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Abstract

A channel compensation method is sought for use in speaker identification (ID) and

verification applications under matched and mismatched training and testing conditions.

This work expands on previous work on matched conditions by investigating three tech-

niques on matched and mismatched conditions using the TIMIT and NTIMIT speech

databases. First, previous results on 168 speakers are reproduced for matched conditions

using Gaussian mixture models (GMM) and mel-frequency cepstral coefficients. Next, cep-

stral mean subtraction with band limiting (CMSBL) is investigated. The third method,

developed in this thesis, uses a modified Wiener filtering approach to channel compen-

sation. New GMMs are created for each method. The first approach is then expanded

to include all 630 TIMIT and NTIMIT speakers for speaker verification. For speaker ID

under matched conditions, the CMSBL method had three more errors than no additional

preprocessing but yielded the best ID results for the mismatch case with 27.4% correct.

Additionally, the CMSBL method yielded the best verification results with an equal error

rate of approximately 0.26% for matched conditions on TIMIT and approximately 19.6%

for mismatched conditions on NTIMIT.

ix



SPEAKER VERIFICATION IN THE PRESENCE OF

CHANNEL MISMATCH USING

GAUSSIAN MIXTURE MODELS

I. Introduction

1.1 Background

What is speaker verification in the presence of channel mismatch? Speaker verifica-

tion is related to the process of speaker identification (ID), also known as speaker recogni-

tion [6], where a machine attempts to determine which speaker, out of a group of registered

speakers, a recorded portion of speech came from. Verification, on the other hand, starts

with a person claiming a particular identity. The machine must then determine whether

or not the speaker is who they claim to be. Proper verification is critical for controlling

access to sensitive information or special areas. Just as people have difficulty identifying

others over the telephone, computers have difficulty correctly identifying or verifying peo-

ple when speech is recorded differently than what the computer was trained with. This

difference in training and testing conditions is channel mismatch. While Gaussian mixture

models using Mel-frequency cepstral coefficients have had considerable success for similar

training and testing conditions [14], currently no method adequately handles the cases

where training and testing conditions are different. Consequently, a solution for speaker

verification in the presence of channel mismatch is needed.

1.2 Problem Statement

Develop a channel compensation method for speaker identification (ID) and speaker

verification that compensates for the channel mismatch between training and testing con-

ditions.
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1.3 Assumptions

In order to facilitate development, this thesis assumes that all training collections

are cooperative. For this thesis, cooperative means that a speaker's voice was recorded

with their knowledge under controlled conditions, and that the speaker made no conscious

attempt to alter their voice to sound like one of the other speakers or someone other than

themselves. For telephone quality speech, the utterance passed to the system was modified

only by the telephone channel. Due to the nature of the databases, a subject is assumed

to be in the same physical and emotional states during training and testing.

1.4 Scope and Research Objectives

The TIMIT and NTIMIT databases are used to compare and analyze previous spec-

tral processing methods to a new filtering approach. The ability of processing methods

for speaker ID and verification in channel mismatch conditions will be experimentally

evaluated. Towards that end, the following are the desired research objectives:

" Reproduce previous speaker ID results using Gaussian mixture models (GMMs) on

TIMIT and NTIMIT

"* Reproduce previous speaker verification results using GMMs under matched condi-

tions using TIMIT and under channel mismatch conditions using NTIMIT

"* Extend previous speaker verification results to a larger population

"* Experimentally evaluate the effect of a modified Wiener filter preprocessor for speaker

ID and verification tasks on TIMIT and NTIMIT

1.5 Organization

The remainder of the thesis is divided into four chapters. Chapter II presents the

theory behind using Mel-frequency cepstral coefficients (MFCCs) and Gaussian mixture

models (GMMs) when performing speaker identification and speaker verification. Chapter

II also outlines the channel compensation techniques of cepstral mean subtraction and

the modified Wiener filtering technique. Chapter III outlines the computer equipment and
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software and how they were used in calculating the results. Chapter IV presents the results

of the thesis broken down by identification or verification and then further subdivided by

corpus and method. Chapter V highlights the conclusions drawn from the research and

includes suggestions for future study.
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II. Theory

2.1 Introduction

This chapter outlines the theory behind speaker identification and verification using

Mel-frequency cepstral coefficients (MFCCs) and Gaussian mixture models (GMMs). First,

motivation for using Mel-frequency cepstral coefficients is provided, and then the basics

of how to generate them is outlined. Next, the theory behind Gaussian mixture models

and their training is explained. The following sections then explain the theory for speaker

identification (ID) and the steps involved for speaker verification. The chapter also outlines

the theory behind two channel compensation techniques, the commonly used cepstral mean

subtraction [6,9,15] and a new modified Wiener filter approach.

2.2 Mel-frequency Cepstral Coefficients (MFCCs)

2.2.1 Motivation for using MFCCs. MFCCs provide a compact representation for

modeling an individual's vocal tract by separating it from the pitch information through

homomorphic deconvolution [6]. This has the added benefit of lessening linear time-

invariant channel effects [6]. Using homomorphic deconvolution is based on the premise

that the vocal tract can be modeled as a linear time invariant filter [10].

2.2.2 Creating MFCCs. The feature vectors used in this thesis are MFCCs

computed for windowed segments of each utterance. This multi-step process is begun by

fixing window and step sizes. The window size determines the duration of a segment of

the utterance to consider. The step size indicates how far to shift the window along the

duration of an utterance from the beginning of the previous window. The calculation of

an MFCC vector begins by taking a 20 ms window of an utterance [12] and determining

whether it contains voiced speech or not. If the window contains voiced speech, preemphasis

is performed using the common preemphasis coefficient of 0.97 [18]. Next, the magnitude

of the discrete Fourier transform (DFT) is calculated, and a triangular filterbank is placed

across the spectrum. The filters are placed such that the beginning of the next filter is

at the center frequency of the previous filter. Figure 2.1 illustrates how the filters divide

the frequency spectrum. The log of the magnitude of the triangular filter outputs are
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Spectrum with 23 Triangular Filters for MFCCs
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Figure 2.1 Filterbank for MFCCs

then calculated and a discrete cosine transform performed with the resulting coefficients

forming the MFCC vector for the given time window [5]. Next, the time window is shifted

along the utterance's duration by the step size, a common value is 10 ms [12]. The entire

process is then repeated to until a window contains the end of the utterance.

While the concepts for generating MFCCs are common among references, there is

some variation in the actual calculations [5, 11, 18]. For this thesis, the method of [18]

was used. Using this method, MFCCs are calculated as

Ck = mj Cos -- 0.5) for k = 1 ... K. (2.1)
j=2
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In equation 2.1, N is the number of triangular filters, K is the total number of coefficients

desired, and mj is the log filterbank amplitude for the jth filter from the filterbank along

the mel scale. The mel scale is based on experiments on human hearing that suggest filters

spaced approximately linearly below 1000 Hz and logarithmically above 1000 Hz [10]. The

mel scale may be defined as [18]

Mel(f) = 2595 log 1+ 700 ) (2.2)

2.3 Gaussian Mixture Models (GMMs)

Once the MFCCs have been calculated, they are used as feature vectors for classifi-

cation in determining speaker identification and speaker verification.

2.3.1 Theory of GMMs. A GMM is a parametric model consisting of a weighted

sum of component Gaussian densities. The model, A8, for a given speaker s is defined as

a function of the parameters Pi, Iri, and Ei such that

A., {P ,'t, E} for i = 1 ... M . (2.3)

The density of a D-dimensional feature vector, 9, from a sampled window from a given

speaker s can be described by

M

Xx I A,) = Pbib( ), (2.4)
j=1

where M is the number of mixtures and Pi is the probability or weight of component i

such that EY= Pi = 1. The second term, b&('), is the density of the Gaussian component

i and is found by

1 11
bi(x) & )2 exp -(--/i)'Ei ( , (2.5)

where Ei is the covariance matrix (assumed to be diagonal [14]) and A is the mean vector

for component i. If N is the number of samples in an utterance, the likelihood an utterance
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came from a given GMM can be found from [4]

N

(I )= II A) (n I As), (2.6)
n=1

which leads to the log-likelihood

N

log (UI A,)= • logp(xFn I As). (2.7)
n=1

Using Equation 2.4 and Equation 2.7, the log-likelihood of an utterance given a specific

GMM is given as
1N M

logC(U I As) = N -- log -: Pi bi (n). (2.8)
n=1 i=1

The first term on the right hand side of Equation 2.8 is used to normalize the likelihood

scores so that the scores are independent of the number of voiced segments in a given

utterance.

2.3.2 Training GMMs. In order to train the models, a prototype model is created

that has the desired number of means and variances for a single component. Initially,

the vectors of means are set to zero and the variance vectors are set to one. Next, a

speaker is selected, and the speaker's utterances are converted into the previously defined

MFCC feature vectors. These feature vectors are then used to estimate by expectation

maximization (EM or Baum-Welch Reestimation) [4] the means and variances. The

model is "grown" to the desired number of component densities using a binary splitting

algorithm. This algorithm takes the component with the greatest weight Pi and creates

two new components of half the original weight. The means are the result of adding

or subtracting one standard deviation [18]. Additional iterations of the EM algorithm

are then performed. The feature vectors for a given speaker's training utterances are

repeatedly presented to the speaker's GMM until the desired number of components, 32

[11], is reached.
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2.4 Speaker Identification

After a separate GMM has been trained for each speaker in the system, attempts

at speaker identification (ID) may begin. For speaker ID, a speaker is prompted to utter

some phrase which is then recorded. After determining voiced and unvoiced portions

of the utterance, MFCCs are generated from the voiced portions of the utterance. The

resulting MFCC feature vectors are then presented to the GMMs for each speaker currently

registered in the system. The model with the highest score for a given utterance is believed

to belong to the person who gave the utterance. Mathematically this can be represented

as selecting speaker r from the set S of all possible speakers for a given utterance U such

that

r = arg max {log [C(U'Ai)] }. (2.9)
iES'

2.5 Speaker Verification

2.5.1 Introduction. While speaker ID is generally a closed set problem (only

speakers registered in the system are allowed to test), applications for speaker verification

may be open set problems (speakers not registered in the system may test). For open set

problems, it is not enough to know which registered speaker's model scored the highest.

The system must determine whether the speaker is really who he or she claims to be (the

claimed speaker is referred to as the claimant) by comparing the verification score to some

absolute threshold.

2.5.2 Cohort Selection. In order to determine whether the speaker is the claimant

or not, an additional preprocessing step must be made after all of the GMMs are created.

