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Abstract

Current computer generated forces (CGFs) in the "synthetic battlespace", a training

arena used by the military, exhibit several deficiencies. Human actors within the bat-

tlespace rapidly identify these CGFs and defeat them using unrealistic and potentially

fatal tactics, reducing the overall effectiveness of this training arena. Simulators attached

to the synthetic battlespace host local threat systems, leading to training inconsistencies

when different simulators display the same threat at different levels of fidelity. Finally, cur-

rent CGFs are engineered "from the ground up", often without exploiting commonalities

with other existing CGFs, increasing development (and ultimately training) costs.

This thesis addresses these issues by proposing a domain-independent design method-

ology and a supporting software architecture for the Distributed Mission Training Inte-

grated Threat Environment (DMTITE). This architecture uses approaches from software

engineering and database management and identifies an extensible knowledge representa-

tion to support CGFs in various domains (land, surface, and air), shifting development

efforts from "structure implementation" to "knowledge implementation." CGFs developed

using this paradigm also have access to domain-independent features such as skills vectors

and a combat psychology model, which act as a time-limited Turing test by making CGF

behaviors unpredictable (but not random) and believable.

xiv



A REPRESENTATIONAL APPROACH TO KNOWLEDGE AND

MULTIPLE SKILL LEVELS FOR BROAD CLASSES OF

COMPUTER GENERATED FORCES

I. Introduction

To make better use of limited Department of Defense training funds, the military has

turned to Distributed Interactive Simulation (DIS) technology and concepts such as the

Joint Synthetic Battlespace (JSB) as training arenas. These concepts and technologies,

although successful in certain areas, exhibit several deficiencies resulting from participant

and environment inconsistencies.

A major problem is the threat environment (e.g., anti-aircraft artillery or aircraft)

currently presented to simulation participants is not consistent. This inconsistency pre-

vents battlespace combatants from interacting in a realistic fashion because they sense the

environment at different fidelity levels. For example, simulators of combat force aircraft

have native threat generation systems for stand-alone and network testing. This heteroge-

neous capability often results in compatibility problems between simulators when adding

new weapons or theaters of operation. A contributing problem is many battlespace sys-

tems representing the same asset are implemented in a non-uniform manner-that is, they

are built "from the ground up." Many simulator developers create unique systems and

implement modeling decisions supporting their users in specific scenarios. These differing

systems are difficult to coordinate on a distributed network because they can not perform

at the same fidelity level, creating asset synchronization issues.

Lastly, there is a lack of "intelligent" computer-generated actors within most current

military simulations. Humans are able to rapidly identify and defeat current computer-

generated entities using unrealistic tactics (i.e., "gaming the system"), reinforcing poten-

tially fatal behaviors. The current situation detracts from the effectiveness of training

conducted in virtual training arenas such as the "synthetic battlespace."
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Taken together, these issues lead to great expense, uncoordinated threat develop-

ment, and training inconsistencies between participants. A promising technology to fill

this gap is Computer-Generated Forces (CGFs)-computer controlled actors representing

combatants and displaying behavior based on current battlespace state information. Large

numbers of simulation CGFs could be created on demand with minimal cost, and can be

standardized in their presentation of and reaction to threats throughout the battlespace.

1.1 Distributed Mission Training Integrated Threat Environment (DMTITE)

Research discussed in this thesis was conducted in support of DMTITE, a proposed

training environment that will support aircrew training by inserting a variety of accurate

and realistic threats into large-scale distributed virtual environments. The system will

be hosted on one or more computer systems; therefore, each must be able to operate

autonomously and also cooperate with other DMTITE systems to portray a coordinated

threat environment. Each DMTITE system will require access to a common script for each

training scenario and will inject threats (hostile aircraft, radar, electronic countermeasures

(ECM), surface-to-air missile (SAM) sites, and anti-aircraft artillery (AAA) batteries) into

the synthetic battlespace. Since the DMTITE system will replace the threat generation

systems currently local to each simulator, human actors operating in the same domain of

the synthetic battlespace will perceive a threat at a common level of fidelity.

This research is sponsored by the United States Air Force's Aeronautical Systems

Center (ASC), Air Force Materiel Command (AFMC), Wright-Patterson Air Force Base,

Ohio.

1.2 Scope

This thesis addresses two of the goals of the DMTITE project. First, it identifies a

knowledge engineering approach for instantiating the broad classes of actors maintained by

the DMTITE system. This approach addresses many of the requirements identified during

the course of the DMTITE project, but allows developers flexibility in the tools they

use to implement DMTITE actors. Second, this thesis identifies the domain-independent

software architecture developed to support DMTITE knowledge engineering efforts. This
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architecture extends a previously implemented architecture, attempting to shift the CGF

development focus from "structure implementation" to "knowledge implementation."

1.3 Overview

Chapter II frames this research by exploring much of the background of the DMTITE

project. Terms used throughout this thesis are defined, related efforts are identified, and

overviews of relevant concepts are presented. Chapter IH identifies a "knowledge-centric"

design methodology for implementing CGFs. The assumptions, goals, and components

of this design methodology are discussed, and its strengths and weaknesses are identified.

Chapter IV maps the design methodology discussed in the previous chapter to a domain-

independent software architecture. The components of the architecture are decomposed

and discussed in detail. Finally, Chapter V identifies the expected results of this paradigm

as well as avenues for future, related research.
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IL Background

This chapter introduces the topics of distributed virtual environments (DVEs), includ-

ing the Distributed Interactive Simulation (DIS) protocol and the High-Level Architec-

ture (HLA); current computer generated force (CGF) background and relevant projects;

and the Common Object Database (CODB) system architecture. These topics form the

groundwork for the DMTITE architecture and its operational environment. The topic of

knowledge acquisition is also discussed since it applies to the research addressed in this

thesis.

2.1 Frequently Used Terms

Many of the terms used throughout this thesis are standard within the artificial

intelligence and simulation communities; however, the following terms are defined explicitly

for those readers unfamiliar with them.

2.1.1 Entities. An entity is a component of a distributed virtual environment

whose state can change. Combatants (whether human- or computer-controlled) are entities;

terrain (whose appearance and features can be changed as a result of plowing, explosions,

or traffic) is also an entity.

2.1.2 Actors. An actor is an entity that moves with apparent intelligent pur-

pose. Actors can be virtual (human-controlled), constructive (traditional simulation con-

trolled), live (derived from instrumented range data), or computer-generated (controlled

by a computer program employing artificial intelligence techniques). Obviously, all actors

are entities; however, not all entities are actors (i.e., terrain). Computer generated forces

are computer generated actors representing combatants in a virtual battlespace; for the

purposes of this thesis, the two terms are considered synonymous.

2.1.3 Hosts. A host is a computer system within a DVE that allows human

and/or computer user(s) to control actors or entities within the distributed virtual en-

vironment. A host also allows its users to observe the actions of other entities within

2-1



the DVE, whether the other entities are hosted on the same system or another (possibly

remote) computer system.

2.2 Distributed Virtual Environments

The DoD realized the usefulness of distributed virtual environments in the early

1980s, when the Army networked its tank simulators through SIMNET (36). Although

successful in providing a DVE for armor and other ground vehicles, SIMNET remained

limited to that domain. In 1989, the DoD initiated the Distributed Interactive Simu-

lation protocols and in 1995 initiated the High Level Architecture. These two network

technologies are the most widely used for DVEs today.

2.2.1 Distributed Interactive Simulation. The DIS suite of standards (IEEE Stan-

dard 1278) was designed to link distributed, autonomous hosts into a real-time distributed

virtual environment. In DIS, this is accomplished through a network that exchanges data

describing events (such as collisions, weapons firings, and detonations) and activities (such

as the movement of an actor through the virtual environment). DIS is the epitome of an

asynchronous network: there is no central computer, event scheduler, clock, or conflict

arbitration system. Stytz provides additional information regarding DVEs and DIS (33),

as does Blau (5, 6).

2.2.2 High-Level Architecture. As the heir apparent to DIS, the High-Level Archi-

tecture (HLA) takes a more comprehensive approach to communication and basic system

requirements. The stated goal of HLA is to establish an architectural framework supporting

interoperability between different simulations. A central architectural decision supporting

this goal is the separation of application functions (managed by a host application soft-

ware system) from communications functions (managed by the Runtime Infrastructure, or

RTI). The RTI manages communication paths between executing applications, ensures its

applications acquire the data they subscribed to, and publishes data other applications

request. The RTI "publish and subscribe" mechanism reduces the amount of data trans-

mitted between applications to only that requested by the applications. The foundational
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papers for HLA are contained in the 15th Workshop on Standards for the Interoperability

of Distributed Simulations (8, 11, 14, 24, 32).

2.3 Computer Generated Forces

Computer generated forces (CGFs) are computer-controlled actors in a distributed

virtual battlespace. In general, CGFs attempt to model either human cognition or human

behavior in combat; approaches to achieving realistic CGFs are described by Calder, et

al. (7), Edwards (13), Laird (19, 20), and Tambe (35). The runtime challenges for a CGF

arise from the need to compute human behaviors and reactions to a complex dynamic

environment. Other research (such as TacAir-Soar) addresses this challenge by attempting

to emulate the human cognitive process (19). On the other hand, this research assumes that

simulating the observable aspects of human decision making is sufficient. This assumption

somewhat eases the computational requirements of a CGF.

Unfortunately, many rapidly developed CGFs fail to display realistic and accurate

outputs when compared to human counterparts. This modeling deficiency allows human-

controlled actors to easily identify their computer-controlled counterparts, thus yielding

an unrealistic advantage to and reinforcing potentially fatal behaviors in the participants

being trained. Both the physical and mental representations of a CGF must be realistically

modeled to ensure realistic outputs. Karr, et al., present an overview of the requirements for

and current deficiencies in CGF representations (18); Santos, et al. (27), and Rosenbloom,

et al. (25), present approaches for developing "human-like" CGF mental representations.

2.4 Common Object Database Architecture

The Common Object Database (CODB) is a data-handling architecture that uses

object classes, containerization, and a central runtime repository to manage and route

data between applications in a distributed virtual environment (34). There can be multiple

CODBs on a single host, most of which will contain only the information required by the

applications directly connected to them. One CODB, however, must maintain the entire

current state of the DVE via a "world state manager" (WSM). The WSM sends and receives

networked information about entities in a distributed simulation; calculates entity positions
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via dead reckoning between updates; and converts network messages to their corresponding

CODB container data structures. It is the responsibility of each subordinate CODB to

ensure the appropriate information propagates both to and from the WSM CODB.

Stytz, et al. (34) describes the CODB architecture. The CODB approach and imple-

mentation used in support of this research are discussed in Appendix A.

2.5 Knowledge Acquisition

Knowledge acquisition consists of two tasks, both essential to the development of

knowledge-based systems such as CGFs. During knowledge elicitation, a knowledge engi-

neer gathers knowledge from sources such as domain experts, books, reports, and visual

inspection (15). Once a sufficient amount of knowledge is obtained, a knowledge represen-

tation is used to convert it to a computer-readable format. This process is often iterative,

and is discussed in great detail by Gonzalez and Dankel (15). Examples of knowledge acqui-

sition techniques for CGFs include "semantic areas of concern" used by Zurita (38) during

the Intelligent Wingman project, and "storyboarding", utilized by Banks and Lizza (21)

to implement the Pilot's Associate.
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III. DMTITE Design Methodology

DMTITE is designed to allow human pilots to train against a variety of threat systems,

some of which operate in the same domain as the pilots, some of which do not. For ex-

ample, opposing aircraft operate in the same domain as human pilots, while land-based

radar and electronic countermeasure (ECM) systems do not. Further complicating mat-

ters are threats that operate in multiple domains, such as surface-to-air missile (SAM)

and anti-aircraft artillery (AAA) sites-land-based entities which generate airborne enti-

ties (e.g., missiles and bullets). CGFs simulating these threats require different knowledge,

tactics, and physical models to accurately portray a realistic threat environment. Current

CGF development efforts build entities "from the ground up", factoring the domain of

interest into early design decisions, resulting in a software architecture tightly coupled to

that domain. Commonalities between CGFs are often overlooked since similar CGFs are

often viewed as having distinct and different roles and responsibilities within the virtual

battlespace. The use of proprietary software development tools and practices further com-

plicates matters since they are not transferable to other CGF development efforts. The

results of these practices are higher development-and ultimately training-costs, as well

as a lack of coordination between CGFs.

Identifying a design methodology to rapidly design, implement, and test DMTITE

CGFs addresses these concerns in several ways. First, a design methodology defines a

standard approach for developing CGFs, addressing the software engineering concept of

reuse by encouraging developers to evaluate new requirements in terms of existing CGF

implementations. As a result, work duplicated among multiple CGF development efforts

is minimized. Second, a design methodology serves as a roadmap, helping both knowledge

and software engineers identify the type and scope of work to be accomplished. This

allows CGFs to be developed in a more effective and efficient manner. Finally, identifying a

design methodology allows a software architecture to be implemented in support of it. This

architecture becomes a tool of the methodology, shifting development efforts from structure

implementation (concerns such as processing flow and interprocessing communication) to

knowledge implementation (the specific knowledge and state information required by a

CGF). Actual software development is then limited to designing and implementing physical
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models not yet incorporated as part of the software architecture, resulting in a more efficient

manner of developing CGFs.

3.1 Goals of the Design Methodology

The first goal of the DMTITE design methodology was to avoid specifying knowledge

elicitation and documentation techniques to be used. The design methodology needed to

be flexible enough to allow knowledge engineers to use whatever techniques are available

and appropriate. Another goal of the DMTITE design methodology was to minimize the

amount of duplicate knowledge used to implement a CGF. This goal is similar to the

concept of centralized control in database systems (12); it controls redundancy, helps avoid

inconsistencies in the knowledge, and maintains knowledge integrity. A third goal was to

identify a taxonomy capable of supporting a domain-independent approach to developing

CGFs while acknowledging the fact that each domain requires knowledge not shared by

other domains. A final goal of the design methodology was to incorporate the identification

of "knowledge modifiers" into the CGF development cycle. With such wide ranging goals,

then, the ultimate goal of this design methodology is to identify components essential to

the development of a CGF (regardless of domain), then to bring those components together

in a cohesive, usable manner.

