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A Study in the Use of CORBA in Real-Time Settings: 
Model Problems for the Manufacturing Domain 

Abstract: The Object Management Group's (OMG) Common Object Request 
Broker Architecture (CORBA) is an important and popular technology that 
supports the development of object-based, distributed applications. The 
benefits promised by CORBA (abstraction, heterogeneity, etc.) are appealing 
in many application domains, including those that satisfy real-time 
requirements—such as manufacturing. Unfortunately, CORBA was not 
specified in light of real-time requirements, and so the question remains 
whether existing object request brokers (ORBs) can be used in real-time 
settings, or whether developers of real-time systems must await future 
extensions of CORBA that address real-time issues or use non-CORBA- 
compliant ORBs. In this report, we describe the application of an off-the-shelf 
ORB to two real-time model problems. Based on our experiences, we believe 
that today's ORBs can be used in real-time settings, with certain caveats as 
outlined in this report. We also outline the concept of composite objects, an 
approach for extending the range of non-real-time ORBs into a greater variety 
of real-time settings. 

1       Introduction 
Real-time computing is often associated with special purpose systems which are vendor spe- 
cific, expensive, hard to maintain, and difficult to upgrade. Examples include embedded com- 
puter systems in today's airplanes, cars, and automated factories. As computers become 
increasingly prevalent in society, and as computing applications become increasingly complex, 
so, too, will there be an increasing demand to integrate multiple real-time control systems into 
larger systems, and to integrate real-time subsystems into non-real-time distributed computing 
environments. This way, non-real-time components like graphical user interfaces and databas- 
es can be connected to a system with real-time components. 

Distributed computing using commercial off-the-shelf (COTS) hardware and software compo- 
nents is appealing because of its cost effectiveness. A number of standards have evolved over 
the past few years which ensure interoperability among heterogeneous hardware platforms 
and software packages from different vendors. Object technology has been used to describe 
interfaces and interaction patterns for such distributed applications. The Common Object Re- 
quest Broker Architecture (CORBA) [OMG 95, Soley 95] is the most successful representative 
of an object-based distributed computing infrastructure. There are a number of commercially 
available implementations of CORBA, which we refer to as object request brokers (ORBs1) as 
a shorthand. 

1-    Throughout this report the term "ORB" will be used to refer to existing implementations of CORBA. 
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In this paper, we investigate the use of CORBA in the real-time computing domain. This ques- 
tion is interesting and important because CORBA was not designed originally for real-time ap- 
plications, and yet there is evident demand for applying CORBA in real-time settings. We view 
this question as a form of technology evaluation, where a technology (in this case, CORBA) is 
evaluated with respect to concrete problems within an application domain (in this case, shop- 
floor automation). One technique that is particularly useful in technology evaluation is the use 
of model problems—focused experimental prototypes that reveal technology benefits and lim- 
itations in well-bounded ways. (For a more general overview of technology evaluation tech- 
niques, see "A Framework for Evaluating Software Technology" [Brown 96].) The Software 
Engineering Institute (SEI) Simplex and the National Institute of Standards and Technology 
(NIST) Real-Time Control System (RCS) architectures provide the basis for two model prob- 

lems described in this report. 

We use the Simplex architecture [Sha 96] as the basis for a model problem that allows us to 
explore the use of ORBs as an interconnection mechanism between hard real-time2 systems. 
The Simplex application provides coordinated control over two inverted pendulums (each of 
which is a Simplex-based, fault-tolerant, hard real-time control system). We use the NIST RCS 
architecture as the basis for a second model problem that allows us to explore the use of avail- 
able ORBs as a real-time communication mechanism within a real-time system. The RCS ap- 
plication is the NIST Motion Controller, a simulation of a device that receives numerical control 
(NC) instructions and mills an appropriate surface. 

The rest of this paper is organized as follows: In Section 2, we summarize the key background 
concepts of the Simplex and RCS architectures; we also briefly describe CORBA and two top- 
level approaches for integrating CORBA with real-time systems. In Section 3 we discuss the 
coordinated inverted pendulum model problem, while in Section 4 we discuss the NIST motion 
controller model problem. In Section 5, we outline the key concepts underlying composite ob- 
jects, an approach for predictable integration of CORBA with real-time software. In Section 6 
we provide an outline of related work. Finally, we present our conclusions in Section 7. 

By "hard real-time" we mean systems that must be guaranteed to meet execution schedules. In contrast, "soft 
real-time" systems might provide only probabilistic guarantees (for example, meet execution schedules 90% of 
the time). 

_________ 



2      Background 

2.1    CORBA 

CORBA is a specification for object-based interprocess communication in distributed, hetero- 
geneous environments. CORBA has been standardized by the Object Management Group 
(OMG), an industry group of over 600 computer manufacturers and independent software ven- 
dors. The current version of CORBA, version 2.0 [Soley 95], was specified in 1995. There are 
many COTS implementations of CORBA available in the marketplace; we refer to such imple- 
mentations as object request brokers (ORBs), and are careful to distinguish between CORBA 
(a specification) and ORB (an implementation). 

CORBA provides transparent distribution of objects and supports interoperability across sev- 
eral dimensions of heterogeneity. Components of a CORBA program can be implemented in 
different programming languages on a variety of operating systems and hardware platforms. 
CORBA enables client programs to invoke a server object's methods regardless of whether 
the server object is in the client's address space or located on a remote node in a distributed 
system. CORBA defines services that locate a server object implementation, prepare the serv- 
er object for receiving a client's request, and finally communicate data making up a request. 

