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Abstract

Current methods for estimating the wavefront slope at the aperture of a telescope using a

Hartmann wavefront sensor are based upon a centroid shift estimator. The centroid shift estimator

determines the displacement, or shift, of the centroid off the optical axis using a moment calculation

of the intensity distributions recorded in each subaperture. This centroid shift is proportional to the

average slope of the wavefront in each subaperture. A maximum a-posteriori (MAP) slope estimator

takes advantage of a-priori knowledge of the wavefront slope statistics and total irradiance falling

on the subaperture detector arrays when determining the shift estimate. In order to derive a closed

form solution for the MAP estimator, several assumptions were made: infinite resolution on the

detector arrays, no read noise in the detection process, and no intensity spillover into adjacent

subapertures. By implementing the Hartmann wavefront sensor and MAP estimator in simulation,

the performance of the MAP estimator was evaluated using realizable wavefront sensor parameters.

While the MAP estimator mean square error (MSE) performance decreased relative to the centroid

estimator MSE performance as a result of spillover, finite detector resolution, and read noise, the

MAP estimator MSE performance was found to be upper bounded by the centroid estimator MSE

in all cases.

x



EVALUATION OF A MAXIMUM

A-POSTERIORI SLOPE ESTIMATOR FOR

A HARTMANN WAVEFRONT SENSOR

L Background

1.1 Introduction

It is well known that atmospheric turbulence reduces the resolution of imaging systems. In

fact, Isaac Newton recognized that, without correction, the resolution of telescopes was limited

not by aperture size, but by the turbulence in the atmosphere [16]. A variety of techniques have

been used to improve image resolution. One solution was to build telescopes at higher altitudes.

While the higher altitudes significantly reduced the effects of turbulence, this approach had its

obvious limitations. Another solution was to compensate for the turbulence using post-processing

or adaptive optics techniques. While it has been shown that adaptive optics systems can improve

resolution by compensating for the atmospheric effects, cost and complexity often encourage the

use of speckle imaging [2,29] and other post-processing techniques such as inverse filtering or blind

deconvolution [1, 20]. Significant research has been done by the Air Force Maui Optical Station

(AMOS) and the Starfire Optics Range to improve upon the resolution of systems imaging through

the atmosphere using adaptive optics systems [9,19]. One of the key components of the adaptive

optics system is a wavefront sensor. The wavefront sensor gathers information used to estimate the

phase of the incident wavefront so the phase delays that distort the image and reduce the overall

resolution of the imaging system can be removed. If a-priori information about the atmospheric

turbulence is used along with the information gathered by the wavefront sensor, better estimates of

the wavefront phase can be made. This thesis examined the advantages of using a-priori knowledge

about the atmospheric turbulence when gathering data to reconstruct and remove the incident

wavefront phase distortions. The following sections present the information required to understand
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the operation of a Hartmann wavefront sensor and its role in the adaptive optics system, the purpose

of the research, summary of results, and a brief thesis overview.

1.2 Atmospheric turbulence

Atmospheric turbulence is caused by the heating and cooling of the Earth's surface by the

sun. Uneven temperature distributions in the atmosphere result in the formation of eddies with

varying indexes of refraction. These random refractive-index inhomogeneities distort the light that

propagates any significant distance through the atmosphere [8]. Consider light propagating from a

distant star. Initially, the light propagates outward with a spherical wavefront. After a significant

distance, the wavefront can be modeled as planar. As the plane wave propagates through the

atmosphere, different parts of the wavefront pass through eddies with differing refractive indexes.

As a result, the surface of the wavefront experiences various phase delays and appears to be dimpled.

This dimpling effect is a direct result of the light passing through pockets of random index of

refraction. The most significant effect of atmospheric turbulence is that it imparts a random tilt on

the wavefront [8]. For long exposure images, the random tilt will cause the image to roam around

the image plane of the detector, resulting in a blurred image.

Atmospheric turbulence is characterized by a set of parameters which include the outer scale,

Lo, and the Fried parameter, r.. The outer scale is a measure of the largest turbulent eddies that

are of a single index of refraction [22]. The Fried parameter is the atmospheric coherence diameter

which relates to the overall strength of the turbulence induced perturbations [11]. The turbulent

nature of the atmosphere is modeled using wave structure functions. A wave structure function

describes the phase and amplitude fluctuations of a wave due to turbulence [5]. For the purpose

of the simulations in this thesis, phase structure function statistics will only be considered since

the effects of amplitude perturbations are small relative to the effects of phase perturbations [3].

Two common phase structure functions that are used to model the effects of turbulence are the
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Figure 1.1 Wave front distortions caused by atmospheric turbulence

Kolmogorov structure function and the von Karman structure function. The Kolmogorov structure

function assumes infinite outer scale and is the most commonly used model. The von Karman

structure function uses a finite outer scale. The outer scale, L,, is the size of the largest turbulent

eddie that is of a single index of refraction. Turbulent eddies larger than L, are not assumed to be

of a single index of refraction, but composed of smaller eddies with various indexes of refraction.

The affect atmospheric turbulence has on the imaging process is that it can only degrade the

resolution of the imaging system. As the Fried parameter, r,, becomes small, the turbulent nature

of the atmosphere becomes the limiting factor in the angular resolution of imaging systems, not

the aperture size. Fried showed that when the telescope diameter, D, is much less than r., the

diameter is the limiting factor. But, when D becomes larger than r,, the resolution is consistent

with a telescope with diameter r, [7].

1-3



z I Incident wave front

Beam splitter

Image Detection
Deformable mirror I

Controller

Wave front sensor

Figure 1.2 A typical wavefront compensation adaptive optical system

1.3 Adaptive optics systems

The fundamental goal of adaptive optics systems is to remove the perturbations caused by

atmospheric turbulence in real time, thus improve the overall resolution of the imaging system. The

removal of perturbations is accomplished by performing two basic functions: wavefront sensing and

wavefront correction. A wavefront sensor measures the turbulence induced phase distortions across

the telescope aperture. This data is then used to control a wavefront modifying device. The adaptive

optics system shown in Fig. 1.2 uses a technique known as wavefront compensation and is used when

the objective is to obtain the best possible image of a distant object viewed through a turbulent

path [13]. The wavefront sensor provides the information required to drive a deformable mirror.

The purpose of the deformable mirror is to remove the phase perturbations in the wavefront. A

tip-tilt mirror can also be used to remove the overall tilt of the incident wavefront [6]. This process

is known as global tilt removal. Ideally, the wavefront correction would completely negate the

phase perturbations that are present in the telescope aperture. However, there are many factors

that contribute to error in the adaptive optics process which result from the inability to produce

perfect wavefront sensors and deformable mirrors [10].
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1-4 Hartmann wave-front sensor

While numerous wavefront sensing techniques exist [13], this research studies the performance

of a Hartmann wavefront sensor. The Hartmann wavefront sensor is a tilt or slope sensor. It consists

of an array of lenslets, or subapertures, that segments the incident wavefront in the pupil of the

imaging system. An intensity distribution, or centroid, is formed behind each subaperture on a

charged coupled device (CCD) detector array. The distance the centroid is displaced from the

optical axis is called a shift. The shift is directly related to the average slope of the wavefront in

the pupil of the subaperture [3]. Using the centroid shift data from all of the subapertures in the

wavefront sensing array, the phase of the incident wavefront can be reconstructed [6,25,28]. The

accuracy of the shift data will directly affect the accuracy of the wavefront reconstruction as well

as the ability of the adaptive optics system to remove the phase perturbations.

1.5 Maximum a-posteriori estimators

The accuracy of the data collected by the Hartmann wavefront sensor is limited by the random

nature of the atmospheric turbulence and the photo detection process. If the random nature of the

atmospheric turbulence and the detection process can be characterized using probability density

functions (PDFs), shift estimators that incorporate the PDF information can be developed. If

the wavefront turbulence statistics are known a-priori, the atmospheric turbulence statistics can

be characterized using a posterior PDF and a maximum a-posteriori (MAP) estimator can be

developed. The approach taken by Sallberg [23] was to model the image detection process as

a product of joint PDFs. By maximizing the joint PDF with respect to the shift parameter, a

MAP shift estimator was derived. Several assumptions were made in order to obtain a closed form

solution for the MAP estimator:

9 The intensity distribution on the image plane was modeled as a Gaussian distribution.
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"* The intensity distribution was sufficiently compact and the local wavefront tilts were suffi-

ciently small so that the intensity distribution formed by one subaperture does not bleed over

onto the detector pixels from an adjacent subaperture.

"* The CCD detector array was assumed to have infinite spatial resolution.

"* The random nature of optical detection was modeled with Poisson statistics.

"* The detection process had no read noise.

The resulting MAP estimator incorporated statistical knowledge of wavefront slopes and the de-

tected light levels when estimating the shift data. If all the parameters in the joint PDF were

jointly Gaussian, the resulting estimator would be the Minimum Mean Square Error (MMSE) es-

timator. Since the arrival of photons on the CCD detector was modeled as a Poisson process and

the intensity distribution was only approximated by a Gaussian distribution, the MAP estimator

will not be an MMSE estimator. Sallberg found that the MAP estimator mean square error (MSE)

had the centroid estimator MSE as its upper bound.

1.6 Goal of research

The purpose of this research was to evaluate the performance of Sallberg's MAP estimator [23]

under actual operating conditions. Many of the assumptions made by Sallberg no longer hold

when considering a realizable wavefront sensor design. The MAP estimator must be evaluated

using simulation since a closed form solution can not be found when realizable wavefront sensor

parameters are considered. The following MATLAB 5.0@ simulations were used to complete the

research:

* A Fourier series based phase screen generator modified from code developed by Welsh [30].

* A Hartmann wavefront sensor employing an N x N array of square subapertures.
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* A slope correlation matrix generator for von Karman and Kolmogorov atmospheric statistics

for use in the MAP estimator.

1.7 Overview

Chapter II covers the principles behind Hartmann wavefront sensors and the simulation de-

velopment. Chapter III discusses the implementation of Sallberg's MAP estimator and the required

equations for the slope correlation matrix. Chapter IV verifies the simulation accuracy, discusses

the various parameters used in the test simulations, and presents a test matrix. Chapter V exam-

ines the performance of the MAP estimator in simulation and finally, Chapter VI summarizes the

thesis.
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II. Imaging theory and wavefront sensor simulation development

2.1 Introduction

The purpose of this research was to develop a computer simulation for a Hartmann wavefront

sensor and use it to evaluate the performance of a maximum a-posteriori (MAP) slope estimator.

While the previous chapter presented a basic overview of the area of interest, the material in this

chapter is focused on the wavefront sensor. A theoretical foundation for using a linear systems

approach to model the imaging process of a single lens system and the operation of the Hartmann

wavefront sensor are explained. Then, the computer simulation of the Hartmann wavefront sensor

will be discussed in detail.

2.2 Image formation

Light propagating in a source free media system can be analyzed as a linear, space-invariant

(LSI) system using Fourier optics theory [12]. Using the LSI framework, the single lens imaging

system with an image plane located one focal length away pictured in Fig. 2.1 will produce an

intensity distribution that is the magnitude squared of the Fourier transform of the wavefront in

the aperture.

Wavefront

Lens

Aperture

Intensity distribution

Image plane

Figure 2.1 Fourier optics approach to imaging with a single lens.

In an actual imaging system, both the wavefront in the pupil and the intensity distribution

on the detector are continuous. In order to implement the imaging process in simulation, the
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wavefront must be represented using a finite number of samples. Representing a continuous function

with a finite number of samples makes the imaging simulation a discrete process, and a Fast

Fourier Transform (FFT) of the wavefront in the pupil must be used in order to determine the

intensity distribution on the image plane. Two problems must be considered when working in the

discrete domain: wrap around error and aliasing due to under-sampling [21]. In order to avoid

problems associated with wrap around error when taking FFTs, the wavefronts are placed in a

zero-padded array before transforming. The problem of under-sampling is handled by ensuring

the wavefront sampling is larger-than or equal-to the sampling that is used by the phase screen

generation program [30].

2.3 Image detection

Each subaperture in the wavefront sensor uses an array of charged coupled device (CCD)

pixels to detect the intensity distribution that forms on the image plane. The CCD array detects

the intensity distribution by counting the arrival of photons at each pixel location. Since photons

arrive at random intervals, the detection process can not be treated as deterministic. In addition to

a random arrive rate, the detection process is subject to several sources of random noise including

background noise and readout noise [26].

2.3.1 Shot noise. Shot noise is another term for photo-conversion noise. It accounts

for the uncertainty in the detection of photons. Photons arrive at a random rate and at random

locations on the detector array which was modeled by a Poisson process. A Poisson process has

a variance equal to its mean making it a signal dependent process. Since shot noise is signal

dependent, it is the limiting factor in the detection process [28]. The best centroid estimation in

the presence of shot noise is referred to as shot limited performance and is the Cramer-Rao lower

bound for any unbiased shift estimator [32].
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Figure 2.2 Geometry for a single subaperture of a Hartmann wavefront sensor.

2.3.2 Read noise. While the detection of the photons by the CCD pixels is modeled with

a signal dependent random process, the act of reading this data contributes to the uncertainty

by adding more random noise. A charge coupled device array operates by counting the arrival of

photons in each pixel over a given period of time. At the end of each time period, the photon count

is read out of the detector array. The random noise resulting from the read out process is referred

to as readout noise and is modeled with an additive zero mean Gaussian random process [261.

2.4 Hartmann wave front sensor

The Hartmann wavefront sensor consists of an array of lenslets or subapertures. The incident

wavefront in the aperture of the imaging system is segmented over the array of subapertures. The

lenslet in each subaperture forms an intensity distribution onto an array of GOD pixels located at

the lenslet focal length. The intensity distribution formed by each lenslet is detected by an array of

CCD pixels, and the centroid shift can be estimated for each subaperture. The estimated centroid

shift data can be used to calculate the slope of the wavefront in the aperture of the imaging system.

Referring to the diagram in Fig. 2.2, the slope of the wavefront in the ith subaperture, 9j, can be
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(a)

(b) _ _

SX(c)
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Figure 2.3 The wavefront in the aperture (a) and its piecewise linear approximation (b) across
an array of subapertures (c) for different values of the Fried parameter, r,.

determined using two relationships. First, the slope is proportional to the centroid shift, M-i [3]:

Si radians
Si k meter (2.1)

where k = 21r/A, A is the average wavelength, and ft is the subaperture focal length. Secondly,

the slope of the wavefront in the subaperture can be found using a relationship developed by

Wallner [28],

-( radians) (2.2)

Si d-V~~)( meter I

where VWi(!) is the gradient of the subaperture weighting function of the ith subaperture, and

0(:) is the wavefront phase in the ith subaperture. It should be noted that the expressions defined

in Eqn. (2.1) approximates the wavefront slope as linear in the subaperture. Since the Hartmann

wavefront sensor is an array of subapertures, the wavefront in the aperture of the imaging system

is averaged in a piecewise linear fashion [14]. When the Fried parameter, r,, is large, the linear

approximation holds. However, as r, decreases, the linear approximation will not be valid as the

spatially averaged wavefront tilt can differ greatly from the true wavefront tilt as shown in Fig. 2.3.
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2.5 Hartmann wavefront sensor simulation

In order to develop a simulation for the Hartmann wavefront sensor, the operation must

be broken up into several steps. The approach taken to model the operation of the Hartmann

wavefront sensor was similar to one described by Cannon [3] in which the incident wavefront was

segmented over an array of microlenses and FFTs were used to determine the corresponding inten-

sity distributions. A flow chart for the Hartmann wavefront sensor simulation is shown in Fig. 2.4.

The simulation input is a phase screen, and the outputs are vectors containing the actual centroid

shifts (xact) and the wavefront sensor shift estimates (est). The actual centroid shift can be calcu-

lated in the simulation only because the actual phase data is available. An actual wavefront sensor

can only estimate the centroid shift based upon the detected signal values. The difference between

the actual centroid shift and the estimated centroid shift is the estimation error. The simulation

segments the incident wavefront over an array of subapertures, calculates the actual centroid shifts,

calculates the intensity distribution on the detector array, accounts for shot noise, read noise, and

overlap onto adjacent detectors, then estimates the centroid shifts.