This additional step is the selection of speaker cohorts. The use of cohorts is necessary to

normalize the log probabilities to minimize the effects of stress and the natural variability

in any given speaker's utterances [7]. Cohorts are chosen from among all of the registered

speakers as those that appear most like, called close cohorts, and least like, called far

cohorts, the claimant. To select the cohorts, one utterance from the speaker and one

utterance from each of the other registered speakers is required.
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Cohorts may be selected from speakers that are more similar or least similar to a

given speaker based on a symmetric distortion score [14]. This score is determined by

dsym(Ai,A j) = log £( 1i) 0  gL(ujlAi) (2.10)

where U, is an utterance from speaker x and Ax is the GMM for speaker x. A distortion

score is determined for a given speaker and all the remaining registered speakers. The

resulting scores are then sorted in ascending order. An equal number of maximally spread

close cohorts and maximally spread far cohorts are then chosen as reference speakers for

each speaker according to [11]. Detailed steps for determining cohorts can be found in

Appendix A.

2.5.3 Verification. Verifying a given speaker is the claimant is a multi-step pro-

cess. First, the speaker is prompted to say some phrase and the utterance, U, is recorded.

Next, any desired filtering, such as voiced/unvoiced determination and preemphasis, is

performed on the utterance. Third, the utterance is converted to MFCCs. The resulting

MFCC feature vectors are then presented to the claimant's GMM and the likelihood that

the utterance was made by the claimant calculated. The MFCCs are then presented to

the GMMs for each of the claimant's cohorts. A verification score is obtained according to

v(Ui) = log [£C(UI2)] - • log [L(UOIA)] , (2.11)

where U is the utterance, Q is the claimant's cohort set, B is the the number of cohorts, A,

is the appropriate GMM for speaker x, and x E {{c} U {s I s E Q}}. If v(O) is greater than

or equal to some predetermined threshold, the speaker's utterance is accepted as having

come from the claimant. Otherwise, the speaker is rejected as the claimant.

2.6 Channel Compensation Techniques

2.6.1 Cepstral Mean Subtraction. Cepstral mean subtraction (CMS) has been

found to be helpful in reducing the effects caused by different channel conditions such as

different types of microphones or actual phone channels [16]. Performing CMS on a set
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of MFCC feature vectors requires determining the mean of the set of feature vectors and

subtracting the mean from the individual feature vectors in the set prior to determining a

likelihood score. The result is normalized feature vectors that lessen the effect of a given

channel.

2.6.2 Modified Wiener Filtering. A non-causal Wiener filter, assuming a zero

mean signal and noise, can be represented as [8]

PH(w) (2.12)
H(w) = P,(w) + Pn(w) (

where the power spectral densities of the desired signal, P8 (w), and the noise signal, Pn (w),

are known a priori. For this thesis, however, P,(w) and Pn(w) are not known a priori and

may vary throughout the duration of utterance. An initial approximation of the expected

P,(w) is made so that the modified Wiener filter may be modeled as

Pc(w) (.3
Hmgw(w) = PF(w) +P,(W)' (2.13)

where Pc(w) is determined by averaging the DFT from window size segments of each of

the claimant's training utterances. Since it is impossible to separately determine P8 (w)

and Pn(w) in a real-world scenario, the sum of these terms may be approximated by

the measured power spectral density Pu(w) so that the modified Wiener filter may be

approximated as
Hm,()P:ýp(w) (2.14)

P. (W)

where there are no cross terms if the desired signal and the noise are statistically indepen-

dent. By manipulating the terms, Equation ( 2.14) becomes

1
Hmw(w) = w (2.15)

and the filter becomes a function of a claimant's average spectrum and the spectrum of

the utterance being considered.
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The impulse response, hmw(tn), is calculated from the inverse DFT of Hmw(W) and

convolved with the original utterance to obtain a new utterance U. The new utterance

is then broken into voiced and unvoiced segments, and the MFCCs are calculated for the

voiced segments. These feature vectors are then presented to the appropriate GMMs for

identification or verification.

2.7 Summary

This chapter presented the theoretical background for the speaker ID and verifica-

tion problems. First, the generation of MFCC feature vectors was described. Next, a

mathematical basis for GMMs was given. A brief outline was then given on how MFCCs

and GMMs are used to classify utterances for determining or verifying a speaker's identity.

Finally, two techniques for channel compensation, CMSBL and modified Wiener filtering,

were presented.
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III. Approach and Methods

3.1 Introduction

In this chapter, brief explanations of the equipment, software, and speaker databases

used are provided. Additionally, the procedures used for determining a baseline for speaker

identification and speaker verification are given. The steps for performing the modified

Wiener filter approach are laid out along with the steps taken in MFCC generation and

the training and testing of the GMMs in order to perform identification and verification.

3.2 Computer Equipment and Tools

Before beginning any undertaking, it is important to have the correct tools. The

experiments conducted for this thesis were performed on Ultra 1 computers by Sun Mi-

crosystems. One of the machines had a CD-ROM drive capable of reading the TIMIT and

NTIMIT databases which were transferred to an external 4.0 GB disk drive. All of the

Ultras ran Sun Microsystems' Solaris 2.5 operating system.

Working with the data from either corpus was done through one of three tools. The

operating environment was set up for UNIX C shells. Shell programs were used to create

directory structures, lists of speakers and utterances, and to automate calls to other tools.

Mathworks' MATLAB version 4.2c as well as Entropic's HTK - Hidden Markov Toolkit

version 2.0 and ESPS version 5.1 were used to manipulate utterances, generate MFCCs,

train Gaussian mixture models (GMMs), and obtain log-likelihood scores.

3.3 Speaker Databases

Developed by Texas Instruments (TI), Inc. and the Massachusetts Institute of Tech-

nology (MIT), the TIMIT database was initially designed for speech recognition. It was

created under nearly ideal conditions using the same recording equipment over a short

period of time with 630 speakers. The recordings were made with an 8 kHz bandwidth

at a sampling rate of 16 kHz [1]. This means that there is a low degree of inter-session

variability in a given speaker's utterances, acoustical noise, and equipment variability.
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The NTIMIT database was created by NYNEX using the original TIMIT database

[2]. The original utterances were played back through an artificial mouth into a carbon-

button telephone handset. The resulting speech was then transmitted to central offices of

local or long-distance systems and looped back for recording at a 16 kHz sampling rate.

The databases are originally broken into test and training sections with no common

speakers between the sections. These sections are further subdivided into eight dialect

regions based on a speaker's primary residence during their lifetime. The dialect regions are

then divided into speakers with each speaker's 10 utterances in the speaker's subdirectory.

3.4 Baseline

Initial experiments were done to reproduce Reynolds' previous methods [12] and

results [13,141 for identification and verification using the TIMIT database. The process for

s(n) - Filter m MFCCsP Claimant +

SCohort _ "

GMM 1

0

0
0

Cohort
GMM 10

Figure 3.1 Baseline Speaker Verification Process

reproducing the verification results is illustrated by Figure 3.1. For the baseline, filtering

was dependent on the method under consideration. Additional details are provided in the

following sections.

3.4.1 Training and Testing. Each speaker has 10 utterances divided into SA1

and SA2 ( both of which are common to all speakers), as well as three SI sentences and

five SX sentences. For the reproduction of results, training for all speakers was done using
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both SAs, all Sis, and the first three (in UNIX is order) SX utterances from the TIMIT

database. All testing was done on the last two SX utterances. Initially, training and testing

were only done on the 168 speakers from across all eight dialect regions in the test section

for all three methods under consideration. In an additional round of experiments, all 630

speakers were used only for the straight TIMIT training and testing cases as well as the

straight NTIMIT testing cases for speaker ID and verification.

3.4.2 Straight TIMIT & NTIMIT. When utterances were taken straight from the

original database recordings with no warping or filtering, they are referred to as "straight"

utterances. Due to the formatting of the original databases, these utterances were ma-

nipulated by removing the header information using the ESPS bhd command and then

using the UNIX utility dd to swap an utterance's byte order. The m-file detvoice.m (see

Appendix B) was used to determine the voiced and unvoiced segments based on the hand-

labeled phonetic transcriptions provided with each utterance in the TIMIT and NTIMIT

databases. The transcriptions were used to facilitate reproduction of results. MFCCs were

created using HTK's HCopy and the HTK configuration file hconfig. The hconfig file was

set to use 24 filters in the filterbank and return 23 coefficients. GMMs were created from

each speaker's eight training utterances while likelihood scores were generated from the

two test utterances from each speaker.

3.4.3 CMSBL. To reproduce the cepstral mean subtraction with bandlimiting

(CMSBL) method a separate HTK hconfig file was made. This time, however, the HTK

hconfig file was also set to bandlimit the utterances from 400 - 3200 Hz in accordance

with [12] before calculating the MFCCs. The voiced and unvoiced detection was again

performed using detvoice.m to access the hand-labeled phonetic transcription files. New

GMMs were created for each speaker from these MFCCs and new log-likelihood scores

were computed for each speaker's test utterances.

3.5 Modified Wiener Filtering

The process of manipulating utterances using the modified Wiener filtering approach

was similar to the straight and CMSBL methods. The difference in the preprocessing is
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Figure 3.2 Modified Wiener Filter Speaker Verification Process

illustrated in Figure 3.2. As Figure 3.2 illustrates, modified Wiener filtering was applied

to each of the utterances prior to generating the MFGCs. Each utterance was filtered

using the claimant's long-term average spectrum. This was done by approximating the

frequency response of the channel using

Hmw(w) • Ps(w) +Pn(w) - Pu(w)' (31

where Pc(w) was determined by averaging the DFT from window size segments of each of

a claimant's training utterances, P8 (w) and Pn(w) were the desired signal and the noise

signal, respectively, and Pu was the measured power spectral density.

The impulse response of the filter, hmw(n), was calculated and convolved with the

original utterance to obtain a new utterance U. The new utterance was then broken into

voiced and unvoiced segments using the appropriate hand-labeled phonetic transcription

files and the MFGCs calculated for the voiced segments. New GMMs were generated for

this method also. The process was then repeated for each speaker's two test utterances

using all possible speakers as the claimant.

The inspiration for this approach came from work done with Wiener filtering of

distorted images [8]. By using this modified approach on speech corrupted by a channel,

the signal resulting from the warping should skew the spectrum of an utterance to be
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more like those of the claimant and the claimant's cohorts as seen earlier in this chapter.

Additionally, this approach will smear the spectra, just as its image counterpart, which

may result in greater speaker ID errors but hopefully fewer verification errors similar to

the CMSBL method.