CORBA Interface Definition Language (IDL) is a declarative language that describes the inter- 
faces to server object implementations, including the signatures of all server object methods 
that are callable by clients. The surface syntax of IDL is similar to that of C++, but IDL is lan- 
guage-independent. Mappings from IDL to C, C++, Ada, and Smalltalk have been specified. 
However, IDL does not provide syntax for object implementations. 

The OMG sponsors a number of technical initiatives aimed at fostering the adoption of COR- 
BA. One ongoing effort within the OMG that is of relevance to the work described in this report 
concerns real-time CORBA (RT-CORBA). An RT-CORBA special interest group (RTSIG) is in- 
vestigating possible future extensions to the OMG Object Management Architecture (OMA)3 

to support a wide spectrum of distributed, real-time, fault-tolerant systems. It must be noted 
that neither CORBA nor the OMA currently address questions of real-time quality of service; 
in the remainder of this report, the terms CORBA and ORB will be used to refer to existing, 
non-real-time specifications and products. 

The focus of the work described in this report is on the use of ORBs available today in real- 
time and fault-tolerant settings. This focus provides risk reduction against the possibility that 
the OMG RTSIG will fail to achieve industry consensus on proposed real-time extensions to 

3- The OMA consists of CORBA plus a collection of object services hosted on CORBA. These object services 
support general programming constructs (such as naming services and event channels) as well as vertical in- 
dustry-specific services (such as work flow, telecommunications, and manufacturing). 
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CORBA and the OMA. Additionally, the work provides a useful transition step even if the RT- 
SIG is successful, because even in this scenario, the marketplace will require some (perhaps 
significant) time to produce robust implementations of any real-time extensions to CORBA and 
the OMA. 

Also, it should be borne in mind that all such extensions will ultimately rely on operating sys- 
tems services that provide the necessary real-time quality-of-service guarantees; for the fore- 
seeable future, such operating systems will continue to represent (relatively speaking) a niche 
market. Furthermore, most real-time operating systems currently fail to support real-time com- 
munication over a network—and this is obviously relevant to RT-CORBA. Therefore, the work 
described in this report will remain relevant even with the advent of time and industry accep- 
tance of RTSIG proposals. 

This report addresses two different scenarios for integrating CORBA with real-time applica- 
tions: 

• Use CORBA as a gateway to real-time subsystem(s). In this scenario, the CORBA 
gateway is not responsible for satisfying real-time, quality-of-service guarantees. 

• Use CORBA as a communication mechanism within a real-time subsystem. In this 
scenario, the ORB must contribute to (or not hinder) real-time quality of service; in 
particular, it must satisfy potentially stringent performance requirements.4 

To explore the first scenario, we extended an existing model problem developed previously on 
the Simplex architecture (described in detail, below). For the second scenario, we extended 
an existing system developed by the NIST Manufacturing Engineering Laboratory (MEL) that 
was developed on the NIST RCS architecture. 

2.2   The Simplex Architecture 

Current real-time computer software architectures do not support the safe and reliable inser- 
tion of new components and technologies into existing systems. The Simplex architecture 
[Sha 96] has been developed to support the reliable online upgrade of hardware and software 
components; reliability is maintained in spite of errors in new modules. This is important when 
introducing changes, such as new COTS components, into running systems. 

To mitigate the risks of a system upgrade, the Simplex architecture has been designed to tol- 
erate timing faults such as overrun, programming system faults such as illegal addressing, and 
semantic faults due to modeling, algorithm design, or implementation errors. Simplex handles 
timing faults and programming system faults by temporal and spatial encapsulations. Software 
semantic faults are handled by the use of analytic redundancy [Sha 96]. The Simplex archi- 
tecture is based on generalized rate-monotonic scheduling theory [Rajkumar 94]. Also, the 

As discussed later, priority inversion is another area where embedded ORBs can interfere with satisfying real- 
time requirements. However in the motion controller model problem, this was not an issue. 
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Simplex architecture assumes that the underlying operating system supports either the priority 
inheritance protocol or the priority ceiling protocol to avoid priority inversion problems during 
the management of shared resources. The current implementation of Simplex is based on in- 
terprocess communication mechanisms specific to an operating system compliant with POSIX 
1003.1b. 

The Simplex architecture has been used successfully to solve a number of control problems, 
and a number of demonstration applications have been implemented using Simplex. These 
solutions demonstrate how real-time software can be altered and tested without making the 
controlled device unsafe. A number of controllers can be interchanged, for example, to imple- 
ment new or improved control algorithms. In case of faults introduced by the new controller, 
the system implements graceful degradation, ultimately relying on a safety controller that im- 
plements fail-safe operational behavior. 

The basic building block in the Simplex architecture is the replacement unit, containing one or 
more processes with a communication template that facilitates the online replacement of one 
unit with another. Replacement units are designed in such a way that they can be added, de- 
leted, merged, or split online by a set of standardized upgrade transactions. 

In the Simplex architecture, autonomous subsystems like those found in typical industrial sys- 
tems are implemented as application modules. The application module implements software 
fault-tolerance mechanisms and acts as a software fault-containment unit, with its components 
running in their own address spaces. As illustrated in Figure 2-1, an application module is com- 
posed of specialized replacement units: application units (controllers), a module management 
unit (decision module), and a safety unit: 

• The application units implement the application-specific functionality of a given 
subsystem. 

• The module management unit determines when an application unit is leaving its 
designated safety region and switches control to an alternative application unit (and 
possibly to the safety unit, the fail-safe application unit). 

