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INTRODUCTION 

Video data, coming from satellites, space probes, air and space labs, appears to be one of the most 
significant information channel in remote sensing, aerospace researches, monitoring of Earth resources. 
The registered images often turn out to be distorted due to non-ideal characteristics of capturing devices 
and measuring conditions. The volume of data exceeds the transmitting channel bandwidth, and finally 
the receiver often desire to extract only some interesting information from incoming data. Thus the 
important part of this problem is image processing, including image restoration, enhancement, and 
compression. 

The report contains the results of researching and developing effective image enhancement and 
restoration methods, and of constructing powerful wavelet-based image compression algorithm. An 
approach to decision of the problems is based on proposed multiscale image model, which describes an 
image as a combination of statistically and semantically independent components, containing details of 
different sizes and different information classes. Statistic distinctions of these components allow to find 
effective algorithms for decomposition of received image to several information components. Discussing 
about image decomposition we mean the splitting of an image onto the set of such components. It offers 
the possibility to take from an image only the component of interest, to avoid redundunt information from 
the following analysis, and to create decomposition-based image processing methods. Basing on this 
approach, algorithms for image enhancement, restoration, and compression are developed and considered 
in the project. In particular, algorithms for image smoothing, local contrasting, automatic amplitude 
correction, blurred image restoration, decomposition-based image compression. 

Speaking/ about image enhancement and image restoration we always use some criteria for 
evaluating of image quality. Usually such evaluation criteria are also qualitative and informal - the 
estimate of visual image quality is closely connected with the human perception [1]. Typical estimates, 
analogous to mean square deviation, are enough far from the visual quality, moreover, they are applicable 
only to a couple of some images, not to a single one. Variations may be more adequate and helpful 
estimates. We would like to apply to the task of image estimate one little-known two-dimensional 
variation, proposed by Kronrod (published in [2]). This estimate is based on notation an image as some 
continual surface over two-dimensional space of coordinates. In discussing formal measures we rely on 
the two-dimensional variation, which is based of continual image model. 

Discussing about image measures we will consider basic concepts of the continual image modeling, 
assuming any discrete model as some approach to the continual one. On this base we will discuss metric 
characteristics on an image set, the question of image smoothness, and two-dimensional image variation. 
Continual model will be used for the definitions and explanations of it. For the developing of image 
decomposition and enhancement algorithms, we will use discrete model. Also the discrete analog of two- 
dimensional variation will be used for experimental estimating of image smoothness. 

The report contains three following chapters: i) mathematical image models, ii) image 
decomposition and enhancement, and iii) wavelet-based image coding. In models' domain the discrete 
models for small local vicinity and large image fragment are proposed, which are later used for 
constructing different image processing algorithms. Continual image model is used for discussing about 
some new image measure - two-dimensional variation, and as the appropriate basis for image restoration 
algorithm. Image decomposition is treated as some specific image smoothing, and obtained results are 
later used for image enhancement. Algorithm for automatic gray scale image correction is constructed 
basing on of local image vicinity model. The task of restorating images, distorted by convolution-like 
operator, is decided on the basis on continual image model. In final chapter the task of image encoding, 
using preliminary image decomposition and wavelet basis, is considered. 



1. MATHEMATICAL IMAGE MODELS 

All the numerous mathematical models for image processing can be divided into two classes: class 
of continual, and class of discrete models [3]. Continual models are much more suitable for the analytical 
research, they help to perform theoretical investigations and estimates, but actually they describe some 
ideal objects, which we cannot operate with. Discrete models much more correspond to real digital 
images, because in a computer we may contain and process only discrete signal. Such models give us 
direct way to develop image processing algorithms, but bring difficulties in theoretical analysis. So nor 
continual nor discrete model is unable to solve all the problems, and we will try to apply both models for 
our task. 

1.1. DISCRETE IMAGE MODEL 
1.1.1. Basic approaches 
Image decomposition may be interpreted as the task of splitting an image to the smoothed and the 

difference components. The smoothed component should contain lengthy image areas with approximately 
constant intensity, separated by sharp edges. Nonlinear integral operators [8, 9] and algorithms, based on 
anisotropic diffusion models [10] are used for the decision of the problem. In our work we will take into 
account the nonlinear algorithm. 

Typical observed scene consists of a set of objects of different sizes [11], so the image of the scene 
will include corresponding set of areas (domains) of smoothly changed brightness, separated by sharp 
contour edges. Each area contains fine details and texture, and often is distorted by some noise. We 
assume that captured image xmn e X may be represented as an additive mixture of several statistically 
independent components, each next one is characterized by reduced scale parameters.: 

X       =9      + t      +U     4- mn mn        mn mn  

First component smn determines smoothed values of extended domains and describes extended image 
details. The other's terms reflect information about fine details, texture, noise, etc. In a simply case one 
may limit the row of components by two [9]: 

Here tmn becomes to be the sum of all other information components. 

Let an image X consists of R different domains Ul,...,UR, and inside a domain Ur (xy e U
r) 

smoothed component S with appropriate accuracy is represented by polynomial of power tu. Then one 
may write the formula: 

s; = £$>;/-'/• 
For the value of individual element we obtain: 

4=1^7"'/+^       (x'teUr). (1.2) 
p=0 q=0 

This is the main formula of image model. Analysis of real images demonstrates, that inside unique region 

we may assume trmn to be normally distributed JV(0,<Tr
2), but with different variation (7, because 

statistical properties of texture component trmn may differ from a domain to domain. 

Basic formula (1.2) may be modified with different CO. Depending upon the class of processed 
images, tasks to be decided, required accuracy, and computing complexity one can choose appropriate 
polynomial power value CO. Our experiments demonstrate, that for the majority of real airspace images 
and typical window sizes (10-30 pixels), the objects inside the window are usually specified by slowly 
changing or approximately constant brightness. Because of this reason, and due to the necessity to 
develop enough effective algorithms for image enhancement, it is demanded to restrict the power of 
polynomial as co = 0. 



Almost all image models describe statistical correlation between neighbor elements only inside a 
small vicinity (3-5 pixels). However statistical dependencies between pixels in unique domain lie much 
far - up to the distances of 15-20 elements and larger [11]. This leads us to use different models for the 
small vicinity and for the extended image fragment. 

1.1.2. Model of local fragment 
Let Wmn be a fragment, surrounding central point (m,n), and covering J domains U\...,U . 

Correspondingly to (1.2), and under co = 0, the elements of fragment inside domain Ur are described by 
piecewise constant model: 

*;=£.+';.   (*^ur) (i.3) 
where sr

mn is an average brightness of part of domain Ur, falling into the fragment Wmn. This model is 
simple, enough close to the majority of real images, and acceptable for the decision of the following task 
of image decomposition. 

1.1.3. Model of local vicinity 
Let us consider a vicinity Vnm of some shape around image pixel xmn, containing R elements 

xmn € Km (r = I,...,R), and pr denotes the distance between xmn and xr
mn. Draw a plane minimizing 

mean square error, which will form a two-sided angle of value y/mn. Thus to each point with its vicinity 
we may assign a vector gmn with amplitude gnm = th y/nm and rotation angle vnm. Let elements of vicinity 
differ from this plane by random value yr

mn. In such an event one can write following formula for the 
model of vicinity, which correspond to (1.2) under a> = \: 

Xrmn  = Mmn + Pr9L+rrmn> C1'4) 
where //„,„ is the value of the plane at central point (m,n), and g[m - the projection of the vector gmn to 
the vector, drawn from center of vicinity to point r . 

The task to draw such a plane is not difficult and similar question was considered in [3]. Let a and 
ß are tangents of plane slopes in vertical and horizontal directions, / and j - relative coordinates of the 
pixel in vicinity. In such a case the equation of the plane will be Ztj = ju + a\ + ßj, and formula (1.4) 

will be written as XSj = fj. + oil + ßj + y. Mean square error will be given as 

f(a,ß,y) = ZZ(«' +ßj + M~ Xij)2 ■ 
i   j 

Minimum of f(a,ß,y) locates at a point, where all partial derivatives equal to zero, so one can 
find values of a, ß, and ju. In practice the vicinity of 3x3 pixels is most frequently used. For such a 
case: 
111 

a=ö(IXy-Xx-i,y);    ß = R(2XI-2X-I);     ;" = QZXV      (1-5) 
Knowing a and ß we can simply calculate parameters of vector g: 

g = 4a2 + ß2; v = arctg(^-). (1.6) 

1.1.4. Local average and local median 
In accordance to (1), the decision of image decomposition task consists of defining the value of 

smoothed component smn for each image pixel. We will find decomposition algorithm in the class, based 
on analysis of image brightness distribution for local fragment, rounding current processed elements. 

The subtask of image decomposition - finding smoothed image component - is similar, but is not 
covered by local image smoothing task, performed or with the helps of local average 

I ni+L    n+1, 

y»m = nT^,2   X   Z*0> (L7) 
{ZL+l)    i=m-Lj=n-L 



medW) 

or with the helps of local   2-, K W = /? median 

ynm ~ me^W„m }' where med{W} is the root of the equation:    ^ hw (k) = y^ ■   (1.8) 
med{W) 

Here H;^„ = {hw(k)} is the fragment histogram, i.e. the fraction of pixels of value k in the fragment 

W mn 

1.2. CONTINUAL IMAGE MODEL 
1.2.1. Definition of an image set 
According to the continual model, any monochromatic, flat, and stationary image is represented by a 

bounded real-valued function of two variables f(x,y); (x,y) e D. A real-validity and a boundedness 
are the only restriction to f(x,y) placed in image modeling. It is obvious that a set of such functions 
turns out to be too wide. In particular, it contains various "bad" functions to which many mathematical 
operations are not applied. To avoid such kind of problems it is supposed, that there exist all the 
properties of function, we need for one or another mathematical method. So we think that the function 
f(x,y) is as good, as it is necessary. The result of this assumption turns out to be very unexpected, 
enough to mention the difficulties we have under using the Fourier transform for image processing 
problems. 

Here we will try to formalize the properties of images, to underline which mathematical object we 
are dealing with, under considering an image a signal that can be percepted by human visual system. We 
will regard the simplest image type (flat, stationary, and monochromatic) as the electromagnetic radiation 
distribution with the density f(x,y) , which is defined on the bounded domain D e OXY. 