3.6 MFCC Calculation

Once header information had been removed, the byte order of the utterances swapped,

and the voiced and unvoiced segments determined, the MFCCs were calculated using

HTK's HCopy command. This command was invoked either manually or by the m-file

modwmfcc.m (see Appendix B), to compute the MFCCs for voiced segments according to

Ck = E-mjCos I (j -- 0.5)] fork= 1 ... K, (3.2)
j=l

where K was the number of desired coefficients, N was the number of filters to use in the

filterbank, and mj was the log amplitude of the jth filter of the triangular filters along the

mel-scale defined by

Mel(f) = 2595 log (1 + 7--(33)

The hconfig file used with HCopy varied depending on whether straight or CMSBL MFCCs

were desired.

3.7 GMM Generation

3.7.1 HMM or GMM? Once the MFCCs had been calculated, models were de-

veloped for each speaker under each of the three methods. For expediency and the ability

to facilitate a reproduction of the experiments, HTK was used to develop a degenerate

form of hidden Markov model (HMM). HTK creates HMMs that always have initial and

ending non-emitting states. By including only one state between them and "growing" that

state into multiple Gaussian mixtures, a Gaussian mixture model (GMM) may be created.

From this point on, the HTK HMMs will simply be referred to as GMMs.
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3.7.2 Prototype GMM Development. A prototype model was first created ac-

cording to the specifications in The HTK Book [18]. A sample prototype for straight data

is included below.

1. <BeginHMM>

2. <NumStates> 3 <VecSize> 23 <MFCC> <nullD> <diagC>

3. <StreamInfo> 1 23

4. <State> 2 <NumMixes> 1

5. <Stream> 1

6. <Mixture> 1 1.0

7. <Mean> 23

8. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

9. <Variance> 23
10. 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

11. <TransP> 3

12. 0.000e+0 1.000e+0 0.000e+0

13. 0.000e+0 6.000e-1 4.000e-1
14. 0.000e+0 0.000e+0 0.000e+0

15. <EndHMM>

All prototypes and model definitions begin with the line "<BeginHMM>". The second

line of the prototype indicates the total number of states that the model should have, the

size of the vectors it should expect, the type of data, any special handling, and the type

of covariance matrix to assume. In this thesis, only three states were required (the initial

non-emitting state, the state of interest, and the final non-emitting state). For consistency

with Reynolds, the vector size was chosen to calculate 23 MFCCs using a bank of 24

filters [11]. The third line indicates the number of sources that will be presented to the

model and their size. Line 4 determines the state number and its number of mixtures.

Line 6 indicates the mixture number for a given state and the probability of that mixture.

For each mixture in a state, other than the initial and final states, the state number

and the desired number of means and variances for the state are also indicated, e.g., lines

7 and 9. Below the number of means and variances, an appropriate number of constants

are entered as place holders in lines 8 and 10. The actual values are not important, only

that there be as many as indicated by VecSize. To speed implementation, the means are

typically zero and the variances one. Line 11 indicates the beginning of the transition
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probability matrix for the HMM and indicates the number of states. In practice, the

transition probabilities should be close to the final results, but do not need to be exact.

It should be noted that failure to split the model from one-to-two and then two-to-four

components before reestimating had suboptimal results. Failure to make the two-to-four

split before reestimating resulted in returning to a single component after reestimation

following the initial split rather than adjusting to two components.

3.7'.3 Training the GMM. Once the MFCCs were generated for all the utterances

and a prototype GMM developed, an individual speaker's GMM was "grown" to the desired

size of 32 components [11, 12]. This was done by selecting a given speaker and the

associated training MFCCs and presenting them to the GMM. This process was done

using the C-shell script gmm2maker (found in Appendix B) and is illustrated with the

following pseudo code.

1. Initialize the model using the speaker's training utterances and HInit

2. Reestimate the model using all training utterances with HRest

3. Perform a binary split of the mixture using HHEdit with MU 2 (MU q is an HTK

command that increases the number of components in the mixture to q)

4. Perform a binary split of both mixtures using HHEdit with MU 4

5. Reestimate the model with HRest using all training utterances

6. Perform a binary split of the top two mixtures using HHEdit with MU (2 x x)

where x = 3...M/2

7. Reestimate the model using all training utterances with HRest

8. Repeat 6 and 7 until the desired number of mixtures is reached

3.7.4 Probability Scores. With GMMs created for all of the speakers, log-

likelihood scores for a a given speaker's utterance were obtained using the C-shell script

uttscores2.c (in Appendix B). The scores were calculated based on Equation 3.4 and
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Equations 2.4 and 2.5 as

logC(U I A,) log [p(- I A,)], (3.4)
n=1

where N is the number of voiced samples in an utterance.

The scores were calculated using HTK's HVite command. HVite presented each

utterance's MFCCs separately to each of the 168 or 630 models and saved the scores.

Varying the appropriate parameters in uttscores2.c obtained the results for all 630 speakers.

The script was used to generate scores for both SA utterances as well as the last two SX

utterances from each speaker. The scores from the SA utterances were used to determine

initial thresholds for verification results with a minimal equal error rate. The scores from

the SX utterances were used to determine the system's success with the SA thresholds as

well as to detemine an equal error rate of their own.

3.8 Speaker Identification

Speaker identification required using MATLAB to determine which GMM generated

the highest log-likelihood score for a given utterance by reading in the files created by

uttscores2.c (see Appendix B). If the index of the highest score corresponded to the index

of the utterance's speaker, the trial was considered to have correctly identified the speaker.

Otherwise, the trial was considered to have made an error in speaker identification. Win-

ning models were chosen based according to

r ==arg max {log [C(U IAj)]}. (3.5)iESf

This process was repeated for all speakers and their corresponding SA utterances and

separately for SX testing utterances using the m-file spkrid.m (see Appendix B) with the

results from each iteration saved to separate files.
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3.9 Speaker Verification

3.9.1 Cohort Selection. Having already calculated the probability scores for each

speaker's SA1 and SA2 utterances for all GMMs under consideration, determining the 10

cohorts was straight-forward. (Note: this differs slightly from [11] in which cohorts were

determined by obtaining a probability score from the concatenation of all the training

MFCCs.) First, a speaker i and a different speaker j were chosen and a distortion score

was determined according to Equation 3.6.

dYM(Ai, A) = log C( Ai) + log (TjIAj) for i # j, (3.6),C(Oi~ I j)(U-jl)i)

where Ui is speaker i's SA1 utterance, A. is speaker x's GMM, and Uj is speaker j's SA2

utterance.

These scores were then sorted in ascending order. The five maximally spread close

cohorts were the distortion scores closest to zero and, therefore, believed to sound most like

the speaker but were not duplicates (speakers whose scores were not necessarily adjacent

to one another). The five maximally spread far cohorts were those whose distortion scores

were furthest from zero and, therefore, were believed to sound least like the speaker but

who were not duplicates (speakers whose distortion scores were not necessarily adjacent

to one another). A detailed algorithm for cohort selection can be found in Appendix A.

The process was automated to find cohorts for all speakers using the m-file maincohort.m

(see Appendix B). Separate cohort sets were found for the straight, CMSBL, and modified

Wiener filter methods.

3.9.2 Verification Scores. After cohorts were determined for each speaker, ver-

ification scores were calculated for each speaker's test SX utterance where each of the

registered speakers posed as the claimant. Verification scores were calculated according to

v(U) = log [C(OU•A)] - 1 E log [£C(UIA,)], (3.7)
s3-
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where U is the utterance, Q is the claimant's cohort set, B is the number of cohorts in

the set, A, is the appropriate GMM for speaker x, and x E {{c} U {s I s E Q}}. While

verification scores were calculated all cases, only the results for testing without cohorts

were reported for consistency with [11].

3.10 Equal Error Rate

Before determining the equal error rate (EER), the verification scores for all of the

tested SX utterances for each of the speakers were sorted in ascending order. An initial

arbitrary threshold was chosen and the number of false accepts and false rejects determined.

The rates for false accepts and false rejects were calculated and the EER assigned as the

average of the false accept and false reject rates. The final EER was determined by

finding the threshold for which the difference between false accept and false reject rates

was minimum.

3.11 Summary

This chapter has presented the approach and methods used in this thesis. A brief

listing of the computer hardware, software, and databases used was provided. Discussions

on how MFCCs were generated and on the procedures used in building and training a

GMM were provided. Additionally, the methods used for speaker identification and speaker

verification, including the selection of cohorts, were also given. Finally, the method used

for calculating the EER was discussed.
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IV. Experimental Results and Analysis

4.1 Introduction

The results from the various trials are presented in terms of process, the corpus,

and the method used. The first section covers the speaker ID results for both databases

and each method. Then the speaker verification results are presented. Lastly, the first

known speaker ID and verification results for the entire 630 speakers in straight TIMIT

and NTIMIT are presented. For each process, training was done only on TIMIT utterances.

4.2 Identification

4.2.1 TIMIT. Tables 4.1, 4.2, and 4.3 give the results from testing against the

168 test speakers of TIMIT using the SA and SX2 utterances from TIMIT. Of the three

methods (straight, CMSBL, and modified Wiener filtering), the straight method had the

best speaker ID results for the test SX utterances with 100% accuracy for the 168 speakers.

The CMSBL approach was a close second making only three errors on the test utterances

for 99.1% correct identification. The modified Wiener approach performed the worst with

84.2% correct identification. The decrease in correct identification by the CMSBL approach

supports Reynolds' assertion that cepstral mean subtraction will reduce performance when

training and testing conditions are the same [12].

Table 4.1 Straight TIMIT Identification for 168 speakers
Utterance # Errors # Correct Errors % Correct %

SA1 and SA2 0 336 0 100
test SX 0 336 0 100

Table 4.2 CMSBL TIMIT Identification for 168 speakers
Utterance # Errors # Correct Errors % Correct%

SA1 and SA2 0 336 0 100
test SX 3 333 0.893 99.1

4.2.2 NTIMIT. Table 4.4 illustrates the results from testing the NTIMIT SX2

utterances against the 168 test speakers. Again, the GMMs were trained on TIMIT ut-

terances and tested against the NTIMIT ones, and providing tests done under channel
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Table 4.3 Modified Wiener filter TIMIT Identification for 168 speakers
Utterance # Errors # Correct Errors % Correct %

SA1 and SA2 47 289 14.0 86.0
test SX 53 283 15.8 84.2

mismatch conditions. This time, the CMSBL method performed the best of the three

methods with 27.4%. The modified Wiener filter method was a distant second with only

4.17% correct and the straight method was third with 3.57%.