3.2 Knowledge Representations

While the design methodology assumes a suitable method of eliciting and document-

ing knowledge to construct a CGF exists, at some point that knowledge must be mapped to

a single representation supporting multiple inferencing strategies. A single representation

allows knowledge to be accessible to any inferencing strategy with only minimal modifi-

cation, reducing the work required to inference over knowledge originally implemented for

some other inferencing strategy. Furthermore, this representation must support the goal

of minimizing the amount of duplicate knowledge in the system. This allows knowledge to

be added, deleted, or modified in an efficient and effective manner. Finally, while not an

explicit goal of the design methodology, the knowledge representation shouldn't prevent

the knowledge from being dynamically added, removed, or modified by the CGF.
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3.2.1 Knowledge Expressions. At the lowest level, the knowledge representation

must be able to express knowledge in the form of rules, facts, and so forth in a manner

usable (or at least decipherable) by an inferencing strategy. For DMTITE CGFs, three

possible inferencing strategies were identified: case-based reasoning, rule-based reasoning,

and fuzzy logic. Since each of these inferencing strategies have been demonstrated to be

computable, they can be derived from primitive recursive functions (22); that is, they are

derived from a common set of predicates. These predicates can be expressed as if-then (or

if-then-else) expressions; as a result, these terms are used to express the knowledge used

by any of the inferencing strategies supported by DMTITE.

However, the traditional variables contained in most if-then terms do not fully sup-

port fuzzy logic. A knowledge representation supporting fuzzy logic must support not

only "crisp" (traditional) variables, but also "fuzzified" variables (representing a range of

values). Since this is the only difference between a traditional if-then term and a "fuzzy" if-

then term, an extensible knowledge representation is readily identifiable and implemented.

(The knowledge representation used in DMTITE is discussed in Appendix C).

3.2.2 Policies: "Atomic" Knowledge Bases. At a higher level of abstraction,

the knowledge representation must support knowledge bases comprised of smaller, more

"atomic" knowledge bases. Borrowing a term coined by Earl Cox in support of his

Fuzzy Modeling System (10), these "atomic" knowledge bases are policies---logical and

self-contained units of knowledge. This knowledge representation has two significant ad-

vantages. First, it supports the goal of minimizing the amount of duplicate knowledge in

DMTITE. For example, a given aircraft CGF might define an "offensive posture" knowl-

edge base as consisting of an "offensive maneuvers" policy and a "known enemy maneuvers"

policy, while defining a "defensive posture" knowledge base in terms of a "defensive ma-

neuvers" policy and the same "known enemy maneuvers" policy (Figure 3.1). Additional

enemy maneuvers can then be added to a single policy while being reflected in both knowl-

edge bases. The other advantage of this knowledge representation is knowledge abstraction.

Just as data abstraction allows use of an object without knowledge of its underlying data

structure, knowledge abstraction allows an entity to access a knowledge base seemingly

3-3



common to other CGFs, but consisting of different policies. For example, CGFs may

search for threats using optical sensors ("eyes"), radar, or both. A general search knowl-

edge base can be defined consisting of policies specific to the sensors available to a given

CGF (Figure 3.2). Furthermore, the general search knowledge base can be incrementally

implemented and tested by including each of its constituent policies one at a time.

3.2.3 Knowledge Repository. At the final level of abstraction, the knowledge

representation should allow knowledge to be centralized. This centralized nature allows

knowledge to be globally available to all inferencing engines requiring it, but doesn't require

each engine to maintain a local copy of the knowledge it uses. Centralization of knowledge

also allows engines to add, delete, and modify knowledge bases in a manner that makes

such changes available to all engines using those knowledge bases. If an inferencing en-

gine requires a local copy of the knowledge (for instance, the knowledge representation is

not directly supported by the inferencing strategy), this approach permits such copies to

be made. The flexibility of a knowledge repository makes the design methodology more

attractive to both knowledge and software engineers.

3.3 Knowledge "Modifiers"

CGFs should display multiple skill levels in a manner similar to those displayed

by human actors and the design methodology must identify a means of capturing this

information. Since the presence of skills is reflected in the behavior of a combatant, and

the behavior of CGFs is based on the knowledge available to that CGF, skills are essentially

"knowledge modifiers." For example, an anti-aircraft artillery CGF with little weapons skill

may display this by firing at targets out of range, while an identical CGF with more skill

would wait until the target is within weapons range. While eliciting and documenting

knowledge, the knowledge engineer should identify the presence of skills in the domain

experts. Differences between the actions described by a domain expert and the actions

dictated by doctrine are one example of the presence of skills. Unfortunately, no one

method can identify the presence and effect of skills; as a result, the knowledge engineer

must carefully analyze acquired knowledge and determine if skills affect it.
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Figure 3.1 Shared Policy Example

How skills affect knowledge is no easier to identify. In most cases, the skills will

indirectly affect knowledge by modifying the information that triggers it. Returning to the

previous example, the unskilled AAA CGF extends the firing range of its weapon beyond

its actual limit. One way of reflecting this is to determine the farthest range an unskilled

operator would fire at and derive a mathematical function that reduces the range as skill

increases. Another approach would be to determine the actual firing range of a weapon,

then derive a mathematical equation that extends that range as skill decreases. Again,

how the skill ultimately affects the knowledge is left to the judgment of the knowledge

engineer; however, the ultimate goal here is to reflect actual observations into the synthetic

battlespace.

3.4 A Supporting Taxonomy

An approach that assumes a single cognitive representation for multiple CGFs implies

a taxonomy exists for the CGFs in question. In the case of distributed virtual environments,

the DoD developed such a taxonomy, albeit embedded in the DIS standard (IEEE 1278.1-

1995). In DIS, the "Entity State" Protocol Data Unit (PDU) defines (among other things)

the category to which a CGF belongs (17). This information is the ideal basis for a
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Figure 3.2 Knowledge Abstraction Example

taxonomy, if one accepts these categories as defining the various mission platforms within

the land, surface, air, and space domains.

Although DMTITE is capable of supporting space-based CGFs, this domain is no-

tably missing from the taxonomy. The DIS standard includes a very limited taxonomy

of space-based entities, dividing them into two categories ("manned" and "unmanned"),

and enumerating only the U.S. Space Shuttle fleet under the "manned" category. The

DIS taxonomy (and the corresponding DMTITE taxonomy) reflect the current political

agreements banning space-based weapon systems. Obviously, if the political environment

changes, a taxonomy for the space domain will need to be implemented.

3.5 A "Knowledge-Centric" Design Methodology

The design methodology (discussed in detail in Appendix B) resulting from the in-

corporation of the components identified in this chapter consists of two parts. The first

half focuses on what knowledge is necessary to instantiate a CGF category within a given

domain (e.g., land, air, surface) in the DMTITE taxonomy. During this phase of develop-

ment, a knowledge engineer elicits and documents knowledge from the appropriate sources,

groups related knowledge into policies, and determines the inferencing strategies to be em-
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Figure 3.3 Initial DMTITE Taxonomy

ployed by the CGF. While acquiring knowledge, the knowledge engineer also identifies

knowledge "modifiers" (expressed as skills and other operator capabilities) and determines

how these affect the knowledge in question. When this phase of the methodology is com-

plete, the knowledge engineer has developed the cognitive representation for a category of

CGFs in the DMTITE methodology. The first half of the design methodology is the most

time-consuming aspect of developing knowledge-based systems such as CGFs (15), but

should be conducted fully only once for each CGF category. As additional knowledge is

identified for inclusion within a CGF category, the knowledge engineer will need to revisit

this phase of development, although these efforts should be smaller in scope than the initial

development effort.

On the other hand, the second phase of the methodology will most likely occur every

time a new CGF type (e.g., F-15, F-16, F-22) within a category is instantiated. In this

phase, the knowledge engineer works closely with a software engineer to ensure the proper

information is used to invoke the CGF's knowledge. Physical models are identified and, as
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necessary, designed, developed, and tested. The information provided by these models is

mapped to the information required by the cognitive representation. In short, when this

phase is complete, the knowledge and software engineers have identified and implemented

the information upon which the CGF will base its behaviors. Since this includes simulation-

specific information such as weapon loadouts, fuel levels, and so forth, this phase of the

methodology will most likely be performed each time a CGF is to be instantiated for use

in a distributed simulation.

This design methodology is "knowledge-centric" since it, in its first phase, is con-

cerned with what knowledge is required by a CGF (or category of CGFs) and how that

knowledge is modified through skills and other capabilities while, in its second phase, it

focuses on how that knowledge is invoked. The knowledge and software engineer no longer

are concerned with essential but domain-independent issues such as how the CGF commu-

nicates its state to the DVE. In fact, the design methodology itself is not concerned with

such issues; instead, it assumes these concerns are integrated into the underlying software

architecture.
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IV. A Domain-Independent Software Architecture

In addition to supporting the design methodology outlined in Chapter IH, the DMTITE

domain-independent architecture is required to fulfill several other goals. First, the soft-

ware architecture must be able to support live, virtual, and constructive simulations, since

each of these are used in military training. Second, the software architecture must be

flexible, so that current CGF development efforts can be used to address future CGF re-

quirements. Third, the architecture must support domain-independent concepts such as

combat psychology, communication, and cooperation. The design methodology this archi-

tecture supports assumes these issues are addressed by the architecture and, as a result,

the architecture must allow such concepts to be incorporated with no effect on the design

methodology. Finally, the software architecture must address the concerns of CGF behavior

consistency, unpredictability and certifiability. Consistency establishes behaviors reflecting

a given state of the virtual environment; in other words, behaviors that axe not random or

completely ignore the environment state. Unpredictability eliminates exploitable patterns

in CGF behaviors. Certiflability measures CGF behaviors against human behaviors in

similar situations (4).

This chapter begins by describing a general architecture, the first step in meeting

these goals. The general architecture is then extended to encompass domain-independence

and further address unpredictability and certifiability. Next, the concepts of the design

methodology and the components of the extended architecture are instantiated. Finally,

these components are brought together to establish the complete and integrated DMTITE

software design.

4.1 An Existing Architecture: The General CGF Architecture

Santos, et al. (27), have proposed a general architecture of CGF components. Figure

4.1 shows this architecture, which consists of a physical dynamics component, an active

decisions component, and a CGF router. The key of this architecture lies in the separation

of physical and cognitive processes, which allows several advantages. First, it minimizes

dependencies between the two processes; changes to one do not necessarily impact the
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other. Second, it shifts the focus from what knowledge is available to how the knowledge

decomposes. Finally, it allows instantiated CGFs to display a wide variety of abilities and

skills.

DVE

Figure 4.1 General CGF Architecture (27)

4.1.1 Physical Dynamics Component (PDC). The PDC consists of components

modeling a CGF's physical aspects: kinematics models, sensor models, weapons models,

and so forth. As proposed by Santos, et al. (27), the PDC also initializes parameters that

give a CGF a specific identity, such as performance specifications and operator capabilities.

4.1.2 Active Decisions Component (ADC). The ADC consists of four compo-

nents that use information from the PDC to make decisions. The Strategic Decision Engine

(SDE) is concerned with high-level functions such as identifying, implementing, and revis-

ing mission goals. The Tactical Decision Engine (TDE) manages the moment-to-moment

operations of the entity, such as determining which maneuvers to execute or weapons to

employ in a given situation. The Critical Decision Engine (CDE) represents the survival

instinct of the entity, determining if an emergency situation exists and (if so) what actions

to take. Finally, a Basic Control Module (BCM) converts signals from the decision engines

to appropriate physical model inputs.
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4.1.3 CGF Router. The CGF router is the interface between the distributed

virtual environment (DVE) and the entity. As proposed by Santos, et al. (27), both the

PDC and ADC directly access the CGF router.

4.2 Extending the General Architecture

The DMTITE architecture (shown in Figure 4.2), originally proposed by Van Veld-

huizen and Hutson (37), extends the general architecture to support both a domain-

independent approach to implementing CGFs and address the concern of certifiability

(which is only partially addressed by the general architecture). The high-level mapping

between the general architecture and the DMTITE architecture is shown in Table 4.1 and

discussed in the following sections.

Computer Generated Entity

Physical Representation Cognitive Representation
-- Component Component

Physical ModelRepositocn"" • Long-Term

Pi Decision Engine

Physical Model Mission-Level

) M Decision Engine

W;ý Phys~ical Mod~el _

I ___.j•Arbitration Engine -

Figure 4.2 DMTITE Software Architecture

4.2.1 Physical Representation Component (PRC). The PRC maps closely to

the PDC. Like the PDC, the PRC consists of physical models (such as those identified

previously). These physical characteristics are viewed as objects and operators; the result-

ing modularity allows for easy addition, deletion, and modification of these components

without requiring corresponding changes to the cognitive representation.
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Table 4.1 High-Level Relationship between General and DMTITE components

General Architecture DMTITE Architecture

Physical Dynamics Component Physical Representation Component
Active Decisions Component Cognitive Representation Component
Critical Decision Engine Critical Decision Engine
Tactical Decision Engine Mission-Level Decision Engine
Strategic Decision Engine Long-Term Decision Engine
Basic Control Module Arbitration Engine
CGF Router Sensor Interface
(implicitly defined) Physical State Information Interface

However, the PRC doesn't exactly map to the PDC. The PRC is comprised strictly

of the physical attributes and properties of the CGF; those characteristics that are subject

to physical laws. Concepts such as "skills" and "operator capabilities" don't observe such

laws and have been moved to the cognitive representation. Another significant change is

that the PRC represents the CGF's sole communications channel to the DVE. This change

was made to more closely reflect reality, where humans are forced by design to interact with

their environment directly through physical processes. In the case of the CGF, interaction

is handled by the sensor interface. This component queries the DVE for information

in domains of interest (such as land, surface, or air) and relays this information to the

physical models. The sensor interface is also responsible for keeping the DVE informed of

the entity's existence as well as any events triggered by the CGF by submitting the proper

containers to the local CODB.

