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Abstract      

Computer vision deals with algorithms that allow machines to detect, segment, feature 
extract, and recognize objects in an image. There are numerous applications in medicine, 
manufacturing, and security for this technology. By studying the visual processes of biological 
systems, enhancements can be achieved in the development of computer vision algorithms. One 
biological function of interest involves the oscillatory pulses generated in the primary visual 
cortex engaged in stimulus-specific oscillatory responses. As a result of these experiments, it 
can be concluded that these tightly correlated, stimulus-induced oscillations may play a role in 
the recognition of images. Therefore, these cortical oscillations have been modeled to 
investigate their ability to segment objects in a visual field. This report briefly discusses the 
visual system and the internally stimulus-dependent oscillations that may lead to identification 
of images. Emphasis will be on the models that attempt to reproduce this biological phenomena, 
their computational and behavioral aspects, as well as simulation performance. Detail will be 
given to their computational and behavioral aspects since it is in these areas that possible 
improvements can be achieved through more detailed modeling. 
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1. Introduction 

Computer vision deals with algorithms that allow machines to detect, segment, feature extract, 

and recognize objects in an image. The algorithms can then be implemented and transferred to 

integrated circuits and allow machines to "see." There are numerous applications in medicine, 

manufacturing, and security for this technology. Studying the visual processes of biological systems 

can greatly enhance the development of computer vision algorithms, by incorporating biological 

functions that perform tasks so efficiently. Recently, oscillations in the brains of cats due to visual 

stimuli have led to the development of several models that mimic the interacting neurons. Results 

of this work may lead to a computer model that segments objects in an image. This paper presents 

how biological exploration may be leading to tools that can improve advancements in the area of 

computer vision. 

The primary visual cortex produces oscillatory pulses in response to specific stimulus. These 

responses are thought to be produced at the primary visual cortex and not induced by other sections 

of the visual pathway (see Figure 1) (Kandell, Schwartz, and Jessell 1991; Zeki 1990). Therefore, 

these cortical oscillations have been modeled to investigate their ability to recognize objects in a 

visual field. There are three models that can be used to reproduce these oscillations, and they will 

be discussed in the following sections. 

In areas 17 (A17) and 18 (A18) of the cat visual cortex (see Figure 2) (Zeki 1993), the firing of 

neurons in response to the presentation of optimally aligned light bars within their receptive field 

oscillates with a peak frequency near 40 Hz. Thus, neuronal firing pattern is tightly correlated with 

the phase and amplitude of an oscillatory local field potential (LFP) recorded from the same 

electrode. Experiments have demonstrated that local neuronal populations in the visual cortex 

engaged in stimulus specific synchronous oscillations resulting from an intracortical mechanism. 

Moreover, observations in A17 of alert cats seem to indicate that the neuronal response recorded 

during periods of attention exhibits a rhythmic firing pattern that is tightly correlated with an 

oscillatory LFP having a frequency near 40 Hz. Furthermore, observations and reports show that 
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Figure 1. The Visual Field (a), the Lens of the Eye (b), and the Visual Pathway (c). 
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Figure 2. The Primary Visual Cortex and Brodmann's Cytoarchitectonic Chart (a) and the 
On-Center, Off-Surround and the Linear Receptive Fields (b). 
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Figure 2. The Primary Visual Cortex and Brodmann's Cytoarchitectonic Chart (a) and the 
On-Center, Off-Surround and the Linear Receptive Fields (b) (continued). 

local groups of neurons within functional columns of the visual cortex engaged in stimulus-specific 

oscillatory responses having a frequency near 40 Hz. These results suggest that the temporal patterns 

of the oscillatory response can be used to synchronize the activity of neuronal populations in 

spatially separate regions of the cortex. 

As a result of the experimentation described, it can be concluded that these tightly correlated 

stimulus- induced oscillations may play a role in recognition of images (stimuli). Specifically, if 

these 40-Hz oscillations are specific in reference to the applied stimulus, then a "map" is formed 

between the stimulus and the subsequent neurons that fire. Therefore, the observation of the firing 

pattern of the neurons may be used to "identify" the stimulus that was applied to the visual field. 