Table 4.4 Straight NTIMIT Identification for 168 speakers
Utterance # Errors # Correct Errors % Correct %
Straight 324 12 96.4 3.57
CMSBL 244 92 72.6 27.4
Mod W 322 14 95.8 4.17

4.3 Verification

4.3.1 TIMIT. Tables 4.5, 4.6, and 4.7 illustrate the results from testing the

TIMIT SX2 utterances against the 168 TIMIT test speakers. The verification EER for the

TIMIT test utterances was extremely close (within one false reject) to Reynolds' ; 0.24%

EER [141. This discrepancy is likely the result of the subtle difference in cohort selection.

The CMSBL method produced the best results with the straight method a close second and

the modified Wiener method a distant third. In Tables 4.5, 4.6, and 4.7, a "*" indicates

misleading EERs due to averaging.

Table 4.5 Straight TIMIT Verification for 168 speakers
Utterance Threshold EER % #fa #fr FA % FR %

SA1 and SA2 10.375 0.576 148 2 0.557 0.595
test SX 10.375 0.504 * 375 1 0.711 0.298
test SX 10.650 0.595 314 2 0.595 0.595

In these verification tables, the first test SX threshold is taken from the threshold

obtained for training SA threshold scores as would be done in a real-world system. The

second test SX threshold was determined by allowing the system to find the EER and

threshold for the test SX utterances. While this second test SX threshold could not be

done in a practical system, the result provides a means of gauging how well the system

might have done with either additional training utterances to determine the threshold or
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Table 4.6 CMSBL TIMIT Verification for 168 speakers
Utterance Threshold EER % #fa #fr FA % FR %

SA1 and SA2 6.527 0.338 200 1 0.379 0.298
test SX 6.527 0.147* 155 0 0.294 0.000
test SX 6.837 0.262 119 1 0.226 0.298

Table 4.7 Modified Wiener filter TIMIT Verification for 168 speakers
Utterance Threshold EER % #fa #fr FA % FR %

SA1 and SA2 4.5081 7.85 4,202 26 7.97 7.74
test SX 4.5081 8.77 3,758 35 7.12 10.4
test SX 4.2172 8.11 4,313 27 8.18 8.04

in a text-dependent scheme. For the straight and CMSBL methods, the "better" EERs

increased the number of false rejects by one, while the number of false accepts was reduced.

For the modified Wiener filter method, the new ERR has similar effects but with more

drastic results. The number of false rejects decreased form 35 to 27 while the number of

false accepts rose from 3,758 to 4,313.

4.3.2 NTIMIT. Tables 4.8, 4.9, and 4.10 give the results of testing the NTIMIT

SX2 utterances against the 168 test speakers of TIMIT under mismatched testing and

training conditions. The results were similar to those for TIMIT. Again, the CMSBL

method produced the best results with an EER of 19.7%, almost half that of either the

straight method's 37.2% or the modified Wiener filter's 39.0%. As in the previous tables,

a "*" indicates misleading EERs due to averaging and "-" indicates methods that are

not practical since most real users are kept out. For the NTIMIT verification tables,

Table 4.8 Straight NTIMIT Verification for 168 speakers
Utterance Threshold EER % #fa #fr FA % FR %
test SX 10.375- 49.7* 21 334 0.0398 99.4
test SX 10.650- 49.7 18 334 0.0341 99.4
test SX 1.19 37.1 19,686 124 37.3 36.9

the first test SX threshold is taken from the threshold obtained for training TIMIT SA

threshold scores as would be done in a real-world system. The second test SX threshold

was determined from the threshold for the lowest EER from the TIMIT test SX utterances.
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Table 4.9 CMSBL NTIMIT Verification for 168 speakers
Utterance Threshold EER % #fa #fr FA % FR %

test SX 6.527- 49.1 * 13 330 0.0246 98.2
test SX 6.837- 49.7 7 334 0.0133 99.4
test SX 1.237 19.6 10,359 66 19.6 19.6

Table 4.10 Modified Wiener filter NTIMIT Verification for 168 speakers
Utterance Threshold EER % #fa #fr FA % FR %
test SX 4.5081 - 46.8 * 528 311 1.00 92.6
test SX 4.2172 - 46.2 * 751 306 1.42 91.1
test SX 0.6549 39.0 20,566 131 39.0 39.0

The final test SX threshold was determined by allowing the system to find a more accurate

EER and threshold for the NTIMIT test SX utterances.

4.4 Entire Corpus

Tables 4.11 and 4.12 give the results for speaker identification and speaker verifi-

cation, respectively, of testing all 630 speakers of TIMIT using utterances from TIMIT

and NTIMIT. Table 4.11 illustrates that, even for the entire 630 speaker set, the straight

method yields excellent results for matched training and testing conditions. When testing

with NTIMIT utterances, however, the result is almost the inverse with only 10 correct

identifications. These results emphasize the need for additional processing of the utterances

prior to identification under channel mismatch conditions.

Table 4.11 Straight Identification for 630 speakers
Corpus Utterance # Errors # Correct Errors % Correct %
TIMIT SA1 and SA2 0 1260 0.00 100

test SX 1 1259 0.0794 99.9
NTIMIT test SX 1250 10 99.2 0.794

Large population speaker verification results are given in Table 4.12. For the TIMIT

SX testing utterances, the first threshold (10.8959) was determined from the SA utterances.

The second threshold (10.8682) yielded the best EER for the TIMIT SX testing utterances.

For the NTIMIT SX testing utterances, the three thresholds represent the TIMIT SA, the

TIMIT testing SX, and NTIMIT testing SX error rates.
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Table 4.12 Straight Verification for 630 speakers
Corpus Utterance Threshold EER % #fa #fr FA % FR %

TIMIT SA1 and SA2 10.8959 0.510 4,242 6 0.544 0.476
test SX 10.8959 0.666 4,813 9 0.617 0.714

10.8682 0.596 4,885 7 0.626 0.556
NTIMIT test SX 10.8959 - 49.8 * 439 1,255 0.0563 99.6

test SX 10.8682 - 49.8 * 449 1,255 0.0576 99.6
test SX 1.267 38.7 302,071 488 38.7 38.7

Despite increasing the number of speakers used by Reynolds from 168 to 630, the

EER for the TIMIT SX case changed by 0.16% for the SA threshold and only 0.04% for

the second test SX threshold. The difference in thresholds across mismatched channel con-

ditions in Table 4.12 illustrates just how difficult the problem was. Mismatched conditions

not only influenced the error rates for a given threshold but dramatically affected the EER

threshold as well.

4.5 Summary

In this chapter, Reynolds' results for speaker identification were reproduced for

straight TIMIT. His results for speaker verification using only the 168 test speakers from

TIMIT were also reproduced to within one false rejection. The CMSBL method performed

almost as well as the straight method when applied to TIMIT utterances and better than

the straight method when applied to NTIMIT utterances. The modified Wiener filtering

method was found to be significantly less effective for speaker identification of TIMIT ut-

terances and only slightly better than the straight method for NTIMIT utterances. The

modified Wiener filtering method performed significantly worse than CMSBL for both

TIMIT and NTIMIT testing conditions. For mismatched channel conditions, the results

for speaker verification were similar to speaker identification with CMSBL doing the best.

The straight method did an excellent job of speaker ID for the large (630) speaker pop-

ulations when testing on TIMIT utterances with 99.9% correct. However, the results for

NTIMIT, only 0.794% correct, indicate the need for some form of preprocessing under

mismatched channel conditions.
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V. Conclusions

5.1 Conclusions

This thesis reproduced previously obtained results for speaker identification and ver-

ification using MFCCs and GMMs for a population size of 168 speakers. The previous

work was then extended to a larger population of 630 speakers. A modified Wiener fil-

tering approach was used in an attempt to minimize channel mismatch effects on speaker

verification. It was found, however, that this approach yielded worse performance by a

factor of two than traditional cepstral mean subtraction with bandlimiting. The modified

Wiener approach was 2% worse than using straight models with unfiltered speech. Three

conclusions can be drawn from these results. First, the results for all 630 speakers for

matched training and testing conditions imply that there is ample room in the 23 MFCC

feature space for speaker ID and verification. The channel mismatch conditions, however,

require some sort of preprocessing prior to speaker ID or verification. Second, while the

modified Wiener filtering method looked promising from a mathematical standpoint, no

filtering of an utterance yields better results at a lower computational cost. Lastly, CMSBL

yields the best verification results for matched or mismatched conditions with only a minor

degradation in speaker ID under matched conditions.

5.2 Future Study

Suggestions for future research include the following:

* Convolve the inverse DFT of the speaker's average spectra with the original utterance.

This method was found serendipitously and the results sounded subjectively better

than the original TIMIT utterances. This is along the lines of Stockam's efforts [17].

• Try Avendro and Hermanksy's method of channel normalization [3].

e Create versions of YOHO similar to NTIMIT and CTIMIT to test channel effects on

a standard speaker verification corpus instead of a speech recognition corpus.

9 Investigate the use of speaker ID results to improve speaker verification results.
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"* Investigate the use of speaker-dependent thresholds instead of using a global thresh-

old for speaker verification.

"* Continue the search for feature vectors that are more robust to channel effects than

MFCCs.
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Appendix A. Cohorts

A.1 Calculating Symmetric Distortion Scores

Cohorts are chosen from among all of the registered speakers as those that appear

most and least like the claimant. This algorithm is based on the one given by Reynolds [14].

To select a speaker's cohorts, one utterance from the speaker and one utterance from each

of the other registered speakers are required. Instead of a single utterance from a speaker,

a concatenation of all the speaker's training utterances may also be used. A symmetric

distortion score is calculated for a given speaker i and one of the other registered speakers

j as

dsym(Ai, Aj) = log p(-iA~) + og, for i Aj, (A.1)
p (U I Aj) p(U~jAj)

where U0 and A. are utterances by and speaker models for speaker x, respectively. In

this way, a distortion score is calculated for the given speaker i and each of the remaining

registered speakers. The resulting scores are then sorted in ascending order.

A.2 Selecting Cohorts

Set B to the total number of desired cohort speakers to be selected, where B is even

when choosing both close and far cohorts. For selecting both close and far cohorts, set

S = B/2. For selecting only close or only far cohorts, set S = B. To avoid having cohorts

that are extremely similar, a maximally spread algorithm is used per Reynolds [11].

A.2.1 Chosing Close Cohorts. For a given speaker i, this process chooses the

registered speakers that "sound" most like the given speaker. Choose Ntot speakers with

the smallest distortion scores to create a pool of potential close cohorts PCi for speaker

i. The potential close cohorts should exclude speaker i, and Ntot should be chosen large

enough such that Ntot > S.

