
Carnegie Mellon University
Software Engineering Institute

A Study in the Use of
CORBA in Real-Time
Settings: Model Problems
for the Manufacturing
Domain
Andreas Poize

Daniel Plakosh

Kurt C. Wallnau

December 1997

Approved toi puciic reieoMfl
DsscaDunsa utntrrmrai

TECHNICAL REPORT
CMU/SEI-97-TR-011

ESC-TR-97-011

IHS^UALm a^mmo»

Carnegie Mellon University does not discriminate and Carnegie Mellon University is required not to discriminate in admission, employment, or administra-
tion of its programs or activities on the basis of race, color, national origin, sex or handicap in violation of Title VI of the Civil Rights Act of 1964, Title IX of
the Educational Amendments of 1972 and Section 504 of the Rehabilitation Act of 1973 or other federal, state, or local laws or executive orders.

In addition, Carnegie Mellon University does not discriminate in admission, employment or administration of its programs on the basis of religion, creed,
ancestry, belief, age, veteran status, sexual orientation or in violation of federal, state, or local laws or executive orders. However, in the judgment of the
Carnegie Mellon Human Relations Commission, the Department of Defense policy of, "Don't ask, don't tell, don't pursue," excludes openly gay, lesbian and
bisexual students from receiving ROTC scholarships or serving in the military. Nevertheless, all ROTC classes at Carnegie Mellon University are available to
all students.

Inquiries concerning application of these statements should be directed to the Provost, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA
15213, telephone (412) 268-6684 or the Vice President for Enrollment, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, telephone
(412)268-2056.

Obtain general information about Carnegie Mellon University by calling (412) 268-2000.

Technical Report
CMU/SEI-97-TR-011

ESC-TR-97-011
December 1997

A Study in the Use of CORBA in Real-Time Settings:

Model Problems for the Manufacturing Domain

Andreas Poize (Humboldt University of Berlin)

Daniel Plakosh

Kurt C. Wallnau

Dynamic Systems

i QUALITY IKSFSOTBD«

Unlimited distribution subject to the copyright.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

This report was prepared for the

SEI Joint Program Office
HQ ESC/AXS
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

FOR THE COMMANDER

JafAlonis.LtCol.USAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright © 1997 by Carnegie Mellon University.

Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and "No Warranty" statements are included with all reproductions and derivative
works.

Requests for permission to reproduce this document or to prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL
IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRAN-
TIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT
LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES
NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This work was created in the performance of Federal Government Contract Number F19628-95-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,
for government purposes pursuant to the copyright license under the clause at 52.227-7013.

This document is available through Asset Source for Software Engineering Technology (ASSET): 1350 Earl L.
Core Road; PO Box 3305; Morgantown, West Virginia 26505 / Phone:—(304) 284-9000 / FAX—(304) 284-
9001 World Wide Web: http://www.asset.com / e-mail: sei@asset.com

Copies of this document are available through the National Technical Information Service (NT7.S). For informa-
tion on ordering, please contact NTIS directly: National Technical Information Service, U.S. Department of
Commerce, Springfield, VA 22161. Phone—(703) 487-4600.

This document is also available through the Defense Technical Information Center (DTIC). DTIC provides access
to and transfer of scientific and technical information for DoD personnel, DoD contractors and potential contrac-
tors, and other U.S. Government agency personnel and their contractors. To obtain a copy, please contact DTIC
directly: Defense Technical Information Center / Attn: BRR / 8725 John J. Kingman Road / Suite 0944 / Ft. Bel-
voir, VA 22060-6218 / Phone—(703) 767-8274 or toll-free in the U.S.—1-800 225-3842.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Table of Contents

1 Introduction 1

2 Background 3
2.1 CORBA 3
2.2 The Simplex Architecture 4
2.3 The Real-Time Control System (RCS) Architecture 6

3 The Synchronized Inverted Pendulum 9
3.1 Model Problem Description 9
3.2 Observations 13

4 The NIST Motion Controller 15
4.1 Model Problem Description 15
4.2 Observations 16

5 Composite Objects 23

6 Related Work 27

7 Conclusions 29

References 31

CMU/SEI-97-TR-011

CMU/SEI-97-TR-011

List of Figures

Figure 2-1 Simplex Architecture 6
Figure 2-2 Structure of an Application Using RCSlib 7
Figure 3-1 Synchronized Inverted Pendulum Scenario 10
Figure 3-2 Extending Simplex with CORBA Gateways 10
Figure 3-3 Interface Definitions for GUI/Pendulum Communication 11
Figure 3-4 Communication Structure for the Synchronized Inverted

Pendulum 12
Figure 4-1 The CORBA-Based Motion Controller's Communication Structure 16
Figure 4-2 Interface Definition for shmServ 17
Figure 4-3 servo Motion to Position (x, y, z) = (1, 2, 3) 18
Figure 4-4 Strip Chart 19
Figure 4-5 Three-Dimensional View of Motion Controller 20
Figure 4-6 Three-Dimensional View with Under- and Over-Cut References 21
Figure 5-1 Structure of a Composite Object 24

CMU/SEI-97-TR-011

iv CMU/SEI-97-TR-011

Acknowledgements
The work described in this report was funded by the NIST Manufacturing Engineering Labo-
ratory (MEL). Additional resources were provided by Humboldt University of Berlin and the
Software Engineering Institute (SEI). Thanks to Neil Christopher of NIST/MEL for making all
the right technical connections between SEI investigations of distributed object technology and
the manufacturing domain. Also thanks to Evan Wallace and Fred Proctor (both from
NIST/MEL) for providing detailed technical assistance—and code—for the motion controller.

CMU/SEI-97-TR-011

vi CMU/SEI-97-TR-011

A Study in the Use of CORBA in Real-Time Settings:
Model Problems for the Manufacturing Domain

Abstract: The Object Management Group's (OMG) Common Object Request
Broker Architecture (CORBA) is an important and popular technology that
supports the development of object-based, distributed applications. The
benefits promised by CORBA (abstraction, heterogeneity, etc.) are appealing
in many application domains, including those that satisfy real-time
requirements—such as manufacturing. Unfortunately, CORBA was not
specified in light of real-time requirements, and so the question remains
whether existing object request brokers (ORBs) can be used in real-time
settings, or whether developers of real-time systems must await future
extensions of CORBA that address real-time issues or use non-CORBA-
compliant ORBs. In this report, we describe the application of an off-the-shelf
ORB to two real-time model problems. Based on our experiences, we believe
that today's ORBs can be used in real-time settings, with certain caveats as
outlined in this report. We also outline the concept of composite objects, an
approach for extending the range of non-real-time ORBs into a greater variety
of real-time settings.

