
Technical Report ITL-97-7 
December 1997 

US Army Corps 
of Engineers 
Waterways Experiment 
Station 

Earthquake Engineering Research Program 

Accuracy of Response of Single-Degree-of- 
Freedom Systems to Ground Motion 

by   Robert M. Ebeling, WES 
Russell A. Green, U.S. Defense Nuclear Facilities Safety Board 
Samuel E. French, University of Tennessee at Martin 

Approved For Public Release; Distribution Is Unlimited 

19980210 084 
OTIC QUALITY ETSPEÜSBD S 

Prepared for   Headquarters, U.S. Army Corps of Engineers 



The contents of this report are not to be used for advertising, 
publication, or promotional purposes. Citation of trade names 
does not constitute an official endorsement or approval of the use 
of such commercial products. 

The findings of this report are not to be construed as an 
official Department of the Army position, unless so 
designated by other authorized documents. 

® PRINTED ON RECYCLED PAPER 



Earthquake Engineering Technical Report ITL-97-7 
Research Program December 1997 

Accuracy of Response of Single-Degree-of- 
Freedom Systems to Ground Motion 
by   Robert M. Ebeling 

U.S. Army Corps of Engineers 
Waterways Experiment Station 
3909 Halls Ferry Road 
Vicksburg, MS   39180-6199 

Russell A. Green 

U.S. Defense Nuclear Facilities Safety Board 
625 Indiana Avenue, NW, Suite 700 
Washington, DC   20004 

Samuel E. French 

University of Tennessee at Martin 
Martin, TN   38237 

Final report 
Approved for public release; distribution is unlimited 

ÜTIC QÜALTTY BISPKuSSD 9 

Prepared for     U.S. Army Corps of Engineers 
Washington, DC   20314-1000 

Under    Work Unit 33011 



Waterways Experiment Station Cataloging-in-Publication Data 

Ebeling, Robert M, 1954- 
Accuracy of response of single-degree-of-freedom systems to ground motion / by Robert 

M. Ebeling, Russell A. Green, Samuel E. French ; prepared for U.S. Army Corps of 
Engineers. 

89 p. : ill. ; 28 cm. - (Technical report; ITL-97-7) 
Includes bibliographic references. 
1. Structural dynamics. 2. Time-domain analysis. 3. Hydraulic structures — Testing. I. 

Green, Russell A. II. French, Samuel E., 1930- III. United States. Army. Corps of 
Engineers. IV. U.S. Army Engineer Waterways Experiment Station. V. Information 
Technology Laboratory (U.S. Army Engineer Waterways Experiment Station) VI. Title. 
VE. Series: Technical report (U.S. Army Engineer Waterways Experiment Station); ITL-97- 
7. 
TA7 W34 no.ITL-97-7 



Contents 

Preface    vii 

1—Accuracy of Response of Single-Degree-of-Freedom 
Systems to Ground Motion 1 

1.0 Introduction  1 
1.1 Six Methods Used to Compute Time Domain Responses  2 
1.2 Direct Integration Methods  2 
1.3 Difference Between Implicit and Explicit Numerical Methods  3 
1.4 Questions of the Accuracy of All Six Step-by-Step Methods 

and the Stability of Numerical Integration and Numerical 
Differentiation Methods  4 

1.5 Contents  4 

2—Six Numerical Step-by-Step Procedures of Analysis of the 
Equation of Motion for an SDOF System 6 

2.0 Introduction 6 
2.1 Equation of Motion for SDOF System 7 
2.2 Newmark ß Method    11 
2.3 Wilson 0 Method       14 
2.4 Central Difference Method    18 
2.5 Duhamel's Integral    19 
2.6 Piecewise Exact Method 22 
2.7 4th Order Runge-Kutta Method 24 

3—Stability of Numerical Integration and Numerical 
Differentiation Methods 27 

3.0 Introduction  27 
3.1 Stability Criteria for Two Implicit Numerical Integration Methods  . . 29 
3.2 Stability Criteria for an Explicit Numerical Integration Method    ... 30 
3.3 Stability Criteria for a Numerical Differentiation Method      30 

3.3.1 MDOF systems  30 
3.4 Conclusions  31 

4—Accuracy of Six Numerical Step-by-Step Procedures 
of Analysis of the Equation of Motion for SDOF Systems 32 

ill 



4.0 Introduction  32 
4.1 Error in Free Vibration Response of SDOF Systems  33 

4.1.1 MDOF systems  34 
4.1.2 Current guidance for assigning the time-step At to be 

used in earthquake engineering dynamic structural 
response analysis  36 

4.2 Error in Response of SDOF Systems to Ground Motion  37 
4.2.1 SDOF systems      37 
4.2.2 Time-step At  38 
4.2.3 Ground motion  38 
4.2.4 Frequency of ground motion relative to frequency of 

SDOF systems  38 
4.2.5 Time-histories of 432 step-by-step response analyses  40 
4.2.6 Results from 12 of the 432 error studies  40 
4.2.7 Summary of numerical results from all 432 error studies .... 47 
4.2.8 Accuracy of numerical step-by-step procedures 

as a function of time-step At and frequency contained 
within the ground motion  52 

4.3 Conclusions  62 

5—Results and Conclusions  64 

5.0 Introduction  64 
5.1 Stability Requirements for the Four Numerical Methods 

Used for Response Analysis  65 
5.2 Accuracy of Response of SDOF Systems to Ground Motion  66 
5.3 Baseline Correction of Ground Motion  69 
5.4 Observations Made Regarding Response Analysis 

of Semidiscrete MDOF System Models  69 
5.4.1 Stability requirements  70 
5.4.2 Accuracy of response  71 
5.4.3 Numerical damping of high-frequency response  72 
5.4.4 Nonlinear analysis  73 

References  74 

Appendix A: Exact Solution to SDOF System Sine Wave 
Base Excitation      Al 

Appendix B: Fourier Series  Bl 

SF298 

List of Figures 

Figure 1.     Dynamic response of two damped SDOF 
systems 8 

IV 



Figure 2.     Forces acting on linear SDOF system at time t, 
external force P(t) applied 9 

Figure 3.     Inertial force acting opposite to the acceleration of mass m 
at time t, external force P(t) applied     10 

Figure 4.     Equivalent dynamic SDOF system problems         11 

Figure 5.     Example of response for an undamped SDOF system 
in free vibration 28 

Figure 6.   Errors in free vibration response of SDOF systems for 
a-methods, optimal collocation schemes, and 
Houbolt, Newark, Park, and Wilson methods   . 35 

Figure 7.     Equivalent dynamic SDOF system problems     39 

Figure 8.     Response spectra of two SDOF systems with 5 percent 

damping for three harmonic forcing functions 41 

Figure 9.     SDOF system (T0 = 0.25 sec) response time-histories 
(At = 0.01 sec) computed using Wilson 0 = 1.38 for a 
sinusoidal forcing function of period Ts = 0.05 sec 42 

Figure 10.    SDOF system (T0 = 0.25) response time-histories 
(Ar = 0.01 sec) computed using Wilson 6 = 1.38 for a 
sinusoidal forcing function of period 7^ = 0.25 sec 43 

Figure 11.    SDOF system (T0 = 0.25 sec) response time-histories 
(Ar = 0.01 sec) computed using Wilson 6 = 1.38 for a 
sinusoidal forcing function of period Tg= 1.00 sec 44 

Figure 12.   Error in relative displacements computed using Wilson 
6 = 1.38 for an SDOF system (T0 = 0.25 sec) with a 
sinusoidal forcing function of period Tg = 0.05 sec and 
Ar = 0.01 sec 46 

Figure 13.   Percentile errors in maximum relative displacements 
(peak or valley value) for SDOF system of T0 = 0.25 sec   ....   54 

Figure 14.   Percentile errors in maximum relative velocity 
(peak or valley value) for SDOF system of T0 = 0.25 sec   ....   55 

Figure 15.   Percentile errors in maximum relative acceleration 
(peak or valley value) for SDOF system of T0 = 0.25 sec   ....   56 

Figure 16.   Percentile errors in maximum total acceleration 
(peak or valley value) for SDOF system of T0 = 0.25 sec   ....   57 

Figure 17.   Percentile errors in maximum relative displacements 
(peak or valley value) for SDOF system of T0 = 0.5 sec 58 

Figure 18.   Percentile errors in maximum relative velocity 
(peak or valley value) for SDOF system of T0 = 0.5 sec 59 



Figure 19.   Percentile errors in maximum relative acceleration 
(peak or valley value) for SDOF system of T0 = 0.5 sec 

Figure 20.    Percentile errors in maximum total acceleration 
(peak or valley value) for SDOF system of T0 = 0.5 sec 

60 

61 

List of Tables 

Table 1.      Percentile Errors in Relative Displacement (Rel. D), 
Relative Velocity (Rel. V), Relative Acceleration (Rel. A), 
and Total Acceleration (Total A) for SDOF System of 
T0 = 0.25 sec and Ar = 0.02 sec 48 

Table 2.      Percentile Errors in Relative Displacement (Rel. D), 
Relative Velocity (Rel. V), Relative Acceleration (Rel. A), 
and Total Acceleration (Total A) for SDOF System of 
T0 = 0.5 sec and At = 0.02 sec 49 

Table 3.      Percentile Errors in Relative Displacement (Rel. D), 
Relative Velocity (Rel. V), Relative Acceleration (Rel. A), 
and Total Acceleration (Total A) for SDOF System of 
ro = 0.25 sec and A? = 0.01 sec 50 

Table 4.       Percentile Errors in Relative Displacement (Rel. D), 
Relative Velocity (Rel. V), Relative Acceleration (Rel. A), 
and Total Acceleration (Total A) for SDOF System of 
T0 = 0.5 sec and At = 0.01 sec 51 

Table 5.      Percentile Errors in Relative Displacement (Rel. D), 
Relative Velocity (Rel. V), Relative Acceleration (Rel. A) 
and Total Acceleration (Total A) for SDOF System of 
T0 = 0.25 sec and At =0.005 sec 52 

Table 6.      Percentile Errors in Relative Displacement (Rel. D), 
Relative Velocity (Rel. V), Relative Acceleration (Rel. A), 
and Total Acceleration (Total A) for SDOF System of 
T= 0.5 sec and At = 0.005 sec 53 

VI 



Preface 

The work described herein summarizes the results of an investigation of accu- 
racy of response of Single-Degree-of-Freedom (SDOF) Systems to harmonic 
forced vibration using six linear multistep methods of analysis. Funding for the 
research and for preparation of this report was provided by the Earthquake Engi- 
neering (EQEN) Research Program sponsored by Headquarters, U.S. Army Corps 
of Engineers (HQUSACE).   The research was performed under the EQEN 
Research Program Work Unit No. 33011, "Time Domain Solutions for Nonlinear 
Problems of Concrete Dams." Dr. Robert M. Ebeling, Information Technology 
Laboratory (ITL), U.S. Army Engineer Waterways Experiment Station (WES), 
and Mr. Tommy Bevins, Structures Laboratory (SL), WES, are the Principal 
Investigators for this work unit.   Dr. Reed L. Mosher, SL, is the EQEN 
Laboratory Manager; Dr. Mary Ellen Hynes, Geotechnical Laboratory, WES, is 
the EQEN Laboratory Manager; and Dr. Robert Hall, SL, is the manager of the 
EQEN structural aspects. The HQUSACE area coordinator is Mr. Donald 
Dressier, while Mr. Lucian Guthrie is the Technical Monitor. 

The work was performed at WES by Dr. Ebeling, by Mr. Russell A. Green of 
the U.S. Defense Nuclear Facilities Safety Board, and by Dr. Samuel French of 
the University of Tennessee at Martin. The report was written and prepared by 
Dr. Ebeling and Mr. Green under the direct supervision of Mr. H. Wayne Jones, 
Chief, Computer Aided Engineering Division, ITL, and Dr. N. Radhakrishnan, 
Director, ITL. Mr. John Hendricks, ITL, provided invaluable assistance in 
processing the results of the computer analyses and preparing the figures for the 
report. 

At the time of publication of this report, Director of WES was Dr. Robert W. 
Whalin. Commander was COL Robin R. Cababa, EN. 

The contents of this report are not to be used for advertising, publication, 
or promotional purposes. Citation of trade names does not constitute an 
official endorsement or approval of the use of such commercial products. 

VI! 



1    Accuracy of Response of 
Single-Degree-of-Freedom 
Systems to Ground Motion 

1.0   Introduction 

This report summarizes the results of an assessment of the accuracy of 
response of six numerical step-by-step procedures used in computational struc- 
tural dynamics. The six algorithms used in this study are representative of the 
different types of numerical procedures used to compute the dynamic structural 
response to a time-dependent loading history. The time-dependent loading envi- 
sioned in this research is that of the motion of the ground below a discrete struc- 
tural model and is expressed in terms of a ground acceleration time-history. The 
dynamic structural response for each structural model used in this study is charac- 
terized by the computed response time-histories of accelerations, velocities, and 
displacements. 

All structural models used in this study are linear, single-degree-of-freedom 
(SDOF) systems. The natural (undamped) periods T0 of these SDOF systems are 
selected based on consideration of the important modal periods of hydraulic struc- 
tures such as gravity dams, arch dams, gravity lock walls, U-frame locks, and 
intake towers. The forcing functions used in this study are single frequency har- 
monics. The use of a single frequency facilitated the evaluation of the accuracy of 
the computed responses solved for at regular time increments during ground 
motion. 

The time increments Ar used in the analyses are 0.02, 0.01, and 0.005 seconds. 
These values are typical of the Ar used in discretizing earthquake acceleration 
time-histories (e.g., Hudson 1979) recorded in the field on strong motion accelero- 
graphs (shown in Figure 6.1.1 in Chopra 1995). 
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1.1   Six Methods Used to Compute Time Domain 
Responses 

The six algorithms included in this study are the Newmark ß method (with 
values of constants y and ß corresponding to the linear acceleration method), the 
Wilson 9 method, the Central Difference Method, the 4th Order Runge-Kutta 
method, Duhamel's integral solved in a piecewise exact fashion, and the Piecewise 
Exact Method applied directly. All of these algorithms were used in their 
discretized forms (i.e., the loading and response histories were divided into a 
sequence of time intervals); thus, they are characterized as step-by-step 
procedures. 

The six algorithms used can be categorized into two main groups, depending on 
their general approach to satisfying the differential equation of motion. The first 
group includes Duhamel's integral solved in a piecewise exact fashion and the 
Piecewise Exact Method applied directly. These two methods formulate exact 
solutions to the equation of motion for assumed forms of the time-dependent forc- 
ing functions (i.e., the loading is approximated by a series of straight lines between 
the time-steps). The second group includes Newmark ß method, Wilson 0 
method, Central Difference Method, and 4th Order Runge-Kutta Method. These 
methods are referred to as numerical methods because they approximately satisfy 
the equation of motion during each time-step for the given loading. The New- 
mark ß, Wilson 6, and 4th Order Runge-Kutta methods use numerical integration 
to step through the analysis of the time response problem, where the Central Dif- 
ference Method uses numerical differentiation. 

1.2   Direct Integration Methods 

The linear acceleration method, Wilson's 6 method, and the 4th Order Runge- 
Kutta method are examples of direct integration methods. The term "direct" 
means that prior to numerical integration, there is no transformation of the equa- 
tions into a different form, such as is done in a frequency domain analysis. Inte- 
gration methods are discrete in that the response values are solved for at regular 
increments in time during ground motion, which are separated by a time increment 
At. 