• The safety unit implements a safety controller when the physical subsystem is not fail- 
safe. 

Communication between the components of an application module is realized via a real-time 
publish/subscribe model. The current implementation, called tagged data interprocess com- 
munication, is based on POSIX message queues as available in LynxOS. The operating sys- 
tem's fixed-priority scheduling policy is used to give the decision module and device I/O 
manager highest priority in the system. Input from the device is distributed to all the replace- 
ment units acting as controllers. Output from the controllers is monitored by the decision mod- 
ule. If output from one of the application-specific controllers is missing or leaves the range of 
valid output data (as provided by the safety controller), the particular controller is assumed to 
be faulty and is no longer used. 
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Figure 2-1: Simplex Architecture 

2.3   The Real-Time Control System (RCS) Architecture 

The NIST RCS architecture is a reference architecture for manufacturing applications. The 
RCS architecture abstracts implementation-dependent details of real-time control software as 
well as underlying computing platforms. RCS provides to the application developer a unified 
interface to operating systems and hardware devices. Code using this interface can be ported 
between different platforms and applications. 

The RCS library (RCSlib) [NIST URL] is a C++ class library to support the development of 
multi-platform real-time distributed applications. The RCSlib provides synchronization and 
communication constructs, functions for communicating data between controller components, 
and RCS-specific functions for sensory processing, task decomposition, world modeling, and 
the operator interface. The RCSlib has been ported to several hardware and operating system 
platforms. 

The Communication Management System (CMS) provides access to a fixed-size buffer of 
general data to multiple reader or writer processes on the same processor, across a back- 
plane, or over a network. Regardless of the communication method required, the interface to 
CMS is uniform. Methods are provided to encode all of the basic C data types in a machine- 
independent format, and to return them to the native format. The Neutral Manufacturing Lan- 
guage (NML) provides a higher level interface to CMS. NML provides a mechanism for han- 
dling multiple types of messages in the same buffer as well as simplifying the interface for 
encoding and decoding buffers in neutral format and the configuration mechanism. 

Figure 2-2 illustrates the structure of a typical RCS application using NML. The application is 
distributed across three computers. Processes 1, 2, and 3 are able to write directly into the 
shared-memory buffers they use because they are all located in the same computer or back- 
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plane. Processes 4, 5, and 6 can only access the buffers through an NML Server (referred to 
as remote processes in RCS). 

NML servers must be run for each buffer that will be accessed by remote processes. They read 
and write to the buffer in the same way as local processes on the behalf of remote processes. 
NML is message based rather than stream based. 

We investigate the effect of replacing messages from NML by CORBA remote-method invo- 
cations. Using CORBA inside a real-time application would offer the advantages of object 
technology—like encapsulation, data abstraction, and structuring—to the real-time program- 
mer. 

Computer or Backplane #2 

Process #4 Process #5 

f 

Computer or Backplane #3 

Process #6 

Computer or Backplane #1 

NML 
Server 
buffer #1 

Process #1 Process #2 Process #3 NML 
Server 
buffer #2 

{    Shared Memory Buffer #1     ]      ( Shared Memory Buffer #2 

Key: 

I I  computer or backplane 

concurrent process or task 

dataflow 

Figure 2-2: Structure of an Application Using RCSlib 
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3      The Synchronized Inverted Pendulum 
We used the synchronized inverted pendulum as a model problem to explore the use of COR- 
BA as a non-real-time gateway between real-time subsystems. By extending a real-time sys- 
tem like Simplex with a CORBA gateway interface, a real-time application can interact with 
other components in a distributed environment. For instance, an administration and monitoring 
component could be connected to the real-time application. The CORBA gateway appears to 
the system as a different kind of real-time process. It is not assumed to provide output to the 
controlled physical device; however, it may communicate with the application-specific control- 
lers to retrieve state informations and modify system variables. Thus, a second, outer control 
loop can be established among multiple real-time applications through the CORBA gateways 
(whereas the inner control loops are hard real-time control subsystems). 

To implement the model solution, we ported the Xerox inter-language unification (ILU) ORB 
(version 2.0alpha9) to the LynxOS v2.4 real-time operating system. While ILU is not fully com- 
plaint with CORBA v2.0, it provides sufficient capabilities and is based upon technical princi- 
ples with sufficiently close proximity to CORBA, to represent a reasonable exemplar of 
CORBA technology. The decision to port ILU was one of expediency: no commercial ORBs 
were (yet) available on LynxOS, the real-time operating system that supports Simplex. 

3.1   Model Problem Description 

The inverted pendulum is a Simplex demonstration application, where a physical device is 
controlled through fault-tolerant software. The rod of the inverted pendulum is attached to a 
cart by a freely swinging but unpowered hinge. The cart can move horizontally under computer 
control. The pendulum is instrumented to provide the rod angle and cart position on the track 
as signals to the controlling computer. Three different controllers in the Simplex system imple- 
ment more or less sophisticated algorithms for keeping the rod upright. Every controller tries 
to position the cart close to a given point on the track (the set point). By changing the value for 
the set point, the cart can be moved along the track. However, keeping the pendulum balanced 
has a higher priority than approaching the position given by the set point.5 

Figure 3-1 illustrates the more complex coordinated pendulum scenario, where two Simplex 
inverted pendulum applications are controlled via an application that executes control via 
CORBA communication links. Both Simplex application modules are extended by a CORBA 
gateway object. The X-window-based graphical user interface acts as a CORBA client and 
polls position data (track position, angle of the rod) from the two Simplex applications. Further- 
more, in response to user actions, the graphical user interface (GUI) component calls a meth- 
od at the Simplex gateway objects to change the value of the set point. Thus, the user can 

5-    This refers to priorities within the control algorithm. Client requests to change the set point have a still lower 
priority. 
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move interactively the inverted pendulums, simulating remote control (and coordination) of 
real-time devices from a non-real-time subsystem. 

