such as a non-square data cube (MxNxN) and singular OTF matrices. 

8.3.3 Singular Value Decomposition Inverse Filter 

DOIS records a series of 2D spectral images, i„ i2, ....in. These are saved as a 3D 

image cube image[[x,y,z]]. The following expands equation (8.2) for a7=4, four color 

target. It describes each spectral image, ij(x,y) as the superposition of each spectral object, 

ok(x,y) convolved with a defocused point spread function, hjk(x,y) [Mooney 1995]. 

h{x,y) = hll(x,y)**ol(x,y) + hl2(x,y)**o2(x,y) + h13(x,y)**o3(x,y) 

h {x,y) = h2}(x,y)* *o, (x, y) + h22{x,y)* *o2 (x,y) + h^ (x, y) * *o3 (x, y) + h24(x,y)* *o4 (x, y) 

h{x,y) = K{x,y) * *ox(x,y) + hjjcy) * *o2(x,y) + h^{x,y) * *o3(x,y) + h^{x,y) * *o4{x,y) 

h{x,y) = h4l(x,y) * *o{{x,y) + h42(x,y) * *o2{x,y) + h43(x,y) * *o3(x,y) + hjxty) * *o4{x,y) 

(8.14) 

Following the theory of section 4.2 for simulation and reconstruction, 2D Fourier 

transforms are applied: 
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/, (£ 0 = »» (& C)o, (£ 0+»I2 (£ C)o2 (6 0 + A» (6 flo3 (6 0+»,4 (6 C)04«. 0 

/2feC) = »21feCM(M+»^^ 
/3 (6 0 = »31 «• flOl K. fl + »32 «, C)02 (6 0 + »33 «, C)03 (6 0 + »34 (6 C)^4 (6 fl 

/4(§,C) = ff41B,flo1K,0+^tf.0o2«.C)+^K.0o3«.0+^«.0o4«.0 

Rewritten in matrix form: 

h(M 
h(M 

HU(M MM MM MM 
H21(M »22B.O »23(^0 »24K.C) 
»31 fee) MM MM MM 
H41(M MM MM MM 

ox{M 
o2(M 
o3(M 
o<(M 

(8.16) 

This equation can be evaluated for each spatial frequency (£,,£,)• Lets take a closer 

look at the H matrix : 

H = 

HU(U) MM MM MM 
H21(M MM MM MM 
H3l(to MM MM MM 
H41(Z,Q Hn{Z,Q H^O MM 

(8.17) 

In Chapter 4 great lengths were taken to show that the point spread function is shift 

invariant (SIV). Applied here, it means that each Hjk can be expressed by the Fourier 

transform of a point spread function with an appropriate amount of defocus, HM, where 

Az= i - j, i.e. H0 is infocus, H1 is 1 step away from focus and H.j is 1 step in the other 

direction. 

H = 

H^X) HfcQ H2{U) »3(W 
H_\U) »ofeO »,feC) H2(Z,Q 
H_2{U) MM »ofeO HfcQ 
H_,{U) MM MM »o(£0 

(8.18) 

This is a block Toeplitz matrix formed from Fourier transforming images of point 

source at various amounts of defocus. Typically when considering a large number of 
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spectral channels it will become a sparse band diagonal matrix since the HM approaches 

zero at significant amounts of defocus. 

The task is to invert this H matrix, however it can have various problems which 

cause it to be singular and difficult to invert [Mooney 1995]. There can fail to be a unique 

solution if one or more of the N equations is a linear combination of the others, a condition 

called row degeneracy. Or if all equations contain certain variables in the exact same linear 

combination, inversion can fail due to column degeneracy. A set of equations that is 

degenerate is called singular. Singular value decomposition is a technique to solve for a 

solution to the inverse matrix with singular matrixes and in fact diagnose the singularities. 

This is the method of choice for solving most linear least squares problems [Press 1988]. 

The SVD method is based on the linear algebra theorem that any MxN matrix H 

whose number of rows M is greater than or equal to its number of columns N, can be 

written as the product of an MxN column-orthogonal matrix U, an NxN diagonal matrix W 

with positive or zero elements, and the transpose of an NxN orthogonal matrix V. 

H U 

w, 

w„ 

(8.19) 

The matrices U and V are each orthogonal in the sense that their columns are orthonormal, 

where: 

U' u = VT V = 1 (8.20) 
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Since V is square, it is also row-orthonormal, VVT=1. The inverse of the diagonal matrix 

W is easily determined by replacing the diagonal elements with 1/w. 