Step 0: Move the closest speaker (i.e., the one with the smallest distortion score) from

PCi to Ci, the final set of close cohort speakers for speaker i.

Set C' = 1, where C' is the number of cohort speakers already selected for speaker i.
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Step 1: Move speaker 9 from PCi to C/ where

9=arg max 1 d(Ab, A,) (A.2)
CPCi bC' d(Ai, Ac)J

Set C'= C'+ 1

Step 2: Repeat Step 1 until C' = S.

A.2.2 Chosing Far Cohorts. For a given speaker i, this process chooses the

registered speakers that "sound" least like the given speaker. First, choose the Ntot > S

speakers, excluding speaker i, who had the largest distortion scores in order to create a

pool of potential far cohorts, PFi.

Step 0: Move the furthest speaker (i.e., the one with the largest distortion score) from

PFi to Fi, the final set of far cohort speakers.

Set F' = 1, where F' is the number of far cohort speakers already selected.

Step 1: Move speaker r from PFi to Fi where

[1
7-= arg max - 1: d(Ab,Af ) xd(Ai, Af) (A.3)

f EFj [F bEF1

Let F' = F + 1.

Step 2: Repeat Step 1 until F' = S.

When both close and far cohorts are desired, create a total cohort set, Qi, for each

speaker i using both sets of cohorts so that

S= {Ci U Fi}. (A.4)

If only close cohorts are desired, use Pi= { C}. Calculating symmetric distortion scores

and selecting cohorts is then repeated for all of the registered speakers.
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Appendix B. C-Shell Scripts and MATLAB m-files

B.1 m-files 1

1% detvoice.m

% function vuv=detvoice(curphon,phndb);
70
1% Description: This function determines whether the phoneme interval containing
%o the current frame of speech is voiced or unvoiced.

%Author: Capt Al Arb, USAF
% Date: 30 Jul 96 10
1% Modified:

15 Input parameters:
%o curphon: The phoneme label for the current frame of speech.
%0 phndb: The TIMIT phoneme data base matrix.

%o Output Parameter:
,vo vuv: voiced/unvoiced. 1=voiced, O=unvoiced.

1% Subroutines directly called: 20
Iwo none

% Subroutines indirectly called:
none

function vuv=detvoice(curphon,phndb);

vuv=O;
count=0; 30
done=0;

1% Loop until we find the label
/Wo

while -done
count=count+l;

75 If the DB entry = curphon, we found it. 40

if phndb (count,1:4) ==curphon
done=1;
phn=count;

X Or if we are at the end of the file, stop and assume unvoiced.
/Wo

elseif count==length(phndb(:,1)) 50
done=1;
phn=O;

end;

end;

if phn

'For printing purposes the m-files were concatenated into a single file. The line numbering in the right
margin is correct for the concatenated file.

B-1



% If the category is VOICED, set vuv to 1.
0 60

if phndb(phn,5:1O)== 'VOICED'
vuv=1;

end;

end;

1 distmtrx.m
% 70
% [dscores] = distmtrx(sal matrix, sa2matrix)

1 This function calculates the distortion metric scores for a given
% speaker when provided the proper inputs.

%Key assumptions: Scores are log-likelihoods
Matrices are square

/ Rows indicate utterance from a given speaker
% Columns indicate model for a given speaker
70 80
% Input:
7 salmatrix matrix of scores for each model for one utterance

% sa2matrix matrix of scores for each model for second utterance

% Output:
X dscores a matrix of distortion metric scores

% Created by Capt R. Brian Reid
% Date: 8 Aug 1997 90

% References: Columbi et. al. "Allowing Good Imposters to Test"
% based on Reynolds

% Last modified: 14 Aug 1997
1005

function [dscores] = distmtrx(salmatrix, sa2matrix)
100

numspkrs = size(salmatrix,2);

dscores = zeros( numspkrs );

for Hoop = 1 : numspkrs,

for jloop = 1 : numspkrs,

dscores( iloop, jloop) = salmatrix(iloop, iloop) - salmatrix(iloop, jloop) + ...
sa2matrix(jloop, jloop) - sa2matrix(jloop, iloop); 110

end;

end;

% emailmsg

% emailmsg(emailaddress, message); 120

%Used to send email message to user in UNIX OS.
%by: Capt. Edward M. Ochoa, GEO-96D

function emailmsg(emailaddress,message);

UCMD1=sprintf(' echo "%,s" > /tmp/emailmsg.txt ',message);

B-2



UCMD2~=sprintf( 'echo "s %s." >> /tmp/emailmsg.txt ' ,message);
UGMD3=sprintf ('echo "." >> /tmp/emailmsg.txt');
UGMD4~=sprintf ('mail %s < /tmp/emailmsg.txt' ,emailaddress); 130
UCMD5=sprintf(' !rm /tmp/emailmsg.txt');

UGMDS=['! - UCMD1 ';1 UCMD)2 1;' UCMD3 1;' UCMD4';]

eval(UCMDS)

eval(UCMD5)

%exvu~htk. m
140

%[voicedspeech, unvoiced] = exvu4htk (data, uttfile,fs, wlength,fstep,phnfile);

75 Inputs:
/00 data actual waveform data (byte swap if necessary)
% uttfile file name of utterance to use
%0 fs sample frequency in Hz
1% wlength window size in seconds
75 fstep frame step size in seconds
/0 phnfile name of file (*.phn) with phoneme labels

/01useful if phoneme labels are in a separate directory 150

%Derived from exvoiced~htk.m code by Capt Al Harb
1` Modified by Capt R. Brian Reid

/110/19 Jul 1997

function [voicedspeech,unvoicedspeech] = exvu4htk(data,uttfile,fs,wlength,fstep,phnfile);

extind=flnd(uttfile=='
160

if phnfile =[
plinfile = [uttfile(1:extind) 'plin'];

end;

1% phnfile

%V[phnind,phnval]=readphn(setstr([uttfile(1:extind) 'phn']));
[phnind,phnvalj=readphn(setstr([phnfile]));

phndb=loadphndb; 170

wstart=1;
wend=wlength*fs;
finished=O;
voicedspeech=[J;
unvoicedspeech= ]

while -finished,

cur~phonemie=find((phnind(:, 1) <=wend)& (phnind (: ,2) >wend)); 180
vuv=detvoice(phnval(cur-phoneme,1:4) ,phndb);

if vuv,
voicedspeech= [voicedspeech; data(wstart :wend)];

else
unvoicedspeech =[unvoicedspeech; data(wstart :wend)];

end;
wstart=wstart+(fstep*fs);
wend=wstart-1+ (wlength*fs);
if wend > length(data), 190

finished=1;
end;

end;
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X fftavgf.m is a function to calculate the average FFT or just the FFT of

1% a segment of a speech file

% [avgfft] = fftavgf(data, fftsize, samplefrequency, windowsize) 200

% Inputs:
% data Actual data
% numsamples Number of samples
% samplefrequency sampling frequency data was obtained at
% window size time in seconds of the window of speech

% Output:
% avgfft Average spectra for the input

210

function [avgfft] = fftavgf(data, fftsize, samplefrequency, windowsize)

% Read in the utterance

% [data, numsamples] = readhtkn(utterance, O);

numsamples = max(size(data));

X Determine the number of samples per chunk of time 220
timechunks = samplefrequency * windowsize;

% Initialize the average to zero
avgfft = zeros(fftsize,1);
runsum = zeros(fftsize,1);

pointer - 1;

% Incrementally calculate the FFT
numchunks = floor(numsamples / timechunks); 230

for loop = 1 : numchunks
temp = abs( fft( data( pointer pointer - 1 + timechunks ), fftsize ) );
pointer = pointer + timechunks;

% Update the runningsum
runsum = runsum + temp;

end;
240

% Compute the average as running sum / # of chunks

if numchunks -= numsamples / timechunks
temp = abs( fft( data( pointer : length(data) ) ) );

runsum = runsum + [temp; zeros(fftsize - length(temp), 1)1;

loop = loop + 1;

end; 250

avgfft = runsum / loop;

% fndcchrt.m

%[cohorts] = fndcchrt(distortionmatrix, N, B, spkrnum);

% fndcchrt finds the close cohorts for a given distortion matrix. 260

% Inputs:
% distortionmatrix a square matrix of distortion scores
% N size of pools to use in selecting background speakers
% B size of background speakers for maximally spread close
% spkrnum indicates number of speaker in distortionmatrix
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%Ouput:
% Bi vector of pointers to speakers determined to be cohorts

270
%References:

%v Reynolds "Speaker Identification and verification using
Gaussian mixture speaker models. " Speech Communication
.17 (1995) p 91-108

%Created by Capt R. Brian Reid

%Created on 14 Aug 1997

%Last Modified: 26 Aug 1997 280

1138

function Bi = fndcchrt (matrix, N, B, spkrnum);

Nc = N;
Nf = N;

numnspkrs = size(matrix,2);
290

%Setup
%Find the set of maximally spread close speakers for spkrnum

1% Select spkrnum 's utterance against all models
Dv = matrix(spkrnum, :)

% Create an index of all of the speakers
indexptr = linspace( 1, numspkrs, numspkrs);

1% Remove current speaker from the list 300
Dv = nixcol(Dv, spkrnum);

indexptr = nixcol(indexptr, spkrnum);

% Sort Dv and get an index back
[Dvnew, index] = sort(Dv);

% Reorganize indexptr according to index
indexptrnew = indexptr(index);

310
X Select N closest speakers (speakers with smallest distortion)
Ci = indexptrnew(1:Nc);

% Step 0: Move the closest speaker from Ci to Bi

Bi = Ci(1);
Ci = nixcol(Gi, 1 )
Nc = Nc - 1 320
Bprime = 1;

1% Step 1: Move speaker c from Ci to Bi until Bprime =B

while Bpriine < B,

tmp2 = [0];
330

for cloop = 1 length(Ci),

tmP = [0];

for bloop = 1: length(Bi),

tmp(bloop) =matrix( Bi(bloop), Ci(cloop) )-matrix( spkrnum, .
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Ci(cloop) );

end; % for bloop = 1 : length(Bi) 340

tmp2(cloop) = sum(tmp) / Bprime;

end; X for cloop = 1 : length(Ci),

Bprime = Bprime + 1;
Nc = Nc - 1;

% Find the largest c and move from Ci to Bi
350

[tmp3, tmpindex] = sort(tmp2);

Bi(Bprime) = Ci( tmpindex( length(tmpindex) ) );