A brief look at the visual system will be presented in this report. Emphasis is on those areas 

leading to where these internally stimulus-dependent oscillations occur, the biological testing done 



to observe the oscillations, and the models that attempt to reproduce this biological phenomena. 

This information is used as the basis for a model that attempts to utilize these neuronal responses for 

segmentation of objects in an image. 

This report is organized as follows: (1) a general overview of the anatomy of the visual system; 

(2) a discussion of the biological test conducted to observe the cortical oscillations; (3) an 

explanation of the models developed to simulate the cortical oscillations found in the visual system; 

and (4) a discussion of questions and areas of further research. 

2. General Anatomy of the Visual System 

In order to determine how the visual system represents images in the visual field and what 

responses are initiated in the primary visual cortex, a general overview of the visual system is 

presented in succeeding text. The parts of the visual system discussed are the visual field, the visual 

pathway, and the primary visual cortex. 

The visual field is the view seen by two eyes without movement of the head. The left half of the 

visual field projects to the nasal herniretina of the left eye and on the temporal hemiretina of the right 

eye, and similarly for the right half of the visual field (see Figure 1) (Kandell, Schwartz, and Jessell 

1991). In addition, the lens of the eye inverts the visual image that is projected onto the back of the 

retina. 

The optic disc is located in the back of the retina below the fovea. It can be pinpointed as the 

region where the ganglion cells leave the retina. These ganglion cells form the optic nerve. The 

optic nerve from one eye joins at the optic chiasm with that of the other, which allows the nerves to 

continue traversing the brain. Fibers from both eyes enter the optic tract and project to the lateral 

geniculate nucleus (LGN). The LGN is a section of the cerebral hemisphere. Specifically, the fibers 

from the nasal half of each retina cross to opposite sides of the brain and axons from the temporal 

half project to the same side of the brain to the LGN. Therefore, the left optic tract is the section of 

the pathway that carries a complete representation of the right half of the visual field to the LGN and 



similarly for the left. The LGN has six layers of cell bodies. The ventral layers contain large cell 

bodies and, therefore, is called magnocellular (M) layers. The dorsal layers contain the small cell 

bodies and is called parvocelluar (P) layers. The M cells and the P cells project to the primary visual 

cortex. The primary visual cortex is hidden within the calcarine sulcus area on the medial surface 

of the hemisphere (see Figure 2a). The primary visual cortex represents the visual field by 

transforming receptive fields into linear segments and boundaries. The visual cortex is subdivided 

anatomically into five areas, labeled V1-V5. The primary visual cortex is considered VI and V2, 

also known as Areas 17 and 18 (Brodmann's cytoarchitectonic chart of the brain). 

The cells found in the primary visual cortex are pyramidal and stellate cells. Pyramidal cells are 

large and have long spiny dendrites. They project to other areas of the brain. On the other hand, the 

stellate cells have spiny and smooth dendrites. They are found solely in the primary visual cortex. 

The pyramidal and spiny stellate cells are excitatory and use glutamate or aspartate as their 

neurotransmitter. The smooth stellate cells are inhibitory cells and use GABA as its 

neurotransmitter. Once nerves from LGN enter the primary visual cortex, information flows from 

one cortical layer to another, starting with spiny stellate cells. The spiny stellate cells project to the 

pyramidal cells to form the excitatory path. The pyramidal cells excite inhibitory, smooth stellate 

cells, modulating the firing of the excitatory cells. 

Several stimuli could be used to mediate the firing of these cells. However, experiments indicate 

that a small spot of light is the most effective stimulus for the retina, the LGN, and the input layer 

of the cortex. Neurons in the LGN and retina are known to have an on-center, off-surround receptive 

field (see Figure 2b). For an on-center, off-surround receptive field application of diffused light 

initiates no response; if light is shown in the center, a response is initiated. If no light is shown in 

the surround area (outside the smaller circle but inside the larger circle), a response is initiated. 

These responses are the firing of the cells in the visual cortex. 

