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Abstract

Near-field scatterers, such as the wing of an airplane, can affect the ability of

the processor to null out clutter and jammer signals. Target, clutter and jammer

signals will reflect off the near-field scatterers into the array and appear to be coming

from a direction different from their true sources. In many analyses, it is assumed

that the signals entering the array are plane waves. This assumption will not hold

for the scattered signals, which will need to be treated as spherical waves, further

complicating the computations.

This thesis develops a theoretical model similar to that in [8], but including

the effects of near-field scatterers. The optimum weight vector, normally computed

using the steering vector to the target and the covariance matrix of the undesired

signals, must now include the effects of the scattered signals as well. This thesis

shows that the space-time steering vector for the scattered signal can be written in

a form similar to the direct path signal. The total space-time snapshot of a signal is

the sum of the direct path and scattered path steering vectors associated with that

signal.

The near-field scatterers cause more signal energy to enter the array than

would be the case without the scatterers. When the scatterers are more than a

half-wavelength apart, they create grating lobes in the adapted antenna pattern and

a loss of signal-to-interference-plus-noise ratio (SINR). When the scatterers are less

than a half wavelength apart, they tend to reduce the sidelobe level and increase the

SINR. The rank of the clutter covariance matrix, which is an indicator of the number

of degrees of freedom required to eliminate the clutter return, increases dramatically

when near-field scatterers are present.

xi



EFFECTS OF NEAR-FIELD SCATTERERS

ON

SPACE-TIME ADAPTIVE PROCESSING

I. Introduction

Space-time adaptive processing (STAP) is a technique to enhance the target detec-

tion capability of a radar array by adjusting the parameters of the array receivers

to produce antenna pattern nulls in the direction of undesired signals, such as clut-

ter and jamming, while placing the main lobe of the pattern in the direction of

the target. The receiver parameters also control how different Doppler frequencies

are processed. Because the characteristics of the target and undesired signals are

unknown, they must be determined from the received signals. Then the receiver

parameters are adjusted adaptively to form the desired beam pattern. This adaptive

beamforming in the spatial and temporal domains is the essence of STAP.

The fundamentals of adaptive beamforming were first published by Apple-

baum [1] and Widrow [9]. In 1973, Brennan and Reed [5] published the first work

describing optimal space-time filtering using adaptive arrays. At that time, the com-

putational complexity of space-time adaptive processing was beyond the capability

of the technology that existed to be implemented effectively. Advances in digital sig-

nal processing since that time, along with the development of new algorithms, have

made implementation of STAP in real-time applications more feasible. In 1994,

Ward [8] published a theoretical development of space-time adaptive processing. In

his report, he presents models for each of the signals received by an airborne radar

array and shows how they are processed using optimal, fully adaptive processing.

He also presents several suboptimal processing methods.
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Most works published on STAP assume the array is in free space. They do

not account for the effect the airframe carrying the array has on the received signal.

Specifically, how does a scatterer in the near-field of the array affect the received sig-

nal and the ability of the processor to null out interference. In [4], the authors show,

through simulation, how a near-field scatterer can decrease target detectibility by

causing clutter returns at the same Doppler frequency as the target to appear to be

coming from the same direction as the target. Others, such as Yu et al. [10], have de-

veloped computer simulations combining the geometrical theory of diffraction (GTD)

with finite element modeling (FEM) to compute the pattern of an array mounted on

a specific airframe. However, there has not been a theoretical development similar to

Ward's which accounts for a near-field scatterer, and this development is the purpose

of this thesis.

The next chapter develops the fundamentals of beamforming, following the

development presented in [6]. Chapter 3 traces through Ward's development of fully

adaptive space-time adaptive processing. Chapter 4 extends Ward's derivation to

account for a near-field scatterer. Chapter 5 presents simulation results and Chapter

6 presents the conclusions of this thesis. Throughout this thesis, matrix notation is

used to simplify expressions. Appendix A describes the notation and conventions

used in this thesis.

2



II. Multidimensional Signal Processing

2.1 Introduction

The purpose of space-time adaptive processing (STAP) is to adjust an array so

that an incoming desired signal can be detected while at the same time suppressing

undesired signals from jammers, clutter and other sources. The first step in the de-

velopment of space-time adaptive processing is an introduction to multidimensional

signal processing and array beamforming. This chapter introduces the concepts of

multidimensional signal processing and filtering in the wavenumber-frequency do-

main. It then develops expressions for different types of beamformers, and concludes

with a discussion of the effect of digital implementation of these beamformers.

This chapter closely follows the development in Chapter 6 of [6].

2.2 Multidimensional Signals

A space-time signal can be described as a four-dimensional (4-D) function

s(x, t), where x is a three dimensional vector indicating position and t is time. This

function can be analyzed as a four-dimensional Fourier transform. The function

S(k, f) A L J s(x, t)exp[-j21r(ft - kT X)]dXdt (1)

is the wavenumber-frequency spectrum of the signal. The variable f is the temporal

frequency of the signal, and k is the wavenumber vector. The wavenumber vector

represents the spatial frequency of the signal, or the number of wavelengths of the

signal per unit distance in each of the three orthogonal spatial directions. The term

kTx is the inner product of the wavenumber vector k A (k, ky, kk)T and the position

vector x. The inverse transformation is defined as

s(x,t) ( 1 _ S(k, t)exp[j27r(ft - kTx)]dkdf. (2)

3



A propagating plane wave is represented by an elemental signal of the form

e(x,t) A expj21r(fot - kO x)]. (3)

An alternate way of writing Eqn. (3) is

e(x, t) = exp[j27rfo(t - a0'x)], (4)

where
A ka

0 = yo" (5)

From this definition, it can be seen that e(x, t) represents a plane wave propagating

in the direction a 0 with a speed equal to 1/laoI. The vector a 0 is referred to as

the slowness vector because its magnitude is equal to the inverse of the propagation

speed. The slowness vector is a convenient way to describe both the frequency and

direction of propagation of a signal.

Taking the Fourier transform of (4) produces

E(k, f) = 8(k - k 0 )8(f - fo) (6)

which represents a four-dimensional impulse function in (k, f)-space at the point

k=k0 and f = fo. Thus, every point in (k, f)-space corresponds to a plane wave

in (x, t)-space with a particular orientation and frequency. In Fig. 1, various loci

of points are shown for three dimensions (ks, ky, f). (The k, component is omitted

to simplify the figures.) Figure 1(a) shows that all signals with the same frequency

lie in a plane normal to the f axis. All signals coming from the same direction will

lie in a half-plane normal to the (ks, ky) plane, as shown in Fig. 1(b). Figure 1(c)

represents all signals with the same propagation speed. These signals lie on a cone

given by 1k! = f/c. Generally, it will be assumed the speed of propagation is a

constant equal to c, the speed of light in free space.

4
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(a) k, (b)
f

TC(c)

Figure 1 Loci of points occupied in (k, f)-space by plane waves with the same
(a) frequency f, (b) direction of propagation k , and (c) velocity of
propagation 1/ f 0f.

Given a signal s(x, t), the response f(x, t) of a linear, shift-invariant filter

h(x, t) is given by the 4-D convolution integral

f(x, t) = L f h(x - ý,t -T-)s(, -r),d~dr. (7)

Transforming this expression to the wavenumber-frequency domain produces

F(k, f) = H(k, f)S(k, f). (8)

The task is to design the filter H(k, f) such that it passes signals from the desired

regions of (k, f)-space while eliminating signals from other regions.

2.3 Beamforming

Figure 2 shows how a 3-D bandpass filter might be represented. Signals with

frequencies in the range of Af and directions of arrival within the range of angles

5
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A7

Figure 2 Bandpass filter in wavenumber-frequency space.

Wo

jbTfi(t)

Figure 3 Block diagram for the weighted delay-and-sum beamformer.

Aiy would be allowed to pass through the filter; all other signals would be filtered

out. The process by which this is accomplished is called beamforming. To achieve

this effect, an array of N elements is arranged in space such that the nth element

is located at xn(n = 0, 1,... , N - 1). Since the relative position of the elements is

fixed, they sample the signal s(x, t) spatially. The signal from the nth receiver will

be given by rn(t) = s(xn, t), and these signals can be processed by various methods

in either the time or frequency domain.

2.3.1 Weighted Delay-and-Sum Beamformer. The weighted delay-and-sum

beamformer of Fig. 3 is one of the simplest beamforming systems. The output bf(t)

is the average of the weighted and delayed receiver signals

6



bf(t) 1 N-1=f(t -• jE1 w,,r.(t - r,), (9)
n=O

where rn (t) is the signal received by the nth receiver Wn and rn are respectively the

weight and relative delay of the nth receiver. Adjusting the delays rn has the effect

of "steering" the center of the beamformer's passband to the desired orientation in

(k, f)-space. The receiver outputs due to a signal from the desired direction will

added together in phase, while receiver outputs due to signals from other directions

will be out of phase and will tend to cancel each other out. To pass plane waves

with a slowness vector ca0 , the delays should be set equal to

. = -a0'x.. (10)

Suppose a plane wave s(x, t) has a slowness vector a such that s(x, t) =

exp[j27rf(t - aTx)]. When the beam is steered towards az0 , the output from the

beamformer due to .(x, t) is given by the following:

1 N-1bf(t) = - E Wnrn(t - rn)

Nn=O

1 N-1E Wn S •.(x,,,t +,•io Xn)

N - 1 a
= K• Wn expj27rf(t + 0 Xn - aTXn)]

= N• Wn exp[-j27rf (a -- o)Txn]) exp(j27rft)

= W(f(a -ao))exp(j27rft)

= W(k- ko)exp(j27rft), (11)

where
A 1 N-I

W(k)= - E Wn exp(-j21rk T xn) (12)
Nn=O

7



is called the array pattern. The array pattern indicates how a signal with a wavenum-

ber vector k = fa will be attenuated when the beam is steered in the direction of

ao. Using the expression for s(x, t) from Eqn. (2) and the definition of the array

pattern from Eqn. (12), the beamformer output can be written as

bf(t) 1 = _JJ S(kf)W(k-faao)exp(j27rft)dkdf. (13)

This equation gives the wideband response of the weighted delay-and-sum beam-

former and shows how signals from different directions and at different frequencies

are attenuated before being combined to produce the beamformer output.

As a special case, consider a waveform v(t), which may be a single signal or

combination of signals propagating in the same direction. Then s(x, t) can be written

as

s(x, t) = v(t - aJx) (14)

and its wavenumber-frequency spectrum is given by

S(k, f) = V(f)J(k - fa), (15)

where V(f) is the Fourier transform of v(t) and 5(k) is the 3-D impulse function.

Then Eqn. (13) becomes

00
bf(t) = L V(f)W(f(a - ao)) exp(j27rft)df. (16)

If the direction of propagation of v(t) coincides with the direction to which the

beamformer is being steered, then a = ai0 and the signal waveform will not be

attenuated.