Direct integration methods are based on two concepts. First, the equation of 
motion for the structural model is satisfied at discrete points in time (i.e., t,t + At, 
t + 2At, ...) during ground motion. Second, the forms of the variation in displace- 
ment, velocity, and acceleration responses within each time interval At are 
assumed. 
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1.3   Difference Between Implicit and Explicit 
Numerical Methods 

Numerical methods such as direct integration methods are classified as either 
explicit or implicit integration methods. Chopra (1995), Subbaraj and Dokainish 
(1989a,b), Bathe (1982), and Bathe and Wilson (1976) distinguish between the 
two numerical methods as follows. The explicit integration method solves for the 
unknown values of displacement x/+4,, velocity xt+At, and acceleration Xt+At, at 
each new time t + At using the equation of motion for the structural model at 
time t, with the unknown values for xt, xt, and xt at time t as the initial conditions. 
The implicit integration method solves for the unknown values of xt+At, xt+At, 
and Xt+A t at each new time t + At using the equation of motion at time t + At. For 
multiple-degree-of-freedom (MDOF) systems, implicit schemes require the solu- 
tion of a set of simultaneous linear equations, whereas explicit schemes involve 
the solution of a set of linear equations, each of which involves a single unknown. 
Thus, the explicit integration method does not require a factorization of the 
coefficient matrix in the step-by-step solution of the equations of motion for the 
semidiscrete MDOF structural system model. The coefficient matrix is a com- 
bination of the stiffness, mass, and damping matrices of the MDOF model. 

Along with others, Subbaraj and Dokainish (1989a,b) noted that implicit algo- 
rithms are most effective for structural dynamics problems (in which the response 
is controlled by a relatively small number of low-frequency modes), while explicit 
algorithms are very efficient for wave propagation problems (in which the contri- 
bution of intermediate- and high-frequency structural modes to the response is 
important). Accordingly, of the two types of numerical methods, implicit algo- 
rithms are more popular in earthquake engineering problems because of the larger 
time-step that may be used in the analysis. 

However, implicit procedures involve considerable computational effort at each 
time-step compared with explicit methods for MDOF semidiscrete models since 
the coefficient matrices must be formulated, stored, and manipulated using matrix 
solution procedures. Therefore, in blast type problems where a small time-step is 
required to capture the structural response of large-scale models involving hun- 
dreds to thousands of degrees of freedom, implicit methods are computationally 
impractical, and explicit methods are the preferred type of algorithm. 

Two explicit algorithms, the Central Difference Method and the 4th Order 
Runge-Kutta method, are included in this study. The original 1959 linear acceler- 
ation method version of the Newmark ß family of numerical methods and Wilson's 
0 method are classified as implicit methods (Newark 1959). In general, implicit 
integration methods are frequently used by the structural dynamics/earthquake 
engineering community to solve for the response of semidiscrete MDOF structural 
models to earthquake excitation. 
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1.4  Questions of the Accuracy of All Six Step-by- 
Step Methods and the Stability of Numerical 
Integration and Numerical Differentiation 
Methods 

The selection of the size of the time-step At to be used in the step-by-step cal- 
culation of the dynamic response of the SDOF (and of MDOF semidiscrete struc- 
tural models) is restricted by stability and/or accuracy considerations for the 
six algorithms included in this study. The primary requirement of a numerical 
algorithm is that the computed response converge to the exact response as At - 0 
(Hughes 1987). However, the number of computations increases as the time-step 
At is made smaller in a dynamic analysis, an important issue for response analysis 
of semidiscrete MDOF structural system models. 

In addition to accuracy considerations, stability requirements must also be con- 
sidered during the selection of the time-step At to be used in a step-by-step 
response analysis either by the three numerical integration methods or by the 
numerical differentiation method. Stability criterion is expressed in terms of a 
maximum allowable size for the time-step, Atcritical. The value for Atcritical differs 
among the four numerical algorithms. 

No stability criteria (expressed in terms of a limiting time-step value) are 
needed for Duhamel's integral solved in a piecewise exact fashion and the Piece- 
wise Exact Method applied directly. This is because these two methods formulate 
exact solutions to the equation of motion for assumed forms of the time-dependent 
forcing functions. There is only a question of the accuracy of the assumed form 
for the forcing function for the size time-step At being used in the analysis. In 
general, larger time-steps are likely to make the assumed form for the forcing 
function less valid. 

1.5  Contents 

Chapter 2 outlines the six algorithms used in this study to compute the 
response of an SDOF structural system. The stability criteria for the three numer- 
ical integration methods and for the numerical differentiation method are given in 
Chapter 3. These stability criteria are reviewed and their relevance to structural 
dynamics/earthquake engineering problems is discussed. Also, a numerical 
assessment of the largest time-step Atcritical that can be used in the response anal- 
ysis is given. Conclusions are made concerning the stability criteria for the SDOF 
systems subjected to ground motion with Ar equal to 0.02, 0.01 and 0.005 sec- 
onds. A brief discussion and example application of stability criteria for semidis- 
crete MDOF structural system models are also included. 

Using damped SDOF system models with natural periods assigned based on 
consideration of the modal periods of hydraulic structures providing significant 
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response contribution, an evaluation is made of the accuracy of the computed 
response values solved for at regular time increments during ground motion. All 
SDOF systems are assigned 5 percent damping. The results of this extensive 
series of numerical evaluations are summarized in Chapter 4. The results show 
the correlation of the accuracy of the six numerical step-by-step procedures, the 
harmonic characteristics of the ground motion, and the time-step Af value (0.02, 
0.01 or 0.005 seconds) used in the analysis. Also included is numerical assess- 
ment of the accuracy of the algorithms for computing the dynamic response of 
SDOF models mfree vibration. 

Chapter 5 summarizes the results of this study of the accuracy of six numerical 
step-by-step procedures used to compute the dynamic response of SDOF models 
with 5 percent damping. A brief discussion of the response analysis of semidis- 
crete MDOF structural system models to ground motion using numerical step-by- 
step procedures is also included. 

Appendix A gives the exact solution to a SDOF system subjected to a sine 
wave base excitation. 

Appendix B gives the Fourier series representation for a periodic function and 
the response of an SDOF system to a periodic force represented by a Fourier 
series. This algorithm is in the same category of algorithms as Duhamel's integral 
solved in a piecewise exact fashion and the Piecewise Exact Method applied 
directly in that it is an exact solution to an approximation of the actual loading. 
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2    Six Numerical Step-by-Step 
Procedures of Analysis of 
the Equation of Motion for 
an SDOF System 

2.0  Introduction 

This chapter outlines six numerical procedures for solving the dynamic 
response of SDOF models by solution of the dynamic equilibrium equation at 
closely spaced, discrete time intervals throughout the time of shaking. A base 
acceleration is used for the time-dependent loading. The dynamic response of each 
SDOF system used is characterized by the computed response time-histories of 
accelerations, velocities, and displacements. The next section begins with a sum- 
mary of the equation of motion for an SDOF system model subjected to a base 
acceleration (e.g., ground motion). 

The six algorithms included in this study are the Newmark ß method (with 
values of constants y and ß corresponding to the linear acceleration method), the 
Wilson 0 method, the Central Difference Method, the 4th Order Runge-Kutta 
method, Duhamel's integral solved in a piecewise exact fashion, and the Piecewise 
Exact Method applied directly. All of the algorithms were used in their discretized 
forms (i.e., the loading and response histories were divided into a sequence of time 
intervals); thus, they are characterized as step-by-step procedures. 

These six algorithms can be categorized into two main groups, depending on 
their general approach to satisfying the differential equation of motion. The first 
group includes Duhamel's integral solved in a piecewise exact fashion and the 
Piecewise Exact Method applied directly. These two methods formulate exact 
solutions to the equation of motion for assumed forms of the time-dependent forc- 
ing functions (i.e., the loading is approximated by a series of straight lines between 
the time-steps). This group is easily identified by the fact that the total response 
consists of two parts: a transient (or free vibration) response contribution and the 
steady-state response (or particular solution to the specified form of the loading). 
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The second group of algorithms includes the Newmark ß method, Wilson 6 
method, Central Difference Method, and 4th Order Runge-Kutta method. These 
methods are referred to as numerical methods because they approximately satisfy 
the equation of motion during each time-step for the given loading. The New- 
mark ß, Wilson 6, and 4th Order Runge-Kutta methods use numerical integration 
to step through the analysis of the time response problem, where the Central Dif- 
ference Method uses numerical differentiation. 

2.1   Equation of Motion for SDOF System 

Consider the case shown in Figure la of an idealized SDOF system subjected 
to a time-varying forcing function P(t). At time equal to t, the SDOF system dis- 
places a distance x(t) from its at-rest position due to the applied force oiP(t), as 
shown in Figure 2. For a linear SDOF system acted on by an externally applied 
dynamic force P(t), the equilibrium criterion (e.g., Chopra 1981 or Ebeling 1992) 
dictates that 

ft{t) +/e(0 +fk{t) = P{t) (l) 

where 

f/t) = inertial force 

fc(t) = damping force 

f/t) = elastic resisting force 

P(t) = externally applied dynamic force 

The inertia, damping, and elastic forces are related to the response quantities of 
the SDOF system through the following expressions: 

ft{t) = mx(t) , fe(t) = cx(t) , and fk(t) = kx{t) (2) 

where 

m = mass of the SDOF system 

x(t) = relative acceleration of the mass 

c = damping coefficient of the SDOF system 

x(t) = relative velocity of the mass 
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Figure 1.    Dynamic response of two damped SDOF systems (Ebeling 1992) 

k = stiffness of the SDOF system 

x(t) = relative displacement of the mass 

Figure 3 shows that inertial force/ acts opposite to the acceleration of mass m at 
time/. 

Substituting the expressions given in Equation 2 into Equation 1 results in the 
equation of motion for an SDOF system: 

mx(t) + cx(t) + kx(t) = P{t) 

For earthquake analyses, the dynamic loading is represented by 

Pit) = -mx^t) 

(3) 

(4) 
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Figure 2.    Forces acting on linear SDOF system at time t, external force P(t) applied (Ebeling 1992) 

where J^ound (t) is the ground acceleration applied to the base of the SDOF system, 
and thus the equation of motion becomes 

mx(t) + cx(t) + kx(t) = -mXpowd(t) (5) 

Figure 4 depicts these equivalent dynamic SDOF system problems. In alternate 
form, the equation of motion may be written 

x(t) +2ßcox(0 +co2x(0 = -XgeJLt) 

where 

(6) 
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Figure 3.    Inertiai force acting opposite to the acceleration of mass m at time t, external force P(t) 
applied (Ebeling 1992) 

ß = damping ratio = c/(2moi) 

03 = circular frequency = \jklm 

c = 2wcoß 

and 

2  TX 

CO 
2TT 

m 

NT (7) 

In earthquake analyses, parameters of interest are relative displacement, rela- 
tive velocity, and total acceleration. The total acceleration, 3qotal (f), is simply the 
sum of the relative acceleration plus the ground acceleration 

= -{2ßcox(0  + 032x(t)} 
(8) 
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Figure 4.    Equivalent dynamic SDOF system problems (Ebeling 1992) 

For computer analyses, the discretized form of these equations is needed and 
may be represented by the following notation: 

x. = x{t), x. = x{t), x) = x(t), Xp0md . = xgpmd (t), and xtotal. = xtotal (t)    (9) 

where 

f. = /Ar, Ar = f,+1-f, 

and   / =  integer. 

(10) 

2.2 Newmark ß Method 

The Newmark ß method is based on the following equations (e.g., Chopra 
1995): 

*,+i =*,. + [(! - y)M]x. + (yAt)xi+l (11) 

and 
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x.+1 = x,. + (At)x. + [(0.5 - ß)Af2]x,. + (ßAr2)x,+1 (12) 

where the parameters1 ß and y define the variation of response acceleration over 
the time-step and control the stability and accuracy of the method. Typically, y is 
set equal to 1/2, which corresponds to zero artificial damping, and ß is set to a 
value between 1/6 and 1/4. In the analyses performed in this report y = 1/2 and 
ß = 1/6 were used, which corresponds to a linear variation of response accelera- 
tion over the time-step (i.e., the linear acceleration method). The original 1959 
version of the Newmark-ß family of numerical methods required iteration to 
implement Equations 11 and 12. However, a modification can be made to avoid 
iterations. This modified formulation is described in this section. 

Equations 14 and 15 result from using the following definitions: 

Ax,. = x,+1-x., Ax,sx/+1-x., 
(13) 

Ax^x;+1-x\, andAP,SP,+1-/>. 

into which Equations 11 and 12 are substituted. 

Ax. = Arx. + yArAx. (14) 

a 
Ax. = Atx. + —x. + ßA/2Ax. (15) 

Solving Equation 15 for Ax; 

-*   Ax =  Ax. -  x. - —x. (16) 
'      ßAf2     '      ßAf  '      2ß   ' K   } 

and then substituting into the last term of Equation 14 gives 

Ax. = -X. Ax,. - lx   + At\ 1 --L I x. (17) 
'     ßAr    '     ß  '        {     2p;   ' 

The incremental equation of motion (Equation 18) can be derived from Equa- 
tion 3 and Equation 13: 

/«Ax. + cAx. + £Ax. = AP. (18) 

Note that in Equation 12 and all subsequent equations in this section, the variable ß describes 
how the acceleration response of the SDOF system varies over the time-step and does not refer to 
the damping ratio, represented by ß in the other sections of this report. 
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Substituting Equations 16 and 17 into the incremental equation of motion gives 

7 Y 1 k + c—-— + m- 
pAf       $At2) 

Ax. = AP. + |  m + —c\x. 
■      $At       p       ■ 

2ß 
-m + At JL-i 

UP  ) 

Equation 19 can be rewritten as 

(19) 

it Ax.. = AP (20) 

where k is referred to as the "effective" stiffness 

k = k + c- + m- 1 

PA?        ßAr2 

and AP.is referred to as the "effective" incremental force 

(21) 

AP = AP. + 1 Y   )  m + —c 
ßAr        p j 

x.. + J_ 
2P' 

m + At 
UP 

Uc (22) 

Accordingly, the incremental change in displacement Ax; from tt to ti+l may be 
determined by rearranging Equation 20 and from knowledge of the velocity and 
acceleration at tf 

AP. 
te'"T 

(23) 

Once Ax2 is determined, the incremental change in velocity Ax; and acceleration 
Ax, from f, to tm may be computed using Equations 17 and 16, respectively. 
Rearranging Equation 13 and substituting in the values for Ax, and Ax„ the 
response velocity and acceleration at tj+1 can be established. 

xi+1 = x. + Ax.    and    xi+! = x   + Ax. (24) 

There are different types of numerical methods in the Newmark P family 
depending on the values assigned to P and y (Hughes and Belytshko 1983; Hughes 
1987; Subbaraj and Dokainish 1989b; and Chopra 1995). When the constant p is 
set equal to 1/2 and the constant y is set equal to 1/6, this particular variation of 
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the Newmark ß family of numerical methods is referred to as the linear accelera- 
tion method. The linear acceleration method is used in the numerical studies to be 
reported on in subsequent chapters. 

2.3  Wilson 9 Method 

Although the Newmark ß method is versatile and accurate, when used with ß 
and Y values that correspond to the linear acceleration method, the method is only 
conditionally stable, i.e., a time-step At shorter than some stability limit must be 
used to ensure that the solutions are bounded1 (e.g., Paz 1991 or Chopra 1995). 
(This potential for instability is inherent in the linear acceleration method and not 
an artifact of the Newmark ß method's formulation.) However, an uncondition- 
ally stable form of the linear acceleration method is the Wilson 0 method; for 
6> 1.37, the solution is bounded regardless of the size of the time-step. The modi- 
fication that Wilson introduced is based on the assumption that the response accel- 
eration varies linearly over an extended time interval from t to t + 8 At, where 
9 > 1.0. Note that for 6 = 1.0, the Wilson 6 method is the same as the Newmark 
ß method when ß = 1/6 and y = 1/2. 