1 Introduction
Real-time computing is often associated with special purpose systems which are vendor spe-
cific, expensive, hard to maintain, and difficult to upgrade. Examples include embedded com-
puter systems in today's airplanes, cars, and automated factories. As computers become
increasingly prevalent in society, and as computing applications become increasingly complex,
so, too, will there be an increasing demand to integrate multiple real-time control systems into
larger systems, and to integrate real-time subsystems into non-real-time distributed computing
environments. This way, non-real-time components like graphical user interfaces and databas-
es can be connected to a system with real-time components.

Distributed computing using commercial off-the-shelf (COTS) hardware and software compo-
nents is appealing because of its cost effectiveness. A number of standards have evolved over
the past few years which ensure interoperability among heterogeneous hardware platforms
and software packages from different vendors. Object technology has been used to describe
interfaces and interaction patterns for such distributed applications. The Common Object Re-
quest Broker Architecture (CORBA) [OMG 95, Soley 95] is the most successful representative
of an object-based distributed computing infrastructure. There are a number of commercially
available implementations of CORBA, which we refer to as object request brokers (ORBs1) as
a shorthand.

1- Throughout this report the term "ORB" will be used to refer to existing implementations of CORBA.

CMU/SEI-97-TR-011

In this paper, we investigate the use of CORBA in the real-time computing domain. This ques-
tion is interesting and important because CORBA was not designed originally for real-time ap-
plications, and yet there is evident demand for applying CORBA in real-time settings. We view
this question as a form of technology evaluation, where a technology (in this case, CORBA) is
evaluated with respect to concrete problems within an application domain (in this case, shop-
floor automation). One technique that is particularly useful in technology evaluation is the use
of model problems—focused experimental prototypes that reveal technology benefits and lim-
itations in well-bounded ways. (For a more general overview of technology evaluation tech-
niques, see "A Framework for Evaluating Software Technology" [Brown 96].) The Software
Engineering Institute (SEI) Simplex and the National Institute of Standards and Technology
(NIST) Real-Time Control System (RCS) architectures provide the basis for two model prob-

lems described in this report.

We use the Simplex architecture [Sha 96] as the basis for a model problem that allows us to
explore the use of ORBs as an interconnection mechanism between hard real-time2 systems.
The Simplex application provides coordinated control over two inverted pendulums (each of
which is a Simplex-based, fault-tolerant, hard real-time control system). We use the NIST RCS
architecture as the basis for a second model problem that allows us to explore the use of avail-
able ORBs as a real-time communication mechanism within a real-time system. The RCS ap-
plication is the NIST Motion Controller, a simulation of a device that receives numerical control
(NC) instructions and mills an appropriate surface.

The rest of this paper is organized as follows: In Section 2, we summarize the key background
concepts of the Simplex and RCS architectures; we also briefly describe CORBA and two top-
level approaches for integrating CORBA with real-time systems. In Section 3 we discuss the
coordinated inverted pendulum model problem, while in Section 4 we discuss the NIST motion
controller model problem. In Section 5, we outline the key concepts underlying composite ob-
jects, an approach for predictable integration of CORBA with real-time software. In Section 6
we provide an outline of related work. Finally, we present our conclusions in Section 7.

By "hard real-time" we mean systems that must be guaranteed to meet execution schedules. In contrast, "soft
real-time" systems might provide only probabilistic guarantees (for example, meet execution schedules 90% of
the time).

2 Background

2.1 CORBA

CORBA is a specification for object-based interprocess communication in distributed, hetero-
geneous environments. CORBA has been standardized by the Object Management Group
(OMG), an industry group of over 600 computer manufacturers and independent software ven-
dors. The current version of CORBA, version 2.0 [Soley 95], was specified in 1995. There are
many COTS implementations of CORBA available in the marketplace; we refer to such imple-
mentations as object request brokers (ORBs), and are careful to distinguish between CORBA
(a specification) and ORB (an implementation).

CORBA provides transparent distribution of objects and supports interoperability across sev-
eral dimensions of heterogeneity. Components of a CORBA program can be implemented in
different programming languages on a variety of operating systems and hardware platforms.
CORBA enables client programs to invoke a server object's methods regardless of whether
the server object is in the client's address space or located on a remote node in a distributed
system. CORBA defines services that locate a server object implementation, prepare the serv-
er object for receiving a client's request, and finally communicate data making up a request.

CORBA Interface Definition Language (IDL) is a declarative language that describes the inter-
faces to server object implementations, including the signatures of all server object methods
that are callable by clients. The surface syntax of IDL is similar to that of C++, but IDL is lan-
guage-independent. Mappings from IDL to C, C++, Ada, and Smalltalk have been specified.
However, IDL does not provide syntax for object implementations.

The OMG sponsors a number of technical initiatives aimed at fostering the adoption of COR-
BA. One ongoing effort within the OMG that is of relevance to the work described in this report
concerns real-time CORBA (RT-CORBA). An RT-CORBA special interest group (RTSIG) is in-
vestigating possible future extensions to the OMG Object Management Architecture (OMA)3

to support a wide spectrum of distributed, real-time, fault-tolerant systems. It must be noted
that neither CORBA nor the OMA currently address questions of real-time quality of service;
in the remainder of this report, the terms CORBA and ORB will be used to refer to existing,
non-real-time specifications and products.

The focus of the work described in this report is on the use of ORBs available today in real-
time and fault-tolerant settings. This focus provides risk reduction against the possibility that
the OMG RTSIG will fail to achieve industry consensus on proposed real-time extensions to

3- The OMA consists of CORBA plus a collection of object services hosted on CORBA. These object services
support general programming constructs (such as naming services and event channels) as well as vertical in-
dustry-specific services (such as work flow, telecommunications, and manufacturing).

CMU/SEI-97-TR-011 3

CORBA and the OMA. Additionally, the work provides a useful transition step even if the RT-
SIG is successful, because even in this scenario, the marketplace will require some (perhaps
significant) time to produce robust implementations of any real-time extensions to CORBA and
the OMA.