4.2.2 Cognitive Representation Component (CRC). The CRC encompasses CGF

characteristics that are less physical and more cognitive in nature. It is responsible for

simulating the outcomes of the human cognitive process (decisions), but does not require

a model of the cognitive process to be implemented. While, much like the general archi-

tecture's CDC, the CRC is concerned with decision-making and also contains the CGF's

goals, entity profile, and knowledge bases.

The CRC, much like the CDC, consists of three decision engines, although the names

were changed to minimize the semantic impact of words such as "tactical" and "strategic"
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(since these terms have distinct meaning within the warfighting communities). The Long-

Term Decision Engine (LTDE) reasons over strategic plans and goals of concern to the

CGF. For example, it allows the CGF to identify "targets of opportunity" that advance

the ultimate goals of the simulated mission, but were not part of the CGF's original tasking.

The Mission-Level Decision Engine (MLDE) reasons over moment-to-moment and short-

term actions of the CGF. Such actions include, for example, initiating a bomb drop or

attacking enemy aircraft. The Critical Decision Engine (CDE) is the only engine that

remains unchanged in both name and function from the general CGF architecture. Like

the general architecture, the DMTITE architecture has three decision engines scoped to

different levels and tasks. This scoping allows fine-tuning of a single set of behaviors (e.g.,

long-term planning) with minimal impact on other behaviors. Unfortunately, each engine

will most likely render a different decision for the same situation.

To overcome this situation, the general architecture's BCM is replaced in the DMTITE

architecture with an Arbitration Engine, a specialized decision engine responsible for se-

lecting the decision ultimately enacted. The Arbitration Engines polls the other decision

engines and considers not only those decisions, but also each decision's merits relative to

the current state of the entity profile. (The entity profile is discussed in detail in Section

4.4.) As a result, the Arbitration Engine can simulate abstract concepts such as "fear"

(by selecting the CDE's decision), "bravery" (by ignoring the CDE's decision and choosing

the MLDE's), and "indecisiveness" (by choosing to ignore all decisions). In short, the

Arbitration Engine ultimately decides the course of action a CGF takes while attempting

to simulate human behaviors in those actions.

The final component of the CRC is the Knowledge Base Repository. This repository

maintains the sum of the knowledge available to the CGF, minimizing the duplication that

would occur if each decision engine maintained local copies of this information. Decision

engines access this knowledge at the knowledge base level, having no direct access to the

individual policies that comprise each knowledge base. While not part of this research, the

Knowledge Base Repository also allows knowledge to be dynamically added, deleted, and

modified in one location while affecting multiple decision engines.
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4.2.3 Physical State Information Interface (PS11). The PSII is the CRC's sole

source of state information. It consists of a variety of state messages, data structures that

group related physical state information. For example, the state message representing

a hostile entity specifies information such as its domain, heading, speed, orientation, and

type. Physical models place state messages into the PSII, and the CRC can retrieve related

state messages generated by different physical models via a single call to the PSII.

The PSII (as well as the Sensor Interface in the PRC) supports the concept of data

filtering, shown in Figure 4.3. "Pure" state information is manipulated by the physical

models in the PRC to produce "sensor-corrupted" information, which is stored in the PSII.

The CRC retrieves this "sensor-corrupted" information from the PSII, corrupting it further

by adding the effects of the entity profile. This "sensor- and skill-corrupted information"

is the actual information used by the CRC to make decisions.

Sensor
Interface

Spure world state information

Physical
Model

sensor-corrupted state
information

PSII 

'

sensor-corrupted state
information

Decision
Engine

sensor- and skIl-corrupted
state information

Inferencing
Strategy

Figure 4.3 Data Filtering in DMTITE

The PSII also serves as the repository for physical model control information. When

the Arbitration Engine decides to interact with the DVE, it places the corresponding

control messages in the PSH. On the next update cycle, each controllable physical model

queries the PSH for any control messages affecting it. Any applicable control messages

are acted upon by the physical model. Ultimately, the Sensor Interface gathers the effects
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of these interactions and submits the information to the local CODB, which ultimately

transmits this information to other actors in the synthetic battlespace. In short, the CRC

doesn't directly interact with the DVE; instead, it interacts with its physical representation

which, in turn, propagates these interactions to the DVE.

4.2.-4 Common Object Database (CODB). To ensure compatibility with the cur-

rent Distributed Interactive Simulation (DIS) protocol as well as the proposed High-Level

Architecture (HLA) protocol, the communications aspects of the CGF were "removed"

from the CGF and placed in the domain of a Common Object Database. The CODB

serves as a repository for information being distributed to and collected from the DVE.

CGFs interact with the CODB through the use of data containers: the CGFs are respon-

sible for populating their portion of the container with the appropriate information and

routing it to the CODB. The CODB then (conceptually) "repackages" this information to

meet the requirements of the communication protocol being used. As long as the CGF

is placing the proper information in its containers, the CODB will be able to meet the

communications requirements.

Although the CODB concept has been in place at AFIT for several years, it has

yet to be fully realized. Several simplifying assumptions have been made regarding its

implementation, rendering it not much more than a memory arena utilized by different

applications. In support of DMTITE, the CODB concept was revisited and reimplemented

(Appendix A). As a result, DMTITE CGFs have access to the full capabilities of the CODB

concept, as proposed by Stytz, et al. (34).

4.3 Knowledge Representations

The DMTITE software architecture is ultimately responsible for providing the data

structures and implementations of the knowledge representations identified by the design

methodology. This responsibility is best addressed by applying software engineering prin-

ciples to the problem, as discussed in the following subsections.
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4.3.1 Knowledge Expressions. As discussed in section 3.2.1, a general knowledge

representation based on if-then-else predicates is required to support the various infer-

encing strategies to be used. This representation must be extensible to support features

of one inferencing strategy not available (or known) to another, while residing in a com-

mon repository. Fortunately, the object-oriented concept of inheritance supports these

requirements.

The DMTITE software architecture defines a generic Expression class from which all

knowledge expressions are derived. The Expression class is purely virtual; it establishes

the access methods to be supported by all derived types, but can't be used to directly

instantiate a knowledge expression. The current format for the knowledge expressions

used for case-based, rule-based, and fuzzy logic inferencing in DMTITE is discussed in

Appendix C.

4.3.2 Policies. The software architecture directly maps the concept of policies

(discussed in section 3.2.2) to a data structure. As with knowledge expressions, policies

may encapsulate information in one inferencing strategy that is neither known or required

by another. In much the same manner as was done for expressions, a purely virtual Policy

class is defined from which policies specific to each of the inferencing strategies are derived.

Unlike the Expression class, which doesn't define the contents of derived expressions, the

Policy class forces all derived policies to initially view the expressions in a generic sense,

casting them to the appropriate derived type internally. More information on the case-

based, rule-based, and fuzzy logic policy classes can be found in Appendix C.

4.8.3 Knowledge Bases. At this level of abstraction, the software architecture

departs from the design methodology. From the methodology viewpoint, a knowledge base

is comprised of all knowledge in its constituent policies. From the architectural viewpoint,

a knowledge base relies on the policies to define its constituent knowledge. In other words,

the knowledge base class contains a list of policies to be referenced and the methods to

access those policies. However, inferencing engines aren't aware of this distinction; they

access the knowledge bases as if the knowledge resided within them.
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4.3.4 Knowledge Base Repository. The software architecture views the knowledge

base repository as a collection of policies (where the actual knowledge expressions reside)

and knowledge bases. Policies are not directly accessible to users of the repository; instead,

the repository forces users to view knowledge at the knowledge base level.

4.3.5 Type-Independent Variables. One aspect of knowledge expressions not

addressed by the design methodology involves variable storage. Variables of different types

require different amounts of memory, so a means of abstracting this detail away is necessary.

Again, inheritance comes into play.

The software architecture implements a type-independent variable class. This class

requires the user to specify the type of data being stored initially, as well as forcing the

user to explicitly retrieve the value, but does allow knowledge expressions to store this

information. Methods are provided to evaluate relationships (e.g., "less than", "greater

than") between variables, and mathematical expressions can be embedded and evaluated

within a variable. The impact of this design decision is that a small amount of additional

processing time is required to evaluate an expression and additional information must be

embedded in each expression (see Appendix 0); however, the flexibility provided by this

approach far outweighs the costs.

4.4 Simulating Human Behaviors: The Entity Profile

As stated in section 4.2.2, the Arbitration Engine maintains an "entity profile" in

support of multiple skill levels. The first component of the entity profile is the skills vector,

part of the general architecture proposed by Santos, et al. (27) This vector is supplemented

by entity traits--variables defined for all CGFs (regardless of their domain) and used to

support a combat psychology model. When combined, these concepts address behavior

consistency, unpredictability, and certiflability.

4.4.1 Skills Vector. A CGF skills vector is a hierarchical collection of parameters

representing the current skill level of the CGF in question. Highly specialized skills are
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mapped to more basic skills, both of which may change over time. This interaction between

skills guarantees consistency in the behavior and performance of the CGF (27).

The skills vector is a domain-independent concept with domain-specific instantia-

tions. While a skill may be shared among different CGF categories, no skill will be common

to all categories. As a result, the DMTITE software architecture only defines the skills

vector as an object and makes no attempt to define its contents. Instead, the skills to be

used by a CGF are defined at runtime via an initialization file (see Appendix E).

4.4.2 Entity Traits. Human behaviors in combat aren't strictly a measure of skill;

they reflect other, less tangible concepts. Unlike skills, these concepts (or traits) apply to all

combatants, albeit in varying degrees due to genetics and life experience (29). When used in

conjunction with a combat psychology model, these variables address the unpredictability

and certifiability concerns of CGF behavior by modifying the CGF's behavior not only

in response to that entity's skills, but also its evaluation of the current environment. For

example, consider two CGFs that have identical skill vectors (i.e., they are equally skilled

and seemingly identical). If the CGFs traits are not considered, these CGFs will respond

identically to the same input-revealing a predictable pattern that can be exploited by

human actors. Introducing traits quantifies the less tangible attributes of these CGFs,

and allows (for example) one CGF to hesistate in a given situation while the other CGF

does not. Although two CGFs with identical skills vectors and traits will display the

same behavior in a given situation, the addition of these extra variables makes exploitable

patterns more difficult to discern.

4.4.3 Combat Psychology Model. If human behaviors are to be simulated, then

human behaviors under combat situations must be incorporated into the entity profile.

Current OGFs tend to "fight to the last man" with little or no effect on their performance,

forcing human controllers to order heavily damaged CGFs to retreat (18). These behaviors

undermine the unpredictability of CGFs, since they establish patterns of behavior that

can be exploited by human actors. Furthermore, these behaviors aren't certifiable since

even highly trained combatants suffer performance degradation under harsh battlefield

conditions.
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Incorporating a combat psychology model in the architecture addresses these con-

cerns. CGFs operating under such a model can suffer progressively increasing performance

degradations, from slight hesitations to panic-stricken retreat. The combat psychology

model incorporates multiple levels of behaviors in a manner identical to how the skills vec-

tor supports multiple skill levels. Therefore, the combat psychology model also supports

consistent CGF behaviors, since a given CGF "psychological profile" displays behaviors

consistent to those displayed by a human combatant with a similar psychological makeup.

The combat psychology model used in the DMTITE is discussed in detail in Appendix D.

4.5 Bringing It All Together: The DMTITE Entity Design

The concepts and components discussed in the previous sections are brought together

in the initial DMTITE software design (Figure 4.4).

This object model represents the structural aspects of a DMTITE entity, establishing

the objects and the relationships between objects that comprise the DMTITE software

architecture. Objects that share common structure and behavior (i.e., decision engines)

are represented hierarchically. Since the structure of a DMTITE entity is defined by this

architecture, software engineers can implement decision engines to support specific infer-

encing strategies without concern as to how the engine will be invoked-the processing flow

already addresses this concern. Additionally, existing physical models can be incorporated

into DMTITE by simply ensuring each uses the interface defined by the object model. As-

suming the existing physical model is itself modular in design, little (if any) modification

will be required to the model itself.

The object model also incorporates many domain-independent concerns while not

explicitly declaring them. For instance, the entity profile is itself nothing more than a

collection of variables used by the Arbitration Engine. This engine is derived from a generic

Decision Engine object, which already includes a set of variables. As a result, the entity

profile is subjected to abstraction; as an architectural component it is unimportant and

therefore suppressed. This allows knowledge engineers to identify and software engineers

to implement the entity profile as nothing more than a list of variables. The architecture

handles these variables no differently than any other.
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Figure 4.4 DMTITE Entity Design

Finally, the object model defines how ste informat ion is passed throughout a

DMTITE entity. The CRC can not "go outside" this model to obtain information directly

from the distributed virtual environment. This is becauso le aCognitive Representation

Compnent object is physically isolated from the Sensor Interface object. On the other

hand, the architecture allows physical models to retrieve state information from or pass

state information to either of the state information repositories (the Sensor Interface and

the Physical State Information Interface). Furthermore, since the only difference between

the two repositories is the "flavor" of information each contains, the object model provides

one set of methods for both. This allows software engineers to modify how either decision

engines or physical models send and receive information without requiring them to learn

two different sets of methods.

In short, the DMTITE object model allows both knowledge and software engineers to

implement CGFs without concern to the underlying architecture. Assuming the required

physical models have been previously incorporated into DMTITE, new CGFs can be im-
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plemented solely by identifying the knowledge required and how that knowledge is invoked.