The major steps of the wavefront sensor simulation are described in detail below:

* The incident wavefront is of uniform amplitude and varying phase. The phase of the wavefront is

the input to the simulation. The phase data, or phase screen, of the incident wavefront is segmented

over the wavefront sensor subaperture array. The actual centroid shift is then calculated for each

subaperture. Using Eqns. (2.1) and (2.2), the actual centroid shift, iact is:

= L f dx-VWi (i)ck(Y), (2.3)

where fl is the subaperture focal length, Wi(M) is the subaperture weighting function of the ith

subaperture, k = 27r/A, and 0(;) is the wavefront phase in the ith subaperture. Since the wavefront

sensor subapertures are assumed square in the simulation, the subaperture weighting function,
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in '0' padded arrays Account for shot noise

,in detected pixel

Take FFT of arrays to values
get complex intensities
for each subaperture Add read noise to

each pixel value

If overlap is off, mask
complex amplitude
data Calculate the centroid

location using a

Add complex 1moment calculation

amplitudes to--
detection array

Estimated centroid location
Determine intensity Actual centroid location
distribution on
detector array

Figure 2.4 Flow chart for the Hartmann wavefront sensor simulation

Wi(x, y), for all subapertures can be modeled as:

W(x,1y) = -i1.rect ( X)rect(Y-) (2.4)dw.d ) ( d w

where dw is the width of the wavefront sensor subaperture, and

( 1-

reet = (2.5)

0 otherwise.
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Using the definition of the gradient operator, V = -x + •-L, the gradient of the subaperture

weighting function is

VW (X,y) = + F

= [OX rect(.)rect ] + 2 rect rect

+ (6(x + •) -(- )) - rect(d-)!. (2.6)

Now, Eqn. (2.3) can be written in an expanded form by substituting Eqn. (2.6) for the gradient of

the subaperture weighting function:

-L' - f_ ffxd [ (6~ (x+Ld (x-d (X )rc

+ k (6(yUU \$k + L 6(y -Lq!(x, y) rect (2.7)

An expression for the actual centroid shift can be found by using the sifting property of Dirac delta

functions [12]:

XacVt = " fd (OL y - 0 4L y)&+fd(~ ,L)-Ox L) ] 28kdW2 [J2 242

Consider only one of the two orthogonal directions. The xact value in the 1 direction can be written

as

St [f2 -y) f d 0] d2 (2.9)
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Integrating the phase with respect to y and dividing by the width of the subaperture results in the

average phase value at the points x ± -. The difference between the average phase at these two

points scaled by f 1 /kdw is the actual shift in the 1 direction. In the discrete domain, the actual

shift can be found in a similar manner. In order to determine the average phase value at the points

x J -d, the phase samples are summed in the n direction at the points x ± -d and divided by the

total number of samples. The difference between the average phase at these two points scaled by

fl/kdw is the actual shift in the J direction:

X = [ N N g ) . (2.10)

The discrete form of Eqn. (2.8) can be written as

Y= - __[_ .Y=) Y- )
Xaxt - kd,,, N - N

N N+r N -N 2) , (2.11)

where N 2 is the total number of samples in the phase screen, fj is the subaperture focal length,

k = 2ir/A, and d, is the width of the wavefront sensor subaperture.

* After the actual centroid shifts have been calculated for each subaperture, the estimated

centroid shifts are determined. The first step is to zero-pad each segmented piece of the phase screen

in order to minimize the effects of wrap around when the FFT is taken [21]. The zero-padding is

accomplished by resizing the segmented piece of the phase screen to 15 x 15 samples. Based upon

the selected atmospheric parameters, the sampling of the phase screens generated by the phase

screen generator [30] is less than 15 x 15 samples. Resizing to a larger number of samples ensures

no loss of data or aliasing due to under-sampling. The phase screen data is placed into a 15 x 15
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array centered on a larger 64 x 64 array containing 0 values. A 64 x 64 array is used to take

advantage of FFT algorithms.

* At this point in the simulation, the phase screen in each subaperture has been placed into

a larger zero-padded array. The next step is to take the FFT of each zero-padded array. The

resulting arrays contain complex amplitude data for each subaperture. As shown in Fig. 2.5, all of

the complex amplitude data is added to a single detection array. Since the simulation was designed

such that the physical size of the arrays containing the complex amplitude data was larger than the

physical size of the subaperture, the complex amplitude data for adjacent subapertures will overlap

when added to the detection array. However, if overlap between subapertures is not allowed, an

overlap mask is placed over the array containing the complex. amplitude data, nulling all amplitude

data in the overlap region. Assigning all of the amplitude values in the overlap region to zero will

negate the effect of overlap on the detection array.

0 After all of the complex amplitudes are added to the detector array, the detector array is

multiplied by its complex conjugate to determine the intensity distribution on the detector plane.

* Figure 2.6 shows that the detection array contains the intensity distributions formed by all

of the subapertures. At this point in the simulation, the detection of the intensity distribution by

the CCD array is modeled. In an actual wavefront sensor, each subaperture contains an N x N

array of CCD detector pixels located in the image plane. In the simulation, N is a user defined

parameter. The CCD array is modeled as a square array of pixels with no spacing between them.

To account for the effects dead space between the detector pixels in an actual CCD array, the

photon count can be scaled by a user defined duty cycle parameter. The intensity distribution

corresponding to each subaperture is sampled into an N x N CCD array. The sum of the values in

each subaperture CCD array is normalized to equal the average photon count per subaperture, k.

The CCD array for each subaperture now contains the normalized detected signal values.

2-9



Array of subapertures
Single subaperture

Segmented phase screen

Zero-padded phase screen

FFT of phase screen

Overlap mask

Overlap area Detection array

Figure 2.5 The wavefront is segmented over an array of subapertures. The individual segments
are placed in zero-padded arrays. The FFT is taken to get the complex amplitude
data, an overlap mask is placed on the data, then the data is added to a detection
array.

Single subaperture Array of subapertures

Detection array

Single subaperture
intensity distribution

CCD array

Figure 2.6 The intensity distribution for each subaperture is sampled into a smaller CCD array.
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* The detection process by a CCD is subject to shot and read noise. To account for the

uncertainty of the detection process, each value in the CCD arrays is subjected to a Poisson process.

The CCD arrays now contain shot limited detected values. The shot limited detected values in

the CCD arrays are then subjected to an additive Gaussian zero mean process to account for the

effects of read noise. The variance of the read noise is another user defined parameter.

* Now that the CCD arrays contain the detected signal values, the estimated centroid shift

can be calculated. For a detector array with a finite number of pixels, the centroid shift estimates

for each subaperture, rA, are calculated using a first moment calculation [4],

E = i • jXiPij + Ei •,• yjPim -j p•_ E ej P , (2.12)

where Pij is the photon count in the (i, j) pixel of the subaperture detection array, and xi and yj

are the offsets from the center of the subaperture to the center of the ith or jth pixel.

2.6 Using the wavefront sensor simulation

The wavefront sensor simulation is set up as a MATLAB 5.0@ function call. The code listing

in Appendix D is called using the following command:

function [xest,xact] = wfsl(PhaseScreen, SubapertureArraySize, SubapertureFocalLength,

SubapertureDiameter, AverageWavelength, DetectorArraySize, ReadNoiseVariance, ShotNoise,

AveragePhotonCount, WavefrontTilt, DetectorDutyCycle, SubapertureOverlap)

The wavefront sensor simulation was designed to allow the following parameters to be varied:

* PhaseScreen - The phase data of the incident wavefront in the aperture of the imaging system.

2-11



"* SubapertureArraySize - The square root of the number of subapertures in the wave front

sensor array. The simulation assumes a square array of subapertures.

"• SubapertureFocalLength - The focal length in meters.

"* SubapertureDiameter - The diameter of the subaperture in meters.

"* AverageWavelength - The average wavelength in meters.

"• DetectorArraySize - The square root of the number of pixels in each subaperture detector

array. The CCD array is assumed square with no dead space between pixels.

"* ReadNoiseVariance - The variance for the additive Gaussian noise.

"* AveragePhotonCount - The average photon count per subaperture for the sampling period.

"* WavefrontTilt - The global tilt on the incident wavefront can be removed to simulate the

presence of a tip-tilt mirror in the adaptive optics system.

"* DetectorDutyCycle - The duty cycle of the detector array.

"* SubapertureOverlap - The intensity can spill over onto adjacent subapertures.

The vector &,,t contains the estimated centroid shifts for all subapertures and the vector Xat

contains the actual centroid shifts for all subapertures. The format for both the actual centroid

shift vector and centroid shift estimate vector follows:

Xact(1) mM(1)

yart(1) M Y(i

Xact (2) mg(2)

Xact= Yact( 2 ) and &est mg(2) (2.13)

Xact(M) mZ(M)

yact(M) mg(M)
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where xact(1) and yact(1) are the actual -ý and • shifts in meters for the first subaperture, mg(1) and

mg.(1) are the estimated ; and 9 shifts in meters for the first subaperture, M is the total number

of subapertures in the wavefront sensor array, and the subapertures are numbered sequentially

increasing from left to right, top to bottom as depicted in Fig. 2.7.

1 2 3

4 5 6

7 8 9

Figure 2.7 The numbering sequence for the wavefront sensor array.
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III. Implementation of a maximum a-posteriori estimator

3.1 Introduction

The Hartmann wavefront sensor estimates the centroid shift of the irradiance distributions

in each subaperture. The centroid shift information is then used to estimate the wavefront slope

at the pupil of a telescope in order to correct for wavefront distortions caused by atmospheric

turbulence. Centroid shift estimation uses a moment calculation and does not take advantage of

the correlation properties of the wavefront slopes over the subapertures or the amount of light

collected by the wavefront sensor. A MAP estimator derived by Scott Sallberg [23] incorporates

statistical knowledge of wavefront slopes and light levels when estimating the centroid shifts. The

MAP estimator was found to be unbiased and the MSE performance of the centroid estimator was

its upper bound. This chapter will present an overview of the MAP estimator, develop the equations

necessary to implement the estimator in simulation, and evaluate the theoretical performance limits

of the estimator.

3.2 Maximum a-posteriori estimator

The MAP estimator derived by Sallberg [23] determines the MAP shift estimate vector

(IMAP) by scaling the centroid shift estimate vector (!et) by a correction factor matrix C-1:

XZMAP - C-•,et, (3.1)

where the correction factor, C-1, is defined [23] as

c-'[I 1+ 12RK) ']3(3.2)
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I is the identity matrix, R is the slope correlation matrix, 0; is the mean square spot size, and K

is the photon count matrix defined as

K 1  0

K = .. (3.3)

0 Kj

where Kj is a diagonal matrix containing the photon count in the jth subaperture.

3.3 Slope correlation

In order to develop a simulation for the MAP estimator, the slope correlation matrix R must

be calculated. The goal of the next three sections is to derive the equations needed in order to

calculate slope correlation matrices for the desired atmospheric statistics and subaperture array

size. Referencing Fig. 3.1, a general solution will be developed to find slope correlations between

any two subapertures separated by a distance !T=V/Xo2 + y2, where x. and y, are the • and

distances between any two subapertures.

Subaperture j

Subaperture i

Figure 3.1 The slope correlation generalized for any two subapertures separated by a distance
D•. The coordinate reference is centered on the subapertures with positive directions

labeled.
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The slope correlation equations are developed by first defining the slope in the subaperture as

a function of the subaperture weighting function Wi(g) and the phase in the subaperture 0(g). The

wavefront slope for the ith subaperture can be shown to be equivalent to computing the average

wavefront phase gradient over the wavefront sensor subaperture [33]:

= J dX Wi(g) (VO(S).- d-), (3.4)

where di is a unit vector designating one of two orthogonal slope components for the ith subaperture

and the subaperture weighting function, Wi(:5), is normalized such that

J d Wi (9) = 1. (3.5)

Integrating Eqn. (3.4) by parts [28] allows the slope to be expressed in terms of 0(g) rather than

,,= - J (VWi() .di) 0(i). (3.6)

The slope correlation between any two subapertures i and j, Rij, is the expected value of the

product of the slopes in the two subapertures [22]:

- J d~rdx'(VW&(:) -da) (Vwicg) -d)-E{O(g')Ov)} (3.7)

where s(i) is the ith subaperture slope measurement in the d direction and E[.] is the expected

value operator.
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Given the wavefront phase correlation ro(Y - 9)= E{q(±)€(•)} and the definition of the

structure function [11]:

Do-(r - Y) = 2ro (v - :) - 2r0(0, 0), (3.8)

the slope correlation can now be written as

iJf d- / (VW&('), )(vwj(),) (r(oo)- D0 o - g)). (3.9)

Using the definition of the subaperture weighting function from Eqn. (2.4), the gradient of

the weighting function was found to be

1 (6(x + d)-_ (x _d) ) rect ()VWi (x, y) d-- 2

I (6(y + d) _ (- d) ) oc( (3.10)

where d is the telescope subaperture diameter. The telescope subaperture diameter is used in this

formulation since the slope correlation values will be calculated across the aperture of the telescope.

Equations to calculate the slope correlation between any two subapertures can now be devel-

oped using Eqns. (3.9) and (3.10). It should be noted that the slope correlation, Rij, is dependent

on the separation of the ith and jth subapertures, xo and Yo, and the slope components, d' and d,
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in each subaperture. Using the notation Rij = R(x0 , y,) we have,

+( • (6Y + d) -)6(Y - (rect -)did]

T '2 XI+d X0d _X )o) )rect (' )i . dj)

+ (T2(b(Y+ Y) 6Y'- 2 Y)rec/--• y •d

x (ro(o,o) - Do(x' - x,y' - y)) (3.11)

3.4 Slope correlation matrix development

Before specific equations can be developed to complete the correlation matrix, some book-

keeping information must be presented. The form of R is defined by the ordering of the elements

of s, the vector containing the subaperture wavefront slopes:

81

82

83

s 84 (3.12)

82M2 -1

S2M2

where s, is the 1 directed slope for the 1st subaperture (upper left in Fig. 3.2) and S2 is the

ý directed slope for the 1st subaperture. Since the array of subapertures is M x M, with each

subaperture having an B and P directed slope measurement, 8 will have 2M 2 elements. The slope
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correlation matrix, R is defined as E[8 8 T]. The slope correlation matrix will be of size 2M 2 x 2M 2

and will have the following form:

8181 8182 ... 
8 1 8 2M 2

8281 8282 ... 
8 28

2M2

8381 8382 ... 
8 38

2M2

R = E 8481 S4S2 ... 8
4

8
2M2 (3.13)

S2M2--S1 S2M2-1S2 ... S2M2_1S2M2

8
2M2

8 1 8
2M2

8
2 ... 

8 2M2 8 2M2

Referring to Fig. 3.2 and Eqn. (3.13), calculating the values for R requires the development

of four different equations:

1. Correlation between two subapertures with • directed slopes.

2. Correlation between two subapertures with • directed slopes.

3. Correlation between subapertures with J and • directed slopes.

4. Correlation between subapertures with • and $ directed slopes.

4-3 -Subaperture

+ +± -- Full Aperture

Figure 3.2 Subaperture slope geometry. The numbering depicts orthogonal components of the
slope measurements.
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3.5 Slope correlation equations

Equation (3.11) is further developed for specific atmospheric structure functions in Appen-

dices A and B. Appendix A develops the slope correlation using Kolmogorov statistics. Appendix B

develops the slope correlation using von Karman statistics. The following is a summary of the equa-

tions obtained using the two different structure functions.

3.5.1 Kolmogorov turbulence statistics. Using the Kolmogorov structure function the

correlation between x4 directed slopes is

( =-3.44 (d) fJio+i dAy(1 _ gA _ YoI)Rxx(:olo) d2 \ro] ~-

[2(0_ ( (.t + 1)2 + A2 - ((.o- 1)2 + (3.14)

where to = xo/d and ?io = yo/d are the normalized subaperture separations and ro is the Fried

parameter. The correlation between • directed slopes is

-3 .44 {d I --[
R 2 2(ioflo) = ' 4 ( ) 3 1f dA,(1 -IA. - -ol)

0 X (3.15)

The correlation between ' and P directed slopes is

=-3.44 •d• 2 9o+½ 1)2(1

S((, + 1)2 + (1 , +(. _
2 02 2 2

1 )2 + 1 )2)8-( -)2+ +o-))

+ ((Y -)2± (+ i X))]

(3.16)
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The correlation between 1 and • directed slopes is

yXOO d2 ( ) J 2

-) + ((12+ 1+))g

(3.17)

3.5.2 von Karman turbulence statistics. Similar relationships were found for the von

Karman structure function. The correlation between & directed slopes is

R~~(~,~0 )=0.08663( A 1 ) day(1 - IAY -g-D)

L2. K516 [2 Lrd]o

2 + (3.18)

where ,Z = xo/d and go = yo/d are the normalized subaperture separations and ro is the Fried

parameter. The correlation between g directed slopes:

R~y(.o,go) =0.08663 -•) - dA,( [1Ax °+l)

x 27r K1/($

to [ ]] J

- K516° ) K 12r Lo (3.19)
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The correlation between 1 and 9 directed slopes is

~ 1,F[/61 f 2 fYe+S)=0.08663 3 72) dydx

--°'° K -'" L°jj (3.20)

The correlation between • and & directed slopes is

R•(•o,(o) =0 08663 (L°)1([6 f•0+d

+ [ K516 2 [ 1

x - • Lo K5/

+ ( d/(v+½)2+J½+j°-X)2 6 K516 27r[ d J

-- \ d•('-)+½v-) 856 dN( 2 Lo j

-2 AK516 ) [ (3.21)

3.5.3 Implementation. The correlation between subapertures with slopes in the same

direction can be calculated using a single numerical integration where as the correlation between

subapertures with • and • directed slopes requires two dimensional numerical integration. The

correlation matrix, R, for the Kolmogorov structure function, once generated, can simply be scaled

as the Fried parameter (r0 ) and subaperture diameter (d) changes. However, as the outer scale (L0 )

and subaperture diameter (d) change in the von Karman structure function, the entire correlation

matrix must be recalculated. Also, when calculating the correlation matrix using the von Karman

structure function, a series expansion to the second order of the modified Bessel function of the
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second kind was used when integrating across the origin. Without a series expansion, numerical

integration across the origin results in an infinite value which is a result of K51 6 [0] being equal to

infinity. The use of a series expansion allowed the cancelation of the term that caused the infinite

value. The code for generating the correlation matrices is listed in Appendix E.