Cells in the primary visual cortex do not have circular receptive fields, and they respond best to 

stimulus that is linear. These cells are divided into simple and complex cells. Simple cells and 

complex cells have receptive fields that have a specific axis of orientation.  A cell can have a 



rectangular receptive field where one area is excitatory and the other area is inhibitory. Complex 

cells respond most effectively to a moving bar of light. Thus, a stimulus must excite a segment of 

the retina and have a specific axis of orientation. A bar of light with a particular orientation or a spot 

of light initiates a response by exciting several neurons. When the orientation of the bar of light or 

the location of the spot of light is changed, then the response is diminished by the exciting inhibitory 

neurons. 

The overview of the anatomy is needed as background to understand how the visual system 

functions. Now that the general structure of the visual system is presented, our attention can be 

focused on the primary visual cortex where the oscillations occur. The biological test and 

subsequent models focus on the response observed in the primary visual cortex. The models are 

empirical in nature and do not model the visual cortex itself. 

3. Biological Testing 

The biological tests were experiments performed on cats. The cats were prepared for surgery by 

injecting short-acting anesthesia that was maintained during recordings. Recordings were taken 

3-4 hrs after the initial anesthesia to ensure any negative affects had sufficiently worn off. The 

neuronal activity and voltage readings were recorded from 25-pm-diameter electrodes (see 

Figure 3a) (Gray and Singer 1989; Leibovic 1990). 

This section examines the biological tests that were performed in A17 and A18. The general test 

was conducted by placing electrodes in the primary visual cortex. A horizontal bar of light moving 

vertically down was used as the stimulus. For this stimulus, an increase in voltage was measured 

and an excitatory response occurred. When the bar of light was moved vertically up, an excitatory 

response was measured also. For that orientation of the stimulus, a positive voltage and an excitatory 

response occurred. When a vertical bar of light moving horizontally to the right was used, a negative 

voltage was measured and an inhibitory response was elicited. When the bar of light was moved 

horizontally to the left, an inhibitory potential was measured again. For this particular orientation, 

a negative voltage and an inhibitory potential were measured.  If the stimulus is removed, the 

7 



1\ 

Visual field 
Optic tract 

Lateral geniculate 
nucleus 

!t~-~ 

(A) 

+ Fovea 

1 deg 

"-Hliilr-- 

4ab 

5b 

4 
-# 

*- 

From 
lateral 
geniculate 
nucleus 

@ Complex 
9 Simple 

To 
lateral 
geniculate 
nucleus 

To 

To cortex 

(B) . Layer 2 complex cell 

■+:        f 

10 mV 

-I  I 1 1 [_ 
012345012345 

sec sec 

supenor 
colliculus 

(O   Layer 4 simple cell 

10 
mV 

^ 

[-^"**a^~^-    —w-^***. 

1 
sec 

2   0 

(a) 

Figure 3. Electrodes in the Primary Visual Cortex and the Responses to Specific Stimuli 
(a) and Multiunit Activity (MUA) and LFP (b). 
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Figure 3. Electrodes in the Primary Visual Cortex and the Responses to Specific Stimuli 
(a) and Multhmit Activity (MUA) and LFP (b) (continued). 



response, whether excitatory or inhibitory, is removed. Hence, a spot of light or a moving bar of 

light can be used as a stimulus to elicit firing of neurons in the primary visual cortex. Therefore, the 

presence of an effective stimulus results in the firing of the corresponding neurons. 

The experiments performed by Gray and Singer also involved placing electrodes in the visual 

cortex of a cat. A stimulus was applied in the visual field, and recordings of neuronal responses in 

the visual cortex were taken. The receptive field properties of the neurons firing were recorded from 

each electrode with a bar of light projected on a screen in front of the cat's eye plane. The 

measurements taken from the electrode include the LFP, which is the average voltage, and the MUA, 

which indicates the neurons firing (see Figure 3b). 

The recordings from areas 17 and 18 in an adult cat when a light bar of optimal orientation was 

passed through the receptive field show a rhythmic firing pattern. This neuronal spike train was 

associated with a high-amplitude oscillation of the LFP. The spike occurred during the negative 

phase of the LFP oscillations, indicating periodicity in the firing of neurons. It is noted that the 

highest frequency of the LFP directly correlates with the maximum number of neurons firing in the 

MUA. Computation of the power spectra of the LFP was used to support that the oscillatory 

activities of the neurons were stimulus- dependent. 