If a 5 a 0 , the term f(a - ao) grows linearly with frequency, causing the

higher-frequency components to be attenuated more than lower-frequency compo-

nents. This effect can be seen in Fig. 4. Signals from the k0 direction will be passed

8



Passband of W(k - k0)

fao

-- Arcs of Constant Frequency

Figure 4 Lowpass Filtering of a misaligned signal.

unattenuated at all frequencies, while signals originating from other directions will

have their high-frequency components filtered out.

It is possible to interpret Eqn. (13) as a 4-D filtering operation. Applying the

convolution theorem to Eqn. (7) yields

f(x, t)- () _ J fH(k, f)S(k, f) exp[j27r(ft - k'x)]dkdf. (17)

Equation (13) is equivalent to Eqn. (17) evaluated at k = 0. Therefore, the

wavenumber-frequency response is given by

H(k, f) = W(k - fa0). (18)

Evaluating the array pattern evaluated at k - f a 0 will produce the complex ampli-

tude of the response of the filter used to process the space-time signal s(x, t).

The simplest type of antenna array consists of N identical receiver elements

arranged in a line with equal spacing d between elements. This configuration is

called a uniform linear array. For now, equal weights wn = 1 will be assumed

for each element. If the array is oriented along the x-axis, the position of the nth

element is given by xn = (nd, 0, 0) (n = 0,1,... , N - 1) and the expression for the

9
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IW(k)l

0 1 1
Nd 2d "

Figure 5 Array pattern for a 10 element linear array with no time delays.

array pattern in Eqn. (12) becomes

1 g-I X"

W(k) = 1 S exp[-j27rkT xn]
Nn=O

1 N-1=E Y exp[-j27rxn4

1 N-1

= E (exp[-j27rk.d])n

1 1 - exp[-j27rNkx4d

N 1 - exp[-j27rkxd
1 exp[jirNkxd - exp[-jirNkxd] exp[-jirNkx]

N expU'irkxd] - exp[-jirkxad exp[-jirkxd]

sin(7rNkd) exp[-jfr(N - 1)kxd, (19)

where kx = IkI sin(o0) = sin(o0)/A and €o is as shown in Fig. 4. The magnitude of

this array pattern is shown in Fig. 5 for N = 10. The pattern repeats with period

k, = 1/d. The repeated main lobes are called grating lobes. These grating lobes can

allow signals to enter the beamformer from directions and frequencies other than

those for which the beamformer is designed. This effect is illustrated in Fig. 6.

10



f Main Lobe Grti g bes
ko, f ao,

Figure 6 Effect of grating lobes in (k, f)-space. Components of kx which lie within
the grating lobes will enter the beamformer unattenuated.

A signal with a wavenumber vector ko., = f ao., will lie entirely within the main

lobe. A signal with wavenumber vector k,, = a will cross the grating lobes, and

components of this signal which lie within the main lobe or grating lobes will enter

the beamformer unattenuated. The existence of grating lobes indicates the spatial

sampling interval d is too large in relation to the wavelengths of the incoming signals.

This effect is equivalent to the aliasing which results when time varying signals are

not sampled at a high enough rate. To avoid aliasing when sampling time varying

signals, the sample rate must be at least twice the maximum frequency contained in

the signal. Similarly, to avoid the spatial frequency aliasing which results in grating

lobes, the interelement distance d must meet the criterion

d<Amin (0
(20

where Amin is the minimum wavelength in the received signal.

2.3.2 Filter-and-Sum Beamforming. The weighted delay-and-sum. beam-

former discussed above can be extended to allow the receiver weights to be a function

oc1



ently. Then, at a specific frequency, Eqn. (9) can be rewritten as

1 N-1
bf(t, f) = ]V E W,(f)r,(t-rn), (21)

n=0

where rn(t) is the inverse Fourier transform of the signal spectrum incident on the

nth receiver,

r, (t) = L R(f ) exp(j27rft)df. (22)

For a single frequency f = fo, Eqn. (22) reduces to

rn(t) = Rn(f0) exp(j27rfot), (23)

and Eqn. (21) can be rewritten as

1 N-1
bf(t, fo) = E Wn(fo)Rn(fo) expj21rfo(t - rn)]. (24)

n=O

Integrating this expression over all frequencies gives the filter-and-sum beamformer

output

fs(t) f L bf(t, f)df

N = J Wn(f)Rn(f) exp[j27rf (t - rn)]f. (25)

To simplify the notation, define the signal

qn(t) 0 J Wn(f)Rn(f) exp[j27rft]df. (26)

Then Eqn. (25) can be written as

1 N-1
fs(t) = E qn(t-mrn). (27)

2n=

12



From Eqn. (26), it can be seen that qn(t) is the convolution of wn(t) with r,(t),

where wi,(t) is the inverse Fourier transform of the weighing function W, (f). The

function w•(t) can be viewed as the impulse response of a filter that operates on the

receiver signal rn (t). The filtered signal q, (t) which results is then used to shape the

beam.

2.3.3 Frequency-Domain Beamforming. It is possible to write expressions

for the outputs of the weighted delay-and-sum and filter-and-sum beamformers in

the frequency domain by computing their Fourier transform as follows

1 N-1
BF(f) = - E wnPR(f) exp(-j27rfrn) (28)

Nn=O

1 N-1
FS(f) = -T E Wn(f)Rn(f)exp(-j27rfrn). (29)

An=0

The output of each beamformer at a specific frequency f is obtained by multiply-

ing the above expressions by exp(j27rft), and the complete beamformer output is

obtained by integrating over all frequencies

bf(t) = BF(f ) exp(j27rft)df (30)

fs(t) = L FS(f) exp(j27rft)df. (31)

Since computing the signal spectrum Rn(f) in Eqns. (28) and (29) would re-

quire integrating the signal over all time, it is necessary to approximate the spectrum

by computing the Fourier transform of a segment of the time signal. This is done

by applying a finite-extent window to the signal00
Rn(t, f) g1 LpT(t - r)rn(,r) exp(-j2rfr)dr, (32)

where PT (t - r) is the window function centered at time r with width T.

13



Using this definition in Eqn. (28) gives the frequency-domain beamformer out-

put of the weighted delay-and-sum beamformer as

1 N-1

f =d(t, f) = j E w&(t, f) exp[j2irf(t - -n)]. (33)
n=O

Integrating this expression over all frequencies will give an approximation to the

beamformer output signal. A similar expression results if Eqn. (29) is used.

Using Eqns. (1), (10), (12) and defining

rn(t) s(xn,,t) (34)

P(f) f pT(t)exp(-j2irft)dt, (35)

it is possible to write the frequency domain beamformer output as

fd(t,f) - (27.)2 f W(k - fao)P(O - f)S(k, 0) exp(jOt)dkdO. (36)

If the array pattern W(k - fa0) is considered to be zero except near k = fa0 and

the window spectrum P(0 - f) is considered to be zero except near 0 = f, the factor

W(k - fao)P(9 - f) will represent the passband of the system. The beamformer

will attenuate all signals in (k, 9)-space except those near k = fa0 and 9 = f. The

passband is illustrated in Fig. 7.

2.4 Discrete Time Beamforming

Until this point, all signals have been treated as continuous time signals. How-

ever, most beamformers are implemented digitally, requiring the received signals to

be sampled in time. In this section, the effects of using discrete time signals will be

examined. The same notation will be used as with the continuous time case, but

now the variable t will represent an integer multiple k of the sampling period T, such

14
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Figure 7 Bandpass filter in wavenumber-frequency space. The shaded region rep-
resents the passband.

that t = kT. Thus, r,(t) will denote a discrete-time signal. It is assumed that the

sampling rate is high enough to avoid aliasing.

The discrete-time version of the weighted delay-and-sum beamformer is given

by
1 N-1

bf(kT) = , wnrn(kT - knT), (37)

where knT is the quantized steering delay for the nth sensor. Since kn is an integer,

the quantized steering delays will generally not be equal to the ideal delay rn. The

quantization error in the nth delay is given by

Arn = knT - rn. (38)

This error must be accounted for in the response of the beamformer to a plane wave

with slowness vector a 0 . The new expression is

1 N-1

H(k, f)= Wn exp[-j27r(k- fao)Txn] exp(-j27rftArn). (39)
n=0

15
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Figure 8 Quantized Steering Delays. Dots indicate the quantized steering delays,
the line indicates the ideal delay.

As a simple example to illustrate the effect of quantizing error, consider a uniform

linear array oriented along the x-axis. If the beam is steered such that O-ox = T/2d,

then the ideal delay is rn = -nT/2. However, the delay applied must be an integer

multiple of the sample period. Therefore, the actual delay will be knT, where kn is

the largest integer less than or equal to n/2. The quantized steering error will be

T for n odd
A-n 2 (40)

0 for n even

as shown in Fig. 8. For this case, the frequency response can be written as

H(k,f) = E exp-j27r k-L 2nd]

+ E exp j2r kx-LT(--2nd 1)d -

"- { k exp[-j27rn(2k.d - ft)] [1 + exp(-j27rk.d)]

- H 1(k,f)H2 (k,f), (41)
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Figure 9 Effect of steering delay quantization on array pattern: N = 8, d = 1, T =
1, f = 1/4. (a) Quantized beamformer [Eqn. (41)], (b) Ideal beamformer
[Eqn. (19)].

where

2 N/2-1
Hl(k,f) = 1 exp[-j2i7rn(2kd- ft)]

sin[(7rN)(kxd - fT/2)] N T)(N- - - (42)

(7rN) sin(kxd - fT/2) [ (k2 J j 2)

H2(k, f) = 21+ exp(-j27rkxd)]

= exp(-j~rk.d) cos(7rkd). (43)

An example of the magnitude IH(k, f)I is shown in Fig. 9 for both the quantized

and ideal cases. For the quantized case, the main lobe peak is lower and some of

the side lobes are higher than for the ideal case. The ideal response is given by

jHj(k, f)I = jW(kxd - fT/2)I, where W(k) is as defined in Eqn. (19).

2.5 Total Antenna Pattern

To compute the total antenna pattern for a given array, the array pattern

computed using Eqn. (19) must be multiplied by the element pattern. For a small

dipole, the element pattern will be a cosine function, with the angle measured from

17



the normal to the element. Substituting k, = sin(¢)/A into the equation for the

array pattern in Eqn. (19) and multiplying by the element pattern, the magnitude

of total antenna voltage pattern can be computed as a function of angle as

AP,(0) sin(7rNdsin(o)/A) cos(O). (44)
Nsin(7rdsin(o)/A)

The antenna power pattern is found by squaring Eqn. (44),

SFsin(irNdsin(¢)/A) 12
APp(¢) = [• csn7rsn o)/ Cs(O) . (45)

The gain of the array is equal to the inverse of the average radiation intensity. The

radiation intensity of the array is given by [2:276-278]

UMq5 = [AF v? = [sin(7rNd sin()) (46)
N Nsin(7rdsin(O)/A)]

The average radiation intensity of the array, Uo, is given by

Uo = 1 -/ 2 [Nsin(Zrdsin(1)/A)2 cos(€)de. (47)

By letting O = 21rdsin(O)/A, the average radiation intensity can be expressed as

Uo = 1 f [sin(Nb/2) 2d, (48)

and the array gain Ga(¢) = 1/Uo. If the spacing between array elements is equal to

a half wavelength, the array gain is approximately equal to the number of elements.