Writing the equilibrium criteria for an SDOF system at tt and tt + 6At, Equa- 
tion 3 becomes 

/,(',) +/c(',) 
+/A)=^/) (25) 

and 

f.(t. + 6A0 + fc{t, + 0AO + fk(t, + 6A0 = P(tt + 6A0 (26) 

Subtracting Equation 25 from Equation 26 gives 

A/;. + Afc + A/, = AP (27) 

where 

Ä/, =/,(*,+ 6Af) -ffa),   etc. (28) 

1 The stability limit for the linear acceleration method is At <. A^^, with A^^ = 0.551(7",,). 
For the analyses of SDOF systems performed in this report, stability requirements are easily 
satisfied as will be demonstrated in Chapter 3. However, for the higher modes of vibration in 
MDOF systems or high-frequency SDOF systems, stability may be an issue. 
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Accordingly, the extended incremental form of Equation 29 may be written as 

Aff = mAx ,     Kfc = c Ax , and     Afk = k Ax (29) 

where 

Äx. = jc(f. + 0Ar) - x(t.) ,   etc. (30) 

and the extended incremental form of the equation of motion becomes 

mAx) + cAx. + kAxt = AP. (31) 

Assuming that the response acceleration varies linearly over an extended time 
interval from t to t + QAt, 

Ax. 
x\t) = x  +—L(t- tf)   for   t. < t < t, + BAt (32) 

oAt 

the response velocity and displacement are given by: 

1  Äx. 
x(t) = xi +x,(t-t.) + i-—'-{t-tf (33) 

1 vAt 
and 

x(0 = x, + ±{{t - t,) + Ut{t ~ tf + ~ (' - tf (34) 

Evaluating the response velocity (i.e., Equation 33) at tt and tt + 0At results in 

x(?,) = x. (35) 

and 

x(ti + 0AO = x. + x.0 At + - Äx. (36) 
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The extended incremental response velocity may be obtained by subtracting 
Equation 35 from Equation 36: 

Äx. = x.6At + -AxBAt 
2     ' 

(37) 

In a similar fashion, the extended incremental response displacement is determined 
tobe 

!-■-• 

2 
Ax = X.0A? + -x.(9A02 + -Ax.(6A?)2 (38) 

Solving Equation 38 for the exferaferf incremental response acceleration, 

-»   Äx. =  Ax. -  x. - 3x. 
'     (6A/)2     '     (9A0   ' 

and then substituting this expression into the last term of Equation 37 gives 

(39) 

Ax. =  Ax. - 3x. 
'     6Ar .   ' 

9 At 
(40) 

Substituting Equations 39 and 40 into the extended incremental equation of 
motion (i.e., Equation 31) gives 

6 3 
k + m + c 

QAt       QAt 
Ax.. = AP. 

/ 
+ m 

6    . 
\QAt ' 

x. + 3x.    + c 
, .     6A?.. 
3x. + X- 

'       2     ' 

(41) 

Equation 41 can be rewritten as 

kAx. = AP. (42) 

where k is again referred to as the "effective" stiffness but defined as 
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7;6             3 k = k +  m +  c 
6Ar        8 Ar 

(43) 

and AP, is again referred to as the "effective" incremental force but defined as 

AP. = AP.. + m 
( 6   . 

\ 6 At ' 
x. + 3x.. + c\ 3x. + 

0Ar (44) 

Accordingly, the incremental change in displacement Äx, from r, to r, + 8Ar may 
be determined by rearranging Equation 42 and from knowledge of the velocity and 
acceleration at tt. 

Ax.. 
AP. 

F. 
(45) 

Once the extended incremental change in displacement is known, Equation 39 
may be used to compute the extended incremental change in acceleration. The 
incremental change in acceleration is related to the extended incremental change in 
acceleration through Equation 46: 

Ax, 
Ax, 

0 

(46) 

The remaining response quantities of interest may be computed by the following 
expressions: 

Ax. = x'.Ar + —Ax. Ar 
' 2 

(47) 

Ax. = x.Ar + —x'.Ar2 + —Ax. Ar2 

2   ' 6     ' 
(48) 

x.+1 = x. + Ax, 

x,+1 = x, + Ax, 

(49) 

(50) 

and 

;+l =   -(^1   "   C*i+l   ~   kXi+\) 
(51) 
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2.4  Central Difference Method 

The Central Difference Method is based on the finite difference approximation 
of the time derivatives of displacement, i.e., velocity and acceleration (e.g., Chopra 
1995). The central difference expressions for velocity and acceleration at time f,- 
are: 

x. = i+1 i-1 

2 At 

and (52) 

xi = 

xi+1 - 2x. + xM 

At2 

where at r, = 0, the initial response quantities x0 and x0 are assumed known1 and xA 

is given by 

_ A At2 .. 
(53) 

When the expressions in Equation 52 are substituted in Equation 3, the discretized 
equation of motion may be written: 

m *'w " 2X' + *<->   + c Xi+> " X'-'  +kxi = Pi 
Ar 2At 

(54) 

or alternately, 

m        c 
 + — 

{ At2     2At) Xi+, = Pi 
m ( 

At2     2At 
xt-i 

\ 

j     2m 
k    x, 

At2     ' 
(55) 

As with the formulations of the Newmark ß and Wilson 9 methods, the equa- 
tion of motion can be represented in an analogous form to Hooke's law: 

kxi+! = Pt (56) 

1 The initial value for relative acceleration (3c0) may be determined by substituting the known 
values of x0 and Jtj, into the equation of motion. 
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where k, again the "effective" stiffness, is written as 

Y       m c 
k =   + 

At2      2 A/ 
(57) 

and Ph again the "effective" force, is written as 

Pt = P, 
m        c \ 

[At2    2At) 
v;-l 

2m 

At2 
(58) 

Solving Equation 56 for relative displacement, 

vi+i 
(59) 

Because the Central Difference Method is based on the finite difference 
approximation of the time derivatives of displacement, the determination of rela- 
tive velocity and acceleration lags the determination of relative displacement by At 
(i.e., xm is needed to compute x, and x,). However, once xi+1 is known, x, and x; 

may be computed using the expressions in Equation 52: 

x.. = 
Xi+\     Xi-\ 

2 At 
and x. = 

X;+l      ^Xi+Xi-1 

At2 
(52 bis) 

2.5 Duhamel's Integral 

Duhamel's integral method, solved in a piecewise exact fashion, idealizes the 
forcing function as a succession of short-duration impulses, with each short- 
duration impulse being followed by a free vibration response (e.g., Paz 1985; 
Ebeling 1992; or Clough and Penzien 1993). Superposition is used to combine 
each of the short-duration impulse/free vibration responses with the total response 
for the structural model. For a continuous forcing function, P(i) is divided into a 
series of pulses of duration di. The change in velocity of the SDOF system due to 
the impulsive load may be determined from Newton's law of motion: 

m4*. =P(T) 
dx 

(60) 

or 
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dt = m*i (61) 
m 

where P(T) dx is the impulse, and dx is the incremental velocity. This incremental 
velocity may be considered to be an initial velocity of the SDOF system at time T. 

The solution to the equation of motion for free vibration is 

x{t) = e -ßcof 
x0+x0ßco 

xQcos(ü>Dt) +   sin (oiDt) 
G)r 

(62) 

where 

CO lD = o>v/r^ (63) 

Substituting Equation 61 for % in the second term of Equation 62 and assuming 
xn = 0 results in 

dx(f) = e-N'-t)W* sin coD(r-T) (64) 
/wcor 

The total relative displacement can be determined by summing the differential 
responses, given by Equation 64, over the entire loading interval: 

x(r) = —!— fP(T)e-ßQ('"T) sin v>D(t-x)dx 
W2tO„   J 

(65) 

Using the trigonometric identity: 

sinco(r-T) = sin cor cos COT - cos cor sin COT (66) 

Equation 65 may be written 

-ßtof 
x(t) =  Mr>(0 sin co^r - BJt) cos co^rl 

»MC.lL J m(x> 
(67) 

where 
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AD{t) = f P(T)eP"T cos G^T dx 

and (68) 

BD(t) = f P(x)e^x sin CO0T tfr 

The expressions in Equation 68 can be solved by several techniques. For this 
study, the loading function P(x) is assumed to be piecewise linear and an exact 
solution formulated. 

P(t)=P(ti_1) + _£(T-*._!)   for   thl < X < t, (69) 

where 

AP,. = P(f,) -J>(rM) (70) 

When Equation 69 is substituted into the expressions of Equation 68 and the inter- 
mediate variables Iu I2,13, and I4 given in Equation 71 are used, Equation 72 
represents an exact solution. 

,ßuT 
Ix= f e^az cos coDx dx =  (ßco cos CO^T + coD sin CO^T)   | 

(ßco)2
+coD

: 

I2= I epcoT sin 0)DT dx =  (ßco sin coßT - coD cos CO^T)   \ 
l (ßo))2 + coD

2 /,_, 

(71) 

/, = f x e P"T sin conx dr = 
/ 

ßco 

(ßco)2
+G)D 

0) /2 +  H^     I (ßco^+co2,       ',-. 

I4= f x eßt0T COS G)ÖT fl?T 
ßco 

(ßco)2
+coD 

h + cor 

A2 ^ ,2 (ßcoD)2+coD        »,-i 
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where /,' and 1{ are the integrals for I: and I2 before their evaluation at the limits. 
By introducing the following relationships 

AD{tt) = A^t^) + 

BD(t.) = £„(*,_,) + 

AP. AP, 
1       At 

AP, AP. 
2       At 

■i-L 

(72) 

the relative displacement, velocity, and acceleration may be determined using 
Equations 73, 74, and 75, respectively. 

-Pur, 

mwr 

•[AD(t.) sin (oDtf - BD(tt) cos co^,.] (73) 

_ e *"""'/ G)DBD(t.)-fyoAD(t.) sin 03Dtf X; 
»i(i)fl  '• 

+ uDAD{t^ + ßco5D(r;) 

*, - ^ - ex. - kx.) 
1              I' 

COS  CO b'/} 

(74) 

(75) 

2.6  Piece wise Exact Method 

The Piecewise Exact Method is similar to the way Duhamel's integral was 
solved in the previous section: the forcing function is assumed to vary linearly in a 
piecewise fashion and based on this assumption, an exact solution is determined 
(Nigam and Jennings 1968 and summarized in Appendix A of Gupta 1992). 
However, the Piecewise Exact Method is a direct formulation and does not require 
the loading to be divided into a series of impulses, as was done in the formulation 
of Duhamel's integral. 

Assuming the dynamic loading varies in a piecewise linear fashion: 

AP. 
P(0 = P(t.) + -^-(t - tt)      for      11 < t < ti+l (76) 
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where 

*P, = P,.i ~ P, 
(77) 

The relative displacement and velocity may be determined by 

Xi*l  ~ AXi   + aground ; 

where 

(78) 

X: = { X, gromd, m   \p^ 
(79) 

and 

A = 
an fl12 

B = 
°21 «22. 

bu     bn 

h2\       hTL 

(80) 

The elements of the matrices A and B are given by the expressions in Equations 81 
and 82, respectively: 

-ßcoAf 
"n     e —- sin conA? + cos (OnAt 

\<*>D 

an =   sin o)DA/ 
(Dp. 

°21  = 
a)2 g -ß"Af 

sin coDAr 

(81) 

"22        K cos OnAr - —- sin conA? 
G)r 

and 
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2ß2-l     _ß      sinconAr 

co2Ar      co cor 

2ß 
co3 A? 

+ 1 coscoDAr 2ß 

co3 Ar 

h    = -e -V"At 2ß2-l 

^   co2Ar ; 

sin conAr ^1 + Jt cos conAr 
cor co3 Ar 

1    _    2ß 

co2      co3Ar 

u2\      e 
2ß2-l  ,  ß 

co2Ar      co 

( \ 
2ß    H   1 

co3 Ar    CO2 y 

A Coß A 
cos (x>D At - —- sin 03D At 

\ 

CO D 

(coD sin coD At + ßco cos co^ Ar) 
co2 Ar 

(82) 

ü22 e 
2ß2-l 

co2 Ar 

2ß 

coß 
cos coD Ar - —— sin co^, Ar 

con 

co3Ar 
(cOp sin co^ Ar + ßco cos coD Ar) 

co2Ar 

Once the relative displacement and velocity have been determined, the relative 
acceleration may be computed by 

*,+i = ^,+i -<*/+1 ~ kxi+1) (83) 

2.7  4th Order Runge-Kutta Method 

In the application of the 4th Order Runge-Kutta method, the equation of motion 
is first reduced to two first-order differential equations (Thomson 1993). Writing 
the equation of motion as 

x\t) = —[P(t) - kx(t) - cx(t)] = F(x,x,t) 
m 

(84) 
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this second-order differential equation may be written as two first-order equations: 

x(t) = y(t) 

y{t) = F(x,y,t) 

Both x,+i and.y,+1 can be expressed in terms of the Taylor series: 

(85) 

x(ti+1) = x(tt) + 

y{ti+l)=y{tt) + 

' dx_y 

( dy) 

dt 

At + 

Ar + 

, dt2)t 

At' 

'    -^\     Af2 dly 

[dt2)t 

(86) 

Ignoring the higher order derivatives, and replacing the first derivative by an 
''average" slope, the expressions in Equation 86 may be written: 

' dx^ 

avg { dt) 

I dy^ 

\   dt ) avg 

At *(',+1) = x(r) + 

y(t^)=y{tl) + 

where, if Simpson's rule were used, the "average" slope would be defined as 

(87) 

At 

dt J __.      6 avg 

d£ 
dt 

+ 4 dy 
~dt t..+h/2 

dy (88) 

In the Runge-Kutta formulation, the "average" slope is very similar to that of 
the Simpson's rule, except that the center term of Equation 88 is split into two 
terms and four values of t, x, y, and F are computed for each point z as follows: 

y =x y =x 
7*1 =',■ X=Xi Yi=yt Fx = F(TlX^) 

T2 = t, + hfl X2 = xt + Ylh/2 Y2=yi + Flh/2 F2 = F{T2X2J2) 

T3 = t, + h/2 X3 = xt + Y2 h/1 Y3=yi + F2ha F3 = F(T3XsJs) 

T4 = tt + h X4 = x, + Y3h Y4=yi + F3h F, = F{TAXA,Y4) 

Chapter 2    Six Numerical Step-by-Step Procedures 25 



These quantities are then used in the following recurrence equations: 

(89) 

where it is recognized that the four values of Y divided by 6 represent an "aver- 
age" slope dx/dt and the four values of F divided by 6 represent an "average" 
slope dy/dt. Once the values of the expressions in Equation 89 are determined, the 
relative acceleration at time ti+1 may be computed: 

*M  =  1(^+1   "  **M   -  C
*M) (9°) m v 

26 Chapter 2   Six Numerical Step-by-Step Procedures 



3    Stability of Numerical 
Integration and Numerical 
Differentiation Methods 

3.0  Introduction 

The stability criteria for the three numerical integration methods and for the 
numerical differentiation method used in the step-by-step response analysis of the 
SDOF systems analyzed in this study are given in this chapter. Recall that the 
numerical integration methods included in this study are (a) the linear acceleration 
method of the Newmark ß family of numerical methods, (b) the Wilson 8 method, 
and (c) the 4th Order Runge-Kutta method. The numerical differentiation method 
used is the Central Difference Method. The stability criterion for each of these 
four algorithms is established by the values assigned to the constants that are used 
in the algorithm and the terms associated with the structural model. 

The stability condition requirements for numerical methods are categorized as 
either unconditional or conditional. A numerical method is unconditionally stable 
if the numerical solution for any initial value problem does not artificially grow 
without bound for any time-step At, especially if the time-step is large (Bathe and 
Wilson 1976; Bathe 1982; Hughes and Belytshko 1983; Hughes 1987; and 
Chopra 1995). The method is conditionally stable if the previous statement is true 
only for those cases in which the time-step At is less than some critical time-step 
&tcritic^- Figure 5 shows the attributes of a stable response, computed using A? < 
Atcriticai, and the attributes of a unstable response, computed using At > Atcriticab for 
the same undamped SDOF system in. free vibration. 
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mx (t) + kx (t) = 0 

INITIAL CONDITIONS:        x(t=0) = x0 

x(t=0) = x0 
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EXACT SOLUTION: x = x. cos ©t + -i2 sin Cut 
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a.   Stable free vibration response with a smaller time-step than the critical 
time-step 
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b.   Unstable free vibration response due to a larger time-step than the 
critical time-step 

Figure 5.    Example of response for an undamped SDOF system in free 
vibration (Ebeling 1992) 
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3.1   Stability Criteria for Two Implicit Numerical 
Integration Methods 

The linear acceleration method of the Newmark ß family of numerical methods 
is conditionally stable. The critical time-step is defined as 

At      ,   =    -   T (91) ^l critical ,—      , ——-      o. v     ' 
71  fl    yj Y   -  2  ß 

and recall that T0 equals the natural (undamped) period of the SDOF system 
(Hughes and Belytshko 1983; Hughes 1987; Subbaraj and Dokainish 1989b; and 
Chopra 1995). With y equal to 1/2 and ß equal to 1/6 for the linear acceleration 
method, Atcritical becomes 

A^,w   =   °-551 To (92) 

Thus, the stability criterion for a SDOF system dictates that 

*   *   ^critical <93> 

Equation 92 indicates that when the linear acceleration method is applied to the 
response analysis of SDOF systems for either free vibration or forced vibration 
analysis, the analysis requires two time-steps per natural vibration period of the 
structure to satisfy stability criteria. For the case of T0 equal to 0.5 sec, Atcritical 

becomes 0.276 sec, and with T0 equal to 0.25 sec, A^^ reduces to 0.138 sec. 
Since all SDOF systems used in this study are assigned T0 equal to 0.5 sec or 
0.25 sec and are subjected to ground motion with At set equal to either 0.02, 0.01, 
or 0.005 sec, it is concluded that the numerical computations using the linear 
acceleration method are stable. The results of these forced vibration analyses will 
be discussed in Chapter 4. 

