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Abstract 

We propose an adaptive compression enhancement scheme for images, that faith- 
fully preserves edges that exist at certain scales. The image gradient is decomposed in 
a wavelet basis to locate edges at specific scales. Based on their location, the corre- 
sponding wavelet coefficients in the wavelet decomposition of the image are earmarked 
for preservation . A scale-space localized implementation of the gradient operator is 
derived in the wavelet transform domain, based on the Lemarie-Rieusset diagonaliza- 
tion of the derivative operator for functions of one variable. By decomposing an image 
with respect to a standard biorthogonal wavelet basis, we succeed in obtaining the 
gradient (edge) information in the image (with respect to associated hybrid biorthog- 
onal wavelet bases) at certain desired scales only. There are several advantages to 
.and applications of such a localized implementation of the gradient, apart from its 
computational efficiency. Adaptive compression of images based on edge-strengths at 
specific scales becomes possible, so that compression can be less in the neighborhood of 
edges at those scales at which its characteristics are best represented. Such preferential 
compression capability is useful for the compression of vast databases of oceanographic 
and astronomical images; faint edges characterizing interfaces between warm and cold 
ocean currents in satellite oceanographic images, and boundaries between interstellar 
dust and nebulae of subtly varying luminosities in astronomical images are important 
image features that need to be preserved with minimum distortion, while achieving sig- 
nificant compression in other parts of these images that correspond to known features 
such as land-ocean boundaries or familiar stars. 
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1 Introduction 

In many image processing applications it is necessary to partition an image into two subsets, 

where one of the subsets is a distinguished subset that contains points of the image at which a 

particular image characteristic or feature manifests itself. In this paper, we will be interested 

in extracting certain distinguished subsets of images, in order to selectively apply adaptive 

image compression . A distinguished subset may be obtained by means of an algorithm 

that processes the image for specific information, or an operator that acts on the image - 

to enhance or suppress specific features.    We will restrict ourselves here to a particular 

of a local operator; e.g., the derivative operator.   By taking the wavelet transform of the ■     t 

result of such a local operator's action on an image, it is possible to separate the different x    f 

positions and scales of the distinguished subset. Moreover, as a consequence of the locality 

of the operator, it is possible to effect changes in the neighborhoods of those coefficients 

in the wavelet transform of the image, that correspond in scale and space to the transform 

coefficients of the points of the distinguished subset. Furthermore, if the operator involved 

is linear, then it is possible to realize it entirely in the wavelet transform domain, allowing 

an efficient and localized implementation of it. Several local linear operators such as the 

gradient, the curl or rotation, the Laplacian and convolutions with compact kernels are 

important for extracting image features relevant to various image processing operations. In 

this paper we will develop wavelet based adaptive compression by means of the gradient 

operator. 

2 Compression 

Wavelet-based lossy compression of an image is achieved by expanding the image in an ap- 

propriate two-dimensional wavelet basis, and in each subband of the decomposition retaining 

only significant coefficients by means of a thresholding scheme. The thresholded decomposi- 

tion of the image is subsequently quantized and encoded to achieve a lossy compressed image 

file. Existing lossy compression schemes are reasonably good at preserving flat regions of 

an image, where there are no sharp fluctuations in image intensity. They are, however, not 

well adapted to preserving certain image details such as edges and textures, which provide 

important visual cues and contribute to image quality. It is important therefore to preserve 

coefficients that lie in the neighborhoods of image features such as edges or textures, in order 

to obtain higher quality compressed images. In this paper we propose a method of locating 

and preserving image edge coefficients at desired scales using a wavelet-based implementation 

of the image gradient operator. 

If 1 is an image, then the gradient of the image, VI = (||, |M,.helps make edges in the 



image apparent. We will use the small wavelet coefficients of the gradient VJ to selectively 
threshold the wavelet coefficients of the image 1, in order to compress it without disfiguring 
its edges. Preserving wavelet coefficients in small neighborhoods of those wavelet coefficients 
corresponding to edges, will preserve the quality of the edges in the compressed image. Most 
important, it is possible to preserve edges at only certain desired scales and positions. 

The wavelet decomposition of the gradient of an image expresses the scale-space structure 
of edges in the original image. The magnitudes of an edge's coefficients at any scale measure 
the strength of the edge at that scale, and their locations specify the location of the edge 
at that scale. This suggests that at any particular scale, preserving the neighborhoods of 
the edge coefficients of the image will preserve the edge features in the image at that scale. 
Identifying neighborhoods of edge coefficients in the wavelet decomposition of the gradient of 
an image at the desired scales, defines edge masks, which can be used to preserve coefficients 
of the image that correspond to edges at those scales. 