Earlier it was mentioned that function of two real variables f(x,y) is a nonnegative, bounded, and 
real-valued, since it is proportional to squared amplitude of electromagnetic wave. The second obvious 
image property is the integrability of f(x,y) on De OXY. Really, every physical quantity is a 
function of a domain, not a point. Like an energy, for example. On the other hand, a density is a function 
of a point, since a density is introduced as a derivative. So by definition f(x,y) is a integrable function 

on D, and because of its boundedness on closed bounded domain, integrable function f(x,y) is 
continuous on D everywhere except a null set. 

Now we will obtain the third property of an image, rose from the physical model we use. To stay 
within the borders of geometrical optics, we have to consider only plane electromagnetic wave inside 
every small domain of a space. This means that the amplitude of the wave is a constant or low-changing 
function at the distances compared with the wave length A or the resolution of a recorder [7]. This means 
that we can consider the light amplitude and the image f(x,y) to be piecewise constant or piecewise 
monotone function. 

Thus, it is shown that an image f(x,y); (x,y) e D comply with following conditions: 

1. 0 < f(x,y) < C, where C is a constant; 
2. f(x,y) is a continuous on D, everywhere except a null set; 
3. f(x,y); (x,y) e D is a piecewise-monotone function. 

So a set of images is a set of real-valued functions of two variables f(x,y); (x,y) e D comply 
with the conditions 1-3 above. These properties can be used to solve many image processing problems. 



Furthermore, it is easy to proof that the conditions 1-3 are sufficient for f(x,y) to be a function of 

bounded variations. 

In one-dimensional case, if we hold fixed one of the variables (X or y), then f(x), x e [a,b] is a 
function of bounded variation. Variation is defined by: 

V{f)= sup t\f(xk)-f{xk_x)\, (1.9) 

where a < xx,...,< xn <b is an arbitrary system of points on [3,JQ. According to the Dirichlet condition, 
a function f(x), x € [a, b] is a function of bounded variation on every final interval, on which it is 
bounded and has final number of maximum, minimum, and discontinuity points of the first type. 

According to conditions 1-3 it is easy to prove that the function f(x) appears to be a function of 
bounded variations also for two-dimensional case. It is correct for the most common definitions of many- 
dimensional variations. Note, that there are many determinations of variation of a function of several 
variables. The majority of them rise to the determination of one functional, which boundedness 
guarantees the existence of certain characteristics of the function. In any case the list of these 
characteristics is too poor in comparison with one-dimensional case. It holds true for the Arzela, Vitali, 
Tonelly, and other known variations [2]. Essentially different approach was proposed by Kronrod, 
published in [2], where it was shown that a function of two variables must be characterized not by one, 
but by two independent functionals. Those functionals were determined as following: 

00 00 

wf(/)= \v0{et)dt, w,(f)= \v,(et)dt (1.10) 
— 00 -00 

where a set et is a t-level of the function f(x, $ ;  VQ(et) is a number of components of the set et; 

V}(et) is a length of the set et [2]. For a continuous differentiable function: 

w2(f)=\\\grad{f(x,y))\dxdy. 
D 

It is known, that numerous attempts to create image model basing on determination of only one 
functional cannot give us a complete description of image characteristics. Moreover, first component Wj 
of two-dimensional variation in contrast to other metrical characteristics reflects topological properties of 
an image. 

The class of functions of bounded variation is very extensive. In spite of this, the functions of such 
class possess many good properties. They have a total differential almost everywhere, their Fourier series 
converge to them almost everywhere, etc. [2]. In the physical applications, the condition of the 
boundedness of variations on every bounded domain means that f(x, 0 is bounded, and high frequency 
Fourier components cannot affect to the function intensity. It is interesting to note that mathematical 
description of wave diffraction leads to the intensity distributions, which can be used as an illustration of 
the functions of unbounded variations [7]. 

1.2.2 Metric characteristics on an image set 
In the previous section we defined some limitations to the images. To operate with images as with 

mathematical objects, we have to introduce also the quantitative characteristics of images. At the 
beginning we have to formulate what is wanted to measure, and how to perform it. The first is how to 
compare images, i.e. how to metrize the image set. According to the aim of investigation, it is possible to 
construct different definitions of a distance between two images. However, an image in our interpretation 
is an information for visual perception. So in ideal case, a distance between two images must be measured 
correspondingly to some metric, being adequate to a human vision. 

In spite of intensive study of human visual system, any satisfactory metric coordinated with 
subjective estimation it is not suggested. Moreover, the existing analogs of visual metrics [1] are too 



complicated, or there are not metrics in the mathematical sense. Because of that, known visual metrics 
can not be used in optimization methods. Thus, the integral metric is most often used: 

p(f,g) = [l\f(z)-g(4"WP- <U1) 
D 

It is most simple to use (1.11) under p = 2, because only in this case we can construct linear optimization 
algorithms. 

In image processing, especially in decision of ill-posed problems, the norms of functions are used as 
the Tikhonov stabilization functional [4, 5, 6]. Different norms of functions can be used as a measure of 
image smoothness. As it follows from the definition, a norm measures the distance to zero, that is a 
distance to the most smoothing function. The quadratic forms are usually used to avoid the nonlinearity. 

For example, the set of images is supposed to be the Sobolev space W'p(D) with respect to the norm: 

:2 

w 
D dx'      1Kdy'      XKdx1'      lKdxdy'      iK dyl 

In discrete approximation, the usage of a Gaussian image model leads to the minimization of the 
following quadratic forms: 

\\ffG={f-M,C-\f-M)) (1.13) 

where C is a covariance operator of f(x,y), fj. is a mean value. The norm (1.13) corresponds to a 
Sobolev norm (1.12) under certain conditions [5]. It is necessary to note that in some cases the usage of 
quadratic forms in the extreme problems can lead to the undesirable results. 

Besides norms, all measures of smoothness, which are defined on the functional set, can be used for 
the decision of decomposition problem. The most popular is the probability measure p{z), which is 
introduced on a set of discrete images [1]. Considering an image two-dimensional geometric surface 
z = f(x,y), one can use any of the geometric measures or other metric characteristics, for example, 
entropy and variations. In particular, the Hausdorff measures were efficiently adapted to the fractal 
theory. It is known that the variations of a set give more adequate description of its geometrical structure 
in comparison with measures and entropy [2]. For the estimation of the geometric "complexity" of an 
image the variations should be used. Correspondingly to real images the complexity reflects 
"unsmoothness" of an image. So, increasing image's complexity we reduce its smoothness, and vice 
versa. Very often we use such a measure as a power of a finite set, for example when an image's 
histogram is estimated. A truth value is applied as a measure in some special cases, when we must say 
"yes" or " no" using video data. 

The main question is the following: which metric characteristic of the whole variety existing in 
modern mathematics to choose. In other words, there is a need to estimate the quality of metric 
characteristics, which is defined as the usefulness of the measures for a given purpose and a given user. 
Unfortunately, except some general reasoning we can propose only the numerical experiments to answer 
this question. In the next section we describe the scheme that can be used in numerical experiments to 
compare the effectiveness of the usage  of different metric characteristics . 



2. IMAGE DECOMPOSITION AND ENHANCEMENT 

2.1. IMAGE DECOMPOSITION 

The image smoothing operation may be treated as some transformation, which lefts on an image only 
lengthy details, and avoid small details, noise, texture, etc. To understand this process better, we interpret 
image as a combination of statistically and semantically independent components, each of them 
containing details of different information classes. Statistic distinctions of them allow to find an 
algorithm for extracting from an image only the component of interest. Such splitting an image to the 
components we call image decomposition. 

We will find rank algorithm to decompose an image to two components: smoothed one, contained 
lengthy details with sharp edges, and texture one, contained fine details, texture, and noise. These 
components may be used both separately for the consequent analysis (for example: image smoothing, 
object extraction, texture analysis, etc.), and together for the image enhancement. 

According to (1.1), the decision of image decomposition task consists of finding the value of 
smoothed component smn for each image pixel. We will find decomposition algorithm in the class, based 
on analysis of image brightness distribution for local fragment, rounding current processed elements. 
According to piecewise image model [12], the probability density of brightness P{x} for the fragment 

Wmn, containing R domains U\...,UR, has R local maxima (see Fig.l). Their positions coincide with 

the values of mean brightness' of each domain: S] ,...,SR. We assume, that each image pixel belongs to 

some domain r . Also sr
mn is the mean value for the part of domain r, containing this pixel, and placed 

inside the fragment Wmn. So, in a distribution P{x} we have to find the peak, corresponding to the 
domain rounding central pixel, and then determine its local maximum. The problem is that exact shape of 
distribution P{x} is unknown, and we only can arrange it by the sample probability - the local histogram 

H„„ = {h(k)}, reflecting the fraction of pixels of value k, been contained inside the fragment Wmn. 

wmn 

-'..'.■>;:■', 

V    D 

u3   ) 

f/2\ 

Fig.l. An image local fragment Wmn containing three domains (U , U , U ), and its histogram h(k). 

We will find out image decomposition algorithm among rank ones, based on order statistics of the 
fragment. Most known and simple of them is local median (1.8), but performed analysis [12] 
demonstrates, that both local median and local average (1.7) give insufficient decision of the above task. 
Much better are algorithms, based on M-estimates and using order statistics [13]. This type of estimates is 
more adaptive to signal variability, and consists of the following. Let some weighted function w,(x), 

(/ = 1,...,«) is defined for the ordered set of elements {x} = xl<x2 <,...,< xn (xi e Wmn ). M-estimate 
for this set will be: 



^^^^^w 

ji/(fF) = 2>,w,(w2>,(*/)- 
/■=i 1=1 

If for any i we choose w,(x) = 1 if -£ < x < 8, and w,(x) = 0 for other x, then we obtain sigma 
filter Lee [14]. The value of central pixel of the fragment xmn is chosen as a zero-point: 

" / » 

/=i / i=i 

This filter was proposed for image smoothing, and it was recommended to choose S = 2a, where 

a2 is noise variance. In the survey [8] the sigma filter was nominated as one of the best edge-preserving 
noise cleaning filter for fragments of 5-7 elements' width. The weak place of sigma filter is the choice of 
zero point for weighted function w^x). The value of central pixel of the fragment, as it was proposed in 
[14], is simple but too inaccurate estimate for noisy images. It is enough probable, that the difference 
x, - xmn is so big, that desirable peak is out of the range -8 < xmn < 8. So our estimate proved to be 
incorrect, will lose the accuracy, and filtered image will be blurred (this effect has more high influence 
near contour edges). 
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Fig.2. Comparison of image smoothing algorithms. Source airphoto image (a); its local average (b), local median 
(c), and smoothed component after the image decomposition (d). 