The Wilson 9 method is unconditionally stable when the value assigned to the 
constant 0 is greater than 1.366. A value of 6 equal to 1.38 is used in this study. 
Thus, no restraints (such as a Atcritical value) are placed on the time-step At used in 
the analyses from the viewpoint of numerical stability considerations. 
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3.2 Stability Criteria for an Explicit Numerical 
Integration Method 

The 4th Order Runge-Kutta method is an unconditionally stable explicit numer- 
ical integration method (Thomson 1993 or Subbaraj and Dokainish 1989b). 
Therefore, no restraints (such as a AtcriticaI value) are placed on time-step At used 
in the analyses from the viewpoint of numerical stability considerations. 

3.3 Stability Criteria for a Numerical Differentiation 
Method 

The Central Difference Method is a conditionally stable explicit numerical dif- 
ferentiation method. The critical time-step is defined as 

Krit,ca,     =     LT0 (94) 
It 

(Bathe and Wilson 1976; Bathe 1982; Hughes and Belytshko 1983; Hughes 1987; 
Subbaraj and Dokainish 1989b; Clough and Penzien 1993; and Chopra 1995). 
Equation 94 indicates that when the Central Difference Method is applied to the 
response analysis of SDOF systems for either free vibration or forced vibration 
analysis, the analysis requires three time-steps per natural vibration period of the 
structure to satisfy stability criteria. For the case of T0 equal to 0.5 sec, Atcritical 

becomes 0.159 sec, and with T0 equal to 0.25 sec, Atcritical reduces to 0.08 sec. 
Since the SDOF systems used in this study (with T0 equal to 0.5 sec or 0.25 sec) 
are subjected to ground motion with At set equal to either 0.02, 0.01, or 0.005 sec, 
it is concluded that the numerical computations using the Central Difference 
Method are stable. 

3.3.1   MDOF systems 

Stability conditions must be satisfied for each mode in the MDOF system 
model, even if the response in the higher modes is insignificant (Hughes 1987, 
page 493; or Chopra 1995, page 575). Accordingly, stability criteria, expressed 
in terms of the limiting time-step Atcritical for conditionally stable algorithms, are 
more restrictive for MDOF systems than for SDOF systems. Hughes (1987, 
pages 540-542) shows a numerical exercise to establish the time-step At value to 
be used in a "transient analysis of an undamped multidegree-of-freedom structure 
... for which engineering insight reveals that the response will be primarily in the 
first six modes. Engineering accuracy dictates that relative period error and 
amplitude decay (per cycle) be no more than 5 percent for any of the first six 
modes." (A discussion of the issues related to the accuracy of the numerical step- 
by-step procedures is postponed until Chapter 4.) However, this example shows 
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that the time-step needed to satisfy the stability requirement of the Central Differ- 
ence Method is so small that there is no need to worry about accuracy criteria. 
This is because the maximum time-step is computed using Equation 94 with T0 

replaced by the minimum period (i.e., the maximum frequency) of either the modes 
for the MDOF model or the individual elements modeling the structure (depending 
on the formulation used to solve the equation of motion of the MDOF system 
model). The maximum time-step allowed for several unconditionally stable, 
numerical step-by-step procedures that may be used for the response analysis are 
also computed in this exercise. The results of Hughes' example highlights the fact 
that unconditionally stable algorithms need be concerned only with the issue of 
accuracy, and a significantly larger time-step At may be used in the MDOF 
system response analysis being considered, compared to Atcritical for the Central 
Difference Method. Lastly, Chopra (1995, page 170) observes that in the analysis 
of semidiscrete MDOF system models it is often necessary to use unconditionally 
stable methods. Hughes (1987, page 536) notes that the use of unconditionally 
stable methods is particularly important in complicated structural models 
containing slender members exhibiting bending effects. 

3.4 Conclusions 

In summary, the following conclusions are made regarding the stability require- 
ments of the numerical methods used in this study: 

a The Wilson 8 method with 6 equal to 1.38 and the 4th Order Runge-Kutta 
method are unconditionally stable with no requirements made on the time- 
step Ar used in the analyses. 

b.    The linear acceleration method, of the Newmark ß family, and the Central 
Difference Method are conditionally stable. However, since the SDOF 
systems used in this research are subjected to ground motion with At set 
equal to either 0.02, 0.01, or 0.005 sec, it is concluded that the computa- 
tions using these two numerical methods are stable. 

Additionally, the following observation is made: in most earthquake 
engineering/dynamic structural response analyses, a time-step At equal to either 
0.02, 0.01, or 0.005 sec is commonly used to define the ground motion accelera- 
tion time-history. In general, stability will not be an issue for the computed results 
when either the linear acceleration method or the Central Difference Method is 
used for SDOF systems with T0 ranging from 0.25 to 0.5 sec. The time-step At 
used to accurately define the ground motion will be much smaller than the Atcritica! 

value for either of these numerical methods. The accuracy of six numerical step- 
by-step procedures will be discussed in detail in Chapter 4. 
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4    Accuracy of Six Numerical 
Step-by-Step Procedures of 
Analysis of the Equation of 
Motion for SDOF Systems 

4.0 Introduction 

In general, the accuracy of a numerical algorithm is associated with the rate of 
convergence of the computed response with the exact response as At - 0 
(Hughes 1987). The six algorithms included in this study are the Newmark ß 
method (with values of constants y and ß corresponding to the linear acceleration 
method), the Wilson 0 method, the Central Difference Method, the 4th Order 
Runge-Kutta method, Duhamel's integral solved in a piecewise exact fashion, and 
the Piecewise Exact Method applied directly. Specific details regarding the equa- 
tions used in each of the six numerical step-by-step procedures are given in 
Chapter 2. 

Much of the current guidance for selecting the time-step At used in computing 
the dynamic response of SDOF and MDOF models to ground motion is based on 
studies of the accuracy of numerical methods for computing jfee vibration 
response of undamped SDOF systems. The information from the free vibration 
studies is often combined with useful but qualitative reference to the frequency 
characteristics of the forcing function. The time-step At criterion is often 
expressed as a fraction of the natural (undamped) period of the SDOF system for 
a specified level of accuracy. Section 4.1 gives a brief review of published numer- 
ical assessments of the accuracy of several numerical algorithms for different 
time-step At values used to compute the free vibration response of undamped 
SDOF models. Current guidance on the factors to be considered when choosing 
the value of A? to be used in response analysis of structures to earthquake shaking 
is also included. 

Using damped SDOF system models with natural periods assigned based on 
consideration of the important modal periods of hydraulic structures, an evaluation 
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is made in this study of the accuracy of the computed response values solved for at 
regular time increments during ground motion. Recall from Section 2.1 that a 
ground acceleration applied at the base of an SDOF system is equivalent to a 
fixed-base SDOF system with the forcing function applied directly to the mass. 
Section 4.2 summarizes the results from an extensive series of numerical computa- 
tions used to evaluate the accuracy of the six numerical step-by-step procedures 
used in this study. Time-step A? values of 0.02, 0.01, and 0.005 sec are used in 
the response analysis of SDOF systems subjected to base accelerations with differ- 
ent frequency characteristics. The dynamic response for each damped SDOF 
structural model used in this study (ß = 0.05) is characterized by the computed 
response time-histories of accelerations, velocities, and displacements. These 
results, combined with computations made using closed form solutions, allow for 
the development of quantitative guidance as to how the accuracy of the six numer- 
ical step-by-step procedures is affected by both the time-step At and the fre- 
quency characteristics of the ground motion. 

4.1   Error in Free Vibration Response of SDOF 
Systems 

The accuracy of a numerical step-by-step procedure is usually characterized 
using the computed results from free vibration response analyses of undamped 
SDOF systems compared with the results from a closed form (exact) solution to 
the equation of motion. This section briefly reviews select results from a com- 
monly cited numerical assessment of the accuracy of numerical algorithms for 
different time-step At values used to compute the dynamic response of SDOF 
structural models in free vibration. The figures used to quantify the accuracy of 
numerical step-by-step procedures and the application example cited are taken 
from Hughes (1987). 

Error is inherent in any numerical solution of the equation of motion 
(Chopra 1995, page 170). A common method used to gain insight into the magni- 
tude of error for a numerical step-by-step procedure is to quantify the difference in 
computed displacements with the exact displacements for an undamped SDOF 
system in free vibration. The undamped SDOF system is set in motion by an 
initial displacement x0 and an initial velocity x0 at time t = 0 sec. The exact 
solution for displacement x of the undamped SDOF system with time t for this 
boundary value problem is given in Figure 5. This equation for x is obtained using 
standard solution procedures for linear differential equations, such as the method 
of undetermined coefficients (e.g., Section 2.12 in Kreyszig 1972). The response 
described by this equation and shown in Figure 5a is cyclic with a constant 
maximum amplitude 

x(t) |_ =   A   x: + [ -a. (95) 
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and constant circular frequency co ((k/m)m radian). Recall from basic structural 
dynamics that an undamped SDOF system responds at its natural (undamped) 
period T0, equal to 2n/a> sec (Ebeling 1992). Thus the response is said to be 
periodic with each complete response cycle occurring over a constant interval in 
time equal to T0 sec. These attributes of a periodic response and the same maxi- 
mum displacement amplitude in each cycle facilitate the assessment of the error in 
the displacements computed using a numerical step-by-step procedure of analysis. 

Figure 6 (Hughes 1987) summarizes the results of error assessments made 
using several different numerical step-by-step procedures to solve for the dis- 
placement x of undamped SDOF systems in free vibration for a wide range in 
time-step At values. The abscissa of Figures 6a and 6b is the ratio of At divided 
by T0, the natural (undamped) period of the SDOF system. Two definitions of 
error are possible for the free vibration problem: (a) amplitude decay, designated 
as AD, and (b) period elongation, designated as PE. These two types of errors are 
shown in the idealized schematic in the center, upper diagram in Figure 6 for one 
complete cycle of displacement x. Since the SDOF system is undamped, any 
amplitude decay AD in displacement x (per cycle) computed using a numerical 
step-by-step procedure will be a measure of the error in computed response. This 
error measurement is sometimes reported as "algorithmic damping" since the 
actual response for the SDOF system is undamped with no amplitude decay per 
cycle. Amplitude decay is converted to algorithmic damping using the equation 
given in the center, upper schematic. The second type of error possible is referred 
to as period elongation and measures the extension in the time increment it takes to 
complete each cycle of harmonic response. 

The data in Figure 6 show that for the free vibration problem of an SDOF sys- 
tem with a constant natural period T0, the magnitude of one or both error meas- 
urements usually increases with the time-step At. (Refer to Hughes (1987, 
Section 9.3) for details regarding the numerical step-by-step procedures identified 
in this figure.) Conversely, Figure 6 shows that for a specified time-step At, the 
magnitude of one or both error measurements is greater for short-period SDOF 
systems than for long-period SDOF systems. In summary, this figure shows the 
errors associated with a given numerical procedure to be a function of (a) the time- 
step At used in the analysis and (b) the natural (undamped) period T0. Similar 
error plots are given in Chopra (1995, Figure 5.5.2 on page 173) and in Bathe and 
Wilson (1976, Figure 9.3 on page 357). 

4.1.1   MDOF systems 

The data given in Figure 6 may also be used to establish the largest time-step 
At for a specified level of accuracy in response analysis of semidiscrete MDOF 
system models. Hughes (1987, pages 540-542) gives a numerical exercise to 
establish the time-step At value to be used in a "transient analysis of an undamped 
multidegree-of-freedom structure ... for which engineering insight reveals that the 
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response will be primarily in the first six modes. Engineering accuracy dictates 
that relative period error and amplitude decay (per cycle) be no more than 5 per- 
cent for any of the first six modes." The corresponding value of algorithmic 
damping ratio is computed to be 0.05/2TC, equal to 0.008. This exercise uses the 
Figure 6 data to establish the At values to be used in each of the numerical step- 
by-step procedures identified in this figure. From modal analysis of the MDOF 
system, it is established that the natural period for the sixth mode, T6, is equal to 
one-tenth (1/10) the natural period of the first mode, T0 (thus, T0 = 10T6). 
Hughes' exercise shows that when unconditionally stable algorithms, such as the 
Wilson 0 method, are used to compute the response of MDOF system models, the 
5 percent error criterion for amplitude decay AD and period elongation PE 
establishes two limiting values for the ratio (At/T6). For this example, Figure 6 
shows that both limiting values of the ratio (At/T6) are equal to 0.08. Note that 
because this is an MDOF system problem, the natural period T0 in the denomina- 
tor of the abscissa of Figures 6a and 6b is replaced by T6, the highest frequency of 
engineering significance contributing to system response in this analysis.   Thus 
the value of the largest time-step At that can be used in the response analysis using 
the Wilson 9 method is equal to 0.08r6 (0.0087;). Additionally, if the time-step 
criteria for AD and PE differ, the smallest value for the ratio (At/T6) is used to 
establish the largest time-step Ar since the 5 percent maximum error criteria must 
be satisfied in terms of both AD and PE. 

4.1.2 Current guidance for assigning the time-step At to be used in 
earthquake engineering dynamic structural response analysis 

Much of the current guidance for selecting the time-step Ar used in computing 
the dynamic response of SDOF and MDOF models to ground motion makes use of 
Figure 6 type data from free vibration response analyses of undamped SDOF 
systems. This information is often combined with useful but qualitative reference 
to the frequency characteristics of the forcing function. For example, after going 
through an exercise of evaluating the accuracy of numerical algorithms, Chopra 
(1995, pages 172 and 568) concluded that his Figure 5.5.2 data (comparable to 
the Figure 6 data) suggest that a time-step At equal to 0.17^ would give reason- 
ably accurate results. {TN is the natural period in seconds of the Nth mode of the 
MDOF system model with significant response contribution.) This same guid- 
ance is also given by Bathe and Wilson (1976, pages 351-352), Clough and 
Penzien (1993, pages 128-129), and Paz (1991, page 155), with the caveat of 
when "the loading history is simple." Chopra (1995, pages 172-173) concludes 
his discussion of computational error with the observations that "... the time step 
should be short enough to keep the distortion of the excitation function to a mini- 
mum. A very fine time step is necessary to describe numerically the highly irregu- 
lar earthquake ground acceleration recorded during earthquakes; typically, 
Ar = 0.02 seconds is chosen and this dictates a maximum time step for computing 
the response of a structure to earthquake excitation." Gupta (1992, page 155) 
recommends that "the time step used in the response computations is selected as 
the smaller of the digitized interval of the earthquake acceleragram or some frac- 
tion of the period of free vibration, for example 7710." 
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In summary, Paz (1991, page 155), Gupta (1992, page 155), Clough and 
Penzien (1993, pages 128-129), and Chopra (1995, pages 172-173) all recognize 
that the assignment of time-step A/ in response analysis to forced vibration should 
consider the following factors: (a) the natural period of the structure; (b) the rate 
of variation of the loading function; and (c) the complexity of the stiffness and 
damping functions. However, no error summary similar to Figure 6 for the forced 
vibration of damped SDOF systems in which ground motion is represented by an 
acceleration time-history is given in the books on structural dynamics by Bathe 
and Wilson (1976), Hughes (1987), Paz (1991), Gupta (1992), Clough and 
Penzien (1993), and Chopra (1995). 