To find the total antenna transmit gain, Gt(O), the array gain is multiplied by the

element gain, g(¢).
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2.6 Summary

This chapter has presented some of the fundamentals of beamforming with a

linear array. Expressions were derived for the weighted delay-and-sum beamformer

and the filter-and-sum beamformer in both the time and frequency domains. The

effects of quantization error introduced by a digital implementation of a weighted

delay-and-sum beamformer were also examined. Finally, an expression for the gain of

a linear array was presented. The next chapter presents a theoretical development of

space-time adaptive processing, which is an extension of the beamforming techniques

presented in this chapter. It will be assumed there is no quantization error.
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III. Space- Time Adaptive Processing

3.1 Introduction

Now that we have the basics of multidimensional signal processing, we will

begin studying the signals in more detail to understand how they are composed

and how they can be analyzed. In this chapter, models are developed for the radar

system and signals from the target, jammers, and clutter. The chapter concludes

with a discussion of fully adaptive STAP. This discussion closely follows that in [8].

3.2 Radar System

The system being analyzed is assumed to be mounted on an airborne platform

and utilizing a pulsed Doppler waveform. The platform is at a height ha and traveling

with a constant velocity, va. The variables € and 9 are the azimuth and elevation

angles measured with respect to the normal to the array. The unit vector k indicates

the direction to the point of interest and may be represented in Cartesian coordinates

as

1(O, 0) = cos(9) sin(¢)* + cos(9) cos(q):r + sin(0)2. (49)

Figure 10 depicts the scenario. The antenna is assumed to be a uniform linear array

of N identical elements separated by a distance d and oriented along the x-axis.

The vector d = dk will be used to represent the array spacing and orientation.

Each element has the same radiation voltage pattern f(0, 9) and power pattern

g(¢, 0) = If(€, 0)12. The radar transmits a coherent burst of M pulses on a carrier

frequency fo = c/Ao and at a constant pulse repetition frequency (PRF), fr = 1/Tr,

where T, is the pulse repetition interval (PRI). The time interval over which the

waveform returns are collected is equal to MTr and is called the coherent processing

interval (CPI).

20



z Y

A k
Radar Platform

V, Va

Antenna Array

Clutter Patch

Figure 10 Radar system and antenna array geometries

The radar array has a transmit pattern Gt(q, 0) which is determined by the

number and spacing of the elements. Each element is connected to its own receiver,

consisting of a down-converter, matched filter, and A/D converter. The receiver

bandwidth B is taken to be equal to the transmitted pulse bandwidth. The output

from each element's A/D converter is sent to the processor, where the total signal

is analyzed. For each PRI, L time samples are collected to cover the range interval

of interest. If the array has N receivers and transmits M pulses, the received data

during a single CPI will consist of LMN complex samples. The data can be conve-

niently represented as a L x M x N cube of complex samples referred to as the CPI

datacube, as illustrated in Fig. 11.

For the lth range gate, xm,i is an N x 1 vector of all the receiver element

outputs for the mth pulse. This vector is called a spatial snapshot. The matrix

X, is an N x M matrix consisting of the spatial snapshots from all pulses. By

stacking the columns of X, on top of each other, this matrix is reshaped into an

MN x 1 vector X, = vec(X1 ) called the space-time snapshot. The remainder of the

analysis will assume the returns from only one range gate are being studied, and

the I subscript will be dropped. Therefore, X will be the space-time snapshot at the
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Figure 11 Radar CPI datacube

range of interest, and xm will represent the spatial snapshot from the mth PRI at

this range.

The space-time snapshot has two components, the target return and the un-

desired signal,

X = Xt + Xu = atvt + Xu, (50)

where at is the complex amplitude of the target return, vt is the system response to

a target of unit amplitude, and Xu = X, + Xj + X, represents undesired signals, due

to clutter return, jamming and noise. If no target is present, at = 0 and the space-

time snapshot consists entirely of the undesired signals. The presence of a target

causes a shift in the mean of the data, but does not affect the covariance of the data.

Assuming the clutter, jamming and noise signals to be mutually uncorrelated, the

covariance matrix of the total undesired signal is the sum of the covariance matrices

of each component:

S= E[XuX'] = E[(xo + Xj + X.)(XC + Xj + X.)H]

= E[xrx,'] + E[xjx ] + E[X.x.]

= R,+ Rj±+ R, (51)
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where the subscripts c, j, and n indicate clutter, jammer, and noise interference

respectively. The following sections develop a model for each component of the

space-time snapshot.

3.3 Target

The return from a target at a given range, RP, is a function of the target's

azimuth angle, 0, depression angle, 0, closing velocity with respect to the radar, vt,

and radar cross-section (RCS), at. The received signal can be derived by defining

the transmitted signal and applying the filtering that produces the samples of the

space-time snapshot. The transmitted coherent burst of pulses from the array is

represented by

9(t) = atu(t)ei2f° (52)

where
M-1

u(t) = E, up (t - mT,) (53)

m=0

is the complex envelope of the signal, T, is the PRI, and up(t) is the complex envelope

of a single pulse of width Tp and having unit energy. The transmitted signal has

amplitude at and a random phase V). The signal received from the target by the nth

element is given by

=n(t) = aru(t - r,) exp[j27r(fo + ft)(t - mn)]ejv', (54)

where a, is the amplitude of the returned signal and ft = 2vt/Ao is the target Doppler

frequency. The target delay to the nth element has two components: 7n = 't + rn,

where Tt = 2Rt1/c is the time for the signal to travel from the array to the target and

back, and

=n kOtt = -n-d cos Ot sin Ot (55)
C C
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Figure 12 Illustration of relationship between wavenumber vector k, spatial fre-

quency Vz, wavelength A, and element spacing d.

is the relative delay measured from the phase reference to the nth element. The

target spatial frequency will be defined as

V A(t,td Od cos t sin Ot. (56)A0  -o

Figure 12 shows how the spatial frequency relates to the wavelength, array spacing,

and wavenumber vector. The phase delay to the nth element can now be given by

-U)o-' -" n21rit. Assuming a narrowband transmitted waveform, the relative delay

term rn' in the envelope u(t - r'n) of Eqn. (54) is insignificant. The received signal

can be expressed as

§n(t) = aru(t - rt)e" exp[j2r(fot + ftt - f 0rn - ftrn)]

= aru(t- rt)ei expUj2'r(fot +ftt-fo7-t - forn - ft rt - ftr )]

= arU(t - Tt)e (jn2't)e(j27ftt)e (ji27fot), (57)

where 0 now contains several of the fixed frequency terms. The signal is downcon-

verted to baseband, removing the carrier frequency term, and then passed through

a matched filter with a response given by h(t) = up(-t). The output of the matched
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filter for the nth channel is found from the convolution of the signal with the filter,

xn(t) = (t)* h(t)
= 0 aru(/ - rt)ejiejn27tei 27frtu(/ - t)d3

00

oo M-1

a, ~ e' e Tt0 -= T)U;*(,3 _ t)ej27rftd/3. (58)

Letting 7 = f-rt-mTr and interchanging the integration and summation operations

gives

M-1 0oo

x,(t) = arejiejn27 n _ JE uIp()up(_y - t + rt + mTr)e32•it(+f+mTr)d7

ehej27,O e21fetM-1 jm7rt o 0

arei~ein2 tej2lft•t j ejm2lftTr e up(7)u;(7 - t + Tt + mTr)ejwrft'd 7 .

(59)

The term ej2,ftlt represents a fixed frequency and can be absorbed into the random

phase term. The integral can be recognized as the ambiguity function [7:411-412],

X(r, f) = j Ur(7)U;(y - r)ej2,fyd-. (60)

At this time it will be convenient to normalize the target Doppler frequency to the

PRF. The normalized Doppler frequency is defined as

=frt -f Tr. (61)

With these two definitions, Eqn. (59) can be written as

M-1

Xn(t) = aej~ejn2, -" ejm2,rtx(t - Tt - mT7, ft). (62)
m=O
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For the range gate containing the target, tm -= t + mT7 (m = 0, 1, ... , M - 1)

represents the sample times from each PRI at this range gate. The target samples

are given by

Xmn = Xn(tm) = arej'ejn2 'em ft). (63)

Because the pulse waveform is normalized, X(O, 0) = 1. It is also assumed the pulse

waveform is insensitive to the target Doppler, such that X(O, f) s 1. Therefore,

Eqn. (63) can be written as

Xmn = atejn27rOtejm 2 rwt n=0, 1,... , N - 1 (64)
m=0,1,...,M- 1

where at = arejO is the complex random amplitude of the signal. The target ampli-

tude can be calculated from the radar range equation as follows. The single pulse

signal-to-noise ratio (SNR) for a single element is given by

(47r) 3NoL,8R ' (65)

where the terms are as defined in Table 1. The target power is computed from

E IatI'} = Ont, (66)

where an is the thermal noise power per element. The target amplitude is then given

by a, = V012.

At this time, it will be convenient to define the spatial and temporal steering

vectors. The spatial steering vector is an N x 1 vector given by

a(q.$, 0) = [1; ej27 cos0sin;0.; ej(N-1)27r cos0sin¢], (67)
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Table 1 Symbols for Radar System Parameters
N number of elements in array
M number of pulses in CPI
L number of range samples per PRI

fo radar operating frequency
A0  radar operating wavelength
d interelement spacing
T, pulse repetition interval (PRI)

fr pulse repetition frequency (PRF)
Pt peak transmit power
TP transmit pulse width
B instantaneous bandwidth
Gt(0, €) full array transmit power gain
f(0, 0) element pattern (voltage)
g(0, €) element pattern (power)
L, system losses on receive
Lt system losses on transmit
L., total system losses
No receiver noise power spectral density
Rt target range
Ot target RCS
ha platform height
Va platform velocity
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or

a(t9) = [1; e 2lr;... ; ei(N-1)2,11], (68)

The temporal steering vector b(w) is an M x 1 vector given by

b(w) = [1; ej,; ... ; (M-1)21r] , (69)

where ?9 and w are as defined in Eqns. (56) and (61). The MN x 1 space-time

steering vector will be defined as

v = v(O, w) = b(w) ® a(9), (70)

where (®) indicates the Kronecker product. With these conventions, the space-time

snapshot of the target data can be written as

Xt = atb(wt) ® a(Vt) = atbt ® at = atvt, (71)

which is the target component of the total space-time snapshot of Eqn. (50). The

space-time steering vector of the target vt is also referred to as the target steering

vector.

3.4 Noise

Noise is be present in each of the receiver elements. Since each element has

its own receiver, it is assumed the noise processes on each of the N element will be

mutually uncorrelated. It is also be assumed that the M noise samples on a given

element separated by a nonzero multiple of the PRI are temporally uncorrelated.