Also, it should be borne in mind that all such extensions will ultimately rely on operating sys-
tems services that provide the necessary real-time quality-of-service guarantees; for the fore-
seeable future, such operating systems will continue to represent (relatively speaking) a niche
market. Furthermore, most real-time operating systems currently fail to support real-time com-
munication over a network—and this is obviously relevant to RT-CORBA. Therefore, the work
described in this report will remain relevant even with the advent of time and industry accep-
tance of RTSIG proposals.

This report addresses two different scenarios for integrating CORBA with real-time applica-
tions:

• Use CORBA as a gateway to real-time subsystem(s). In this scenario, the CORBA
gateway is not responsible for satisfying real-time, quality-of-service guarantees.

• Use CORBA as a communication mechanism within a real-time subsystem. In this
scenario, the ORB must contribute to (or not hinder) real-time quality of service; in
particular, it must satisfy potentially stringent performance requirements.4

To explore the first scenario, we extended an existing model problem developed previously on
the Simplex architecture (described in detail, below). For the second scenario, we extended
an existing system developed by the NIST Manufacturing Engineering Laboratory (MEL) that
was developed on the NIST RCS architecture.

2.2 The Simplex Architecture

Current real-time computer software architectures do not support the safe and reliable inser-
tion of new components and technologies into existing systems. The Simplex architecture
[Sha 96] has been developed to support the reliable online upgrade of hardware and software
components; reliability is maintained in spite of errors in new modules. This is important when
introducing changes, such as new COTS components, into running systems.

To mitigate the risks of a system upgrade, the Simplex architecture has been designed to tol-
erate timing faults such as overrun, programming system faults such as illegal addressing, and
semantic faults due to modeling, algorithm design, or implementation errors. Simplex handles
timing faults and programming system faults by temporal and spatial encapsulations. Software
semantic faults are handled by the use of analytic redundancy [Sha 96]. The Simplex archi-
tecture is based on generalized rate-monotonic scheduling theory [Rajkumar 94]. Also, the

As discussed later, priority inversion is another area where embedded ORBs can interfere with satisfying real-
time requirements. However in the motion controller model problem, this was not an issue.

CMU/SEI-97-TR-011

Simplex architecture assumes that the underlying operating system supports either the priority
inheritance protocol or the priority ceiling protocol to avoid priority inversion problems during
the management of shared resources. The current implementation of Simplex is based on in-
terprocess communication mechanisms specific to an operating system compliant with POSIX
1003.1b.

The Simplex architecture has been used successfully to solve a number of control problems,
and a number of demonstration applications have been implemented using Simplex. These
solutions demonstrate how real-time software can be altered and tested without making the
controlled device unsafe. A number of controllers can be interchanged, for example, to imple-
ment new or improved control algorithms. In case of faults introduced by the new controller,
the system implements graceful degradation, ultimately relying on a safety controller that im-
plements fail-safe operational behavior.

The basic building block in the Simplex architecture is the replacement unit, containing one or
more processes with a communication template that facilitates the online replacement of one
unit with another. Replacement units are designed in such a way that they can be added, de-
leted, merged, or split online by a set of standardized upgrade transactions.

In the Simplex architecture, autonomous subsystems like those found in typical industrial sys-
tems are implemented as application modules. The application module implements software
fault-tolerance mechanisms and acts as a software fault-containment unit, with its components
running in their own address spaces. As illustrated in Figure 2-1, an application module is com-
posed of specialized replacement units: application units (controllers), a module management
unit (decision module), and a safety unit:

• The application units implement the application-specific functionality of a given
subsystem.

• The module management unit determines when an application unit is leaving its
designated safety region and switches control to an alternative application unit (and
possibly to the safety unit, the fail-safe application unit).

• The safety unit implements a safety controller when the physical subsystem is not fail-
safe.

Communication between the components of an application module is realized via a real-time
publish/subscribe model. The current implementation, called tagged data interprocess com-
munication, is based on POSIX message queues as available in LynxOS. The operating sys-
tem's fixed-priority scheduling policy is used to give the decision module and device I/O
manager highest priority in the system. Input from the device is distributed to all the replace-
ment units acting as controllers. Output from the controllers is monitored by the decision mod-
ule. If output from one of the application-specific controllers is missing or leaves the range of
valid output data (as provided by the safety controller), the particular controller is assumed to
be faulty and is no longer used.

CMU/SEI-97-TR-011

Application^
Module

Tagged Data IPC

Complex
Controller

Baseline
Controller

Safety
Controller

A

Decision Module

SIMPLEX
Application
Module

Device I/O
Manager

^Physical
Device

Figure 2-1: Simplex Architecture

2.3 The Real-Time Control System (RCS) Architecture

The NIST RCS architecture is a reference architecture for manufacturing applications. The
RCS architecture abstracts implementation-dependent details of real-time control software as
well as underlying computing platforms. RCS provides to the application developer a unified
interface to operating systems and hardware devices. Code using this interface can be ported
between different platforms and applications.

The RCS library (RCSlib) [NIST URL] is a C++ class library to support the development of
multi-platform real-time distributed applications. The RCSlib provides synchronization and
communication constructs, functions for communicating data between controller components,
and RCS-specific functions for sensory processing, task decomposition, world modeling, and
the operator interface. The RCSlib has been ported to several hardware and operating system
platforms.

The Communication Management System (CMS) provides access to a fixed-size buffer of
general data to multiple reader or writer processes on the same processor, across a back-
plane, or over a network. Regardless of the communication method required, the interface to
CMS is uniform. Methods are provided to encode all of the basic C data types in a machine-
independent format, and to return them to the native format. The Neutral Manufacturing Lan-
guage (NML) provides a higher level interface to CMS. NML provides a mechanism for han-
dling multiple types of messages in the same buffer as well as simplifying the interface for
encoding and decoding buffers in neutral format and the configuration mechanism.

Figure 2-2 illustrates the structure of a typical RCS application using NML. The application is
distributed across three computers. Processes 1, 2, and 3 are able to write directly into the
shared-memory buffers they use because they are all located in the same computer or back-

CMU/SEI-97-TR-011

plane. Processes 4, 5, and 6 can only access the buffers through an NML Server (referred to
as remote processes in RCS).

NML servers must be run for each buffer that will be accessed by remote processes. They read
and write to the buffer in the same way as local processes on the behalf of remote processes.
NML is message based rather than stream based.

We investigate the effect of replacing messages from NML by CORBA remote-method invo-
cations. Using CORBA inside a real-time application would offer the advantages of object
technology—like encapsulation, data abstraction, and structuring—to the real-time program-
mer.