The average peak frequency recorded of the LFP was between 35 and 49 Hz. It was observed 

that the amplitude and latency of the response are similar for the LFP and the MUA. It was found 

that oscillatory responses occurred much more frequently in the complex cells as opposed to the 

simple cells of the primary visual cortex. 

The results of these experiments suggest that during responses to light stimulus, adjacent neurons 

have a strong tendency to act simultaneously and synchronously. These oscillations result from 

intracortical mechanisms and not by oscillatory inputs from the LGN. In addition, results suggest 

that the synchronous oscillation of ensemble neurons in the frequency range of 35-50 Hz is an 

integral part of the neuronal response in the visual cortex. 
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In addition, the field potential has revealed the oscillatory behavior of the neuronal response, and 

because of its close correlation to the MUA, this field potential seems to reflect the synchronous 

activity of a population of cells. 

Although the mechanism of the oscillations was unknown, it suggested that the interaction 

among a population of synaptically coupled neurons, both excitation and recurrent inhibition, was 

sufficient for generating oscillations. Experiments also show that when activated appropriately, 

groups of adjacent cortical neurons change in cooperative interactions. These interactions led to 

coherent and periodic patterns of activity. 

4. Modeling of Neuron 

4.1 General Model. A variety of models for the cortical oscillations found in the visual system 

have been proposed. These include a general model and models developed by H. J. Eckhorn and 

J. L. Johnson. The general model of an artificial neural net (ANN) is an artificial neuron (AN) that 

receives inputs from a number of other ANs or from an external stimulus. A weighted sum of these 

inputs constitutes the argument to a function. The resulting value of the function is the output of the 

AN. The output mimics the firing of a biological neuron. This output gets distributed along 

weighted connections to other ANs. Therefore, an artificial neuron anatomically models a biological 

neuron. 

Looking briefly at a biological neuron, we see that it is composed of dendrites, a cell body, an 

axon, and synaptic buttons (see Figure 4) (Vermuri 1992). This is a very elementary view of a real 

neuron. The branching structure are dendrites. Dendrites are where the neuron picks up signals from 

other neurons. The cell body, or soma, is where the axon hillock acts as a threshold function. The 

axon hillock determines if a neuron fires (generates an action potential) based on a comparison of 

the membrane potential and the threshold value. The long transmission line-like structure would be 

the axon, and the action potential propagates down the myelinated axon to the presynaptic terminal. 

The brushlike structures at the end of the axon are synaptic buttons. Synaptic buttons have vesicles 

which release neurotransmitter (NT) from the presynaptic terminal. 

11 
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In a mathematical abstraction of a neuron, Xl-X,, represents the inputs received by the j* neuron, 

Wjj represents the synaptic strengths, and Yj is the output of the j* neuron. A neuron receives signals 

from its neighbors via the synapses and performs a weighted algebraic summation on the inputs. It 

computes a thresholding function and produces an output based on this sum. 

A diagram of a neural net shows the points where neurons come close together. These points 

form the synapses. It is at this point of contact that the synaptic transmission takes place. The 

neurons influence each other electrochemically. When a signal arrives at a synapse, it elicits the 

release of an NT. The NT changes the potential of the neuron. When that potential exceeds a certain 

threshold, an action potential is elicited in the receiving cell. 

A biological net would include multiple neurons with the dendrites making multiple connections 

between neurons. An artificial neural net would then include multiple copies of the modeled neuron 

with interconnecting weights and the output that is determined by a processing element. 

This is the basis for modeling of the neuron and neural net. However, each component of the 

model requires detail. In Eckhorn's model, the processing elements are developed. He discusses 

the type of inputs required, the subdividing of the cell body into compartments that perform certain 

functions, and the parameters that generate an output. 

Of interest are two models that recreate the neuronal response seen in the studies by Gray and 

Singer. The first model is by Eckhorn and closely recreates the responses of the biological system. 

The second model is by Johnson. Johnson's model takes Eckhorn's model and attempts to modify 

it to use the patterns of the neuronal response to segment images in a visual field. 