3.6 Theoretical MAP estimator performance

In order to verify the correlation matrix was properly developed, the theoretical performance

of the MAP estimator will be compared to the values obtained by Sallberg [24]. The behavior of the

correction factor matrix will be examined, and the relative mean square error (MSE) performance

of the MAP estimator will be examined. The MSE performance will be evaluated using both

Kolmogorov statistics and von Karman statistics in the correlation matrix.

3.6.1 Correction factor matrix. First, the correction factor matrix, C-1, will be examined.

C-1 should have the following properties:

0i as K 0
C--1 • (3.22)

as K oo.

As the average photon count per subaperture approaches zero, the data cannot be trusted and the

correction factor forces the MAP estimate to zero. As the average photon count per subaperture

gets very large, the data can be trusted and the correction factor becomes the identity matrix, I,

and the MAP estimate is simply the centroid estimate. The behavior of the MAP estimator can

be verified by examining the behavior of the correction factor matrix. Mesh plots of the correction

factor matrix as defined in Eqn. (3.2) for different photon counts per subaperture (k) are shown

in Fig. 3.3. As the average photon count per subaperture increases, the correction factor becomes

the identity matrix. The trend verifies the expected behavior of the correction factor matrix.
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K=I R=1O
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_0 ;.5 -0.5•

55050 50

0 0 0 0

k=50 k=1oo

1 1

-0.5, -0.5,
50 50 50 50

0 0 0 0

Figure 3.3 Mesh plots of the correction factor matrix for various values of K, the average photon
count per subaperture, using von Karman statistics to develop the correlation matrix.
The subaperture diameter was 9.2cm, the Fried coefficient was 10cm, and the outer
scale was 50m.

3.6.2 MAP estimator performance using Kolmogorov statistics. Next, the performance

MAP estimator will be examined by comparing the ratio of the MSE of the MAP estimator to

the MSE of the centroid estimator. In order to proceed, relationships for the MSE of the centroid

estimator and the MAP estimator must be defined. The MSE for the centroid estimator is defined

as [24]

MSE(g) = tr [0p 2K-'], (3.23)
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and the MSE for the MAP estimator is defined as [24]

MSE(S) = tr [ I + ( 1 + ~IRK) O ~2 K-]1 (3.24)

where tr[.] is the trace operator, R and K are defined by Eqns. (3.13) and (3.3), and o• is the

mean square spot size.

Figure 3.4 is a plot of the error ratio as a function of average subaperture photon count,

k, using Kolmogorov statistics in the MAP estimator correlation matrix. The correlation matrix

0.90.8- 2•

0.7

0.6-. 0,
2 /0, 2 -1/4

0.3

0.2

0.1

0 20 40 60 80 100 120 140 160 180 200

Average photon count/subaperture, K

Figure 3.4 Relative MSE performance as a function of average photon count per subaperture.
Kolmogorov statistics were used for a 5 x 5 array of unobscured subapertures with
d = 9.2cm.

was computed using Kolmogorov statistics for a 5 x 5 array of unobscured subapertures with

subaperture diameter = 9.2cm. The various curves in each figure correspond to a particular value

of the ratio of the mean square spot motion, o,, to mean square spot size, o2. This ratio can be

expressed as a ratio of subaperture diameter, d, to Fried parameter, r, [24],

0,..,2 (flo,0)2 1 5/3,

a2 (0.37flA/d)2  (3.25)
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orc/O'p •r (meters)
3 0.0799
2 0.1018
1 0.1544
1/2 0.2340
1/4 0.3547

Table 3.1 Fried parameter for various ratios of o-/2r using Kolmogorov statistics with subper-

ture diameter d = 9.2cm.

where fL is the subaperture focal length, and

9 = 12.803/(k2 r" 3 d'/ 3 ), (3.26)

is the measured mean square angular tilt for a square subaperture [28]. The factor 0.37 in the

denominator of Eqn. (3.25) is a result of matching the e- 1 points of a Gaussian spot distribution

to the diffraction pattern of a square subaperture [18]. Table 3.1 lists the values for the Fried

parameter, ro, associated with the ratios identifying the curves in Fig. 3.4.

3.6.3 MAP estimator performance using von Karman statistics. Finally, the performance

MAP estimator will be examined by comparing the ratio of the MSE of the MAP estimator to

the MSE of the centroid estimator using von Karman statistics in the MAP estimator correlation

matrix. Figure 3.5 is a plot of the error ratio as a function of average subaperture photon count, k.

The correlation matrix was computed using von Karman statistics for a 5 x 5 array of unobscured

subapertures with outer scale LO = 50m and subaperture diameter d = 9.2cm. The various curves

in each figure correspond to a particular value of the ratio of the mean square spot motion, 0.2, to

mean square spot size, o2.

A relationship must now be found to relate the Fried parameter, r,, to a-C/ o when von

Karman atmospheric statistics are used. The first step is to write Eqn. (3.26) as a function of the

slope correlation. The variable R-,., will be used designate the normalized mean square slope and

can be evaluated for Kolmogorov statistics using Eqn. (3.14) when the normalized offsets (5fo, Y)
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Figure 3.5 Relative MSE performance as a function of average photon count per subaperture.
Von Karman statistics were used for a 5 x 5 array of unobscured subapertures with
outer scale L, = 50m and d = 9.2cm.

0-c/0-P r, (meters)
3 0.0702
2 0.0896
1 0.1358
1/2 0.2058
1/4 0.3120

Table 3.2 Fried parameter for various ratios of ,2/ 2 using von Karman statistics with outer
scale L, = 50m and subperture diameter d = 9.2cm.

are equal to zero, r, = 1, and d = 1. Using the normalized mean square slope, Eqn. (3.26) can be

written as,

0 2/3/ (3.27)

where 2,,,=12.803. The factor of 2 is required since the slope correlation defined by Eqn. (3.14)

is valid for slopes in a single orthogonal direction and ao0 is defined for a vector parameter in

Eqn. (3.26).

A similar approach can be used to derive an equation for 0,2 using von Karman statistics.

The variable f?,,(d, L,) will be used designate the normalized mean square slope for a specific d
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and L, using Eqn. (3.18) when the normalized offsets (.t, g,) are equal to zero. The mean square

angular tilt for a square subaperture in Eqn. (3.26) can be written:

2 = 2R (d, L.)010 5/3 (3.28)

The factor of 2 is required since the slope correlation defined by Eqn. (3.18) is valid for slopes in

a single orthogonal direction. As the outer scale approaches infinity, the value of the normalized

mean square slope for von Karman atmospheric statistics will approach the value of the normalized

mean square slope for Kolmogorov statistics:

2RP,(d = 1, Lo - co) -- 12.803. (3.29)

The ratio between mean square spot motion and mean square spot size in Eqn. (3.25) can now

be written in terms of the normalized mean square slope using von Karman atmospheric statistics:

o2_- 2Rxx(d'L°)d2  (3.30)

- ro /(0.37(27r))2

For a given ratio of o,,c/r, the Fried parameter, r,, can be determined. Table 3.2 lists the values

of the Fried parameter, ro, associated with the ratios identifying the curves in Fig. 3.5.
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IV. Verification of simulation performance and test plan

4.1 Introduction

This chapter verifies the accuracy of the wavefront sensor simulation and maximum a posteri-

ori (MAP) slope estimator implementation as well as outlining a test plan for the MAP estimator.

First, the wavefront sensor simulation performance was examined. The accuracy of the wavefront

sensor simulation was verified by comparing the shot limited performance to the theoretical bound.

Since the wavefront sensor simulation employs a centroid estimator to determine shift estimates,

the performance of the centroid estimator was compared to the shot noise limited performance.

Next, the effects of read noise and atmospheric turbulence were examined. The second part of

this chapter verified the performance of the MAP estimator implementation. The MAP estimator

mean square error (MSE) performance was evaluated as the ratio of MAP estimator MSE to cen-

troid estimator MSE. The curves generated from the simulations were compared to the theoretical

performance curves. The final part of this chapter outlines a test plan to fully evaluate the MAP

estimator performance using a variety of wavefront sensor and atmospheric parameters.

4.2 Hartmann wavefront sensor simulation verification

In order to verify the performance of the wavefront sensor simulation, the shot noise limited

performance of the wavefront sensor was examined. The shot noise limited performance was evalu-

ated using a point source irradiance while ignoring the effects of read noise on the detection process

and removing any effects of atmospheric turbulence from the incident wavefront phase. Using these

assumptions, each subaperture in the wavefront sensor array forms an intensity distribution cen-

tered on the optical axis. While the intensity distributions are centered on the optical axis of each

subaperture, shot noise in the detection process results in an apparent shift off the optical axis.

The shift off the optical axis is the error directly resulting from the presence of shot noise in the

detection process. This error is the shot limited performance of the wavefront sensor simulation.
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The shot noise limited performance of the simulation was compared to the theoretical bounds

in order to verify the simulation accuracy. Since the shot noise limited performance of a 2 x 2 CCD

detector array (or quad cell detector) has been agreed upon by several sources [17,27,31], a quad

cell detector was used to verify the simulation performance. The theoretical shot noise limited root

mean square error (RMSE) performance for a subaperture using a quad cell detector in the absence

of atmospheric turbulence was derived by Welsh [31] to be

V7 Af1RMvISE(5) 2d (meters), (4.1)

where k is the average photon count per subaperture, fj is the subaperture focal length, A is the

average wavelength, and d. is the wavefront sensor subaperture diameter. The RMSE calculation

in Eqn. (4.1) is the Cramer-Rao lower bound (CRLB) for any unbiased shift estimator [32]. In

order to compare the shot noise limited performance of the simulation to the theoretical limit, a

centroid shift estimation technique developed by Tyler [27] was used in place of the first moment

calculation defined by Eqn. (2.12). Tyler's method optimizes the centroid shift estimation for a

quad cell detector by scaling the ratio of the difference in intensity falling on either half of the

detector (AI, and Al.) to the total intensity falling of the detector (I,) by a constant in order to

obtain the centroid shifts in the 1 and g directions. The centroid shift, -, can be determined for a

square aperture and a point source irradiance using the relationship developed in Appendix C:

= AI x f1 A AIV f1A). (meters), (4.2)
I d. 1. d.

where ft is the subaperture focal length, A is the average wavelength, and d, is the wavefront

sensor subaperture diameter. It should be noted that this shift estimator was derived for a quad

cell detector with shot noise and is not valid when read noise and atmospheric turbulence are

included in the wavefront sensor simulation.
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Equation (4.2) was used to calculate the centroid shift in the wavefront sensor simulation. The

simulation RMSE performance was compared to the theoretical RMSE performance. Figure 4.1

shows the wavefront sensor simulation performance matched the shot noise limited performance.

The results were obtained by averaging the RMSE for 500 simulation runs at each value of k.

• Simulation
--- Theoretdcel

104

0 20 40 60 80 100 120 140 160 180 200

Average photon count per subaperture, K

Figure 4.1 Actual vs Theoretical RMSE for a wavefront sensor using a quad cell detector. The
wavefront sensor simulation used a modified shift estimator and was run in the absence
of read noise or atmospheric turbulence.

4.3 Centroid estimator RMSE performance

4.3.1 Shot noise effects. The performance of the centroid estimator was examined next.

As seen in Fig. 4.1, the RMSE performance of the wavefront sensor with quad cell detector ap-

proached the Cramer-Rao bound when a modified shift estimator was used to find the centroid

shift. The wavefront sensor simulation employed a centroid estimator that uses a moment calcu-

lation described by Eqn. (2.12) to find the centroid shifts. Since the centroid estimator was not

optimized for shot noise limited performance, as was the estimator derived in Appendix C, the

use of a centroid estimator should result in shift estimates with more error. At best, the centroid

estimator performance should match shot noise limited performance as the number of pixels in the
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detector array gets very large. Figure 4.2 shows the performance of the centroid estimator as well

as the shot noise limited performance developed in the previous section.

10- 7

" 104 r• Shot noise limited

20 40 60 S0 100 120 140 160 180 200

Average photon count per subaperture,

Figure 4.2 Comparison of the centroid estimator and the Cramer-Rao RMSE performance for
a wavefront sensor using a quad cell detector. The wavefront sensor was a 5 x 5
unobscured array of detectors without read noise or atmospheric turbulence.

4.3.2 Read noise effects. Since read noise is present in the detection process, the effects

it has on both the theoretical bounds and centroid estimator performance were examined. The

addition of read noise in the detection process should increase the shift estimate error. First, the

effects on the theoretical bounds will be examined. If the total error in the detection process is

assumed to result from shot and read noise, the MSE can be written as a sum of the MSE due to

shot noise and the MSE due to read noise [17]:

2 2 2
n 

0
"f tfl (4.3)

Parenti developed a pair of equations to describe the error resulting from shot and read noise when

the wavefront sensor used a quad cell detector in each subaperture [17]. The MSE resulting from
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shot noise is,

2 (21d f 2 (meters2), (4.4)
Oafl K \ 2ir dw )

and the MSE resulting from read noise is,

2 = 87r( - r R __f 2 (meters2 ), (4.5)trn K2 27rdw /

where k is the average photon count, 0,2 is the variance of the read noise for a single detector

pixel, ft is the subaperture focal length, d, is the wavefront sensor subaperture diameter, A is the

average wavelength, and r, is the Fried parameter. If no turbulence is assumed (r, -* cc), the

expression for the MSE in Eqn. (4.4) is consistent with Eqn. (4.1).

Using Eqns. (4.4) and (4.5), the theoretical performance of a wavefront sensor using a quad

cell detector in each subaperture was examined under two conditions. First, the performance was

examined as read noise increased in the absence of atmospheric turbulence (r --* co). Then, the

performance was examined as the level of atmospheric turbulence increased in the absence of read

noise (UR = 0).

The curves in Fig. 4.3 show the effects of increasing read noise variance on theoretical RMSE

performance. At low photon counts, the read noise significantly increases the shift error. As

the photon count increases, the MSE due to read noise decreases by a factor of k', and the

overall MSE performance converges to the shot noise limited performance of the centroid estimator.

Similar results were obtained with the wavefront sensor simulation. The performance of the centroid

estimator for increasing levels of read noise variance is shown in Fig. 4.4. At low photon counts, the

read noise significantly effects the performance of the centroid estimator and as the photon count

increases, the error curves converge to the shot noise limited performance curve of the centroid

estimator (92 = 0).
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Figure 4.3 Theoretical RMSE performance as read noise variance (u) increases for a quad cell
detector. The wavefront sensor was a 5 x 5 unobscured array of subapertures without
atmospheric turbulence.

4.3.3 Atmospheric turbulence effects. The theoretical and centroid estimator RMSE per-

formance in the presence of atmospheric turbulence were examined next. Atmospheric turbulence

deforms the overall shape of the intensity distribution that forms on the detector array. In addition

to the shot noise, the deformation contributes to the shift error during the detection process. The

curves in Fig. 4.5 show the effects of increasing atmospheric turbulence on theoretical RMSE per-
formance. The individual curves correspond to a particular ratio of o2/or. The theoretical RMSE

curves were calculated using Eqn. (4.4) using values of r0 found in Table 3.2. The theoretical RMSE

increased as the atmospheric turbulence increased. Similar results were obtained with the wave-

front sensor simulation. The curves in Fig. 4.6 show the centroid estimator RMSE performance as

atmospheric turbulence increases.

4.4 MAP estimator performance

4.4.1 Introduction. In order to verify the MAP estimator performance, the combination of

the phase screen generation program, the wavefront sensor, and the MAP estimator implementation

was used to generate a set of baseline performance curves. The baseline performance curves were
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Figure 4.4 RMSE performance for a centroid estimator using a quad cell detector with read noise.
The curves correspond to a particular read noise variance (oh). As u• increases, the

RMSE increases. The wavefront sensor was a 5 x 5 unobscured array of subapertures

without atmospheric turbulence.

obtained using a set of parameters that matched the theoretical assumptions used in the derivation

of the MAP estimator. The curves generated in simulation should match the theoretical curves

shown in Fig 3.5.

