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ABSTRACT

It has become of recent interest to complement electromagnetic responses in intensity by
the additional consideration of their polarizations. In order to affect the latter, media have been
considered that contain inclusions of randomly distributed and oriented short, thin wires (needles),
whose polarized scattering amplitudes can modify the well-known polarization of surface
reflections that is governed simply by the so-called Fresnel coefficients. In the present study, we
analytically obtain, for the case of a multiplicity of perfectly conducting wires imbedded in a
dielectric, the corresponding wave scattering amplitudes and their superposition with the
specularly surface-reflected wave amplitude when both are being generated by the same incident
wave. This allows a calculation of the total returned-wave polarizations which we express by the
real Stokes parameters.

ADMINISTRATIVE INFORMATION

Professor trberall conducted this investigation under the auspices of the American Society
of Engineering Educators (ASEE). The ASEE program at the Carderock Division, Naval Surface
Warfare Center is administered by F. Halsall, Code 0112. The purpose of the continuing effort is
to study the fundamental interactions of materials and electromagnetic energy.



INTRODUCTION

The reflected return of electromagnetic waves from dielectric 1'2 (including lossy ones) or

metallic surfaces' is well-known, and can be analytically expressed by the Fresnel coefficients1,4

which also describe the refracted wave that penetrates into the medium. These expressions are

valid for infinite homogeneous, isotropic media with plane surfaces that are smooth compared to

the wavelength. These expressions also describe the polarization of the reflected and refracted

waves. If the polarization (electric) vector of the incident wave is perpendicular to the plane of

incidence (this case termed "r"), the same will hold for the reflected and refracted waves. For the

incident polarization vector that is parallel to the plane of incidence (case termed "t'), reflected

and refracted wave polarization vector will be parallel to the plane of incidence. Thus no coupling

of linear polarizations occurs. For the t-case, the reflected wave vanishes at the Brewster angle of

incidence, so that for a plane incident wave of mixed polarization, the reflected wave is of purely

r-type at that angle.

One may attempt to modify the polarization of waves reflected at the surface of a

dielectric (which may be lossy), by imbedding short, thin wires (needles) in it that are randomly

distributed and oriented. Our previous study5 has considered such media for the case of

inclusions that are small compared to the wavelength; for that case, one was able to use "effective

medium theory" 6 which represents the material as one homogeneous medium with effective

properties. In the present case, we chose to consider wires long compared to the wavelength (and

also long compared to their diameter), so that effective medium theory is no longer applicable.

The corresponding scattering cross section of one wire can be obtained from Reference 4, and the

scattered wave combines coherently with the surface-reflected wave (given by the corresponding

Fresnel coefficient), both being generated by the same incident wave. The effects of randomly
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distributed multiple wires can, however, be added together incoherently as shown by van de

Hulst7. Polarization of the scattered wave is purely of e-type and thus adds to the 6-type Fresnel

reflection while the r-type Fresnel reflection is not affected by the wire scattering. The total &-type

response (reflected and scattered) is found to be superposed with different phases, rendering its

amplitude complex so that the return polarization cannot be advantageously described by the

customary simple polarization formula (difference of r and I amplitudes divided by their sum),

which would now become complex. Instead, we characterize polarizations by the real

components of the Stokes 4-vector, 7 of which only the first two are non-vanishing since only

linear polarizations are involved here. Numerical calculations show the influence of scattering

from the imbedded wires on the polarization of the total (reflected and scattered) returns.

REFLECTED AND REFRACTED WAVES

We consider a half space (which later on will be assumed to have a finite-size surface area

A) filled with a (possibly lossy) dielectric that contains a total of N randomly distributed,

randomly oriented, perfectly conducting cylindrical needles of length l=2h and diameter 2a, with

a<<h. (Later on, these needles can be taken as being of finite conductivity and permittivity, which

may be the subject of a subsequent analysis). In practice, the half space will have a finite depth,

and N is the number of needles contained in its volume (A x depth).