Basing on the model (1.3) and on the representation of the fragment as a set of domains, we propose 
iterative algorithm, containing sigma filter as a subclass. The idea consists of iterative analysis of 
embedded fragments of different sizes. The smaller is the fragment, the less is the number of domains 
being covered, and hence the less is the influence of redundunt domains. Of course, the accuracy of the 
estimate will also be reduces correspondingly to smaller window size. Value, obtained for the smaller 
fragment, is used as a null-point for larger one. Thereby following iterative algorithm may be formulated. 

On each iteration q, estimate yq
mn is calculated over corresponding fragment W^n. The value yl'J, 

obtained on the previous iteration over the fragment W^\ is used as current zero-point of weighted 
function. For the first iteration the value of central pixel xmn is used. The value, obtained on the last step 
Q, is assumed to be the resultant value of smoothed component at a point (m,ri): 

yL = Hxwix-yl1)/ Zw(x-y:'). (2.2) 

Experiments demonstrate, that two iterations is usually enough: first one for the vicinity of 3-5 pixel 
width, and second one for the fragment of 15-25 pixel width. This algorithm has enough high accuracy in 
estimating of smoothed component on noisy images: processing of artificially composed signals (a set of 
flat objects with 5% gaussian noise) demonstrates mean square error near 0.3-0.5%. Visual estimates of 
images after the decomposition also confirm the efficiency of the algorithm. Qualitative estimate of 
images' decomposition with the helps of two-dimensional variation is discussed in the following chapter. 

= VQ ■ 
Sum ' 

The example of smoothing some airphoto image with the helps of local average (1.7), local median 
(1.8), and proposed algorithm of image decomposition (2.2), is represented in Fig.2. One can see 
significant differences of contour sharpness in pictures (b),(c), and (d). These results demonstrate, that 
image decomposition algorithm (2.2) can successfully extract smoothed component from the image. 

Fig.3.  Example of image decomposition:  a - source image (Mars surface);  b - smoothed component 
after the decomposition. 

2.2. IMAGE DECOMPOSITION AND TWO-DIMENSIONAL VARIATION 
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In all image smoothing algorithms the shape of operator and the power of smoothness is defined by 
some parameters. Most often the parameters are chosen empirically with visual estimate of a result, but in 
many cases they may be found as a solution of some optimization problem, so we need to measure the 
properties of images we are interested in. In our case such estimate is the smoothness of an image. Above 
we discussed formal possibilities of application of two-dimensional variation (1.10) for image estimation. 
Nevertheless one question remains unknown: does this estimate can reflect the complexity and 
smoothness of images better than other metrical characteristics, based on only one functional? To answer 
the question the set of experiments in smoothing some test images was performed. 

For the numerical estimate and comparison of proposed image decomposition with traditional image 
smoothing, based on local average and local median, both artificial and real images were used. These 
images are presented on Fig.3. Four images were used for the testing: two real ones (Landscape and 
Portrait), and two artificially generated in following manner. A priory smooth artificial image (piecewise 
constant signal - a set of domains of different sizes and brightness) was dusted initially by 2% gaussian 
noise (Test Image 1). Second image was dusted by a mixture of 2% gaussian and 2% uniformly 
distributed pepper-and-salt noise to make a noise with "heavy tails" (Test Image 2). These images were 
smoothed by image decomposition algorithm (8) with different outer windows and thresholding 
parameters. Well known moving average and moving median algorithms were used for the comparison. 
Two-dimensional variations (1.10), mean square deviations from the original signal, entropy, and 
differential entropy were measured. These data are reduced into the Table 1 and are drawn as a set of 
plots in Fig.3 and 4. 

For the beginning it is interesting to compare image decomposition with local average and local 
median. Mean square error on Fig.3.b and 3.e shows, that image decomposition restores original image 
enough precisely, whereas local average and median significantly distort an image (Fig.3.b). The 
smoothness of images after the transformations may be reflected by difference entropy (Fig.3 .c); one can 
see, that decomposition produces more smoothed image. Along with that, the first component of two- 
dimensional variation (Fig.3.a) reflects, that both average and mean produces images without details 
(corresponding plots are tending to zero), whereas decomposition plot tends to some non-zero constant. 
Plots on Fig.3.d and 3.f demonstrate, that choosing of thresholding parameters helps to make different 
smoothed and detailed images. 
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Fig.3. Test images: a - source image; b - test image 2 (corrupted by gaussian and uniformly distributed 
noises); c and d - smoothed component after the decomposition with different area thresholding. 

Comparing the estimates of the first and the second components of two-dimensional variation one 
can see, that their behavior both on test and on real images looks similar. With increasing the size of outer 
smoothing window first component significantly reduces to some constant, while second component 
remains approximately the same (see Fig.4). The fact, that first component approximates to some 
constant (the plot has some "plateau") may help to choose the parameters of decomposition algorithm. It 
looks reasonable to recommend to take the parameters, corresponding the beginning of such plateau. 

Perhaps it is early to draw any conclusions about global advantage of introduced two-dimensional 
variation, but in any case it looks perspective and demanding the continuation of researches. 

Table 1. Values of two-dimensional variation: Wj is the first, and W~2 is the second component. 

Source image Dusted image Smoothed component (Wl) Texture component (Wl) 
Image Wl W2 Wl W2 MSE 5 9 15 25 5 9 15 25 
Test Image 1 6.74 695.2 463.7 2873 5 14.5 11.7 9.1 8.7 467 467 465 466 
Test Image 2 6.74 695.2 795.3 4203 13.6 44.7 34.9 23.2 16.1 721 728 738 747 
Landscape - - 133.6 1966 - 31.5 24.3 16.9 12.3 158 161 164 166 
Portrait - - 252.9 3347 - 24.4 22.7 20.4 18.1 365 366 365 362 

In the Tables 2 and 3 the following notation is used: Fi and Fo are sizes of inner and outer 
fragments; 77 and To are thresholding limits for inner and outer fragments; C is type of component: s - 
smoothed, t - texture (difference); Wj and W~2 are the first and the second components of two- 
dimensional variations; Mean and Var are mean and variance; Entr and DifEntr - entropy and difference 
entropy. 
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Table 2. Imag< i\ (Venus surface) 

Fi Fo 77 To C Wj w2 Mean Vor Entr Dißntr 
Source image 133.56 1966.33 93.17 33.38 6.913 4.749 

7 Median s 9.47 551.02 91.89 30.49 6.611 2.930 

7 Average s 9.73 577.15 93.17 30.86 6.684 3.057 

3 1 1 3 s 35.56 940.44 92.92 32.05 6.742 3.308 

3 1 1 7 s 27.27 852.49 92.69 31.72 6.724 3.241 

3 1 1 11 s 21.30 759.17 92.43 31.33 6.697 3.157 

3 1 1 15 s 16.96 679.40 92.21 30.99 6.672 3.071 

3 1 1 20 s 13.02 599.22 91.99 30.63 6.646 2.975 

3 11 1 7 s 29.91 818.01 92.73 31.56 6.704 3.091 

3 11 1 15 s 21.33 710.15 92.46 31.12 6.675 2.985 

3 11 1 25 s 14.96 598.68 92.17 30.61 6.636 2.855 

7 Median 167.69 1832.59 129.29 11.05 4.779 4.641 

7 Average 162.47 1918.86 128.00 11.04 5.015 4.712 

3 7 1 3 157.65 1429.38 128.26 6.03 4.477 4.372 

3 7 1 7 160.24 1497.04 128.48 6.84 4.534 4.429 

3 7 1 11 162.13 1584.20 128.74 7.92 4.602 4.491 

3 7 1 15 164.31 1669.18 128.96 8.96 4.669 4.546 

3 7 1 20 165.55 1767.51 129.96 10.20 4.759 4.608 
3 11 1 7 147.43 1451.95 128.44 6.94 4.647 4.391 
3 11 '     1 15 150.04 1540.09 128.71 8.10 4.716 4.456 
3 11 1 25 151.33 1641.45 129.00 9.49 4.799 4.524 

Ta ble3. Image2 (Airphoto) 

Fi Fo 77 To c W] w2 Mean Var Entr Dißntr 
Sou rce image 252.94 33A1A1 73.70 42.91 6.422 5.041 

9 Median s 10.25 1145.58 73.22 40.24 6.283 3.175 
9 Average s 9.49 1080.68 73.70 38.43 7.085 3.445 

3 9 1 5 s 24.38 1658.67 73.59 41.83 7.172 3.647 
3 9 1 9 s 22.67 1639.41 73.57 41.79 7.171 3.634 
3 9 1 15 s 20.43 1579.23 73.52 41.67 7.167 3.604- 
3 9 1 25 s 18.09 1432.29 73.42 41.34 7.155 3.513 
3 9 4 5 s 21.46 1590.45 73.45 41.71 7.168 3.610 
3 9 4 9 s 20.45 1581.02 73.45 41.69 7.168 3.602 
3 9 4 15 s 18.46 1537.60 73.41 41.60 7.164 3.579 
3 9 4 25 s 16.70 1408.51 73.34 41.30 7.154 3.497 

9 Mec ian 348.43 3000.87 128.48 12.06 5.087 4.921 
9 Average 320.99 3170.16 128.00 13.71 5.490 5.003 

3 9 1 5 364.88 2416.84 128.11 6.09 4.605 4.676 
3 9 1 9 366.16 2434.32 128.13 6.21 4.619 4.686 
3 9 1 15 365.85 2487.20 128.18 6.67 4.667 4.714 
3 9 1 25 362.02 2639.31 128.28 8.22 4.808 4.792 
3 9 4 5 386.36 2557.07 128.25 6.65 4.676 4.751 
3 9 4 9 386.09 2562.30 128.25 6.72 4.681 4.754 

3 9 4 15 381.78 2588.33 128.29 7.03 4.713 4.767 

3 9 4 25 373.29 2706.31 128.36 8.41 4.835 4.824 



14 

-W1 Dec 

-W1Med 

-W1 Aver 

i. First component of variation 
(various smoothings) 

30 -r 

-e—MSEMed 

-A—MSE Aver 

$=£= 
7 9        11       13       15       17       19       21       23       25 

b. Mean square error (various smoothings) 

5       7       9      11     13     15     17     19     21     23     25 

d. First component of variation (various thresholdings) 

5        7        9       11       13      15      17      19      21      23      25 

Mean square error (various thresholdings) 

7    _ 

6 .. ^A 

-*- 

■Entr. Dec. 

-Entr. Med. 

-Entr. Aver. 

■DifEntr. D 

-DifEntr. M |—D 

-DifEntr. A 

11 13 15 17 19 21 

c. Entropy and differential entropy 
(various smoothings) 

-X 
-* 

23        25 

3.5 

O™ 

2.5 .. 