These two assumptions may be expressed as

E fXnl MXn 2M= O'n-n2 (72)
xnmlX*M2 = o- 6•m1,_• (73)
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where u2 = NoB is the noise power per element and &m is the Kronecker delta

function defined as

M =m (74)0 , M•0o

The noise component of the space-time covariance matrix can then be expressed as

1= E XnXn = £n2IM 9 IN = 0nIMN(

The noise power will be normalized to o2 = 1 so that all signal levels can be refer-

enced by their SNR per element and pulse.

3.5 Jamming

For this analysis, only barrage noise jamming from a source at a long range and

an angle different from that of the target will be considered. The jammer bandwidth

will be assumed to be much larger than the pulse bandwidth, and the radar PRF

will be assumed to be much smaller than the instantaneous bandwidth. The jammer

signal will be correlated spatially across the array, but temporally uncorrelated from

pulse to pulse. Therefore, the jammer signal will appear like thermal noise in the

time domain, but as a point source in the spatial domain.

For a jammer at range Rj, elevation 0j, and azimuth Oj with effective radiated

power density Sj, the jammer power spectral density JO received by one element is

given by
Sjg(0j, 0Aj (76)

Jo= (4ir)2 R2Lr

The jammer-to-noise ratio (JNR) at the element is given by ýj = Jo/No. The jammer

space-time snapshot is given by

Xj a=j aj, (77)
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where aj is a M x 1 vector of the random jammer amplitudes during each PRI

and aj = a(%j, Oj) is the jammer steering vector. Assuming the jamming signal is

stationary over a CPI, the jammer space-time covariance matrix can be calculated

as

R3 =E{XjX f'j= E{(aj®aj)(ao®aj)H}

= E {(ai (9 ® (a4a 9)a

= I9M ®(aojajaH)

= IM® 0 j, (78)

where 1j is the jammer spatial covariance matrix.

This result can be generalized to multiple jamming sources. If there are J

jammer sources, the spatial covariance matrix is given by

Ij = Aj..jAH, (79)

where

Aj = [a(0101), a(0202),.., a(9 joj)] (80)

is the N x J jammer spatial steering matrix. If the jammer waveforms are mutually

uncorrelated, the jammer source covariance matrix .j will be a J x J diagonal matrix

of the jammer powers, From Eqn. (78) it can be seen that the jammer space-time

covariance matrix will be block diagonal, with each non-zero block consisting of the

jammer spatial covariance matrix. If the J jammer steering vectors are linearly

independent and no two jamming signals are perfectly coherent, then the rank of Pj

will be equal to J, and Rj will have rank MJ.
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Figure 13 Clutter Geometry

3.6 Clutter

Clutter is defined as the radar return from the ground. It is the most compli-

cated source of interference because it is distributed in angle, range, and Doppler.

It exists over all azimuth angles and all elevation angles below the horizon. The

clutter range returns extend from the platform altitude to the radar horizon, and

the Doppler returns cover a range of frequencies corresponding to -va to +va.

Figure 13 depicts a clutter ring at a range R,. A 4/3 effective radius is assumed

to model the curvature of the earth, so the effective earth radius ae = (4/3)re. The

elevation angle to the clutter ring is given by

oo = Oo(Rc) =-sin- 1 • •+ha(ha+2ae) sin- 1 _( ha (81)
2RMc(ae + ha) Ik2ae R,)

and the grazing angle is given by

1 R2-ha(ha + 2a,)) ~ (~ h

O=c = O(Rc) =-sin- R• hh2Rcae 2 -sin- _-a (82)

The grazing angle is the angle between the vector from the antenna to the clutter

patch and the tangent at the clutter patch.
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The radar horizon range is given by Rh = %/2aeha + ha and the radar's unam-

biguous range is given by RP = c/2fr. If P& > Rh, the clutter will be unambiguous

in range and the return in the lth range gate will contain clutter from at most one

range. If R,, < Rh, the clutter will be range ambiguous and some or all of the range

gates will contain clutter returns from multiple ranges. At this time, the assumption

will be made that the clutter is unambiguous in range, and that the clutter return

in a particular range gate is from a single clutter ring. The clutter return will be

modeled as the superposition of Nc independent clutter sources evenly distributed

in azimuth.

The location of a particular clutter patch will be described by its azimuth angle

Ok and its range Rc (or elevation angle 0c). The spatial frequency for the kth clutter

patch is given by
l•T(oc, Ck)d _d

Ok-= Ao =0 0 cos Ocsin qk (83)

and the normalized Doppler frequency is represented by Wk. The clutter component

of the space-time snapshot is given by

NC Ne

= E = E kbk 9ak, (84)
k=1 k=1

where ak is the complex random amplitude from the kth clutter patch and Vk =

V(k, Wk) is the space-time steering vector to the kth clutter patch, as defined in

Eqn. (70).

Each clutter patch represents an effective area bounded by the radar's reso-

lution in azimuth, AO = 21r/N,, and range, AR = c/2B. The effective RCS of a

clutter patch at range R, is given by

0k = ao(0,, Ok) x PatchArea = oOK,¢k)RcAO AR secoc, (85)
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where o0 is the area reflectivity of the ground at the kth clutter patch. It will be

assumed that the reflectivity at a given range is uniform in azimuth, so O0 = -Y sin ¢,

where 7 depends on the terrain. With these definitions, the clutter-to-noise ratio

(CNR) is defined as Pt TpGt(Oc, Ok )g(Oc, Ok 0,a (86)
•k = (41r) 3NoLR.(

The amplitude of the clutter from the kth clutter patch is given by E { cak 12} 2

If the returns from different clutter patches are uncorrelated, then

E [akal = 9,2, 64-. (87)

Using Eqns. (84) and (87), the space-time covariance matrix for the clutter is given

by

N6

R,= E [XCX] = U' E CkVk k
k=1
NC

= U•2,E kbkbH ® aka , (88)
k=1

where bk = b(wk) and ak = a(O9k). The clutter spatial and temporal covariance

matrices are coupled because the clutter Doppler is a function of angle. The clutter

space-time covariance matrix can also be expressed as a product of matrices:

S=v (89)

where Vc = [v1 , v2,. , VN.] is an MN x N, matrix of the clutter space-time steering

vectors, and

'c = a2diag[Ci, C2, ... , •N] (90)

contains the clutter power distributions. Due to the assumptions of an ideal uniform

linear array and mutually uncorrelated clutter patches, the clutter space-time co-

variance matrix has a special structure referred to as Toeplitz-block-Toeplitz. This
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structure can be seen in Fig. 14. All blocks along a diagonal are identical, and within

each block, all elements along a diagonal are equal. The blocks correspond to the M

pulses, and the elements within each block correspond to theN antenna elements.

3.6.1 Effects of Platform Motion on Clutter. The above derivation as-

sumed the array was stationary while the data was being collected. When the

array is moving, as it would be on an airborne platform, the clutter develops a

special structure due to the dependence of the Doppler frequency on angle. As-

sume the platform is moving such that the velocity vector of the array is given by

Va = va(cos Oai + sin a:0), where Oa is the misalignment angle between the velocity

vector of the array and the array axis, as shown in Fig. 10. This may occur when the

aircraft is "crabbing" to compensate for a crosswind. The clutter Doppler frequency

of a specific clutter patch is then given by

2Va

fk(0c, Ck + Oa) = -a0 cos 0, sin(¢k + Oa). (91)

The clutter spatial frequency and normalized Doppler will be, respectively,

tk = f7sin Ok (92)

Wk = j3 j sin(Ok + Oa) (93)

where 3 = 2vaTr/d and q = dcosO0/Ao.

Equations (92) and (93) can be shown to satisfy the standard equation of an

ellipse in (,0, w)-space,

132V2 - (2,3 cos a)c + W 2! 2sin 2 a = 0. (94)

The elliptical shape of the clutter results from returns entering the receiver through

the back lobe of the antenna. The ellipse will be rotated clockwise from the positive
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Figure 14 Clutter covariance matrix (6=1), showing the Toeplitz-block-Toeplitz
structure.
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w-axis by an angle V)a such that [8]

cot 2V)a = 1- ,32 (95)
203 cos ka

and will have semimajor and semiminor axes given respectively by

a = /?sin Oa (1p2 + 1) + cI) (96)

b - /q3 sin Oa (f1(2 + 1) -Ic) , (97)

where c is given by

C _(p2 - 1)cos20a- 3 cos Oasin20a. (98)
2

In the case where the velocity vector of the platform is aligned with the axis

of the array, Oa = 0, and Eqn. (94) reduces to the equation of a line of clutter.

We =Vgc. (99)

The back lobe return is still present, but directly overlays the front lobe return.

When 83 < 1, there will be a range of normalized Doppler frequencies which will be

free from clutter return. For values of /3 > 1, the clutter return will be ambiguous

in Doppler. Figures 15 through 17 show the plots of the clutter ridges for various

values of # and different misalignment angles Oa as functions of the spatial frequency

and normalized Doppler frequency.

3.6.2 Rank of the Clutter Covariance Matrix. The severity of the clutter

scenario and the number of degrees of freedom needed to effectively cancel the clutter

are indicated by the rank of the clutter covariance matrix. The rank, re, can be

estimated from Brennan's rule:
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Figure 15 Clutter ridges for different values of fi, Oa -= 0, (a) /3 = 0.5, (b) /3 - 1.0,
(c)/3 = 1.5, (d) /3 = 2.8. (The solid line represents the front lobe and
the dashed line represents the back lobe.)
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Figure 18 Clutter eigenspectra. Values of 3 are indicated at the top.

Theorem 1 (Brennan's Rule) The rank of the clutter covariance matrix is ap-

proximately given by

rcLN + (M - 1)/3J (100)

where , = 2vaTr/d is the number of half-interelement-spacings traveled by the plat-

form during one PRL (The brackets (LJ) indicate rounding down to the nearest

integer.)

When the eigenvalues of the clutter covariance matrix are calculated, r, predicts

where the plot of the eigenspectrum will begin to roll off. The sharpness of the

roll-off depends on the platform speed va, misalignment angle 0,a, back lobe level,

and the existence of intrinsic clutter motion (see Section 3.6.3). A plot of the eigen-

spectrum for various values of 3 is shown in Fig. 18. In the special case where the

misalignment angle 0a = 00, 1 is an integer, and there is no intrinsic clutter motion,

the approximation in Eqn. (100) can be replaced by an equality. The eigenspectrum
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Figure 19 Effective array positions for successive pulses. Circles indicate indepen-
dent measurements.

will consist of exactly r, nonzero eigenvalues. As an illustration of why Brennan's

rule holds, consider Fig. 19, for which N = 4, M = 3, and 0 = 1. The location

of the second element during the first pulse is the same as the location of the first

element on the second pulse. Assuming the clutter does not change from pulse to

pulse, the two measurements will be the same. Since the two measurements are

not linearly independent, the rank of the clutter covariance matrix will be reduced.