The physical situation is as shown in Fig. 1. The wave E = Eo exp ik-r is incident from

below (at angle 4i) through a medium with permittivity e and permeability p. (we shall always

take the case g. = 1), considered to be air. The dielectric half space (top) has permittivity F' and

"permeability p.' (again g.'=1) and contains an upgoing refracted wave E' (at angle %r) while also
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generating a downgoing reflected wave E" (at angle 4i). The various waves, electric vectors E

and propagation vectors k are indicated in the figure.

The needle scattering of the refracted wave E', which is also indicated in Fig. 1, will be

discussed in the following section. At this time, we shall complete the discussion of the refracted

and reflected waves shown in Fig. 1. The polarization of the incident wave is assumed to be

purely linear, and we shall distinguish the two cases Er and Eras indicated in Fig. 1. These

amplitudes are designated as Eo or E01, while the phase factor of the incident wave is exp (ik.r).

As mentioned before, an incident polarization Er generates E'r and E"r only, and an incident E,

generates E', and E", only, see Ref. 1. For the refracted amplitudes Eo' and reflected amplitudes

E.", one has' as expressed in terms of the Fresnel coefficients F.ft and Ffl, respectively:

Er- t = Fr t -Eof t (la)

E"= F'- ."Eo (lb)

The indices of refraction are n = (!z)' and n' - (p,•')la2, and the propagation vectors have the

magnitudes

I I "= = ((o//c) (ji e)"
2 = nco/c (2a)

Ik'l- k, = --)(ýll)/ n'0/c (2b)

where (o is the angular frequency and c the light velocity in vacuum. The angles of incidence 4i

and of refraction 8r are related by Snell's law,

sin -9 / sin 8, = k'/k = n'/n. (3)

In terms of these quantities, the Fresnel coefficients are
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F r, cfi 2 n c o s( 4n cose,% 'L,•, -/ .W ýsinla9i

n cosr-, /n"'2 nf sinf2 %

F l.ff = -
n cosqip, /'- n2sinaOi (4b)

F1e2, 2nn' cos 4i
"1;'2 cos&• n /7nTYin2a (4c)

fn' 2 cos'i- n/n'2- n sin29,

,n# cos%,'n,/'- n: s (4d)

For lossless media, all the parameters in these expressions are real and there is no problem

employing the conventional formula for the polarization of the reflected wave,

Pfl = (E" r_ Eo'9/( E: r+ E",) (5a)

fl - Fn) /( Fm+F) (5b)

which in this case is a real quantity. For lossy media, however, this expression for Pl would

become complex and in that case it is advantageous to describe polarizations by the (real) Stokes

parameter, see the following section. Also, if needle scattering is added, the amplitudes in Eq.

(5a) would become complex even for lossless media, so that here a use of the Stokes parameters

is indicated, as will be shown in the next section below.

SCATTERING FROM IMBEDDED WIRES

The scattering process of the refracted wave E' when incident on a thin wire needle

imbedded in the dielectric is indicated in Fig. 1. The first thing to be noted is that a very special

scattering geometry is called for in the present situation. Since the effect of wire scattering on the

"polarization of the reflected wave E" is to be investigated here, the refracted wave that after the

scattering becomes E',- and then re-emerges from the medium as E" , must be such that this
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emerging wave E"% is directed parallel to the reflected wave E" (with k",' = k"), so that both of

these (coherently interfering) waves can be observed together, and their combined polarization

obtained. This forces us to consider the symmetric scattering geometry of Fig. 1 only, with

scattered and re-emergence angles S, and 4i as indicated, and the whole process taking place in

the (xz) plane of incidence exclusively.