Computer or Backplane #2

Process #4 Process #5

f

Computer or Backplane #3

Process #6

Computer or Backplane #1

NML
Server
buffer #1

Process #1 Process #2 Process #3 NML
Server
buffer #2

{ Shared Memory Buffer #1] (Shared Memory Buffer #2

Key:

I I computer or backplane

concurrent process or task

dataflow

Figure 2-2: Structure of an Application Using RCSlib

CMU/SEI-97-TR-011

CMU/SEI-97-TR-011

3 The Synchronized Inverted Pendulum
We used the synchronized inverted pendulum as a model problem to explore the use of COR-
BA as a non-real-time gateway between real-time subsystems. By extending a real-time sys-
tem like Simplex with a CORBA gateway interface, a real-time application can interact with
other components in a distributed environment. For instance, an administration and monitoring
component could be connected to the real-time application. The CORBA gateway appears to
the system as a different kind of real-time process. It is not assumed to provide output to the
controlled physical device; however, it may communicate with the application-specific control-
lers to retrieve state informations and modify system variables. Thus, a second, outer control
loop can be established among multiple real-time applications through the CORBA gateways
(whereas the inner control loops are hard real-time control subsystems).

To implement the model solution, we ported the Xerox inter-language unification (ILU) ORB
(version 2.0alpha9) to the LynxOS v2.4 real-time operating system. While ILU is not fully com-
plaint with CORBA v2.0, it provides sufficient capabilities and is based upon technical princi-
ples with sufficiently close proximity to CORBA, to represent a reasonable exemplar of
CORBA technology. The decision to port ILU was one of expediency: no commercial ORBs
were (yet) available on LynxOS, the real-time operating system that supports Simplex.

3.1 Model Problem Description

The inverted pendulum is a Simplex demonstration application, where a physical device is
controlled through fault-tolerant software. The rod of the inverted pendulum is attached to a
cart by a freely swinging but unpowered hinge. The cart can move horizontally under computer
control. The pendulum is instrumented to provide the rod angle and cart position on the track
as signals to the controlling computer. Three different controllers in the Simplex system imple-
ment more or less sophisticated algorithms for keeping the rod upright. Every controller tries
to position the cart close to a given point on the track (the set point). By changing the value for
the set point, the cart can be moved along the track. However, keeping the pendulum balanced
has a higher priority than approaching the position given by the set point.5

Figure 3-1 illustrates the more complex coordinated pendulum scenario, where two Simplex
inverted pendulum applications are controlled via an application that executes control via
CORBA communication links. Both Simplex application modules are extended by a CORBA
gateway object. The X-window-based graphical user interface acts as a CORBA client and
polls position data (track position, angle of the rod) from the two Simplex applications. Further-
more, in response to user actions, the graphical user interface (GUI) component calls a meth-
od at the Simplex gateway objects to change the value of the set point. Thus, the user can

5- This refers to priorities within the control algorithm. Client requests to change the set point have a still lower
priority.

CMU/SEI-97-TR-011 9

move interactively the inverted pendulums, simulating remote control (and coordination) of
real-time devices from a non-real-time subsystem.

55=01
;

kxV
Application Module
LynxOS
Node A: ILU ORB

Application Module
LynxOS
Node B: ILU ORB

outer control loop
(CORBA)

JLJL
SunOS
Node C: ILU ORB

Figure 3-1: Synchronized Inverted Pendulum Scenario

Figure 3-2 shows the basic architecture of a Simplex-based application extended by a CORBA
gateway. Two application-specific replacement units (complex and baseline controller) are
shown as well as the safety controller and the device I/O manager.

Complex
Controller

Baseline
Controller

Safety
Controller

Tagged Data //
i i , L i

°C "\ ' ' ' . '

v Decision Module

- -M- - - • 1
i 1

CORBA
Gateway **/

CORBA
Gateway

1

1 SIMPLEX
Device I/O
Manager

/ I
i

^Physical
Device

CORBA HOP
extensions for model problem

Figure 3-2: Extending Simplex with CORBA Gateways

10 CMU/SEI-97-TR-011

Figure 3-3 shows the ILL) Interface Specification Language (ISL) specifications for the meth-
ods implemented in the Simplex gateway objects. The ILL) ISL is similar although not identical
to CORBA IDL.

INTERFACE Pendulum;

CONSTANT serverlD : ilu.CString = "Pendulum-Server" ;

TYPE T = OBJECT METHODS
getPosition(

OUT position:REAL,
OUT angle:REAL,
OUT refpoint:REAL),

setReference(IN refpoint:REAL),

startComputation()
END;

Figure 3-3: Interface Definitions for GUI/Pendulum Communication

Besides methods for getting pendulum status information and for changing the set point, Fig-
ure 3-3 contains a method startComputation (). The implementation of this method sim-
ulates a compute-intensive task and makes use of malloc () to stress the real-time system's
resource management. This method permits us to simulate (and study the impact of) interfer-
ence between the resource assumptions underlying both real-time and non-real-time applica-
tions that share common computing resources (as is implied by the CORBA gateway).
Changing the frequency with which data is polled from the Simplex applications is another way
to change the load on the real-time system—we varied this value between 10Hz and 100Hz.

Besides the Simplex gateway, we have introduced another CORBA object to the scenario
shown, as illustrated in Figure 3-4.6 This additional component performs trajectory planning
and translates abrupt changes in the set point's value into a series of smaller changes which
are performed with a frequency of 10Hz. Figure 3-4 also shows the default frequencies for the
several communication steps in the synchronized pendulum scenario. As mentioned earlier,
the graphical user interface allows user-initiated changes in the polling rate. Shared memory
is used for interactions between the Simplex gateway and the other components of the lower-
level Simplex system.

6- The implementation of this trajectory planning object was not completed. The discussion is included in the re-
port as an indication of how additional server-side objects could be introduced into the model problem in order
to extend the investigation of CORBA, possibly as part of a demonstration of composite objects.