If a physical model is required that hasn't been previously implemented in DMTITE, only

minimal interaction with the software architecture is required.
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V. Contributions and Recommendations

5.1 Contributions

The design methodology and software architecture developed during the course of

this research contribute to future CGF development efforts in many ways. The domain-

independent nature of the design methodology allows it to be used not only during the

development of DMTITE CGFs, but also for other CGF development efforts. Knowledge

engineers can incorporate new knowledge acquisition tools and techniques in the method-

ology as they become available. Software engineers can develop models to reflect evolving

weapon systems, or new decision engines to address various inferencing strategies, without

detracting from the overall methodology. The extended general architecture has been im-

plemented using accepted software engineering techniques. This research has blurred the

line between the architecture (a series of black boxes that define what processing must be

done) and the software design (which defines how the black boxes accomplish their tasks).

Knowledge engineers can add knowledge to this architecture and gauge the effects of their

additions without knowledge of the underlying software architecture. Software engineers

can implement customized black boxes with no concern as to how the rest of the soft-

ware design performs it tasks. As a result, CGF development efforts can focus on what

knowledge is required and how that knowledge is invoked.

Another contribution of this research is the separation of domain-dependent issues

from domain-independent issues. Domain-independent issues such as coordination and

communication between CGFs can be implemented within the architecture and software

design. A standardized architecture for broad classes of CGFs makes the incorporation of

such issues readily available to all CGFs using that architecture. Ultimately, these CGFs

can display more complex behaviors (e.g., combined arms tactics) than behaviors displayed

by CGFs based on tightly-coupled software architectures. Perhaps more importantly, the

amount of effort required to implement complicated behaviors is greatly reduced.

Finally, this research maps the unpredictability and certifiability of CGF behaviors

to both skills and a psychological model. Since combat is not just a function of skills,

believable CGF behaviors require the injection of additional, less tangible concepts such
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as morale, aggressiveness, and intra-team support into the training environment. These

concepts allow two seemingly identical CGFs to display different behaviors based on their

current state as well as the state of the environment. This yields a time-limited Turing

test for human actors in distributed virtual environments-given the short response time

in such an environment, human actors can't distinguish between CGFs and other human

actors. As a result, human actors are forced to engage CGFs as they would other human

actors, reinforcing realistic tactics and increasing the overall training effectiveness.

5.2 Recommendations

There remains much that can be further explored with respect to this research effort,

both in concept and in application. With the establishment of a design methodology and

a supporting software architecture, most of these research areas are concentrated in the

field of artificial intelligence.

5.2.1 CGF Coordination. While the DMTITE software architecture was devel-

oped with an eye towards CGF coordination and communication, no method in support

of this goal was identified or implemented. This aspect of CGFs has a broad scope, nec-

essarily addressing other concerns such as mission planning and achievement-concerns

that fall within the domains of both the Long-Term and Mission-Level Decision Engines.

Furthermore, a means of communicating concepts such as those identified by the combat

psychology model is required to utilize the full range of behaviors supported by the model.

5.2.2 Planning. Planning is current a "hot" topic in the field of artificial in-

telligence and, while the software architecture's concept of a long-term decision engine

implicitly supports this topic, no explicit support is provided. Real-time mission planning

for CGFs remains just beyond the reach of researchers. A priori mission planning tech-

niques have been identified, but fail to adequately address the dynamic nature of DVEs

such as the synthetic battlespace.

5.2.3 Knowledge Acquisition. One of the more obvious assumptions of this re-

search is that no one knowledge acquisition technique is "most suitable" for CGF develop-
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ment. However, no attempt was made to validate this assumption since it was out of scope

of this effort. Future research in knowledge acquisition could attempt to either validate this

assumption or invalidate it by identifying an acquisition technique suitable for the broad

classes of CGFs supported by the DMTITE design methodology and software architecture.

Even if this assumption is validated, it may be possible to identify knowledge acquisition

methods that are more applicable than others in the domain of CGF construction.

5.2.4 Verification and Validation. Another obvious assumption of this research

is the behaviors of DMTITE CGFs can be verified and validated. In past efforts, this has

essentially meant sitting domain experts in front of a terminal and having them say "yeah,

that looks right." When CGFs display multiple skill levels, this qualitative approach works

only if the domain experts can relate to the skill level being displayed. Future research

could attempt to quantify the verification and validation of CGF behaviors. Such research

would be extensible to other CGF development efforts as well.

5.3 Conclusions

A domain-independent design methodology and software architecture address many

of the concerns raised by current CGF development efforts. By establishing a common

framework from which CGFs belonging to various domains can be constructed, develop-

ment (and ultimately training) costs are reduced. CGFs within a given domain can exploit

commonalities shared by other CGFs within that domain. Domain-independent concepts

such as combat behaviors and skills can be implemented for all CGFs, not just those in

a specific domain. The software architecture removes the threat generation system from

a single simulator and makes it globally accessing to all simulators within a distributed

virtual environment. This allows all simulators to observe threat behaviors at a consistent

fidelity level. CGFs built from a common architecture inherit the domain-independent fea-

tures of that architecture. This inheritance allows CGFs to form a complex, coordinated

threat environment. In addition, the domain-independent concepts of skills and combat

psychology minimize exploitable patterns of CGF behavior, increasing the overall training

effectiveness of the distributed virtual environment.
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While this research was conducted in support of a training environment for human

pilots, the resulting design methodology and software architecture are easily adaptable to

other CGF development efforts. This is because neither the methodology nor the archi-

tecture are coupled to a specific domain (air, land, surface, or space). In addition, the

methodology isn't bound to a specific set of knowledge acquisition, verification, or vali-

dation tools; it allows knowledge engineers to use any method they deem appropriate to

their specific development effort. Nor is the software architecture bound to a specific set

of physical models-software engineers may develop additional models as necessary and

easily incorporate them into the overall software design. This shifts the CGF development

effort away from "structure implementation" and towards "knowledge implementation."

Despite these assertions, the ultimate success of this research can be gauged by how

widely accepted and used the methodology and architecture are. Applying this approach

strictly within the domain of DMTITE without evaluating its fitness for other CGF de-

velopment efforts will not not prove anything. Successfully implementing CGFs using this

methodology and architecture in other development efforts is critical for this research to

be validated.
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Appendix A. Common Object Database Architecture Implementation

The CODB architecture implemented for the DMTITE project is a significant modification

of previous CODB implementations. The exact implementation, as well as the ramifications

of these modifications, is discussed in the following sections.

A. 1 Previous CODB Implementations

There have been two previous versions of the CODB, one developed in support of the

Virtual Cockpit project (1), the other in support of the Intelligent Wingman project (38).

The initial version of the CODB was built using the assumption that only a single appli-

cation per host would use the CODB. While this supported data sharing across a network,

it greatly reduced the number of entities supported by the CODB concept. A modification

was made to support multiple processes on a single host; however, these processes had

to be spawned from the same parent process (38). This implementation falls short of the

functionality required by the DMTITE project, in which CGFs are viewed as independent

processes, not child processes of a single parent.

The two implementations also shared a set of problems making both undesirable

for supporting DMTITE. Neither could support multiple CODBs on a single host; in

fact, it could be demonstrated that bringing up a second CODB would cause the host

to crash. Neither implementation allowed for "selective" retrieval of the contents of a

container; the application either retrieved the contents of the entire container or nothing

at all. Finally, both implementations allowed applications to directly access the CODB

memory contents. This dangerous access technique not only allowed the application to

access its assigned memory segment within the CODB, but any other memory segment as

well. Clearly, modifications were required to bring the CODB implementation to the level

of functionality support by its concept and required by DMTITE.

A.2 Extending the CODB Concept

While previous implementations of the CODB failed to meet the original concept,

the original concept did not adequately address issues germane to the DMTITE effort. To
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support the operational concept of the synthetic battlespace, containers must be able to

distinguish between and properly handle persistent and non-persistent information. Fur-

thermore, the original CODB concept envisioned a single type of "user"-an application

concerned with the information in the CODB. However, an implicit requirement of the

CODB was that it be "recursively defined": on a single host, tightly-scoped CODBs could

be connected to larger CODBs and so forth, ending with a CODB containing the totality

of the DVE (Figure A.1). In order to support this concept, a new "user" was required-one

that viewed the information in the CODB only with regards to routing. These concerns

are addressed in the DMTITE implementation of the CODB.

Host

Comimon Vira ApplicatiEn
Dewr 

rse

CCommo

oApplication conaeate to phe cOD

World State Manage

Disbibuted Virtual Environment

Figure A.1 "Recursively Defined" 00DB System

A. 2.1 Persistent and Non-Persistent Containers. There are actually two types of

containers being handled by the 00DB. The information in persistent containers is accessed

one or many times by the applications connected to the 00DB. Persistent containers can

be updated; however, all information in the container remains available to the applications

accessing it. On the other hand, the information in non-persistent containers is meant to

be accessed at most once by each application; when all applications have accessed specific

information, that information is removed from the container. Non-persistent containers

A-2



can be updated; however, only that information not accessed previously by an application

is available.

This distinction is made to support the two types of information broadcast in a

distributed environment. Data is persistent information-for example, entity state infor-

mation. If an entity doesn't move, its current position remains known to other entities.

Only when the entity "leaves" the distributed environment is its information removed.

Events are non-persistent data. An entity affected by a missile detonation should process

this information once and ignore any duplicate notifications of the same event. Therefore,

event information should be removed once all affected entities have received it.

The DMTITE CODB implementation processes these two types of containers by

monitoring the number of readers for each container as well as the identity of each reader.

Non-persistent information is passed only once to each reader; however, that information

remains available until all readers have accessed it. The CODB removes non-persistent

information from a container only after it detects all readers have accessed the container.

Persistent containers are monitored as well, but no action is taken when all readers have

accessed these containers.

A.2.2 "Pass-Through" Applications. There are actually two views of CODBs

within a "recursively defined" CODB system. A subordinate CODB contains a strict

subset of the information in the supervisory CODB to which it is logically attached. In

turn, a supervisory CODB can be subordinate to another, more inclusive CODB. This

chain of subordinate/supervisory CODBs ends with the World State Manager's CODB;

since it contains the total state of the DVE, it cannot be subordinate to any other CODB.

The original CODB is nothing more than a data repository for use by other appli-

cations and is incapable of supporting this concept. A CODB is not concerned with the

type of information contained within it, nor does it initiate a connection with the source of

that information. Therefore, a new type of CODB "user", an object manager, is required

to transfer containers between CODBs in an intelligent manner.

As implemented for DMTITE, an object manager is initialized (via an initialization

file) with the type of information to be passed to its subordinate CODB as well as how
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often the information is to be updated. At the specified intervals, the object manager

activates, passes the information matching its criteria to the subordinate CODB, and

passing all new information from the subordinate CODB to the supervisory CODB. Each

object manager must be terminated externally; however, object managers detect these

signals and disconnect from any CODBs they access. This is necessary since each CODB

releases its disk space only after all connections to it have been terminated.

A.3 CODB Logical View vs. CODB Implementation View

Even with the extended CODB concept, there remains a difference between how the

CODB logically operates and how its implementation operates. These two views are briefly

discussed below, along with the justification for the differences between the two.

A.3.1 Logical View. From a logical viewpoint, an application views the CODB as

a collection of containers from which information is extracted and to which information is

written (Figure A.2). The order in which information is placed within a container remains

constant: an application writes its own information to its assigned slot, and can read

information from another application by accessing that application's assigned slot. In this

view, applications always obtain the most up-to-date information each time a container is

read.

0 0) CODB Container
00
C

O0

0 I0

0

Figure A.2 Logical View of a CODB

A.3.2 Implementation View. As implemented, a CODB consists of two uni-

directional halves (Figure A.3). From the viewpoint of an application attached to the

CODB, one half consists of "incoming" containers-information to be used by the applica-

tions attached to the CODB. The other half consists of "outgoing" containers-information
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generated by the applications connected to the CODB. Therefore, most applications may

only read "incoming" containers and may only write "outgoing" containers. Although it

is desirable to allow applications to retrieve the most up-to-date information from "outgo-

ing" containers, the decision to disallow this was made to simplify processing within the

CODB. As a result of this decision, processing time is decreased since updated ("outgo-

ing") information can be retrieved and forwarded without scanning the entire contents of

the respective container.

CODB

"Incoming" Containers

4-- ý)Outgoing" Containers 4-.

Figure A.3 Implementation View of a CODB

A.4 DMTITE CODB Object Model

The DMTITE CODB object model that supports the extended CODB concept is

shown in Figure A.4. As established by Rumbaugh (26), rectangles denote classes and

subclasses, while triangles are used to indicate inheritance. There are four classes within

the CODB object model, as described below; one is a virtual base class, while the others

represent the ways an application can "view" the CODB.

Common Object
Database

Userý_CODB SprCD

Figure A.4 DMTITE CODB Object Model
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A.4-.1 Common Object Database. The Common Object Database class is the

virtual base class for all CODB implementations. This class defines the implementation

of some member functions inherited by derived classes; however, it defines the interface

for most member functions (leaving the derived classes to instantiate their own versions

of these functions). Because this class forces derived classes to define their own version of

some member functions, no CODB of this type can be directly instantiated.

A.4.2 User.CODB. The UserOCODB is the CODB as viewed by an application

concerned with the contents of the CODB. This CODB object assigns a single slot in

each container to be written to by an application (in direct support of the original CODB

concept). Unlike previous CODB implementations, applications never directly access this

memory "slot". Instead, the underlying data structure within the CODB is responsible for

determining where to place incoming information in the shared memory arena. Applica-

tions connected to a User-CODB may only read incoming containers and may only write

outgoing containers.

A.4-.3 Sub-CODB. This subclass is how the object managers view the CODB

to which they are subordinate. This view of the CODB is similar (but not identical) to

the view applications have of the UserOCODB. As a result, the SubCODB is derived from

the User-CODB class. Object managers may only read incoming messages from and write

outgoing messages to the CODB to which they're subordinate. However, since object

managers are responsible for passing along information from multiple applications, they're

allowed to write to multiple slots within the Sub-CODB.