The geometry of scattering from a thin cylinder is defined in Reference 4, and is shown

here in Figs. 2(a) and (b) in a coordinate system (xyz). Incident and scattered waves are assumed

to be directed at angles 'jP and T. from the cylinder normal, and the (linear) polarizations of both

are here kept more general than those considered earlier in this report (r or t), i.e., lying at angles

yi (y,) from the plane of incidence (scattering). Our basic coordinate system (xyz), however, is as

shown in Fig. 1, so that if the wire is directed at spherical angles (4, 9) in that system, a

coordinate transformation between the two systems is in order. This is sketched in Fig. 3(a) for

the wave incident on the wire, and in Fig. 3(b) for the scattered wave. The spherical-triangle

relationships then give the equations

sin TPi = cos 9 cos 4, + sin ,4 sin 4, cos (p (6a)

sin T, = cos 4 cos 4,- sin , sin 4,' cos T> (6b)

which will be needed later in this calculation.

The amplitude of the refracted wave E' as scattered by the wire needle imbedded in the

dielectric (Fig. 1), may be obtained by using the procedures outlined in the Radar Cross Section

Handbook.4 This reference only quotes the scattering cross-section (squared amplitude), but the

amplitude itself (including phase) can be found in analogy to van de Hulst's derivations7 that are

based on Huygens' principle. One should note that this reference employs waves
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exp(-ikz+kict), so that the complex conjugate of the expressions quoted therein must be used for

our purposes.

We will need the far-field scattering amplitude of the wire which at distance r behaves as a

spherically spreading wave r-1 e ,kr. (This is obtained here schematically since the subsequent

emergence of the scattered wave from the medium will transform it into a spherical wave f'le •

thereafter.) This far-field amplitude is found by van de Hulst starting from the near-field

amplitude which spreads cylindrically oc rf' 2e ikr, and transforming it into the far-field amplitude

by invoking Huygens' principle, which obtains the propagated field as a superposition of spherical

wavelets that emanate from each point of the field before its propagation. Van de Hulst's result

of this approach is given in Ref. 7, p. 305 as the amplitude u,

u = (2ih/hr)ET exp(ik'r) (7)

where E is a strongly-peaked x7' sin x - type function with side lobes, to be defined later, and T is

the near-field scattering amplitude of the cylinder (which in this case may be taken as infinitely

long). The choice of this amplitude is governed by the relation between cylinder radius and

wavelength, and we here choose the amplitude for T given as a closed-formed expression by Ruck

et al. (Ref. 4, p. 211), valid for very thin perfectly conducting cylinders (k ' a<< 1) in the form

Elf - = E I(ir/2k'r)l2 [ln(O.8905 k'a)-inr/2"1' exp[i(k'r + 7c/4)] (8)

where the polarization is accounted for: Ell are the field components parallel to the cylinder axis.

[Although Ruck refers to this expression as a "far field", it is here the cylindrically spreading field

relatively close to the cylinder which in van de Hulst's approach is taken as the "near field".] The

scattering amplitude resulting from the combination of Eqs. (7) and (8) is not given in Ref. 7,
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where only the bistatic scattering cross section ab is quoted. The latter is defined (by Ref. 7 and

the general "engineering literature") as

Oib = 47c da/dff (9a)

which is written here in terms of the expression da/dff used in the "scientific literature":

da/df2 = r2IE.J2/IEimc1 2  (9b)

The expression for oh may be calculated from Eqs. (7) and (8) and compared with that of Ref. 7,

in order to verify (up to possible phases) the correctness of our calculation. Inserting in Eq. (9a)

and noting that (cf. Fig. 2) projecting E' (or E'") on the xz plane (or the scattering plane)

introduces factors cos yi(or cos ys) while the further projection on the z axis adds factors with Ti

(or T.), the latter in the manner E'" cos T. = E' cos Ti (...) in Eq. (8). This leads to the result

ab = 47ch(cos TIi/ cos TI. )2{sin[k'h(sin Ti +sin T,)]/ k'h(sin Ti +sin Tl)}2

* COS2Yi COS2 Y./ [ln2(0.8905 k' a) + 72/4], (10)

in agreement with Ref. 4, p. 304. Note that from Eq. (6), we have

sin T'i + sin % = 2 cos , cos 4, • (11)

It should be added that in Ref. 4, Eq. (4.3-4.4) our factor (cos Ti / cos T. )2 appears upside-down,

but we believe that our version is the correct one, as can be backed up by certain physical

arguments. However, in our problem it will be shown below that TP- = -Ti, so that the factor in

question equals unity in either version.