Aw 

& 

w. 

vv„ 

1 (8.21) 

The decomposition and determination of U, W, and VT is accomplished by a 

standard routine found in Numerical Recipes. In Mathematica the function 

SingularValues[H] outputs three matrices U, the elements of W and V. The inverse of 

H is found from: 

HJ=V diag\ 1/ 
'w >J 

U1 (8.22) 

The elements of W are called the singular values of the system. They help visualize 

the missing cone of our data, Figure 8.19. The noise can be surpressed by adding,a 

regularization filter to the wH values: 

w 

w    w2+a2 
(8.23) 

Substituting this SVD into the inverse reconstruction equation: 

o(&0 = Hfcfl-11(&0 

o(£C) = v(£C) diag 
w\ ux UT(£C)-1(£0 (8.24) %0 + cc* 

This SVD Inverse filtering algorithm was implemented in Mathematica. The first 

step was to form the OTF matrix. The best results were obtained from using a combined 

point spread function which is an average of the experimentally measured and theoretical 

psfs found in Figure 8.13. The measured psf provides information about the influence of 

aberrations from our DOE, while the theoretical psf, calculated from the geometric cone, 
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provides the very small values which fall below the detectable range of the detector and 

would mistakenly be set to zero. 

in-focus plane 
step # 32 

10 20 30 40 
spectral step z(k) 

50 60 

Figure 8.13 (c): Cross-section of the 3D combination psf used in SVD 
object reconstruction (contrast enhanced to show detail). 

Looking again at equation (8.18) one might notice that it takes seven values of 

HAz(tO to form the four z(k) rows in the H matrix. To reconstruct OTF with 32 z(k) 

rows, values from 63 z(X) planes are required as shown in Figure 8.13. This provides 

images of a point source at focus (plane number 32) and 31 defocus steps on either side of 

focus. Since it has been established that the psf is shift invariant, a "basis" OTF matrix P 

is formed from taking the 2D Fourier transform of the image at each step of defocus with 

the procedure listed in Figure 8.14. 

For[z=l,z<=63,z++, 
P[[z] ]=cfft[combinedpsf[[z] ] ] ; 
] ; 
P=P/Max[Abs[P]]; 

This code takes the Fourier Transform of the 
(32x,32y) images at 63 steps of defocus, z, 
in the combined psf of Figure 8.13, then 
normalizes the results to form the 
normalized OTF, P[[Az£,Q] 

Figure 8.14: Mathematica code to calculate the "basis" OTF, P[[Az£,Q]. 

The   OTF   matrix  is   formed  by   substituting  the   appropriate  defocus   data 

P[[Az,£,£|]. OTF is a four-dimensional matrix, NxN (32x32) for each spatial frequency 
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(£,0, shown in Figure 8.15. The values are complex, Re + ilm, yet the standard SVD 

code is written for real elements. However, SVD can handle non square matrices, MxN, so 

our NxN complex matrix is converted into a 2NxN real matrix where the first N rows are 

the real values and the remainder are the imaginary. It is this matrix which will be inverted 

with the SVD routine and then rewritten as an NxN complex inverse matrix using the 

conversion matrix inim, formed in Figure 8.16. 

OTP=Table[0.,{i,32>,{ j,32},{ 4,32),{ 032}] / "forms  a  4D OTF matrix" 

SessionTime[] 
For[^=l,  E <=32, E,   + + , "puts  the proper values   into  the  4D OTF 

For[£=l, t <=32, £   ++, matrix  for each spatial   frequency   (q, Q" 

OTF[[$£]]= 
{{P[[32,4,Ol ,   P[ [31,4,01 , p[ [30,4,0] ,   P[ [29,4,0 5 ,   P[[. ..,4,01 , P[[i,4,0]} 

{P[ [33,4,01. P[ [32,4,^1], p[ [3i,4,0 ]- p[ [30,4,0], P[[.. .,4,Cn, p[ [2,4,01) 

{P[ [34,4,0] P[ [33,4,0] P[ [32,4,0], p[ [31,4,01, P[[.. ..«]], p[ [3,4,0 n 

{P[ [35,4,0] P[ [34,4,01 P[[33,4,Ol, P[ [32,4,01, P[[.. .,4,Cn, p[ [4,4,0]) 

{P[ [36,4,01 P[ [35,4,0] P[ [34,4,0], P[ [33,4,01, P[[.. .,4,01- p[ [5,4,01) 