A.4-.4 Super-CODB. This subclass is how the object managers view the CODB

they supervise. In this view, the role of "incoming" and "outgoing" containers is reversed:

the object manager reads "outgoing" containers and writes "incoming" containers. As with

the Sub-CODB, object managers are allowed to multiple slots within containers, since they

are passing along information from multiple (possibly distributed) applications.
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A.5 CODB Implementation

The actual implementation is mapped directly from the extended CODB concept,

taking the implementation viewpoint discussed in section A.3.2. TRIX shared memory

arenas and Standard Template Library (STL) data structures were used to implement the

interprocess communication and storage functionality aspects respectively. These changes

also required the CODB container data structures to be re-engineered.

For DMTITE, the contents of the containers were also implemented as classes. How-

ever, this aspect of the implementation does not directly affect the CODB implementation

(although it is related to it) and is not discussed here.

A.5.1 Shared Memory Arenas. Under UNIX, the size of shared memory is nor-

mally limited to 64 KB. Silicon Graphics (SGI) addresses this limitation in their IRIX

operating system through the use of shared memory arenas. An arena is a disk file that

acts as additional shared memory (28). This interprocess communication mechanism is im-

plemented as extended functions in the C library, operating in user space without system

calls. While this is convenient from a programming perspective, these arenas are IRIX-

specific. As a result, this implementation of the CODB is no.t portable to other hardware

platform or even SGI machines using another operating system. If the CODB is to be

implemented on another platform, the interprocess communication aspects will need to be

re-engineered.

A.5.2 Maps and Vectors: The Standard Template Library. The DMTITE CODB

implementation relies heavily on the Standard Template Library (STL) map and vector

classes. The STL is a collection of commonly-used data structures, defined as templates

so they are usable by any data type (even user-defined). The underlying structure of the

STL is based on red-black trees, guaranteeing O(lg n) access time in the worst case (9).

In addition, STL handles memory allocation and deallocation automatically. Finally, the

STL has become part of the ANSI standard for C++, which allows the storage aspects of

this CODB implementation to be portable across hardware platforms.
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In STL, a map defines a relationship between a key and its satellite data, in a manner

similar to how a telephone book maps a name to a number (2). A map is similar to an

array in that the satellite data can be accessed using the key as an index. When a new

index is referenced, the map dynamically allocates the appropriate amount of memory

for the satellite data. Each index in a map is unique; therefore, when an existing index

is referenced the map overwrites the associated satellite data as appropriate. A vector,

on the other hand, is a linear list of flexible size. For vectors, the user explicitly places

information at the head or tail of the vector-no indexing is supported. In the worst case,

then, the entire vector must be searched to find a specific piece of data.

In the CODB, maps are used within the shared memory arena to map slots to actual

memory locations. In addition, these maps are stored in a "map of maps" which allows

applications to locate and access a specific memory slot in O(lg n) time. To support the

CODB concept of double-buffering, two such "map of maps" are instantiated: one for

incoming containers, one for outgoing containers. (For additional information on double-

buffering, refer to Stytz, et al. (34) or Zurita (38).) Vectors are used for lower-level data

structures in which each element will most likely be accessed sequentially. Although these

data structures are not discussed here, they are part of the CODB. Therefore, the concept

of vectors is included here for completeness.

A.5.3 Containers. As proposed by Stytz, et al., a CODB container is divided into

categories and slots, as shown in Figure A.5. The primary category is the coarsest division

of container; an example of a primary category in DMTITE would be "red force", "blue

force", "neutral forces", and "unknown forces". A primary category is further divided

into secondary categories, which are divided into tertiary categories, and finally specific

categories (the smallest possible division of a CODB container). Slots contain the actual

data of the container; slot contents are provided by applications, not the CODB.

An application manipulates a container as a collection slots, each of which is a data

structure shown in Figure A.6. The first six fields of this data structure map the slot to

a particular container location; the last field contains the actual data. The container ID

field indicates the container to which the data is assigned, while the entity ID field contains
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Figure A.5 CODB Container Anatomy

a simulation-unique identifier for the application to which the information pertains. This

ID may be the application that originally broadcast the information to the DVE (e.g.,

entity state information), or the application targeted by the information (e.g., a fire or

collision event). The remaining four fields are the categories relevant to the information;

each category is represented as a 32-bit value, allowing a total of 32 unique identifiers

per category. (The choice of four categories was strictly arbitrary; the actual number can

be increased or decreased by modifying the corresponding data structure.) "Wildcard"

categories are permitted, allowing a slot to correspond to any value of the category in

question.

A.6 Ramifications

This CODB implementation addresses the shortcoming identified with previous im-

plementations and brings the CODB concept fully to life for the first time. Applications

can now access some or all of the contents of a container. Multiple CODBs can be hosted

on a single platform, whether in support of single or multiple DVEs. Applications do not

directly access the contents of the CODB; instead, copies of this information are returned,

allowing the application the flexibility to modify that information with no impact to the
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Figure A.6 CODB Container "Slot"

CODB. In addition, the original CODB concept was extended to address concerns germane

to DVEs. Persistent and non-persistent containers control how information is passed to

applications, while object managers pass information between two CODBs.

Perhaps the most significant ramification of this implementation is the reliance on

shared memory arenas. This concept is unique to the IRIX operating system; no other

version of UNIX implements these arenas. As a result, this version of the CODB performs

only on Silicon Graphics platforms. If the CODB concept is to be implemented on other

platforms (e.g., Solaris or Linux), another means of allocating large amounts of shared

memory will need to be determined.

A. 7 Conclusions

Previous versions of the CODB architecture were implemented through the use of

several simplifying assumptions that rendered them ineffective for the DMTITE project.

By eliminating these assumptions, the current implementation of the CODB provides a

robust architecture that can be utilized by multiple applications on a single host, handles

user-defined containers, and supports the "recursive" implementation envisioned by its

original designers. Since the actual CODBs are implemented as shared memory arenas,
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and not processes, some additional overhead is introduced through the use of "object

managers". These applications route containers between CODBs at user-defined intervals.

Whether these "object managers" have a significant negative impact on the DVE remains

to be determined.
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Appendix B. DMTITE Design Methodology

Figure B.1 illustrates the overall design methodology for DMTITE computer generated

forces (CGFs). A more detailed explanation follows in section B.2.
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Figure B.1 DMTITE Design Methodology

The left half of the methodology represents the implementation of the cognitive

model (the "Cognitive Representation Component", or CRC) for a given CGF category.

This portion of the methodology is performed only when a CGF category has not yet
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been implemented or when knowledge needed by a CGF has not yet been implemented

within a CGF category. The right half of the methodology represents the implementation

of the physical model (the "Physical Representation Component", or PRC) for a specific

CGF. During this portion of the methodology, the software engineer is concerned with

implementing specific physical components (e.g., weapons, sensors, and kinematic models),

identifying the knowledge bases to be used by the CGF, and specifying the CGF's entity

profile values. The first half of the methodology is the most time-consuming (15) but is

performed less often than the second half.

B.1 Assumptions

This design methodology assumes a taxonomy has been defined for the CGFs to

be supported. This taxonomy must support the concept that all CGFs within a given

category share a common cognitive process, although the knowledge manipulated by this

process may vary slightly between CGFs. Additionally, this methodology assumes the

supporting software architecture has been previously implemented, verified, and validated.

If the underlying architecture has not been verified and/or validated, it will be difficult (if

not impossible) to determine if processing errors are the fault of the architecture or the

knowledge being input into that architecture.

B.2 Design Methodology Process

1. Determine if CGF category has been implemented. This step of the methodology is

concerned with scoping the amount of knowledge acquisition to be performed by the

knowledge engineer. If the CGF category has not yet been implemented, the knowl-

edge engineer must obtain all appropriate knowledge from domain experts, manuals,

and so forth. If, on the other hand, the CGF category does exist, the knowledge

engineer must determine if any additional knowledge is required by the CGF being

implemented. If all necessary knowledge has been acquired and implemented, no

knowledge acquisition is necessary and the software engineer may begin work at step

7.

B-2



2. Acquire knowledge to develop CGF category. During this step, the knowledge engineer

elicits and documents knowledge from appropriate sources using any appropriate and

available knowledge acquisition technique(s). The knowledge acquisition performed

in this step is limited to that identified in step 1; however, the knowledge engineer

should also identify any modifiers (e.g., skills) for the knowledge in question. Al-

though the knowledge engineer may choose to progress to the next step only after

knowledge acquisition is complete, this step (along with steps 4, 5, and 6) will most

likely be part of an iterative process.

3. Determine how skills impact the CGF category knowledge. The knowledge engineer

determines exactly how any modifiers identified in step 2 affect the knowledge just

acquired. For this, a "refinement" approach is recommended: the knowledge engineer

should identify how an unmodified entity would view the knowledge, then determine

the impact of modification. Does the scope of the knowledge increase? Decrease?

Shift one way or another? Or does it exhibit a combination of these behaviors?

Another approach that can be used to quantify skills is input modeling. This tech-

nique, used extensively in traditional simulations, maps real-world data to mathe-

matical distributions (3). The resulting equations can then be used to map skills to

the corresponding value in the distribution.

If additional knowledge is required that hasn't already been acquired, the knowledge

engineer should return to step 2 before continuing.

4. Group related knowledge into policies. During this step, the knowledge engineer

first identifies knowledge that "feeds off" other knowledge (e.g., rules that require

other rules to have fired previously), combining this knowledge into tightly- coupled

knowledge bases known as policies. As this step progresses, the knowledge engineer

should ensure no knowledge is duplicated in multiple policies; if this occurs, the

affected policies should be decomposed into smaller, more atomic policies.

5. Implement the decision engines. With the assistance of the knowledge engineer, the

software engineer determines which inferencing strategy will be used for each deci-

sion engine. The software engineer also reviews the knowledge, determining what
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state information each engine requires from the physical state information interface

(PSII). If state messages haven't yet been implemented for this information, the soft-

ware engineer designs and implements the appropriate data structures. If the CGF

category hasn't been implemented previously, the software engineer must implement

and test each of the decision engines. If the CGF category has been implemented pre-

viously, the software engineer must ensure the required state information is properly

extracted from the PSH.

If either the knowledge engineer or the software engineer determine additional knowl-

edge not already acquire is required, the knowledge engineer should return to step 2

before development continues.

6. Encode the knowledge for each decision engine. The software engineer encodes each

policy into a format readable by the decision engine(s) accessing it. Each policy is

maintained in a separate file; Appendix C contains the current formats of policy files.

Again, if during this step additional knowledge is required, the knowledge engineer

should return to step 2 before further development occurs.

7. Implement the "baseline" initialization file. The "baseline" initialization file contains

initialization information common to all CGFs in a given category (Appendix E con-

tains the format of these files.) Among other things, this file specifies the inferencing

strategy and knowledge bases used by each decision engine; the variables that define

the category's entity profile; the policies that comprise each knowledge base; and the

fies that define the policies. If the CGF category hasn't been implemented previ-

ously, the software engineer must develop the "baseline" file. If the category does

exist, the software engineer must ensure any new state information, entity profile

variables, and/or policies are specified in the initialization file.

From this "baseline" initialization file, the software engineer derives the specific ini-

tialization file for the CGF being developed, although at this step the file is incom-

plete. The knowledge engineer specifies the values (between 0.0 and 1.0 inclusive) for

each of the entity profile variables during this step, although these may be changed
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as necessary. Data required by each of the decision engines (e.g., weighting values

for case-based engines) is also specified at this time.

8. Identify the physical models to be used by the specific CGF. Both the knowledge

engineer and software engineer identify the physical models to be used by the CGF.

These models provide the state information for the cognitive representation, and are

directly or indirectly identified during the knowledge acquisition phase (step 2). This

step consists of mapping state information to inputs; if no corresponding input exists,

the CGF must be able to deal with this uncertainty by using the knowledge available

to it. The knowledge and software engineers also decide the level of fidelity required

by the CGF during this step.

If all identified physical models have been implemented previously, development con-

tinues at step 10.

9. Implement and validate the physical models. Each of the missing physical models

must be implemented by the software engineer. This step consists of identifying the

functionality to be implemented, determining the state information to be retrieved

from the sensor interface, and ensuring the corresponding state information is stored

in the physical state information interface. The fidelity of the model must correspond

to the level of fidelity identified in step 8. The software engineer also performs

sufficient testing of the operation of each physical model developed during this step.

The software engineer may also need to add appropriate code to the model initial-

ization method of the physical representation to allow each newly designed model to

be instantiated at runtime.

10. Add physical models to the initialization file. Each physical model to be used by

the CGF is added to the initialization file by the software engineer. Any arguments

required by each physical model (e.g., rounds of ammunition, pounds of fuel) are

also specified during this step. The physical models must be specified in the order

they are processed during runtime; models requiring inputs from other models should

appear before the models providing the inputs.
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11. Validate and verify the implemented CGF. Both the knowledge engineer and soft-

ware engineer validate and verify the CGF by observing its behaviors in the virtual

battlespace. For completeness, the entity profile values should be changed during

this step to ensure the CGF displays an appropriate range of behaviors. Newly de-

veloped physical models and decision engines should be examined closely to ensure

they function as expected. The software engineer should use validated software engi-

neering techniques to validate the CGF's operation; the knowledge engineer should

use accepted verification and validation techniques to evaluate the CGF's behaviors.
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Appendix C. Policy File Formats and Examples

Policies are self-contained knowledge bases that form the "building blocks" for the knowl-

edge bases accessible by DMTITE decision engines. Each policy and the knowledge base(s)

that access it is specified in the initialization file (see Appendix E). The actual knowledge

contained in a policy is specified in another file called a policy file. Although knowledge

used by the three inferencing strategies supported by DMTITE is derived from a common

representation, each requires a specialized policy file. The expected formats of these files,

as well as a few simple examples, are described in the following sections.

C.1 General Expressions

Each knowledge representation is comprised of one (or more) expressions. These

expressions define preconditions (conditions which must be satisfied for a knowledge repre-

sentation to "fire"), true postconditions (the set of facts inferred if a knowledge represen-

tation's preconditions hold), or false postconditions (the set of facts inferred if a knowledge

representation's preconditions are false). A knowledge representation can have one, none,

or several precondition and/or postconditions.