4.4.2 Simulation flowchart. Figure 4.9 is a flow chart for the shell program that imple-

ments the MAP estimator in simulation. After choosing a desired ratio of o 2orwsdtrie

using Eqn. (3.30). Then, a series of phase screens were generated, and the correlation matrix was

calculated for the MAP estimator implementation. For each phase screen, a centroid shift estimate

vector ('7.esi) and an actual centroid shift vector (xac) was determined using the wavefront sensor

simulation. The centroid shift estimate vector was then used to calculate the MAP shift estimate

vector (•tMAP). The average MSE for the centroid and MAP estimates were then calculated using

(xae) as the correct shift vector. This process was repeated for values of K1 ranging from 1 to 200

photons per subaperture.
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Figure 4.5 RMSE performance for a quad cell detector array with no read noise. The curves cor-
respond to a particular value of o-•/o•. The wavefront sensor was a 5 x 5 unobscured
array of subapertures.

4.4.3 Simulation performance. In theory, the ratio of the MAP estimator MSE to the

centroid estimator MSE should match the theoretical curves shown in Fig. 3.5. The parameters

used to generate the baseline performance curves are listed in Table 4.1. The physical wavefront

sensor parameters were chosen to match the Generation III Hartmann wavefront sensor parameters
used at the Starfire Optical Range [19]. However, instead of using a 16 × 16 array of subapertures,

the simulation used a 5 × 5 array in order to keep the array sizes manageable. (Larger array sizes

would have exceeded the resident memory capabilities of the computational platforms used, greatly

increasing processing time for each simulation.) In addition to the decreased sensor array size,

certain parameters were changed to approximate the theoretical assumptions made by Sallberg [23]:

Infinite resolution of the subaperture detector array was approximated using a 20 x 20 detector
array, the read noise was eliminated, and overlap between subapertures was not allowed.

The baseline performance curves of the ratio of the MAP estimator MSE to the the centroid

estimator MSE as a function of average photon count per subaperture,uK are shown in Fig. 4.7. The

dashed curves correspond to the theoretical performance shown in Fig. 3.5 while the solid curves
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Figure 4.6 RMSE performance for a centroid estimator using a quad cell detector array with
no read noise. The curves correspond to a particular value of o2, The wavefront
sensor was a 5 x 5 unobscured array of subapertures.

correspond to the simulation performance. Von Karman statistics were used for a 5 x 5 array of

subapertures with L, = 50m and d = 9.2cm. The pairs of curves correspond to a particular ratio

of 0,2/ 2

The MAP estimator MSE performance was upper bounded by the centroid estimator MSE

as predicted by Sallberg [23]. While the baseline performance curves generated by the simulation

should match the theoretical curves, the expected relative MAP estimator MSE performance was

not quite achieved. In fact, the relative MAP estimator MSE performance in simulation appeared

to perform better than the theoretical expectations. There were several reasons why the curves

generated from simulation did not fall directly on top of the theoretical curves.

The first reason the theoretical and simulation curves do not exactly match was that the

actual value of mean square motion, orc, to the mean square spot size, or, calculated from the

phase screens did not match the theoretical ratio. The value for the Fried parameter, r,, was

determined from the ratio of a./01 using Eqn. (3.30). The same ro, was used both in the phase

screen generation and in the calculation of the correlation matrix for the MAP estimator. Using
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Phase screen generator
Subaperture diameter (d) 9.2cm
Outer scale (L,) 50m
Fried Parameter (r.) determined by a!/U"

Wavefront sensor
Subaperture array size 5 X 5
Subaperture width (d,) 200E-6m
Subaperture focal length (fl) 650E-5m
Average wavelength (A) 550nm
Subaperture detector array 20 x 20
CCD duty cycle 100 percent
Read noise (A) Variance = 0
Wavefront tilt Included
Subaperture overlap Not allowed

MAP estimator
Atmospheric statistics von Karman
Outer scale (L,) 50m
Fried parameter (ro) determined by oI/au

Table 4.1 Parameters used to verify the simulations match the theoretical performance limits.

the phase screens generated from the value of ro, the actual mean square spot motion and mean

square spot size were measured and the actual ratio of was calculated. The theoretical ratios

did not always match the calculated ratio.

The second reason the theoretical and simulation curves do not exactly match was that

the MAP estimator was not necessarily a minimum mean square error (MMSE) estimator. A

MAP estimator that uses parameters with jointly Gaussian distributions will result in a MMSE

estimator [15]. However, the development of the MAP estimator did not use jointly Gaussian

distributions. Shot noise was modeled with a Poisson process and the irradiance distribution was

only approximated by a Gaussian distribution. Since the development of the MAP estimator did

not use jointly Gaussian distributions, the theoretical performance defined by Eqn. (3.24) was not

necessarily the MMSE performance for the MAP estimator. As a result, the actual MSE for the

MAP estimator in simulation may fall above or below the theoretical MSE performance curve.

Finally, there were errors associated with the discrete nature of the simulations. The sampling

of the phase screen was done at the minimum Nyquist rate [30]. The wavefront sensor used a discrete

Fourier Transform to find the intensity distributions for each subaperture. The calculation of the
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Figure 4.7 Ratio of MSE's for the MAP and the centroid estimator as a function of average
photon count per subaperture,/K. Von Karman statistics were used for a 5 × 5 array
of subapertures with Lo -- 50m and d = 9.2cm. The curves correspond to a particular
ratio of u2/ 2

correlation values for von Karman atmospheric statistics included a finite series approximation of

a modified Bessel function of the second kind as well as numerical integration. While steps were

taken to minimize the errors associated with each of these simulations, it must be recognized that

errors exist and propagate through the simulations.

4.5 Test plan

Two formats were used to present the simulation results. Absolute error plots will show

the MAP and centroid estimator MSE as a function of average photon count per subaperture, /.

Relative error plots will show the ratio of the MAP estimator MSE to the centroid estimator MSE

as a function of/K. An improvement in the relative MAP estimator MSE performance does not

indicate an absolute improvement in the MAP estimator MSE performance. It simply means the

the MAP estimator MSE performance relative to the centroid estimator MSE performance has

improved. It is possible for the relative MAP estimator MSE performance to improve while the

absolute MAP estimator MSE performance actually gets worse.
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The goal of the remaining simulations was to examine the effects of changing the wavefront

sensor parameters listed in Table 4.1 on the MSE performance. The eventual goal was to test the

MSE performance using actual wavefront sensor and atmospheric parameters. The following list

shows the order in which the wavefront sensor and atmospheric parameters will be examined in

simulation.

"* Remove global tilt on the incident wavefront. This was done to simulate the presence of a

tip-tilt mirror in the adaptive optics system.

"* Allow overlap. The effects of allowing light to spill over onto adjacent subapertures were

examined. In actual wavefront sensors, there is no way to prevent spill over from occurring

on the detector array short of turning off the pixels bordering adjacent subapertures.

"* Decrease the size of the detector array. The MAP estimator development assumed the sub-

aperture detector array had infinite resolution. The infinite array was approximated using a

20 x 20 pixel array in each subaperture. However, typical wavefront sensors utilize quad cell

detectors or 4 x 4 detector arrays [9,19]. The simulations will investigate the performance

for 8 x 8, 4 x 4, and 2 x 2 detector arrays in each subaperture.

"* Add read noise. Read noise is a source of error for all CCD detection devices. Using the

4 x 4 and 2 x 2 detector arrays, the effects of read noise was examined for variances of 2, 5,

and 10 (photons/pixel)2 .

"* Incorrect atmospheric parameters in the MAP estimator. Up until this point in time, it

was assumed that the atmospheric parameters where known with a high degree of certainty.

While the wavefront sensor can be used to estimate atmospheric parameters [3,6,25], error

within the wavefront sensor limits the degree of certainty to which the data can be trusted.

Therefore, the MAP estimator was implemented using incorrect atmospheric parameters.

"* Modified detector array. A modified 4 x 4 detector array was tested. The detector was

designed such that the four center pixels were active and the pixels around the border of the
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array were turned off. The goal with this design was to minimize electronic crosstalk between

pixels in adjacent subapertures. This configuration was used in the SOR Generation III

tests [19].

Modiieddetetor4 x 4 detector
Inactive pixels

Figure 4.8 The figure on the right is the standard 4 x 4 detector array while the figure on the
left is the modified SOR Generation III detector.
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Pick outer scale
Determine Fried parameter

Generate phase screens

Wavef rant sensor simulation

Calculate MSE for centroid estimate

Determine MAP estimate

Calculate MSE for MAP estimate

Find the average MSE for the centroid
estimates at the current photon count

Find the average MSE for the MAP
estimates at the current photon count

Figure 4.9 A flow chart for the combined operation of the phase screen generation program, the
wavefront sensor simulation, and the MAP estimator implementation.
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V. Results and Analysis

5.1 Introduction

To this point, the performance of the MAP slope estimator has been validated using wavefront

sensor parameters that approximated the assumptions made in the derivation of the MAP estimator:

The detection array was assumed large, read noise was not included in the detection of intensity

distributions, overlap between subapertures was prohibited, and the atmospheric parameters were

known with a high degree of certainty. This chapter examined the MAP and centroid estimator

MSE performance as the idealized wavefront sensor parameters were changed to reflect parameters

that could be found in realizable wavefront sensors. First, the global tilt was removed from the

incident wavefront to simulate the presence of a tip-tilt mirror in the adaptive optics system. Next,

the intensity distributions were allowed to overlap into adjacent subapertures. The number of pixels

in each subaperture detector array was decreased. Finally, read noise was added to the detection

process. In addition to changing the wavefront sensor parameters, the atmospheric parameters

were changed as well. Up to this point, it was assumed that the atmospheric parameters were

known with a high degree of certainty. Since this is rarely true, the effects of using incorrect

Fried parameters and outer scales in the MAP estimator implementation were examined. The last

series of simulations examined the performance of the MAP estimator when a modified subaperture

detector array was used.

5.2 Global tilt

Since adaptive optics systems typically employ a tip-tilt mirror [13], the effect of removing

the global tilt from the incident wavefront was examined. The theoretical results presented by

Sallberg [24] showed that the relative MAP estimator MSE performance decreased when the global

tilt was removed from the incident wavefront. The decreased relative MAP estimator MSE per-

formance resulted from a loss of slope correlation between subapertures due to the tilt removal.
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Similar results should occur in simulation. Removing the global tilt from the incident wavefronts

should result in a decrease in the relative MAP estimator MSE performance.

0.9•

P 4

0-- ------ Tilt removed

- Tilt present

0 20 40 60 80 100 120 140 160 180 200

Average photon count per subaperture, K

Figure 5.1 Relative MSE performance as a function of average photon count per subaperture,
K, for tilt removed wavefronts. The curves correspond to a particular ratio of a2/o2.
Von Karman statistics were used for a 5 x 5 array of subapertures with L, = 50m
and d = 9.2cm.

Figure 5.1 shows the relative MSE performance when the parameters listed in Table 4.1 were

used with global tilt removed from the incident wavefronts. There was no significant decrease in

relative MAP estimator MSE performance when the global tilt was removed from the incident

wavefronts. The results presented by Sallberg [24] used Kolmogorov atmospheric statistics. Since

von Karman atmospheric statistics were used in the simulations, there was less slope correlation

between subapertures. The decrease in slope correlation resulting from the removal of global tilt

from the incident wavefronts had minimal effect on the relative MAP estimator MSE performance.

5.3 Intensity overlap

The effect of allowing the intensity distributions to spill over onto adjacent subaperture de-

tector arrays was examined next. While the ratio of mean square spot motion to mean square spot

size has been used to identify specific performance curves, the actual wavefront sensor parameters
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will determine the actual mean square spot size and mean square spot motion. If a wavefront sensor

is correctly designed to operate below a known maximum level of turbulence, the mean square spot

motion within a particular subaperture will be small enough to prevent the intensity distribution

from overlapping onto adjacent subaperture detector arrays. Since the wavefront sensor parame-

ters used for these simulations were optimized for the selected turbulence levels, there should be

no significant decrease in relative MAP estimator MSE performance due to overlap.

o 3 -------.. ..-- •--- "•

0.7- 1/2 "

0.8

------ Overlap allowed

0.2 -- Overlap not allowed

0.1

0 20 40 50 80 100 120 140 160 18 200

Average photon count per subaperture, k

Figure 5.2 Relative MSE performance as a function of average photon count per subaperture
count, K, for overlap allowed. The curves correspond to a particular value of the
ratio of ao, / 2. Von Karman statistics were used for a 5 x 5 array of subapertures
with L. = 50m and d = 9.2cm.

Figure 5.2 shows the relative MAP estimator MSE performance when the parameters listed

in Table 4.1 were used while allowing intensity distributions to overlap onto adjacent subapertures.

There was only a slight decrease in relative MAP estimator MSE performance. The SOR Generation

III parameters resulted in a spot that was about 1/6 the width of the subaperture diameter. The

largest value of ac/o• used in the simulations constrained the mean square spot motion to the

center 25 percent of the detector array 99 percent of the time. As a result of the limited mean

square spot motion on the detector array, overlap had little effect of the relative MAP estimator

MSE performance. While the relative MAP estimator MSE performance showed minimal change,
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there was a slight increase in the absolute MSE performance of the MAP estimator when overlap

was allowed. Figure 5.3 shows the increase in MAP estimator MSE performance when overlap was

allowed for o 2 1

10-

Overlap allowed

- ------ Overlap not allowed

S10-*o

Q)

. 10-1

- --- -- -- - .... . ....

0 20 40 60 80 100 120 140 160 180 200

Average photon count per subaperture, k

Figure 5.3 MAP estimator MSE performance as a function of average photon count per subaper-
ture count, k, for C/ 2 = 1. Von Karman statistics were used for a 5 x 5 array of
unobscured subapertures with L, = 50m and d = 9.2cm.

In order to observe a decrease in the relative MAP estimator MSE performance, the wavefront

sensor parameters were changed to be non-optimal for the selected turbulence levels by increasing

the subaperture focal length by a factor of five. This will cause the irradiance distribution to

overlap onto adjacent subapertures as it roams about the detector array. For the same ratio of
2/ 2

Ole Oý--- 1 used in the previous simulation, both the mean square spot size and the mean square

spot motion were larger due to the increased subaperture focal length. The effect of overlap on the

relative MAP estimator MSE performance became obvious. Figure 5.4 shows that when the focal

length was increased to reduce the optimality of the wavefront sensor design, the intensity overlap

into adjacent subapertures significantly decreased the relative MAP estimator MSE performance

as expected.
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Figure 5.4 Relative MSE performance as a function of average photon count per subaperture
count, R. The subaperture focal length has been increased to 150 x subaperture
diameter. Von Karman statistics were used for a 5 x 5 array of unobscured subaper-
tures with or/ 2 = 1, L, = 50m and d = 9.2cm.

5.4 Detector array size

For the derivation of the MAP estimator, the detection array in each subaperture was assumed

to have an infinite resolution. Wavefront sensors typically use a small number of CCD detector pixels

in each subaperture. The number of CCD pixels per subaperture is limited by many physical and

wavefront sensor design related factors including the physical size of each CCD pixel, how closely

the CCD pixels can be packed together, and the read noise variance for each pixel. Wavefront

sensors typically use a quadcell or 4 x 4 subaperture detector array.

The centroid estimator MSE performance should increase as the number of pixels in each

subaperture detector array decreases. As the error in the centroid shift estimates increases the

MAP shift estimates will not be as accurate. The relative MAP estimator MSE performance

should decrease as the number of pixels in each subaperture detection array decreases.

5.4.1 Relative MSE for a fixed ratio of a.o/a;. The next series of simulations examined

the relative MAP estimator MSE performance using parameters listed in Table 4.1 with global
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tilt removed, overlap allowed, and subaperture detection array sizes of 8 x 8, 4 x 4, and 2 x 2.

Figures 5.5 - 5.8 show the relative MAP estimator MSE performance as a function of average
photon count per subaperture, K, for a specific value of 0./ w 2 t

aC/0, with tilt removed wavefronts and

overlap allowed. The individual curves in each figure correspond to the labeled subaperture detector

array size. For all levels of atmospheric turbulence, the relative MAP estimator MSE performance

decreased as the detector array size decreased. The grouping of the 20 x 20 and 8 x 8 curves

and the 4 x 4 and 2 x 2 curves resulted from increased centroid shift estimate error. The denser

20 x 20 and 8 x 8 detector arrays allowed for a significantly lower centroid shift estimate error

than the 4 x 4 and 2 x 2 detector arrays. The increased shift error decreased the relative MSE

performance for the MAP estimator.

0.9-

0.8
0820 x 20 CCD array

0.7- 8 x 8 CCD array
:4 ~4 x40CD array

0.82 x 2 CCD array
S0.5

0o.4

0.3

0.2

0.1

0 20 40 s0 80 100 120 140 160 180 200

Average photon count per subaperture, /

Figure 5.5 Relative MSE performance as a function of average photon count per subaperture,
K, for acP = 2. The curves correspond to a specific CCD detector array size. Von
Karman statistics were used for a 5 x 5 array of unobscured subapertures with L, =

50m, d = 9.2cm, tilt removed, and overlap allowed.