{P[ [37,4,01 P[[36,4,0] P[ [35,4,0], P[ [34,4,0], P[[.. .,4,01, p[[6,4,Oi} 

{P[ [38,4,01 P[ [37,4,01 P[[36,4,Ol, P[ [35,4,01, P[[.. .,4,01, p[[7,4,Oi} 

{P[ [39,4,01 P[ [38,4,0] P[ [37,4,0], P[ [36,4,01, P[[.. .,4,01, p[[8,4,Ol} 

{P[ [40,4,01 P[[39,4,0] P[[38,4,0], P[ [37,4,01, P[[.. .,4,01, p[[9,4,Oi} 

{P[ [41,4,01 P[ [40,4,0 1 P[ [39,4,01, P[ [38,4,01, P[[.. .,4,01, p[ [io,4,0]} 

{P[ [42,4,01 p[ [4i,4,0] p[ [40,4,0], P[[39,4,Ol, P[[.. .,4,0], p[[ii,4,0]} 

{P[ [43,4,01 P[ [42,4,0] p[[4i,4,Oi, p[ [40,4,01, P[[.. .,4,0], p[[i2,4,Oi} 

{P[ [44,4,0 ] P[ [43,4,01 P[ [42,4,01, p[ [41,4,01, P[[.. .,4,01, p[[i3,4,0]} 

{P[ [45,4,0 1 P[ [44,4,0] P[ [43,4,0], P[ [42,4,01, P[[.. .,4,01, p[ [14,4,0]} 

{P[ [46,4,01 P[ [45,4,01 P[ [44,4,01, P[ [43,4,0], P[[.. .,4,01, p[[i5,4,0]} 

{P[ [47,4,01 P[[46,4,Ol P[[45,4,0], P[ [44,4,01, P[[.. .,4,01, p[ [16,4,0]} 

{P[ [48,4,01 P[ [47,4,01 ,   P[ [46,4,01, P[ [45,4,01, P[[.. .,4,01- p[[i7,4,C]]} 

{P[ [49,4,01 ,   P[ [48,4,0] ,   P[ [47,4,01, P[ [46,4,01 P[[.. .,4,CH, p[ [18,4,0]} 

{P[ [61,4,0 ] , P[[60,4,0] ,   P[[59,4,0], P[ [58,4,01 P[[.. .,4,01, p[[3o,4,On 

{P[ [62,4,0] , p[[6i,4,0] , P[[60,4,0], P[[59,4,Ol P[[.. .,4,0]- p[[3i,4,Oi} 

{P[[63,4,0] ,   P[ [62,4,01 , P[[6i,4,0], p[ [60,4,01 P[[.. .,4,01, P[[32,4,C1]}} 

] ; ] ; 
SessionT. Lme [ ] 
71630.88 
73560.42 

Figure 8.15: Mathematica code to form the OTF Matrix. 

129 



im=Table[0.,{x,32},{y,64}]; 
realim=IdentityMatrix[32]; 
For[x=l,x<=32,x++, 
For[y=l,y<=3 2,y++, 
im[[x,y]]=realim[[x,y]]; 
im[[x,y+32]]=I*realim[[x,y]] ;] 
;] ; 
ListDensityPlot[Abs[im]]; 

inim=PseudoInverse[im]; 
ListDensityPlot[Abs[inim]]; 

The SVD algorithm in Numerical Recipes 
and Mathematica only works on real 
matrices and the OTF matrix has complex 
numbers. However, it is possible to rewrite 
the square NxN complex matrix as a 2NxN 
matrix, called ri, with the real values in the 
first N rows and the imaginary values in the 
lower N rows. The SVD is used to 
decompose and invert the 2NxN ri matrix. 

The code on the left forms a 2NxN matrix 
inim where the 1st N rows form an Identity 
matrix and the bottom rows form a diagonal 
matrix with the complex value i along the 
diagonal. This matrix can be multiplied by 
the inverse of ri to reorder the inverse 
matrix into a NxN complex inverse matrix. 

H 

I 
Re[H] 

Im[H] 

H- 

SVD 

Pi 

I 
a 

Figure 8.16: Mathematica code to create inim which converts the NxN 
Complex matrix into an 2NxN of all Real values. 

The code in Figure 8.17 creates the matrix IMAGE by taking the Fourier transform 

of the 2D spectral images at each z(X). As shown, an additional dimension was added to 

the IMAGE matrix, m, where each value of m represents a different target. Since the OTF 

doesn't change, the algorithm can be applied to many image cubes while having to invert 

the matrix only once. In fact, once a proper OTF and a value are established, the inverse 

need only be performed once. It can be stored in memory for future use. 
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"forms a matrix with Fourier Transforms of 6 measured image cubes to reconstruct 6 object 
cubes simultaneously " 
IMAGE=Table[0.,{m,6},{z,32},{x,32},{y,32}]; 
REIMAGE=Table[0.,{m,6},{z,32},{x,32},{y,32}]; 
For [m=l,ni< = 6,m+ + . 
For[z=l,z<=32,z++, 
IMAGE[[m,z]]=cfft[doubletimage[[m,z]]]; 
For[x=l,x<=32,x++, 
For[y=l,y<=3 2,y++, 
REIMAGE[[m,x,y,z]]=IMAGE[[m,z,x,y]];];];];] ; 
Figure 8.17: Mathematica code to create the Fourier space matrix IMAGE. 