55=01 
; 

kxV 
Application Module 
LynxOS 
Node A: ILU ORB 

Application Module 
LynxOS 
Node B: ILU ORB 

outer control loop 
(CORBA) 

JLJL 
SunOS 
Node C: ILU ORB 

Figure 3-1: Synchronized Inverted Pendulum Scenario 

Figure 3-2 shows the basic architecture of a Simplex-based application extended by a CORBA 
gateway. Two application-specific replacement units (complex and baseline controller) are 
shown as well as the safety controller and the device I/O manager. 
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Figure 3-2: Extending Simplex with CORBA Gateways 

10 CMU/SEI-97-TR-011 



Figure 3-3 shows the ILL) Interface Specification Language (ISL) specifications for the meth- 
ods implemented in the Simplex gateway objects. The ILL) ISL is similar although not identical 
to CORBA IDL. 

INTERFACE Pendulum; 

CONSTANT serverlD : ilu.CString = "Pendulum-Server" ; 

TYPE T = OBJECT METHODS 
getPosition( 

OUT position:REAL, 
OUT angle:REAL, 
OUT refpoint:REAL), 

setReference(IN refpoint:REAL), 

startComputation() 
END; 

Figure 3-3: Interface Definitions for GUI/Pendulum Communication 

Besides methods for getting pendulum status information and for changing the set point, Fig- 
ure 3-3 contains a method startComputation (). The implementation of this method sim- 
ulates a compute-intensive task and makes use of malloc () to stress the real-time system's 
resource management. This method permits us to simulate (and study the impact of) interfer- 
ence between the resource assumptions underlying both real-time and non-real-time applica- 
tions that share common computing resources (as is implied by the CORBA gateway). 
Changing the frequency with which data is polled from the Simplex applications is another way 
to change the load on the real-time system—we varied this value between 10Hz and 100Hz. 

Besides the Simplex gateway, we have introduced another CORBA object to the scenario 
shown, as illustrated in Figure 3-4.6 This additional component performs trajectory planning 
and translates abrupt changes in the set point's value into a series of smaller changes which 
are performed with a frequency of 10Hz. Figure 3-4 also shows the default frequencies for the 
several communication steps in the synchronized pendulum scenario. As mentioned earlier, 
the graphical user interface allows user-initiated changes in the polling rate. Shared memory 
is used for interactions between the Simplex gateway and the other components of the lower- 
level Simplex system. 

6- The implementation of this trajectory planning object was not completed. The discussion is included in the re- 
port as an indication of how additional server-side objects could be introduced into the model problem in order 
to extend the investigation of CORBA, possibly as part of a demonstration of composite objects. 
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Figure 3-4: Communication Structure for the Synchronized Inverted Pendulum 

We implemented CORBA communication using a multi-threaded version of ILL); in the Pendu- 
lum-gateway object, a separate thread per method and per client is created. All ILU-method- 
invocations are executed by low-priority threads on the LynxOS system. Other components of 
Simplex run as high-priority processes. 
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3.2   Observations 

In our specific application scenario, ILL) CORBA proved to be very usable to connect the 
graphical user interface to the synchronized pendulums. One important point is that the ORB 
objects sharing the real-time platform with Simplex did not interfere with Simplex because the 
object implementation executed at a lower priority than the Simplex tasks. Priority scheduling 
is a common and useful device in real-time application development, and provides one dimen- 
sion of firewall between ORB and real-time applications. However, communication latency can 
still be a source of problems in coordinating two real-time applications across a non-real-time 
gateway. 

Although measurements show a substantial variation of communication latency when using 
ILU, those variations are not immediately visible to the user. There are two reasons why COR- 
BA is adequate despite these variations in latency. First, the Simplex control loop—although 
running with a 20 ms period—needs more than 100 ms to reestablish balance, once the pen- 
dulum has been disturbed. Since reestablishing balance has a higher priority than changing 
the pendulum set point (which disturbs the balance of the pendulum), Simplex always takes 
some time to react to changes to the cart's position—and the varying CORBA communication 
latency is absorbed by this time. Second, it is hardly noticeable for the user whether updates 
to the pendulum's image on the screen occur exactly every 100 ms or if there are small varia- 
tions in screen update. Therefore, we draw the conclusion that today's CORBA can be used 
to provide soft real-time control and monitoring of hard real-time devices. 

However, although occasional execution of CORBA methods on the computer platform shared 
with the real-time application worked well, we also demonstrated that unconstrained execution 
of CORBA methods may disturb the real-time system's behavior. CORBA does not explicitly 
support concepts such as call admission. Therefore, by just invoking enough methods, the 
ORB on the real-time system may put unacceptable load onto the system. Indeed, we could 
show that with a sufficiently high number of pendulum GUIs connected to the same Simplex 
application, the networking load on the LynxOS system increases to the extent that real-time 
tasks get delayed; deadlines are missed; and the pendulum finally falls down.7 

Therefore, some form of firewall between CORBA and the real-time application needs to be 
constructed so that CORBA can not interfere with the assumptions of the real-time application. 
For this purpose, we propose the concept of composite objects, which is outlined briefly in 
Section 5. 