CMU/SEI-97-TR-011 iT

setTarget()

10Hz/50Hz
getPositionData(

SunOS

10Hz/50Hz
getPositionData()

-\ r

SIMPLEX gateway
CORBA server

10Hz/50Hz
posData

10Hz setTargetC

trajectory planning
CORBA server

10Hz setRefPointO

writer to
shared memory

10H2 refPoint

LynxOS

SIMPLEX POSIX
message queues

setTarget()

SIMPLEX gateway
CORBA server

10Hz/50Hz
posData

10Hz setTarget()

trajectory planning
CORBA server

10Hz setRefPoint()

V
writer to
shared memory

IOH2 ref Point

LynxOS

i
SIMPLEX POSIX
message queues

J L

Figure 3-4: Communication Structure for the Synchronized Inverted Pendulum

We implemented CORBA communication using a multi-threaded version of ILL); in the Pendu-
lum-gateway object, a separate thread per method and per client is created. All ILU-method-
invocations are executed by low-priority threads on the LynxOS system. Other components of
Simplex run as high-priority processes.

12 CMU/SEI-97-TR-011

3.2 Observations

In our specific application scenario, ILL) CORBA proved to be very usable to connect the
graphical user interface to the synchronized pendulums. One important point is that the ORB
objects sharing the real-time platform with Simplex did not interfere with Simplex because the
object implementation executed at a lower priority than the Simplex tasks. Priority scheduling
is a common and useful device in real-time application development, and provides one dimen-
sion of firewall between ORB and real-time applications. However, communication latency can
still be a source of problems in coordinating two real-time applications across a non-real-time
gateway.

Although measurements show a substantial variation of communication latency when using
ILU, those variations are not immediately visible to the user. There are two reasons why COR-
BA is adequate despite these variations in latency. First, the Simplex control loop—although
running with a 20 ms period—needs more than 100 ms to reestablish balance, once the pen-
dulum has been disturbed. Since reestablishing balance has a higher priority than changing
the pendulum set point (which disturbs the balance of the pendulum), Simplex always takes
some time to react to changes to the cart's position—and the varying CORBA communication
latency is absorbed by this time. Second, it is hardly noticeable for the user whether updates
to the pendulum's image on the screen occur exactly every 100 ms or if there are small varia-
tions in screen update. Therefore, we draw the conclusion that today's CORBA can be used
to provide soft real-time control and monitoring of hard real-time devices.

However, although occasional execution of CORBA methods on the computer platform shared
with the real-time application worked well, we also demonstrated that unconstrained execution
of CORBA methods may disturb the real-time system's behavior. CORBA does not explicitly
support concepts such as call admission. Therefore, by just invoking enough methods, the
ORB on the real-time system may put unacceptable load onto the system. Indeed, we could
show that with a sufficiently high number of pendulum GUIs connected to the same Simplex
application, the networking load on the LynxOS system increases to the extent that real-time
tasks get delayed; deadlines are missed; and the pendulum finally falls down.7

Therefore, some form of firewall between CORBA and the real-time application needs to be
constructed so that CORBA can not interfere with the assumptions of the real-time application.
For this purpose, we propose the concept of composite objects, which is outlined briefly in
Section 5.

7- In this case, we exploited a priority inversion problem in the LynxOS whereby interprocess communication
(I PC) requests by tasks with a low priority cause network interrupts to interfere with the higher-priority control
algorithms. Some form of client-side call admission would have resolved this, perhaps as provided by compos-
ite objects. The new version of the LynxOS also solves this problem directly at the network level by introducing
priority scheduling.

CMU/SEI-97-TR-011 13

14 CMU/SEI-97-TR-011

4 The NIST Motion Controller
A real-time system could be restructured to exploit CORBA fully. Because of CORBA's object-
oriented nature, this approach offers all the advantages of object technology to the developer
of a real-time system. However, it is not clear whether today's ORBs can provide a sound basis
for the real-time communication behavior required in this case. We study experimentally the
effect of using CORBA communication as a replacement for shared-memory communication
inside the NIST motion controller soft real-time application.

4.1 Model Problem Description

The motion controller is an application developed by NIST/MEL that uses RCS to control a ma-
chine tool; currently, the motion controller operates as a simulation. The machine tool has
three axes; therefore all components deal with 3-tupels to specify tool motion. The application
consists of three interacting components:

• emove: a component that translates RS274 CNC to "move" commands with velocity and
acceleration information that are then forwarded to traj

• traj: a trajectory generator which performs interpolation of emove commands into finer
grained moves

• servo: a simulated electro motor which represents the actual machine tool

The traj and servo components are implemented as periodic tasks, servo runs with a pe-
riod of 10 ms (while the period for traj is 100 ms) and reads fresh trajectory information every
tenth cycle. In the initial version of the application, both components accessed the same
shared-memory locations. The RCSlib implementation provides an independent clock to each
client process. Since servo and traj are not explicitly synchronized, servo may occasion-
ally get out of synchronization with traj. This results in abrupt changes in the simulated mo-
tor's behavior, servo records the motor control data which can be plotted—jumps in the
plotted curves indicate the impact of changes in the latency (i.e., "jitter") of communication be-
tween traj and servo.

We replaced the motion controller's shared-memory communication with communication
through CORBA shared-memory objects (as with the Simplex model problem we used Xerox
ILU). This way we gain location transparency of all the components; however, we have to deal
with CORBA's communication "jitter," i.e., variations in communication latency. The motion
controller model problem allows us to explore the impact of this variation.

Figure 4-1 shows the communication structure of the CORBA-based motion controller. We
have introduced shmServ, a CORBA object, which implements four shared-memory struc-
tures. Read and write methods allow access to those data structures. Figure 4-2 describes the
interface to shmServ in the ILU ISL. As noted earlier, although the surface syntax of ISL varies
from CORBA IDL, both convey similar information (and in fact cross compilers for ISL to IDL
have been developed by Xerox).

CMU/SEI-97-TR-011 15

Note that we have changed the semantics of the motion controller demo somewhat by just in-
troducing shmserv; in contrast to the original implementation, where concurrent accesses to
shared memory have been synchronized based on word entities, the CORBA shmserv syn-
chronizes accesses on a per-method basis. Therefore, we have created a tighter coupling be-
tween traj and servo.

However, this tighter coupling—resolving concurrent accesses based on the application-spe-
cific data structures, seems to be more correct than the initial approach. With the shared-mem-
ory-based implementation of the motion controller demo, when trying to get a 3-tupel
describing the tool's next position, servo might read one old and two new data compo-
nents—which certainly is incorrect. To evaluate the effect of the extra synchronization introd-
duced by shmserv, we have implemented that component in a single-threaded and a multi-

threaded version.