INOTF=Table[0.,{x,32},{y,32}]; 
ri=Table[0.,{x,64},<y,3 2}]; 
singularvalues=Table[0.,{x,32},{y,32},{i,32}]; 
OBJ=Table[0.,{m,6},{z,32},{x,32},{y,32}]; 
a=.09 
SessionTime[] 
For[x=l,x<=32,x++, 
For[y=l,y<=3 2,y++, 

For [k=l,k<=32,k++, "form the  2NxN real valued matrix" 
ri[[k]]=Re[OTF[[x,y,k]]]; 
ri[[k+32]]=Im[OTF[[x,y,k]]] ; ] ; 

{u,md, v}=SingularValues [ri] ;        "use  the SVD command to  find the 
singularvalues [ [x,y] ]=md; three matricies  U,W & VT" 
w=md/(mdA2+aA2); 
inri=Transpose[v] .DiagonalMatrix [w] .u; "find the  inverse" 
INOTF = inri . inim; "reorder  into  the complex inverse matrix" 

For[m=l,m<=6,m++, "Find the object   from O^^I" 
OBJ[[m,x,y]]=INOTF.REIMAGE[[m,x,y]];]; 

] ; 
Print[x]; 
] ; 
SessionTime[] 
71630.88 
73563.42 
{Max[singularvalues],Min[singularvalues]} 

|{14.5595, 0.0000512428} I 
Figure 8.18: Mathematica code finds the SVD matrices, inverts the OTF and 
finds the reconstructed OBJ matrix. 

The singular value decomposition, inverse and object reconstruction are performed 

with the code listed in Figure 8.18. The matrix ri is the 2NxN matrix of real values. The 

function SingularValues[ri] outputs the three matrices u, md, and v. The singular values 
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md are stored for future investigation and the a noise suppression is applied. The inverse 

is stored in INOTF then multiplied by the IMAGE resulting in OBJ. This is then inverse 

Fourier transformed to reconstruct the object cube in the program listed in Figure 8.19. 

"Reorder  the matrices" 
REOBJ=Table[0.,        {n,6},{i,32},{j,32},{k,32}]; 
object = Table[0.,        {n,6},{i,32},{j,32} , {k, 32} ] ; 
For[z=l,z<=32,z++, 
For[x=l,x<=32,x++, 
For[y=l,y<=3 2,y++. 
For[m=l,m<=6,m++, 
REOBJE[m,z,x,y]]=OBJ[[m,x,y,z]];];];];]; 
"Take  the  inverse  Fourier Transform of OBJ  to  find the  object  cubes" 
For[m=l,m<=6,m++, 
For[z=l,z<=32,z++, 
object[[m,z]]=Abs[cinfft[REOBJ[[m,z]]]]; 
] ;Print[m]] ;  

Figure 8.19: Mathematica code takes the inverse Fourier transform of the 
OBJ matrix. 

The singular values, wu(£,Q, of the OTF matrix are plotted in Figure 8.20. Each 

image is a density plot of the spatial frequencies contained at a given spectral frequency. 

Notice that there is a region of black pixels in the center of each image which grows with 

increasing spectral frequencies. This represents low frequency spatial/spectral information 

that isn't imaged by DOIS or recoverable with processing. Plotted in Figure 8.21 as a 

cross-section of each spectral frequency, the frequently discussed missing cone which 

plagues such imaging systems is seen [Barrett 1981, Mooney 1995, Descour 1995]. 

Singular value decomposition inverse reconstruction provides a unique and valuable 

opportunity to quantify the missing cone. The missing spatial and spectral frequencies can 

be determined from the design parameters to predict the cut off frequencies and used as a 

figure of merit when designing and comparing future imaging spectrometers. 
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(a) wnn(£,0 increasing spectral frequencies—> 

(b) increased contrast on 1st 10 wJ^Q increasing spectral frequencies—> 

(c) the 10 images of (b) only larger 

Figure 8.20: Singular Values w,,(5,0 Matrix plots. 

spatial 
frequencies 

cross-section 

increasing spectral frequencies 

Figure 8.21:  Cross-section shows missing cone. 
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8.3.3.1   SVD  results 

The following figures present results from applying the SVD object reconstruction 

algorithm from equation 8.24 to computer generated (CG) and experimentally measured 

images cubes,   (32x,   32y,   32z(X))  in  size.  Figure  8.23   depicts  the  results  from 

reconstructing the CG object cubes of increasing square apertures in front of a Hg doublet 

that were generated in section 6.2.2. As expected, the doublet is indeed reconstructed using 

the SVD. Looking closer at the results, Figures 8.24 and 8.25 picture the same CG data 

sets but displayed as series of spectral images. The first is from the 8x8 square aperture, 

and the second from the 16x16 square. Objects were reconstructed with the regularization 

filter value a set to 0.5, 0.1 and 0.05 from equation 8.23. Notice that only 30 images are 

printed for each image series, for convenience the 1st and 32nd were omitted from the 

figure. Figure 8.22 lists the location values z(X) corresponding to the (32x, 32y) images 

pictured in the series. Recall that each step represents dz=0.125mm and spectral step size 

dA,~ 25nm in both the CG and experimental cubes. The entire 32 step series records an 

8nm band, a resolution that rivals any spectral filter. 