The edge coefficients of the image at any scale correspond to modulus maxima (see Ap- 
pendix B) of the image gradient's coefficients at that scale. However, the gradient of an image 
also accentuates transient image features other than edges, such as textures and noise. It is 
therefore necessary to distinguish between edge and non-edge coefficients at each scale of the 
wavelet decomposition of the image gradient. This distinction can be performed by means of 
the edge detection scheme outlined in Appendix B. The edge masks partition the image coef- 
ficient set at each scale into a distinguished subset consisting of the edge coefficients together 
with the coefficients contained in their 3x3-neighborhoods, and an undistinguished subset 
consisting of the remaining non-edge coefficients. An image coefficient is left unchanged, or 
only weakly thresholded, if it belongs to a distinguished subset, and is strongly thresholded 
otherwise. This scale-specific edge-adaptive compression scheme for images is summarized 
in the following diagram: 

VJ wavelet 
decomposition 

wavelet 
decomposition 

scale-space 
specific 

edge masks 

adaptive 
coefficient 

thresholding 

quantization; 
encoding 

adaptively 
compressed 
image file 

Fig. 1: Adaptive image compression scheme using image gradient information. 
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Fig. 2: Edge coefficients and their 3x3-neighborhoods 

The above scheme is not restricted in its application to compression alone. In fact, it 
can be thought of as a paradigm for formulating and implementing scale-space specific local 
linear image processing operations in the wavelet transform domain. Indeed, it is easily 
adapted to enhancing edges in images, as described below. 

3    Implementing the gradient in the wavelet trans- 
form domain 

In the above scheme (Fig. 1) we note that there are three different wavelet transforms 
computed; one of the image 1, and one each, of the components || and ^ of the gradient 
image VJ. The following question therefore suggests itself: Can the wavelet coefficients of 
the gradient of an image be obtained in a simple way from the wavelet coefficients of the 
image? 

Since the derivative is a linear operator, its effect on the wavelet coefficients of a function 
of one variable is a linear transformation, characterized therefore by a matrix multiplication. 
Moreover, it turns out that with respect to smooth biorthogonal wavelet bases, the transform 
matrices are extremely simple, namely diagonal. This latter interesting observation was first 
made by Lemarie-Rieusset; Daubechies provides a succinct description of it in [1]. As it 
happens, smooth biorthogonal bases of compactly supported wavelets are ideally suited for 
image representation by means of wavelet coefficients, as they minimize the appearance of 
the distortion of edges and other transient image features incurred through image processing 
operations such as compression . This fortuitous coincidence enables us to obtain the wavelet 
coefficients of the image VJ directly, in a simple and spatially localized fashion, at each scale 



independently. This implies that it is necessary to compute the gradient only at desired 
scales; a computational advantage. For any smooth biorthogonal wavelet basis pair, there 
exists an associated biorthogonal wavelet basis pair, such that decomposing a function (of 
one variable) with respect to this associated basis and multiplying the resulting coefficient 
vector with a certain diagonal matrix yields the wavelet coefficients of the derivative of the 
function with respect to the first basis. We call this the weak diagonalization of the derivative 
operator, since different bases are used for decomposition and reconstruction. 

Biorthogonal wavelet bases for representing functions of two variables (e.g., images) are 
obtained as scale-wise products of the above (one dimensional) biorthogonal bases in the 
x and y variables. Thus, associated partial derivative bases of a standard two-dimensional 
biorthogonal basis can be obtained by taking mixed scale-wise products of a basis in one 
variable and its associated derivative basis, in the other variable. As there are two such 
possible product bases, one for ^ , and one for j-, we have a pair of associated hybrid 
biorthogonal basis pairs. Decomposing an image via a biorthogonal basis and applying 
certain almost-diagonal linear transformations on the resulting image wavelet coefficients, 
yields the wavelet coefficients of the partial derivatives of the image with respect to the 
associated hybrid biorthogonal bases. Figure 3 illustrates the almost-diagonal transformation 
matrices that represent the operator J^ at scale j, acting on the subband coefficients at scale 
j, restricted to column I, where I indexes a vertical slice of the coefficient subimages at 
scale j (see Appendix for details). The principal advantage of this implementation of the 
gradient is that, in order to compute the gradient coefficients at a particular scale, only 
image coefficients at that scale are used. Thus, we can acquire scale-specific image gradient 
information in an efficient way. This efficient implementation of the gradient in the wavelet 
transform domain prompts a modification of the adaptive compression schemes discussed 
earlier. We now briefly sketch the modified adaptive compression scheme below: 

• The image X is decomposed in a smooth biorthogonal basis. 