2 .. 

0.5 .. 

H2H 

1.5 .. 

i|—w- 

■+- ■+" 

-»- 

-R- 

-*- 

-*- 

na 
-Entr. (1) 

-Entr. (4) 

-DifEntr.(1) 

-DifEntr. (4) 

■+■ -+- ■+- 

f. Entropy and differential entropy 
(various thresholdings) 

H 
11      13      15      17      19      21      23     25 

Fig.3. Dependencies of various estimates on the size of smoothing window (on X-axis): a and d - the first 
component of two-dimensional variations (Wl), b and e - the mean square error (MSE), c and f - the entropy (Entr) 
and the differential entropy (DifEntr); a, b, and c - various smoothing windows (Test image 1): decomposition 
(Dec), median (Med) and average (Aver); d, e, and f - image decomposition under various thresholding (1 or 4) on 
outer window (Test image 2). 
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Fig.4. The behavior of two-dimensional variation on texture component and on real images after the decomposition; 
plots a and b shows the first and the second component of Test Image 1; plots c and d shows the first and the second 
component of real images in comparison with Test Image 1. 

2.3. IMAGE ENHANCEMENT ON THE BASIS OF IMAGE DECOMPOSITION 

Image enhancement is intended for rising of visual image quality before the following analysis. 
Rozenfeld [15] interpret image quality as spatial resolution and sharpness. Avoiding problem of 
increasing of resolution, and not taking into account independent problem of color reproduction, one may 
say, that visual image quality is dictated by the contrast and the sharpness of its details. Traditionally the 
problem of image enhancement may be subdivided into two parts: the gray scale correction, globally 
affecting to the entire image, and the image sharpening, being attained by local contrasting [1]. In the 
present paper we consider the second one, and treat it as magnification of local contrasts. 

There are known many methods for image enhancement. Some reviews may be found in [1,8,9]. 
Also there is demonstrated, that better results are given by methods, adaptable to statistical parameters for 
local window. Most of them use local mean and variance, or similar estimates, like median and 
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interquartile distance [16]. The overwhelming majority of used methods may be generalized by some 
common filtering formula, closed to well-known unsharped masking. Detailed discussion will be done 
below, here we will only notify, that most important element of these methods is obtaining of well- 
smoothed image. 

Image enhancement is based on human perception and visual estimation of an image, and is closely 
connected with extracting of video information from an image for the following analysis and 
interpretation. Because of the absence of formal image quality criterion, there is no global image 
enhancement theory, and it is usually treated as a raising of visibility of image details. This is attained by 
magnification of contrasts (both global and local) on an image. We consider here only the task of 
magnification of local contrasts. 

Many methods for image enhancement are published. The comparison of used methods [1,8,12] 
demonstrates, that better results are given by methods, adaptable to statistical parameters for local 
window. Methods, analogous to well-known unsharp masking are most frequently used. In a simple form 
they may be described by the formula: 

ymn = K{xmn-lmn) + b'snm+c, 
where S;„„ is or local average or local median; K is coefficient of magnification of local contrasts, b and 
C are parameters of transformation (usually constants). By choosing K and b we may significantly 
change the properties of the filter. For example, if 5;,,,, is local average, K = 0, and b = 1, we obtain low- 
pass filter (image smoothing); if K= 1, and b = 0, we obtain high-pass filter; if K> 1, and b = \,- local 
contrasts' magnification. 

In a widely referenced paper [17], Wallis proposed a statistical operator for generalizes unsharp 
masking and statistical differencing [15] by forcing a desired mean and standard deviation: 

oca, 
yi.,n=-—j—{^n-XllJ + ßll,n+^-ß)^- (2-3) 

«CT,„„+CT</ 
Here xnm and anm are local mean and variance of the source image; md and <jd are desired global mean 
and variance of processed image; a and ß are local contrast and brightness forcing factors. Analogous 
filtering algorithm was proposed in [16], where local median and interquartile distance were used instead 
of local mean and variance. 

Some analysis and classification of different enhancement algorithms were done in [12], where they 
were reduced to closed form, generalized in the following manner: 

y*m = /<X»» - 4, ><**») + b\„ +c- J (2-4) 
Parameters, being presented in the formula, are related to following image properties: 7mn - estimate of 
image brightness inside local window, rounding processed element (local mean, median, or similar); amn 

- estimate of image variability inside the window; f(u,v) - some monotone function of U, depending on 
parameter v. 

Formula (2.4) describes enough wide class of transformations, definable by the choice of estimate 
Sj,,,, and function f(u,v) . Of course, estimate 7mn may be not only local average or median. Looking to 

the formula it is evident, that 7mn is very similar in sense to sr
mn in (1.3). Such approach to image 

enhancement means nothing more than separating of source signal to two quite different components, and 
following transformation over them. So, we may substitute smoothed smn and detailed tmn components, 
obtained after decomposition, into (2.4) instead of S;„„ and xmn - lmn. 

Image enhancement basing on the decomposition (2.2) mainly demonstrates good experimental 
results. Nevertheless false contours sometimes rise on an image near not very sharp edges. The 
explanation of this artifact was done in [9] - the effect appears due the inaccuracy of piecewise constant 
model (1.3) for the non-sharp contour edges. Decomposition algorithm smoothes an image so, that it 
becomes to be even more sharp on contour edges, then source one. Hence, on such places the difference 



17 

xmn - smn will get opposite sign in comparison with xmn - xt (element value minus local average or 
local median), and magnification of this difference induces the appearance of false contours. To avoid 
this lack it is enough to perform small linear averaging of smoothed component snm. Usually averaging 
inside the vicinity 3x3 is enough. Experiments on such enhancing some airphoto images basing on image 
decomposition demonstrate high quality of obtained results. 

la &WJHPmiTwmimimfmMmirib EMMmmmamrwrmmmmBMc 
Fig.4. Enhancement of Landsat image (a) using local average (b), and smoothed component after image 
decomposition (c). 

An example pf enhancing some space image is demonstrated on Fig.4. One can see, that after image 
enhancement with local average (image Fig.4,b) small details and contours of expanded areas are 
overcontrasted, whereas after preliminary image decomposition (Fig.4,c) these lacks are avoided, and 
objects' brightness remain unchanged. 

2.4. AUTOMATIC GRAYSCALE IMAGE CORRECTION 

Automatic gray scale correction of captured video data (both still and moving images) is one of the 
least researched questions in the image processing area, in spite of this question is touched almost in 
every book, concerned with image processing. Classically it is related to the image enhancement 
[1,18,19], and frequently is classified as histogram modification techniques. Traditionally used 
algorithms, based on analysis of image histogram [20-23], are not able to decide the problem properly. 
The investigating difficulties are associated with the absence of formal quantitative estimate of image 
quality - till now the most often used criteria remain the human visual perception and experience. As a 
hence, is still unsolved the problem of finding out some measurable properties of real images, which 
might be the basis for automatic building of gray scale correction function (sometimes been identified 
also as gamma-correction function). 

Below we will try to discern some common properties of real images, that could help us to evaluate 
the gray scale image distortion, and finally to construct the appropriate correction function to enhance an 
image. Such a method might be sufficiently used for automatic image processing procedures, like 
enhancing of medical images, reproducing of pictures in publishing industry, correcting of remote 
sensing images, preprocessing of captured data in computer vision area, and for many other's 
applications. The question of complexity of analysis procedure becomes to be important when an 
algorithm is realized in real-time (for example in video input devices, like video cameras). 

24.1. Statement of a task 
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The goal is to propose some methods for automatic image enhancement by use of gray scale 
correction. We guess, that the only accessible initial information is already distorted captured image 

xmn e X, and formal representation of such gray scale image distortion is the following: 

Xmn=f(ymn)- (2-5) 
Here ymn and xmn are pixels' values correspondingly of non-distorted original and of registered images, 

and f(z) is the distortion function. Assuming that f{z) is monotone and univalent, there exists an 
inverse function F(x), which may be used to reconstruct source image. Its formal representation is also 
extremely simple: 

ymn=F(Xmn), (2-6) 
where F(x) is gray scale correction function, destined to compensate the characteristics of video 
capture and storage devices, and to enhance the received video data. Nevertheless the simplicity of the 
formula not reflects the simplicity of the task. 

The central problem here is the question of how to find out the function F(x). In most cases there 
is no any usable information other then already distorted video data, and the direct image distortion 
function usually also remains unknown. Thus, the only way to find out the function F(x) becomes the 
analysis of the source image. So, the main question is the criterion of estimating the image gray scale 
distortion. 

Almost all known methods for gray scale image correction use only a distribution of pixel values 
(image histogram), and not take into account statistical correlation between neighbor pixels, though it is 
obvious, that gray scale distortions will change them too. Below we will demonstrate the possibility to 
construct gra£ scale correction algorithm on a basis of these statistical properties. For more deeply 
discussion of this question we must base on some image model, been adequate for our task. 

2.4.2. Discussing image model 
Real images are characterized by presence of a set of different size areas (details of a scene) with 

approximately constant or weakly varying brightness inside, been separated by contour borders. Very 
often an image is treated as some two-dimensional surface, been traced (with predetermined accuracy) 
across the values of image pixels in a coordinate plane (m,n) [1,24,25]. Lengthy image details are 
represented here as smoothed and approximately horizontal areas, and contours - as narrow strips with 
steep slope angle of the surface. 

A suitable image model was proposed and researched above. Correspondingly to the model (1.4), for 

every image pixel xmn there may be selected some closed vicinity Vmn (possibly of changeable shape) 

containing the set of neighbor pixels Xmn GVmn; r = l,...R, belonging to the same image object or 

contour, as xmn pixel. An appropriate plane may be drawn across the elements of the vicinity, which will 

be sloped relatively to the horizontal plane for the two-sided angle y/mn. Thus to each of the image 

points there may be assigned some vector gm„ with its amplitude gmn = tgy/mn and twist angle <pmn . 

Correspondingly to formula (1.4), ßmn is the value of drawn plane in the central point of vicinity 
(m,n), in other words the average value; p   is Euclidean distance between the central point and the 

point at position V ; and Ymn is some random value, been defined by the granularity of registering 

materials and by the noise of input device. The value gmn defines the local contrast inside the vicinity. 