4.2 Eckhorn's Model. Eckhorn discovered that stimulus-induced oscillatory activities 

(35-80 Hz) in cells of the visual cortex synchronize the response of the cell if a common stimulus 

drives the cells. He proposed that synchronization is a general principle for coding sensory systems 

and that there are at least two types of synchronizations. These synchronizations are stimulus-forced 

(event-locked) synchronizations and stimulus-induced (oscillatory) synchronizations. 
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Eckhorn recorded large oscillation amplitudes of LFPs and MUAs that were induced by sustained 

binocular stimuli. Stimulus-induced oscillations of LFP and MUA appeared as oscillation spindles 

of 80-250 ms long, separated by intervals of stochastic activity, and their response latencies were 

longer than stimulus-locked, visually evoked cortical potentials (VECP). Stimulus-forced 

synchronizations (VECPs) are driven by a stimulus that is rapidly passed across the field of view and 

are usually not oscillatory. The stimulus-specific response is a series of oscillating voltages at 

approximately 53 and 60 Hz (see Figure 5a) (Eckhorn et al. 1989). Stimulus-related oscillations of 

neural activities were discovered in the primary visual cortex of the cat through studies by Gray and 

Singer (1987) as mentioned earlier and by Eckhorn et al. (1988). Further studies by Gray and Viana 

Di Prisco (1993) indicated that stimulus-dependent oscillations of 30-60 Hz have been confirmed 

in single-electrode recordings in A17 of alert cats. These findings with studies by Grossberg (1983) 

and Reitboeck (1983) support the hypothesis that synchronization may be a mechanism for carrying 

out the linking of local visual features into impressions of objects. 

Stimulus-specific synchronization was observed in different cortex areas if the neurons coded 

common visual features. As mentioned earlier with the work done by Gray and Singer, signal 

oscillations are generated in the cortex, and these oscillations can be synchronized by stimulation 

of neurons in their receptive fields. On the other hand, stimulus-induced synchronizations are 

recorded as oscillatory mass activities and are assumed to be produced by an internal mechanism. 

It is thought that this internal mechanism is the process achieved from stimulus-driven local 

oscillators that are mutually connected. Simulations have been done to support this assumption. 

These stimulus-specific oscillations are the responses modeled by Eckhorn. 

The stimulus-induced synchronous oscillatory potential found to take place in the visual cortex 

were observed using computer simulations of neural network models. Eckhorn's model has two 

types of synapses: (1) the feeding synapses, which are connected directly to the stimulus that drives 

the neuron and (2) the linking synapses which receive auxiliary signals that modulate the input from 

the feeding synapses (see Figure 5b) (Eckhorn et al. 1989). The linking inputs are considered the 

synchronizing signals. 
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The model neuron has dynamic synapses represented by leaky integrators. During a synaptic 

input pulse, the integrator is charged and its output amplitude rises steeply. This is followed by an 

exponential decay determined by what is called the leak time constant. The spike encoder is 

represented by a leaky integrator. The spike encoder includes a differential amplitude discriminator 

and a spike former. The amplitude discriminator triggers the spike former when the input exceeds 

a variable threshold. The output of the neuron immediately charges the leaky integrator and raises 

the value of the threshold. This new threshold value exceeds the input, preventing an output 

immediately following a previous output. The elevated threshold produces the refractory period in 

the spike generator, Another output is not generated until the threshold value decays below the 

membrane potential. 

Eckhorn believes that the concept of a modulatory synapse is supported by modulation seen in 

real neurons. These modulations may be achieved by changing dendritic membrane potentials 

through voltage- dependent channels that affect synaptic efficacy. From the simulations, feeding 

signals with modulation cause the model to respond initially with irregular receptive discharges, but 

subsequently, the neurons mutually synchronize their activity through the linking connections. This 

supports the phase locking of stimulus-induced synchronizations in the simulation. 

42.1 Computational Aspects. Eckhorn's neural network consist of two layers of neurons. The 

bottom layer (layer 1) consists of several neurons, and each layer 1 neuron receives inputs from the 

stimulus as feeding inputs and receives input from the four closest neighboring neurons as linking 

inputs. The top layer (layer 2) consists of several neurons, and each layer 2 neuron receives feeding 

inputs from the four closest neurons in layer 1 and receives four linking inputs from its four closest 

neighboring neuron in layer 2. Furthermore, each layer 2 neuron sends feeding inputs to the four 

closest layer 1 neurons. Eckhorn models his individual neuron as a dendrite and soma, with the 

output being a pulse and the input being the feeding and linking inputs. The linking inputs and 

feeding input are modeled as leaky integrators. Each neuron is modeled to have multiple feeding 

and linking inputs. The linking inputs are added to a constant value of one, then multiplied with the 

feeding input to form the input to the soma. The soma is modeled as a spike encoder. The spike 

encoder is where the output from the dendrite is compared with a preset threshold value. If the value 

16 



is greater than the threshold, the amplitude discriminator triggers the spike former to output a pulse. 