In general, expressions consist of two variables and a relationship operator (Figure

C.1). The variable on the left hand side of the expression never has a value explicitly

defined in an expression, while the variable on the right hand side may have a value

explicitly defined. Variable names can be any sequence of alphanumeric characters (no

spaces) desired, with CONSTANT understood by DMTITE to represent a constant value.

Variable types currently supported by DMTITE are shown in Table E.1 (Appendix E).

Supported relational operators are similar to those used in the C/C++ programming

languages, as shown in Table C.1.

"Left Hand Side" Variable "Right Hand Side" Variable

Variable Name Variable Type Operator Variable Name Variable Type Value

Figure C.1 General Expression Format
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Table C.1 Relational Operators Supported by DMTITE

Relational Operator Symbol

equal to -=

not equal to
less than <
less than or equal to <=
greater than >
greater than or equal to >=
assignment
retract retract

The format of a retract expression is different from other expressions. These expres-

sions only have a single variable, specified on the left hand side of the retract operator.

When a retract expression is executed, it removes the specified variable from memory.

Usually, the value specified for a variable must match that variable's type. However,

DMTITE currently supports three "value words" for readability, true and false are used

to define the corresponding boolean values. any-value can be used by any variable type,

and is used to define "wildcards". In other words, a variable assigned any-value in an

expression will always be evaluated as true, regardless of the value that variable is actually

assigned in memory. any-value was implemented to support case-based reasoning (see

section C.3). Finally, variables can be assigned formula values. These are expressed in

postfix notation (e.g., "2 2 +" to add two and two together) and may reference other

variables. The value of a formula is calculated each time the corresponding expression is

evaluated.

C.2 Rule-Based Policies

The rule-based inferencing strategy used in DMTITE is based on the standard if-

then-else format. The if portion of the rule represents the preconditions, the then portion

represents the true postconditions, and the else portion represents the false postcondi-

tions. A rule in DMTITE consists of zero, one, or several precondition, false postcondi-

tion, and true postcondition expressions (see the previous section). The current rule-based
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inferencing engine in DMTITE is very basic; however, work continues on integrating a

public-domain inferencing engine known as CLIPS (C Language Implementation Produc-

tion System) into the DMTITE system design.

The rule-based policy file format is shown in Figure C.2. The <Description> section

contains a single-line text description of the policy. The <Inferencing Strategy> section

contains a single keyword defining the inferencing strategy the policy supports; for rule-

based policies, the keyword is rule-based. Finally, the <Knowledge Representations>

section defines the actual rules. The first line of this section defines the number of rules

comprising the policy, while the remaining lines describe the actual rules. Each rule is

defined by several lines. The first contains the rule's name, the number of preconditions,

false postconditions, and true postconditions. The second line of each rule contains a text

description of the rule. This line is followed by the expressions that define the preconditions,

then the expressions that define the false postconditions, and finally the expressions that

define the true postconditions. This pattern is repeated for each rule in the policy.

A portion of an existing rule-based policy is shown in Figure C.2. This particular

policy defines the computable combat psychology model (see Appendix D); the two rules

shown represent the conditions necessary to have a CGF hesitate or refuse to respond

to orders under combat situations. These rules return boolean "flags" to the arbitration

engine, which then acts upon them appropriately. Both rules shown retract the appropriate

"flags" from memory when the preconditions do not hold.

C.3 Case-Based Policies

The case-based inferencing strategy used in DMTITE associates a knowledge repre-

sentation to a group of facts through the use of frames. Frames were originally developed

by Marvin Minsky, and attempt to simulate a human's ability to deal with new situations

by using existing knowledge of previous events, concepts, and situations (15). Standard

case-based reasoning selects a frame based on some "goodness-of-fit" functions, then mod-

ifies that frame's output to match differences between the selected frame and the current

situation. The current case-based inferencing engine used in DMTITE does not modify

the output of the frame it selects.
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<Description>
text-description

<Inferencing Strategy>

rule-based

<Knowledge Representations>

#_of-knowledge-representations

representation-name #_of-preconditions #_of.false-postconditions #.of-true.postconditions

representation-description

precondition-expression-I

precondition-expression.r

false-postcondition-expression-i

false-postcondition-expression-s

true-postcondition-expression-i

t rue-postcondition-expression-t

representation-name #_of-preconditions #_of.false-postconditions #..oftrue.postconditions

representation.description

precondition-I

precondition.x

false.postcondition-expression-i

false-postcondition-expression-y

true.post condition-expression-i

true-postcondition-expression-z

Figure C.2 Rule-Based Policy File Format

Case-based policies are similar to rule-based policies, with one exception: each knowl-

edge unit has the same number of pre- and postconditions. The expected format for a

case-based policy file is identical to that for a rule-based policy (see Figure C.2), except

that the <Inferencing Strategy> section specifies case-based as opposed to rule-based. A

portion of a case-based policy is shown in Figure C.3. This particular policy is used by an

anti-aircraft artillery (AAA) CGF while in search mode; the frame shown transitions the

AAA CGF from search mode to target acquisition. If additional knowledge representations

were added to this file, they would be required to have twelve preconditions (referencing

the variables shown in the example), no false postconditions, and one true postcondition.
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<Description>
Defines the computable combat psychology model.

<Inferencing Strategy>
rule-based

<Knowledge Representations>
2
Delayed-Response 2 1 1
CGF is anxious but not aggressive, so delay response I to 4 seconds.
anxiety double > CONSTANT double 0.70
anger double < CONSTANT double 0.50
delay-response retract
delay-response bool = CONSTANT bool true
RefuseToRespond 2 1 2
CGF is anxious and not receptive to orders, so refuse to respond to orders.
anxiety double > CONSTANT double 0.85
acquiescence double < CONSTANT double 0.80
refuse.to.respond retract
delay-response retract
refuse.to.respond bool = CONSTANT bool true

Figure C.3 Portion of Sample Rule-Based Policy

C.4 Fuzzy Logic Policies

Fuzzy logic requires extensions to the general expressions not required by either

case-based or rule-based reasoning. Some of the variables take the form of fuzzy sets

which encode imprecision by mapping a range of values to a membership function. A

membership function is usually nothing more than a mathematical function; DMTITE

currently supports increasing linear, decreasing linear, increasing S-curve, decreasing S-

curve, pi curve, weighted beta curve, gaussian curve, proportional, arbitrary, and singleton

membership functions. A value's membership in a fuzzy set can be modified through the

use of hedges. Hedges are domain-independent mathematical functions that approximate

the linguistic characteristics of the hedge; the hedges currently supported by DMTITE,

along with their meaning, are shown in Table C.2. When combined, these concepts support

rules such as "if temperature is somewhat hot then motor speed is usually moderate." This

rule can be invoked using imprecise ("fuzzy") values for "motor speed" and "temperature";
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<Description>
Defines the cases of detecting enemy aircraft using eyes or radar/IFF.

<Inferencing Strategy>
case-based

<Knowledge Representations>
1
TargetInRangeToAcquire 12 0 1
Target detected and in range, ready to acquire.
current-state int == CONSTANT int 0
search-mode int == CONSTANT int any-value
fire-mode int == CONSTANT int any-value
target-visible bool == CONSTANT bool false
visual-confidence double >= visual-threshold double
accoustic-detection bool == CONSTANT bool any-value
remote-detection bool == CONSTANT bool any-value
in-radarLOS bool == CONSTANT bool any-value
in-opticalLOS bool == CONSTANT bool any-value
in-engagement.-range bool == CONSTANT bool any-value
target-inbound bool == CONSTANT bool true
time.not.visible double == CONSTANT double any-value
next-state int == CONSTANT int 2

Figure C.4 Portion of Sample Case-Based Policy

an exact motor speed can be obtained by "defuzzifying" the result of the rule. Specific

information on fuzzy sets, membership functions, hedges, and defuzzification can be found

in Cox (10).

The fuzzy logic policy file format is shown in Figure C.4. This format is similar to

that used by rule-based and case-based policies; however, it adds a <Fuzzy Sets> section

to define the fuzzy sets to be used within a policy. Fuzzy sets are defined by their type, an

"alpha cut" (a minimum membership value-values below this are treated as zero), and a

list of fuzzy set parameters. Each type of fuzzy set requires a different set of parameters;

these parameters are defined in Cox (10) and not repeated here.

Changes also appear in the <Knowledge Representations> section of a fuzzy logic

policy. Since fuzzy sets don't correspond to other data types, no variable type or value is

given for fuzzy sets used in an expression. This does not exclude traditional variables from
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Table C.2 Fuzzy Set Hedges Supported by DMTITE (10)

Hedge Meaning

usually contrast diffusion
above, more than restrict a fuzzy region
almost, definitely,
positively contrast intensification
below, less than restrict a fuzzy region
generally, usually contrast diffusion
not negation or complement
quite, rather, somewhat dilute a fuzzy region
very, extremely intensify a fuzzy region
about, around, near,
roughly approximate a scalar
vicinity of approximate broadly
neighboring, close to approximate narrowly

being combined with fuzzy sets; if so, variables must state their type and (if appropriate)

their value.

A pricing policy example from Cox (10) was used to verify the operation of the fuzzy

logic inferencing engine developed for use in DMTITE; this policy is shown in Figure C.4.

While not related to the DMTITE domain, this example shows how facts can be stated

using general expressions (no preconditions given) and demonstrates the general format of

a fuzzy logic policy.
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<Description>
text-.description

<Inferencing Strategy>
fuzzy-l~ogic

<Fuzzy Sets>
#Lof-fuzzy-sets
fuzzy-set-iame
f uzzy-set..type al~pha-cut
fuzzy-set-parameters
hedges..to-appJly

<Knowledge Representations>
#.of knowledge..repres entat ions
representation-name C.of preconditions Cof -faJs e-po stconditions #-.of triie.post conditions
representation-description
precondition-expression..i

precondition-expres sion-x
false-postcondition-expression-i

ftlse-postcondition-expression-s
true-postcondition-expression-I

; r*u~e-postcondition..expressioL-t
representation-name #-.of preconditions #.of.I als e-po, t conditions #-.of true-post conditions
representation-description
precondition-i

precondition-x
false-postcondition-expression-I

false-postcondition-expression-y
true-postcondition-expression-I

triie.postcondition-expression..z

Figure 0.5 Fuzzy Logic Policy File Format
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<Description>
Defines the example price strategy policy.

<Inferencing Strategy>
fuzzy-logic

<Fuzzy Sets>
5
HIGH
INCREASING-LINEAR 0
16.0 36.0 16.0 36.0
LOW
DECREASING-LINEAR 0
16.0 36.0 16.0 36.0
AroundTwiceManuf acturingCosts
PICURVE 0
16.0 36.0 24.0 6.0
NVHigh
INCREASING-LINEAR 2
16.0 36.0 16.0 36.0
VERY NOT
AroundCompetitionPrice
PICURVE 0
16.0 36.0 28.0 4.0

<Knowledge Representations>
2
First-Knowledge 0 0 3
Builds the base price fuzzy output set.
Price = HIGH
Price = LOW
Price = AroundTwiceManufacturingCosts
Second-Knowledge 1 0 1
Builds the variable part of the price output set.
Competition-Price == NVHigh
Price = AroundCompetitionPrice

Figure C.6 Portion of Sample Fuzzy Logic Policy
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Appendix D. Computable Combat Psychology Model

The following model was based on a study of the behavioral effects of combat stress by

Dr. Steven Silver, currently an associate clinical professor, Department of Psychiatry,

Temple University Medical School. It was originally intended for use in Atomic Games'

Close Combat, a computer game simulation of the Normandy campaign of World War H.

According to Dr. Silver, Atomic Games elected to incoporate only the basic concept of

the model in their final product, citing the limited computational power of the personal

computers being targeted for the game (30).

This model was developed using literature analyzing human reactions in combat (16,

23) and the "trait-state" field of psychology. The basic concept is that each individual

has an unique psychological profile, resulting in probabilistic responses in various stressful

situations. The goal of the model is to be able to simulate a wide range of combat behaviors,

from the rage reaction of a friend's death to a soldier who would not only disobey but kill

his commander (31). When approached about incorporating his unpublished model into

DMTITE, Dr. Silver readily agreed, providing the model description that follows (29).

The following sections describe trait-state psychology, the model as it was originally

proposed, and how the model was actually implemented in the DMTITE project.

D.1 "Trait-State" Psychology

Trait-state psychology views human functioning in terms of fundamental traits; all

people have all traits in varying degrees, depending upon genetics and life experience.

This particular approach to psychology was selected because it can be translated into a

numerical format, easing the programming task.

In trait-state psychology, a trait is relatively stable and doesn't fluctuate much; it

represents the "normal" value for a particular individual. States, on the other hand, are

derived from traits and are situational; they represent an individual's transitory response

to a situation. For example, consider anxiety as a trait and as a state. A "normal" person

may have an anxiety trait of 10 (on a 0-100 scale). When surprised by a balloon popping,

a person may experience an anxiety state of 20. Traits and states are combined in a
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situation, then behaviors are induced based on real world observations. Returning to the

anxiety example, assume that an anxiety level (trait + state) of more than 70 has been

observed to affect behavioral functioning. An anxious individual (with an anxiety trait

of 60) would display these effects when surprised by a balloon popping (since 60 + 20 is

more than the threshold value of 70). A probabilistic or other appropriate approach can

be taken to induce the appropriate effects based on the situation.

In short, then, the trait-state approach to psychology evaluates a given situation by

determining the current state, applying it to the existing trait, and displaying the resulting

reactions and behavior of the individual.

D.2 Limitations and Assumptions

While the trait-state approach allows a straightforward approach to modeling psy-

chology, the model is inherently incomplete. As a whole, human functioning is not com-

putable and while group behavior is generally predictable given certain conditions, indi-

vidual behavior is far less so. This model assumes the best predictor of individual human

behavior is that individual's past behavior. As a result, this model is essentially stable; that

is, wide variations in an individual's behavior should be uncommon, but not impossible.