The detail images are then subjected to appropriate linear transformations at desired 
scales to obtain the image gradient coefficients with respect to the associated hybrid 
(partial derivative) bases. These gradient coefficients at the desired scales are further 
processed to locate edge coefficients by using the edge detection scheme discussed in 
Appendix B. 

The edge coefficients are used to synthesize masks at desired scales, wherein the union 
of neighborhoods about edge coefficients is taken to form the masks . 

Image coefficients outside the neighborhoods of edge coefficients are strongly thresh- 
olded; the coefficients that fall inside the masks are either preserved or weakly thresh- 
olded. 

• 

• 

• 



• The resulting thresholded decomposition is then quantized and encoded to yield the 
adaptively compressed file. 

Figure 4 illustrates the above scheme for compression. 
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Fig. 3: The four transformation matrices at scale j. The Ith column coefficients 
{^JMYILV {vj;k,i}'kLv {dj;k,i}lLi and {sj;k,i}^Lv belong to the horizontal, vertical, 
diagonal and average (low-pass) subbands at scale j, respectively, of the wavelet 
transform of J, while {xhm}"Lv {xVj^YkLv MMKU and {xfy*,,}^ are the 
corresponding coefficients of §|. Similar relations hold for f^, with the horizontal 
and vertical subband matrices interchanged, and subband coefficient rows transformed 
instead of subband coefficient columns. 
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Fig.4: Schematic diagram of the modified adaptive compression scheme, using a 
smooth, compactly supported biorthogonal wavelet decomposition of the image X. d 
is the set of almost-diagonal linear transformations in Fig. 3 , applied at selected 
scales to compute the gradient wavelet coefficients. 

A    Appendix:   The gradient operator in the wavelet 
transform domain 

A.l    Preliminaries 

An image / = (I(i, j))i ~= 0 is the discrete sampling of a compactly supported function I(x, y) 
ofL2QR2). 

If {V^}^ is a multiresolution analysis (MRA) of L2(]R),with scaling function 4> and 
wavelet ip, then it induces an MRA of L2(R2): 

{vn = vn®vn)Z _. 

The subspaces \j,j € Z are spanned by the set of functions 

{*m{x, y) = 2-'*(2-'s - k, 2-iy - I) = 2"^(2^x - k)(f>(2^y - 0}^^ 

The corresponding wavelet basis of L2(R2) is given by: 

where 

{{*£*,,(*, y), *&,,(*, v), *J?w(x, y)}~=_ 

Vf^x, y) = 2-ty(2-'z - k)1>(7T*y - I) 

j=-oo 



VyAl(x,y) = 2-^(2-^ - k)4>{2-'y - I) 

and 

¥&,,(*, y) = 2-^(2"^ - k)Wy - I). 

If l(x, y) is the projection of I(x, y) onto the subspace V0, then 

JV-l 

Z(x,y)= ]T 5o;*,/*o;fc,/(a;,2/) 
fc,Z=0 

A finite scale wavelet decomposition of 1 is then given by 

J   1=7   ^ 1=7-X 

j=l  k,l=0 k,l=0 

This corresponds to a pyramidal decomposition of the image J 

X~{{(XH,I7,I?)};=I,#}, 

where 

Jf = (dS.0o<fc,,<Ä J^ = (4fc,0o<fc,K# J? = A') 0<fc,l<#     V l - j~ J 

are the high-pass (detail) subimages at resolution level j with horizontal, vertical and 
diagonal directionalities, respectively, and Jj is a low-pass (average) subimage at resolution 
level J. 

For images, it is more appropriate to use biorthogonal wavelets for decomposition and 
reconstruction, as such wavelets allow both symmetry (antisymmetry) and compactness of 
support; these are important properties for images, since they minimize image distortion 
and localize wavelet coefficients, respectively. 

If / G L2(R) and j-0, ^ j is a biorthogonal pair of wavelets in L2(R), then they generate 

a pair of dual bases of L2(R): {i>j,k}jtkez 
an<* {$7,fc} .    7> witn the properties 

/= E(/>^',fcfe= E(/>^fc)^,fc 
j.fceZ j,keZ 

and 



A.2    Derivative biorthogonal wavelet bases 

If \ {4>j,k}j fcez ' i^j'.fc j • 7 \ 
xs a compactly supported symmetric/antisymmetric biorthogo- 

nal pair of wavelet bases,then there exists (see [1]) an associated pair of derivative biorthog- 

onal bases: H^/t}. 7Arj,k\- _ k that are also compactly supported and antisymmet- 

ric/symmetric and satisfy 
wJJty = 2-^1 

i.e., 

(^**'$'.*') = 2~J+26Jd'6k,k'- 

In other words, with respect to the above two pairs of biorthogonal bases the derivative 
operator is diagonal.This is termed weak-diagonalization. 