4.2 Error in Response of SDOF Systems to Ground 
Motion 

This section summarizes the results of an assessment of the accuracy of 
response of six numerical step-by-step procedures used in computational struc- 
tural dynamics. The six algorithms used in this study are representative of the 
different types of numerical procedures used to compute the dynamic structural 
response to a time-dependent loading. The time-dependent loading envisioned in 
this research is that of the motion of the ground below a discrete structural model 
and is expressed in terms of a ground acceleration time-history. The dynamic 
structural response for each structural model used in this study is characterized by 
the computed response time-histories of accelerations, velocities, and 
displacements. 

The six algorithms included in this study are the Newmark ß method (with val- 
ues of constants y and ß corresponding to the linear acceleration method), the Wil- 
son 9 method, the Central Difference Method, the 4th Order Runge-Kutta method, 
Duhamel's integral solved in a piecewise exact fashion, and the Piecewise Exact 
Method applied directly. Specific details regarding the equations used in each of 
these numerical step-by-step procedures are given in Chapter 2. Recall from Sec- 
tion 2.1 that a ground acceleration applied at the base of a SDOF system is equiv- 
alent to a fixed-base SDOF system with the forcing function applied directly to the 
mass. 

These numerical results, combined with computations made using closed form 
solutions, allow for the development of quantitative guidance as to how the accu- 
racy of the six numerical step-by-step procedures are affected by both the time- 
step At and the frequency characteristics of the ground motion. 

4.2.1   SDOF systems 

All structural models used in this numerical study are linear, SDOF systems 
with a damping ratio set equal to 5 percent (ß = 0.05). Two SDOF systems are 
used in this numerical study: T0 = 0.25 sec (frequency X = 4 Hz) and T0 = 0.5 sec 
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{f0 = 2 Hz). Recall from structural dynamics that frequency f0 (cycles/sec or Hz) 
is equal to the inverse of T0 (e.g., Ebeling 1992). The natural (undamped) periods 
and damping ratio of the SDOF systems used in this numerical study were based 
on dynamic response analyses procedures used to model and analyze various types 
of hydraulic structures, such as gravity dams, arch dams, gravity lock walls, 
U-frame locks, and intake towers. The shortest period (highest frequency) of engi- 
neering significance contributing to system response for these hydraulic structures 
was also taken into consideration when selecting the range in T0 values. 

4.2.2 Time-step At 

The time increments, Ar, used in this numerical study are 0.02, 0.01, and 
0.005 sec. These values are typical of the Ar used in discretizing earthquake 
acceleration time-histories recorded in the field on strong motion accelerographs 
(e.g., Hudson 1979). 

4.2.3 Ground motion 

The ground motion forcing functions used in this numerical study are single- 
frequency harmonics. The use of a single frequency facilitated the evaluation of 
the accuracy of the computed response values solved for at regular time incre- 
ments during ground motion. Figure 7 shows the three ground acceleration time- 
histories used. All three ground motions contain twenty cycles of sinusoidal 
acceleration with peak ground acceleration of 1 g. The three acceleration time- 
histories are distinguished from one another by the time interval required to com- 
plete each cycle of sinusoidal acceleration, designated as Tg. The values of Tg are 
0.05, 0.25, and 1.0 sec. Accordingly, the corresponding durations of ground 
motion are 1, 5, and 20 sec, respectively. 

The three ground motions shown in Figure 7, with Tg equal to 0.05, 0.25, and 
1 sec, possess cyclic frequencies^ of 20 Hz, 4 Hz and 1 Hz, respectively. These 
frequencies are often contained within acceleration time-histories that have been 
recorded in the field on strong motion accelerographs during numerous earth- 
quakes and are often encountered in earthquake engineering dynamic response 
analysis of structures. It has also been the experience of the authors to encounter 
this range of frequencies in the earthquake engineering dynamic structural 
response analysis of hydraulic structures. 

4.2.4 Frequency of ground motion relative to frequency of SDOF 
systems 

Basic structural dynamics demonstrates that the magnitude of the frequency^ 
or, equivalently, period Tg, of the forcing function relative to the magnitude of the 
natural frequency fm or period Tm of the SDOF system impacts the magnitude of 
dynamic structural response. A response spectrum is a convenient plot for 
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characterizing these interrelationships (Ebeling 1992). The response spectra 
shown in Figure 8, with ß = 0.05, shows the relationship of the frequency content 
for each of the three acceleration time-histories relative to the natural frequency of 
the two SDOF systems. The three ground motions used in this study possess fre- 
quencies that are larger, equal to, and less than the natural frequency of the two 
SDOF systems. Thus, three important combinations for the frequency content of 
the ground motion relative to the natural frequency of the SDOF system are 
included in this investigation. SDOF system responses, plotted in Figure 8 in 
terms of pseudo-acceleration SA normalized by the peak ground acceleration AmXi 

of 1 g, demonstrate that the frequency content for the three ground motions shown 
in Figure 7 are sufficiently close to the natural frequencies to excite the SDOF 
systems and thus induce a dynamic response. (Refer to Table 2 in Ebeling 1992 
for the definition of SA and for additional details regarding response spectra.) 

4.2.5  Time-histories of 432 step-by-step response analyses 

The dynamic response for each SDOF model used in this study was character- 
ized by the computed response time-histories of relative displacements, relative 
velocities, relative accelerations, and total accelerations. With three time-steps 
(At = 0.02, 0.01 and 0.005 sec) three ground motions (Tg = 0.05, 0.25 and 1 sec), 
a total of 432 response time-histories were computed for the two damped SDOF 
systems using the six numerical step-by-step procedures. Additionally, the exact 
response quantities were generated for each SDOF system for each time-step and 
each ground motion using the closed form solution given in Appendix A. All cal- 
culations were made using two computer programs developed for use in this study. 
Each of the computed response time-histories was stored on disc in 432 separate 
files. Each file contained up to 4,000 response values (and corresponding time 
t values), depending on the time-step At value used in the analysis and the duration 
of the ground motion used to excite the damped SDOF system. 

4.2.6 Results from 12 of the 432 error studies 

In this numerical study, the key variables thought to impact the accuracy of the 
results of the six numerical step-by-step procedures were (a) the time-step At, 
(b) the frequency content of the ground motion (characterized by Tg), (c) the value 
of Tg relative to the value of Tm and (d) the natural period T0 of the SDOF system. 
The evaluation of the 432 response time-histories started with a comparison with 
their corresponding exact solution. These initial 432 comparison plots helped to 
identify which variables contribute to the inaccuracy in computed results and the 
extent of their contribution. Only 12 of these 432 comparison figures are included 
in this report due to space limitations. However, the time-histories that are 
included in this report, and discussed in the following paragraphs, demonstrate 
how information was extracted and used in this extensive numerical study. 

Figures 9, 10, and 11 each show the four response time-histories of an SDOF 
system with T0 equal to 0.25 sec and ß equal to 0.05. These response 
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time-histories were computed using both the Wilson 0 method (0 = 1.38 and a 
time-step A? equal to 0.01 sec) and the exact solution (Appendix A). The response 
analyses differ among the three figures by the frequency assigned to the ground 
motion, with Tg set equal to 0.05 sec (20 Hz), 0.25 sec (4 Hz), and 1 sec (1 Hz), 
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respectively. Visual comparison of the computed results for each response quan- 
tity in the three figures shows a dramatic variation in SDOF response. The rise in 
amplitude and frequency of wave form for the plots of relative displacement shows 
the most dramatic variation. Recall that these SDOF system responses are all 
driven by sinusoidal ground motions with 1-g maximum amplitude (Figure 7). 
This dramatic variation in response demonstrates the impact that the frequency 
content for the ground motion relative to the natural frequency of the SDOF sys- 
tem has on the dynamic response. These results also demonstrate the diversity of 
the numerical tests being conducted, even though the forcing functions shown in 
Figure 7 bear a strong resemblance to one another. 

Further visual examination of Figures 9, 10, and 11 shows a larger error in 
Figure 9 than in the other two figures. Since the frequency of the ground motion is 
varied among the three groups of response analyses shown in Figures 9, 10, and 
11, the authors conclude that the frequency content of the ground motion affects 
the accuracy of all four response parameters when using the Wilson 6 method. A 
more detailed examination of the results in Figure 9 shows that the accuracy dif- 
fers among the four response quantities. For example, the relative acceleration 
response data are more accurate than the relative velocity response data. 

Because these results are all computed using forced vibration analyses of 
damped SDOF systems, the definitions of numerical errors used in free vibration 
response analysis of undamped SDOF systems (and described in Section 4.1) are 
not appropriate. A new definition of numerical error in the computed response 
data is needed. Recognizing that the results from time-history analysis of linear 
structural systems subjected to earthquake excitation are usually concerned with 
the extreme values in computed results, an error definition is made accordingly 
(Figure 12). The upper plot in this figure is the same relative displacement time- 
history data shown in Figure 9. The time-history of 100 response values (100 = 
duration of ground motion/A?) computed using the Wilson 9 method and the 
response values computed using the exact method are searched numerically for 
"peaks and valleys." This is accomplished using a third computer program that 
searches through the response time-history data looking for a reverse in sign in a 
pair of slopes for three adjacent data points, with the first slope computed using a 
pair of response values at times (f, - Ar) and tt and the next slope computed using 
response values at time tt and (tt + At). The error in the computed response val- 
ues, relative displacement in this figure, is then computed for each peak and each 
valley in the data. Lastly, only those peaks and valleys with significant amplitude, 
say greater than 10 percent of the absolute value of the largest response value, are 
recorded. An example error calculation is made for the first "peak" relative dis- 
placement response value and identified as such in the insert to the right in Fig- 
ure 12. This insert shows that the first peak relative displacement value occurs at 
0.06 sec, while the first peak computed using the exact solution occurs at 
0.064 sec. The difference in time for the two peaks attests to the high frequency of 
the response compared to coarse time-step used in this Wilson 6 method response 
analysis (i.e., At = 0.01 sec). The computed error is approximately 29 percent. 
This error point and 23 others are plotted versus time of occurrence (0.06 sec for 
the first peak) in the figure located immediately below the relative displacement 

Chapter 4   Accuracy of Six Numerical Step-by-Step Procedures 45 



5? o o 

1 11 1 1 1 .1   .   1   |   1   1   1   |   1   1   l|   II   1   |   M   1 

- o 
CO 
CO 

u 
CO 

- 
O 
to 
n 

X         ) 
CO 

O 
. d X    ^\ O . 

II 
X      J) 

II 

1 , K,. i... i... i... , , 
o     o     q 
r^        CN        IO 

I I I 

q q 
■* in 

I       I 

(uuiu) 
JU8Ui30D|dSIQ 

SAipiay 

c 
o _»_ •2® r» 

c 5 to 

E 
CD 

■ 

O c   u o 
CD 
O 

o 
° E 
o E >^^ c 

o Ü   ^ CT> 
CD 

a: 
O    3 
x "5 

K3 

CN 

0 
CD ( ^ -* 

0- CO    u CD 

E " .      co 
O 

-t-   *  d 

5« 
oq 
00 
CN 

X* 

q   q    q   o 
K>   CN    «^ 

(UlUi) 
(U8LU30D|dS|Q 

8AIJD|3y 

(cuaojad) 

S4U3UJ80D|dsia  8Ai}D|ay 
ui  J0JJ3 

CD 
■g 
o 
C/3 
=3 

"to 
CD 

.c 

o 
tu 
C/3 

LO 
CM 

E 
03 
•M 
03 > 
CO 

LL 

O 
Q 
W 
c 
CD 
c_ 
o 

H— 

00 
CO 

T- Ü 

II 03 
03 

CD ,— 
c Ü 

o o 
03 

5 
C3- 
1_ T3 
03 C 
3 CD 

■a O 
03 03 +-» 0) 
-j 
a. LO 

E O 
o O 
13 

03 II 
■*-» 

0 KU' 
F ■a 
03 o 
O i— 

CD 03 

a. Q. 

0) M— 

TJ O 
03 > 

c 
o 

CD 
4-* 

( 
03 3 

C CD 

k_ 
C 

o o 
u. k_ 

LL1 
o 4— 

CN 

3 
03 

LL 

46 Chapter 4   Accuracy of Six Numerical Step-by-Step Procedures 



response time-history. This figure shows that the error in peaks and valleys of 
relative displacement ranges in value from a low of 24.1 percent to a high of 38.4 
percent throughout the duration of shaking. The maximum relative displacement 
for the exact solution occurs at 0.042 sec and has a value of-3.225 mm. The 
maximum relative displacement computed by the Wilson 6 method occurs at 
0.04 sec and has a value of-2.239 mm. This corresponds to a 30.6 percent error 
in maximum response computed by the numerical procedure, occurring at the first 
"valley" in the response time-history (Figure 12). 

4.2.7 Summary of numerical results from all 432 error studies 

An error evaluation similar to that described in Section 4.2.6 was made for the 
remaining 431 response time-histories. These error evaluations were performed on 
all four response variables: relative displacement, relative velocity, relative accel- 
eration, and total acceleration. The resulting 432 time-history error plots were 
reviewed by the authors. The range in error for all significant peaks and valleys of 
a given response parameter throughout the duration of shaking was tabulated, 
along with the error in the maximum response parameter value. The results of 
these extensive error evaluations are summarized in Tables 1 through 6 for relative 
displacement (designated Rel. D), relative velocity (Rel. V), relative acceleration 
(Rel. A), and total acceleration (Total A). 

The six algorithms are designated in Tables 1 through 6 as follows: DHM for 
Duhamel's integral solved in a piecewise exact fashion; NMK for the Newmark ß 
method with values of constants y and ß corresponding to the linear acceleration 
method; PWM for the Piecewise Exact Method applied directly; WIL for the Wil- 
son 6 method (6 = 1.38); CDF for the Central Difference Method; and RGK for 
the 4th Order Runge-Kutta method. Each table shares a common value for the 
time-step Ar used in the numerical analyses. The coarsest time-step ( Ar = 
0.02 sec) is used in the numerical analyses reported in Tables 1 and 2. The inter- 
mediate time-step (0.01 sec) is used in the numerical analyses reported in Tables 3 
and 4. The finest time-step (0.005 sec) is used in the numerical analyses reported 
in Tables 5 and 6. Each of the three ground motions shown in Figure 7 is distin- 
guished in the tables by their Tg value (i.e. 0.05, 0.25, and 1 sec). 

Table 1 summarizes the errors computed with Ar equal to 0.02 sec and T0 

equal to 0.25 sec. The results are presented in three main groups and are distin- 
guished by the ground motions used in the analyses. Recall that the frequency of 
the ground motion is reflected by the Tg value (and that the ground motion fre- 
quency^ - VTg). 