7- In this case, we exploited a priority inversion problem in the LynxOS whereby interprocess communication 
(I PC) requests by tasks with a low priority cause network interrupts to interfere with the higher-priority control 
algorithms. Some form of client-side call admission would have resolved this, perhaps as provided by compos- 
ite objects. The new version of the LynxOS also solves this problem directly at the network level by introducing 
priority scheduling. 
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4      The NIST Motion Controller 
A real-time system could be restructured to exploit CORBA fully. Because of CORBA's object- 
oriented nature, this approach offers all the advantages of object technology to the developer 
of a real-time system. However, it is not clear whether today's ORBs can provide a sound basis 
for the real-time communication behavior required in this case. We study experimentally the 
effect of using CORBA communication as a replacement for shared-memory communication 
inside the NIST motion controller soft real-time application. 

4.1   Model Problem Description 

The motion controller is an application developed by NIST/MEL that uses RCS to control a ma- 
chine tool; currently, the motion controller operates as a simulation. The machine tool has 
three axes; therefore all components deal with 3-tupels to specify tool motion. The application 
consists of three interacting components: 

• emove: a component that translates RS274 CNC to "move" commands with velocity and 
acceleration information that are then forwarded to traj 

• traj: a trajectory generator which performs interpolation of emove commands into finer 
grained moves 

• servo: a simulated electro motor which represents the actual machine tool 

The traj and servo components are implemented as periodic tasks, servo runs with a pe- 
riod of 10 ms (while the period for traj is 100 ms) and reads fresh trajectory information every 
tenth cycle. In the initial version of the application, both components accessed the same 
shared-memory locations. The RCSlib implementation provides an independent clock to each 
client process. Since servo and traj are not explicitly synchronized, servo may occasion- 
ally get out of synchronization with traj. This results in abrupt changes in the simulated mo- 
tor's behavior, servo records the motor control data which can be plotted—jumps in the 
plotted curves indicate the impact of changes in the latency (i.e., "jitter") of communication be- 
tween traj and servo. 

We replaced the motion controller's shared-memory communication with communication 
through CORBA shared-memory objects (as with the Simplex model problem we used Xerox 
ILU). This way we gain location transparency of all the components; however, we have to deal 
with CORBA's communication "jitter," i.e., variations in communication latency. The motion 
controller model problem allows us to explore the impact of this variation. 

Figure 4-1 shows the communication structure of the CORBA-based motion controller. We 
have introduced shmServ, a CORBA object, which implements four shared-memory struc- 
tures. Read and write methods allow access to those data structures. Figure 4-2 describes the 
interface to shmServ in the ILU ISL. As noted earlier, although the surface syntax of ISL varies 
from CORBA IDL, both convey similar information (and in fact cross compilers for ISL to IDL 
have been developed by Xerox). 
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Note that we have changed the semantics of the motion controller demo somewhat by just in- 
troducing shmserv; in contrast to the original implementation, where concurrent accesses to 
shared memory have been synchronized based on word entities, the CORBA shmserv syn- 
chronizes accesses on a per-method basis. Therefore, we have created a tighter coupling be- 
tween traj and servo. 

However, this tighter coupling—resolving concurrent accesses based on the application-spe- 
cific data structures, seems to be more correct than the initial approach. With the shared-mem- 
ory-based implementation of the motion controller demo, when trying to get a 3-tupel 
describing the tool's next position, servo might read one old and two new data compo- 
nents—which certainly is incorrect. To evaluate the effect of the extra synchronization introd- 
duced by shmserv, we have implemented that component in a single-threaded and a multi- 

threaded version. 

RS274 CNC 

configuration 
messages (UDP) 

emove 

IT 
status x,y,z moves -^— 

velocity/acceleration 

traj 

position x,y,z moves 

x,y,z moves 
(UDP) 

servo 

CORBA 
—or— 
Shared Memory 

-►  controlled device 

Figure 4-1: The CORBA-Based Motion Controller's Communication Structure 

4.2   Observations 

Figure 4-3 shows that there are some differences in the behavior of the CORBA-based motion 
controller demo (curves //uand ilu-mt) compared to the shared-memory-based one (curve shm 
in Figure 4-3). The different curves in Figure 4-3 indicate that varying communication latency 
is the biggest problem with the CORBA-based version of the motion controller. Those varia- 
tions cause servo to occasionally read the same trajectory point twice, which results in de- 
celeration of the motor. Later, the servo component skips one or more trajectory points. As a 
result, the motor accelerates for a short period of time. This results in curves which are not as 
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smooth as the curve produced by servo in the shared-memory-based version of the motion 
controller. Furthermore, variation in CORBA communication latency can cause changes to the 
cycle time of tra j and servo. All the data shown in Figure 4-3 resulted from experiments on 
the LynxOS v2.4 real-time operating system. 