The peaked angular function E is now identified, using Eq. (11), as

E = sin (2k'h cos a cos 4) / (2k'h cos 1 cos 4r) (12)
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With x = 2k'h cos 4r and ýI = cos 4, this can be written as

E = sin oip / agi (13a)

and for the case k'h »> 1, that shall interest us here, it approaches a 8-function in the variable pI:

lim sin aoi / ap. = (nt/a) 6(g) (13b)
a .-+. oo

indicating that scattering occurs at, or close to, 4 = 0, or from Eq. (11), at T. = -Ti as stated

previously. From Eq. (10), one also notes that the scattering cross section is completely

independent of azimuth, as noted by Ref. 4. This indicates that the scattering takes place along a

thin cone, see Fig. 4. Its opening angle is the same as the angle of incidence, and the scattered

field is distributed uniformly over the cone. From Eq. (8), no scattering takes place if the incident

wave's electric field is perpendicular to the scattering plane; and likewise, the scattered electric

field has no perpendicular component. The physical reason for these two facts is that the electric

fields need to have a component along the wire in order to generate a current in it.

For the case considered by us, the width of the cone, which is Ap. = 7c / a in angle for Eq.

(13a), will be very small. As a consequence, only those wires participate in the scattering (for the

geometry of Fig. 1) that are close to horizontal, and close to the plane of incidence and scattering

(the xz plane). Fortunately, the scattering cone has angle T, = -TP so that the scattered radiation

has precisely its dominant component along k', (Fig. 1) where it is needed.

As said above, the scattered field is purely t-type and will add to the t-type reflected field;

the r-type reflected field has no addition from the scattering.

We can explicitly relate the amplitude u as obtained from Huygens' principle to the near-

field scattering amplitude T, using van de Hulst's result, Ref. 7, p. 302, in order to define the

phase of T when Eq. (8) is used for this amplitude. In the latter expression, we employ T. = -Ti,
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as shown before, and yi = y, = 0 in order to obtain the scattering amplitude EIt. Averaging over the

wire orientations in , which eliminates the 8-function in Eq. (13b) and furnishes the factor (1/2)

(n/2k'h cos 4,r), we find

(E'.% = E','x exp(ik'r) /{4k'r cos 4, [ln(0.8905 k'a) - in/2]} (14)

so that we have been able to transform the cylindrically spreading field of Eq. (8) into a

spherically spreading field, Eq. (14), as desired. There still remains the task of averaging this

scattered field over the azimuth of the wire orientations, (p. While for the 4-orientations, this

average was automatically taken care of by the 8-function, it has to be done here explicitly for the

9 - average.

Fig. 5 shows a view into the cone opening, indicating its thickness A-9 = 7t/(2k'h cos 3r)

and since the cone axis, i.e., the wire, is horizontal, its azimuthal width Aqp. Elementary geometry

furnishes Aqp = (27r / k'h)112 . A factor 2 to be inserted in the q-average comes from the fact that

wires both oriented at p = 0 and (p = 7t contribute to the scattering amplitude, see Fig. 1. An

incoherent summation over all the N wires in the sample provides a further factor N, so that

finally the scattered field doubly averaged in this way becomes

(E-tv%,p = E'06exp(ik'r) N(27t/k'h)1 2 /{4k'r cos 'gr" [ln(0.8905 k'a) - iit/2]} (15)

This field is now incident (Fig. 1) under the angle 8r onto the medium boundary, coming from

inside the medium and about to re-emerge into the air below. This re-emergence calls for a