The results given in Table 1 demonstrate that the accuracy of all six numerical 
algorithms depends on the frequency content of the ground motion, with all other 
variables held constant. The magnitudes of error for all four response parameters 
increase as the frequency of the ground motion increases. Using a time-step Ar 
equal to 0.02 sec for an SDOF system with T0 equal to 0.25 sec is acceptable for 
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Table 1 
Percentile Errors in Relative Displacement (Rel.   D), Relative Velocity {Rel. V), 
Relative Acceleration (Rel.  A), and Total Acceleration (Total A) for SDOF System of 
T0 = 0.25 sec and At = 0.02 sec 

Tg, sec 

At 

Parameter 

Error in Maximum Response 
(Range in Errors for Peak and Valley Values) 

DHM NMK PWM WIL CDF RGK 

0.05 0.4 
Rel. D 

54 
(50 to 79) 

54 
(52 to 66) 

54 
(50 to 66) 

77 
(70 to 81) 

30 
(40 to 90) 

54 
(53 to 65) 

Rel. V 
61 

(58 to 87) 
62 

(60 to 85) 
61 

(58 to 86) 
64 

(22 to 80) 
100 

(0 to 119) 
61 

(58 to 85) 

Rel. A 
14 
(3 to 45) 

14 
(2 to 44) 

14 
(2 to 45) 

17 
(15 to 46) 

9 
(1 to 41) 

14 
(2 to 43) 

Total A 
54 

(52 to 66) 
55 

(50 to 67) 
54 

(52 to 66) 
72 

(38 to 89) 
25 
(7 to 91) 

55 
(50 to 66) 

0.25 0.08 
Rel. D 

5.3 
(2.2 to 5.3) 

2.2 
(1.3 to 5.1) 

5.3 
(2.2 to 5.3) 

9.9 
(3.8 to 9.9) 

1.9 
(0.1 to 2.9) 

5.4 
(2.4 to 5.5) 

Rel. V 
3.9 

(2.2 to 4.3) 
3.1 

(1.6 to 4.7) 
3.9 

(2.2 to 4.3) 
11.1 
(4.5 to 11.1) 

4.8 
(1 to 4.8) 

4.4 
(2.2 to 4.4) 

Rel. A 
5.1 

(1.9 to 5.1) 
0.2 

(0 to 3.1) 
2.9 

(1.9 to 5.1) 
5.6 

(0.3 to 5.6) 
3.1 

(3.1 to 9) 
5.1 

(2 to 5.1) 

Total A 
4.5 

(2.1 to 4.6) 
2 

(1.3 to 4.2) 
2.6 

(2.1 to 5) 
10.3 
(3.9 to 10.3) 

6.3 
(4 to 7.5) 

4.7 
(2.2 to 5.1) 

1.0 0.02 Rel. D 0 0 0 0 0 0 

Rel. V 0 0 0 0 0 0 

Rel. A 0 0 0 0 0 0 

Total A 0 0 o              I   0 0 0 

^Jote:   DHM = Duhamel's integral solved in a 
NMK   = Newark ß method. 
PWM = Piecewise Exact Method. 
WIL    = Wilson 6 method. 
CDF    = Central Difference Method. 
RGK   = 4,h Order Runge-Kutta Method. 

piecewise exact fashion. 

long-period ground motion (Tg = 1 sec,^ = 1 Hz). However, for high-frequency 
ground motion (7^ = 0.05 sec,fg = 20 Hz) a smaller At is required. The results 
given in Table 2 also support this same conclusion. Table 2 differs from Table 1 
by the value of T0 used, increased from 0.25 sec to 0.5 sec. 

Table 3 differs from Table 1 in the value of Ar used, reduced to 0.01 sec from 
0.02 sec. These results show that the reduction in the time-step At to 0.01 sec 
remarkably improves the accuracy of all six numerical methods. However, inac- 
curacies are still present in the response values for all six procedures for the 
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Table 2 
Percentile Errors in Relative Displacement {Rel. D), Relative Velocity (Rel. V), 
Relative Acceleration (Rel. A), and Total Acceleration (Total A) for SDOF System of 
T0 = 0.5 sec and At = 0.02 sec 

sec 

Af 

Parameter 

Error in Maximum Response 
(Range in Errors for Peak and Valley Values) 

DHM NMK PWM WIL CDF RGK 

0.05 0.4 
Rel. D 

57 
(53.4 to 68.8) 

57.1 
(55.7 to 72.4) 

57 
(55.5 to 65.4) 

77.3 
(74.4 to 84.7) 

46.5 
(19.5 to 89.3) 

57.1 
(53.5 to 65.3) 

Rel. V 
73.9 

(59.1 to 81.8) 
74.3 

(59.4 to 93) 
73.9 

(59.2 to 93.5) 
55.2 
(2.2 to 104) 

74 
(45.4 to 130) 

73.9 
(59.2 to 93.5) 

Rel. A 
9.7 

(0.7 to 43) 
9.7 

(0.7 to 42.9) 
9.7 

(0.6 to 43) 
11 
(1.1 to 44.4) 

8.3 
(0.3 to 42.4) 

9.7 
(0.6 to 43) 

Total A 
60.8 

(50.8 to 70.7) 
60.7 

(51.7 to 74.4) 
60.8 

(50.8 to 70.7) 
73.4 

(60.5 to 91.6) 
45.3 
(16.4 to 77.1) 

60.8 
(50.8 to 64.8) 

0.25 0.08 
Rel. D 

2.5 
(2.1 to 7.7) 

2.8 
(0 to 7.0) 

2.5 
(2.2 to 7.7) 

6.4 
(4.1 to 25.5) 

0.1 
(0.1 to 9.2) 

2.5 
(2.1 to 7.4) 

Rel. V 
2.9 

(2.2 to 4.2) 
3.5 

(1.2 to 5.3) 
2.9 

(2.2 to 3.7) 
7.6 

(3.5 to 10.2) 
2.2 

(0.3 to 4.8) 
2.9 

(2.2 to 4.2) 

Rel. A 
1.7 

(0 to 3.5) 
2.1 

(0 to 3.8) 
1.7 
(0 to 3.4) 

3.8 
(0.2 to 5) 

2.2 
(0.4 to 4.3) 

1.7 
(0.2 to 3.5) 

Total A 
2.2 

(2 to 5.2) 
2.4 

(0.6 to 3.7) 
2.2 

(2.1 to 5.4) 
5.9 

(1.4 to 18.3) 
4.4 
(3.4 to 8.3) 

2.2 
(2 to 5.4) 

1.0 0.02 Rel. D 0 0 0 0 0 0 

Rel. V 0 0 0 0 0 0 

Rel. A 0 0 0 0 0 0 

Total A 0 0 0 0 0 0 

Note:   DHM = Duhamel's integral solved 
NMK   = Newark ß method. 
PWM = Piecewise Exact Method. 
WIL    = Wilson 9 method. 
CDF   = Central Difference Metho 
RGK   = 4,h Order Runge-Kutta Me 

in a piecewise € 

d. 
thod. 

xact fashion. 

high-frequency ground motion (Tg = 0.05 sec,^ = 20 Hz). The results given in 
Table 4 also support this conclusion. Table 4 differs from Table 3 by the value of 
T0 used, increased from 0.25 sec to 0.5 sec. 

Table 5 differs from Table 3 in the value of Ar used, reduced to 0.005 sec from 
0.01 sec. These results show that a reduction in the time-step Ar to 0.005 sec 
eliminates all errors for the six numerical methods in all but the high-frequency 
ground motion compared with those given in Table 3. Small numerical inaccu- 
racies are still present in the results for all six numerical step-by-step procedures 
for the high-frequency ground motion (Tg = 0.05 sec,^ = 20 Hz). The results 
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Table 3 
Percentile Errors in Relative Displacement (Rel. D), Relative Velocity (Rel. V), 
Relative Acceleration (Rel. A), and Total Acceleration (Total A) for SDOF System of 
TB = 0.25 sec and At = 0.01 sec 

Tg, sec 

At 

Parameter 

Error in Maximum Response 
(Range in Errors for Peak and Valley Values) 

DHM NMK PWM WIL CDF RGK 

0.05 0.2 
Rel. D 

14.8 
(5.3 to 18) 

14.8 
(5 to 20.8) 

13.5 
(6.2 to 19.1) 

30.6 
(24.1 to 38.4) 

7.3 
(7.3 to 21.6) 

13.5 
(12.7 to 18.8) 

Rel. V 
13.7 

(13.6 to 25.8) 
19.6 

(14.1 to 27.2) 
19.1 

(13.6 to 29.3) 
37.5 

(28.4 to 37.5) 
18.8 

(11.6 to 42.3) 
19.1 

(13.7 to 28.5) 

Rel. A 
6.6 

(3.1 to 7.5) 
6.65 

(3.1 to 7.5) 
6.6 

(3.1 to 7.5) 
9.3 

(0 to 9.3) 
3.5 

(0.9 to 4.5) 
6.6 

(3 to 7.5) 

Total A 
14.7 
(8 to 22.5) 

14.9 
(3.1 to 21.1) 

14.7 
(8 to 17.8) 

30.2 
(25.3 to 30.9) 

2.7 
(2.1 to 33.7) 

14.7 
(13.3 to 17.8) 

0.25 0.04 Rel. D 0 0 0 0 0 0 

Rel. V 0 0 0 0 0 0 

Rel. A 0 0 0 0 0 0 

Total A 0 0 0 0 0 0 

1.0 0.01 Rel. D 0 0 0 0 0 0 

Rel. V 0 0 0 0 0 0 

Rel. A 0 0 0 0 0 0 

Total A 0 0 0 0 0 0 

Note:  DHM = Duhamel's integral solved in a piecewise exact fashion. 
NMK  = Newark ß method. 
PWM = Piecewise Exact Method. 
WIL    = Wilson 6 method. 
CDF   = Central Difference Method. 
RGK   = 4,h Order Runge-Kutta Method. 

given in Table 6 also support this same conclusion. Table 6 differs from Table 5 
by the value of T0 used, increased from 0.25 sec to 0.5 sec. 

The results given in Tables 1 through 6 show that of the six numerical step-by- 
step procedures, the Wilson 6 method is the least accurate and the Central Differ- 
ence Method is the most accurate. However, the differences in the accuracy of the 
computed results among the six numerical step-by-step procedures for the SDOF 
systems are minor compared to the significance of At and Tg. 

The impact of the change in natural period T0 from 0.25 sec to 0.5 sec for the 
damped SDOF systems on the accuracy of the six numerical step-by-step proce- 
dures is minor. Comparison of the results given in Tables 1 and 2 with Tg equal to 
0.25 sec shows the value of Tg relative to the value of T0 has the most impact on 
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Table 4 
Percentile Errors in Relative Displacement (Rel. D), Relative Velocity (Rel. V), 
Relative Acceleration {Rel. A), and Total Acceleration (Total A) for SDOF System of 
T0 = 0.5 sec and At = 0.01 sec 

Tg, sec 

Af 

T9 Parameter 

Error in Maximum Response 
(Range in Errors for Peak and Valley Values) 

DHM NMK PWM WIL CDF RGK 

0.05 0.2 
Rel. D 

14.6 
(12.6 to 16.3) 

14.6 
(10.6 to 16.1) 

14.6 
(12.6 to 15.6) 

30.4 
(28 to 31.9) 

11.9 
(4.8 to 22.4) 

14.6 
(12.6 to 15.6) 

Rel. V 
13.6 

(13.6 to 27.3) 
13.7 

(13.5 to 52.6) 
13.6 

(13.6 to 37.7) 
30.1 

(29.3 to 50.7) 
13.5 

(13.3 to 25.5) 
13.6 

(13.6 to 52.5) 

Rel. A 
6 

(3.8 to 6) 
6 

(3.8 to 6) 
6 

(3.8 to 6) 
7.3 

(2.2 to 7.3) 
4.8 

(3 to 4.8) 
6 

(3.8 to 6) 

Total A 
13.4 
(8.6 to 17.9) 

13.5 
(7.3 to 16.3) 

13.4 
(8.6 to 15.1) 

29.6 
(27.8 to 32.1) 

9.5 
(0.7 to 39.2) 

13.4 
(8.6 to 17.9) 

0.25 0.04 Rel. D 0 0 0 0 0 0 

Rel. V 0 0 0 0 0 0 

Rel. A 0 0 0 0 0 0 

Total A 0 0 0 0 0 0 

1.0 0.01 Rel. D 0 0 0 0 0 0 

Rel. V 0 0 0 0 0 0 

Rel. A 0 0 0 0 0 0 

Total A 0 0 0 0 0 0 

Note:  DHM = Duhamel's integral solved in a piecewise exact fashion. 
NMK   = Newark ß method. 
PWM = Piecewise Exact Method. 
WIL    = Wilson 9 method. 
CDF    = Central Difference Method. 
RGK   = 4th Order Runge-Kutta Method. 

accuracy of computed results when Tg and T0 are close to the same value. How- 
ever, its influence is secondary compared to the influence of Ar and Tg. 

In summary, for damped (ß = 0.05) SDOF systems, the results presented in 
Tables 1 through 6 clearly demonstrate that the accuracy of all six numerical 
step-by-step procedures depends primarily on (a) the value of the time-step At 
used in the response analysis and (b) the frequency content contained within the 
ground motion. The computed values of relative acceleration are slightly more 
accurate than the computed values of relative displacement, relative velocity, and 
total acceleration. 
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Table 5 
Percentile Errors in Relative Displacement {Rel. D), Relative Velocity (Rel. V), 
Relative Acceleration {Rel. A), and Total Acceleration (Total A) for SDOF System of 
T„ = 0.25 sec and At = 0.005 sec 

Tg, sec 

At 

Parameter 

(Range 
Error in Maximum Response 

in Errors for Peak and Valley Values) 

DHM NMK PWM WIL CDF RGK 

0.05 0.1 
Rel. D 

3.6 
(0.5 to 3.9) 

3.9 
(0.3 to 3.9) 

3.6 
(0.5 to 3.9) 

8.8 
(0.7 to 8.9) 

2 
(0.3 to 6.5) 

3.6 
(0.4 to 3.8) 

Rel. V 
3.5 

(3.4 to 5.9) 
3.7 

(3.5 to 5) 
3.5 

(3.4 to 5.9) 
9.0 

(8 to 10.6) 
3.9 

(3.2 to 5.9) 
4 

(3.5 to 5.9) 

Rel. A 
4.7 

(3.5 to 4.8) 
4.7 

(3.7 to 5.1) 
4.7 

(3.6 to 5) 
5.7 

(3.4 to 5.7) 
3.4 

(2.2 to 3.6) 
4.7 

(3.6 to 5) 

Total A 
4 

(0 to 4) 
4.1 

(0.7 to 4.1) 
4 

(0 to 6.2) 
9.2 

(0 to 9.2) 
3.5 

(0.7 to 11) 
4 
(Oto 8.9) 

0.25 0.02 Rel. D 0 0 0 0 0 0 

Rel. V 0 0 0 0 0 0 

Rel. A 0 0 0 0 0 0 

Total A 0 0 0 0 0 0 

1.0 0.005 Rel. D 0 0 0 0 0 0 

Rel. V 0 0 0 0 0 0 

Rel. A 0 0 0 0 0 0 

I Total A 0                      I 0 0 0 0 0 

Note:   DHM = Duhamel's integral solved in a piecewise exact fashion. 
NMK   = Newark ß method. 
PWM = Piecewise Exact Method. 
WIL    = Wilson 9 method. 
CDF    = Central Difference Method. 

|           RGK   = 4th Order Runge-Kutta Method. 

4.2.8 Accuracy of numerical step-by-step procedures as a function of 
time-step At and frequency contained within the ground motion 

The data contained in Tables 1 through 6 show that the accuracy of the six 
numerical step-by-step procedures depends on the value of the time-step At and 
the frequency of the ground motion. This subsection describes two groups of error 
plots for each of the four response parameters, given as functions of the variables 
At and Tg. Select data from these tables, specifically, the error corresponding to 
the maximum responses, are reordered as a function of the ratio ofAt divided by 
Tg, in an attempt to present this information in a more useable form. The first 
group, Figures 13 through 16, reports the errors in relative displacement, relative 
velocity, relative acceleration, and total acceleration, respectively, for T0 equal to 
0.25 sec. The second group, Figures 17 through 20, reports the errors in the four 
response parameters for T0 equal to 0.5 sec. 
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Table 6 
Percentile Errors in Relative Displacement (Rel. D), Relative Velocity (Rel. V), 
Relative Acceleration (Rel. A), and Total Acceleration (Total A)  for SDOF Syst em of 
T0 = 0.5 sec and At = 0.005 sec 

Tg. sec 

At 

Parameter 

Error in Maximum Response 
(Range in Errors for Peak and Valley Values) 

DHM NMK PWM WIL                    CDF RGK 

0.05 0.1 
Rel. D 

3.5 
(1.5 to 5) 

3.5 
(0.9 to 5.5) 

3.5 
(2.5 to 5.1) 

8.6 
(7.5 to 9.5) 

2.8 
(2.7 to 5.8) 

3.5 
(3 to 4.3) 

Rel. V 
3.4 

(3.4 to 4) 
3.4 

(3.4 to 4.1) 
3.4 

(3.4 to 4) 
8.5 

(8.3 to 9.4) 
3.4 

(3.3 to 4.1) 
3.4 

(3.4 to 4.1) 

Rel. A 
4.6 

(4.3 to 4.9) 
4.4 
(4.3 to 4.9) 

4.4 
(4.3 to 4.9) 

4.9 
(4.1 to 5.1) 

3.9 
(3.8 to 4.4) 

4.4 
(4.3 to 4.9) 

Total A 
3.3 

(0.8 to 5.6) 
3.3 

(0.7 to 5.2) 
3.3 

(2.5 to 5.6) 
8.4 

(7.5 to 9.1) 
0.1 

(0 to 13) 
3.3 

(2.6 to 5.6) 

0.25 0.02 Rel. D 0 0 0 0 0 0 

Rel. V 0 0 0 0 0 0 

Rel. A 0 0 0 0 0 0 

Total A 0 0 0 0 0 0 

1.0 0.005 Rel. D 0 0 0 0 0 0 

Rel. V 0 0 0 0 0 0 

Rel. A 0 0 0 0 0 0 

Total A 0 0 0 0 0 0 

Note:  DHM = Duhamel's integral solved in a piecewise exact fashion. 
NMK  = Newark ß method. 
PWM = Piecewise Exact Method. 
WIL    = Wilson 0 method. 
CDF   = Central Difference Method. 
RGK   = 4th Order Runge-Kutta Method. 