INTERFACE shmServ; 
(* AP 04/21/97 ILU type declarations for motion controller *) 

TYPE MCell = OBJECT METHODS 

(* read/write on whole record *) 
readTrajData(OUT data: traj-struct), 
writeTrajData(IN data: traj-struct), 

(* read/write on input subrecord *) 
readTrajInput(OUT data: traj-struct), 
writeTrajInput(IN data: traj-struct), 

(* read/write on output subrecord *) 
readTrajOutput(OUT data: traj-struct), 
writeTrajOutput(IN data: traj-struct), 

(* read/write on whole record *) 
readServoData(OUT data: servo-struct), 
writeServoData(IN data: servo-struct), 

(* read/write on input subrecord *) 
readServoInput(OUT data: servo-struct), 
writeServoInput(IN data: servo-struct), 

(* read/write on output subrecord *) 
readServoOutput(OUT data: servo-struct), 
writeServoOutput(IN data: servo-struct), 

END; 

Figure 4-2: Interface Definition for shmServ 
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Figure 4-3: servo Motion to Position (x, y, z) = (1,2,3) 

Our initial conclusions from the CORBA-based motion controller were not as pleasant as the 
ones obtained from the synchronized pendulum demo; in this scenario, CORBA seems to in- 
terfere with the real-time application. Replacement of shared-memory communication (which 
is implemented with predictable performance on the LynxOS) by CORBA communication sig- 
nificantly disturbs the motion controller's behavior.8 We therefore conclude that simply porting 
an ORB (such as ILU) to the real-time platform (such as LynxOS) is not sufficient to integrate 
CORBA and real-time programming. 

Upon closer investigation, however, we found that overall performance could be improved by 
"tuning" various system parameters (for example, in the RCSlib source code). Furthermore, 
the impact of CORBA latency may be more apparent than real; it is not clear whether the vari- 
ations depicted in Figure 4-3 would have any impact on the final product being milled. We 
therefore conclude that a blanket assertion that today's ORBs are unsuitable for real-time sys- 
tems is too strong. Instead, we need tools to help us assess the impact of variations in latency 
in particular settings. This is especially true in soft real-time settings where performance mod- 
els are not always based upon formal scheduling theory such as RMA, but rather on heuristics 

ILU does not provide predictable latency. 
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and extensive testing. As a result, performance models of many legacy soft real-time systems 
need to be "discovered," and it is for this purpose that tools are needed. 

The SEI developed software for visualizing communication aspects of the motion controller in 
order to obtain visibility into the impact of CORBA latency. One set of tools is centered on a 
strip chart (see Figure 4-4)—a record of the x, y, and z coordinates of the servo plotted 
against time. Associated with the strip-chart view are windows that depict communication la- 
tency (the delta-time view) and servo acceleration (the delta y's view). The software also sup- 
ports switching between shared memory and CORBA interprocess communication, capture 
and playback of sessions, viewing data at different scales (time and distance), and so forth. 
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Figure 4-4: Strip Chart 
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A three-dimensional surface view was also developed by the SEI to obtain a more direct visu- 
alization of the impact of latency on the final (milled) product. This view is illustrated in Figure 
4-5. The manufactured object can be viewed from multiple perspectives and at various dis- 
tances. A pa/'nf feature allows the object to be painted between runs of the NC program. Thus, 
any paint removed by successive runs can be attributed to the effect of latency (ideally, no new 
paint would be removed in successive runs). 

Upon more detailed investigation, our overall conclusions regarding the use of CORBA as a 
communication mechanism in a real-time application are (not surprisingly) mixed. Variations 
in communication latency do not necessarily imply negative consequences, and where there 
are negative consequences some of these may be manageable by performance tuning. Tools 
such as the strip charts depicted in Figure 4-4 and Figure 4-5 can be very useful for investi- 
gating the impact of CORBA in particular application settings. In Figure 4-5, an NC program 
for milling the letters "RT from a block has been simulated using the motion controller and 
shared memory for interprocess communication. This tool run represents an optimal, or base- 
line, case, and so we use it as a "reference cut" for later comparisons. One such comparison 
is illustrated in Figure 4-6, where we have "painted" the reference cut and rerun the NC pro- 
gram, this time using the ILL) ORB for interprocess communication. The paint feature, com- 
bined with the reference cut, allows us to highlight areas of both under- and over-cut (the 
former fails to remove material, the latter removes excess material) that result from jitter intro- 
duced by the ILU ORB.9 
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REFERENCE 

0.00      BIST   3.20     20.00 

"1 " 1- 
-180.00  fiZ 45.00 

= "      1" 
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I1 

RESET USE 
«REFERENCE 

m 

-180.00 INC 45.00    lflO.OO 

' — 1—| 
-180.00  TU   0.00 

i—r~ 
180.00 

~ I1 

Figure 4-5: Three-Dimensional View of Motion Controller 

9-    These variations are more clearly visible on a color display than in a black-and-white reproduction. 
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Note that the interpretation of under- and over-cuts requires that sensitivity thresholds be un- 
derstood and taken into consideration. For example, we might be only interested in under-cuts 
that exceed .1 millimeter in depth; or, we may wish to use different color ranges to depict un- 
der-cuts of different intensities. Such features were not incorporated into the version of the vi- 
sualization software depicted here. Thus, any variations in the milling surface, no matter how 
small, are highlighted. 

While the visualization tools are useful for understanding the performance impact (both good 
and bad) of using CORBA in real-time settings, there is a certain flavor of ad hoc engineering 
involved in this approach, whereas guaranteed quality of service for communication services 
would clearly be more desirable. We propose the concept of composite objects for predictable 
integration of CORBA and real time. In the case of the motion controller, emove to traj com- 
munication would be handled analogously to the Simplex model problem; that is, traj would 
be split into two threads or processes. One thread would manage the CORBA-side invoca- 
tions; the other would manage the real-time communication with servo. A central clock event 
would synchronize execution of those methods. All communication would be handled by a dif- 
ferent, non-real-time thread in the composite objects. This way, the varying latency of CORBA 
communication could be eliminated as a source for changes to the cycle time of the periodic 
execution in traj and servo. Composite objects are discussed in more detail in Section 5. 
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Figure 4-6: Three-Dimensional View with Under- and Over-Cut References 
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5      Composite Objects 
Composite Objects is an approach for integrating real-time and non-real-time computing into 
a single object-based framework. (Figure 5-1 shows the structure of a Composite Object.) 
From our point of view, the real-time extension of CORBA is not a simple refinement of the 
existing CORBA model. Rather, it is at the heart of CORBA specifications: what should (and 
should not) be abstracted, and what form these abstractions should take. 