This output is fed back into the system to change the value of the threshold to prevent the generating 

of additional pulses. 

The equations that follow describe the model parameters (see Figure 6). The output of the 

dendrite is the membrane voltage Umik(t) for the K01 neuron: 

U^CO-^CDl.El+LkCt)]. 

The feeding input: 

Fk(t) - i.ltoN2 [W* u Yj(t) + Sk(t) + Nk(t)] * I (v,T,t). 

The linking input: 

Lk(t) - i_ltoNS [W1 a Y,(t) + Nk(t)] * I (v,T,t). 

The threshold: 

©k(t)-©o + Yk(t)*I(v,T,t). 

The output of the spike encoder of the K* neuron: 

Yk(t)«lifUmJC(t)*0k(t) 

Yk(t) - 0 elsewhere. 

The impulse response of the leaky integrator: 

I (v,T,t) - V • exp(-t/T)     if t ;> 0 

I(v,T,t)-0 elsewhere, 
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The membrane voltage £/,„.«.(£) of the Arth neuron is given by 

UmJc(t) = Fk(t)-[l + Lk(t)] (A.I) 

where /•*..(/) is the contribution via the feeding-inputs and I,k(t) is the 
contribution via the linking-inputs. 

Ft{t) is calculated from 

W) = E K^(0 + Sk(t) + Nk[l)] ♦ l(V\ T',1) (A.2) 

I(Va,T°,t):   impulse response of leaky-integrators at the feeding inputs. 

/(v,,.i=(i^-""if (A.3) 

The contribution via linking-inputs (index "1") is 

.   W) = EKy.(0 + ^(0]*/(V/,^'.M 
1=1 

(A.S) 

The output of the spike-encoder of the Ath neuron is given by: 

Yk{t) ~ { 0   else (A.6) 

The threshold's time course is derived by 

, : 0,(l.) = Ol)+Yk(t)*I{V',r\t) (A.7) 

with a threshold-offset On. 

Figure 6. Mathematical Description of the Model Neuron by Eckhorn. 

where 

N is the number of neurons; 

W a is the synaptic weight of the feeding input from the iÄ to the k* neuron; 

W1 u is the synaptic weight of the linking input from the i* to the k* neuron; 

Yj(t) is the analog stimulus input to the k* neuron in layer 1; 

Nk(t) is the analog "noise" input to the k* neuron, statistically independent in each neuron; and 

@0 is the threshold offset. 
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422 Simulations. Eckhorn performed several tests to show that synchronization can be 

produced with his model (see Figure 7). The first experiment is with two stimuli each individually 

applied to two patches of layer 1 neurons. The stimulus applied to the second patch was half the 

intensity of the first patch. The pulses generated in layer 1 and 2 are initially at different frequencies 

for each patch. When feedback (input from the linking neurons) is not included, these pulses do not 

lineup (synchronize), but with feedback included, we observe that over time the pulses do align, 

implying synchronization. Again, the experiment is done by applying stimulus to one patch prior 

to the other, pulses are again generated at different frequencies for the patches. Without feedback, 

they do not show synchronization, but when feedback is applied, they do synchronize. This is seen 

when cross correlation is monitored. When there is no feedback, there is no cross correlation 

recorded for the two patches. However, cross correlation is recorded when feedback is present. The 

experiments are repeated with stimulus intensities the same; the stimulus is applied to both patches, 

and the resulting pulses synchronize. Then the stimulus is removed from one patch. With pulses 

still generated from each patch, the resulting pulses synchronize over time. The pulses generated 

from the patch where the stimulus was removed is not as strong as the pulses generated from the 

patch where the stimulus remains. The reason why the pulse from the patch where the stimulus is 

removed still appears may be due to signals that are sent from the linking inputs corresponding to 

the four neighboring neurons. 