For this example there are six distinct measurements, which is equal to the rank

predicted by Brennan's rule. Plots of the eigenspectra under various misalignment

angles are shown in Fig. 20 The amount of misalignment has little effect on the clut-

ter eigenspectrum. Any nonzero misalignment effectively doubles the rank of the

clutter covariance matrix. This is as expected, since, once the misalignment angle

deviates from zero, there are two distinct clutter ridges present, one from the front

lobe and another from the back lobe.

3.6.3 Intrinsic Clutter Motion. Intrinsic clutter motion (ICM) is a result

of variations in the clutter reflectivity from pulse to pulse. The variations result from

movement of the clutter source, such as trees moving in the wind or waves on the

ocean. Pulse-to-pulse instabilities of the radar system have a similar effect and are

included as part of the ICM.
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and 900.
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From Eqn. (84), the clutter space time snapshot was given by

Nc Ne

XC= E akVk =E akbk 0 ak.
k=1 k=1

When intrinsic clutter motion is present, the scalar ak must be replaced with an

M x 1 vector ak = [ak,O; ak,1; ... ; ak,M-1], where ak,m is the random amplitude from

the kth clutter patch during the mth PRI. The space-time snapshot is now given by

Ne

= E(ak ® bk) (ak. (101)
k=1

The fluctuations of the clutter will be modeled as a wide-sense-stationary pro-

cess with a Gaussian Doppler spectrum. The temporal autocorrelation of the clutter

fluctuations will then be given by

"7'c(m) A E {a,+m}a = 2ak exp ( V2Trm2) (102)

and the M x M covariance matrix of the fluctuations will be given by

rk = E { HkIf} = Toeplitz[%yc(O); %y(1); ... ; -y,(M - 1)], (103)

The spectral standard deviation r. is generally expressed in terms of a velocity

standard deviation ao, as
= 4 7 - (104)

The velocity standard deviation is a measured quantity for various conditions and

types of clutter. With these definitions, the clutter covariance matrix can be written

as
Nc

R, = E(rk 0 bkbH) 0 akak. (105)
k=1
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3.7 Fully Adaptive Space- Time Adaptive Processing (STAP)

A fully adaptive space-time adaptive processor computes and applies a new

adaptive weight for every antenna element and every pulse. Thus, the weight vector

is of size MN. The data space-time snapshot at a particular range is given by

X .: otvt + Xu, (106)

where vt is the target space-time steering vector and Xu is the interference-plus-noise

component of the data. The optimum weight vector can be calculated from [5]

w - cR- Ivt, (107)

where c is a constant and R,, is the interference-plus-noise covariance matrix as

given in the preceding sections. This weight vector is optimum in the sense that it

maximizes the signal-to-interference-plus-noise ratio (SINR) and the probability of

detection for a given probability of false alarm, and, with the proper choice of c,

minimizes the the output power subject to a gain constraint in the target direction.

[8]

Once the weight vector is computed, the adapted pattern can be determined

from

PW = tW V(19, )fI. (108)

Figure 21 shows a sample array pattern of the beamformer. The values of the

parameters used are given in Table 2.
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Table 2 Parameters used to generate Fig. 21
Number of elements N 15
Number of pulses/CPI M 15
Number of clutter patches N, 360
Transmitter peak power Pt 200 kW
Operating frequency fo 450 MHz
Pulse width Tp 200 ,Is
PRF fr 300 Hz
Antenna transmit gain Gt 15 dB
Element gain g 4 dB
Element pattern g(0, €) Cosine
Instantaneous Bandwidth B 4 MHz
Noise figure No 3 dB
System Losses L, 4 dB
Platform height ha 9000 m
Platform velocity Va 50 m/s
Velocity misalignment angle Oa 00

Target azimuth Ot 100
Target Doppler ft 100 Hz
Target range Rt 130 km
Target RCS at 2 m2

Clutter terrain parameter y -3 dB
Number of jammers J 2
Jammer ERPD Sj 1000 W/Hz
Jammer range Rj 370 km
Jammer azimuth angles 0j -350, 25°
Jammer elevation angles Oj 00, 00
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Figure 21 The adapted pattern in the presence of a target at 100, 100 Hz, two
jammers at 250 and -35', and clutter.
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3.8 Signal-to-Interference-plus-Noise Ratio

A common measure of performance is the output signal-to-interference-plus-

noise ratio (SINR). The output signal from the beamformer is given by

Z = OtwHVt +- WHXU, (109)

where the first term is due to the target signal and the second term is due to the

undesired signals. Computing the power in each signal and finding the ratio give the

SINR,

SINR = - H w . (110)wHR~w (10

If the optimum weight vector is used, this expression reduces to

SINROt = 6tvYR-1vt. (111)

By letting vt(w) = b(w) ® a(0t), the SINR can be computed as a function of target

Doppler from

SINR(w) = 6tvt(W)H R-vt(w). (112)

Similarly, the SINR can be calculated as a function of target azimuth as

SINR(O) = 6t(V9)vt(V')HR-vt(V), (113)

where 6t(29 ) depends on the gain of the antenna when steered in the direction of

interest.

3.9 Summary

In this chapter, we have presented a theoretical development of the signals

involved in space-time adaptive processing. For a linear array of N elements which

transmits a coherent burst of M pulses, the spatial and temporal steering vectors
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are defined to be

a('O) " [1;ej2°; ... ;ei(N-1)27rO]

b (w; ei27rw; .. ei(M1)2,w I I

and the space-time steering vector is defined as the Kronecker product of these two

vectors,

= b(w) 0 a(V).

The target space-time snapshot is found by multiplying the target space-time steering

vector by the complex amplitude of the target return,

Xt = atbt ® at.

The space-time snapshot of the noise internal to the receiver is modeled as a random

vector, and the covariance matrix of the noise was represented as a MN 0 MN

identity matrix. The jammer signal is modeled as a random vector ,ij, of length

M. The space-time snapshot for the jammer is the Kronecker product of this signal

vector with the jammer steering vector,

Xj = %3 9 aj.

The jammer covariance matrix is given by

R. = IM 0 (Aj•A),

where Aj is a matrix of the spatial steering vectors for all the jammers, and .j is a

diagonal matrix of the jammer powers. The clutter space-time snapshot is the sum
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of the space-time snapshots of all the clutter patches,

Ne
XC E akbk 9 ak.

k=1

The clutter covariance matrix is given by

RC = VCE CVC,

where V, is a matrix of the space-time steering vectors to each clutter patch and Sc

is a diagonal matrix of the clutter power distribution.

The total covariance matrix is the sum of the covariance matrices of the noise,

jammer, and clutter signal. The optimum weight vector is found by inverting the

covariance matrix of the undesired signals and multiplying by the target spatial

steering vector,

w = R-'vt.

The adapted angle-Doppler pattern of the antenna is found from

PW(V, w) = w Hv(9,vw) 2 .

The SINR is used as a measure of the processor. If the optimum weight vector is

used, the SINR is given by

SINR = ýtvHR.lvt.

The following chapter extends these results to include the effects of near-field scat-

terers.
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IV. Near-Field Scatterers

4.1 Introduction

To this point in the analysis of space-time adaptive processing, we have as-

sumed the array is in free space. This is clearly not a realistic situation. The array

must be mounted on a platform of some type. Depending on the position of the

array, parts of the platform, such as the wing or the tail, may be in the field of

view of the array. The signals from the target, jammers and clutter will reflect off

these near-field scatterers (NFS) into the array, increasing the complexity of the

total signal received by the array.

Yu, Burnside, and Gilreath [10] developed a geometrical theory of diffraction

(GTD) model of the signals which will enter an antenna mounted on the surface of an

airframe. Their model included the effects of reflections off the airframe waves which

strike the airframe at a tangent and propagate along the surface of the airframe to

the antenna. Barile et al. [3] describe the effect of a near-field scatterer on a two-

element displaced phase center antenna (DPCA). Figure 22 illustrates the four paths

by which a signal transmitted by the first element can travel to the target and back

to the array. Figure 22(a) shows the direct path for the transmitted and received

signals. This is the same as in Chapter III. Figure 22(b) shows the case in which the

transmitted signal follows the direct path to the target and reflects off the NFS on

return before entering the array. Figure 22(c) shows the transmitted signal reflecting

off the NFS before traveling to the target and following the direct path to return to

the array. Figure 22(d) shows the double-bounce case, in which the both the transmit

and received signals reflect off the NFS. Each combination of antenna element and

near-field scatterer will produce a similar set of signal paths. For the purpose of

this analysis, the signals which scatter off the NFS more than once, as in Figure

22(d), will be assumed to have negligible power compared to the direct path and
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Figure 22 Four possible paths for a signal transmitted from the first element to
travel to the target and return to the array: (a) direct path to and from
target, (b) Path B, direct path to target, scattering path on return, (c)
Path C, scattering path to target, direct path on return, (d) Path D,
scattering path to and from target.

single bounce paths. In the case of multiple NFS, this assumption will also eliminate

signals which bounce off two or more different scatterers.

In a later paper [4], Barile et al. discuss the effect of a near-field scatterer on the

signal incident on an array in the presence of range ambiguous clutter. Each range

ambiguity will contain a component plane wave with the same Doppler frequency as

the target. When this component scatters off the NFS into the array, part of the

scattered wave will have the same horizontal wavenumber and Doppler frequency

as the target return, but a different vertical wavenumber. A linear array like the

one discussed in Section 3.2, which is only adaptive in azimuth, will not be able to

distinguish between the target and the interference. Fully adaptive STAP with a two-

dimensional array which is adaptive in both azimuth and elevation will accurately

null out the signal from the NFS, but at significant cost in processing time. In [4],

the authors propose preadaptive near-field nulling to reduce the processing required

with a two-dimensional array. The NFS is assumed to be at a fixed, measurable
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Figure 23 Geometry of the radar system including the near-field scatterer.

location relative to the array. The receiver weights required to place a null in the

direction of the NFS are precomputed for each column of the array. The adaptive

processor then weights the rows of the array to null out clutter and jamming signals

in azimuth. This procedure reduces the degrees of freedom available to the processor,

but also reduces the complexity of the calculations required to shape the beam.

This chapter will parallel the derivation presented in Chapter 3, but include

the effects of the near-field scatterer. The scatterers will be assumed to be point

scatterers, from which the scattered wave pattern will be isotropic and independent

of the direction of incidence. Because the scatterer is in the near-field of the array,

the scattered waves must be treated as spherical, meaning each receiver in the array

will detect a signal with different amplitude and direction of arrival.
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4.2 Radar System

The geometry of the system is the same as described earlier, with the addition

of the near-field scatterer (NFS), as illustrated in Fig. 23. To begin, a single near-

field scatterer is located in polar coordinates at (10, 00,), where the origin is the 0th

element of the array and the angle € is measured from the normal to the array. The

target signal originates from an angle Ot, and a jammer signal is at 0j. The antenna

elements are identical and are equally spaced along the x-axis. The NFS is assumed

to be a point scatterer close enough to the array to require the scattered wave to

be treated as spherical. The NFS is assumed to have no effect on the temporal

information in the plane wave, so the temporal steering vector b is the same for

the scattered and direct path waves. Because the scatterers are close to the array

(within a few meters), the delay of the scattered signal is be small compared to the

pulse width. Therefore, the scattered signal enters the array in the same PRI as the

direct path signal.