We believe the goals of real-time CORBA should be to support coexistence and the need to 
know. Existing (by definition non-real-time) ORBs should be able to share resources and in- 
teroperate with real-time applications without introducing destructive interference (i.e., coex- 
istence). Further, only clients requiring real-time quality of service should be required to deal 
with the extra level of complexity implied by such guarantees; on the other hand, these nec- 
essary complexities should be exposed to applications that do have real-time requirements 
(i.e., need to know). 

There are three design rules underlying composite objects that we believe will help achieve 
our goals of coexistence and need to know. 

1. non-interference: We should create an environment in which general purpose computing 
and real-time computing will not burden each other. 

2. interoperability: The services exported by general purpose computing objects and real- 
time computing objects can be used by each other. 

3. adaptive abstraction: Lower level information and scheduling actions needed by real-time 
computing is available for real-time objects but transparent to non-real-time objects. 

Rule 1 is implemented by partitioning the system's computation and communication resourc- 
es. Such partitions can be done physically or logically. Rules 2 and 3 will be implemented by 
composite objects. 

Composite objects provide a unified interface for interactions between real-time and non-real- 
time objects. This interface will be identical to existing CORBA definitions from the viewpoint 
of non-real-time objects. Non-real-time clients can invoke the service of real-time objects via 
the standard CORBA interface. It is the task of the composite object to ensure that the service 
to non-real-time clients will be carried out in best effort without adversely affecting the real-time 
computation. This way, non-real-time components like graphical user interfaces and databas- 
es can be connected to existing real-time systems. 

Real-time clients can obtain services from standard (non-real-time) CORBA objects. In that 
case, the composite object will act as the surrogate of the real-time object in getting the service 
and forwarding it to the real-time object, so that real-time clients will not wait for the unpredict- 
able timing of non-real-time services. An important application of this service is to identify po- 
tential real-time servers registered with CORBA. Once real-time clients and servers are 
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identified and their resources are reserved, execution of their methods and creation of data 
flow paths can be managed by sending commands to Simplex architecture servers. 

communication 
without QoS 
guarantees 

QoS guarantees 

Problems: 
• scheduling of RT threads 
• firewall/mirroring between RT & public data 

Figure 5-1: Structure of a Composite Object 

Since composite objects provide functionality to respond to CORBA-method invocations, they 
can be seen as descendants of a class which implements CORBA object adaptor functionality 
(e.g., the CORBA-defined Basic Object Adaptor). On the other hand, composite objects also 
need the capability to create real-time programming abstractions like prioritized threads and 
real-time communication channels. Thus, they can be seen as descendants of a class which 
implements real-time servers such as Simplex architecture servers. 

Figure 5-1 shows the overall structure of a composite object. Composite objects consist of a 
real-time part and a non-real-time part. Design time and runtime guarantees can be given for 
execution of time-triggered methods and real-time service methods, respectively. In contrast, 
methods in the non-real-time part of the composite object are executed using a best-effort ap- 
proach. Those non-real-time methods correspond to the well-known, standard, CORBA-meth- 
od invocations. The principle of adaptive abstraction is realized here by hiding all real-time 
implementation details from the CORBA user, whereas scheduling and timing information is 
accessible for the real-time part of a composite object. 

A composite object's real-time services include 

•     time-triggered methods: These methods encapsulate time-triggered actions such as the 
periodic sampling of a sensor device. 
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• real-time service methods: These methods encapsulate data driven service at a given 
level of priority and with a worst case execution time (e.g., a particular filtering method in 
a filter object). 

• data flow service: These methods encapsulate real-time communication services such as 
the real-time publish and subscribe [Rajkumar 95]. 

The invocation of these methods can be either accepted or rejected, subject to the decision of 
the schedulability analysis, for example, as provided by Simplex replacement transaction serv- 
ers. If all the requested client objects, server objects, and their data flow paths are schedula- 
ble, they will be created, and a new real-time service will be created at runtime. Otherwise, the 
request will be rejected. Thus, composite objects establish timing firewalls [Poize 97] between 
real-time and non-real-time (CORBA) computing, so that the non-real-time part cannot violate 
the real-time scheduling rules [Sha 94] that are needed by the real-time part. 

Currently, composite objects is an untested design concept. Although some aspects of the in- 
verted pendulum model problem reflect composite object techniques (e.g., thread priority sep- 
aration), other aspects of composite objects remain to be demonstrated (e.g., call admission). 
Future work will involve the development of a prototypical implementation of the composite ob- 
jects. For example, we assume that the composite objects will allow us to solve the motion 
controller's problems with periodic execution which are apparently introduced by varying com- 
munication latency of CORBA. 
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6       Related Work 
So far, relatively little work concerning the integration of CORBA and real-time programming 
techniques and environments has been published. 

The Object Management Group (OMG) has established a CORBA real-time special interest 
group (RTSIG). A white paper on real-time CORBA was released on November 15,1996 [Mc- 
Googan 96]. Other activities include the development of requests for proposals (RFPs) that 
would lead to ORBs that satisfy the needs of real-time computing applications. In particular, 
the RFPs will address time services, fixed priority scheduling, and a "minimal ORB" (small foot- 
print). However, the future direction of the RTSIG is a matter of speculation. 