423 Behavioral Aspects. Limitations of Eckhorn's model include the arbitrary setting of the 

linking weights and the globally setting of constants to experimentally determined values. The 

constants are set to allow the model simulations to closely resemble the cats' visual cortex 

experimental data. These constants are not calculated from biological values. 

Eckhorn believes his model supports synchronization as a way to achieve perceptual feature 

linking. In order to bring neuronal mechanisms of feature linking into correspondence with 

perceptual functions, Eckhorn introduces the concept of linking field of a local neural assembly. The 

linking field of the local neuronal assembly is that area in the visual space where appropriate local 

stimulus features can initiate synchronizations in the activities of that assembly. If this concept can 

be supported, then we can interpret these synchronized patterns of neural response as corresponding 
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to visual images. It has been seen that sensory systems that received well-timed signals might be 

dominated by stimulus-forced synchronization. Other systems may employ a mechanism of 

synchronized activity for oscillations and coding in the system. 

4.3 Johnson's Model. The last model to be discussed is Johnson's model (see Figure 8a) 

(Johnson, Ranagath, and Caulfield 1994; Johnson 1994). Johnson's model does not correlate with 

the biological system as strongly as Eckhorn's model. Johnson's model is a modified version of 

Eckhorn's model. It only models a one-layer network but with multiple receptive fields. Johnson's 

model includes a dendritic-tree section, a linking section, and a pulse-generator section. The 

dendritic tree is similar to Eckhorn's dendrite. The dendritic tree includes the feeding inputs from 

other neurons, as well as the linking inputs from other neurons. The difference in this section is that 

the linking inputs are multiplied by a variable beta before the constant is added. Then this value is 

multiplied with the feeding input in the linking section. Moreover, in the linking section, linking 

inputs from other receptive fields are multiplied with the inputs from the current receptive fields. 

This value is then summed with inputs from other dendrites. The pulse-generator section includes 

a threshold discriminator which triggers the pulse former to output a pulse when the membrane 

potential exceeds the threshold value. The output is also feedback to change the value of the 

threshold as in Eckhorn's model. 

4.3.1 Computational Aspects. It is helpful to look at an individual neuron from Johnson's 

model to describe what functions beta and tau-c perform (see Figure 8b). These variables are 

experimental and have not been shown to model biological parameters. Beta is called the weak- 

linking variable. Beta sets the strength of the linking inputs' effect on the feeding inputs. Tau-c is 

the time constant that defines the pulse-capture zone. This zone indicates a period of time where a 

linking input can influence the frequency of the output pulses. Although these constants are not 

biologically based, they do play an important role in the model. 

In this model, when there is no feedback from the neighboring neurons (no linking input), beta 

(the weak linking variable) is set to zero. When there is feedback from the neighboring neurons, beta 

is greater than zero. To understand this concept, the output of a single neuron with beta equal to zero 
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is examined. With beta equal to zero, the membrane potential is equal to the feeding input only. 

When the membrane potential exceeds the threshold value, a pulse is generated. If the threshold 

value is increased to a value greater than the membrane potential, then the threshold value decays 

with time. When the membrane potential exceeds the threshold value again, then another pulse is 

generated, and the cycle repeats. This time, where the threshold is decaying prevents another pulse 

from generating immediately after a pulse, thus setting the refractory period or the pulse period. This 

is the same way Eckhorn's model operates. Now let us consider when beta is greater than zero. A 

pulse has just occurred, the threshold value is increased and starts to decay. If a linking input is 

added to the membrane potential, it causes the value of the membrane potential to increase. By the 

same token, if the membrane potential is greater than the threshold value, a pulse is generated. But 

this pulse has occurred sooner than expected. This implies that the linking input (or the feedback 

from the neighboring neurons) has changed when the pulse occurs. The linking input synchronizes 

the pulses to some desired pattern. This effect of the linking input is also found in Eckhorn's model; 

however, the linking input is multiplied by a constant of one, not beta. Thus, in Johnson's model 

the linking inputs for the current neuron can be weighted differently from linking inputs of neurons 

in other receptive fields. These weights are set arbitrarily by Johnson. Since these weights are not 

from biological responses, they do not represent synaptic strengths generated by a specific stimulus. 