Ci = nixcol( Ci, tmpindex( length(tmpindex) ) );

% Get another background speaker from Ci until Bprime = B

end; % while Bprime < B,
360

% fndfchrt.m

% [cohorts] = fndfchrt(distortionmatrix, N, B, spkrnum);

% fndfchrt finds the far cohorts for a given distortion matrix. 370

% Inputs:
%1 distortionmatrix a square matrix of distortion scores
% N size of pools to use in selecting background speakers
% B size of background speakers for maximally spread close
% spkrnum indicates number of speaker in distortionmatrix

% Ouput:
% Bi vector of pointers to speakers determined to be cohorts
%0 380
% References:
% Reynolds "Speaker Identification and verification using
70 Gaussian mixture speaker models." Speech Communication
1VO 17 (1995) p 91-108

% Created by Capt R. Brian Reid

% Created on 14 Aug 1997

% Last Modified: 26 Aug 1997 390
1138

function Bi = fndfchrt(matrix, N, B, spkrnum);

Nc = N;
Nf = N;

numspkrs = size(matrix,2);
400

% Select spkrnum's utterance against all models
Dv = matrix(spkrnum, : );

% Create an index of all of the speakers
indexptr = linspace( 1, numspkrs, numspkrs);

% Remove current speaker from the list
Dv = nixcol(Dv, spkrnum);
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indexptr = nixcol(indexptr, spkrnum); 410

% Sort Dv and get an index back
[Dvnew, index] = sort(Dv);

% Reorganize indexptr according to index
indexptrnew = indexptr(index);

% Select N further speakers (speakers with greatest distortion)
420

bsize = length(Bi);

Fi = [indexptrnew( length( indexptrnew) - Nf : length( indexptrnew) ) ];

%Step 0: Move the furthest speaker from Fi to Bi

Bprime = 1;
Bi(1) = Fi(Nf); 430
Fi = nixcol(Fi, Nf );
Nf = Nf - 1;

%Step 1: Move speaker f from Fi to Bi until Bprime = B

while Bprime < B,

tmp2 = [0]; 440

for cloop = 1 : length(Fi),

tmp = [0];

for bloop = 1 : length(Bi),

tmp(bloop) = matrix( Bi(bloop), Fi(cloop) ) * matrix( spkrnum,
Fi(cloop) );

450
end; % for bloop = 1 : length(Bi)

tmp2(cloop) = sum(tmp) / Bprime;

end; X for cloop = 1 : length(Fi),

Bprime = Bprime + 1;
Nf = Nf - 1;

% Find the largest f 460

[tmp3, tmpindex] = sort(tmp2);

Bi(Bprime) = Fi( tmpindex( 1));

Fi = nixcol( Fi, tmpindex( 1 ) );

% Get another background speaker from Fi until Bprime = B
470

end; % while Bprime < B,

%fndindx.m

[ [indices] = fndindx(shortlist, fulllist)

% Find the indices of a subset from a complete list
480
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function [indices] = fndindx(shortlist, fulllist)

indices = [];

for loop = 1: size(shortlist,1),
for loop2 = 1 : size(fulllist,1),

if fulllist(loop2,:) == shortlist(loop,:),
indices(loop) = loop2; 490

end;

end; % loop2 = 1 : length(fulllist),

end; X for loop = 1: length(shortlist),

% loadphndb.m
500

%function phn=loadphndb;

%Description: This function reads in a tabular "data base" of all phoneme
labels and their classification (voiced/unvoiced) allowed in
the TIMIT phoneme files.

X Author: Capt Al Arb, USAF
%Date: 29 Jul 96
%Modified:

510
7 Input parameters:
0 none

7 Output Parameters:
% phn: A matrix containing each possible phoneme label (columns 1-4) and
W its classification ("VOICED" or "UNVOICED") (columns 5-13).

1 Subroutines directly called:
% none
0 520

% Subroutines indirectly called:
none

function phn=loadphndb;

%Save current directory location so we can return here.

chgdir=pwd;
chgdir=[' cd ' chgdir]; 530

%Go to location of "data base" file.

%Open file

fid=fopen(' /home/hawkeye5/96d/harb/matlab/thesis-code/timit-phoneme. txt',' r ');

7 Read in data base as a long string of characters 540

p=setstr(fread(fid,' char'));

% Since each row/phoneme is 23 characters wide and there are 62 possible
% labels, reshape into a 62x23 matrix.

p=reshape(p,23,62)';
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% Save the label (columns 1-4) and V1 UV label (15-23).
550

phn=[p(:,1:4) p(:,1 5 :23 )];

X Close the file

fclose(fid);

%maincohort.m

%Read in a list of speakers' scores for a given speaker's utterance 560

%Set up
close all
clear all

N = 20; % Size of pool to use in selecting background speakers

Bt = 10; % Total number of background speakers to use as close 570
X and far cohorts. Should be an even number.

corpus = ['timitmw'];

B = floor(Bt/2); % Number of far or close cohorts to pick

X load a list of speakers

% For actual
% speaklist - ['/home/fugglesl/rreid/speakerlist/ ',corpus, '/ allspkr.lis']; 580
speaklist = ['/home/fugglesl/rreid/speakerlist/timit/testspeaker.lis'];
speakers = readafil(speaklist);

numspeakers = length(speakers);

X cohortsdir = ['/ home/fugglesl/ rreid/ toy/ Cohorts'];
cohortsdir = ['/home/fugglesl/rreid/Cohorts/', corpus];

% For each speaker in the list 590
starttime = cputime;

for loop = 1 : numspeakers,

% Read in the list of scores for speakers' models for speaker(loop)'s sal

oscorefile = [cohortsdir '/' speakers(loop,:) '/salscores'

oscores = readfil2(oscorefile);
600

7 Read in the list of scores for speakers' models for speaker(loop)'s sa2

sscorefile = [cohortsdir '/' speakers(loop,:) '/sa2scores'

spkrlscores = readfil2(sscorefile);

% Put scores into the proper matrix

salmatrix( loop, ) = oscores';
610

sa2matrix( loop, ) = spkrlscores';

end; % for loop = 1 numspeakers,

stoptime = cputime;

samatrixtime = stoptime - starttime;

%Save the sal and sa2 matrices for future use (just in case)
620

eval (['save ' cohortsdir '/samatrix salmatrix sa2matrix
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'samatrixtime' ])

disp(['Determined SA matrices'])

% Determine distortion metric scores

starttime = cputime;
630

[distortionmatrix] = distmtrx(salmatrix, sa2matrix);

stoptime = cputime;

7 Save the distortion scores

distortiontime = stoptime - starttime;

eval(['save ' cohortsdir '/dismtrx distortionmatrix distortiontime' ]);
640

7 Find the cohorts

starttime = cputime;

for loop = 1 : numspeakers,

ccohorts = fndcchrt(distortionmatrix, N, B, loop);

fcohorts = fndfchrt(distortionmatrix, N, B, loop); 650

cohorts = [ccohorts, fcohorts];

ncohorts(loop,:) = cohorts;

% Save the cohorts for future use

cohorts = cohorts';

end; % for loop = 1 : numspeakers, 660

stoptime = cputime;

cohorttime = stoptime - starttime;

X Save the entire corpus' cohorts as a single matrix

eval(['save ' cohortsdir '/cohorts ncohorts'])
eval(['save ' cohortsdir '/cohorttime cohorttime'])

670

% modwmfcc.m

1% This m-file creates MFCCs by first warping the utterance according to a
% given speaker's average frequency spectrum (the "Modified Wiener" approach).

clear all
680

eaddr = ['rreid~hawkeye.afit.af.mil '];

corpus = ['timit'];
version = ['mw'];

% Which type original db, or parameter
typefile = [' orig'];

emsg = [' MFCCs made '];
7 emsg = [' labelled segments made from ' corpus ' ']; 690

uorv = ['u'];
uorv = ['v'];

X !Hcopy -C configuration-file input-file output-file
configfile = ['/home/fugglesi/rreid/htkscripts/timithconfig'];
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hcopyl - [''HCopy -c ', configfile ];

basedir = ['/home/�ugg1es2']; 700

savedirv = ['Ihome/fugglesi/rreidlrnf ccl', corpus, version ];
msrcdir = ['lhomelfugglesl/rreidluttlists/', corpus, 'I', typefile];

modeldir = ['/home/fugglesl/rreid/FFTmodels'];

regions = (1, 2, 3, 4, 5, 6, 7, 81;
regions =121; 710

% Set flags

% Set flag for whether to make the unvoiced portions as well as the voiced ones.

unvoicedflag = 0;
voicedflag = 1;

testonly =

720

samplefrequency = 16000;
windowsize = 0.020;
fftsize = 512;

sf = samplefrequency; % Sample frequency
wlength = windowsize; % window length
fstep = [0.010]; % frame step size
pararn = 0; % Setting based on HTK formats 0 = way
phnfile = []; % dir with name of file (* .phn) with phoneme labels 730

% Note: ['00000'] does not work properly for speakerold
speakerold = ['zzzzz'];

% Set trotst to 1 when pulling raw data from the test regions

trotst = 1;

while trotst <= 2,

if trotst == 2 740
setdir = ['train'];

else
setdir = ['test'];

end

regloop = 1;

for regloop = 1 length(regions),

tmpdir =[' /home/fugglesl/rreid/tmpr', num2str( regions(regloop) ) ]; 750

regdir = ['dr', num2str( regions(regloop) ) ];

usedir =[basedir, 'I', corpus, 'I' , setdir, 'I', regdir 1;
getfile = [msrcdir, 'I', regdir, setdir, 'list.txt'];

% Open the list of utterances

[fidmessage]=fopen(getfile, 'r'); 760

% Read in the lines of getfile until reaching end of file

done=0;

while done

% P is the utterance to use

P=fgetl(fid);
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770

% disp('accomplished fgetl')

if -isstr(P)

% Not a string so set done to quit
done=l;

else

%P is a valid string so continue 780
%Create a string to use for storage

p2 = fliplr(P); % Reverse the sequence

7 Get utterance and extension only and put in normal order

utterance = fliplr( p2( 1 : find(p2=='/') - 1 ) );

%Get just utterance name the extension
utterance2 = utterance( 1 : find( utterance == ' ' ) - 1); 790

region = regdir;

% Next line assumes data is in NIST format of
%corpus/section/region/ speaker/utterance
%and speaker names are five (5) characters long

speaker = P( length(P)-(length(utterance) + 5):
length(P)-(length(utterance) + 1));

800
usefile = [ tmpdir, 'V', utterance2, '.swa' ];