The distance from the scatterer to the nth antenna element is given by

1n, = [1',, + (nd)2 - 21ondsin(¢n8)]'/2. (114)

For the case of multiple scatterers, the subscript s denotes the scatterer being refer-

enced, so that ln. is the distance from the nth antenna element to the sth scatterer.

The projection of 10, onto the direct path to the target is given by

ts, = 108 cos( t - 00'). (115)

For the direct path signal, the incident wave was assumed to be planar, so the

signal received by each element contained the same amount of energy and the phase

progression across the array was linear. The wave from a near-field scatterer is not

planar. Each element receives a different amount of scattered energy, determined by

its distance from the scatterer. The ratio of the power of the scattered signal received
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Table 3 Symbols for near-field scatterer
ot angle to target
0j angle to jammer
'Od phase shift imposed by NFS
¢ns angle from nth element to sth scatterer
S number of near-field scatterers
ins distance from nth element to sth scatterer

= [0~8 + (nd)2 - 2londsin(0n,)]1/2
ls projection of 10s onto direct path

= 10. cos(¢t - 00s)
as NFS bistatic radar cross section
C(n scattering loss

=o 8/(41rl2,)

by the nth element to the power of the signal incident on the NFS will be referred

to as the scattering loss and is given by (n, = ao/(47rl28 ), where or is the bistatic

radar cross section (RCS) of the scatterer. For a point scatterer, a, is independent

of incident angle and the scattered wave will be isotropic. The power of the signal

from the scatterer incident on the nth antenna element is found by multiplying the

power incident on the scatterer by the scattering loss.

Because the distance from the scatterer to each element in the antenna array

has a nonlinear dependence on the interelement spacing, the phase progression of the

steering vector is nonlinear. The relative phase shift at the nth element, referenced

to the 0th element, will be given by (27r/Ao)(10, - In,). There will also be a phase

shift of Od = 180° when the signal reflects off the NFS. The parameters related to

the near-field scatterer are summarized in Table 3.

The space-time snapshot will be similar in form to Eqn. (50),

S= it+ i, (116)

where the tilde ( ) indicates the presence of signals from the NFS. In addition to

the direct path terms, the new target space-time snapshot will include terms due to
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the scattered target signals, and the undesired signal component will include terms

due to the scattered clutter and jammer signals.

The scattered target signal does not have the same spatial steering vector as the

direct path signal, but the temporal steering vector is unaffected and the amplitude

of the signal is still be deterministic. Therefore, the scattered target signal only shifts

the mean of the space-time snapshot, leaving the covariance of the data unaffected.

The total covariance matrix is now given by

=H

= E[(j, + 54 + xn)( +ii + Xn )H]. (117)

The direct path and scattered clutter returns are correlated, and therefore must be

combined in the computation of the clutter covariance matrix. The same is be true

of the jammer signal. The clutter, jammer, and noise signals are assumed to be

mutually uncorrelated, so the total covariance matrix can be written as

H., E[i~'ýC] + Ej-#J+ E[XnXn']

A, + A, + R , (118)

where the tilde () indicates the covariance matrix includes the effects of signals

from the near-field scatterer.

4.3 Scattered Target Signal

The signal received from the target by the nth antenna element is the sum of

the direct and scattered paths. For the mth pulse, the direct path signal at the nth

element is given by Eqn. (64) and is repeated here:

xmn = are Neim21•wtein 2 nh9 t = &teim27wt ein 2 r•t.
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The signal which travels the direct path to the target and bounces off the NFS on

the return (Path B) is indicated by the minus (-) superscript and is given by

Xmn =a tatse~m2• er-wzut (4"-)ee6jd (119)

where ls is as defined in Eqn. (115) and

1

[ g(0 )ns G ] 2 
(120)atn., = i o() I "

This expression is obtained by computing the single pulse signal-to-noise ratio (SNR)

for the scattered signals,

P TpGtT ( t(tt)g(¢n,)A'Ot (121)
(47r) 3NoLRt

and dividing the result by the SNR of the direct path signal given by Eqn. (65). All

the terms will cancel except the element gains in the target and scatterer directions,

g(&t) and g(¢ns), and the scattering loss, (n,. Equation (120) represents the energy

ratio of the scattered path signal to the direct path signal. The subscripts t, n and

s represent respectively the target, the nth antenna element, and the sth near-field

scatterer. By defining

d• 8 = atnae- j'(Ln-_a't,)ej',d (122)

Eqn. (119) can be written as

X- = td- e3m 27rt. (123)

This expression is similar to Eqn. (64), with d 8 s replacing en2,. The space-time

snapshot of the signals which have followed the path of Fig. 22(b) can be written as

X -= tbt ® d-, (124)
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where d-- = [d-,; d- 8 ; ... ; d-N-l) 8 ] represents the spatial steering vector for

the scattered target signal. Because each element is a different distance from the

scatterer, each element of this vector has a different amplitude, and the phase pro-

gression across the elements is nonlinear.

The signal entering the nth receiver which bounced off the NFS before going

to the target [Fig. 22(c)] is indicated by the plus (+) superscript. This signal is

more complicated. Because each element is a different distance from the NFS, there

will appear to be N pulses being transmitted from the NFS, each with a different

amplitude and phase. The signal received by the nth element is the sum of these N

pulses:

+ +e + + ...

+a+ -j ((N-1) -t,)e-j(N-1)21rit] djm27rwtein
2 irOtej3d

N-1-Otejim27rwt en27r~t eOd X_ 0 ,J-o Isls),-P7~

p=o

N-1
= ateijm 27rwt eJn2•rO ej'd E d+

p=o

= ateim2 "d+s, (125)

where

a = [gPv) 2 (126)

d+ = a,,e-j2(OP, -lt-) e-P 2  (127)
N-1

den-- en27ejVd: d+ (128)

p=O

The space-time snapshot due to the signals in Eqn. (125) can be written as

xt =atbt ® d+. (129)
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The total target space-time snapshot is found by adding Eqns. (124), (129),

and (71)

it = t + XT + Xt+
= at(bt o at) + t(bt ® d-) + at(bt ® d+)

= atbt ® (at + d- + d+). (130)

For multiple scatterers, Eqns. (122) and (128) must be summed over all scatterers,

and Eqn. (130) becomes

it atbt 9 [at + E (dts + s)

=atbt fit. (131)

The term fit in Eqn. (131) can be considered the spatial steering vector of the target

signal entering the array through both the direct and scattered paths. The Kronecker

product of the temporal steering vector, bt, with this spatial steering vector gives

the space-time steering vector for the target due to both the direct and scattered

paths,

Zit = bt fit. (132)

This expression will be used later in the calculation of the ideal weight vector.

4.4 Scattered Jammer Signal

We will begin by considering a single jammer and single NFS. The parameter

,, is similar to l' given by Eqn. (115), except the angle to the jammer is used in

place of the target angle,

= 10, cos(¢j - k0O). (133)

The total jammer signal contains two components: the direct path and the Jammer-

NFS-array path. During the mth PRI, the signal received by the nth receiver which
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has scattered off the NFS will be given by

Xmn = anmainse -J( I'-
1
j8 ) e3•kd (134)

where -~11
as = L g()ns2] (135)

From these expressions, the components of the spatial steering vector of the scattered

jamming signal can be written as

d-;ns =a-e- ( )ei,. (136)

By defining

fi = a, + d3 , (137)

the jammer space-time snapshot is now given by

S= aj®i= a 3 ®at+aj~dI j+ X. (138)

The jammer covariance matrix is computed as in Eqn. (78), with fij replacing aj,

= E(cijiý) (9 (fijfj)

= aýjIM ® (&jajH)

= IM ®( . (139)

For J jammers, 4ij can be extended in the same manner as in Section 3.5,

,,D = Aj'%=tA'3 , (140)
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where

Aj [fij(q0), iij(02), , jO~

= [ail, a 2 , ""., &J] (141)

For S scatterers, dj, in Eqn. (137) must be summed over all the scatterers,

S-1
j = a + E: d3-. (142)

This expression can then be used in Eqn. (141).

4.5 Scattered Clutter Signal

The return from each clutter patch consists of a set of signals similar to the set

of target signals. There is the direct path signal, the two single-bounce path signals,

and a double-bounce path. As with the target signal, the double-bounce path will be

ignored in computing the total clutter return. It is assumed there is no misalignment

angle (Oa = 0) and no intrinsic clutter motion.

The direct path signal is, from Eqn. (84),

Nc Nc

X= E akVk = a ak(bk 9 ak).
k=1 k=1

The signal which bounces off the NFS while returning from the kth clutter patch

[Fig. 22(b)] is given by

Xknm = akaknser ee (-

= kejim21rwkd-n (143)
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The space-time snapshot for this set of signals is found by summing over all the

near-field scatterers and all the clutter patches,

Nc / S-i1
x;= ak (bk OEi d- (144)

k=i s=O

The signal which bounces off the NFS before traveling to the kth clutter patch

[Fig. 22(c)] is given by
+ + e o(10. -1k,)' + .X

Xkmn = k ako + ak1,eij(-,1'-8ki)e-j2i•ro-O+

+a g _ 2-oo (I(N- 1).-ilk) ) e-j(N-1)27rt] ejm2 7rwttejn 27rdtejd

N-I

= okejm27rwtejn21rk ej'Pd E a+le-J X .(c-)e-jp21rdk

p=o

N-1
= ck ejm27rwt ejn21r9kejPd Z: d+pp=0

= ke jm21rwtd+ (145)= t~kV 'kns"

The space-time snapshot due to these signals is given by

xC Nc /S-1i\)x+ =Eak (bk®(d8)E • (146)
k=--1 8=0

The total clutter space-time snapshot is found by adding Eqns. (144) and (146) to

(84),

ic = xo+x +x 7
akbk ® ak + Ef (akbk o d 8 + akbk ® d]

k=1 s=0

- •(okbk® ak+ , d:(d). (147)

k=1 8=0

By defining

'k =bk® [ak±E(d~s k.d+] (148)
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Figure 24 Location of the near-field scatterers relative to the array.

and

Vc = [ii; v2; ""; VNc], (149)

the total clutter covariance matrix can be written in the same form as Eqn. (89),

oC= VccVI. (150)

The clutter covariance matrix will not be Toeplitz-block-Toeplitz as in Section 3.6.