2 3 4 5 6 7 8 9 10 11 
12 13 14 15 16 17 18 19 20 21 
22 23 24 25 26 27 28 29 30 31 

In (a) of Figure 8.24 and 8.25, the square aperture emits at locations 14 and 20. 

The effect of DOIS imaging is seen in (b): the edges of the squares are blurred, and it 

inaccurately measures the presence of the square in more than the two locations, the image 

is now blurred over most z locations. The SVD Inverse filter algorithm was applied with a 

equal to 0.5, 0.1 and 0.05 with the results displayed in (c), (d) and (e) respectively. The 
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reconstruction does reduce the occurrence of the square in the inaccurate locations, and the 

square is sharpened. As a is made lower, the reconstruction is better; however, noise and 

ghost images are introduced which aren't present in the (b) image cube. 

Interestingly, the reconstructed object squares appear to be shifted by two z 

locations, d?i=0.5 nm. The cause of this shift is indeterminate, an investigation into this is 

matter is recommended as a suggestion for further work. 

The SVD algorithm was applied to four different experimentally measured image 

cubes. Each target was assembled to demonstrate a variety of spectral/spatial 

characteristics. For consistency Figure 8.26 shows that the SVD reconstruction works well 

on the experimentally measured 577/579 nm Mercury doublet with the X aperture. The 

noise regularization value a was set to 0.5,0.1 and 0.05 for (b), (c) and (d) respectively in 

the figures of all four targets. 

The second target combines a 542nm GreNe laser point source imaged along side 

the 546 nm Hg lamp with a trapezoidal aperture. The recorded image cube and 

reconstructed object cubes are shown in Figure 8.27. The SVD reconstruction improved 

both the spectral and spatial quality of the images without the artifacts demonstrated with 

the other algorithms. 

To touch on larger targets, an almost full FOV rectangle aperture was placed in 

front of the Hg doublet in Figure 8.28. Although the 2nm doublet can't be resolved, DOIS 

measures it to be a line with about 4 nm FWHM using the SVD reconstruction, and the 

spatial information of the rectangle aperture is reconstructed. Finally, the mercury 

illuminated iris image cube was processed with the SVD. The results are shown in Figure 

8.29, notice that a "hot spot" on the bulb has been reconstructed. 
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z(^^^ (a) The cross-section plots from the CG objects. 

(b) The cross-section plots from the CG images 

z(^)-> (c) SVD object reconstruction results oc=.5 

zß-)-> (d) SVD object reconstruction results a=. 1 

z<^-)-> (e) SVD object reconstruction results a=.05 

Figure 8.23: z(k) vs. y cross-section and spectral plots from SVD applied 
to CG Doublet. 
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(a)CG doublet square 8x8 pixels 

■ B 

(b) CG image set 

DH fl B 
(c) SVD reconstruction with oc=.5 

■ ■ 
(d) SVE ) reconstruction w itha=.l ■ ■ 
(e) SVD reconstruction with a-,05 

Figure 8.24: SVD reconstructed object series from the CG 8 x 8 pixel 
doublet aperture, previously depicted as cross-sections in 8.23. 
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(a) CG doublet square(16xl6pixels) target at #13& 20 

DDDDDDDDDH 
(b) CG image set with measured psf 

(d) SVD reconstruction with oc=. 1 

(e) SVD reconstruction with oc=.05 
Figure 8.25: SVD reconstructed object series from the CG 16 xl6 pixel 
doublet aperture, previously depicted as cross-sections in 8.23. 
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L 

(a) experimentally measured images 

(b) SVD reconstruction a=1.5 

(c) SVD reconstruction a=l 

(d) SVD reconstruction a=.75 

Figure 8.26: SVD reconstructed object series from the experimentally 
measured Hg 577/579 nm X. 
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Figure 8.27: SVD reconstructed object series from the experimentally 
measured 542 nm GreNe point-source with a trapezoidal 546 nm Mercury 
target. 
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(a) experimentally measured images 

, 

~^':i~ „<M <- .;& 

(b) SVD reconstruction a=1.5 

(c) SVD reconstruction a=l 

(d) SVD reconstruction a=.75 

i.,:^i~:r^'% t 

\ 

Figure 8.28: SVD reconstructed object series from the experimentally 
measured Mercury Rectangle. 

(notice poor reconstruction when the target extends to the edges) 
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(a) experimentally measured images 

(b) SVD reconstruction a=1.5 

(c) SVD reconstruction a=l 

(d) SVD reconstruction a=.75 

Figure 8.29: SVD reconstructed object series from the experimentally 
measured Iris illuminated by a Mercury bulb (notice the hot spot). 
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8.4  Constrained Iterative Deconvolution 

The SVD Inverse Reconstruction algorithm with a regularized filter for noise 

suppression provides a linear restoration. One drawback of such linear methods is that 

negative ripples build up around strong features from the low values of the OTF and no 

reconstruction is possible beyond the OTF cutoff. Nonlinear restoration methods that 

constrain the result to be positive can eliminate this problem while using positivity and 

other a priori information to provide a better restoration. The drawback is that these 

methods are invariably iterative and hence quite computationally expensive in three 

dimensions. An additional challenge is to develop a relaxation parameter optimized for a 

particular application and image cube. 