ANSA (Advanced Networked Systems Architecture) [ANSA] is an open, collaborative re- 
search program managed by the British company APM Limited. The initial programming inter- 
face supported by ANSA follows Open Distributed Processing (ODP) standards. However, the 
current project, called Jet, was started to provide a CORBA application programming interface 
(API) to the previously released ANSA/ODP API. Jet provides its own CORBA IDL compiler 
and a subset of the CORBA 2.0 C++ mapping. The project's objective is to extend CORBA 
with real-time multimedia functionality, such as streams, signals, explicit binding, and quality 
of service (QoS). Jet seeks to provide interoperability with CORBA platforms; it should be pos- 
sible to run management applications to control real-time applications from remote CORBA 
platforms. 

Work at the University of Rhode Island and the MITRE Corporation deals with syntactical ex- 
tensions to CORBA IDL to express timing constraints [Wolfe 95, Thuraisingham 96]. A pro- 
posed implementation uses four CORBA context declarations (_after, _before, _by, 
.execute), to specify deadlines for transmission of data between client and server and for 
execution of the server's method. Timed distributed method invocations are identified as one 
necessary feature in a real-time distributed computing environment. A Global Time Service, 
Real-Time Scheduling of Services, a Global Priority Service, and Bounded Message Latency 
are identified as prerequisites for the proposed approach. 

TAO, a new "end-system architecture" for CORBA-based systems [Gokhale 97], is designed 
to provide end-to-end QoS guarantees for CORBA applications. A list of requirements for ORB 
implementations is presented; among these requirements are resource reservation protocols, 
optimized real-time communication protocols, and a real-time object adapter. However, in con- 
trast to the composite objects idea of interfacing an existing real-time system with CORBA, the 
TAO approach focuses on completely new, CORBA-based, real-time systems. 
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7      Conclusions 

CORBA is a popular and important technology, and it is not surprising that there is interest in 
using CORBA in real-time application settings. Unfortunately, CORBA was not designed for 
real time, and, moreover, real-time computing remains a niche (albeit an important niche) in 
the overall marketplace. Since the OMG is attempting to respond to this overall marketplace 
(as are the majority of existing ORB vendors), there is reason to be skeptical that CORBA will 
evolve to address the full range of real-time issues (priority scheduling, real-time clocks, etc.). 

On the other hand, this does nor invalidate the use of CORBA in all real-time application set- 
tings. In this paper, we have reported on our experiences in using CORBA to provide imple- 
mentations to two model problems, each of which we believe to be representative of a larger 
class of applications in the manufacturing domain. In one model problem, we explored the use 
of CORBA as a non-real-time gateway between two real-time (and fault-tolerant) applications. 
In a second model problem, we explored the use of CORBA as a communication mechanism 
within a real-time system. In both model problems, our theme was the use of available ORBs 
(as opposed to hypothetical, or prototypical extensions to CORBA). A secondary theme was 
the integration of existing real-time applications with ORBs. 

Based upon our experience, ORBs available today can be used with a reasonable degree of 
confidence as a non-real-time gateway between real-time subsystems. Provided that remote 
object executions do not disturb the real-time assumptions of the integrated applications (a 
large proviso), the communication latency and variations in latency of existing ORBs should 
be suitable for many applications. The Simplex model problem illustrated this point via a non- 
real-time, graphical, human-machine interface—where latency factors would have an obvious 
and visible impact. On the other hand, the proviso of non-interference is not guaranteed easily, 
and we were able to construct pathological scenarios to illustrate the interference of CORBA 
with real-time assumptions. 

Using CORBA as a communication mechanism within a real-time system introduces far great- 
er demands upon an ORB. First, communication latency may become far more consequential 
as deadlines may depend upon predictable latency; CORBA provides no direct support for any 
such quality-of-service guarantee. Second, in these scenarios the ORB takes on the role of 
shared resource (CORBA communication is accomplished via method execution on server ob- 
jects), thus introducing the specter of priority inversion. Without a priority-based scheduling 
policy, an ORB will be hard pressed to avoid such problems. However, variation in latency is 
not an apr/orijustification to reject CORBA in a real-time setting; we need to be able to quantify 
the impact of jitter (variation of latency) on the actual manufacturing process. Similarly, there 
may be suitable design "workarounds" if it is known that an ORB is susceptible to priority in- 
version. In short, to be forewarned is to be forearmed, and what is important is an awareness 
of both the limitations of an ORB as well as the impact of these limitations on the actual appli- 
cation. The strip-chart software demonstrates how visibility into the impact of ORB-induced jit- 
ter can be obtained. 
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Composite objects allow us to generalize our approaches for integrating non-real-time ORBs 
with real-time applications. We can view composite objects as a repair strategy for removing 
(or resolving) mismatched assumptions between ORBs and real-time applications. The overall 
goal of composite objects is to allow reliable integration of available off-the-shelf ORBs with 
real-time systems, rather than requiring (or depending on) the success of the OMG in promul- 
gating a new and improved CORBA specification. The design principles of composite objects 
are non-interference, interoperability, and adaptive abstraction. In this paper we outlined sev- 
eral ideas for developing composite objects, but to date these ideas remain untested. Continu- 
ing work at the SEI and Humboldt University of Berlin will be focused on developing 
prototypical implementations of composite objects. 
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