5.4•.2 Absolute MSE for a fixed ratio of o/o0. The absolute MAP and centroid estimator

MSE performance using the ratio of oc/uC = 1/2 with tilt removed wavefronts and overlap allowed

is shown in Fig. 5.9. As the number of pixels in the detector array decreased, both the MAP and

centroid estimator MSE performance increased as expected. While the relative MAP estimator
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Figure 5.6 Relative MSE performance as a function of average photon count per subaperture,
K, for o-C'o = 1. The curves correspond to a specific CCD detector array size.
Von Karman statistics were used for a 5 x 5 array of unobscured subapertures with
L, = 50m, d = 9.2cm, tilt removed, and overlap allowed.

MSE performance in Fig. 5.7 indicated a slight decrease as the number of pixels in the detector

array decreased for /c/l = 1/2, the absolute MAP and centroid estimator MSE performance

increased by an order of 102 between the 2 x 2 and the 20 x 20 CCD array. This shows that

the resolution of the detector array contributes significantly to the accuracy of both the MAP and

centroid shift estimates.

5.4.3 Relative MSE for a fixed detector array size. The same MSE performance data was

presented in another format. Figures 5.10 - 5.12 show the relative MAP estimator MSE performance

as a function of average photon count per subaperture, R/, for a specific detector array size with tilt

removed wavefronts and overlap allowed. The curves correspond to a specific value of a 2/0, 2As

expected, the relative MAP shift estimator MSE performance decreased as the level of atmospheric

turbulence increased. For detector arrays with few pixels, there was only a slight decrease in relative

MAP estimator MSE performance as the turbulence levels increased.
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Figure 5.7 Relative MSE performance as a function of average photon count per subaperture,
K, for o/c2 2 = 1/2. The curves correspond to a specific CCD detector array size.
Von Karman statistics were used for a 5 x 5 array of unobscured subapertures with
Lo = 50m, d = 9.2cm, tilt removed, and overlap allowed.

5.4.4 Absolute MSE for a fixed detector array size. The absolute MSE performance for the

MAP and centroid estimators using a 4 x 4 detector array with tilt removed wavefronts and overlap

allowed for various turbulence levels is shown in Fig. 5.13. As the level of atmospheric turbulence

increased, the MAP and centroid estimator MSE performance increased as expected. While the

relative MAP estimator MSE performance only showed a slight change for differing atmospheric

turbulence levels in Fig. 5.11, the absolute MAP and centroid estimator MSE performance increased

2 "
by an order of 10 as the ratio of o,/o2 increased from 1/4 to 2.
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Figure 5.8 Relative MSE performance as a function of average photon count per subaperture,
/K, for oc/o = 1/4. The curves correspond to a specific CCD detector array size.
Von Karman statistics were used for a 5 x 5 array of unobscured subapertures with

Lo = 50m, d =9.2cm, tilt removed, and overlap allowed.

S..... Centroid estimator

S",, 2 x 2 array - MAP estimator

0J2

10"

0 20 40 60 80 100 120 140 160 180 200Average photon count per subaperture, k

Figure 5.9 MAP and centroid estimator MSE performance as a function of average photon count
per subaperture,/K, for or2/oa = 1/2. Von Karman statistics were used for a 5 x 5
array of unobscured subapertures with Lo = 50m, d = 9.2cm, tilt removed, and
overlap allowed.
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Figure 5.10 Relative MSE performance as a function of average photon count per subaperture,
K, for a 2 x 2 detector array. The curves correspond to a specific ratio of 2/ 2

Von Karman statistics were used for a 5 x 5 array of unobscured subapertures with
L= 50m, d = 9.2cm, tilt removed, and overlap allowed.
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Figure 5.11 Relative MSE performance as a function of average photon count per subaperture,
K•, for a 4 x 4 detector array. The curves correspond to a specific ratio of uc/o.'%
Von Karman statistics were used for a 5 x 5 array of unobscured subapertures with

Lo= 50m, d = 9.2cm, tilt removed, and overlap allowed.
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Figure 5.12 Relative MSE performance as a function of average photon count per subaperture,
k, for a 8 x 8 detector array. The curves correspond to a specific ratio of c02/o. 2

Von Karman statistics were used for a 5 x 5 array of unobscured subapertures with
L= 50m, d 9.2cm, tilt removed, and overlap allowed.
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Figure 5.13 MAP and centroid estimator MSE performance as a function of average photon count
per subaperture,/k, for a 4 x 4 detector array. The curves correspond to a specific
ratio of o, / 2. Von Karman statistics were used for a 5 x 5 array of unobscured

C 10

subapertures with L. = 50m, d = 9.2cm, tilt removed, and overlap allowed.

5-11



5.5 Read noise

The effect of read noise on the MSE performance was examined next. Read noise was modeled

as an additive zero mean, Gaussian noise. Read noise corrupts the detector array pixel values

resulting in an increase in the centroid shift MSE. The noisy centroid estimates should result in

MAP shift estimates with higher MSE. The expected effect of adding read noise to the detection

process should be a decreased in the relative MAP estimator MSE performance.

5.5.1 Relative MSE as detector read noise increases. The next series of simulations

examined the relative MAP estimator MSE performance using parameters listed in Table 4.1 with

read noise, global tilt removed, overlap allowed, and small subaperture detection arrays. The

relative MAP estimator MSE performance was examined for detector sizes of 2 x 2 and 4 x 4 with

read noise variances, or% of 2, 5, and 10 (photons/pixel)2 . Figures 5.14 - 5.21 show the results of

read noise on the MSE performance with tilt removed and overlap allowed. Surprisingly, the relative

MAP estimator MSE performance improved for both detector array sizes as the read noise variance

increased. This implied that the MAP estimator was more robust than the centroid estimator in

the presence of read noise.

As the read noise variance increased, there was more uncertainty in the MAP estimation at

low average photon counts per subaperture. This was evident by the random fluxuations of the

012R curves in the relative MSE plots. As the average photon count per subaperture increased, the

effects of the read noise were negated and the curves smoothed out and converged towards the o2

- 0 curve as expected.

5.5.2 Absolute MSE as detector read noise increases. Figures 5.16, 5.19, and 5.22 show

the absolute MSE performance for the MAP and centroid estimator with tilt removed wavefronts

and overlap allowed. These results were not surprising. For all cases, the MAP and centroid

estimator MSE performance increased as the read noise variance increased. The MSE performance
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for all values of read noise converged towards the u2 = 0 curve as/k gets large. This behavior

was expected since the effects of read noise become insignificant as / gets large. As the level of

atmospheric turbulence decreased, the absolute MSE curves also decreased as expected.
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*.-2 0.
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0 20 40 s0 s0 100 120 140 10 180 200

Average photon count per subaperture, /

Figure 5.14 Relative MSE performance as a function of average photon count per subaperture,
K, for a 2 x 2 detector array with read noise. The individual curves correspond to a
specific read noise variance, uR. Von Karman statistics were used for a 5 x 5 array
of unobscured subapertures with L0 = 50m, d = 9.2cm, U2/ 2 = 1 tilt removed,
and overlap allowed.
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Figure 5.15 Relative MSE performance as a function of average photon count per subaperture,
pr, for a 4 x 4 detector array with read noise. The individual curves correspond to a
specific read noise variance, a•. Von Karman statistics were used for a 5 x 5 array
of unobscured subapertures with L, 50, m, d = 9.2cm, 2/ 1tlrem 1,
and overlap allowed.
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Figure 5.16 MAP and centroid estimator MSE performance as a function of average photon count
per subaperture,/k, for a 4 x 4 detector array with read noise. The individual curves
correspond to a specific read noise variance, OaR. Von Karman statistics were used
for a 5 x 5 array of unobscured subapertures with Lo= 50m, d = 9.2cm 0, 0r/o'; =1
tilt removed, and overlap allowed.
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Figure 5.17 Relative MSE performance as a function of average photon count per subaperture,
K, for a 2 x 2 detector array with read noise. The individual curves correspond to a
specific read noise variance, oR. Von Karman statistics were used for a 5 x 5 array
of unobscured subapertures with L,, 50m, d 9.2cm, a, a 1/2, tilt removed,
and overlap allowed.
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Figure 5.18 Relative MSE performance as a function of average photon count per subaperture,
KT, for a 4 x 4 detector array with read noise. The individual curves correspond to a
specific read noise variance, uR. Von Karman statistics were used for a 5 x 5 array
of unobscured subapertures with L, = 50m, d = 9.2cm, a./u' = 1/2, tilt removed,
and overlap allowed.

5-15



----- Centroid estimator

l\", ~MAP estimator

- - - - - - - - - -

10- S\ 2 = 10

\ C • = 2
6-12\ 0.2 = 0

0 20 40 60 80 100 120 140 180 180 200

Average photon count per subaperture, k
Figure 5.19 MAP and centroid estimator MSE performance as a function of average photon count

per subaperture, k, for a 4 x 4 detector array with read noise. The individual curves
correspond to a specific read noise variance, Ur. Von Karman statistics were used for
a 5 x 5 array of unobscured subapertures with L,= 50m, d = 9.2cm, oc/o = 1/2,
tilt removed, and overlap allowed.

0.8

S100.7- r

C --

0.2

000 80 100 120 140 10 180 200

Average photon count per subaperture,/R

Figure 5.20 Relative MSE performance as a function of average photon count per subaperture,
/K, for a 2 × 2 detector array with read noise. The individual curves correspond
to a specific read noise variance, o'•. Von Karman statistics were used for a 5 x 5array of unobscured subapertures with Lo 50m, 2 =

overlap allowed.
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Figure 5.21 Relative MSE performance as a function of average photon count per subaperture,
/?, for a 4 x 4 detector array with read noise. The individual curves correspond
to a specific read noise variance, ,R2. Von Karman statistics were used for a 5 x 5
array of unobscured subapertures with L, 50m, o2,or = 1/4, tilt removed, and
overlap allowed.
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Figure 5.22 MAP and centroid estimator MSE performance as a function of average photon count
per subaperture, K, for a 4 x 4 detector array with read noise. The individual curves
correspond to a specific read noise variance, oa. Von Karman statistics were used for
a 5 x 5 array of unobscured subapertures with L, = 50m, d = 9.2cm, or/,2= 1/4,
tilt removed, and overlap allowed.
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5.6 Using incorrect atmospheric parameters in the MAP estimator

Up to this point, it was assumed that the atmospheric parameters were known with a high

degree of certainty. This section will investigate what happens to the MSE performance when

incorrect Fried parameters and outer scales were used in the development of the correlation matrix

for the MAP estimator. Since the Fried parameter has greater impact on the mean square spot

motion, a., than the outer scale, more significant effects should be observed when the incorrect

Fried parameter is used.

The graphs in Figs. 5.23 and 5.26 show the results of using incorrect Fried parameter (Ko)

estimates for various read noise variance for a 4 x 4 detector array with tilt removed from incident

wavefronts, and overlap allowed. The dashed curves represent the relative MAP estimator MSE

performance when the correct Fried parameter was used in the MAP estimator and the solid curves

correspond to the performance when the incorrect Fried parameter was used. It was obvious that

the choice of r, has a significant impact on the performance of the MAP estimator. When r,

was estimated as higher than actual (turbulence levels are lower than estimated), there was an

improvement in relative MAP estimator MSE performance. When r. was estimated lower than

actual, there was a decrease in relative MAP estimator MSE performance. The change in relative

MSE performance directly resulted from the values in the slope correlation matrix varying as a

function of (lrt)5 /3 . As r, gets smaller, the correlation values become larger. As K becomes

small, the larger correlation values force the MAP shift to zero faster than if the correct value for

ro, is used. Since the slope correlation matrix determines how fast the MAP shift estimates are

driven to zero as k gets small, the choice of r. will directly effect the relative MSE performance.

The graphs in Figs. 5.27 and 5.28 show the results of using incorrect outer scale estimates.

Since the correlation values do not significantly change as the outer scale varied from 10 to 100

meters, the outer scale had little effect on the relative MAP shift estimator MSE performance.
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Figure 5.23 Relative MSE performance as a function of average photon count per subaperture, k,
using incorrect Fried parameters. The individual curves correspond to a particular
Fried parameter, r.. The actual Fried parameter was 20.58cm. The CCD detector
array size was 4 x 4. Von Karman statistics were used for a 5 x 5 array of unobscured
subapertures with L, - 50m, d = 9.2cm, A = 0, tilt removed, and overlap allowed.
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Figure 5.24 MAP and centroid MSE performance as a function of average photon count per
subaperture, k, using incorrect Fried parameters. The individual curves correspond
to a particular Fried parameter, r,. The actual Fried parameter was 20.58cm. The
CCD detector array size was 4 x 4. Von Karman statistics were used for a 5 x 5
array of unobscured subapertures with L, = 50m, d = 9.2cm, u2 = 0, tilt removed,
and overlap allowed.
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Figure 5.25 Relative MSE performance as a function of average photon count per subaperture, k,
using incorrect Fried parameters. The individual curves correspond to a particular
Fried parameter, r,. The actual Fried parameter was 20.58cm. The CCD detector
array size was 4 x 4. Von Karman statistics were used for a 5 x 5 array of unobscured
subapertures with Lo - 50m, d = 9.2cm, ' = 5, tilt removed, and overlap allowed.
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Figure 5.26 MAP and centroid MSE performance as a function of average photon count per
subaperture, k, using incorrect Fried parameters. The individual curves correspond
to a particular Fried parameter, to. The actual Fried parameter was 20.58cm. The
CCD detector array size was 4 x 4. Von Karman statistics were used for a 5 x 5
array of unobscured subapertures with Lo = 50m, d = 9.2cm, a 2 = 5, tilt removed,
and overlap allowed.
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Figure 5.27 Relative MSE performance as a function of average photon count per subaperture, K,
using incorrect outer scales. The individual curves correspond to a particular outer
scale value, L,. The actual outer scale was 50m. The CCD detector array size was
2 x 2. Read noise variance was 5 (photo events/pixel) 2 . Von Karman statistics were
used for a 5 x 5 array of unobscured subapertures with r, = 13.58cm, d = 9.2cm,
tilt removed, and overlap allowed.
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Figure 5.28 Relative MSE performance as a function of average photon count per subaperture, K,
using incorrect outer scales. The individual curves correspond to a particular outer
scale value, L.. The actual outer scale was 50m. The CCD detector array size was
4 x 4. Read noise variance was 5 (photo events/pixel) 2 . Von Karman statistics were
used for a 5 x 5 array of unobscured subapertures with ro, = 13.58cm, d = 9.2cm,
tilt removed, and overlap allowed.
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5.7 SOR Generation III detector configuration

The next set of simulations examined the MSE performance when the subaperture detector

array was configured to match those in the SOR generation III [19] tests. Each subaperture used

a 4 x 4 detector array. In the modified configuration, the outer row of pixels was disabled to

eliminate electronic crosstalk between subapertures. This left a 2 x 2 array of pixels centered on

the optical axis as shown in Fig. 4.8. The performance of this modified array was compared to the

performance of a conventional 4 x 4 detector array at various levels of read noise.

Figures 5.29 - 5.31 show that the standard 4 x 4 detector array had a better relative MAP

estimator MSE performance than the modified detector array for all levels of read noise tested.

The dashed lines correspond to the relative MSE performance when the standard 4 x 4 detector

array was used and the solid lines correspond to the relative MSE performance when the modified

detector array was used. As the read noise variance increased, the relative MSE of the standard

detector array outperformed the relative MSE of the modified detector array.

However, the relative MAP estimator MSE performance does not mean that the standard

4 x 4 detector array had better absolute MSE performance than the modified detector array. The

curves in Fig. 5.32 show that the MAP and centroid estimator MSE performance for the modified

4 x 4 detector array was better than the standard 4 x 4 detector array for non zero read noise

variance. These results were not surprising since the modified detector array only had 4 pixels

effected by read noise, and these pixels were all centrally located on the detector array. The

standard detector array has 16 pixels, most of which are on the boundary of the detector array.