Calculate the dependence of the value g on the signal brightness by averaging it for a set of 

vicinities vk , having the same average values jumn = k, and let N(vk ) is the number of such vicinities 
on an image: 
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This function c(k) we shall call the Local Contrast Function. In [24], where it was demonstrated, that 
local contrast function c(k) for the whole image may be well approximated as a sum of independent 
distributions for two different sets of image pixels: contour element pixels, and internal flat areas' pixels. 
Each of them may be well represented by appropriate normal distribution, where the variance for contour 
pixels is 5-20 times more than the variance for flat areas. 

2.4.3. Hypothesis about local contrast function 
Substitute the formula (1.4) to (2.5). Average value Hmn will change to f(ßmn), and component 

Prgmn to (f'iMmn ) + °(f'(Mmn )))P'' Smn, where /'(*) is the derivative of f(x). The component 

Ymn will not change, because we suppose that it was added after the gray scale distortion. Assuming that 

°(f'(ßmn )) is negligible small, we obtain: 

X'mn = fiMmn ) + f'(Pmn )P''Smn + Ymn ■ (2.8) 
For us it is important, that the tangent of slope angle of the plane, been drawn through the elements of 
vicinity, will change to the following value: 

g = f'(Mo)go. (2.9) 
Substituting (2.9) to (2.7) for the image with initial local contrast function c0 (k) we obtain: 

c(f(k)) = f'(k)c0(k). (2.10) 
Since we suggest that for f(k) there is an inverse function F(k), we may write the inverse equation: 

c0(F(k)) = F'(k)c(k). (2.11) 
From this equation it is evident, that for determining the gray scale correction function F(k) we need to 
estimate the present local contrasting function c(k) of distorted image, moreover we must to make a 
conclusion about the shape of so-called ideal local contrasting function cQ (k). 

What will happen with local contrast function c0 (k) if we will take into account only some subset 
of image pixels? According to the image model (1.4), statistical properties of the value gmn  will 
significantly change depending on which set of image pixels the vicinity Vmn belongs to: to the set of 
pixels from flat regions, or to the set of contour pixels. Correspondingly to that, the shape of function 
c0 (k) will also depend upon the chosen set of pixels: internal or contour ones. 

The set of internal pixels of flat regions possesses the next two deficiencies: i) statistical properties 
of textures of different regions may significantly vary from one another, hence gmn and c(k) will reflect 
more these properties, but not actual gray scale distortion; ii) due to comparatively small variation of 

texture component there is enough high probability that the distribution of P^ (k) for internal pixels may 
contain some gaps, so c(k) will be insignificant for these values of argument. 

The set of contour pixels looks preferable for using. Values of gmn for contour vicinities depend on 

the module of brightness differences s -sJ for closed regions and on the width of contour overfall. Of 
course, absolute values of g„m also depend on the sharpness of the image and on its discretisation, but 
these factors affect uniformly and linearly for all image pixels, and thus will be compensated. Under the 
condition that contour set of pixels is enough representative, we may suggest: i) the probability 

P {ju = k} (k el s ,s ) for the set of pixels, belonging to the contour between any two regions Ul and 

UJ, is distributed uniformly in the interval Is >*   I; ii) the sharpness of contours not depends on the 
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values sl and sJ, and may be assumed to be identical on the range of brightness; iii) the set of intervals 

\s', sJ I covers the whole range of image brightness [^min>"'max J • 

From these suggestions we may conclude, that for non-distorted high quality image the values of 

local contrast function c(k), been measured for the contour set of pixels, will be uniform for the whole 

range of image brightness [&min ^ k < £max]. Thus we may accept the hypotheses of uniform 

distribution of local contrast function for contour image pixel: c(k) = C0. 

Some experiments, been performed over the set of high visual quality images, demonstrate, that local 
contrast function c(k), been measured for the set of contour pixels, is enough closed to uniform. On the 
other hand the same function, been measured for all image points, hardly correlate with image histogram 
- the peaks of histogram correspond to the depressions of c(k). It is induced by influence of image 
texture, contained inside flat regions. 

2.4.4. Local contrasts alignment algorithm 
Relying on the hypotheses done above, that c(k) = C0, and on equation (2.11), we may write: 

F'(k) = C0 / c(k). Calculating the sum from 0 to k we find: 

W) = CoZ-7- 
(=0^0) 

Introducing the normalization for the maximum brightness: F(K-l) = K — 1,WQ obtain: 
K-\   i 

C„ =(*-!)/I—. 
*=0CW 

Now we may write down final equation for calculating the gray scale correction function F{k) for 
alignment the local image contrasts: 

F(*)=(£-i)£^/£-J_ (2.12) 

The proposed algorithm was tested on several standard images. The results demonstrate, that visual 
quality of images, processed by the algorithm (2.12), is preferable then quality of the images, processed 
by other gray scale correction algorithms. 

One serious deficiency of this algorithm consists of necessity of preliminary detecting of image 
contours. Really, the gray scale distortion will also affect to the results of contours' extraction, hence the 
decision of the task may not be correct. To overcome this problem we need or to develop some 
appropriate adaptive contour detection methods, or to find out some modification of the algorithm, which 
not demand similar operations. 

2.4.5. Modification off the algorithm 
If we can't separate source image to contour and flat components enough precisely, let's try to use 

union set of pixels without any preliminary splitting. In such a case we need to compensate the 
deficiencies, introduced by using complex statistics of the whole image. As it was already discussed 
above, if in (2.12) we take into account the whole set of image pixels, then the local contrast functions 
c(k) have significant depressions for the argument values k , been corresponded to the brightness of 
lengthy image areas. These depressions inverse correlate to peaks of image histogram, and in such a case 

N(vk) in (4) may be revealed as the image histogram H{k), e.g., a number of image pixels of 
brightness k . 

There may be different decisions of how to compensate this influence, but one well known and 
enough simple variant is the, introduction of some compensating component into the formula (4) by 
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adding relatively small value S(N) to H(k) in the denominator (N is the total number of image 
pixels): 

c"(k)=HWlsmS8r- (213> 

Such an addition of S(N) reduces c(k) for small H{k), and thus compensate the depreciation of 

c(k) for large H(k). The obtained cH(k) must be substituted to (2.12), as before. 

2.4.6. Clipped histogram equalization 
In some applications we may not use the local contrast alignment algorithm. There may be several 

reasons for that, one a situation may happen because of enough specific source data. For example, if 
captured image contains brightly illuminated object and hardly shadowed background without any details 
of intermediate brightness, there may appear well-expressed internal gaps in probability distribution of 
image brightness. Frequently the algorithm (2.13) is unable to remove such gaps. In other case the 
proposed algorithm may not satisfy us due to its relative complexity, for example if we need automatic 
gray scale correction, been realized inside video camera in a real time. For such a case the algorithm 
(2.13) looks to be too complicated. We must simplify the analysis procedure of the source image 
according to the limitations of weight, size, and price of such devices. 

Thinking about this task in the context of image enhancement one may recognize, that more often an 
observer wants to compensate the deficiency of objects lighting, instead of to correct possible non- 
linearity of registering device. Moreover, when an image is used for a visual analysis, the observer also 
would like to get it with the best (usually with maximum possible) visual contrast of fine details, and 
frequently he/she would be ready to forgive some mistakes in differences of brightness between lengthy 
objects, if there are well distinguished. This facility may be used for working out comparatively simple 
but enough efficient algorithm. The goal of the algorithm is to magnify contrast in representative sections 
of gray scale range at the cost of compressing non-used ones, provided that the magnification may not 
exceed some boundary value. 

We may formalize the task in the following manner. The probability distribution of image pixels' 
values is represented by it's (normalized) histogram ?{x = k] = H(k)/ N, where H{k) is the 
image histogram, and N is the total number of image pixels. Accordingly to the task, the whole dynamic 

range of image brightness [0,^T] may be separated to a set of intervals [ki,£,+1], where H{k) or has 
appreciable non-zero value (i.e., greater than some threshold of significance), or equals to zero (i.e., is 
less then the threshold). Permitting the existence of zero-length intervals we may accept, that H(k) 

considered to be zero in every even interval [^2/'»^2/+l]> arjd to be non-zero in every odd one 

[k2i+i ,k2i+2 ]■ Now it's obvious, that to solve the problem we may simply to discard all even intervals, 
then to join odd ones, and finally linearly stretch the derived union to the whole region of values [0, K]. 

The formulated task may be decided with the help of different algorithms, and we would like to 
propose enough robust one. There is well-known algorithm - histogram equalization [23] - which has 
such ability to discard unused region of brightness. Its deficiency consists of hard nonuniformity of 
contrast transformation: the magnification for the brightness k is proportional to the probability of pixels 
ofthat value (in other words is proportional to the histogram value H(k)). To be applied to our task this 
algorithm must be modified in the following manner. 

Let there are given two thresholds: T0 as the threshold of significance and Tx as the threshold of 

saturation (7^ — ^1) ■ If PW-^o, we will consider that the brightness k is significant and 

corresponding interval will be added to odd ones. Otherwise, if P{£} < ?o, it will be added to zero-level 

(even) intervals. Additionally, if P{£} > Tu H(k) will be clipped down to the level T0. Thus we may 
write the next formula of transformation (clipping) the image histogram : 
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'T0N,    if   H(k)<T0N; 

Hc(k) = iH(k), if    T0N<H(k)<T,N; (2.14) 

[T.N,    if   H(k)>TlN. 
Now it is possible to perform the standard histogram equalization algorithm [23] for the obtained function 
Hc(k). The final equation for calculating clipped histogram equalization function F(k) will be the 
following: 

F(k) = (K-\)YJHc{k)l±H{k). (2.i5) 
;=0 /t=0 

The advantage of this formula is that it demands very simple image analysis algorithm - the only 
calculating of the image histogram is needed, thus it may be successfully used in real-time applications. 

Such a transformation was experimentally realized inside one digital video camera to enhance an 
image in a real time. The Histogram/Hough Transform Processor chipset L64250 (designated and 
manufactured by LSI Logic Corporation) was used to count the image histogram H(k) during video 
frame. These data were transferred to a host processor to perform clipping and equalization 
correspondingly to formulae (2.14) and (2.15). The resulting transfer function F(k) was downloaded 
back to the L64250 (as a look-up-table) to process video signal in a real time. The maximum value of 
delay between video data analysis and making the transformation active not exceeds two video frames. 

Clipped histogram equalization was well tested both for static images and for real video. The visual 
quality of output images was acknowledged as well acceptable. 

2.4.7. Results and discussion 
Described above local contrast alignment algorithm has been sampled by transforming different 

images. There were tested three categories of images: i) originally distorted low-quality images, ii) 
standard high-quality images been artificially degraded by some gray-scale distortion, and iii) standard 
high-quality images in their initial view. All the images were enhanced by algorithm (2.13), and two 
estimates were defined for each the image: its general visual quality, and its relative quality in 
comparison with the source image (better or worse than the quality of original image). 