The scaling functions of the two basis pairs bear the following relation 

fe)' = 2-' (4^ - 4). 
Thus if / € L2(R), then 

"       (f^j,k) = -2-^(f,^k), 

and 
(/',0,,fc) = 2-^'((/,4fe)-(/,4fc_1)). 

A.3    Weak-diagonal representation of the image gradient 

From the wavelet coefficients of an image with respect to a standard biorthogonal basis, it 
is possible to obtain wavelet coefficients of the gradient of the image with respect to certain 
associated hybrid derivative biorthogonal bases, 

The gradient of the image X(x,y),denoted Vl{x,y) is the vector image given by VX = 
(§£. §£\ 
\ dx ' dy ) 

We can write 

J  Pi   J 

j=l k,l=0 

+    E    sJ;k,l$J;k,l(X>y) 
k,l=0 

=   E [hi-M<l>rAx)My) + Vr,k,iip3;k{x)(j)j-i{y) + dj-xiijjj.k{x)^j.i{y)\ 
j;k,l 

Jr^sJ-M4>J;k{x)(f)j-i{y) 
k,l 

10 



where 

and 

Sj;k,l = {I, $J;k,l) = (2", 4>J;k4>J;l) 

are the wavelet and scaling function coefficients w.r.t. the dual basis. 
Then 

-EZ   =    E h;M fe(z))'fy-Av) + vr,k,l (ipj;k(x))' (j)3,i{y) + dm {^{x))' ^(y) 

+ E sJ;k,l (<t>J;k(x))' 4>JAV) 
k,l 

=   E [xhrAi<t>)-,k(x)^iAy) + xVj-^lA^rAy) + *^;fe,^;fc(a;)^(y) 
j;k,l 

+ E xSjM<A;k{x)<l>jAv) 

-l 

fc,Z 

AT 

J  F7 

3=1  k,l=0 

+    E     xSj;k,lx$J;kAX'y) 
k,l=0 

where 

xhj-,k,i   -   2 3 (hj.ik+i,i - hj-k,i) 

xVj-k,l    = ^~J+2Vj;k,i 

B"j;fc,, 2~'+2^ 
\=di 

xSj;k,l      =      2   J (Sj;k+l,l — Sj-k,l) 

are scale-space-subband localized, almost-diagonal linear transformations on the wavelet 
and scaling function coefficients of the wavelet transform of J, w.r.t. the biorthogonal basis 
B = I ty^kji ^Y,k,i> ^?,k,i} ■ 7' These transformations yield the wavelet and scaling function 
coefficients of the wavelet transform of ||, w.r.t. the associated rc-derivative biorthogonal 
basis XB = {x**ji, x*vtj> x*Ykl}jki 

:,ZSZ 

11 



Similarly, 

ßZ = E [hr,k,ihk(x) iMv))' + vy,k,itPyAx) (Mv))' + dm^rÄx) (My))' 

+ Y,sw<t>j-Ax)(fa;i(y))' 
k,l 

where 

=    Y, [yhJ;k,i4>ik(x)My) + vvr,k,lipik(x)My) + ydj;k,iil>ij.k(x)ij;j.ii(y) 
j;k,l 

+Y vsJ;k,iA.,k(
x)My) 

k,l 

N 
J  F7 -l 

=   EE   [vhk,ivV%My)+ yVjMv*M{x,y)+ ydMyV^ix^ 

r-1 

+   E   ySJ;k,ly$w(x,y) 
k,l=0 

ArAl 2-j+2hy,k,l 

yVj-M   =   2 J (vr,k,i+i ~ vr,k,i) 

,jdj]k,i   = 2~j+2dj]k>l 

&. 