Given these conditions, the standard detector array should have a higher MSE performance than

the modified detector array.
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Figure 5.29 Relative MSE performance as a function of average photon count per subaperture,

correspond to a specific ratio of a•/o•. Von Karman statistics were used for a 5 x 5
array of unobscured subapertures with Lo = 50m, d = 9.2cm, tilt removed, and
overlap allowed.
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Figure 5.30 Relative MSE performance as a function of average photon count per subaperture,
K, using a SOR Generation III detector with n = 5. The pairs of curves correspond
to a specific ratio of a /u.�. Von Karman statistics were used for a 5 x 5 array of
unobscured subapertures with Lo = 50m, d = 9.2cm, tilt removed, and overlap
allowed.
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Figure 5.31 Relative MSE performance as a function of average photon count per subaperture, k,
using a SOR Generation III detector with Au = 10. The pairs of curves correspond
to a specific ratio of or/ 2. Von Karman statistics were used for a 5 x 5 array
of unobscured subapertures with Lo = 50m, d = 9.2cm, tilt removed, and overlap
allowed.
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Figure 5.32 MSE performance for the MAP and the centroid estimator as a function of average
photon count per subaperture, k, for standard and modified detector arrays. The
read noise variance = 10 (photons/pixel) 2 and c,2/ 2 = 1. Von Karman statistics
were used for a 5 x 5 array of unobscured subapertures with Lo = 50m, d = 9.2cm,
tilt removed, and overlap allowed.
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VI. Conclusions

6.1 Introduction

Atmospheric turbulence reduces the resolution of imaging systems. One method to com-

pensate for the effects of atmospheric turbulence is to remove the phase perturbations using an

adaptive optics system. The two key components to remove the perturbations are the wavefront

sensor and the deformable mirror. A Hartmann wavefront sensor segments the incident wavefront

over an array of subapertures and measures the centroid shift in each. From this shift data, the

incident wavefront can be reconstructed and the phase perturbations removed. The accuracy of

the shift measurements will directly impact the accuracy of the wavefront reconstruction and the

ability of the adaptive optics system to remove perturbations. A maximum a-posteriori (MAP)

slope estimator developed by Sallberg [23] incorporated atmospheric statistics and intensity levels

within the wavefront sensor to improve centroid shift estimates.

6.2 Summary of Methodology

The Hartmann wavefront sensor was modeled in simulation in order to evaluate the perfor-

mance of the MAP estimator. The goal was to evaluate the MAP estimator performance using

realizable wavefront sensor parameters. The MAP estimator had to be evaluated in simulation as

a closed form solution for a MAP estimator using realizable wavefront sensor parameters was not

possible. In addition to the wavefront sensor simulation, an implementation for the MAP estimator

was developed and phase screen data was generated using von Karman atmospheric statistics and

a Fourier Series phase screen generation algorithm. The MAP estimator MSE performance was

examined relative to the centroid estimator MSE performance as both the wavefront sensor and

atmospheric parameters were varied.
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6.3 MAP estimator performance

The MAP estimator was found to perform better than the centroid estimator in all cases.

Global tilt removal had minimal impact due to the decreased wavefront correlation statistics result-

ing from the von Karman atmospheric model. Intensity overlap onto adjacent subapertures had

little effect on the relative performance of the MAP estimator as a result of the optimized param-

eter selection used in the wavefront sensor simulation. The relative MSE performance of the MAP

estimator decreased as the number of pixels in the subaperture detector arrays were decreased.

The MAP estimator was found to be less effected by read noise than the centroid estimator. When

incorrect atmospheric parameters were used in the development of the MAP estimator correlation

matrix, it was found that incorrect outer scale had little impact on the relative MSE performance

while the selection of the Fried parameter significantly affected the relative MSE performance.

Choosing ro smaller than actual resulted in increased relative MAP estimate MSE while choosing

r, larger than actual resulted in a decrease in relative MAP estimate MSE. While the modified

4 x 4 detector array exhibited better overall MSE performance, the relative MAP estimator MSE

performance decreased as expected. In all cases, the MAP estimator MSE performance was upper

bounded by the centroid estimator MSE.

6.4 Recommendations

The feasibility of using the MAP estimator as part of a real time adaptive optics system

should be studied. Real time implementation of the estimator raises several issues. These include

operation with a deformable mirror using a least squares fitting algorithm in an adaptive optics

system, the speed at which the MAP estimator calculation can be made, and the rate of change of

the atmospheric parameters.

This thesis examined the performance of a MAP estimator using a 'snapshot' approach.

Centroid shift estimates were made for individual wavefronts that were not subject to a deformable
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mirror. In a real time adaptive optics system, the wavefronts will be altered by a deformable mirror

prior to reaching the wavefront sensor. Since the deformable mirror will significantly change the

wavefront statistics, the performance of the MAP estimator should be examined in an adaptive

optics system.

Additionally, the MAP estimator inherently requires significant computational overhead. The

correlation matrix for a MAP estimator implementation with a 16 x 16 array of subapertures will

require 481 calculations. As the atmospheric parameters fluctuate, the correlation matrix will have

to updated. Since the outer scale has a minimal effect on the correlation values, the correlation ma-

trix can be calculated for a normalized Fried parameter (to = 1) and the correlation matrix scaled

as r, changes. Another source of computational overhead arises from the additional 5122 calcula-

tions required to make the MAP estimate. In order to decrease the number of calculations required

to make the MAP shift estimate, approaches using less correlation data could be investigated.
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Appendix A. Slope correlation for Kolmogorov Statistics

This appendix provides the derivation for the equations used to develop the slope correlation matrix

using the Kolmogorov structure function. Beginning with Eqn. (3.11), the dot products .d,j and

" dj yield four possible cases that must be evaluated:

"* When di and c- denote & directed slopes.

"* When d and dj denote • directed slopes.

"* When di denotes a • directed slope and d denotes a ; directed slope.

"* When di denotes a & directed slope and dj denotes a 9 directed slope.

The first derivation will be for the correlation between subapertures with & directed slopes. Using

the notation Rxx = R..(x,,y,), Eqn. (3.11) can be written as

= JJJ~dxd'd~dv[ I (6(x + d) _ 6(x _ d)) rcRx = r(~) 1 f f• xxdd'W- 2rc k)
x r o o 'Do(x' -x, y'- y). (A.1)

Rearranging terms, the equation can be written

R -- T4 f f f f dxdx'dydy'rect (-d) rect (Y' d--)

"× [6(x + d)6(x, + d _ x,,) _ 6(x _ d)6x O

-b(x + d)6(x' - d- Xo) + 6(X - d)6(x' - --X)]

" (r(oo) - 1DO(x' - Xy-)) (A.2)
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Expanding the previous equation:

=x W4-JJ dxdx'dydy'rect (kd) rect (Y dYO)

X [6(x + f f ff + d _X') (r•(o,)_ 0 l) o)-x,-
d

-6(x+ )(X'- + -X) (ro•(Do(x' - x, y' -y)
-(+d ,d (r, _oy)-

+6(x - d )6('- d 0 -. ) (ro(0,0) - 1Do(x' - x,y' - y (A.3)

The derivation will make use of the Kolmogorov phase structure function:

Do(x ' - x yt - y) = 6.88 X )2 +(,, - y)2 o (A.4)

To

Using the sifting property of dirac delta functions [12] and recognizing that ro(0, 0) factors out,

Eqn. (A.3) can be written as

-3.44/1\ f y y_ ~'
- (4 )J dydy'rect () rect d Y

-3.44(1r, 2 (Y' d

X[( dydyrc )2 rec (y [ 2 (~+(

- ((X + d) + (y' - - - )2 + ((d - yd)2) ] (A.5)
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Perform the following change of variables:

,Y = Y I+Y and A2 =y'-y,
2

y =E,+-• and Y= 2"v AV (A.7)

The Jacobian is 1 and the equation becomes

E AY --o)
Rxx d4 f) f dAydyrect (o)rect

× [2 (X2 + (AV))')1 _-((xo +), + (V' -y),)

- ((x, - d)2 + (y' - y) 2 ) I] • (A.8)

The equation can be simplified to a single integral by eliminating one variable. Consider the terms

in the previous equation that depend only on E.:

dE, rect E d 2) rect EY d 2 . (A.9)

Define:

Sand da = -dE . (A.10)
= dd

The equation can then be written as

df da rect (a) rect (a (-AY +Yo))O . (A.11)
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Since (-Ay- +yo)/d is constant, this integral is the correlation of the two rect functions. Referencing

Goodman and using Fourier Transform analysis, the integral becomes

SY~v •_z ZY + -Ax -Yo +yjd rect rect ( YO.dtri( A Y+ ) (A.12)

The triangle function defines the limits of the remaining integral:

d- IAy y.1 y,- d•<A•y o+d
- AY +(A.13)

otherwise

Substituting this into Eqn. (A.8)

= d4  (•o) 5  od d

- ((xo + d)2 + (y )2) ((xo - d)2 + (Y' - Y)2 ) •]. (A.14)

Perform the following change of variables to put the integral in dimensionless quantities:

=0 -90 = -YO
0- d d

A Y dA = dAY (A.15)
d

The final equation for the correlation between subapertures with 1 directed slopes is

- 3.44 (d A 1
Ri-l= dAV(1 - IAg - g0I)

,4d o VJ.1 i
S[2 (•o + : ((;; + 1)2 + ,-) ((•o- 1)2 + ,- (A.6)
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where R,, is a function of i, and go, the normalized & and ý separation of the subapertures.

The development of the correlation when both subapertures have g directed slopes, dd = g, is

identical. The result can simply be written as

-3.44 (d/ 3 f d, 1
W2 -o 't 1o-

( [2(o + ) -((go + 1)2 + ? -((go- 1)2 + ) (A.17)

The development for correlations when subapertures have slopes in orthogonal directions

follows. The specific case for correlation between 9 directed slope and - directed slope follows.

With di=9 and d=i, the cross correlation equations can be found. Using the notation R, =

Rux(xo, yo), Eqn. (3.11) can be written as

= JJJJ dxdx'dydy' (1 (6x + d) _ )) rect(_ ))

x ( ~I 6,+dyo _ y d)x .

x(ro(0,0o) - 1DO(x - x', y-y))(.8

Rearranging terms, the equation can be written

Ryx 1 J dxdx'dydy'rect ()rect x( - X)

x [6(x+ )6(y+d-yo)-_6(x+ )(y_ d

-8(x _ d) (Y, + d _ yo) + 6(x - d W•Y, -d_ )

x (o (o,0o) - 1 Do(x - x', y -y')) (A.19)
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After substituting in the structure function from Eqn.( A.4) and using the sifting property of dirac

delta functions [12], the equation can be reduced to a double integration. Unlike the correlation

between subapertures with slopes in the same direction, this equation will not reduce to a single

integration.

-3" 4 4\r• JJJ dx'dy rect / d Xd) rect (d)
R x d4 t-

x ý( +d)2 +_d + y. )2) ((xI-+)2+ (d +y ]. _(.20)

d d+ d

The rect functions define the limits of integration:

-3.44( A Z_ 4
Ryx -- - \_jo]3 1 dx'dy

ýx,+d)2 +_d + )) ('-)++yo +. (A21

- (( -2 (x(-, + )2Y- )+ + (d y)2

Perform the following change of variables to put the integral in dimensionless quantities:

:o=- - and Yo
d d
x and d -dx

and d dy (A.22)
dA-
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The correlation between 9 directed slope and ý directed slope is

-3.4L4(±) 3_ f2 d2'd

2< 2X~ ~ _. +( ) , + go _ g) 2+2+g )2

((1 •)22 + + _ )2 gt)+ 2 2 o _ (A.23)

where Ry. is a function of ffo and go, the normalized ' and P separation of the subapertures. The

correlation between subapertures with a • directed slope and a 9 directed slope is developed in the

same manner.

R = -3.44 ( d) 3 2 Y ýn d2  jo 2 fo 2

__ [((g/__ 1)2 + (__ 1 • +2 1+_•)

1x2 + + + Co t)2) 1 + + 1 + to _ A)2)
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Appendix B. Slope correlation for von Karman Statistics

This appendix provides the derivation for the equations used to develop the slope correlation

matrix for the slope correlation matrix using the Von Karman structure function. Beginning with

Eqn.( 3.11), the dot products 1 .dij and ). dj yield four possible cases that must be evaluated:

* When di and d denote • directed slopes.

* When di and dj denote y directed slopes.

* When di denotes a P directed slope and dj denotes a 1 directed slope.

* When di denotes a 1 directed slope and i denotes a 9 directed slope.

The first derivation will be for the correlation between subapertures with & directed slopes. Using

the notation R., = R.,(x,,y,), Eqn. (3.11) can be written as

fJ Jdxdx'dydy' [ (6(x + d) _ 6(x _ d)) rect (Y)]
< _ _ J1 dr(~/ 1d ,_)

-Do(x - x, y(B.1)

Rearranging terms, the equation can be written

R..= W-- Jf f f dxdx'dydy'rect (D) rect (Y' O)

" [6(x + -d)6(x' + d _ xo) _ 6( )(x , + d Xo)

-6(x + d )6(x' - d- Xo) + 6(x - -)(wX' - d X-)]
" (ro(o, 0) - D (x' - x, '- ))y (B.2)
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Expanding the previous equation,

=x T4 IJJJ dxdx'dydy'rect (kd) rect (11 dYo)

x-[6(x + + d _) (roo - - x,y' -
d d-6(x - d)6(x + xo) (ro(o,o)- lD(x'-x,y'-y)

-6(x + d)6(x' - d _ XO) (r(o, o) - l•DO(X' - x,y' - y)

+6(x - d)6(r' - -d Xo) (r(o, o) - - x, - y,)) (B.3)

The derivation will make use of the von Karman phase structure function [30]:

3.0896 (Lo\[( F[1/6] (A. [ _Iol1
2; -'l)- 1 " L K5/6 27r , (B.4)5 i r) Lra oLoJ

where r[.] is the Gamma function, K 51 6 ['] is a modified Bessel function of the second kind of order

5/6, Lo is the outer scale parameter, ro is the Fried parameter, and Igj = V4(x' - x)2 + (y' - y) 2 .

Using the sifting property of dirac delta functions [12] and recognizing that ro (o, 0) factors

out, Eqn. (B.3) can be written as

1
=xx 0.08663 (LO) - JJ dydy/rect ()rect dYO

O -_ + -/6 2 (x° -()2 + (y, _+y)'
7r 6 Lo )Lo

+ ( [1!6] ( 0(x°+d)2+(y'-y)2 K 51 6 [27 (xo+d)2+(y, y])

-u Lo

+-2 [1/6 x+)+y-) (a0 +d + (y ' - y)2 1
7r6 Lo K 51 6 2 7r (B.5)

( 1]-2 i
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Perform the following change of variables:

I y'I + YE,= - and Ay=y'-y,
2

y'=FY+-L and V=E 2A (B.6)
22

The Jacobian is 1 and the equation becomes

__° 1i ;rect - -•, rea _____-__ -y°

R = 0.08663 (Lo) E d J JdAvd erect Ed +

'0P.6 ( +(A'2) K,/ [27r1

r[1/6] V(- ox + d) 2 + (A2\ y) 2 [ f(xo + d) 2 + (A) 2
I K516 27r

Lr 6 Lo Lo o

Ir[1/6i 2 - ( y) + K51. 27r [ (xo - d) 2 + (Ay) 2  (B.7)
7,Lo I6 J.Lo

The previous equation can be simplified to a single integral by eliminating one variable. Consider

the terms that depend only on EY:

_____N E + -Yo]drect 2rect d p (B.8)

Define:

- 2 and da = -d•y. (B.9)

Equation (B.8) can then be written as

dJf darect (a) rect (a - (-A+ YO))B (B.10)
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Since (-Ay +yo)/d is constant, this integral is the correlation of the two rect functions. Referencing

Goodman and using Fourier Transform analysis, the integral becomes:

idE,,rect ( d" rect 2 • +d- y°o dtri -AY + Yo (B. 11)

The triangle function defines the limits of the remaining integral:

tri .+o Yo - d < A1 • yo + d(

1 0 otherwise.

Substituting this into Eqn. (B.7):

R A, o-~o y• °+d d,,d d -I- Ay, + ,o)
t0.08663 ro d dI d- IV 1o+ 1d

2'x_ Lo K,5/6 +27 -A,) 2

r[1/61 (x2 + d)2 + (A)2' /(Xo + d)2 + (Ah)2
I1 K516 [27r r
- Lo

I) K.1, [27r (B.13)
7r a Lo Lo"

Perform the following change of variables to put the limits of integration in dimensionless quantities:

and go Yo
d d

A- =A and dAV = --. (B.14)
Y dB-
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The final equation for the correlation between subapertures with 1 directed slopes is:

= 0.08663 d ) J do (1 - 901)
[ 2 (dx r+(A) 2  K6 a Vrd +()2

d Y L20  K51 6  L~ z20 L0 ](V
-2 d ( ) +~-2 K 5  ,,6 [2 d (r +1+oA2

1)2 -+(A)2 K6 27r dr(To + 1)2 + (AP)21
Lo Lo

(d(•o-1•2 D)2 K516 [•r -1)] . (B.15)

where R,: is a function of Jo and go, the normalized hatx and P separation of the subapertures.