The global estimate of applicability of the algorithm regards it as well sufficient for most number of 
images. Originally distorted images (i) were enhanced both by general and by relative estimates. 
Degraded images (ii) also where enhanced relatively to the source (degraded) copy, but in many cases 
their quality remains worse than the quality of initial (standard, not degraded) images. The standard 
images (iii) after the transformation make up three approximately equal groups: the group of images with 
almost identical gray scale transformation, the group of definitely changed images but with preserved 
visual quality, and the third one -the images of deteriorated quality. The explanation of this deterioration 
may be the following. High-quality images typically occupy the whole range of brightness, and initially 
they already possess high contrasts between lengthy objects. The algorithm (2.13) often tries to expand 
contrast of fine details in shadowed or bright areas, where original brightness may be saturated. However 
by expanding the contrast in some ranges of gray scale it will reduce the contrasts in other's ones. Thus 
the algorithm may induce the reduction of contrast between lengthy areas, that often is perceived as 
deterioration of general image quality. 

We discussed above only the gray scale images, but proposed algorithms also may be applied for 
enhancing true-color images. To do that a color image must be represented in the form of brightness, hue, 
and saturation (if it is presented in usual form of red, green, and blue components, it must be 
correspondingly converted). Then the transformation (2.13) has to be invoked for the brightness 
components only, and the other's two should be remained as is. Then the image must be inverted back to 
the useful form. The performed experiments demonstrate the efficiency of this algorithm for enhancing 
visual quality of true-color images. 
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Local contrast alignment algorithm demonstrates its ability to enhance different kind of images, and 
it is preferable in comparison with other gray scale correction algorithms. In spite of it is unable to 
enhance any kind of source images, it may be recommended for most number of low-quality images. This 
algorithm may successfully supplement the local image contrasting algorithm (2.4). 

The clipped histogram equalization algorithm (2.14) may be recommended for the applications, 
requiring real-time image processing. Such a transformation was successfully realized and tested in 
experimental video camera, and estimating of output image quality demonstrates the efficiency of the 
algorithm. 

2.5. IMAGE RESTORATION 
2.5.1. General principles of solving the restoration problem 
The image restoration problem is usually formulated in the following way: to find (to estimate) an 

ideal non-degraded image z from the equation 
Az+rix,)) = iix,\) + rix,)) = V. (2.16) 

Here ueU, zeZ, A is a linear imaging operator, n(x,y) is the noise, and u(x,y) is an output degraded 
image. 

The most universal principles of solving that problem are formulated in the statistical estimation 
theory and in the theory of solving ill-posed problems [4]. Beside the general rules there exist numerous 
methods of restoration based on the usage of the specific features of the problem (a simple type of the 
distorting operator, existence of a known background, possibility of obtaining a large number of images 
of the same object, etc.). But regardless of what approach we use, the restoration problem can not be 
solved with the help of the so called empirical methods that are effectively applied to solve other 
problems of image processing (filtration, segmentation etc.). Restoration problem is a typical inverse 
problem of mathematical physics and as any other inverse problem can be solved only on the basis of 
exact mathematical methods. 

2.5.2. General restoration formulas 
What ever method we use to obtain the restored image, it must comply (in a certain way) with the 

main equation (2.16), i.e. it must provide the closeness of the left and the right sides in this equation. So 
the most general formulation of the restoration problem can de reduced to the functional minimization: 

z\g,?]) = Mpu(Az,u) (2.17) 
zeZ 

where pu is a certain metric in U. To guarantee the uniqueness and the stability of the solution, it is 
necessary to formulate a priory information about an ideal image as a functional Q(z) that possesses 
stabilizing properties. In this case 

z* = M pn(Az,u), 
u (2.18) 

Q(z) < C. 
Under certain conditions the problem (2.18) can be reduced to the unconditional extreme problem, in 

particular to Tikhonov minimization [4]: 

z*=  inf \pTT(A,u) + aQ.(z) , (2.19) 
zeZ[  u J 

where a is the parameter of regularization. Usually it is assumed that the ideal image is a smooth function 
with respect to Sobolev space. 

If U is defined as Euclidean space with respect to the norm (u,Bu), where B is a positive definite 
operator we obtain: 

z*=   inf {Uz-w||+aQ(z)). (2.20) 
z e Z 
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It should be noted that the statistical methods used in image restoration result in extreme problems similar 
to (2.20). So using Bayes strategy or MAP test we obtain the optimal estimation in the form 

z* =  inf {-lnq(Az-u)-hip(z)}, (2.21) 
Z G Z 

where p(z) and q(x) are a priori probability densities of the ideal image and the additive noise 
n(x,y)=(Äz-u). Using in (2.21) the most popular probabilistic models of the image and the noise 
specifically when q(x) is Gaussian &n&p(z) is Gibbs distribution, we obtain: 

z* =  inf (Uz-«|J + t/(z)), (2.22) 
z e Z 

where Uis Gibbs potential and B'^ is covariance operator of the noise [5]. 

The main essential difference between the regularization method of image restoration (2.20) and the 
statistical method (2.22) is the existence of the regularization parameter in (2.20). It is necessary to point 
out that the opportunity of obtaining a family of solutions that depend on a parameter is very important. 
This allows us to control the visual quality of image restoration interactively regardless of a mathematical 
criterion of visual image quality. 

Usually the linear algorithms are used in image restoration. These algorithms can be represented in 
the following form 

z*=  inf ^\Az-ufB+a(z,Cz)], (2.23) 

here B and C are the positive definite operators. 

We stress that the statistical methods, in particular Wiener filtration, lead to the minimization of the 
same quadratic functional (2.23) assuming that the image and the noise are Gaussian, and a=\. In this 
case B and C are inverse covariance operators of the noise and the image: B=[Cov(n)]~\ C=[Cov(z)]'^. 
From (2.23) it follows that linear algorithms differ from each other by choice of operators B and C. It can 
be shown, that as a rule, the result of linear restoration does not depend much on the operators B and C, 
i.e., the result does not depend much on the covariance characteristics of z and n. In any case the quality 
of the linear restoration always depends on the characteristics of degraded operator A and the magnitude 
of the noise ||«|| =s. 

We propose to obtain an essentially new result using the non-linear method of restoration, when a 
priori information about the image is given not in the square functional form 

z*=  inf (Mz-w||+aFar(z)|. (2.24) 
Z c £i 

Using the definition (1.10) it is possible to obtain the non-linear algorithm of image restoration: 

z* = inf||^z-w|| 

wx<q, (2.25) 

w2<C2, 
or under certain conditions: 

z* = inf{|Uz-w||2+Qr1w1+«2w2}. (2.26) 
zsZ 

So the decomposition of an image into two independent components can be effectively used in 
image restoration. 
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3. IMAGE COMPRESSION BASED ON THE WAVELET TRANSFORMATION 
WITH NONLINEAR DECOMPOSITION 

3.1. Statistical and Visual redundancy. 
The classical scheme of image compression (and being also applicable to image transmission and 

archiving) is shown on Fig.5. The source can be treated as an application or a memory where images are 
fetched from. Compressor reduces redundant information and sends it through the channel. Decompressor 
restores transmitted signals and transforms them into the form suitable for a viewer. The models of a 
source and a receiver determine the meaning of "redundancy". The first one describes so called statistical 
redundancy (S), and the second one - visual redundancy (V). 

Source Compressor Channel or 
memory 

Decompressor Receiver 

A priory knowledge about application 
Source model Receiver model 

Fig. 5. Classical scheme of information transmission system. 

3.1.1. S-redundancy. Source models. 
The natural images are highly structured having components, which look like smoothed or flat areas 

surrounding by contours, textures and noise. Intuitively each of them separately can be described with 
reasonable precision by rather simple models. The images are complex compositions of those 
components. The task of a source model is to decompose the complex image on the independent 
components based on a priory information about images. The key to effective decomposition is that each 
one of the signal components may be represented efficiently by the model. So, the sufficient model 
should have corresponding number of appropriate components to represent as many of them as needed for 
an image receiver. 

The degree of statistical independence achieved may be defined in terms of entropy. For that we 
have to compare the joint entropy among all the components with the sum of individual entropies of each 
the component (cm is m-th component): 

tf(c0,cp...,cM)<s2>(cJ. (3.1) 

If there exist statistical dependencies among the cm, then the joint entropy will be less than the sum 
of individual entropies, otherwise the two quantities will be equal. Assume that there is some way to 
verify that the total information in the image (joint entropy) is preserved, then we can reduce statistical 
dependencies by lowering the individual entropies H(cm) as much as possible. Statistical dependence can 
be even more complicated if between components Affine or other dependencies exist. Special case of 
such images, having high order S-redundancy, is self similar images, or their complex compositions, 
called fractals and multifractals. In this way due to the complex statistical dependencies among the 
components, the higher order redundancy is transformed into a simple first order redundancy. In such a 
case, the less entropy has each a component, the better is the performance of a system [35]. 

3.1.2 V-redundancy. Receiver models 
The receiver model describes visual V-redundancy specifying the components being not 

distinguished from a background or other components by the receiver in a certain viewing conditions. 
Visual independence also means that varying one component we do not change visibility of others. That 
is why one of the task of a receiver model is to decompose an image to visually independent components. 
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The sensitivity of human vision model (HVS) according to the pixels within the component, usually is 
assumed to be equal or slowly varying. 

It is known that the human vision has some thresholds, and the fidelity to image representation, 
demanded by the human eye, differs from pixel to pixel. The HVS has two types of thresholds: global one 
and local ones [32-34]. Global thresholds tune to the mean brightness of an image, and can slowly change 
from image to image. Local ones otherwise change quickly from pixel to pixel within the same image. 
This is called masking effect that can be temporal and spatial. Spatial masking increases thresholds for the 
pixels near the large jump of brightness, for example on the contours of the objects. Temporal masking 
retains the local masking effect for a while, even if it is not situated in the next frame. The final 
thresholds appear as a result of enough complex and yet unknown interaction between all these processes. 

The degree of visual independence achieved can be assessed as some consumption of bits per pixel 
(BPP) used for the individual components in comparison with total BPP of the source image. 