The blocks within the matrix lose their Toeplitz structure when the near-field scat-

terers are introduced. Since the temporal information of the signal is not affected,

the matrix will retain its block-Toeplitz structure. The clutter covariance matrix

shown in Fig. 25 was generated for the same conditions as used in Fig. 14, but with

the addition of seven near-field scatterers with a RCS of 0.5 mi2 , spaced equally, one

meter in front of the array, as illustrated in Fig. 24. Figure 26 is a magnified view

of the upper left corner of the covariance matrix

4.6 Fully Adaptive Processing in the Presence of Near-field Scatterers

As in Chapter 3, the total covariance matrix is the sum of the jammer, clutter,

and noise covariance matrices. In the presence of near-field scatterers, Eqns. (139),
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Figure 25 Clutter covariance matrix in the presence of seven near-field scatterers.
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Figure 26 Upper left corner of the clutter covariance matrix in the presence of
seven near-field scatterers.
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(150), must be used in place of Eqns. (78) and (89),

R. = R3 + R, + R,. (151)

The form of the optimum weight vector is the same as Eqn. (107), but using the co-

variance matrix of Eqn. (151) and the target space-time steering vector of Eqn. (132).

The optimum weight vector is given by

* = Ri[bt®(at+8[d= +d )] (152)

where d- and d+ are as defined in Eqns. 4.3. This weight vector is then used to

determine the adapted angle-Doppler pattern of the antenna as in Eqn. (108),

P (0, W) = 1*H(,O, W) 2. (153)

The resulting adapted pattern is shown in Fig. 27. The same parameters were used

as listed in Table 2, with the scatterer configuration shown in Fig. 24. Note how the

sidelobe structure has been distorted in the presence of near-field scatterers. This

distortion causes the clutter and jammer nulls to become blurred, allowing more

energy from these sources to enter the receiver.

4.7 Summary

In this chapter, the theoretical development of space-time adaptive processing

presented in Chapter 3 has been extended to include the effects of near-field scat-

terers. The near-field scatterers have no effect on the temporal steering vectors of

the received signals; only the spatial steering vectors are affected. While the spatial

steering vectors for the direct path of each signal have unit amplitude and a lin-

ear phase shift, the spatial steering vectors of the scattered signals have neither of
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Figure 27 The adapted pattern for the same conditions as Fig. 21, with the addi-
tion of seven near-field scatterers, as illustrated in Fig. 24.
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these qualities. Because each scatterer is a different distance from each element, the

signals received by each element from a particular scatterer have a nonlinear phase

progression. Also, since the scatterers are in the near-field of the array, the scattered

wave must be treated as spherical, meaning the amplitude of the scattered signals

received by each element is different.

To simplify the computations, signals which scatter off more than one near-

field scatterer are ignored. For the path shown in Fig. 22(b), in which the signal

bounces off the scatterer when returning to the array, the spatial steering vector is

given by
d-= [dT8 ; dTj8 ; ... ; d-Nl)S],

where

dn, = a- 8 -X0(ins ,jlkd

at,, is the ratio of the amplitude of the direct path target signal to the scattered

path target signal from the sth scatterer to the nth element, 1n, is the distance from

the nth element to the sth scatterer, and I' is the length of the projection of l1n

onto the target vector. The spatial steering vector of the signal which bounces off

the scatterer before going to the target is given by

d'=[dtls,; dtll; ... ; d'(~ ~]

where
N-1 •pitt

dt+ jn2reid E atpe- o - e-
p=O

The total spatial steering vector for the target signal is the sum of the spatial steering

vectors for the direct path and scattered paths for all the scatterers

$-1

fit6= at + E (dT +d
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this expression is then used to compute the space-time steering vector and space-time

snapshot of the target signal as in Chapter 3,

Vt = bt ® fit.

The scattered jammer signal has the same form as the target signal which

bounced off the scatterer while returning from the target. The components of the

spatial steering vector of the scattered jammer signal are given by

d3, 8 =a- e)-%0(l•'-t'j)e3j4'd3nls

where aJ'n, and ljs have the same form as for the target signal, but using the direction

to the jammer. The total jammer steering vector is found by summing di, over all

the scatterers and adding the direct path steering vector,

S-1

8=0

The jammer covariance matrix is computed in the same manner as in Chapter 3,

but using fij in place of aj,

ft3 = IM ®& (Xj:_j -)

where Aj = [dl, A2,' J]

The steering vectors for the scattered clutter returns from the kth clutter patch

have the same form as the target return,

-= a-•-e--'In. -I,) e(ld

r+~8  - e~f~Ok d N-1 + - j

p=O
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The total spatial steering vector for the kth clutter patch is the sum of the direct

path steering vector with the sum of the scattered path steering vectors for all the

scatterers,
S-1

ik = ak + Z (d 8 + d+).
8=0

The total spatial steering vector for the kth clutter patch becomes

k = bk ® iik,

and the clutter covariance can be computed as

R,= •rt=ST,'

where V- = [v', •2, • • jN]

The total covariance matrix of the undesired signals is the sum of these two

covariance matrices with the noise covariance matrix,

R =R3+R+ n

The optimum weight vector, adapted antenna pattern, and SINR can be computed

using these quantities,

P*(i,~

SINR = •t~ j•
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V. Results

5.1 Test Plan

To determine the effects of the near-field scatterers on space-time adaptive

processing, several test cases were examined. The number of scatterers varied from

two to fifteen and the RCS of the scatterers varied from 0.01 to 0.5 m2 . Six different

orientations were used, which are shown in Fig. 28. For orientations A through E,

the scatterers are linearly spaced between the endpoints. Orientation F is similar to

orientation A, but the positions of the scatterers are allowed to vary by ± 0.1 m in

both the x and y directions. Table 4 describes the orientations in more detail. In all

cases, the positions of the scatterers are with respect to the left end of the array.

5.2 Results

5.2.1 No External Interference. For the first three sets of figures, the

jammer and clutter signals were ignored. In the absence of external interference, the

signal-to-noise ratio (SNR) does not depend on the Doppler frequency.

Figures 29 through 32 show how changing the RCS of the scatterers affects

the SNR. The scatterers were arranged in orientation A. Figure 29 shows the SNR

as a function of azimuth angle and scatterer RCS for five near-field scatterers. The

Table 4 Definition of orientations
Location of Location of

Orientation first scatterer second scatterer
(xI, y 1)(m) (X2 y2 )(m)

A (0,1) (la, 1)
B (1/2,1) (1/2,1 + 1)
C (0,1) (0,1)
D (0,1) (1,1+ 1)
E (0,1) (1,1/2+1)
F (0 ± 0.1, 1 ± 0.1)(l ( 0.1,1 + 1 ± 0.1)

'I is the length of the array
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Figure 28 Near-field scatterer orientations.

SNR decreases as the scatterer RCS increases, but tends to flatten out as more

scatterers are added. For larger numbers of scatterers, the SNR increases as the

size of the scatterers increases. The increase in SNR is due to the larger scatterers

reflecting more target energy into the array. Figures 30 through 32 show the SNR as

a function of azimuth angle and scatterer RCS for seven, eight, and fifteen scatterers

respectively.

The notch at 0' in Fig. 31 is due to the fact that each NFS is directly in front

of an antenna element. Since the NFS imposes a 180° phase shift on the signal, the

signal from a scatterer to the element directly behind it will be 1800 out of phase

with the direct path signal. The sum of this scattered signal with the direct path

signal reduces the apparent amplitude of the direct path signal entering the element.

Because only eight of the fifteen elements are affected, a target at 00 appears to

produce a wavefront with an amplitude which varies with position. This effect is

shown in Fig. 33. This problem does not occur with 15 scatterers because the signal

at each element is reduced by the same amount.
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Figure 29 SNR as a function of azimuth angle and scatterer RCS for 5 NFS, ori-
entation A.
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Figure 30 SNR as a function of azimuth angle and scatterer RCS for 7 NFS, ori-
entation A.
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Figure 33 Effect of eight NFS on the direct-path wavefront perceived by a fifteen
element array.

Figures 34 through 39 show how changing the number and orientation of the

scatterers affects the SNR. For each orientation in Table 4, the target angle was

varied from -50' to +500 and the number of scatterers was varied from zero to

fifteen. The scatterer RCS was held constant at 0.5 m2 . For orientation A, shown in

Fig. 34, the SNR decreases until the number of scatterers, S, reaches five, at which

point the SNR begins to increase. At S = 10, the SNR is at the same level as for

no scatterers. The SNR for orientation B is shown in Fig. 35. The minimum SNR

occurs at S = 7, and the SNR returns to the same level as with no scatterers at

S=13.

Figure 36 shows the SNR for orientation C. For target angles greater than 200,

the scatterers have almost no effect on the SNR because the scattered waves do not

enter the array from the same direction as the direct path wave. For targets to

the left of the array, the scatterers affect the SNR in a manner similar to that of
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orientation B. The SNR decreases as the number of scatterers increases from zero to

seven, then increases as the the number of scatterers continues to increase.

Figures 37 and 38 show the SNR plots for orientations D and E. As the angle

between the scatterers and the array decreases, the SNR plot more closely resembles

that of Fig. 34 for orientation A. Figure 39 shows the SNR for orientation F. The

plot is very similar to Fig. 34, indicating the precise spacing of the scatterers has

less effect on the SNR than their number and general configuration.

Figures 40 through 42 show the adapted pattern as a function of azimuth

angle at the target Doppler for different numbers of scatterers and a scatterer RCS

of 0.5 mi2 . Figure 40 shows the adapted azimuth antenna patterns for a target at

00, 100 Hz, and various numbers of scatterers. Fig. 41 is for a target at 20', and

Fig. 42 is for a target at 40'. The shape of the mainbeam and first two side lobes

is not significantly affected by the scatterers. The remaining side lobes, however,

show some significant distortion, especially for the cases of five, seven, eight, and ten

scatterers. The scatterers are spaced more than A/2 apart, and the criterion to avoid

spatial frequency aliasing given in Eqn. (20) is not met. The large grating lobes, such

as in Fig. 42 at -20° for eight scatterers, are the result of this spatial undersampling.

For S = 15, the side lobes are lower than for the case of no scatterers.
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Figure 35 Signal-to-noise ratio as a function of azimuth angle and number of scat-
terers using orientation B and o- = 0.5 in.
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Figure 36 Signal-to-noise ratio as a function of azimuth angle and number of scat-
terers using orientation C and a, = 0.5 in2 .
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Figure 40 Adapted antenna pattern as a function of azimuth angle for a target at
00, 100 Hz. The scatterers were placed in orientation A. The number of
scatterers, S, is indicated at the right side of the plot.
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Figure 41 Adapted antenna pattern as a function of azimuth angle for a target at
200, 100 Hz. The scatterers were placed in orientation A. The number
of scatterers, S, is indicated at the right side of the plot.
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Figure 42 Adapted antenna pattern as a function of azimuth angle for a target at
4Q00, 100 Hz. The scatterers were placed in orientation A. The number

of scatterers, S, is indicated at the right side of the plot.
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Table 5 Rank of the clutter covariance matrix for
each orientation and number of scatterers S.