The development of the correlation between subapertures with P directed slopes, di and d = j, is

identical. The result can simply be written as

(Lo)A 1 1P[1/6]_,• o,
Ryy 0.08663 (o ) ', dAj(1 - Ao --1I)

r o Ks62r 6 o-

(dV/(YTA+ 1)2 + (Ad)2 2+[
+, - K 51 6 [27rd( + 1 A)

( 2 d- (g 1)2(A)2]] (B.16
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The correlation between subapertures with 1 directed slope and - directed slope, d=p and

d=., follows. Using the notation R = Ryx(xo,yo). Eqn. (3.11) can be written as

RX JJJJdxdx'dydy' (I (6(x + d)- 6(x - d))rect(•))

* I(6y,+d _Y)6v d V.))rect x/ dX0)

* (ro (o,0o)- 1 Do (x- x', y -y) (B.17)
2

Rearranging terms, the equation can be written

Ry= = JS dxdx'dydy'rect ()rect /(I X0)

" 6x+d)(,+d _ . ( )(,_ d _y.)1

-6(x - d W(, + d _ YO) + 6(x - d) (Y'
2 2

"0)-DO(x- - y'). (B.18)

Use the von Karman structure function defined in Eqn. (B.4) and the sifting property of delta

functions

1L 0 \~x 1 f(X'- 0' rect
R =x -0.08663 (LO) T4 dx'dyrect d (-d)

x K5r 6 [2Yr

r[1/6] (~A)2 +(jv)' [ (_ZA)2+( -4+VV)21

Lo ; K 516 2

r1/6] J2I VU2 )("+A'B2--,
+ . , L<>. K51612z Lo )!+y<. -y) J. (B.1g)
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The rect functions define the limits of integration:

R 0.08663 fi ±r dx'dy
\ro d4  . -

+-f"-2 ý+.-) K6 6 -rL
r[1/6] (V(,)2+(i+_•• - -A+,•+O~_ 1

+ IK 516 2r 2J+A Yy

•,Lo s/ Lo]

o116 ) 5K6 2r 2(2'+)++-Y)' (B.20)

Perform the following change of variables to put the limits of integration in dimensionless quantities:

Eo = -• and P, = -o
d d

V ~ _/ dx'
and d_ d

and dy dy (B.21)= ad d•=--

Factoring out common terms, the correlation between subapertures with # directed slope and 1

directed slope is

Ry= 0.08663 2 dx'dy
SLO K5 6

Lo [2 Lv(~)•( +o_)]

+7 (•12+ I +1) +( 1+ ig)2 K

- ~ iP(1Lo i~2 K516 [2L

Lo K/6 LLo (B.22
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where R,, is a function of io and go, the normalized hatx and P separation of the subapertures.

The correlation between subapertures with i directed slope and P directed slope is developed in

the same manner.

A+ +

R =, 0.086363 f2j fy 12I[/1 ~1o dy'dx

+ 2 d KI+

+ L 2+.f _) 2 K516 127r~ V E T~

L, K 51 6  7(8.23)
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Appendix C. Shot limited performance

This appendix derives a centroid shift estimator optimized for a quadcell detector with shot noise.

Equations developed by Tyler and Fried [27] were used for this derivation. Given incident plane

Y

1 2

3 4

Figure C.1 Quad cell detector configuration

waves in the subaperture and no read noise in the detection process, the authors derived a shift

estimator that was optimized for shot noise. A single lens imaging system with a detector located

at the focal length forms an intensity distribution centered on the optical axis when when incident

wavefront is planer. Shot noise in the detection process will result in centroids shifted off the

optical axis. The distance the centroid deviated from the optical axis is the shot induced error. If

the centroid shift errors are assumed to be small, a linear relationship can be found between the

detected centroid position, g, and the difference in intensities detected on each half of the detector

in the & and P directions, AI. and AIX,. Since the actual centroid distributions are centered on

the optical axis, the equation developed in this appendix will be the shot limited estimate for the

centroid shift.

The following derivation is for the shift in the - direction. AI. is the sum of the detected

signal on quadrants 2 and 4 minus the sum of the detected signal on quadrants 1 and 3.

The expected intensity difference is defined:

AI j = df.F(f. + f..) -j daF(f. + f..), (C.1)
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where F was the one dimensional point spread function (PSF):

F(f.) = JdxI(x, O)T(x, O)exp2irjh. (C.2)

First the Fourier transform of the irradiance on the detector, I, is defined:

I((x,y) = f f d.ddfvOo(f., fY)exp-2,A(X4 +YhY), (C.3)

where 0o(f,, fy) is the object irradiance. Using a point source irradiance, 00(fm, fy) is defined:

I0

Oo(f, I f) = d10 6(fx, fy) (C.4)

where 10 is the total intensity on the detector and dw is the width of the wavefront sensor subaper-

ture. Solving for I in Eqn (C.3):

I(x,y) = I (C.5)

Next, the optical transfer function T(fa, fa) must be approximated. The result is simply the

autocorrelation of the pupil function:

T(x, y) f J dfxdfyIP(f., fy) 12exp- 2 ,j(.f'+yf,)

.F-[I[P(f,,.fY)12]

=- '[P(fx,fA)] * F-'[P(f~,,f)]

P(x, y) * P(x, y), (C.6)
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where F is the Fourier transform and the pupil function for a square aperture is defined:

P(x,y) = rect rectd (0.7)

where the rect function was defined in Eqn. (2.5). The optical transfer function in Eqn. (C.6) can

be written as:

T(xdy) = d.(1 - i) (I - for IxI 5 d and jyj d: . (C.8)

Solving for F in Eqn. (C.2), the 1 dimensional PSF became:

F(f.) = JdxIo(, 1-b) - exp 2 7xf.

= Iod, sinc2 (dwf.). (C.9)

Since the centroid displacement was small, the authors used the first order term of a Taylor

series expansion about x, for Eqn. (C.1) in order to relate the difference in intensity AI, to the

object displacement x,.

xgo

AI, = -2LzF(O). (C.10)
Az

Solving for F(O) in Eqn. (C.9):

F(O) = Iod4. (C.11)
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The final form of the centroid estimator can now be found. Solving Eqn. (C.1O) for the

centroid shift in the : direction, x,:

-AhI Af, (C.12)
o I 2d4,'

where z is the focal length of the system fl, A is the average wavelength, d. is the width of the

wavefront sensor subaperture, AI, is the the sum of the detected signal on quadrants 2 and 4

minus the sum of the detected signal on quadrants 1 and 3, and I, is the total detected signal. The

centroid shift in the ý direction is found in the same manner.

-AI f (C. 13)
YO Io 2d' 

(

where AIV is the the sum of the detected signal on quadrants 3 and 4 minus the sum of the detected

signal on quadrants 1 and 2. The centroid shift estimate can then be written as

:5 = Xo! + yo. (C.14)
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Appendix D. Wavefront sensor source code listing

This Appendix contains the source code listing for the wavefront sensor and the functions it calls.

D.1 Wavefront sensor code

%0 *******$$$$*$$****$*****************************s*

Troy B Van Caster CE-97D
0 Hartmann Wavefront Sensor Simulation

Last Modified: 30 Jun 1997

% This function returns a vector zest with z and y shift estimates and
Sa vector tact with actual z and y shift values for the centroid 10

% location in each subaperture. The function is called as follows:

% [zestzact] = wfs(screenl,naps,foc, diam, lambda, ccdnumb,
rn,K,tilton, dutyc,solap)

function [xest,xact] = wfsl(screenl, ...
naps, ...
foc, ...
diam, ...
lambda, ... 20
ccdnumb, ...
rn,
K,
tilton, ...
dutyc, ...
solap)

%1 screenI is the phase screen in the aperture of the
% wavefront sensor.
7 30
% Parameters in the function call
re naps - N where N*N is the total number of subapertures

foc - subaperture focal length
diam - subpaerture pupil diameter

r lambda - average wavelength
e ccdnumb - M where M*M is the number of detector pixels per subaperture

r rn - read noise variance
% K - average photon count per subaperture
Xv tilton - one=remove tilt zero-=retain tilt

Sdutyc - duty cycle of the detector 40
ro solap - subaperture overlap one=allowed zero=not allowed

% Variables used in this function
% nft - the size of the matrix containing the intensity distribution
% data for one subaperture detector
% Na - the array size of the phase screen in each subaperture
Snn - the overall array size
% amattot - the matrix containing complex amplitude data for all

subapertures in the wavefront sensor array
% mattot - the matrix containing the intensity distribution for all s0
P subapertures in the wavefront sensor array
%o sapmask - subaperture mask for intensity overlap
1% matl,mat2 - used to find the estimated centroid position
% slc - used to make the intensity pattern an even multiple
ro of the CCD detector array
% delzdely - vectors used in the moment calculation
% dphiz,dphiy - used in the actual centroid calculation

Sfunction begins 60
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W5 calculate some preliminary items

Na=15; %This is the number of samples in the subaperture

% Determine the number of pizels in the transform matriz window that are 70
% required to physically occupy the space on the detector array in each
% subaperture.

nft =floor((diam*64)/((Na-1)*lambda*(foc/diam)))+1;

% Make sure nft<=-63, otherwise the indezes to matricies are all messed up.
% If nft is too large, increase the subaperture "window" size. If nfl
% cannot be made small enough by increasing Na, the function will crash.

while nft>63 & Na<40 80
Na=Na+I;
nft=floor((diam*64)/((Na-1)*lambda*(foc/diam)))+1;

end

% Force the size of the transform matriz window to be odd and center it on
% pizel (33,33). This places the maximum intensity value at the center of
X each subaperture and ensures the fftshift command will properly orient the
r maximum to the upper left corner before using the fftM command.

if floor(nft/2)==nft/2 90
nft=nft-1;

end

% Create a mask for the subaperture. If no overlap is desired, mask the
1 ovelap area with zeros.

if solap==1
sapmask=ones(63);

else
sapmask=zeros(63); 100
sapmask(32-(nft - 1)/2:32+(nft -1)/2,32- (nft-1)/2:32+(nft - 1)/2) =ones(nft);

end

% Scale the photon count per subaperture by the duty cycle of the detector array.

K=K*dutyc;

% Remove tilt from phase screen if required.

if tilton==1 110
screenl-=tiltoff(screenl);

end

% Initialize the detector array (amattot) to zero.

amattot=zeros(nft*naps+(64-1-nft));

% Increase the number of samples in the phase screen so there are Na*Na
% samples for each subaperture screenl=resize(screenl,naps* Na).

120

% compute complez amplitude on the detector

p= 1 ;
for hc=l:naps
for vc=l:naps

% Window the phase screen data into the 64*64 array.
130

matl=zeros(64);
matl(33-(Na-1)/2:33+(Na-1)/2,33-(Na-1)/2:33+(Na-1)/2) ...

exp(screenl((hc-1)*Na+l:(hc-1)*Na+Na, ...
(vc-1)*Na+l:(vc-1)*Na+Na).*(1*sqrt(-1)));

% Calculate the actual z and y positions.

dphix=(sum(screenl((hc-1)*Na+l:(hc-1)*Na+Na,(vc-1)*Na-Na))-...
sum(screenl((hc-1)*Na+l:(hc-1)*Na+Na,(vc-1)*Na+1)))/Na;

dphiy=(sum(screenl((hc-1)*Na+Na,(vc-1)*Na+l:(vc-1)*Na+Na))-... 140
sum(screenl((hc-1)*Na+l,(vc-1)*Na+l:(vc-1)*Na+Na)))/Na;

xact(p:p+1,1)=[dphix*foc*lambda/(2*pi*diam);dphiy*foc*lambda/(2*pi*diam)];
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/% Take FFT of the tuavefront in the subaperture to get complex amplitude data.

mat2=fftshlft(ff2(ffshift(matl)));

1% Add complex amplitudes to amattot matrix.
150

amattot((hc-1)*nft+1:(hc-1)*nft+64-1,(vc-l)*nft+1 :(vc-l)*nft+64-1)=...
amattot((hc-1)*nft+1:(hc-1)*nft+64-1,(vc-1)*nft+1:(vc-1)*nft+64-1)+...
mat2(2:64,2:64).*sapmask;

end
end

% Calculate intensity on the detector array
YO 160

mattot=amattot.*con~j(amattot);

1% Determine detected intensities for each subaperture
YO and find the estimated x and y offsets
YO** * ******** *** ** * * *******

X sci is an integer multiple of the ccd array size. The intensity data in
1% each subaperture is resized from nft*nft to the smallest integer multiple 170
75 of ccdnumb larger than nft.

scl=2;
while scl*ccdnumb < nft
Scl=SCl+1;
end

for hc=1:naps
for vc=1:naps

180
15 Pull off individual subaperture intensity patterns from mattot.

matl=zeros(nft);
mat 1=mattOt((64-nft- 1)/2+(hc- 1)*nft+1: (64-nft -1)/2+(hc -1) *nft+nft,. ..

(64-nft-1)/2+(vc-1)*nft+1:(64-nft-1)/2+(vc-1)*nft+nft);
mat2=matl./mnax(na~x(matl)); %odata in mat2

Yo Find the detected photon count for each pixel in the subaperture detector
X array.

1900
matlI=resize(mat2,scl*ccdnumb); %odata in mati
mat2=zeros(ccdnumb);

for x=l:ccdnumb
for y=l:ccdnumb

mat2(x,y)=sum(sum(matl((x-1)*scl+1:(x-1)*scl+scl,...
(y-1)*scl+1:(y-1)*scl+scl)));

end
end %Idata in mat2

200
1% Normalize the subaperture photon count to K.

total=sumn(sum(mat2));
mat 1=((mat2.*K)./total); %1data in mati

Po Account for shot noise.

mat2=poisson2(matl);
matl=mat2; %odata in mati

210
/% Add read noise.

mat2=matl+rn*randn(ccdnumb); %odata in mat2

lo Calculate z and y offsets using a moment calculation.

delx=(((1:ccdnumb)-(ccdnumb+1)/2)*diamn/ccdnumb)';
if sumn(sumn(mat2))==0

xoff (hc,vc)=0;
yoff (hc,vc)=O; 220

else
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xoff(hc,vc)=sum(mat2)*delx/sum(sum(mat2));
yoff(hc,vc)=sum(mnat2' 1)*delz/sun(sum(mat;2));

end
end
end

%l Stack shift estimate results into a column vector 230

for hc=1:naps
for vc=1:naps
xest(p:p+1,1)=[xoff(hc,vc);yoff(hc,vc)J;
p=p+2;
end
end

end of function 240

D.2 Poisson number generator

%o This program takes an n*n matrix and returns
1%an n*n matrix whose values are a random deviate
%drawn from a poisson distribution generated from

%5 the value of each entry using rand
Xas a source for uniformly distributed deviates

%1 This program was generated from Numerical Recipe
1% The Art of Scientific Computing 1986, p.207.

function [newmat] = poisson2(mat)
10

rand(' seed' ,sum(100*clo~ck));
n=length(mat);
for x=1:n

for yr=1:n
pmean=mat(x,y);
if pmean<12 %ouse direct method

gpois=exp(-pmnean);
empois=-1;
tpois=1;
empois=empois+1; 20
tpois=tpois*rand;
while tpois>gpois

empois=empois+1;
tpois=tpois*rand;

end
else %'use the rejection methodM

sqpois=sqrt(2*pmean);
alxmpois=log(pmean);
gpois=pmean*alxmpois-gammaln(pmean+1);
ypois=tan(pi*rand); %06Y is a deviate from a Lorentzian comparison 30
empois=sqpols*ypols+pmean;
while empois<0 % continue until empois>=O

ypois=tan(pi*rand); %06Y is a deviate from a Lorentzian comparison
ernpois=sqpois*ypois+pmnean;

end
empois=floor(empois);
tpois=0.9*(1+ypoisr2)*exp(empois*alxmpois-gammaln(empois+i)-gpois);
while rand > tpois

ypois=tan(pi*rand);
empois=sqpois*ypois+pmean; 40
while empois<0

ypois=tan(pi*rand);
empois=sqpois*ypois+pmnean;

end
empois=floor(empois);
tpois=0.9*(1+ypois-2)*exp(empois*alxmpois-gammaln(empois+1)-gpois);

end
end
newmat(x,y)=empois;

D-4



end 50
end

D.3 Phase screen tilt removal

75 Troyi B Van Caster GE-97D
116 Phase screen tilt removal
1*5 Last modified 15 May, 97

1% This subroutine removes the tilt from a phase screen. 10

function[tilto] = tiltoff(tilt)

1=Iength(tilt);

cent=(1+1)/2;
SUMX=0;
SUMY=0;
SUMxx=0;
SUMYY=0; 20

for x~1:l
for y=l:l

sumx=sumx+tilt(x,y)*(x-cent)/cent;
SUMY=SUMY+tilt (x,Y)*(y-cent) /cent;
sumnxx=sumxx+((x-cent)/cent) -2;
suxnyy=sumyy+((y-cent)/cent)-2;

end
end

30
tx=SuMx./SuMxx;
ty=sumy./Sumyy;

for x=1:1
for y=1:1

tilto(x,y) =tIlt(x,y) -tx* (x-cent) /cent -ty*(y -cent)/cent;
end

end
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Appendix E. Correlation generation source code listing

This Appendix contains the source code listing the correlation matrices.