Furthermore, group behavior is assumed to be a compilation of individual behavior. The

results of both individual and group behavior are assumed to be reflected in performance,

and the results of that performance should feedback into individual and group states and

traits.

This model is limited to functions relating to combat, including leadership, command,

communication, control, morale, and military skills performance. Within these functions,

this model allows form inhibitions and enhancements of performance, such as speed of

movement, accuracy, and cooperation. The model also provides for, to a limited extent,

unusual individual behavior, including running amok, charging the enemy, hesistation, and

panic-stricken rout. Since the full range of potential human behavior cannot be modeled,

only those behaviors most relevant to performance for will be accounted for. This model

was developed utilizing the behavior of 20th century infantry; despite this, it is assumed to
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be applicable to all forms of individual and team combat. This assumption seems justifiable

because human psychology has remained relatively constant since it was first documented.

D.3 Definitions

There are three types of variables used in this combat psychology model. As stated

previously, traits remain relatively constant; however, they serve as the initial correspond-

ing state value, which are dynamic in nature. In addition, a series of computed variables

can be derived from both traits and states. These variables are defined in the following

sections.

D. 3.1 Traits and States. The following explicit traits and states are used to model

human behavior in combat situations. Each is assumed to be present to some degree in

each individual.

1. Stability. A generic term encompassing emotional stability functions as opposed to

particular emotions. It serves as the "governor" of emotional expression, particularly

extreme emotional expression such as panic.

2. Anxiety. Inherent fearfulness.

3. Anger. A generic term encompassing the emotion of anger, this variable also accounts

for aggressiveness.

4. Humor. More than a simple sense of humor, this variable also accounts for emotional

"bounce-back" and the ability to recover from sudden shocks, losses, and other neg-

ative impactors on morale.

5. Acquiescence. The willingness to follow commands, orders, and other leaders.

6. Independence. The ability to function independently, without leadership.

7. Charisma. A variable reflecting aspects of personality that others find attractive.

8. Knowledge. This term was selected to replace "Intelligence", which has a particular

meaning in military terms. It refers to military knowledge, ranging from weapons

and equipment to tactics.
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D.3.2 Computed Variables. The following variables are computed from the traits

and states defined in section D.3.1. Note that Support, Leadership, and Morale are calcu-

lated states, not just variables.

1. Situational Stress. Calculated as the ratio of friendly to enemy combatants in the

engagement, with addition/subtraction provided by friendly/enemy supporting fire

and Fatigue.

2. Support. Reflects an individual's ability to psychologically support other members of

the team. It is calculated from the individual's Stability, Humor, and Acquiescence

values.

3. Group Support. Calculated as the group average of each individual's Support value.

4. Leadership. The ability of an individual to command the obedience of others. It

is calculated from the individual's Independence, Charisma, Anger, and Knowledge

values.

5. Morale. Calculated from an individual's Stability, Anxiety, Anger, and Humor values;

the related Group Support and Situational Stress values; and the group leader's

Leadership value.

D.4 Model Functionality

This section describes the model functionality prior to, at the start of, and at the

conclusion of a given simulation. Functionality during a simulation is described in sections

D.5, D.6, and D.7.

D.4-.1 Initial Phase. The explicit traits defined in section D.3.1 are determined

prior to the start of a given simulation. These values can be specified or generated ran-

domly; if generated randomly, the values should be between 0.2 and 0.8 (on a 0.0-1.0 scale),

normally distributed as shown in Table D.1.

These values are calculated once for each individual; once calculated, they represent

the "baseline" values (traits) for that individual.
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Table D.1 Initial Trait Value Probabilities

Value Distribution

0.3 13%
0.4 20%
0.5 34%
0.6 20%
0.7 13%

D.4.2 Initial Phase Computations. Once the initial traits have been determined,

the calculated variables and states are generated as follows:

M Stability + Anxiety + An-er
Morale - . -(D.1)

Note that the Situation Stress, Group Support, and group leader's Leadership values

are not included in this initial computation.

Support =Stability + Humor + Acquiescence
3

Leadership =Independence + Charisma + Knowledge + Stability + Morale
5

These values are calculated once for each individual; once calculated, they represent

the "baseline" values (traits) for that individual.

D.4.3 Operational Phase Adjustments. At the start of each simulation in which

an individual participates, the state Morale value is calculated as follows:

trait Morale + leader's Leadership+ Group Support
state Morale = 2 2 (D.2)
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In addition, each of the individual's "baseline" traits become the individual's initial

states for the simulation.

D.4.4 Trait Adjustments. At the end of each simulation in which an individual

participates, the initial trait values are modified as follows:

(initial trait - ending state) > 0.20 =• initial trait = initial trait + 0.05

(initial trait - ending state) • -0.20 =. initial trait = initial trait - 0.05

D.5 State Changes

An individual's states will change in response to the situational stress of the envi-

ronment and the group. In turn, the changes in the individual will induce changes in the

group. To avoid perpetual loops, the sequence of evaluation should be environment, then

the group. The following is an example of environmental variables and their impact (as

approximated from various studies done on the psychology of the battlefield).

D.5.1 Battlefield Variables. The battlefield variables affecting individual states

are shown in Table D.2; those affecting group states are shown in Table D.3. These values

are fairly rigid; if preferred, a situational stress computation could be used for proportional

point allocation.

D.5.2 Stress Reduction Variables. The stress reduction variables specify events

that reduce or improve states both immediately (Table D.4) and over time (Table D.5).

D.6 Effects of States on Performance

Once the current state of a CGF has been evaluated, the effects of that state need to

be reflected in its behaviors. There are many different ways to modify a CGF's behavior

based on its state, as discussed in the following sections.
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Table D.2 Battlefield Variables (Individual Elements)

Event Stab. Anx. Ang. Hum. Acq. Ind. Char. Know.

New team member -0.05 0.05 -0.05 -0.05
Nighttime conditions 0.10 -0.01 -0.02 0.02 -0.02 -0.01
Reduced visibility 0.05 -0.01 -0.01 0.01 -0.01
Indirect fire
(intermittent) 0.01 0.01
Indirect fire
(continuous)a 0.03 0.02 -0.01 -0.01
Sniper fire 0.02 0.01 -0.01 0.01
Light (ineffective)
fire 0.05 -0.01 -0.01 -0.02 0.01
Moderate fire -0.03 0.08 -0.02 -0.02 -0.02 -0.01 0.01
Heavy fire -0.05 0.12 -0.04 -0.10 -0.05 -0.01 -0.01 0.01
Ambushed -0.03 0 .1 0 b -0.02 -0.20 -0.04 -0.03 0.01
Minefield -0.02 0.05 0.01 -0.01 -0.03 -0.02 0.01
Attacked by inferior
force 0.05 0.08 0.01 0.01 0.01
Attacked by force of
equal size 0.06 0,02 -0.01 0.01
Attacked by superior
force -0.01 0.06 -0.01 -0.02 -0.01 -0.01 0.01
Attacked by
overwhelming force 0.10c -0.01 -0.10 -0.04 -0.02 -0.02 0.01
Ambushing an inferior
force 0.02 0.10 0.02 0.02 0.01 0,01
Ambushing force of
equal size 0.03 0.10 0.01 0.01
Ambushing a superior
force 0.04 0.10 -0.01 -0.01 0.01
Supporting fire on call 0.10 0.02 0.05 0.04 0.02
Close quarters combat 0.01 -0.02 0.01 0.01 0.01 0.01
Encountering dead
enemy -0.01 0.02 0.01 0.01 0.01 0.01
Encountering wounded
enemy -0.01 0.01 0.03 0.01

"aEvery 15 minutes
bEvery 15 minutes
cEvery 30 minutes
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Table D.3 Battlefield Variables (Group Elements)

Event Stab. Anx. Ang. Hum. Acq. Ind. Char. Know.

Team member wounded
(TCRa < 10%) -0.02 0.02 0.02 -0.01
Team member wounded
(10% < TCR < 40%) -0.03 0.04 0.04 -0.02 -0.01 -0.01
Team member wounded
(TCR > 40%) -0.04 0.05 0.04 -0.05 -0.02 -0.02
Team member killed
(TCR < 10%) -0.04 0.04 0.04 -0.02 -0.01
Team member killed
(10% < TCR < 40%) -0.05 0.05 0.05 -0.05 -0.02 -0.02
Team member killed
(TCR > 40%) -0.06 0.07 0.05 -0.10 -0.03 -0.03
Team leader wounded -0.04 0.05 0.03 -0.05 -0.03
Team leader killed -0.08 0.10 0.03 -0.20 -0.05 0.02
Incorrect orders
given -0.03 0.05 0.05 -0.02 -0.09 0.01

'Team Casualty Rate; percentage of team wounded or killed

D.6.1 Tasks Relating to Reaction Time. Tasks relating to reaction time, such

as taking cover, are affected as follows. Delay is a randomized variable between 0 and 4

seconds.

(Anxiety > 0.70) A (Anger < 0.50) * Delay

(Anxiety > 0.85) A (Acquiescence < 0.80) = Delay + 10 seconds

D.6.2 Accuracy and Weapons Handling Effectiveness. In general, effectiveness

is reduced when Knowledge is less than 0.50 and is enhanced when Knowledge is greater

than 0.80 (29). To model the effects of fear on accuracy, rate of fire, and other related

tasks (23), use Morale as follows.
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Table D.4 Stress Reduction Variables (Immediate Effects)

Event Stab. Anx.a Ang. Hum. Acq. Ind. Char. Know.

Issued more effective
equipment -0.05
Issued new clothing 0.05
Successful defense -0.05 0.01 0.05 0.03 0.01 0.01
Successful attack -0.02 -0.06 0.04 0.05 0.04 0.01 0.01
Eating a meal 0.01 -0.10 -0.01 0.02 0.01 0.01

*If value > 0.70, effects are doubled

Table D.5 Stress Reduction Variables ("Timed" Effects)

Event Stab. Anx.4  Ang. Hum. Acq. Ind. Char. Know.

Sleepb 0.01 -0.03 -0.02 0.01 0.01
No fire, secure position' 0.01 -0.03 -0.02 0.01 0.01
No fired 0.01 -0.02 -0.01 0.01 0.01

alf value > 0.70, effects are doubled
bEvery 30 minutes
cEvery 30 minutes
dEvery 30 minutes

Morale > 0.80 •: increased effectiveness

Morale < 0.50 =• reduced effectiveness

To account for the dominant nature of fear on the battlefield, an additional degra-

dation in effectiveness occurs when Anxiety is greater than 0.80.

D.6.3 Obedience to Orders. This effect reflects whether or not an individual will

obey orders, not how quickly those orders will be carried out. Under "normal" conditions,

the orders will be acted upon immediately; however, the individual can also Hesistate (fail

to carry out the orders until they are repeated) or Disobey (fall to carry out the orders
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regardless of how many times they are repeated). The latter two conditions are defined as

follows:

(Morale < 0.40) A (Anxiety > 0.70) A (Acquiescence < 0.40) =0 Hesistate

(Morale < 0.40) A (Anxiety > 0.80) A (Acquiescence < 0.35) A

(Support < 0.50) A (leader's Leadership < 0.50) A (Random > 0.50) =ý Disobey

(Random is a randomized value between 0.0 and 1.0 inclusive.) There are also ex-

tremely rare circumstances where an individual will not only disobey an order but also

strike out at the issuing authority. In the Vietnam conflict, this was known as "fragging"

and can be defined as follows:

(Morale < 0.40) A (Anxiety > 0.80) A (Acquiescence < 0.30) A

(Support < 0.40) A (leader's Leadership < 0.50) A (Random > 0.70) •:ý Frag

D. 7 Unusual Behaviors Induced by States

A CGF's state not only affects its behaviors, but may also induce "unusual" behaviors

for given situations. These behaviors, and the states that induce them, are discussed in

the following sections.

D.7.1 Panic Reactions. Most studies emphasize the role of isolation when an

individual flees the battlefield by breaking and running. Conversely, the greatest pre-

ventative appears to be peer support followed closely by the individual's perception of

team leadership. If one individual breaks, the probability of other team members breaking

increases as well.
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(Morale < 0.50) A (Anxiety > 0.80) A (Stability < 0.50) A

(Support < 0.40) A (leader's Leadership < 0.40) A (Random > 0.50) =• Flee

D. 7.2 Heroism. This type of behavior has not been very well studied (16), as

most armed forces are not so much concerned with understanding the behavior of those

rare people called "heroes" as they have been in trying to prevent the far more common

behavior of individuals overcome by anxiety. Despite this, Heroism can be simulated when

the following combinations of states exists:

(Support > 0.85) A (Morale > 0.60) A (Anger> 0.70) A

(Independence > 0.75) A (Random > 0.50) =• Heroism

D.7.3 Atrocities. Atrocities are displayed in two ways: killing unarmed civilians

and killing disarmed and taken prisoners-of-war. As with heroism, this behavior has not

been well studied (16). However, this behavior can occur when the following conditions

hold:

(Morale < 0.50) A (Anger > 0.80) A (leader's Leadership < 0.50) A

(Random > 0.70) => Atrocity

D.8 Incorporating the Model into DMTITE

The traits and states aspects of this model have been combined with the "skills

vector" identified by Santos. et al., for their general CGF architecture (27). The initial

values are explicitly defined by the user in the CGF initialization file; they are not randomly

generated. The entire model is maintained by the Arbitration Engine; this engine is

responsible for updating the states of the entity and ultimately displaying the behaviors
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corresponding to the current state of the CGF. The current implementation of the model

is expressed as a set of rules; therefore, the Arbitration Engine uses rule-based inferencing

to determine the state of a given CGF.

The group aspects of this model have yet to be incorporated into DMTITE. While

the software architecture is designed to allow the inclusion of cooperation and coordination

between CGFs, the actual means to do so have yet to be determined. As a result, CGFs

have no means of "sharing" information (such as their traits and states, or their behaviors).