The strategy is to develop a positively constrained solution or guess object cube go, 

that when convolved with the known smearing function h will regenerate the observed 

image cube /.. The pixel-by-pixel differences between the convolved guess and the 

observed data are used to update the guess. 

gik=gok*h 

goM=go*+y{i-8ik) (g25) 

if goM<0 then goM = 0 

k = k + l 

This is the Jansson-vanCittert constrained iterative deconvolution algorithm with the 

relaxation parameter [Jansson 1984]: 

7 = r0[l-2|g</-i|] (8.26) 

which applies the a priori information that the intensity is a positive value and that the 

spectra is a transmission function with a maximum value of 1. The best results were 

obtained with an initial guess equal to the regularized inverse filtered data set and a 

weighted relaxation parameter, y. 

143 



The vanCittert iterative technique with a Jansson relaxation parameter of equation 

(8.25) was implemented in Mathematica and is listed in Figure 8.30. The algorithm was 

applied it to the X Mercury doublet. The results after 10 and 20 iterations are pictured in 

Figure 8.31. The spectral radiance curve plotted in Figure 8.32 shows that the doublet is 

better resolved with every iteration. 

gama=flatmimage/Max[flatmimage]; 
gobj=regularizedobj; 
Print["=start time"SessionTime[]]; Print["=original maxobj"Max[gobj]]; 
Do[ 
GOBJ=cflatffi[gobj]; 
gi=Abs[cflatinfft[GOBJ*FLATOTF]]; 
diff=flatmimage-gi; 
gobj=gobj+gama*diff; 
gobj=(gobj+Abs[gobj])/2; 
objnum[[c]]=gobj; 

Print["iteration"];Print[c];Print[,,=maxobj',Max[gobj]];Print["=maxdiff'Max[diffI]; 
Print["=mindiff'Minfdiff]]; Print["time"SessionTime[]]; 
,{c,20}] 

Figure 8.30: Mathematica code for the Jansson-vanCittert algorithm. 

(a) recorded images 

Figure 8.31: Resulting images after Jansson-vanCittert reconstruction with 
various iterations, (a) original recorded data, (b) n=10. (c) n=20. 
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Figure 8.32: Spectral Radiance of pixel 16,16 Jansson-vanCittert 
reconstruction at various iterations. 

The Jansson-vanCittert algorithm didn't work for large targets or data with 

excessive noise. Various relaxation functions were implemented and several hundred 

iterations ran without ever reaching convergence. This inspired the addition of another step 

to the algorithm. The difference term is inverse filtered with a regularized inverse filter as 

described in equation (8.27). This achieved much better results that converge within a few 

iterations. 

gik=gok*h 

diff = i-gik 

DIFF = Fourier[dijf] 

regulardiff = Abs InverseFourier 
( 

DIFF 
H* A 

V H*H + a 
(8.27) 

gok+i = gok + regulardiff 

if goM < 0 then gok+1 = 0 

ik = jk + l 

The regularized inverse filtered vanCittert algorithm of equation (8.27) was 

implemented in Mathematica with the code listed in Figure 8.33. It was applied to CG 

doublet and experimentally measured iris images. The rms difference between the recorded 
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images and the guess images is plotted against the number of iteration in Figure 8.34; they 

show convergence in less than 5 iterations. 

start with measured image 
image=flatmimage/Max[flatmimage]; 
gobpimage; 
a=.01 
Print["=starttime"SessionTime[]]; 
Do[ gimage=Abs[cflatinfft[cflatfft[gobj] *FLATOTF]]; 
gimage=gimage/Max[gimage]; 
diff=image-gimage; 
diff=dirf-Min[diff]; 
n=Ceiling[(c)]; 

REGULARDIFF=cflatfft[diff]*Conjugate[FLATOTF]/((FLATOTF*Conjugate[FLATOTF])+a); 
regulardirrI[n]]=Abs[cflatinfft[REGULARDIFF]]; 
gobj=gobj+regulardiff[[n]]; 
rms[[c]]=Mean[Abs[regulardifrI[n]]]]; 
objnum[[n]]=gobj; 
Print["iteration"c];Print["=rms"rms[[c]]]; 

c,20}] 
Print["time"SessionTime[]]; 
For[i=l., i<=l, i++, 
par[[i]]=Partition[reblurredobject,1024]; 
For[j=l., j<=32, j++, 
obj[[ij]]=Partition[par[[ij]],32]; 
obj[[ij]]=TransposetRotateRight[Transpose[RotateRight[obj[[i,j]],16]],16]];];]; 
For[m=l, m<=l, m++, 
For[z=l, z<=32, z++, 
trans[[z]]=Transpose[obj[[m,z]]]; 
h[[m,z]]=trans[[z,16]]; 
w[[m)z]]=obj[[m,z,16]];]; 
h[[m]]=Transpose[h[[m]]]; 
w[[m]]=Transpose[w[[m]]];]; 