E.1 Source code for building Kolmogorov correlation matrices

S** Troy B Van Caster GE-97D **
o** Kolmogorov slope correlation **

0** matrix generator **
** Last Modified 5 Jun 97 **

X This builds a slope covariance matriz using the kolmogorov 10
% structure function. The program calculates the first row
Yo values then uses symmetry to fill in the rest of the matrix.
7 The program builds z offset and y offset matricies as well

Sas a ref matrix. zoff and yoff are subap*subap in size and
1% contain normalized z and y offsets from zl,yl to x2,y2. The
1o ref matrix is used to fill in the rest of the correlation
7 matrix. It is indexed using the x and y offsets and contains

Sa flag to the appropriate first row element to place in the
1% matrix. Called by R = kcorrmat(asize,d,ro)

20
1% This program calls the following functions:
1o kolxz - for correlation of slopes that are in the same direction
% for zx slopes: val=quad8('kolzz',-1+zoff, l+zoff,[],[],zoffiyoff)
/ zoff is the z offset normalized by d
% i yoff is the y offset normalized by d
Y limits of integration are from -1 to I

Y kolIxyfun - returns zy slope correlation
70 calls function intgrate.m and kolzy.m
% zoff is the z offset normalized by d 30
Y i yoff is the y offset normalized by d
% limits of integration are from -1/12 to 1/2

Y kolxy - determines xy slope correlation
Y val=quad8('kolzy',xoff-1/2,zoff-i-1/2,[],[],yyxoffiyoff)
/ must be used in a 2D integration format

function R = kcorrmat(asize,d,ro)
40

subap=asize-2; 1 length of covariance matrix

% build z and y offset matricies and the reference matrix

index=O;
for x=l:asize
for y=l:asize
index=index+1;
ref(y,x)=index*2-1; 50
xtemp(x,y)=(y-x);
end
end
for x=l:asize
for y=l:asize
xoff(asize*x-asize+l :asize*x,asize*y-asize+1 :asize*y)=xtemp;
end
endlKI

for x=l:asize-2 60
for y=1:asize-2
yoff(x,y)=(floor((y-1)/asize)-floor((x-1)/asize));
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end

end

35 calculate the first row of the correlation matrix

x=1; 70
for y=1:subap*2
if (floor(y/2)) -= (y/2) eifts an zz/rn correlation
R(x,y)=quad8('kolxx',yoff(1+floor(x/2),l+floor(y/2))-l,yoff(1+floor(x/2),1+floor(y/2))+l,..

[],[],xoff(1+floor(x/2),l+floor(y/2)),yoff(1+floor(x/2),l+floor(y/2)));
else %eits an zij/yxi correlation
%5check to see if the subapertrues are in the same row/column
if xoff(1+floor(x/2),floor(y/2))*yoff(1+floor(x/2),floor(y/2))==O
R(x,y)=0;
else
R(x,y)=kolxyfun(xoff (1+floor(x/2),floor(y/2)),yoff (1+floor(x/2),floor(y/2))); 80
end
end
end

X Fill in the rest of the upper diaganol matrix
1% start with y rows

for x=2:2:subap*2
for y=x:subap*2
if (floor(y/2)) == (y/2) %oits an xxy correlation 90
R(x,y)=R(l, ref(abs(yoff(floor(x/2),floor(y/2)))+1,...

abs(xoff (floor(x/2),floor(y/2)))+1));
else %~its an xyi/yz correlation
R(x,y)=R(1,ref (abs(yoff (floor(x/2),floor(y/2)+1))±1,. ..

abs(xoff(floor(x/2),floor(y/2)±1))±1 )+1);
%1check the x and yi offsets to determine sign of cross terms
%lremember, they are all negative to start with
%'if the oioff or the voff is negative, make the cross term positive

if ( xoff(floor(x/2),floor(y/2)+1) )*( yoff(floor(x/2),floor(y/2)+1) )< 0
R(x,y)=-1*R(x,y); 100

end
end
end
end

X add x rows
for x=3:2:subap*2
for y=x:subap*2
if (floor(y/2)) -=(y/2) %vits an zx/ynj correlation
R(x,y)=R(1, ref(abs(xoff(floor(x/2)+1,floor(y/2)+l))+l,... 110

abs(yoff(floor(x/2)+l,floor(y/2)+1))+1 ));
else %its an zij/yj correlation
R(x,y)=R(l,ref(abs(xoff(floor(x/2)+1,fioor(y/2)))+1,...

abs(yoff (floor(x/2)+1,floor(y/2)))±1)+1);
%5check the x~ offset and if negative, make the correlation value negative

if ( xoff(floor(x/2)+1,floor(y/2)) )(yoff(floor(x/2)+1,floor(y/2)) )< 0
R(x,y)=-1*R(x,y);

end
end
end 120
end

%emirror the matrix
R=R+triu(R,l) I;

130

1*o 7'oy B Van Caster GE-97/D
15 Kolmogorov slope correlation *

** matrix generator *
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% ** Last Modified 5 Jun 97 **
% *************************************
% *************************************

10
function val=kolxx(y,xoffyoff)

vai=3.44*(1-abs(yoff-y)).*(...
((xoff+l)^2+y.^2).-(5/6)+...
((xoff -1)-2+y.-2).-(5/6)-...

2*(xoff-2+y.-2). (5/6));

** Troy B Van Caster GE-97D **
o** D integrator for xy and yz **

** slope correlation terms **
** Last Modified 3 May 97 **

% *************************************
S**** ** ******* ********* ******* * *

% ****************************************************** 10

% This function returns the value for a 2D integration
% for the slope correlation matrix my and yz terms.
% The integral is evaluated for several values of y,
% then sent to intgrate.m to do the 2D integration.

S******************************************************

function val = kolxyfun(xoffyoff)

ylim=.5; 20
step=.1;
c=O;

for x=-ylim:step:ylim;
c=c-1;
ma(c)=quad8('kolxy' ,yoff-ylim,yoff+ylim,[],[],x,xoff);
end
ma=ma';
h=[step];
val=intgrate(ma,h); 30

/1** Troy B Van Caster GE-97D **
** Slope Correlation Matriz for **

% ** z or yx directed slopes **
10** Last Modified 5 Jun 97 **S******** ** ***** ******* *** **** *** **** *

S****** ** ** ***** ******* *** **** *** **** *

10
% This function is called by kobxyfun.m and is used
% to evaluate the correlation for slopes in the xy
% or yz direction when the limits of integration span
% the origin. The modified Bessel function uses a
% two term expansion to prevent the integral from
% having an infinite value.

function val = kolxy(y,x,xoff)
val=-3.44*(...
((y+1/2).2+(-1/2+xoff-x)2).(5/6) .... 20((y+l/2).^2+(I/2+xoff-x)- 2)." (5/6) -...
((y-1/2).-2-F(- 1/2+xoff-x)-2).- (5/6) ..
((y--1/2)." 2+(1/2-lxoff-x)-2).- (5/6);
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E.2 Source code for building von Karman correlation matrices

function [R] = vcorrmat(asize,d,ro,lo)

** Troy B Van Caster GE-g7D **
1** von Karman slope correlation **
/** matrix generator **

** Last Modified 5 Jun 97 **

10

X This builds a slope covariance matriz using the von Karman
1% structure function. The program calculates the first row
# values then uses symmetry to fill in the rest of the matrix.

1 The program builds x offset and y offset matricies as well
Sas a ref matrix. zoff and yoff are subap*subap in size and

% contain normalized x and y offsets from x1,yl to z2,y2. The
1 ref matrix is used to fill in the rest of the correlation
1 matrix. It is indezed using the x and y offsets and contains
Sa flag to the appropriate first row element to place in the 20
X matrix. Called by R=vcorrmat(asize,d,ro,lo)

% This program calls the following functions:

X vonkxx - for correlation of slopes that are in the same direction
% for xx slopes: val=quad8('vonkxxz',-1+off, lzoff,[],[],aoffyoff)
% aoff is the x offset normalized by d
% yoff is the y offset normalized by d
Y limits of integration are from -1 to 1
Y 30
7 vonktxfun - returns zij slope correlation
X calls function intgrate.m and vonkxy.m
% zoff is the x offset normalized by d
X yoff is the y offset normalized by d
% limits of integration are from -1/2 to 1/2

% vonkiy - determines my slope correlation
% val=quad8('vonlzly',aoff-1/2,aoff+1/2,[],[/],itoffiyoff)
I must be used in a 2D integration format

/WO 40
subap=asize-2; 7 length of covariance matriz

1 build x and y offset matricies and the reference matriz

index=O;
for x=l:asize
for y=l:asize
index=index+1; 50
ref(y,x)=index*2-1;
xtemp(x,y)=(y-x);
end
end
for x=l:asize
for y=l:asize
xoff(asize*x-asize+l:asize*x,asize*y-asize+l:asize*y)=xtemp;
end
endM

for x=1:asize'2 60
for y=1:asize-2
yoff(x,y)=(floor((y-1)/asize)-floor((x-1)/asize));
end
end

I calculate the first row of the correlation matrix

70

for y=1:subap*2
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if (floor(y/2)) -= (y/2) %its an =z/ty correlation
R(x,y)=quad8(tvozikxx I,yoff(l+floor(x/2),l+floor(y/2))-1,yoff(1+floor(x/2),1+floor(y/2))+1,..

[J],[ ],xoff(1+floor(x/2),1+floor(y/2)),yoff(1+floor(x/2),l+floor(y/2)),lo,d);
else %5its an azj/yj correlation
recheck to see if the subapertrues are in the same rowa/column
if xoff(1+floor(x/2),floor(y/2))*yoff(1+floor(x/2),floor(y/2))==O
R(x,y)=O;
else 80
R(x,y)=vonkxyfun(xoff(l+floor(x/2),floor(y/2)),yoff(1+fioor(x/2),floor(y/2)),lo,d);
end
end
end

%o Fill in the rest of the upper diaganol matrix,
I1 start with y rows

for x=2:2:subap*2
for y=x:subap*2 90
if (floor(y/2)) == (y/2) %its an axz/1,l correlation
R(x,y)=R(1, ref(abs(yoff(floor(x/2),floor(y/2)))+1,...

abs(xoff(floor(x/2),floor(y/2)))+1));
else %eits an q,/yx correlation
R(x,y)=R(1,ref(abs(yoff(floor(x/2),floor(y/2)+l))+1,. ..

abs(xoff(floor(x/2),floor(y/2)+1))+1 )+I);
%6check the x offset and if negative, make the correlation value negative

if ( xoff(floor(x/2),floor(y/2)+1) )*( yoff(floor(x/2),floor(y/2)+1) )< 0
R(x,y)=-1*R(x,y);

end 100
end
end
end

1% add x rows
for x=3:2:subap*2
for y=x:subap*2
if (floor(y/2)) -= (y/2) %eits an r=/ynj correlation
R(x,y)=R(1, ref(abs(xoff(floor(x/2)+l,floor(y/2)+1))+1,...

abs(yoff(floor(x/2)+1,floor(y/2)+1))+1 )); 110
else %oits an zij/yz correlation
R(x,y)=R(1,ref(abs(xoff(floor(x/2)+1,floor(y/2)))+1,. ..

abs(yoff(floor(x/2)+1,floor(y/2)))+l)+l);
%check the x offset and if negative, make the correlation value negative

if ( xoff(floor(x/2)+1,floor(y/2)) )(yoff(floor(x/2)+1,floor(y/2)) )< 0
R(x,y)=-1*R(x,y);

end
end
end
end 120

%mirror the matrix
R=R+triu(R,l)I;

130

re Troy~ B Van Caster GB-97D *
%* Slope Correlation Matrix for *
% * x or yy directed slopes *
% * Last Modified 3 Mayi 97

YO 10
% This function is called by, vcorrmat.m and is used
Yo to evaluate the correlation for slopes in the zz

75or m'y direction.

Yo The true function is evaluated until the argument
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/% below a certain level, then the modified Bessel
re function uses a series expansion. There is also

%#a check to make sure that the series ex~pansion is
/0 used when the correlation between adjacent subapertures.
35 This prevents the integral from taking on an infinite 20
%o value.

/% For evaluation in the zax direction, use the form:

X quad8('vonka=z,yoff-l,yoff+l,[],[],yoffxzofftlo,d)

X For evaluation in the yiy direction, use the form:

35 quad8('vonkaz',zoff-l,zoff+1,[],[],xoffyvofflo, d)
%o 30***************************s

function val=vonkxx(y,xoff~yoff~lo,d)

1% evaluate the three arguments
argl=d/1o*(sqrt(xoff -2+y.^2));
arg2=d/lo*(sqrt((xaff+l)^2+y.^2));
arg3=d/Io*(sqrt((xoff -1)-2+y.-2));

threshhold=.02;
40

%o Define some initial parameters
A=O.08663*(loY-(5/3);

B2=pi/(2*sin(5/6*pi));
trifun=(1-abs(yoff -y));
term1=pP-(-5/6)/gamnma(1/6);

%o Check the first term of the integral
if (argi <= threshhold) I(xoff<=1) I(yoff<=l) 15use the series expansion

term2=pi-(1+1/6)/gamma(1+1/6)*argl./2; 50
term3=pl^(5/6)/gamma(1+5/6)*argl.^(1+2/3);
term4=pi^(2+5/6)/gamma(2+5/6)*axgl./(3+2/3);
tl1=trifun. *A. *B31.*B2.* (term 1+term2 -term3 -term4);

else /vuse the actual function
tl=trifun.*A.*Bl.*argl.^(5/6).*besselk(5/6,2*pi*argl);

end

%o Check the second term of the integral
if (arg2 <= threshhold) I (xaff<=1) 1(yoff<=1) 106use the series expansion

term2=pi^(1+1/6)/gamma(1+1/6)*arg2.-2; 60
term3=pi^(5/6)/gamma(1+5/6)*arg2.^(1+2/3);
term4=p1-(2+5/6)/gamma(2+5/6)*axg2.^(3+2/3);
t2=trifun.*A.*Bl.*B2.*(terml+term2-term3-term4);

else Youse the actual function
t2=trifun.*A.*Bl.*a~rg2.^(5/6).*besselk(5/6,2*pi*arg2);

end

%o Check the third term of the integral
if (arg3 <= threshhold) I (xoff<=1) I(yoff<=l) Youse the series expansion

term2=pi-(1+1/6)/gamma(1+1/6)*arg3.-2; 70
term3=pl^(5/6)/gamma(1+5/6)*arg3.'(1+2/3);
term4=pl^(2+5/6)/gamma(2+5/6)*arg3.-(3+2/3);
t3=trifun.*A.*Bl.*B2.*(terml+term2-term3-term4);

else Youse the actual function
t3=trifun.*A.*Bl.*arg3.^(5/6).*besselk(5/6,2*pi*arg3);

end
val=2*tl-t2-t3;

** Tr'oy B Van Caster GE-g7D *
Yo ~2D integrator for xyt and yx *

**o slope correlation terms *
** Last Modified ~20 April 97 *
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10
%15 This function returns the value for a 2D integration
1% of the slope correlation matrix myj and yx terms.
% The integral is evaluated for several values of y,
% then sent to intgrate.m to do the 2D integration.

function val = vonkxyfun(xoffyoff,Io,d);

ylim=.5;
step=.1; 20
c=0;

for x=-ylim:step:ylim;
C=C+1;
ma(c)=quad8(' vonkxy',yoff-ylim,yoff+ylim,[] ,[] ,x,xoff,yoff,lo,d);
end
ma=ma';
h=[step];
val=intgrate(ma,h);

E.3 Function for Two dimensional numerical integration

function F = intgrate(fh)
% function F = intgrate(fh)
% provides numeric integration via Newton Coates methods
% f is the function to be integrated sampled at evenly spaced
% intervals h.
% f - Matriz of column vectors of samples of functions to be integrated
% h - column vector of the width of the spaces for each column of f
% Let N = length of sampled function
% If (N-1)/4 is an integer, we use Newton Coats K=4
% If (N-1)/3 is an integer, we use Newton Coats K=3 10
% If (N-1)/2 is an integer, we use Newton Coats K=2 (Simpsons)
% If (N-1)/1 is an integer, we use trapezoidal K=I rule

1% K=I, F = h/2*(f-a+f-N+sum(w*f(2:N-1)); w = [2 2 2 ... 2];
15 K=2, P = h/3*(f-1+f-N+sum(w*f(2:N-1)); w = [4 2 4 2 .. 4]
Y K=3, P = 3h/8*(f1l+fN+sum(w*f(2:N-1)); w = [S 3 2 3 3 2.. 3 3];
Yo K=4, F = 2h/45*(7f.J+7fTN+sum(w*f(2:N-1)); w = [32 12 32 14
/00 .. 82 12 32];

W = [1 2 1 0 000; 20
1 4 2 1 0 0 0;
1 3 3 2 1 0 0;
7 32 12 32 14 7 0];

B = [1/2 1/3 3/8 2/45];
[N,M] = size(f);
P = N-1;
for K = 4:-1:1

if (abs(round(P/K)-P/K) < .0001)
C = W(K,2:K+I)'*ones (1,round(P/K)); 30
b = B(K);
A = reshape(C,1,N-1);
A = [W(K,1), A(1:N-2), W(K,K+2)];
F = (h~b)'.*(A*f);
break;

end;
end;
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