Fresnel refraction coefficient, inverse to that of F' that applied to penetration from the air into

the medium. This can be obtained from Eq. (4c) by simply substituting -& ' 3, s•t s'pt' or
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n < n', and we obtain this coefficient which we call F'efr as:

2nn' COS 4,
F ' rr+fn = r (16)

I• n2A, n o CO r+ n'/n2-n'2sin',&r

The field re-emerging into the air will thus be Eq. (15), now having k' again converted into k by

the refraction, and multiplied by the refraction coefficient of Eq. (16). This is to be added

coherently to the reflected field E" in order to find the change of polarization of the latter caused

by the wire scattering. A problem then arises, however, because the reflected field E" is

apparently a plane wave (having been generated by the reflection of the incident plane wave from

an infinite plane boundary) and the wire scattered wave, Eqs. (15) and (16), is a spherically

divergent wave. Adding these two fields together would amount to comparing apples with

oranges.

The answer to this lies in the fact that our sample is not of infinite size, but has a finite

surface area A. For a far-distant observer, the reflected wave from this finite sample has to be a

spherically divergent wave also. This wave can then consistently be added to the divergent wave

of the wire scattering process; it can be obtained from the plane reflected wave again by an

application of Huygens' principle.

In the coordinate system (xy,z) of Fig. 1, the reflected wave leaving the surface equals

uf = exp (ik". r) at z=0, apart from the amplitude factor E". The Huygens' formula for a plane

starting surface is obtained by van de Hulst 7 (p. 20) as:

u = -(ik / 21tr) u,.fexp(ikr) dS, (17)
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and we assume a total surface area of A = (-d. / 2 _< x < d. / 2, -dy / 2 _< y _ dy / 2). However, Eq.

(17) was obtained by Ref 7 for a surface normal to the propagation direction k", so we turn

to a new coordinate system (ý, Ti, Q) as shown in Fig. 6, and use the projected area A cos %

as the starting surface. On it, the surface value is u,,f = exp(-ik Q) = 1 at • = 0. Thus, expanding

the radius factor in the exponential of Eq. (17) as r + (ý2 + 112) / 2r, we get

dxcos gi/2  dy/2

u = -(ik/2irr) exp(ikr) f dt J di exp [ik(t 2+i12)/2r], (18)

-dxcos %i/2  -dy/2

or
u = -(2ik/cr) exp(ikr) Ih I,, (19a)

with

d.cos %/2

1ý= J dt exp(ikt 2/2r), (19b)

0

dy/2

I, = f drj exp(ikTI2/2r) . (19c)

0

Using the definition of the Fresnel integrals'

C(u) = J o' cos(7tt2/2)dt, (20a)

S(u) = .f o sin(7tt2/2)dt, (20b)
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we find

= (7rr/k)/ 2[C((k/hrr) 1 2d. cosai/2) + i S((k/htr) 1/2d cosai/2)], (21a)

= (7Er/k)' 2[C((k/hr) 1 2dV2) + i S((khtr) X'rdW/2)]. (21b)

For the case considered by us, i.e., for distant observers, u is small and one has

C(u) u, (22a)

S(u) = 0(u3) , i.e., negligible,

leading to the answer

u =-(ik2/27ckr)(A cos 4%) exp(ikr). (23a)

This is indeed a spherically spreading wave as desired, that can be added to Eq. (15) multiplied by

Eq. (16); here Eq. (23a) must be supplemented by the factor (Fig. 1):
A

Fý, E. E."' (23b)

TOTAL FIELDS

From all the foregoing, we now have the total fields as seen by an observer at large

distance r(carets denoting unit vectors):

(a) perpendicular case (r):

A
Ertot - = E0 -r F~ofl (-ik 2/27ckr) (A cos %) exp(ikr) (24a)

(b) parallel case (0):

A

EVte = Eo E" 'ef (-ik 2/27rkr) (A cos ,%) exp(ikr)