RS274 CNC

configuration
messages (UDP)

emove

IT
status x,y,z moves -^—

velocity/acceleration

traj

position x,y,z moves

x,y,z moves
(UDP)

servo

CORBA
—or—
Shared Memory

-► controlled device

Figure 4-1: The CORBA-Based Motion Controller's Communication Structure

4.2 Observations

Figure 4-3 shows that there are some differences in the behavior of the CORBA-based motion
controller demo (curves //uand ilu-mt) compared to the shared-memory-based one (curve shm
in Figure 4-3). The different curves in Figure 4-3 indicate that varying communication latency
is the biggest problem with the CORBA-based version of the motion controller. Those varia-
tions cause servo to occasionally read the same trajectory point twice, which results in de-
celeration of the motor. Later, the servo component skips one or more trajectory points. As a
result, the motor accelerates for a short period of time. This results in curves which are not as

16 CMU/SEI-97-TR-011

smooth as the curve produced by servo in the shared-memory-based version of the motion
controller. Furthermore, variation in CORBA communication latency can cause changes to the
cycle time of tra j and servo. All the data shown in Figure 4-3 resulted from experiments on
the LynxOS v2.4 real-time operating system.

INTERFACE shmServ;
(* AP 04/21/97 ILU type declarations for motion controller *)

TYPE MCell = OBJECT METHODS

(* read/write on whole record *)
readTrajData(OUT data: traj-struct),
writeTrajData(IN data: traj-struct),

(* read/write on input subrecord *)
readTrajInput(OUT data: traj-struct),
writeTrajInput(IN data: traj-struct),

(* read/write on output subrecord *)
readTrajOutput(OUT data: traj-struct),
writeTrajOutput(IN data: traj-struct),

(* read/write on whole record *)
readServoData(OUT data: servo-struct),
writeServoData(IN data: servo-struct),

(* read/write on input subrecord *)
readServoInput(OUT data: servo-struct),
writeServoInput(IN data: servo-struct),

(* read/write on output subrecord *)
readServoOutput(OUT data: servo-struct),
writeServoOutput(IN data: servo-struct),

END;

Figure 4-2: Interface Definition for shmServ

CMU/SEI-97-TR-011 17

xxicr
o.oo 500.00

Figure 4-3: servo Motion to Position (x, y, z) = (1,2,3)

Our initial conclusions from the CORBA-based motion controller were not as pleasant as the
ones obtained from the synchronized pendulum demo; in this scenario, CORBA seems to in-
terfere with the real-time application. Replacement of shared-memory communication (which
is implemented with predictable performance on the LynxOS) by CORBA communication sig-
nificantly disturbs the motion controller's behavior.8 We therefore conclude that simply porting
an ORB (such as ILU) to the real-time platform (such as LynxOS) is not sufficient to integrate
CORBA and real-time programming.

Upon closer investigation, however, we found that overall performance could be improved by
"tuning" various system parameters (for example, in the RCSlib source code). Furthermore,
the impact of CORBA latency may be more apparent than real; it is not clear whether the vari-
ations depicted in Figure 4-3 would have any impact on the final product being milled. We
therefore conclude that a blanket assertion that today's ORBs are unsuitable for real-time sys-
tems is too strong. Instead, we need tools to help us assess the impact of variations in latency
in particular settings. This is especially true in soft real-time settings where performance mod-
els are not always based upon formal scheduling theory such as RMA, but rather on heuristics

ILU does not provide predictable latency.

18 CMU/SEI-97-TR-011

and extensive testing. As a result, performance models of many legacy soft real-time systems
need to be "discovered," and it is for this purpose that tools are needed.

The SEI developed software for visualizing communication aspects of the motion controller in
order to obtain visibility into the impact of CORBA latency. One set of tools is centered on a
strip chart (see Figure 4-4)—a record of the x, y, and z coordinates of the servo plotted
against time. Associated with the strip-chart view are windows that depict communication la-
tency (the delta-time view) and servo acceleration (the delta y's view). The software also sup-
ports switching between shared memory and CORBA interprocess communication, capture
and playback of sessions, viewing data at different scales (time and distance), and so forth.

QUIT

ZOOH IN

fUTOSCALE

M

FREEZE 0.10 TINE RANGE 5.00 30.00

_] \
DELTA TIHE

- 0.04

HHHrfH-

-r-|—m—r-j—i—n—i—[-n—n—| i i i i
-4 -3 -2 -1

- 0.03

0.02

0.01

00:11:50:734

QUIT

ZOOH IN

AUTOSCALEl

a
FREEZE

Set Scale

0.10 TIHE RANGE 5.00 30.00 !

I ' Ii-
HELTA Y's

T i i i i i i i—r-i—i—r-r

0.02

- 0.01

- 0

-1 0
00:11:50:734

QUIT AUTOSCALE ; ZOOH IN

* '•■

Set Scale < 130 VIEH READ FILE CORBA SHARED

■

CHANGE
iRATES

FREEZE ALL DELTA
MTIHE

m

DELTA
;XYZ
VALUES

0.10 TIHE RANGE 5.00 30.00 IDATA
? —I j j iREn]RD

DATA
PLAYBACK

HOTSRV COHHAHD

EHJVE
REINIT

GET EHDVE
I STATUS

EHDVE STATUS
EHOVEEX status: 1 3 SO DONE 2
EHOVEPL status: 1 3 SO DONE 2

Hotian Controller Strip Chart
r 3

00:11:50:734

Figure 4-4: Strip Chart

CMU/SEI-97-TR-011 19

A three-dimensional surface view was also developed by the SEI to obtain a more direct visu-
alization of the impact of latency on the final (milled) product. This view is illustrated in Figure
4-5. The manufactured object can be viewed from multiple perspectives and at various dis-
tances. A pa/'nf feature allows the object to be painted between runs of the NC program. Thus,
any paint removed by successive runs can be attributed to the effect of latency (ideally, no new
paint would be removed in successive runs).