Let U = \y(co,c],...,CM) ~ c0 ® cl ® — ® CM is some certain composition of components CQ 
cl CM and h(co), h(c\),...,h(cM) are corresponding thresholds of HVS. If the range of components is 

R, then these components can be quantized on R/h(cQ)=N(cQ), R/h(cj)= N(cj), ...,R/h(c^= N(cj^) levels. 
Let us assume that N(CQ) <= N(cj) <=...<= N(cj^) and corresponding numbars of BPP are B(CQ) <= 
B(ci) <=...<= B(CM). Then the quantization of the whole composition will demand more long 
description than separate quantization of the components, because we have to use maximum number of 
levels Nmax = maxfNfcjn)), m = 0,...,M, to be sure in invisibility of quantization errors for the whole 
image, i.e.: 

£log#(0 < 2>gtfmax => 2>(cffl) < BQ¥(c0,Cl,...,cM)). (3.2) 
m m m 

Existence of threshold properties of human vision, enables us to consider this feature as a kind of a 
compressor. The space of images is divided onto the multidimensional cells of complex shape. Within the 
cells images do not differ from each other. At the same time any existing compressor do the same, that is 
creates analogous set of cells. So the fact that we see some impairments on the decompressed image can 
be explained by the differences between the human's and compressor's cells. So, each human vision 
model may be considered as a compressor, and in contrast, any compressor is a sort of a vision model. 

The subthreshold properties of a human vision are well investigated both in still and moving 
environment. That is why the compression task can be solved by reconciling threshold properties of 
compressor with thresholds of vision [32]. Besides of physical limitations of eye as itself, there is a lot of 
uncontrolled and subjective factors leading to large variety of estimates. Some users prefer "soft", slightly 
smoothed images (methods basing on the orthogonal transformations), other ones prefer more "rigid" 
with contrast contours (methods basing on the block quantization). Nevertheless, this task can be 
formalized under the object - oriented approach. Here the main task is to formalize an expert's 
requirements (for example, in terms of probability of false accept and false reject). 

So, we consider the ideal compressor as one with some threshold properties, reconciled with the 
vision properties of the receiver. Among all such compressors some one, having best statistical properties 
of quantization cells, will ensure maximal compression. 

3.1.3. Problem statement. 
On Fig.6. typical scheme of a compressor and decompressor is presented. An image is decomposed 

by linear transformation to several components followed by quantization and lossless Huffman encoding. 
On the receiver side Huffman decoding and dequantization are performed, and finally the reverse liner 
transform restores decompressed image. 
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Direct 
Linear 

Transform 

Huffman 
Encoding 

Quantization 

Channel 

Reverse 
Linear 

Transform 

Huffman 
decoding Dequantizer 

Fig.6. Typical flow chart of compressor and decompressor. 

Let us assume that a source image consists of three major components: smoothed component Ug, contour 
one Uc and residual, noise like U^ one: 

U = UL+UH=US+(UC+UN). (3.3) 
In most cases the component U^ does not carry any useful information, but takes rather large amount of 
bits to describe it. In contrast, UL and IJQ components usually contains much more information about the 
shape of the objects. That is why ideally we would like to have resulting image as sum of separated UL 
and VQ. It is relatively simple to separate UJI = U§ component from the sum UJJ = U§ + UN using 
linear decomposition W. It is because the U]_, and UJJ components are in different frequency area. In 
contrast, it is pot trivial to separate Uc and TJN- 

To separate them, more complex, in general case, nonlinear filtering is needed. Primitive nonlinear 
operation - quantization is usually used in the most compression schemes. It is tuned onto the 
components with high energy, and removes others with low energy. This is in contradiction to HVS 
properties. We can clearly see low energy TJc component since it is highly structured, in contrast to UN 
component which looks like random noise. Simple lowering of the number of quantization levels leads to 
fast reducing of the quality of decompressed image. From an expert's point of view, when a power of 
compression increases, it would be more reasonable to loose some other objects instead of those of 
interest. To solve this task it would be useful to separate useful objects from others and redistribute bits 
budget so, to reproduce them perfectly. In general, such a decomposition should rely on a priory 
information about the objects of interest. Here again we can consider the decompositions to line of 
images with different amount of a priory information, from simple contour detection to highly 
"intellectual", recognizing the objects. The scheme of a compressor with nonlinear decomposition is 
shown on Fig.7. 

Direct 
Linear 

Transform 

Quantization Huffman 
Encoding Nonlinear 

decomposition 

Channel 

Object model Reverse 
Linear 

Transform 

Dequantizer Huffman 
decoding 

Fig.7. Compression with nonlinear decomposition. 
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The goal may be formulated in the following way. To investigate potential reserve of rate/distortion 
function of a compressor improving on the basis of chosen linear transformation, and simple nonlinear 
image decomposition separating \JQ and U^ components. 

3.2. Wavelet decomposition. 
3.2.1. Wavelet basis 
One of the most commonly used approaches for analyzing a signal U(x) is to represent it as a 

weighted sum of simple building blocks, called basis functions: 

U(x) = Ec„^(x), (3.4) 
n 

where v|/n(x) are the basis functions, and cn are coefficients, or weights. Since the basis functions are 
fixed, the information about the signal contains only in the coefficients. There are many ways to choose 
basis functions. The simplest one uses a set of translated pulses as the basis, and it leads to spatial 
representation of the data. Choosing the set of harmonic curves as the basis functions, results in Fouirier 
representation, containing information in frequency domain [28-31]. 

For the signal compression purposes, neither of the above representations is ideal. We would like to 
have a representation, which contains information about both the space and frequency behavior of the 
signal. We want to know the frequency content of the signal only at a particular instant in space. 
However, spatial resolution (Ax) and frequency resolution (Aoo) cannot be chosen enough small together 
at the same time, because their product is bounded below by the Heisenberg inequality: 

AxA©>y2. (3.5) 
This inequality means that we must trade off time resolution for frequency resolution. Thus, it is 

possible to have very good spatial resolution if you are willing to settle low resolution in frequency, or, 
vice versa, it is possible to have very good resolution in frequency if you are willing to settle low spatial 
resolution. 

By their nature, low frequency events are spread out (or non-local) in space, and high frequency 
events are concentrated (or localized) in space. Thus, to left within the confines of the Heisenberg 
inequality and to have sufficient spatial-frequency information about a data, we have to construct the 
basis functions like cascaded octave filters, which repeatedly split the data's bandwidth in a half. 

Let us constrain all of the basis functions in {v(/n} to be scaled and translated versions of the same 
prototype function vj;, known as the mother wavelet. The scaling is accomplished by multiplying x by 
some scale factor. If we choose the scale factor to be a power of 2, yielding i|/(2vx), where v is some 
integer, we get the desirable cascaded octave bandpass filter structure. Because the function \\i has finite 
support, it will need to be translated along the space axis in order to cover an entire data. This translation 
is accomplished by considering all the integral shifts of v|/: 

v|/(2vx-k),        keZ. 
(3.6) 

This really means, that we are translating \j/ in steps of size 2_vk, because vj/ (2vx - k) = \|/(2v(x - 2_v k). 
Putting this all together, gives us a wavelet decomposition of the signal 

U(x) = £ZcA(x), (3.7) 
v     k 

where \\ivfd\) = 2v'2\\i(2vx - k) (the multiplication by 2v/2 is needed to be the basis orthonormalized). 
The coefficients cv£ must be computed by wavelet transform, which is just the inner product of the signal 
U(x) by corresponding basis function VJ/V#(X). Wavelet may be implemented as octave bandpass filters, 
which in turn may be represented as cascaded implementation of "lowpass" {h^} and "highpass" {g\r} 
filters. Below we briefly describe the implementation details of the wavelet-based image compression. 

3.2.2. Implementation of the wavelet transformation. 
At the beginning the compressed signal is decomposed to the pair of components with low and high 

frequencies using the convolution-subsampling operators. It is performed in the spatial domain with the 
helps of "lowpass" {AjJ and "highpass" {giJ filters. Let H and G be such convolution-subsampling 
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operators realizing these filters, and H* and G* be their adjacent (i.e. upsamling-anticonvolution) 
operators. We may choose filters of finite length (Z) and satisfy the following conditions of orthogonality 
and perfect reconstruction: 

HG*=GH'=0, H*H+G*G = I, (3.8) 
where / is the identity operator. 

This decomposition process is iterated on the low frequency components. Let U={ujc}N_1k=o be a 
vector to be decomposed. Then, the convolution-subsampling operations transform the vector U into two 
subsequences each of N/2 elements length: HV and GU. Next, the same operations are applied to the 
vector HV to obtain H2V and GHV of length N/4. If the process is iterated J times, we have the discrete 
wavelet coefficients (GU, GHV, GH*V, ... ,GH*V, H^+1V) of length N. As a result, the wavelet 
transform analyzes the data by partitioning its frequency content dyadically finer and finer toward the low 
frequency region (i.e., coarser and coarser in the original space domains). 

The reconstruction (or synthesis) process is also very simple: starting from the lowest frequency 
components (or coarsest scale coefficients) H^+lV, and the next frequency components GH^V, the 
adjacent operations are applied and added to obtain /7JU = H*H^+iV + G*GH3V. This process is 
iterated to reconstruct the original vector U. The computational complexity of the decomposition and 
reconstruction process is in both cases 0(N) as easy to see. 

We use the following anti-aliasing relations between analysis {/rjj, {gjj and synthesis {h jj, 
{g*k} filters: 

**k = (-l)nSk-l, A = (-i)n-1*k-i 
The filters coefficient is presented in Table 4. 

(3.9) 

Table 4. 

Tap Approximate value 

H 0.85269867900940 

h\ = h.i 0.37740285561265 

hi = hji -0.11062440441842 

*3 = Ä-3 -0.0238494650119380 

A4 = A_4 0.037828455506995 

£-1 0.78848561640566 

£-2=£0 -0.41809227322221 

£-3=£l -0.040689417609558 

£-4= £2 0.0645388826282938 

3.2.3. Source image 
We assume, that source images are captured with the precision of 8 bits/pixel. Before the encoder 

will compute the discrete wavelet transform of the image, the samples U(x,y) must be transformed 
according to the following equation: 

U*(x,y) = (U(x,y)-M)/R, (3.10) 
where M - mean value of the image pixels, but R = max (Umax - M, M - Umjn)/128, Umjn and Umax 

are, respectively, the minimum and maximum pixel values in the image. 

3.3. Quantization. 
3.3.1. Subband variance computation 
A subband variance estimate is calculated basing on a subregion of each subband. Let ak(x,y) denote 

the floating point array of width Xfc and height Yfc, comprising the kth subband. The width and height of 
the subregion to be used for the estimate, are: 
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Xk* = round(3Xk/4) 
Yk* =round(7Yk/16). 