A

+ Eo. ref F'refl(27/k'h) 2(N/4kr cos 4,) [ln(O.8905 k'a) -i7I/2]-'

exp(ikr). (24b)

13



POLARIZATIONS

As stated above, the correct way of characterizing polarizations is via the use of the (real)

Stokes parameters I, Q, U, and V. These are defined as7

I = E E, + ErE_* = intensity (energy flux/area),

Q = EE,* - F__*

U = EIEF* + FEt* (25)

V = i (EIEt* - ErE*)

which maybe combined into the Stokes 4-vector

s= (26)

If only linear polarizations are involved, as is the case here, one has U = V =0.

An incident wave that is purely linear parallel polarized, has

S'= E[2 (27a)

or if purely perpendicular,

Sr= Eo2 (27b)

14



For the scattered/re-emerging wave, one may define

'trfl= F • Iexp iT''rcfl

F'fr= fr I• exp iNgf (28)

F'•= { F"•fr Iexp i".&

(for a possibly lossy medium), and

X = tan -1 [(It/2)/ln (0.8905 k'a)]; (29)

further,

B tfl= IF ' I (k2/2) A cos , 1,

S 'ref = T refl -70/2, (30)

B I e I F 'r& F' tref I (27r/k'h)11 2 (N/4 cos ar)[ln2(0.8905 k'a) + X2/41/2,

= x + Tp e f l_1"'i (31)

This yields the Stokes parameters (disregarding the overall factor 1/M2
Y

2):

(a) perpendicular case (r):

I, = -Q, = Eo2I F rel 2 (k2 A cos ,9/27) 2 , (32a)

(b) parallel case (0):

11 = Q = E.2 {(B 'refl COS +eBfl+ B cos gE!)2 + (B tfl sin rcfl + B ' sine 1.)
2}(32b)

These equations are amenable to numerical calculations in a straightforward manner.

15



CONCLUSIONS

We have calculated intensities and polarizations of an electromagnetic wave returned from

a flat, smooth, dielectric sample of surface area A that contains a total of N randomly positioned

and randomly oriented, perfectly conducting needles. The returns consist, for an incident wave

polarized linearly and perpendicularly to the plane of incidence, of a reflected wave only with the

same perpendicular polarization. For parallel polarization, the return has both a reflected and a

wire-scattered component. The peculiar scattering geometry of a perfectly conducting wire (in

the form of a thin-walled cone) introduces strong reductions in scattering intensity due to the fact

that only few wire needles satisfy this geometry. However, lesser geometrical restrictions can be

expected for a (lossy) dielectric wire, with a corresponding improvement in scattered intensity.

We have here considered the case of wires long compared to the wavelength, utilizing the

appropriate scattering amplitude of Eq. (8). In a different frequency regime, our formalism is

sufficiently flexible to permit its replacement by a different appropriate expression for the

scattering amplitude, including one corresponding to a (lossy) dielectric wire if desired.
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NeedleZ (refracted) 'I b

m e d i u m E ,

("half space") , E sI= E ' eik, rkfr ' 
(scattered)
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A = oir r E = o i 'r 
s _-

(incident) E " "

E=Eoe ik -r k EEcýe
(reflected) E sc=E o .. . ik 'r

(re-emerging scattered)

Figure 1. Geometry of reflection, refraction, and needle scattering/re-emergence of waves.

YI
0 I

0 SC

(a) (b)

Figure 2. Geometry of incidence on (a), and scattering from (b) a thin cylinder.
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z- (a)

x

(b)

Figure 3. Geometry of incidence on wire h (a), and of the scattering from it (b).

18



Figure 4. Conical scattering from a thin, perfectly conducting wire.

Aq)

Figure 5. Vertical and azimuthal widths (Aq, A&p) of the scattering cone.
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Figure 6. Coordinate system for the reflected wave spherically divergent from a sample of
surface area A, in order to obtain that wave using Huygens' principle.
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