Figure 8.33: Mathematica code for regularized inverse filtered vanCittert 
iterative reconstruction. 

rms  error 

1 

0.8 

0.6 

0.4 

0.2 

'iterations 
10 15 

(a) 

20 20 40 60 

(b) 

iterations 

Figure 8.34: CG doublet; rms error after each iteration for (a) the CG 
doublet and (b) the iris. 
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The results are depicted in Figures 8.35, 8.36 and 8.37. The objects' spectral and 

spatial information is reconstructed, including the lamp hot spot and spectral doublet in the 

iris data. Although this algorithm does look promising, it requires the regularized inverse 

filter which was shown to make approximations that aren't always appropriate. See the 

wrap around problems in the iris plots which result in improper peaks in the tails of the 

spectral plots. It was also found that the algorithm had to manipulated to fit the target. This 

aside, the constrained iterative technique could still be a solution to the deconvolution 

problem for certain applications, particularly if DOIS were required to image the same or 

similar targets repeatedly. 
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Ju 
z(A,)-> 

JL 
z(X,)-> 

Figure 8.35: CG doublet; results of regularized inverse filtered vanCittert 
iterative reconstruction with °c= 0.001. 

( 
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original measured data 
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zx cross-section 

zft)-> 

zy cross-section 
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z(l) 
1 

recorded data 
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z(X)-> 

(a) after 3D Regularized inverse with «==0.01 
I 

£\ 
zft)-> 

z(X)-> 
(b) 1 iteration 

A. 
zft)-» 

t £% 
z(A,)-* 

z(^) -> (c) 5 iterations 
I 

z(A,)-> 

T /^y 
  z(X) -» 

z(^) -> (d) 10 iterations 
I 

r^ 
t £3si 

zft)-> 

z(X) 
(e) 20 iterations 

z(A,)-> 

£^ 
z(Ä.)-> 

Figure 8.36: Results of iris reconstruction after (a) 3D Regularized inverse 
filter and (b-e) with regularized inverse filtered vanCittert iterative 
reconstruction  a=.01. 

(a) after 10 iterations 

(b) after 20 iterations 
Figure 8.37: Reconstructed iris objects after 10 & 20 iterations. 
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9. CONCLUSION 

The Diffractive Optic Image Spectrometer (DOIS) is a viable multi-spectral imager. 

This dissertation demonstrated and proved the concept of spectral imaging with a 

diffractive optic. More importantly, the theory of spectral imaging with a diffractive optic, 

referred to as diffractive spectral sectioning, was developed and an appropriate digital 

image restoration algorithm was derived to deconvolve the DOE transfer function from the 

recorded image cube, providing a high resolution spectral/spatial object cube. 

The spectral resolving power of 288 (XjAk = 577nm/2nm) demonstrated by the 

DOIS prototype can be utilized to predict capability of future diffractive optic image 

spectrometer designs applied in any spectral range; UV, visible or IR. 

I conclude that the best image spectrometer designed with a diffractive optic would 

include a kinoform; a high efficiency, multi-level DOE with a refractive surface to balance 

the spherical and off axis aberrations. An intermediate zoom lens should be used to perform 

the spectral scanning while maintaining a constant magnification. The most accurate and 

powerful reconstruction algorithm is the Singular Value Decomposition Inverse Filter with 

a regularization term for noise suppression. 

9.1 DOIS Advantages 

DOIS has several advantages over current image spectrometers. It incorporates a 

simple one axis translation on a rugged platform making it insensitive to vibrations which 

limit Fourier Transform spectrometers. DOIS is programmable, providing single spectra, 

narrowband or full spectrum image cubes. It can provide coarse or fine spectral resolution 

by choosing the stepping increment and an object reconstruction algorithm at various levels 

of computational expense. 
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DOIS uses mainly off the shelf components. The DOE fabrication does have a large 

first time expense to generate a master; however, multiple copies can be replicated at 

minimal expense. The design is not limited by the availability of materials like conventional 

thin film spectral filters. Once built for one application, additional wavelengths within a 

wide spectral range can be viewed for other applications without changing components. 

DOIS solves a common problem associated with spectral filters; the central 

wavelength of a filter's bandpass can shift due to environmental factors such as 

temperature. This can be corrected for in a DOIS system with a simple change in position, 

making on-board calibration and realignment possible. 

DOIS provides enough spectral and spatial image quality without post-detection 

processing that there are applications where the recorded image cube can be utilized to 

represent the target. Contrary to computer-tomography approaches, even when object 

reconstruction processing is required the pre-processed images are at least recognizable so 

that the operator can have confidence while recording the data. 