Unfortunately, the group aspect is a large portion of Dr. Silver's model and many of the

behaviors supported by the model cannot be currently displayed by DMTITE CGFs.
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Appendix E. Initialization File Format and Example

A DMTITE GGF is defined, in part, by the file used to initialize it. This appendix defines

the expected format of the CGF initialization file. Each entry in the initialization file is

presented and defined values for specific entries are also identified. A partial example of a

working initialization file concludes this appendix.

E. 1 Initialization File Format

The expected format for a DMTITE initialization is shown in Figure E.1. The

initialization file is divided into several sections, each of which is described below.

<Entity Information> <Knowledge Bases>
cals~igo
nationality knomlodgebhase~namo inferenciag~strategy S.of~policies
domain knouledg*.bane.description
category policynamew(s)
Specific

<Long-Term Engine>
<Initial Configuration> inferencingstrategy 8.ofknowledgeobues hnohledgebhase..name(s)
VGS..84..coordinates 0.0 0.0 0.0 (inferencing-dependent information)
euler-aglest 0.0 0.0 0.0
lin ar..veloc 0.0 0.0 0.0 <Mission-Level Engine>
Ilnear.acceloration 0.0 0.0 0.0 inforencingsmtratogy O.of-knowledgetlhases knowlodg*ew.haemme(s)

(inforencing-dependent information)
<Environment Information>

:xerciseID <Critical Engine>
entity.ID inferencingastrategy E.oftknowledgobhaeso knowledgebhase.name(s)

lead..entity-D (inferencing-dependent Information)
colnsct..to-CODS name-oLCODD
domaains.of-interest I (land surface air space) <Arbitration Engine>

inferencingAtrategy #.ofkhnovledg*.haees hnowledgeohase~name(s)
<Entity Profile> (inforencing-dependent information)

Istability 0.0 <PSI!>
aaxiety 0.0 meassage.mtrnctnzesfilenme*
eanger 0.0 query..strncture~filoname
humor 0.0
acquiescence 0.0 <Physical Components>
independence 0.0 0
charisma 0.0 component..identifier componenta.rgument(s)
knoweldge 0.0
shill.name 0.0 <Sensor Interface>

me agoaeg ructnre~filenine,
<policies> query~etrtucture~filenwas

1policy~nme policygfilenme <Initial Parameters>

paremtor.ninae parameter-type parmeterrsalne

Figure E.1 DMTITE CGF Initialization File Format

E. 1.1 <Ent ity~ Information>. This section specifies the callsign, nationality,

domain, category, and specific instantiation of the CGF in question. The callsign entry is

a holdover from the Intelligent Wingman project; while it identifies an unique "callsign"

for the CGF, this value is not currently used by DMTITE. The nationality value is an

integer specifying the nation the CGF represents; these values correspond to the 16-bit
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"country" field of the Distributed Interactive Simulation (DIS) Entity Type Protocol Data

Unit (PDU) specified in the DIS standard (IEEE 1278.1-1995, "Enumeration and Bit-

Encoded Values"). The domain entry specifies the domain in which the CGF operates:

land, surface, air, and space are the allowed values. Finally, the category and specific

entries reflect the taxonomy category and specific CGF instantiation the CGF represents

(e.g., a specific F-22 in the "strike aircraft" category). The entire range of values for

these entries have not yet been specified; however, the category values should reflect the

taxonomy given in Figure 3.3.

The strings specified for the domain, category, and specific entries are converted to

their numeric equivalents by the routines defined in CODB_ Utilities. cc.

E.1.2 <Initial Configuration>. This section specifies the initial position and

orientation of the CGF within the virtual battlespace. The WGS.84-coordinates entry

specifies the three-dimensional (x, y, and z) position of the CGF relative to the center

of the earth. The CGF coordinates are specified in meters. On the other hand, the

euler.angles entry specifies the orientation of the CGF's local coordinate system with

respect to the earth's coordinate system. These angles are specified in radians. Detailed

information regarding geocentric coordinates, the CGF local coordinate system, and Euler

angles can be found in the DIS standard (IEEE 1278.1-1995). The linear-velocity and

linear-acceleration values are specified relative to the geocentric coordinate system and are

measured in meters per second and meters per second 2 respectively.

E.1.3 <Environment Information>. This section defines the environment with

which the CGF will interact. The exerciseID entry specifies the unique identifier for the

simulation the CGF is assigned to. The entity-ID entry specifies the simulation-unique

identifier for the CGF in question. The lead-entityID entry is used to specify the CGF's

team leader. This value is provided for future use (when CGF cooperation and com-

munication has been implemented) and will be used primarily to determine the CGF's

"psychological profile" (see Appendix D). For DIS applications, these values are all inte-

gers.
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On the other hand, the connect-toCODB entry is a character string specifying the

path and filename of the CODB to be used to send and receive world state information.

This file will be created if it does not exist when the CGF attempts to connect to it; if the

specified name is incorrect, the CGF will not be able to communicate with the rest of the

distributed virtual environment. The last entry in this section, the domains-of.interest,

specifies the number and identifiers of the domains for which the CGF will receive world

state information. The number of domains is constrained to 0-4 (inclusive); the allowable

domain specifiers are land, surface, air, and space.

E.1.4 <Entity Profile>. This section defines the number, identifiers, and val-

ues that comprise the CGF's entity profile. This section should always contain a mini-

mum of eight identifiers and values-stability, anxiety, anger, humor, acquiescence,

independence, charisma, and knowledge--since these are expected by the combat psy-

chology model (see Appendix D). Other profile identifiers and values specific to the CGF's

taxonomy category may be specified as necessary. Each profile entry consists of a character

string and a normalized value between 0.0 and 1.0 inclusive.

E.1.5 <Policies>. This section defines the number, identifiers, and files that

comprise the policies to be used by the CGF. A policy identifier is a character string

that uniquely identifies the policy within the CGF's knowledge base repository. A policy

filename is a character string that defines the path and complete name of the file containing

the policy's knowledge representations (see Appendix C for more information on these files).

Any number of policies may be specified in this section.

E.1.6 <Knowledge Bases>. This section specifies the number, inferencing strate-

gies, identifiers and policies that comprise the knowledge bases available to the CGF. Each

knowledge base requires three physical lines to define it completely. The first line specifies

the name of the knowledge base, inferencing strategy supported by the knowledge base,

and number of policies that define the knowledge base. Valid inferencing strategies are

case-based, rule-based, and fuzzy-logic. The second line consists of a description of

the knowledge base. This information is not directly used by DMTITE, but is provided for
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debugging purposes. The final line specifies the identifiers of the policies that comprise the

knowledge base. These identifiers must match those specified in the <Policies> section.

E.1.7 <Long-Term Engine>, <Mission-Level Engine>, <Critical Engine>, and

<Arbitration Engine>. These sections define the attributes of each of the decision en-

gines to be used by the CGF. In each section, the first line specifies the inferencing strategy

to be supported by the given decision engine (case-based, rule-based, or fuzzy.logic),

the number of knowledge bases accessible by the decision engine, and the identifiers of

each knowledge base. Obviously, the knowledge base identifiers must match those in the

<Knowledge Bases> section. This information must be specified on a single line.

If the decision engine is not to be available to the CGF, an inferencing strategy of

no-inference must be specified and the number of knowledge bases should be set to zero.

The contents of the remainder of each section is unique to the inferencing strategy

to be employed by the given decision engine. The exact contents and format for each

inferencing strategy has yet to be determined.

E.1.8 <PSII>. This section specifies the files that define the state message

formats and data queries supported by the Physical State Information Interface. Each

entry is a character string that specifies the full path and name of the file to be read.

E.1.9 <Physical Components>. This section specifies the number and identifiers

of the physical components to be used by the CGF. Each identifier is a character string that

uniquely identifies a physical model; currently, only scripted-aircraft, optical-sensor,

simple-radar, unguided-ordnance, and guided-ordnance are defined. (As additional

models are incorporated into DMTITE, the corresponding identifiers should be added to

the appropriate function in utility. cc.) After each identifier are optional arguments; these

are assumed to be unique for each physical model and are passed to the model during its

initialization.

E-4



E.1.10 <Sensor Interface>. This section specifies the files that define the state

message formats and data queries supported by the Sensor Interface. Each entry is a

character string that specifies the full path and name of the file to be read.

E.1.11 <Initial Parameters>. This section defines any variable values to be

passed to the Cognitive Representation during its first update cycle. These values may

reflect initial parameters such as search modes, specified target identifiers, and so forth.

Each variable is specified by a unique identifier (character string), a data type, and a value.

Valid data types are specified in Table E.1; corresponding values should reflect the data

type in question (e.g., integers for integer).

Table E.1 Data Type Identifiers Supported by DMTITE

Data Type Data Type Identifier

integer integer
unsigned integer unsigned-int
short integer short
unsigned short integer unsinged-short
long integer long
unsigned long integer unsigned-long
floating point float
double precision (32 bit) double
double precision (64 bit) long-double
character char
signed character signed-char
unsigned character unsigned-char
string string
boolean (true/false) bool

E.2 Partial Example

A partial initialization file was created to test the implementation of the DMTITE

architecture. This file, while not complete, represents a "best guess" of an anti-aircraft

artillery CGF with a case-based mission-level engine, no long-term or critical decision

engines, and an arbitration engine that does not have access to the combat psychology

model (no inferencing strategy is specifiedfor this engine). The following sections describe
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the pertinent details of this sample initialization file with the intent of providing a sense

of the scope and "flavor" of a standard DMTITE initialization file.

E.2.1 Entity Information. Figure E.2 contains the first three sections of the

AAA initialization file. This CGF is assigned to the Commonwealth of Independent States

(which has a DIS-defined nationality value of 222), operates in the land domain, and

represents a generic direct artillery site. Since AAA sites can not attack or defend against

entity operating on land or sea, this CGF only receives information about entities operating

in the air domain. To obtain its world state information, it connects to a CODB named

"airCODB" that is located in the same directory from which this CGF is initiated.

<Entity Information>
callsign Quasimodo
nationality 222
domain land
category direct-artillery
specific generic

<Initial Configuration>
WGS_84_coordinates 4788340.0 2792480.0 3146950.0
euler-angles 0.0 0.0 0.0
linear-velocity 0.0 0.0 0.0
linear-acceleration 0.0 0.0 0.0

<Environment Information>
exerciseID 100
entityID 200
lead-entityID 9999
connect-toCODB airCODB
domains-of-interest I air

Figure E.2 Sample Initialization File: Entity Information

E.2.2 Entity Profile. Figure E.3 shows the contents of this CGF's entity profile.

The basic eight values used by the combat psychology model are defined; a value of 0.5

indicates this CGF has "average" values for each of these proffle attributes. An additional

attributes, visual-accuity is also defined. This skill is used by the AAA CGF to deter-
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mine the maximum range at which it can visually identify a potential target. This CGF

has an "average" visual accuity.

<Entity Profile>
9
stability 0.5
anxiety 0.5
anger 0.5
humor 0.5
acquiescence 0.5
independence 0.5
charisma 0.5
knowledge 0.5
visual accuity 0.5

Figure E.3 Sample Initialization File: Entity Profile

E.2.3 Policies and Knowledge Bases. As shown in Figure E.4, this CGF currently

has only a single policy and knowledge base available for use. Its "general search" policy

defines general knowledge pertaining to target search and identification. This knowledge

is stored in a fie named AAAsearch.pol, located in a subordinate directory named data. In

turn, the "search" knowledge base uses this policy to partially define the total knowledge

available to the CGF while it is searching for potential targets. Both the policy and the

knowledge base are defined for use by a case-based inferencing strategy.

<Policies>
I
General-Search data/AAAsearch.pol

<Knowledge Bases>
1
Search case-based I
Contains knowledge pertaining to the search phase.
General-Search

Figure E.4 Sample Initialization File: Policies and Knowledge Bases
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E.2.4 Decision Engines. Figure E.5 shows the decision engine configuration for

this CGF. No inferencing strategy has been specified for either the long-term or the critical

decision engines; as a result, these engines are not available to this CGF. The arbitration

engine, although having no inferencing strategy specified, is available; however, it will not

be able to access the combat psychology model (which would normally be specified as a

knowledge base accessible to this engine). The only "complete" decision engine available to

this CGF is its mission-level engine. This decision engine employs a case-based inferencing

strategy and has access to the "search" knowledge base.

A case-based inferencing strategy requires an index and weighting scheme; this infor-

m~tion is contained in the remainder of the <Mission-Level Engine> section. Each frame

(or group of related knowledge) consists of ten variables, one of which (current-state) is

the indexed variable. With the exception of the index, each variable has an equal weight

towards determining which frame best fits the current world state.

<Long-Term Engine>
no-inference 0

<Mission-Level Engine>
case-based I Search
current-state 10
current-state 0
search-mode 1
fire-mode 1
target-visible 1
target-detected 1
in.radarLOS 1
in-opticalLOS I
in-engagement-range 1
target-inbound 1
time-not-visible 1

<Critical Engine>
no-inference 0

<Arbitration Engine>
no-inference 0

Figure E.5 Sample Initialization File: Decision Engines
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E.2.5 State Messages, Physical Components, and Initial Parameters. The re-

mainder of the sample initialization file is shown in Figure E.6. These sections specify

the filenames of the state message data structures to be used by the PSII and the Sensor

Interface; different files are specified because of differences between the state messages

maintained by these repositories. This CGF uses only a single physical model, represent-

ing its optical sensors (e.g., eyesight), and has its initial state (searching), search mode

(visual), and fire mode (optically tracked) specified.

<PSII>
data/AAAPSII.psi
data/queries.txt

<Physical Components>
1
optical-sensor

<Sensor Interface>
data/AAASensor-Interf ace. psi
data/queries .txt

<Initial Parameters>
3
current-state int 0
search-mode int I
fire-mode int 1

Figure E.6 Sample Initialization File: Miscellaneous
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