X To pull from the actual data

usefile2 = [ usedir, 'I/', speaker, '/', utterance ];

%To pull from locations other than actual data
%usefile2 = [ usedir, '/', speaker, '/, corpus, '/"
Y utterance ];

810
temp = [tmpdir, '/', utterance2 ];

%Remove the header information in order to process in MatLab

%Remove the NIST header information and byte swap the file
eval ([ '!bhd ' usefile2 ' I dd conv=swab of=' temp '.swa' ])

% Read in the file for use
temp2 = [temp '.swa'];
data = read-dat(temp2,' short'); 820

numsamples = max(size(data));

% Load in the FFT model
if speaker -= speakerold

% Loads speaker's model as avgfft
eval(['load ' modeldir 'P speaker ]);
speakerold = speaker;
disp(speaker)

end; 830

7 Warp the utterance according to the appropriate
%speaker's spectra

%Calculate the average DFT of the utterance
[uttavgfft] = fftavgf(data, fftsize, samplefrequency, ...

windowsize);

%Compute the Modified Wiener impulse response
immw= avgfft ./ uttavgfft; 840
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htmmw = fftshift( real ( ifft( immw, fftsize) ))
X Convolve the original utterance with the Modified Wiener
% impluse response (which hopefuly diminishes the channel
X effects)
newdatammw = conv(data, htmmw);

%Extract the voiced and unvoiced portions
850

phnfile =[usedir, '/,speaker, 'Iutterance2, pin ' ];

[voiced,unvoiced] = exvu4htk(newdatammw,usefile,sf~wlength,fstep,phnfile);

% Write the voiced part to a file

if (voicedfiag == 1),
temnp4 = [tmpdir, 'I/', utterance2, I htk']
w..error = whtkwav(voiced, temnp4, sf, paramn);

860
if w-error -= 0,

disp([' error writing ', temnp4])
%else
X disp(['OK'])

end;

end; % if (voicedfiag == 1),

870
%Write the unvoiced part to a file

if (unvoicedflag == 1),
temp4 = [savediru, 'I /, speaker, 'Iutterance2, .htk']
w-error = whtkwav(unvoiced, temp4, sf, paramn)

end; /% if (unvoicedfiag == 1),

% Calculate the MFCCs
hcopy = [hcopyl, 1 , temnp4, ' ,savedirv, 1/', speaker, 1/1, . 880

utterance2, ' mf c'

eval(hcopy)

% Clean up temporary files

eval([' ti ', tmpdir, 'I/', utterance2,'**])

end; %end if -isstr(P)
890

end; %end while -done

emsg2 = ['dr ', numn2str(regions(regloop)), ' ,emsg, 'for

setdir];

emnailmsg(eaddr,emnsg2);

fclose(fid);

end; X end for regloop 900

trotst = trotst + 1;

if testonly == [1y']
trotst = 3;

end;

end; 7o while trotst <= 2,

disp([ Done'] 910
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% read-dat.m

X [outvect, count]=read-dat(infile,datatype);

X Input:
X infile - filename of file to read in
% datatype - format of data, e.g., char or long 920

% Output:
% outvect - vector of values from infile
% count - number of elements in outvect

function [outvect, count]=read.dat(infile,datatype);

[fid,message] = fopen(infile,' r');

[outvect,count] = fread(fid,datatype); 930

fclose(fid);

% readafil.m

%[listJ = readafil(infile)

%Read in a tezt file and convert its contents into
a MATLAB variable 940

function [list] = readafil(infile)

[fid] = fopen(infile, 'r');

done = 0;
list = [;
count = 0;

950
while -done

temp = fgetl(fid);
if ( isstr(temp) ),

count = count + 1;
% list = [list; temp];
list(count, ) = [temp];

else
done = 1;

end;
end; 960

fclose(fid);

%readfil2. m

%[list] = readfil2(infile)

% Read in 2nd column of a text file and convert 970
to a MATLAB variable. Assumes 7 characters

/ before the first character of second column

function [list] = readfil2(infile)

[fid] = fopen(infile, 'r');

done = 0;
list = [1; 980
count = 0;
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while -done
temp = fgetl(fid);
if ( isstr(temp) ),

count = count + 1;
% list = [list; temp];
list(count, ) = [str2num(temp( , 7:length(temp) ) ) ];

else
done = 1; 990

end;
end;

fclose(fid);

%readhtkn.m

%[data, numsamples] = readhtkn(filename,htkformat); 1000

%Read HTK 2.0 files into MatLab.

%Potential Bug:
This was designed to read HTK waveform files.
For other types of files, some adjustments of the
fread size may need to be made.

%Created by Capt R. Brian Reid

19 Aug 1997 1010

% Modified 16 Sep 1997 to return the number of samples

function [data, numsamples] = readhtkn(filename,htkformat)

[fid, errmsg] = fopen(filename, 'r');

% errmsg

% Read in the head information 1020

numsamples = fread(fid,l,'int32')
sampleperiod = fread(fid,l,'int32')
samplesize = fread(fid,l,'int16')
paramkind = fread(fid,l,' int16')

if htkformat == 0,
datatype = ['intl6'];

else
datatype = ['float32']; 1030

end;

%disp(['datatype is ' datatype ])

%Read in the actual data

data = fread(fid, numsamples, datatype);

%Close the file
1040

fclose(fid);

%readphn.m

7 function [a,b]=readphn(phnfile);

%Description: This function reads in the hand labelled TIMIT phoneme file and
returns a matrix of phonmeme labels and a matrix of phoneme

Sstart points and end points. 1050
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% Author: Capt Al Arb, USAF
% Date: 29 Jul 96
%Modified:

%Input parameters:
% phnfile: The name of the TIMIT phoneme file.

% Output Parameters:
Sa: A matrix containing the starting point and ending points of each 1060

phoneme in columns 1 and 2 respectively. Each row is a different
phoneme.

% b: A matrix of phoneme labels. Each row is a different phoneme.

X Subroutines directly called:
none

% Subroutines indirectly called:

none 1070

function [a,b]=readphn(phnfile);

a=[]
b=[];

% Open TIMIT phoneme file for reading.

[fidphn, phnmsg] = fopen(phnfile,'r');
1080

%phnmsg

% Continue to read until reaching the end-of-file.

while -feof(fidphn)

%Get one line of the file as a string.

s=fgetl(fidphn); 1090

%Check to see if it's the end of file, if not, continue to process.

if s~=(-1)

%Break up string into 2 integers and a string.

p=sscanf(s,'%i %i %s '); 1100

7 The two integers are the start point and end point of the phoneme.

a=[a;p(l) p(2)];

70
% Set the numerical version of the label string to an actual string.

p=setstr(p(3:length(p)))'; 1110

%Prepend the string with spaces to bring length of string to 4 with the
%label right justified.

if length(p)==2
p=[' ,'p];

elseif length(p)==3
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p=[' ,'p];
elseif length(p)==1 1120

p=[ , p];
end;

%add new label to b matrix

b--[b;p];

end;
end; 1130
fclose(fidphn);

%spkrid.m

%This file pulls in utterance scores for all speakers and determines the
% identity of the speaker based on highest score by GMM model.

clear all 1140

corpus = ['timit'];
version = ['cmsbl'];

saveflag [1y'];

tgtfile = ['/home/fugglesl/rreid/Results/' corpus version '/idsanew'];
idfile = ['/home/fugglesl/rreid/Results/' corpus version '/idsa'];

1150
cohorts =

1% Get the needed info

1o for actual
speaklist = ['/home/fugglesi/rreid/speakerlist/', corpus, '/alltsttr.lis'];

eval(['load /home/fugglesl/rreid/Cohorts/timit' version '/cohorts']);
1160

speakers = readafil(speaklist);
numspeakers = length(speakers);

ncohorts = cohorts;

% Zero out the confusion matrix
cmatrix = zeros(numspeakers);

% Read in a list of files to check
1170

% Get the scores and put into the proper form

file2read = ['/home/fugglesi/rreid/Results/' corpus version 'I/sascores.txt'];

fid = fopen(file2read,'r');

done = 0;
correct = 0;
errors = 0;
count = 1; 1180
spkrnum = 1;
filenum = 1;

while -done
nowfile = fgetl(fid);

if isstr(nowfile)

%Load in scores for a given utterances
1190
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%Use for MatLab files
%eval(['load ' nowfile ]);

scores - sxscores;

%Use for ASCII files
scores = readfil2(nowfile)';
iscores = max(size(scores) );
scores = scores( iscores - numspeakers + 1 :scores);

% Determine the winner 1200

[tmp, tmpindex] = sort( scores
winner = tmpindex(length(tmpindex) );
temp - fliplr( nowfile );
templ - find( temp == 'P' );

realspkr = fliplr( temp(templ(1) + 1 : templ(2) - 1 ) );

realspkrnum = fndindx(realspkr, speakers);
1210

%Update the confusion matrix based on which speaker made the utterance
%and which speaker had the highest score for the utterance

cmatrix(realspkrnum, winner) = cmatrix(realspkrnum, winner) + 1;

if realspkrnum == winner
correct - correct + 1;

else
errors = errors + 1;

end; 1220

% disp(['Finshed file ' num2str(filenum)])

filenum = filenum + 1;

else
done - 1;

end; % if isstr(nowfile);
1230

% Get the next utterance

end; % while -done

fclose(fid)

correct
errors

1240

total = correct + errors

percorrect = correct/total*100

pererror = errors/total*100

correct2 = sum(diag(cmatrix))

Ssave the identification results 1250

if saveflag == ['y']
eval(['save I idfile ])

end;

% verifhtk2. m

%[score] = verifhtk2 (speaker, cohorts, speakerlist, uttscores) 1260

%Script to perform verfication of a for a given utterance using utterances
%already calculated by HTK 2.0
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% Inputs:
% speaker number of speaker as determined by speakerlist
%o cohorts vector of cohorts containing integer values of cohorts in
% speakerlist
% speakerlist list of all speakers
% uttscores scores for all models for a given utterance 1270

%o Output:
score normalized log probability score of speaker given cohorts

function [score] = verifhtk2(speaker, cohorts, speakerlist, uttscores)

% Calculate the score for speaker

oscores(1) = uttscores(speaker); 1280

% Calculate the scores for the cohorts and append them to the file
% containing the speaker's score

for cloop = 1 : length(cohorts),

oscores(cloop + 1) = uttscores(cohorts(cloop) );

end;
1290

% Determine the actual score based on score = speakerscore -
% sum(cohortscores)/ #cohorts

score = oscores(1) - sum(oscores( 2 : length(oscores) ) ) / length(cohorts);

% end of verify

1o whtkwav.m 1300

1% function w-error = whtkwav(data,filename,sampleperiodparam)

1% Writes waveform data to 'filename' in HTK standard binary format.
1% The data is written with the appropriate 12 byte header together with
% the data in the proper byte format.