The function round(...) denotes rounding of a floating point value to the nearest integer. The variance will 
be computed by the unbiased estimator: 

^=^3^   f,(H(m,n)-juk)
2, (3.11) 

where (O-k denotes the mean value of ak- The horizontal and vertical offsets for the subregion (xpk and 
yp k), relative to the upper left corner, will be: 

*0,k = |Xk/8|j        Xl>k = X°-k + Xk* " *' 
(3.12) 

yo,k = |9Yk/32|,   yi,k = yo,k+Yk*-i. 

3.3.2. Bin width calculation. 
The formula for the bin widths Qk is: 

\lq,       if    k = 0, 

ß*=1       otherwise 

The zero bin Zk is computed as Zk = 1-2-Qk- 

3.3.3. Quantization procedure. 
Each subband is coded separately according to a scalar quantizer characteristic having uniform width 

bins with the exception of the zero bin, which is 20% wider. The quantization transforms a floating-point 
wavelet coefficient C to an integer quantizer index q, that indicates the quantizer bin in which C lies. The 
dequantization transforms the index q to a real number Cn, representing all data values that lie within that 
bin. Encoder transmits the values of Qk (the bin width) and Zk (the zero bin width) for each subband 
along with the Huffman coded quantizer indices. Quantization of the ktn two-dimensional subband, 
C#(m,n), is given by the following: 

if (C* (m,n) > Zk/2), ^m,n) =L (ok(m,n) - Zk/2)/QkJ + 1; 
if (-Zk/2 <Ck(m,n) < Zk/2),     «(m,n) =0; (3.14) 
if (Ck(m,n) > Zk/2, <?*(m,n) =T (flk(m,n) + Zk/2)/Qk 1- 1. 

The notation \. 1 and L. J denotes the functions those round values to the next largest and next lowest 
integer, respectively. The quantified wavelet coefficients produced by the dequantizer, are given by: 

if {qk (m,n) > 0), Q*(m»n) = ( qk (m,n) - B)Qk + Zk/2; 
if (flt(m,n)=0), Q*(m,n) = 0; (3.15) 
if (Ck(m,n) > Zk/2, Ck* (m,n) = (qk (m,n) + B)Qk - Zk/2, 

where B is some parameter between 0 and 1 that determines the reconstructed values. Note, that if B = 54 
then the reconstructed value, corresponding to each quantization bin, would be the bin's midpoint. We 
used B = 0.44. The quantizer indices qß(m,n) are transmitted losslessly by a combination of zero run- 
length and Huffman encoding. 

3.3.4. Entropy encoding 
A Huffman encoder is used to assign variable length codes to the quantized coefficients within a 

block. Special codes are provided for zero runs. Coefficients and zero run lengths outside the range of the 
table are embedded in the code stream with an escape sequence. Table 2. lists the complete symbol set 

Table 5. Huffman table of input symbols. 

Position Value 
1 zero run length 1 
2 zero run length 2 
3 zero run length 3 . 
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100 zero run length 100 
101 escape for position 8 bit coefficient 
102 escape for negative 8 bit coefficient 
103 escape for position 16 bit coefficient 
104 escape for negative 16 bit coefficient 
105 escape for zero run 8 bits 
106 escape for zero run 16 bit 
107 coefficient value -73 
108 coefficient value-72 
109 coefficient value -71 

180 use position 1 only ■ 

253 coefficient value 73 
254 coefficient value 74 

As we are interested in gain in r/d characteristic, we do not implement real Huffman encoding and use 
only the value of pseudo entropy H, calculated as: 

(3-16) Hpse„do =-TjP(m)log2 P(m), 

where P(...) is a histogram of the symbols, obtained in accordingly to some accepted standard, before the 
Huffman encoding. 

3.4. Nonlinear decomposition 
Acceptable nonlinear decomposition, separating an image to components Uc and UN, musts rely on 

the vision properties of the receiver. Our ability to detect, to discriminate, and to process week signals 
with a noise is based on a priory knowledge of signal's shape. During the long evolution, our vision 
system produced a number of special receptive field, capable quickly respond to the known signals. It is 
well known, that the longer and bigger is an object, the higher is the response of human vision to them. 
Small spot-like objects are hardly visible even on the complex background. It is because the sensitivity of 
human vision to such objects is high. It can be partially explained by the mechanism of signal summation. 
If we know the shape of a signal, we can use some special filter, matched to this signal, and detect the 
places where this filter has large response. It is known, that human vision has multiple specialized 
receptive fields replying only on the structured stimulus, as lines differently oriented in space [33]. 

Fi 

FK-I 

Threshold 

Threshold 

SUM 

Threshold 
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Fig.7. 

The response of these receptive fields can be modeled by the convolution of the matrix of weighting 
coefficients with an image, i.e.: 

R = U®F, (3.17) 
where F is local matrix modeling the receptive field, symbol ® means convolution, and R is a response of 
the receptive field on a signal U. 

We will not discuss this question further, but will describe the simple model of the receptive field. 
Let there are N simple receptive fields, tuned on the special structured signal R^ (k = 0,...,K-1). Then the 
behavior of the complex field can be described as the sum of the replies of simple fields after passing the 
threshold operation. On Fig.7. we can see such a structure. 

We used the following simplest receptive fields: 

Horizontal direction Vertical direction 

Fo Fi F2 F3 
0  0   0       -1-1-1 
111     111 

-1-1-1        0   0   0 

Diagonal direction 

F4 F5 

10   0 f -1   -1 
-110 0    1-1 
-1-11 0   0    1 

The reply of this fields is calculated by 
i    l 

R
P(£>0= 2£u(*+m,/+/i)-F(»i+l,/i + l), (3.18) 

m=-ln=-l 

p = 0,...,7. 

n f    0, if   Rp(k,l)<T 
RpikJ)-{Rp(k,l),   if   Rp(k,l)>T (3-19) 

Resulting reply R is the average of partial replies RpTh(k,T): 

R(k,l) = ^K(k>ly (3.20) 
ö p 

So, as a model of Uc contour component we use (3.20). For smoothed Ug component we can use local 
mean, that is Ug = M: 

M(k,l) = -aV(k+m,l + n). (3.21) 

It is evident that if threshold Tis zero, then (3.20) is simple linear laplacian R/,, that is 

RLßJ) = llJRp(k,l) = \J(k,l)-M(k,l). (3.22) 
o   p 

On the borders for indices k and / we use the following rule: 
k= min (max (0, k+m\K), 
I = min (max (0, l+n ),L), 

where AT and L are the numbers of lines and columns in an image. 

F2 
-1 1   0 0   1 -1 
-1 1   0 0   1 -1 
-1 1   0 0   1 -1 

F6 F7 

0 0    1 -1 -1   1 
0 1 -1 -1   1   0 
1 -1 -1 1   0   0 
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As was mentioned above, the nonlinear decomposition can be applied as before as after the linear 
decomposition. For the linear case we will use (3.20), but for the nonlinear one, the following combined 
nonlinear filter will be used: 

Rs+C(k,I) = M(k,l) + R(k,l), (3.23) 
that is, if the reply R(...) equals zero, the signal value is substituted by the local mean value. 

3.5. Experimental results. 
The goal of the experiment was to reveal further reserves of rate/distortion ratio of wavelet-based 

strategy consisting in the quantizing and the entropy encoding of wavelet coefficients. 

To assess resulting images we will use subjective estimation in a fixed viewing conditions and well- 
known formula for calculating of PSNR: 

255 
PSNR = 201og10   /^^, (3.24) 

where 

MSE = 
1 

VMSE' 

■ZE(u(^")-u*(m,«))2, 
M-N   

and Mand Ware the number of lines and columns in the image. 

(3.25) 

3.5.1. Components 
The low-pass component Ug, obtained on the original image, corresponds to linear decomposition. It 

may be shown, that component Ug contains both a mixture of contours XSQ and noise U^ components. 
Applying linear decomposition to the component UJJ one can not separate needed components. Really 

FUH=^(Uc + UN)=FUC + FUN=FUC, 
(3.26) 

where .FUN=0, but FUQ is smoothed contour component. Adding of this component to the smoothed Ug 
results an image with reduced resolution. In turn, noise-like component UJJ - Fun contains considerable 
part of contour component. It means, that to separate those components perfectly we need to use 
nonlinear decomposition. 

If we use nonlinear decomposition, we managed to obtain good contour component U(\ As a result 
we have perfect restored image Ug + U(\ It is seen also, that component U^ looks really like noise with 
negligible part of contour component. 

Qualitative estimate demonstrates, that nonlinear decomposition gives 36.823 dB, but linear one - 
only 27.315 dB. 

3.5.2. Rate/distortion properties. 
The rate/distortion results are presented in Table 6. For comparison, several images were compressed 

by standard wavelet technology and proposed one with different quantization steps. 

Table 6. Standard compressor Proposed compressor 

Bits/pixel PSNR Bits/pixel PSNR 
Q=10 1.638 34.22 1.50 33.98 
Q = 20 1.11 30.9 1.05 30.2 
Q = 30 0.85 29.26 0.8 28.9 
Q = 40 0.725 28.16 0.67 28.3 

It was demonstrated, that nonlinear decomposition gives us perfect separating of contour and noise 
component. In contrast, linear decomposition with adaptive quantization of the subbands gives less value 
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of a gain. Wavelet compression with nonlinear decomposition can be useful in air and space images, 
where preserving of small object corrupted by noise may be important. 



35 

4. CONCLUSION 

An image was considered as a blend of several statistically and semantically independent 
components, each of them containing details of different information classes and statistical properties. In 
the above discussion we pursued the goal to decompose an image to two components: smoothed and 
texture ones. The tasks of image enhancement, restoration, and compression were considered from the 
position of preliminary decomposition and following manipulating with obtained components. 

Image decomposition helps to decide many different tasks, like noise removing, enhancement of 
gray-scale, color, and multispectral images, extraction of texture, noise-free detection of contours, 
localization of image details, segmentation, and some others. We proposed rank algorithms for image 
decomposition and image enhancement, using statistics for local window. The efficiency of algorithms 
was verified by processing of real and artificial images. 

Real image is enough complex signal, and its simplification by decomposing onto several 
information components looks to be perspective approach to the decision of different image processing 
and analysis tasks. Separating from an image only the component of interest, we may get some new 
starting point for the decision of many traditional tasks, the set of which is significantly wider than it was 
discussed above. For example, extracting texture component and avoiding average-brightness 
information, one can decide texture image segmentation more efficiently. Varying area parameters for 
relating objects to one or another component, one can detect objects from an image regarding their sizes, 
etc. 
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