These two groups of data, Figures 13 through 16 and Figures 17 through 20, 
demonstrate that the accuracy of the four response parameters computed using all 
six numerical step-by-step procedures clearly depends on the ratio of At divided 
by Tg. Thus, the impact of the two most important parameters on the accuracy of 
the computed results can be characterized in terms of a single variable. Addition- 
ally, the trends in the data are similar for each pair of companion figures, given the 
same response variable is being considered (e.g., for Rel. D in Figures 13 and 17; 
Rel. V in Figures 14 and 18; Rel. A in Figures 15 and 19; and Total A in Fig- 
ures 16 and 20). These eight figures show that the error in all response param- 
eters increases with increasing values of the ratio AtlTg. The error in maximum 
responses for the four response parameters ranges in value from a low of 2.8 per- 
cent to a high of 31.4 percent with the ratio AtlTg equal to 0.2. However, reducing 
the ratio AtlTg from 0.2 to 0.1 reduces the error in maximum response for all four 
response parameters to less than 10 percent. 
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4.3 Conclusions 

The accuracy of six numerical step-by-step procedures of analysis of the equa- 
tion of motion for SDOF system models is discussed in this chapter. Current 
guidance for the selection of the time-step At is based on studies of the accuracy 
of numerical methods using the computed results from free vibration response 
analyses of undamped SDOF systems combined, frequently, with useful but 
qualitative reference to the frequency characteristics of the forcing function. This 
time-step At criterion is expressed as a fraction of the natural (undamped) period 
of the SDOF system for a specified level of accuracy. The results of the numeri- 
cal response calculations made in this study of the forced vibration response prob- 
lem in which a ground acceleration is applied at the base of a damped SDOF 
system adds to this body of information. 

Using damped SDOF system models with natural periods assigned based on 
consideration of the important modal periods of hydraulic structures (T0 = 0.25 
and 0.5 sec), an extensive numerical evaluation is made of the accuracy of the 
computed response values solved at regular increments in time during ground 
motion. These error assessments are given for the four response variables of rela- 
tive displacement, relative velocity, relative acceleration, and total acceleration. 
This assessment involved the evaluation of 432 response time-histories. The 
following conclusions are made regarding the factors affecting the accuracy of 
results computed using each of the six numerical step-by-step procedures in this 
study: 

a. The two variables shown to have the most influence on the accuracy of the 
computed results for the four response parameters are the time-step At and 
the frequency content of the ground motion (characterized byfg or, 
equivalently, Tg). 

b. The accuracy in the computed results for the four response parameters 
increases as the value assigned to At decreases. 

(1) A value of At equal to 0.02 sec for the damped SDOF systems ana- 
lyzed would be acceptable for long-period ground motion (Tg = 1 sec, 
fg

=l Hz), but not acceptable for high-frequency ground motion (Tg 

= 0.05 sec,fg = 20 Hz). 

(2) A reduction in the time-step At from 0.02 sec to 0.01 sec remarkably 
improves the accuracy in computed response. However, inaccuracies 
are still present in the response values for all six numerical step-by- 
step procedures for the high-frequency ground motion (Tg = 0.05 sec, 
£ = 20 Hz). 

(3) A further reduction in the time-step At from 0.01 sec to 0.005 sec 
eliminates all errors for the six numerical methods in all but the high- 
frequency ground motion (Tg = 0.05 sec,fg = 20 Hz). The range in 
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errors for peak and valley values and the error in maximum response 
for the four response parameters is less than 10 percent. 

c. The accuracy in the computed results for the four response parameters 
increases as the frequency content of the ground motion decreases (as^ - 
0 or, equivalently, as Tg - °°). 

d. The accuracy in the computed results for the four response parameters is 
shown to correlate with the ratio At/Tg. Thus, the impact of the two most 
important parameters on the accuracy of the computed results can be char- 
acterized in terms of a single variable. The results show that accuracy 
considerations require the value for the ratio At/Tg to be less than 0.2. A 
value of 0.1 for the ratio AtlTg is shown to be sufficiently accurate for all 
six numerical step-by-step procedures. 

e. The value of Tg relative to the value of T0 has the most impact on accuracy 
of computed results when Tg and T0 are close to the same value. However, 
its influence is secondary compared with the influence of A/1 and Tg. 

f. The computed values of relative acceleration are slightly more accurate 
than the computed values of relative displacement, relative velocity, and 
total acceleration. 

g. The results show that of the six numerical step-by-step procedures, the 
Wilson 0 method is the least accurate and the Central Difference Method 
is the most accurate. An improvement in the accuracy of results computed 
using the Wilson 0 method will be achieved if 0 is set equal to 1.42, rather 
than the 1.38 value used in this study, according to Chopra (1995, 
page 581). However, the differences in the accuracy of the computed 
results among the six numerical step-by-step procedures for the SDOF sys- 
tems are minor compared with the significance of At and Tg. 
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5    Results and Conclusions 

5.0  Introduction 

This report summarizes an assessment of the accuracy of six numerical step- 
by-step procedures used in computational structural dynamics. The six algorithms 
used in this study are representative of the different types of procedures used to 
compute the dynamic structural response to a time-dependent loading. The time- 
dependent loading envisioned in this research is that of the motion of the ground 
below a discrete structural model and is expressed in terms of a ground accelera- 
tion time-history. The dynamic structural response for each structural model used 
in this study is characterized by the computed response time-histories of accelera- 
tions, velocities, and displacements. 

All structural models used in this study were linear, single-degree-of-freedom 
(SDOF) systems. The natural (undamped) periods T0 of these SDOF systems 
were selected based on consideration of the important modal periods of hydraulic 
structures such as gravity dams, arch dams, gravity lock walls, U-frame locks, and 
intake towers. Each of the forcing functions used in this study was single- 
frequency harmonics. The use of a single frequency facilitated the evaluation of 
the accuracy of the computed response values solved for at regular time 
increments during ground motion. 

The time increments At used in this study were 0.02, 0.01, and 0.005 sec. 
These values are typical of the At used in discretizing earthquake acceleration 
time-histories recorded in the field on strong motion accelerographs. 

The six algorithms included in this study were the Newmark ß method (with 
values of constants y and ß corresponding to the linear acceleration method), the 
Wilson 6 method, the Central Difference Method, the 4th Order Runge-Kutta 
method, Duhamel's integral solved in a piecewise exact fashion, and the Piecewise 
Exact Method applied directly. All of these algorithms were used in their discre- 
tized forms (i.e., the loading and response histories were divided into a sequence of 
time intervals); thus, they are characterized as step-by-step procedures. 

The selection of the size of the time-step At to be used in the step-by-step cal- 
culation of the dynamic response of the SDOF (and of MDOF semidiscrete 
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structural models) is restricted by stability and/or accuracy considerations. The 
primary requirement of a numerical algorithm is that the computed response con- 
verge to the exact response as At - 0 (Hughes 1987). However, the number of 
computations increases as the time-step At is made smaller in a dynamic analysis, 
an important issue for response analysis of semidiscrete MDOF structural system 
models. 

In addition to accuracy considerations, stability requirements must also be con- 
sidered during the selection of the time-step Af to be used in a step-by-step 
response analysis by either of the three numerical integration methods or by the 
numerical differentiation method. Stability criterion is expressed in terms of a 
maximum allowable size for the time-step Atcritical. The value for Atcritical differs 
among the four numerical algorithms. 

No stability criterion (expressed in terms of a limiting time-step value) is 
needed for Duhamel's integral solved in a piecewise exact fashion and the Piece- 
wise Exact Method applied directly. These two methods formulate exact solutions 
to the equation of motion for assumed forms of the time-dependent forcing func- 
tions. There is only a question of the accuracy of the assumed form for the forcing 
function for the size time-step At being used in the analysis. In general, larger 
time-steps are likely to make the assumed form for the forcing function less valid. 

5.1   Stability Requirements for the Four Numerical 
Methods Used for Response Analysis 

Stability requirements for numerical methods are expressed in terms of a lim- 
iting or critical time-step Atcritical. The stability criteria for the three numerical 
integration methods and for the numerical differentiation method used in this study 
are evaluated in Chapter 3. The following conclusions are made regarding the 
stability requirements: 

a. The Wilson 0 method with 0 equal to 1.38 and the 4th Order Runge-Kutta 
method are unconditionally stable with no requirements made on the time- 
step At used in the analyses. 

b. The linear acceleration method, of the Newmark-ß family, and the Central 
Difference Method are conditionally stable. However, since the SDOF 
systems used in this research are subjected to ground motion with At set 
equal to either 0.02, 0.01 or 0.005 sec, it is concluded that the computa- 
tions using these two numerical methods are stable. 

Additionally, the following observation is made: in most earthquake 
engineering/dynamic structural response analyses, a time-step At equal to either 
0.02, 0.01, or 0.005 sec is commonly used to define the ground motion accel- 
eration time-history. In general, stability will not be an issue for the computed 
results when using either the linear acceleration method or the Central Difference 
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Method for SDOF systems with T0 ranging from 0.25 sec to 0.5 sec. The time- 
step Ar used to accurately define the ground motion will be much smaller than the 
& critical value for either of these numerical methods. 

5.2 Accuracy of Response of SDOF Systems to 
Ground Motion 

A review is made in Section 4.1.2 of the current guidance for selecting the 
time-step Ar used in computing the dynamic response of SDOF and MDOF 
models to ground motion. Recall that a ground acceleration applied at the base of 
an SDOF system is equivalent to a fixed-base SDOF system with the forcing func- 
tion applied to the mass. Current guidance is shown to be based on studies of the 
accuracy of numerical methods using the computed results from/ree vibration 
response analyses of undamped SDOF systems combined, frequently, with useful 
but qualitative reference to the frequency characteristics of the forcing function. 
This criterion is often expressed as a fraction of the natural (undamped) period of 
the SDOF system for a specified level of accuracy. The current guidance given by 
Chopra (1995), Gupta (1992), and the American Society of Civil Engineers 
(1986) Standard ASCE 4-86, on the factors to be considered in choosing the value 
of Ar is as follows: 

a. Chopra (1995, pages 172-173) concludes his discussion of computational 
error with the observations that"... the time step should be short enough to 
keep the distortion of the excitation function to a rmnimum. A very fine 
time step is necessary to describe numerically the highly irregular earth- 
quake ground acceleration recorded during earthquakes; typically, Ar = 
0.02 seconds is chosen and this dictates a maximum time step for comput- 
ing the response of a structure to earthquake excitation." 

b. Gupta (1992, page 155) recommends that "the time step used in the 
response computations is selected as the smaller of the digitized interval of 
the earthquake acceleragram or some fraction of the period of free vibra- 
tion, for example T/10." 

c. The ASCE 4-86 Standard (page 21) states that an acceptable rule for time- 
history response analysis is that the time-step Ar used be small enough 
such that the use of 1/2 Ar does not change the response by more than 
10 percent. For the commonly used numerical step-by-step procedures of 
Wilson 9 and Newmark ß, the maximum time-step size should be one- 
tenth (1/10) the shortest period of interest, and for the Piecewise Exact 
Method (or Nigam-Jennings Method) the maximum time-step size should 
be one-fifth (1/5) the shortest period of interest. Normally, the shortest 
period of interest need not be less than 0.03 sec (33 Hz for nuclear 
structures). 
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Paz (1991, page 155), Gupta (1992, page 155), Clough and Penzien (1993, 
pages 128-129), and Chopra (1995, pages 172-173) all recognize that the assign- 
ment of time-step At in response analysis to forced vibration should consider the 
following factors: 

a. The natural period of the structure. 

b. The rate of variation of the loading function. 

c. The complexity of the stiffness and damping functions. 

Using damped SDOF system models (ß = 0.05) with natural periods assigned 
based on consideration of the modal periods of hydraulic structures with signifi- 
cant response contribution (T0 = 0.25 and 0.5 sec), an extensive numerical evalua- 
tion is made of the accuracy of the computed response values solved for at regular 
increments in time during ground motion. The numerical results, given in Tables 1 
through 6 and in Figures 13 through 20, show the interrelationship between the 
accuracy of the six numerical step-by-step procedures with the harmonic charac- 
teristics of the ground motion (using Tg = 0.05, 0.25 and 1 sec) and the time-step 
At value (0.02, 0.01 or 0.005 sec) used in the analysis of each of the damped 
SDOF systems. These error assessments are given for the four response variables 
of relative displacement, relative velocity, relative acceleration, and total accel- 
eration. The following conclusions are made regarding the accuracy of the six 
numerical step-by-step procedures used in this study: 

a. All six numerical step-by-step procedures provide accurate results for 
ground motion with a range in frequency/^ from 1 Hz to 20 Hz (or, equiv- 
alently, Tg from 0.05 sec to 1 sec) when a 0.005-sec time-step is used in 
the numerical analysis. 

b. The accuracy of computed results diminishes with increasing time-step 
value used in the numerical step-by-step analysis. 

c. Numerical errors are observed when solving for the SDOF system 
response to high-frequency ground motion (fg = 20 Hz or Tg = 0.05 sec) 
when the time-step At is increased from 0.005 sec to 0.01 sec in the 
numerical response analysis. No numerical errors are observed when 
solving for the SDOF system response to intermediate and low-frequency 
ground motions (fg - 4 and 1 Hz or Tg = 0.25 and 1 sec) when the time- 
step At is set equal to 0.01 sec in the numerical analysis. 

d. Numerical errors are observed when solving for the SDOF system 
response to the entire spectrum of ground motion frequencies (fg = 20 Hz 
or Tg = 0.05 sec,/; = 4 Hz or Tg = 0.25 sec, and^ = 1 Hz or Tg = 1 sec) 
when the time-step At is increased from 0.01 sec to 0.02 sec in the numer- 
ical analysis. The magnitudes of these errors increase as the frequency fg 

contained within the ground motion increases. The magnitude of error for 

Chapter 5    Results and Conclusions 67 



some response parameters is likely to be unacceptable with At set equal to 
0.02 sec in the response analysis. 

e.    The accuracy in the computed results for the four response parameters 
increases as the frequency content of the ground motion decreases (as fg - 
0 or, equivalently, as Tg - °°). 

/    The accuracy in the computed results for the four response parameters is 
shown to correlate with the ratio AtlTg. Thus, the impact of the two most 
important parameters on the accuracy of the computed results can be char- 
acterized in terms of a single variable. The results show that accuracy 
considerations require the value for the ratio At/Tg to be less than 0.2. A 
value of 0.1 for the ratio At/Tg is shown to be sufficiently accurate for all 
six numerical step-by-step procedures. 

g. The value of Tg relative to the value of T0 has the most impact on accuracy 
of computed results when Tg and T0 are close to the same value. However, 
its influence is secondary compared with the influence of At and Tg. 

h. The computed values of relative acceleration are slightly more accurate 
than the computed values of relative displacement, relative velocity, and 
total acceleration. 

/.     The results show that of the six numerical step-by-step procedures, the 
Wilson 9 method is the least accurate and the Central Difference Method 
is the most accurate. The accuracy of results computed using the Wilson 
6 method will be improved if 6 is set equal to 1.42, rather than 1.38 used 
in this study, according to Chopra (1995, page 581). However, the differ- 
ences in the accuracy of the computed results among the six numerical 
step-by-step procedures for the SDOF systems are minor compared with 
the significance of At and Tg. 