% Ensure the data is passed as a matrix with each row corresponding
% to a frame, and each column contains the parameter (fit spectra, etc)
%0 1310
% Originally from Al Harb's:
% function w-error = writeHTK-param(data,filename)

%Modifications allow:
% Varying sample periods
% writing back into the desired parameter format
% Use 0 for waveform 6 for HTK MFCC and 9 for user defined
% Reference HTK V2.0 manual page 73

1 Modifications by R. Brian Reid 1320
1% Modified: 20 Aug 1997 1350

function w-error = whtkwav(data, filename, samplefreq, param)

fid = fopen(filename,'w');
if (fid == -1);

error('Unable to open the file to write HTK paramter data');
end

% Check the number of input arguments 1330
if nargin < 3,

%Use the defaults
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samplefreq = 16000;
paramn = 0;

end; % if nargin < 3

% Compute sample period from sample frequency in terms of lO0ns

sampleperiod = ceil( 1 / samplefreq /(100 *10-(-9)))
1340

%Determine the number of bytes per sample

if paramn == 0,
bytespersamp = 2;
datasize = ['intl6'];
numnsamples = length(data);

else
bytespersamp = 4*size(data,2);
datasize = ['float32'];
numnsamples = size(data,2); 1350

end;

%Write the header

%Write the number of samples in the file (4-byte header)
fwrite(fid,numsamples, Iint32 1);

% Write the sample period in lO0ns units (4-byte integer)
fwrite(fid,sampleperiod, I int32 1);

1360
%Write the number of bytes per sample
%need a 4-byte float for each paramter in the feature vector

fwrite(fid,bytespersamp, ' it 16'1);

%Write code indicating the sample kind (2-byte integer)
%Use 0 for HTK waveform, 6 for HTK MFCC, and 9 for user defined

fwrite(fid,param,' 1it1 16); 1% User defined parameters data flag

X Write the data into file in datasize chunks
fwrite(fid,data,datasize); 1370

fclose(fid);
w-error = 0;
return;

B.2 C-Shell Scripts 2

#t!/bin/csh
# gmm2maker
#t UNIX C-shell script for creating Gaussian Mixture Models (GMM) using HTK 2.0

#t Currently set for full TIMIT

#t Output Files of HMMs for each speaker in the speaker list

#t Assumptions: Using voiced speech (only in terms of file locations)
# 10

set corpus =timit

set version =cmnsbl

set eaddrl ="rreidc~hawkeye. af it. af .mil"
set eaddr2 ="rreid"

set emnsg = "GMMs have been created for $corpus region $1"1

2 Lines beginning with - S should be made into a continuation of the preceeding line.
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20

set hconfig = /home/fugglesl/rreid/htkscripts/hconfig$version

set mif = /home/fugglesl/rreid/LABEL/tmaster.mlf

set spkrlab = /home/fugglesl/rreid/toy

set tmpdir = "/home/hawkeyel2/97d/rreid/SID/SID"

cd Stmpdir
30

set spkrlist =/home/fugglesl/rreid/speakerlist/$corpus/trainspeaker{$1}.lis

set hmmdir= "/home/fugglesl/rreid/tmpr"{S1}

# Source directory for lists of utterances for each speaker

set srcdir = /home/fugglesl/rreid/uttlists/{$corpus}{$version}

set mfcctgtdir = /home/fugglesl/rreid/hmm
40

set mfcctgtdirl = $mfcctgtdi r/$co~rpus$versio~n

if (! -d $mfcctgtdirl ) then
mkdir $mfcctgtdirl
chmod 775 $mfcctgtdirl

endif

foreach speaker ('cat $spkriist')

set mfcctgt = $mcctgtdirl"/"$speaker 50

set trainfile = "$srcdir/$speaker/sasisx3 .tra"

echo $speaker > $hmmdir/hmmlist

echo $speaker

echo "IMU 2 f{$speaker. state [2) .mixY" > $hmmdir/edcdlisl

if (! -d $hmmdir/hmm.0 ) then 60
mkdir $hmmdir/hmm.0
chmod 774 $hmmdir/hmm.0

endif

if ( -d $hmmdir/hmm.1 ) then
rm -fr $hmmdir/hmm.1

end if

mkdir $hmmdir/hmm.1
70

if (-d trap) mkdir tmp

if (-e $hmmdir/hmm.1/$speaker )then
rm -f $hmmdir/hmm.1/$speaker

endif

if ( -e $hmmdir/hmm.O/$speaker ) then
rm -f $hmmdir/hmm.O/$speaker

endif 80

#HlnitHlnit -C $hconjig -i 15 -L $spkriab -v 0.01 -o $speaker -M $hmmdir/hmm.0
# -S $trainfile protogmm5

Hunit -C $hconflg -i 15 -L $spkriab -v 0.01 -o $speaker -M $hmmdir/hmm.0
-S $trainfite protogmmcms

liRest -C $hconfig -i 15 -L $spkrtab -v 0.01 -M $hmmdir/hmm.1
-S $trainflte $h mmdir/hmm.0/$speaker 90

cp $h mmdir/hmm.1/$speaker $h mmdir/hmm.0/$spea ker
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HHEd -C $hconfig -d $hmmdir/hmm.0 -M $hmmdir/hmm.l $hmmdir/edcdlisl $hmmdir/hmnmlist

cp $hm mdir/hmmn.1/$spea ker $hmmdir/hmm.0/$spea ker

@0 maxNum = 32
"@ numiter = (${maxNum} - 2 )/2
"@ loop = 1 100
@ index = 2

while ( ${loop} <= {$numiter}
@0 index = $index + 2

set mixturecmd="MU $index

echo $mixturecmd "f{$speaker. state [2) .mix}" > $hmmdir/edcmd
110

echo $mixturecmd

HHEd -C Shconfig -d Shmmndir/hmm.0 -M $hmmndir/hmm.1 $hmmdir/edcmd $hmnmdir/hmmnlist

cp Shinmdir/hmm.1/$speaker $hin idir/hmmn.0/$speaker

Hflest -C $hconfig -i 15 -L $spkriab -v 0.01 -M $hmmdir/hmnm.1
-S $trainfite $hmmdir/hmmn.0/$speaker

cp Shinmdir/hmmn.l/$spea ker $h mmdir/hmm.0/$spea ker 120

@ loop ++
end

cp $hmnmdir/hmm.1/Sspeaker SImfcctgt}
chmod 774 ${mfcctgt}

#t loop to get the next speaker

rm $hmmdir/hmm.O/$speaker 130
rm Shmmdir/hmmn.1/Sspeaker

end

# Release the HTK license

Hfree

# Notifyg user that GMMs have been created
140

cd -rreid/matlab/thesis/tools

mailer.c $eaddrl $emsg

# !/bin/csh

#t uttscores2.c

#t UNIX C-shell script to determine scores for all models
#t for a given utterance using the Viterbi algorithm
#t in HVite.

#t Input: $1 is the region to determine scores for
#t 10
#t Variables to set:

#t srcdir Path for Speaker list, sets Results,
#t srchmm Path for location of hmms
#t tgtdir Path to place
#t scriptdir name of directoryj containing directories of sa, si, sx, all.tra lists
#t uttdir Path for actual parametized utterances

set eaddr =rreid~hawkeye.afit.afmxil
20

set uttfile =sa.tra
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set region = 1$1}

set corpus =timit

set version =cmsbl

set emnsg = "Probability scores calculated for $corpus$version.
30

set mastermif = /home/fugglesl/rreid/LABEL/{$corpus}master.mlf

set uttlistdir = /home/fugglesl/rreid/uttlists/{$corpus}{$version }
set hconfig = /home/fugglesl/rreid/htkscripts/hconfig{$version}

# For final problem

set srcdir = /home/fugglesl/rreid 40

set srchmm =/home/fugglesl/rreid/hmm/timit$version

set srcdir2= /home/fugglesl/rreid/uttlists/{$corpus}{$version }

set hmmdir =$srchmm

set tgtdir = /home/fugglesl/rreid/Cohorts/{$corpus}{$version }
set uttdir = /home/fugglesl/rreid/mfcc/{$corpus}{$version} 

5
set peaerlst =/hoe/fgglel/reidspeaerlst/imitspeker~regon ~~50

set alspeakerlist = /home/fugglesl/rreid/speakerlist/timit//raispeaker{egos.lis

# Needed for HTK V2. 0 (speakerdic and spknet can be the same for all corpi)
set speakerdic = /home/fugglesl/rreid/Networks/timit/timit.dic

set spknet = /home/fugglesl/rreid/Networks/timit

# Check to ensure the appropriate directory exists 60
if (! -d {$tgtdir} ) then

mkdir {$tgtdir}
chmod 774 {$tgtdir}

endif

foreach spk ('cat $speakereist')

# Ensure speakers directory exists
if (! -d {$tgtdir}/{$spk} ) then 70

mkdir {Stgtdir}/{$spk}
chmod 774 {$tgtdir}/{$spk}

endif

set Resultsdir = $tgtdir/$spk

# Save speaker2 and score for speakeris utterance

foreach spk2 ('cat $affspeakertist')
80

# For each speaker, spk2, get a score for each utterance

#t File name containing current hmm

printf "%s\n" $spk2 > $hmmdir/hmmrlist{$region}

foreach utterance ('cat $utttistdi r/$spk/$uttfiee')

set utter = {$utterance}
90

set utter2='basename $utter'
set utter2=$utter2:r

set tgtfile = {utter2}scores

set results I $tgtd ir}/{$spk}/{$tgtfltee
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printf "%s\t" $spk2 >> {$resufts}

HVite -C Shconfig -a -d $srchmm -I $mastermif -y svd -1 $Resuftsdir -o N 100
-W {$spknet}/{$spk2}.net $speakerdic f{$hm mdir}/hmmlist{ $region} $utter

awk '{print~f ( %s\n" ,$4);Y }'$Resuftsdir}/{$utter2}.svd >> {$resutts}

rm {$Resuetsdir}/{$utter2}.svd

# Get next utterance

end
110

# Get next 8peaker2

end

# Get next speakerl

end

set emsg2 = "Region $region $emsg"
120

cd -rreid/matlab/thesis/tools

mailer.c $eaddr $emsg2 $resutts
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