Upon more detailed investigation, our overall conclusions regarding the use of CORBA as a
communication mechanism in a real-time application are (not surprisingly) mixed. Variations
in communication latency do not necessarily imply negative consequences, and where there
are negative consequences some of these may be manageable by performance tuning. Tools
such as the strip charts depicted in Figure 4-4 and Figure 4-5 can be very useful for investi-
gating the impact of CORBA in particular application settings. In Figure 4-5, an NC program
for milling the letters "RT from a block has been simulated using the motion controller and
shared memory for interprocess communication. This tool run represents an optimal, or base-
line, case, and so we use it as a "reference cut" for later comparisons. One such comparison
is illustrated in Figure 4-6, where we have "painted" the reference cut and rerun the NC pro-
gram, this time using the ILL) ORB for interprocess communication. The paint feature, com-
bined with the reference cut, allows us to highlight areas of both under- and over-cut (the
former fails to remove material, the latter removes excess material) that result from jitter intro-
duced by the ILU ORB.9

QUIT iSET
REFERENCE

0.00 BIST 3.20 20.00

"1 " 1-
-180.00 fiZ 45.00

= " 1"
180.00

I1

RESET USE
«REFERENCE

m

-180.00 INC 45.00 lflO.OO

' — 1—|
-180.00 TU 0.00

i—r~
180.00

~ I1

Figure 4-5: Three-Dimensional View of Motion Controller

9- These variations are more clearly visible on a color display than in a black-and-white reproduction.

20 CMU/SEI-97-TR-011

Note that the interpretation of under- and over-cuts requires that sensitivity thresholds be un-
derstood and taken into consideration. For example, we might be only interested in under-cuts
that exceed .1 millimeter in depth; or, we may wish to use different color ranges to depict un-
der-cuts of different intensities. Such features were not incorporated into the version of the vi-
sualization software depicted here. Thus, any variations in the milling surface, no matter how
small, are highlighted.

While the visualization tools are useful for understanding the performance impact (both good
and bad) of using CORBA in real-time settings, there is a certain flavor of ad hoc engineering
involved in this approach, whereas guaranteed quality of service for communication services
would clearly be more desirable. We propose the concept of composite objects for predictable
integration of CORBA and real time. In the case of the motion controller, emove to traj com-
munication would be handled analogously to the Simplex model problem; that is, traj would
be split into two threads or processes. One thread would manage the CORBA-side invoca-
tions; the other would manage the real-time communication with servo. A central clock event
would synchronize execution of those methods. All communication would be handled by a dif-
ferent, non-real-time thread in the composite objects. This way, the varying latency of CORBA
communication could be eliminated as a source for changes to the cycle time of the periodic
execution in traj and servo. Composite objects are discussed in more detail in Section 5.

QUIT iSET """ 0.00 BIST 3.20 20.00 -180*00 AZ 45.00 180.00
IREFERENCE 1 1; r ' ' - - I""" IM

RESET USE -180.00 INC 45.00 180.00 -180.00 TU 0.00 180.00
REFERENCE

M r~— 1 ~\\ " " ' I'' " 1

fc^ >-no change
i \

undet-cut
-over-cut ;

"^ PPiH
^^M ^E^^ti^B PPPilP ^B &tvJ HH F-i&£/^B& ^^2

KL-%%^8 ^F
-^„ww^ W,«™™. S<„,W^MW^v~,. .,-

Figure 4-6: Three-Dimensional View with Under- and Over-Cut References

CMU/SEI-97-TR-011 21

22 CMU/SEI-97-TR-011

5 Composite Objects
Composite Objects is an approach for integrating real-time and non-real-time computing into
a single object-based framework. (Figure 5-1 shows the structure of a Composite Object.)
From our point of view, the real-time extension of CORBA is not a simple refinement of the
existing CORBA model. Rather, it is at the heart of CORBA specifications: what should (and
should not) be abstracted, and what form these abstractions should take.

We believe the goals of real-time CORBA should be to support coexistence and the need to
know. Existing (by definition non-real-time) ORBs should be able to share resources and in-
teroperate with real-time applications without introducing destructive interference (i.e., coex-
istence). Further, only clients requiring real-time quality of service should be required to deal
with the extra level of complexity implied by such guarantees; on the other hand, these nec-
essary complexities should be exposed to applications that do have real-time requirements
(i.e., need to know).

There are three design rules underlying composite objects that we believe will help achieve
our goals of coexistence and need to know.

1. non-interference: We should create an environment in which general purpose computing
and real-time computing will not burden each other.

2. interoperability: The services exported by general purpose computing objects and real-
time computing objects can be used by each other.

3. adaptive abstraction: Lower level information and scheduling actions needed by real-time
computing is available for real-time objects but transparent to non-real-time objects.

Rule 1 is implemented by partitioning the system's computation and communication resourc-
es. Such partitions can be done physically or logically. Rules 2 and 3 will be implemented by
composite objects.

Composite objects provide a unified interface for interactions between real-time and non-real-
time objects. This interface will be identical to existing CORBA definitions from the viewpoint
of non-real-time objects. Non-real-time clients can invoke the service of real-time objects via
the standard CORBA interface. It is the task of the composite object to ensure that the service
to non-real-time clients will be carried out in best effort without adversely affecting the real-time
computation. This way, non-real-time components like graphical user interfaces and databas-
es can be connected to existing real-time systems.

Real-time clients can obtain services from standard (non-real-time) CORBA objects. In that
case, the composite object will act as the surrogate of the real-time object in getting the service
and forwarding it to the real-time object, so that real-time clients will not wait for the unpredict-
able timing of non-real-time services. An important application of this service is to identify po-
tential real-time servers registered with CORBA. Once real-time clients and servers are

CMU/SEI-97-TR-011 23

identified and their resources are reserved, execution of their methods and creation of data
flow paths can be managed by sending commands to Simplex architecture servers.

communication
without QoS
guarantees

QoS guarantees

Problems:
• scheduling of RT threads
• firewall/mirroring between RT & public data

Figure 5-1: Structure of a Composite Object

Since composite objects provide functionality to respond to CORBA-method invocations, they
can be seen as descendants of a class which implements CORBA object adaptor functionality
(e.g., the CORBA-defined Basic Object Adaptor). On the other hand, composite objects also
need the capability to create real-time programming abstractions like prioritized threads and
real-time communication channels. Thus, they can be seen as descendants of a class which
implements real-time servers such as Simplex architecture servers.

Figure 5-1 shows the overall structure of a composite object. Composite objects consist of a
real-time part and a non-real-time part. Design time and runtime guarantees can be given for
execution of time-triggered methods and real-time service methods, respectively. In contrast,
methods in the non-real-time part of the composite object are executed using a best-effort ap-
proach. Those non-real-time methods correspond to the well-known, standard, CORBA-meth-
od invocations. The principle of adaptive abstraction is realized here by hiding all real-time
implementation details from the CORBA user, whereas scheduling and timing information is
accessible for the real-time part of a composite object.

A composite object's real-time services include

• time-triggered methods: These methods encapsulate time-triggered actions such as the
periodic sampling of a sensor device.