The DOIS spectrometry feature can be added to existing camera systems with a 

simple lens/mount replacement, providing additional information for the difficult task of 

target identification. DOIS can also be a cost effective solution to spectroscopy applications 

where imaging isn't required but would serve as a bonus. The imaging will help in 

minimizing misalignment and improve tracking of moving targets. The additional pixels 

within the field of view could act as simultaneous data measurements that can be averaged 

to improve accuracy and reduce noise. 

As with most imaging spectrometers the scanning mechanism will limit use in 

applications with short lifetimes, however as presented below in section 9.2.3, a DOIS 

system can be designed with no moving parts, recording the entire image cube in a single 

"snapshot". 
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9.2 Suggestions for future work 

During this dissertation several ideas were conceived for continued research with 

diffractive optic imaging spectrometers and are presented below. Additionally, it was 

discussed in section 6.2.2 that a field stop should be added to the optical train to aid in 

reconstructing targets on the edge of the field of view and that an investigation should be 

performed into the cause of a spectral shift in the reconstructed data in Figure 6.7. 

9.2.1 Dual Waveband design using multiple orders 

While working with the 2 level zone plate, 5 separate diffractive orders were 

observed by scanning the detector closer to the DOE. Each order is located at —, where f 
m 

is the focal length of the first diffractive order and m is the diffractive order number. While 

viewing wideband emitting targets, the orders started to superimpose one another. Why not 

use this effect to design a multi-band spectral imager, where the DOE images far IR 

radiation in the first order and the mid IR in the second order? 

X fuml 

^i [urn] ^2|>rn] f[fo] 

6.00 S.0Q 1.22 
6.50 3.25 1.12 
7.00 3.50 1.04 
7.50 3.75 0.97 
8.00 4.00 0.91 
B.50 4.25 0.86 
9.00 4.50 : 

4.75. ' 
0.81 

9.50 0.77 
,10.00 5.00 0.73 
10.50' . 5.25 0.70 
11.00 5.50 0.66 
,11.50 5.75 0.63 
12.00 6.00 0.61 

Figure 9.1: Two waveband design, mid IR and far IR, with k0=7.3jim 
spectral TI for each order, and the two wavelengths at each focal position. 

A 16 level DOE designed at X,d=7.3|Lim images 8 to 12|im far IR radiation in its first 

order and 3 to 5(im mid IR in its second diffractive order. Figure 9.1 shows the 1st and 2nd 

order spectral diffraction efficiency for a A,d=7.3|im DOE.  The two wavelengths that are 
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imaged at each focal position are listed in Figure 9.1(b). One can think of various detector 

configurations, as well as an array of both mid and far IR detectors. 

This multi-order concept was demonstrated with the DOIS visible prototype. The 

second order image of a 633 nm HeNe laser came to focus at the same plane as the third 

order image of a 422 nm monochrometer slit. 

9.2.2 Programmable DOE with an SLM, variable focus device 

Depicted in Figure 9.2, an electronically controlled variable focus diffractive lens or 

spatial light modulator (SLM), can replace the DOE in the diffractive optic image 

spectrometer to create a DOIS with no moving parts. The components are mounted with a 

fixed separation. The SLM will select the image spectra by electronically changing the DOE 

ring spacing, which will change the focal length [Domash 1996]. 

_ ■■«■■■■■ ■■■■■•■■»a 
.■■«■■■■«■a«! 
■■■■■■«■■MM 

■■■■■■■■■ 

Spatial Light Modulator 

Figure 9.2: Design for a static DOIS with a controllable, variable focus 
lens. 

9.2.3 Array of DOEs 

Finally, an image spectrometer can be designed with diffractive optics and no 

moving parts to record the entire 3D image cube simultaneously. Figure 9.3 is the 

schematic of a DOIS "snapshot" technique which records a set of images at predetermined 

spectral lines. Each lens of the array is fabricated to have the same design focal length but at 

different wavelengths. The detector array is segmented into a region for each wavelength or 
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an array of detector arrays could be assembled. This configuration eliminates scanning and 

magnification differences. However unlike a segmented detector with an array of filters, if 

the temperature shifts or requirements change the array can easily be repositioned at a 

different distance to detect another set of spectra. Additionally, by fabricating one lens to be 

refractive, such as a Fresnel Lens, a conventional full-band image of the entire scene can be 

recorded as well. 

DOE lens array segmented CCD 

Figure 9.3: Design for a static DOIS with a DOE lens array. 

In conclusion, DOIS, the diffractive optic imaging spectrometer presented in this 

dissertation is a practical, high resolution, compact, economical, rugged, programmable, 

multi-spectral imager. With proper selection of the DOE substrate and detector material, it 

can be built to operate at ultraviolet, visible or infrared wavelengths for applications in 

surveillance, remote sensing, law enforcement, environmental monitoring, laser 

communications, medical imaging and laser counter intelligence. 
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