Therefore, this model does not use these weights to represent data. 

Taking this concept further, Johnson looks at four individual modeled neurons, each neuron 

outputs a pulse at its own frequency (see Figure 9). When a neuron receives a linking input from 

another neuron within the tau-c pulse-capture zone, the neuron generates an output pulse sooner than 

it normally would (i.e., the output pulse frequency is increased). Successive interaction through the 

linking inputs readjust the pulses from each neuron, thus synchronizing them. If the pulses from the 

four neurons are added together, a unique pulse train is formed. The pulse train is then considered 

the response for a particular stimulus or image in the field of view. Each image generates its own 

pulse train. This idea could be justified because a stimulus does produce oscillations in the neurons 

of the primary visual cortex. Johnson's theory also assumes that this pulse train repeats over some 

interval; each image produces a periodic pulse train. 
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4.3.2 Simulations. Johnson simulated his model in order to observe if any meaningful data 

could be extracted. For example, Johnson simulates a T shape with varying intensity blocks from 

white to black (see Figure 9). The image produces its own periodic pulse train. The fourth and fifth 

interval and presumably the following intervals would be identical. The simulation shows that for 

the first four intervals, the pulse train varies. The theory is that these pulse trains represent changes 

as the linking inputs between neurons modulate the output of the neurons; this is then the time where 

the synchronization is occurring. 

The pulse train is generated in the simulation for the images starting at the highest intensity 

section and propagating to the section with the lowest intensity (see Figure 10a). Thus, if you look 

at an image with four different intensity patterns, each pattern produces its own periodic pulse train 

or, as the simulation shows, its own propagating wave. These values are arbitrarily set; hence, there 

are no data to show what the interval of time to synchronize might be. 

4.3.3 Behavioral Aspects. Johnson proposes that the periodic pulses that are generated by a 

particular stimulus can be used to identify segments of an image (see Figure 10b). Each small 

section of an image would produce its individual pulse train. As the field of view is expanded, it 

would produce its individual pulse train until the entire scene is covered. The smaller pulse trains 

would actually become subgroups within the pulse trains produced by the larger section of the scene. 

Therefore, you would have a supergroup pulse train that would represent the entire scene and would 

consist of subgroups of pulse trains at each level of the expanded view. 

5. Conclusion and Issues 

This report has presented three models that attempt to describe the oscillations produced in the 

primary visual cortex. Even though these models do not model the biological system, they do allow 

exploration into the response of the biological system. Modeling the oscillations found in the visual 

cortex has provided a possible tool for segmenting images. 
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Synchronous oscillations are found in the visual cortex. However, more investigation would help 

determine how these oscillations correspond to various stimulus. Stimulus-induced oscillations 

seem to indicate that feedback increases the pulse frequency and causes pulses to occur periodically. 

However, interaction between the feeding and linking inputs must be examined more closely to 

understand this function. Moreover, the weak linking variable and the pulse capture zone concept 

used to create periodic pulse trains needs to be investigated to determine its link with the biological 

system. Eckhorn's and Johnson's models can be viewed as first-stage systems. These models use 

the oscillatory property that can be achieved in modeling of neural networks to reproduce the 

response of neurons found in the visual cortex. 

The work done by Eckhorn and Johnson raises several interesting questions. Some of these 

questions include: 

(1) Are responses to stimuli the same for different levels of alertness? 

(2) How useful are the models as they move away from biology (the beta and tau-c experimental 

values)? 

(3) How could the individual periodic pulse trains that correlate to segmented objects be 

filtered? 

Obviously these questions cover a wide range—from the way the biological system truly 

functions to the way the simulations could be validated. Addressing these issues should provide a 

better understanding into cortical oscillations and the way they can be used in other levels of 

recognition. 

Further modeling can be done to incorporate more of the functionality of the real biological 

system. Thus, if Johnson's model can be validated biologically, then inhibitory neurons should be 

modeled and added to the overall network model. These inhibitory neurons can possibly define 

where the boundaries of the propagating waves are and, thus, define the boundaries for segmentation 

of objects. 
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