ySj-k,l     =     2   3 (Sj;k,l+1 ~ Sj-kj)   ^ 

are scale-space-subband localized, almost-diagonal linear transformations on the wavelet 
and scaling function coefficients of the wavelet transform of X, w.r.t. the biorthogonal basis 
B — {^Iffe,/, ^fc,*> ^fc,f} ■ 7- These transformations yield the wavelet and scaling function 

coefficients of the wavelet transform of |^, w.r.t. the associated y-derivative biorthogonal 

basis yB = {,¥&,,, y*yAl, V^KI)jAle7i- 

12 
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Fig 5: coefficient location scheme for three levels of scale used in adaptive compres- 
sion of images. 
\Pj and $j are the detail and average filtering operations at scale j. ij1, ij, jP 
and if are the horizontal, vertical, diagonal detail subimages and average (low-pass) 
subimage, respectively, at scale j. 
d{ and dy are the linear transformations performed on subimage coefficients at 
scale j, to obtain the gradient subimage coefficients zXj1, x^Y, xZ?, x%f and 
yjj1, ylj', ylf*, ylf, w.r.t. the associated derivative biorthogonal bases. 
£ is a process that extracts the edge coefficients of the gradient subimages, and 
edgemasksj are the mask templates at scale j. The positions and scales of the edge 
coefficients of the gradient image and those of the image coincide. 

13 



B    Appendix: Edge Coefficient Detection 

The edge pixels in an image correspond to the modulus maxima (i.e., the maxima of VJ-VJ) 
of the gradient of the image. However, not every modulus maximum of the gradient image 
is the result of an edge pixel in the original image; certain textures can also give rise to 
modulus maxima. There are certain necessary conditions that a pixel p corresponding to a 
modulus maximum of the gradient of an image must satisfy, in order to qualify as an edge 
pixel. We enumerate them below: 

i) There must exist at least one neighboring (adjacent) pixel that is also a modulus 
maximum of the image gradient. This is because edges are contiguous objects, and do not 
occur as isolated pixels. 

ii) There must exist at least one pixel satisfying condition i), at which the magnitude of 
the modulus maximum is close to that at the pixel p. This is because the strength of an 
edge varies slowly along the edge. 

iii) There must exist at least one pixel satisfying condition ii), such that the line joining 
this pixel to the pixel p is close to being perpendicular to the direction of the gradient at p. 
This is because the gradient vector at an edge point is perpendicular to the local orientation 
of the edge at that point. 

The satisfaction of the above criteria by a gradient modulus maximum pixel is not suffi- 
cient to qualify it as an edge pixel. Textures in an image may possess edge feature elements 
(as in a reticulation, for instance,) that may not be the desired edges of the image. By 
demanding, that, edges must have a certain minimum length, and that the average grey 
value on any given side of an edge remain constant, one may be able to eliminate candidate 
edge pixels that are not part of "genuine" edges of the image. Such conditions that help 
prune the set of candidate edge pixels, are largely heuristic, and vary with the nature and 
characteristics of the image that is being analysed. One can however construct rules using 
which it is possible to filter edge features , so as to retain only desired edges. We, however, 
would like to identify edge coefficients in the transform domain of the image, and not edge 
pixels. The above conditions and constraints can be ported to the transform domain as well. 

At any scale .;', the image gradient's modulus at any position is estimated by summing 
the absolute values of all the subband coefficients corresponding to that position. Prom this 
we can obtain the positions of the modulus maxima of the gradient at scale j. Condition i) 
translates to eliminating coefficients that correspond to isolated maxima at scale j. Condition 
ii) carries over unchanged to the case of coefficients (instead of pixels) at scale j. These two 
conditions isolate from the set of all coefficients corresponding to modulus maxima of the 
gradient coefficients at scale j, a subset consisting of coefficients forming maxima chains of 
two or more coefficients. We can now invert the coefficients of these maxima chains to obtain 
the components of the gradient vectors at the positions of the coefficients in the maxima 
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chains at scale j. This operation of obtaining the gradient vectors is computationally very 
efficient, since, a) in general, the maxima chain set is a tenuous subset of the coefficient set 
at scale j, b) the inverse transform is a local operation, c) this inversion is performed at only 
desired scales. 

Having obtained the gradient vector (and hence its direction) at each of the coefficient 
locations corresponding to coefficients of the maxima chain set, we can then proceed to apply 
condition iii) to the coefficients at scale j. 

Certain rules and constraints that are not easy to formulate in the image domain may be 
possible to impose in the transform domain; such as, demanding that the neighborhood of 
an edge coefficient at a given scale must correspond to (e.g., overlap with,) edge coefficient 
neighborhoods at certain other scales. Each chain component of edge coefficients obtained 
by the above scheme is augmented by adding to it the 3 x 3-neighborhoods (of coefficients) of 
each of its edge coefficients, thus generating an edge mask at that scale for that edge. This 
entire procedure of edge coefficient detection and generation of edge masks at each scale is 
schematically illustrated by the procedure denoted £ in Fig. 5 . 
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