Scatterer Orientation
S A B C D E F
2 82 83 83 84 84 82
3 83 90 90 92 90 87
4 86 94 93 100 95 91
5 87 96 96 105 99 93
6 87 96 97 108 101 95
7 86 95 97 109 103 95
8 84 94 97 108 102 96
9 87 95 98 111 103 97

10 86 95 97 113 104 98
11 85 95 96 112 104 98
12 85 94 95 110 104 97
13 85 94 95 110 104 97
14 82 93 95 110 103 98
15 79 90 94 108 103 96

5.2.2 External Interference Present. The following plots show the effects of

the near-field scatterers on the adapted antenna pattern, signal-to-interference-plus-

noise ratio (SINR), and the rank and eigenvalues of the clutter covariance matrix.

The radar system, jammer, and clutter parameters used are the same as those listed

in Table 2.

Table 5 shows the rank of the clutter covariance matrix for a target at 0'

and each combination of orientation and number of scatterers. The rank indicates

the number of degrees of freedom required to null out the clutter return. The two

diagonal orientations, D and E, have the greatest effect on the rank of the clutter

covariance matrix. Figure 43 shows the eigenvalues for each orientation with eight

scatterers. In most cases, the highest rank occurred with between seven and ten

scatterers. For comparison, the rank of the clutter covariance matrix with no near-

field scatterers is 29. Increasing the scatterer RCS or the target angle had little effect

on the rank.
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left represents the eigenvalues of the clutter covariance matrix with no
scatterers, the second solid line is for orientation A, and the last solid
line is for orientation D.
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Figures 44 through 49 show the azimuth antenna pattern at the target Doppler

for different orientations and numbers of scatterers. The target is at 200, 100 Hz, and

the scatterer RCS is a, = 0.5 mi2 . Appendix B contains the complete angle-Doppler

patterns from which these figures were taken. The presence of clutter causes the

SINR to be a function of Doppler frequency, as well as azimuth angle. Figures 50

through 55 show the corresponding SINR vs. Doppler plots. The large null at 50

Hz corresponds to the Doppler frequency of clutter at 200. The smaller nulls, such

as the one at -80 Hz for S=5 in Fig. 50, correspond to the Doppler frequencies of

clutter entering the receiver through the grating lobes.
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Figure 44 Adapted antenna pattern as a function of azimuth angle for a target
at 200, 100 Hz, scatterer orientation A. The number of scatterers, S, is
indicated at the right side of the plot.
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Figure 45 Adapted antenna pattern as a function of azimuth angle for a target
at 200, 100 Hz, scatterer orientation B. The number of scatterers, S, is
indicated at the right side of the plot.
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Figure 46 Adapted antenna pattern as a function of azimuth angle for a target
at 200, 100 Hz, scatterer orientation C. The number of scatterers, S, is
indicated at the right side of the plot.
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Figure 47 Adapted antenna pattern as a function of azimuth angle for a target
at 200, 100 Hz, scatterer orientation D. The number of scatterers, S, is
indicated at the right side of the plot.
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Figure 48 Adapted antenna pattern as a function of azimuth angle for a target
at 200, 100 Hz, scatterer orientation E. The number of scatterers, S, is
indicated at the right side of the plot.
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Figure 49 Adapted antenna pattern as a function of azimuth angle for a target
at 200, 100 Hz, scatterer orientation F. The number of scatterers, S, is
indicated at the right side of the plot.
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Figure 50 SINR as a function of Doppler frequency for a target at 200, 100 Hz,
scatterer orientation A. The number of scatterers, S, is indicated at the
right side of the plot. The dashed line is the SINR with no scatterers.
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Figure 51 SINR as a function of Doppler frequency for a target at 20', 100 Hz,
scatterer orientation B. The number of scatterers, S, is indicated at the
right side of the plot. The dashed line is the SINR with no scatterers.
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Figure 52 SINR as a function of Doppler frequency for a target at 200, 100 Hz,
scatterer orientation C. The number of scatterers, S, is indicated at the
right side of the plot. The dashed line is the SINR with no scatterers.
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Figure 53 SINR as a function of Doppler frequency for a target at 200, 100 Hz,
scatterer orientation D. The number of scatterers, 8, is indicated at the
right side of the plot. The dashed line is the SJNR with no scatterers.
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Figure 54 SINR as a function of Doppler frequency for a target at 200, 100 Hz,
scatterer orientation E. The number of scatterers, S, is indicated at the
right side of the plot. The dashed line is the SINR with no scatterers.
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Figure 55 SINR as a function of Doppler frequency for a target at 200, 100 Hz,
scatterer orientation F. The number of scatterers, S, is indicated at the
right side of the plot. The dashed line is the SINR with no scatterers.
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VI. Conclusions

6.1 Conclusions

This thesis has presented a derivation of space-time adaptive processing in the

presence of near-field scatterers. In Chapter 4, we derived an expression for the

spatial steering vector of the signal entering the array due to a particular scatterer.

Summing this result over all the scattering paths and adding the direct path steering

vector gives the steering vector for the combined direct and scattered signals. This

total steering vector replaces the direct path steering vector in the computation of

the space-time snapshot of the signal, the covariance matrix of the undesired signals,

the optimum weight vector, and the adapted pattern and SINR.

The effect of near-field scatterers on the performance of space-time adaptive

processing depends on the number and configuration size of the scatterers. The

scatterers increase the energy entering the receivers from each signal source. In

some cases, the fully adaptive processor is able to suppress the scattered jammer

and clutter energy while using the scattered target energy to increase the SINR.

When the number of scatterers is small and the spacing between them is more than

a half wavelength, the scatterers create grating lobes in the adapted pattern. The

grating lobes allow undesired signals to enter the receiver, reducing the SINR by as

much as 6 dB in some situations. As the number of scatterers increases, the grating

lobes vanish.

Changing the orientation of the scatterers had the most dramatic effect on

the shape of the adapted antenna pattern. Arranging the scatterers normal to the

array, as in orientations B and C, caused the greatest disruption of the sidelobe

pattern, in some cases elevating the sidelobes by 10 dB or more, as seen in Figs. 45

and 46. Although the elevated sidelobes allow additional undesired signals to enter

the receiver, the adaptive processor is able to maintain good SINR performance,
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experiencing only a 2-3 dB loss for orientation B (Fig. 51) and a achieving a slight

gain for orientation C (Fig. 52).

The rank of the clutter covariance matrix when the near-field scatterers are

present is significantly higher than without the scatterers. In Section 3.6.2, the

return from a clutter patch was assumed to remain constant from pulse to pulse.

With the near-field scatterers, this assumption does not hold. The scattered signals

entering one element will be different from the scattered signals entering the next

element when the array is shifted, as in Fig. 19. The maximum values for the rank

for each orientation occurs with between eight and twelve scatterers. Increasing the

number of scatterers beyond 5 has relatively little effect on the rank when compared

to the increase in rank when the first two scatterers are introduced.

6.2 Suggestions for Future Research

In every case considered in this thesis, the target, jammer, and scatterers were

all in the same plane. The effect of placing the scatterers in different arrangements

in three dimensions should be studied. The extension of the derivation presented

here is straightforward, requiring only the antenna pattern and spatial frequency to

be calculated as a function of elevation.

The effects of signals bouncing off multiple scatterers also needs to be in-

vestigated. Multiple scattering will probably have the greatest impact at angles

approaching - 90*, since the direct path gain is nearly zero at these angles.
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Appendix A. Notational Conventions and Matrix Operations

This Appendix defines the notation conventions which will be used in this paper.

Vectors (defined to be column vectors): lower-case bold letters: x, a.

When the elements of a vector are given explicitly, a semicolon (;) between

elements indicates a column vector, and a comma (,) or no punctuation between

elements indicates a row vector.

RowVector b = [a,, a 2, ... , an]

= [aI a2  ... an]

ColumnVector a = [a,; a 2; ... ; an]

bT = a

Matricies: upper-case bold letters: R, E.

Element of matrix A = ak,l

Scalars: unbold characters: a, N.

Complex conjugate: (.)*

Transform of a vector or matrix: (.)T

Conjugate Transform: (.)H

M x M Identity matrix: IM

M x 1 vector of ones: 1M=[1; 1; ... ; 1]

Toeplitz matrix: a matrix in which all diagonal elements are equal. The vectors

x and y represent the first row and first column respectively. (In this example,
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M = N, but this is not necessary.)

X1 X 2  X3 "• XN

Y2 X1 X2  ... ZN-1

Toeplitz(x, y) = Y3 Y2 X1 ... XN-2

YM YM-1 YM-2 X1l

Toeplitz(x) the same vector is used for the first row and first column, and

therefore the resulting matrix is symmetric.

Inner product of x and y, each of length M: z = xTy = x. y = alb, + a2b2 +

+ aMbM.

Outer product of x and y of lengths M and N respectively:

a l b, ajb2  ... albN

Z = xyT a2b, a 2b2  ... a2bN

aMbl aMb2 ... aMbN

Kronecker Product: for A (M x N) and B (K x L). The resulting matrix Z is

MK x NL.

aj,1B aj,2B .. ' al,NB

Z =A & B a2,1B a2,2B ... a2,NB

aM,1B aM,2B ... aM,NB
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Hadamard Product: A and B must both be M x N

a1 ,1b1,1 a1,2b,, 2  ... al,Nbl,N

Z A E B = a 2,1 b2 ,1  a 2,2b2,2  ... a2,Nb2,N

aM,lbM,1 aM,2bM,2 ... aM,NbM,N

Vandermonde Matrix: given an M x N, each xm will be unique.

1 x1  " 1

1 x 2 ... XN-1

1 XM X2 ... XN-1
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Appendix B. Supplemental Figures

The following figures show the full adapted angle-Doppler pattern for a target at

200, 100 Hz, and each scatterer orientation.
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Figure 56 Angle-Doppler pattern for a target at 200, 100 Hz, with no scatterers.
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Figure 57 Angle-Doppler pattern for a target at 200, 100 Hz, with scatterers with
o, = 0.5 m2 placed in orientation A. The number of scatterers is indi-
cated to the right of each figure.
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Figure 58 Angle-Doppler pattern for a target at 200, 100 Hz, with scatterers with
a, = 0.5 m2 placed in orientation B. The number of scatterers is indi-
cated to the right of each figure.
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Figure 59 Angle-Doppler pattern for a target at 200, 100 Hz, with scatterers with
a, = 0.5 m2 placed in orientation C. The number of scatterers is indi-
cated to the right of each figure.
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Figure 60 Angle-Doppler pattern for a target at 200, 100 Hz, with scatterers with
a, = 0.5 m2 placed in orientation D. The number of scatterers is indi-
cated to the right of each figure.
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Figure 61 Angle-Doppler pattern for a target at 200, 100 Hz, with scatterers with
a, = 0.5 m2 placed in orientation E. The number of scatterers is indi-
cated to the right of each figure.
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Figure 62 Angle-Doppler pattern for a target at 20', 100 Hz, with scatterers with
o, = 0.5 m2 placed in orientation F. The number of scatterers is indi-
cated to the right of each figure.
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