The authors envision that the error summaries given in Tables 1 through 6 and 
in Figures 13 through 20 may be used to establish an acceptable time-step At 
value to be used in earthquake engineering dynamic response analyses of SDOF 
structures (with ß = 0.05) using any one of the six numerical step-by-step pro- 
cedures. The scenario may be as follows: Information regarding the frequencies 
contained within the acceleration time-history is made available (e.g., from 
response spectra or Fourier amplitude plots). For a predefined level of accuracy 
in response parameter(s) and given knowledge of the frequency characteristics of 
the ground motion (i.e.,fg or Tg), these tables and figures may be used to establish 
the minimum At value for accuracy considerations. The three possible outcomes 
are as follows: 

a.    The minimum At value for accuracy considerations is smaller than the Ar 
value contained within this ground motion that was initially proposed for 
use in the structural response analysis. This situation will require replace- 
ment of the initial ground acceleration time-history (used to generate this 
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initial^, Tg infonnation) with one that has been processed at this finer 
time-step so that numerical error(s) contained within the dynamic struc- 
tural response analysis will be within acceptable levels. 

The minimum At value for accuracy considerations is much larger than the 
At value contained in this (initial) acceleration time-history. Considera- 
tions related to computational efficiency in the dynamic structural response 
analysis (i.e., engineering costs) may dictate that a coarser time-step be 
used in the response analysis. The time-step may be increased by first 
transferring the acceleration time-history signal to the frequency domain 
and then returning the signal back to the time domain but with a new, 
coarser time-step. 

The rninimum At value for accuracy considerations is equal to the A? value 
contained in the initially selected ground motion. The dynamic structural 
response analysis then proceeds using this ground motion. 

5.3 Baseline Correction of Ground Motion 

As a general rule to avoid inaccurate response predictions, the ground accel- 
eration time-history used to represent earthquake excitation in the dynamic 
response analyses of linear SDOF and semidiscrete MDOF structural models shall 
be baseline corrected. Baseline correction is essential in the response analysis of 
nonlinear structural systems. 

5.4 Observations Made Regarding Response Anal- 
ysis of Semidiscrete MDOF System Models 

Discussions in this report regarding the accuracy of computed response using 
six numerical step-by-step procedures have focused on the response analysis of 
SDOF systems. This section discusses some observations made regarding 
response analysis of semidiscrete MDOF system models. 

In general, the numerical step-by-step procedures used in solving linear SDOF 
systems in this report are easily extended to deal with MDOF models by replacing 
the Chapter 2 scalar quantities by matrices. This type of formulation is a direct 
solution of the equation of motion (the matrix form of Equation 5 in Chapter 2). 
Thus, the solution for the time-history of response is performed directly by a 
numerical step-by-step algorithm dealing simultaneously with all degrees of free- 
dom (DOF) in the response vector. However, for an MDOF model of a hydraulic 
structure, such as an arch dam, with a large number of DOF's, it is computa- 
tionally advantageous to transform the equation of motion to modal coordinates 
before carrying out the time response analysis. The reason is that, in most cases, 
the significant response of the dam structure can be adequately described by the 
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few lowest vibration modes, and thus solution of the complete set of equations is 
avoided (Ghanaat 1993). For example, Engineer Manual (EM) 1110-2-2201 
(Headquarters, U.S. Army Corps of Engineers, 1994, pages 7-12 and 7-13) states 
that for linear-elastic response, a sufficient number of modes should be included so 
that at least 90 percent of the total dynamic response is achieved. For large arch 
dams this usually involves all vibration modes with frequencies less than 10 Hz. 
Smaller arch dams, which are suffer, may reach their 90 percent level of responses 
when all vibration modes under 20 Hz are considered. 

This second type of formulation makes use of modal methods to transform the 
extensive number of equations of motion for the MDOF system model into uncou- 
pled modal equations for a much smaller series of SDOF equations of motion. 
These transformed SDOF equations of motion are solved at each step in time 
(i.e., time t, t + At, t + 2 At, etc.). Superposition is used to combine responses 
computed by each SDOF equation of motion in each mode, for the complete 
dynamic response of MDOF model at each increment in time. A change from the 
actual (i.e., finite element) coordinate basis is made to the basis of eigenvectors for 
the modal generalized equations in this formulation. Lastly, because superposition 
is employed in the analytical formulation, use of this procedure is restricted to 
linear MDOF models. Refer to Bathe and Wilson (1976), Clough and Penzien 
(1993), Ghanaat (1993), or Chopra (1995) for additional details regarding this 
formulation. 

5.4.1   Stability requirements 

The stability criterion for the linear acceleration method and the Central Differ- 
ence Method, expressed in terms of a critical time-step Atcritical, was shown not to 
be restrictive on the response analyses for the SDOF systems analyzed in Chap- 
ter 4. Recall that for the SDOF system with T0 equal to 0.25 sec, the smallest 
values of Atcritical are computed to be 0.138 sec for the linear acceleration method 
and 0.08 sec for the Central Difference Method. The time-steps At used in the 
SDOF response analyses are set equal to 0.02, 0.01, and 0.005 sec (Chapter 4). 

The stability of a numerical method is a critical consideration in the analysis of 
MDOF semidiscrete structural models to earthquake excitation. Along with 
others, Chopra (1995, page 566) observes that conditionally stable procedures can 
be used effectively for analysis of linear response of large MDOF semidiscrete 
structural models by time history-modal response analysis. This flexibility is due 
to the fact that only those (lower) modes that contribute to the MDOF model 
response are typically used in the time-history response computations and, thus, 
control the assignment of the largest time-step At that can be used in the numerical 
analysis (Chopra 1995, pages 574-575, or Hughes 1987, page 493). Chopra 
(1995, page 575) observes that when using a direct solution of the equations of 
motion of a large, semidiscrete MDOF system model or when all modes are 
included in a time history-modal response analysis, the limiting time-step 
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associated with conditionally stable algorithms may be prohibitive. Uncondition- 
ally stable numerical methods are usually more advantageous for these response 
analyses. 

5.4.2 Accuracy of response 

All numerical step-by-step procedures used in solving linear MDOF system 
models must be cognizant of the issue of accuracy, whether the formulation used 
is a direct solution of the equation of motion (the matrix form of Equation 5 in 
Chapter 2) or when using time history-modal response analysis. This numerical 
investigation of the accuracy of response of SDOF systems to base excitation did 
not include MDOF system models. Additionally, it is recognized that there are 
many different types of MDOF system response analysis formulations and each is 
likely to have its own unique characteristics with regard to the issue of accuracy of 
computed response(s). Some of the factors contributing to these differences 
include not only the general solution formulation to the equation of motion for the 
MDOF system model, but also the finite element stiffness and mass formulations 
used in the model, as well as the method used to incorporate damping in the analy- 
sis. In the interim, and until the results from additional detailed numerical studies 
become available, the following approximation is suggested to answer the ques- 
tion: Is the time-step in which the ground acceleration time-history is discretized 
sufficiently small to provide for an adequate level of accuracy in the computed 
dynamic structural response(s) for the damped semidiscrete MDOF system model 
(ß = 0.05)? 

a. Make an initial selection of a ground acceleration time-history for the proj- 
ect and make available information regarding the frequencies contained 
within the acceleration time-history. 

b. Develop a semidiscrete or discrete (finite element) model of the hydraulic 
structure and conduct a modal analysis to identify the first J modes with a 
significant contribution to system response for the MDOF model compris- 
ing N modes (with J < N). For many types of hydraulic structures the 
dynamic response is often dominated by the first few modes (i.e., 
J <« N). A sufficient number of modes have been identified if the sum of 
the modal mass participation factors is greater than or equal to 90 percent. 
Alternatively, simplified procedures may be used to approximately com- 
pute these modal periods (when these procedures are available for the type 
of hydraulic structure being analyzed). Use of simplified procedures is 
entirely appropriate in this exercise to compute the natural periods of these 
J modes. For example, Fenves and Chopra (1986) describe a simplified 
procedure to compute the natural period of a concrete gravity dam section. 
Experience has shown that dynamic response of concrete gravity dams is 
dominated by first mode response (J = 1). A simplified procedure for com- 
puting the first two modal periods (J = 2) of intake towers (developed by 
the third and first authors of this report) is described in Appendix B of 
Engineer Circular 1110-2-285 (Headquarters, U.S. Army Corps of 
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Engineers, 1995). Experience has shown that dynamic response of intake 
towers is dominated by the first two modes. 

c. Given the frequency content of the ground motion^ of interest and the At 
to which the acceleration time-history is discretized, use the error sum- 
maries given in Tables 1 through 6 and in Figures 13 through 20 to assess 
the accuracy of computed response(s) for each of the J modes. Since the 
data given are only for two natural periods (i.e., T0 = 0.25 sec and T0 = 
0.5 sec), interpolation/extrapolation may be required. 

d. For hydraulic structures whose dynamic response is dominated by first 
mode response, the error computed in step 3 (c) is the approximation for 
the accuracy of computed response for the time-step At for which the 
ground acceleration time-history is discretized. An assessment of the ade- 
quacy of the error in computed response is then made. If deemed accept- 
able, step 3 is repeated for all other response parameters of interest. If any 
response parameter error is deemed unacceptable, another ground accel- 
eration time-history possessing a finer time-step should be obtained. 
Recall that the time-step At for ground acceleration time-histories is usu- 
ally equal to 0.02, 0.01, or 0.005 sec. The process should be repeated 
using this new acceleration time-history. 

e. For hydraulic structures whose response is dominated by contributions of 
more than one mode, the results from the following two simplified proce- 
dures should be considered: (1) approximate the total error in the specified 
response parameter as the largest of the response errors of the modes; or 
(2) approximate the total error as the weighted sum of the error of each 
mode. The value assigned to each weighting factor is intended to account 
for contribution ofthat mode to the total response. Values of the mass 
modal participation factors are expected to be useful data in this 
evaluation. 

5.4.3  Numerical damping of high-frequency response 

Numerical damping in a step-by-step analysis of a semidiscrete MDOF struc- 
tural model is advantageous because it filters out response contributions from 
high-frequency modes that result from the numerical structural model idealization 
and not an actual property of the structure. Chopra (1995, page 576) observes 
that 'Wilson's method provides for numerical damping in modes with period Tn 

such that At/Tn > 1.0; other methods are also available." Refer to Chopra (1995, 
pages 575-576) or to Hughes (1987, pages 498-499) for further details regarding 
this topic. 
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5.4.4 Nonlinear analysis 

Classical modal analysis is not used for time-history response analysis of non- 
linear structural systems because of coupling between modal equations (Chopra 
1995, page 574). Unconditionally stable procedures are generally necessary for 
nonlinear response analysis of such systems (Chopra 1995, page 566). 
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Appendix A 
Exact Solution to SDOF System 
Sine Wave Base Excitation 

The equation of motion for a single-degree-of-freedom system subjected to a 
base excitation is 

x\t) + 2ßcox(0 + co2x(0 = -Xp0mid(t) 

where 

(Al) 

Vund(0 =Pgasmcot (A2) 

and pga is the peak ground acceleration or amplitude of sinusoidal base excitation. 
The solution to this differential equation is 

x(t) = e'^^ (A cos (oDt+B sin (oDt) 

Pga 
CiT 

(1 -r2)smcot -2ßrcosa>? 

(1 -r2)2 + (2ß/f 

where 

CO 

CO 

and 

(A3) 
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CO 
2  7T 

(e.g., Clough and Penzien 1993). The values assigned to Tg andpga, the peak 
ground acceleration, in this study are reported in Figure 7, Chapter 4. Taking the 
time derivative of Equation A3 gives 

x{t) = e~Vm[(B(oD -v4coß)coscoZ)/-(5a)ß +AcoD)smwDt] 

pgar 
CO 

(1 -r2)cosco? + 2ßrsinco/ 

(r2-l)2 + (2ßr)2 

(A4) 

The constants A and B can be determined by evaluating Equations A3 and A4 for 
the boundary conditions x(t = 0) = 0, and i(t = 0) = 0: 

A = Pga 2ßr  

co2   (1 -   r2)2 + (2ßr): 
(A5) 

and 

B = — 
co„ 

AuV+E^ 1 -r' 

to    (2rß)2 + (A-2-l)2 
(A6) 

The relative acceleration is determined by taking the time derivative of the relative 
velocity: 

f(0 = e"ßG I ^lco2ß2-25coDcoß -Au>D\ coscoDf 

+ I 2?co2ß2 + 2v4co0coß -B(oD\ sinco^r 
(A7) 

■pga r" 
(1 -r2)sinco? - 2ßrsinco? 

(r2-l)2 + (2ß/-)2 

The total acceleration, xtotal (r), is simply the sum of the relative acceleration plus 
the ground acceleration 

WO  = *ground(0   + *W 

-[2ßcox(0 + co2x(r)] 

(A8) 
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Appendix B 
Fourier Series 

Fourier showed that any periodic function may be expressed as the summation 
of an infinite number of sine and cosine terms (e.g., Paz 1985). Such a sum is 
known as a Fourier series: 

P{t) = a0 + Oj cos cor + a2cos2cof + ... + an cos mot 

(B1) 
+ b, sincof + 6,sin2co/ + ... + b sinncot 11 n 

or 

P{t) = a0 + ^2 (a„ cos ncot + bn sin mot) (B2) 
n = l 

where co= 2n/Tg is the circular frequency, and Tg is the period of the base excita- 
tion. The evaluation of the coefficients a0, am and b„ is given by 

'.+7s 
ao = jr   [ P(*)dt (B3) 

8      t, 

2  -1- an = —    f P(t) cos motdt (B4) 
g    h 

1   h+T° 
bn = —    f P(t) sin ncotdt (B5) 

g    f, 
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where tx in the limits of the integrals may be any value of time, but is usually equal 
-TJ2 or zero. The constant a0 represents the average of the periodic function P(t). 

Representing the forcing function by a piecewise linear function, the Fourier 
coefficients are the summation of the integrals evaluated for each linear segment of 
the forcing function: 

dt (B6) 

_2_ N      '-■ 

a  = — ]T)   f P(t) cos nu>tdt T'/=1 L 
(B7) 

K = ^-t   [Pit) sin* 
10 i=i   J 

catdt (B8) 

where TV" = the number of segments in the piecewise forcing function. The forcing 
function in any interval tt A<t< tt is expressed by 

P(t)=P(ti_1) + —±{t-thl) 
At 

(B9) 

where 

AP. = P{tt) -P(t^) (BIO) 

Substituting Equation B9 into Equation B7 and performing the integration gives: 

1    U 

T*Zi 
At 

PiV+Pit^) 
(Bll) 
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a   = 

AP 

«CO 
^,-i)-W At 

(sin«co/\ - sinwco/^j) 

+  '■—[(cos «cor - cos «cor ,) 
«2co  Ar 

(B12) 

+ «co (r;sin «cor;. - thl sin«corM)], 

and 

Tg 1=1   I nco 

A?.. 

^('M)-'M- 

AP. 
I 

"Ä7 
(cos«cor; - COSWCO/V.j) 

+  -—r(sin«cof. - sin«cor. ,) 
n2co  At 

(B13) 

+ «co (r;. cos «cor - ^..jCoswcof.j)], 

The response of the SDOF system to a periodic force represented by a Fourier 
series is the superposition of the response to each component of the series. When 
the transient is omitted, the total steady state response of a damped SDOF system 
may be expressed: 

'     k     * »-! [ (l-r^)2 + (2^p)a 

+ —i ' cos «cor 
M)2+(2>-„ß)2 

sin «co?. 

(B14) 

k „=i 

a 2r ß+£ (l-r„2)    _ 
"    "\ ^ -'(«co)cos«cor. 
(l-^)2

+(2,„ß)- 

ail-rA-blrü     _ 
-^ n-l 2—!LL («to) sin «cor. 

MM^P)2 

(B15) 

and 
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'■■is 
^2rwß+^(l-r„2) 

l-^2)2-(2-„P)2 
(«co)2 sin «cor 

-^ JLi nSL. («co)2 

(l-r^+ßr.ß)* 
cos n co z1,. 

(B16) 

where 

r„ = 
«CO 

CO 
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