24 CMU/SEI-97-TR-011

• real-time service methods: These methods encapsulate data driven service at a given
level of priority and with a worst case execution time (e.g., a particular filtering method in
a filter object).

• data flow service: These methods encapsulate real-time communication services such as
the real-time publish and subscribe [Rajkumar 95].

The invocation of these methods can be either accepted or rejected, subject to the decision of
the schedulability analysis, for example, as provided by Simplex replacement transaction serv-
ers. If all the requested client objects, server objects, and their data flow paths are schedula-
ble, they will be created, and a new real-time service will be created at runtime. Otherwise, the
request will be rejected. Thus, composite objects establish timing firewalls [Poize 97] between
real-time and non-real-time (CORBA) computing, so that the non-real-time part cannot violate
the real-time scheduling rules [Sha 94] that are needed by the real-time part.

Currently, composite objects is an untested design concept. Although some aspects of the in-
verted pendulum model problem reflect composite object techniques (e.g., thread priority sep-
aration), other aspects of composite objects remain to be demonstrated (e.g., call admission).
Future work will involve the development of a prototypical implementation of the composite ob-
jects. For example, we assume that the composite objects will allow us to solve the motion
controller's problems with periodic execution which are apparently introduced by varying com-
munication latency of CORBA.

CMU/SEI-97-TR-011 25

26 CMU/SEI-97-TR-011

6 Related Work
So far, relatively little work concerning the integration of CORBA and real-time programming
techniques and environments has been published.

The Object Management Group (OMG) has established a CORBA real-time special interest
group (RTSIG). A white paper on real-time CORBA was released on November 15,1996 [Mc-
Googan 96]. Other activities include the development of requests for proposals (RFPs) that
would lead to ORBs that satisfy the needs of real-time computing applications. In particular,
the RFPs will address time services, fixed priority scheduling, and a "minimal ORB" (small foot-
print). However, the future direction of the RTSIG is a matter of speculation.

ANSA (Advanced Networked Systems Architecture) [ANSA] is an open, collaborative re-
search program managed by the British company APM Limited. The initial programming inter-
face supported by ANSA follows Open Distributed Processing (ODP) standards. However, the
current project, called Jet, was started to provide a CORBA application programming interface
(API) to the previously released ANSA/ODP API. Jet provides its own CORBA IDL compiler
and a subset of the CORBA 2.0 C++ mapping. The project's objective is to extend CORBA
with real-time multimedia functionality, such as streams, signals, explicit binding, and quality
of service (QoS). Jet seeks to provide interoperability with CORBA platforms; it should be pos-
sible to run management applications to control real-time applications from remote CORBA
platforms.

Work at the University of Rhode Island and the MITRE Corporation deals with syntactical ex-
tensions to CORBA IDL to express timing constraints [Wolfe 95, Thuraisingham 96]. A pro-
posed implementation uses four CORBA context declarations (_after, _before, _by,
.execute), to specify deadlines for transmission of data between client and server and for
execution of the server's method. Timed distributed method invocations are identified as one
necessary feature in a real-time distributed computing environment. A Global Time Service,
Real-Time Scheduling of Services, a Global Priority Service, and Bounded Message Latency
are identified as prerequisites for the proposed approach.

TAO, a new "end-system architecture" for CORBA-based systems [Gokhale 97], is designed
to provide end-to-end QoS guarantees for CORBA applications. A list of requirements for ORB
implementations is presented; among these requirements are resource reservation protocols,
optimized real-time communication protocols, and a real-time object adapter. However, in con-
trast to the composite objects idea of interfacing an existing real-time system with CORBA, the
TAO approach focuses on completely new, CORBA-based, real-time systems.

CMU/SEI-97-TR-011 27

28 CMU/SEI-97-TR-011

7 Conclusions

CORBA is a popular and important technology, and it is not surprising that there is interest in
using CORBA in real-time application settings. Unfortunately, CORBA was not designed for
real time, and, moreover, real-time computing remains a niche (albeit an important niche) in
the overall marketplace. Since the OMG is attempting to respond to this overall marketplace
(as are the majority of existing ORB vendors), there is reason to be skeptical that CORBA will
evolve to address the full range of real-time issues (priority scheduling, real-time clocks, etc.).

On the other hand, this does nor invalidate the use of CORBA in all real-time application set-
tings. In this paper, we have reported on our experiences in using CORBA to provide imple-
mentations to two model problems, each of which we believe to be representative of a larger
class of applications in the manufacturing domain. In one model problem, we explored the use
of CORBA as a non-real-time gateway between two real-time (and fault-tolerant) applications.
In a second model problem, we explored the use of CORBA as a communication mechanism
within a real-time system. In both model problems, our theme was the use of available ORBs
(as opposed to hypothetical, or prototypical extensions to CORBA). A secondary theme was
the integration of existing real-time applications with ORBs.

Based upon our experience, ORBs available today can be used with a reasonable degree of
confidence as a non-real-time gateway between real-time subsystems. Provided that remote
object executions do not disturb the real-time assumptions of the integrated applications (a
large proviso), the communication latency and variations in latency of existing ORBs should
be suitable for many applications. The Simplex model problem illustrated this point via a non-
real-time, graphical, human-machine interface—where latency factors would have an obvious
and visible impact. On the other hand, the proviso of non-interference is not guaranteed easily,
and we were able to construct pathological scenarios to illustrate the interference of CORBA
with real-time assumptions.

Using CORBA as a communication mechanism within a real-time system introduces far great-
er demands upon an ORB. First, communication latency may become far more consequential
as deadlines may depend upon predictable latency; CORBA provides no direct support for any
such quality-of-service guarantee. Second, in these scenarios the ORB takes on the role of
shared resource (CORBA communication is accomplished via method execution on server ob-
jects), thus introducing the specter of priority inversion. Without a priority-based scheduling
policy, an ORB will be hard pressed to avoid such problems. However, variation in latency is
not an apr/orijustification to reject CORBA in a real-time setting; we need to be able to quantify
the impact of jitter (variation of latency) on the actual manufacturing process. Similarly, there
may be suitable design "workarounds" if it is known that an ORB is susceptible to priority in-
version. In short, to be forewarned is to be forearmed, and what is important is an awareness
of both the limitations of an ORB as well as the impact of these limitations on the actual appli-
cation. The strip-chart software demonstrates how visibility into the impact of ORB-induced jit-
ter can be obtained.

CMU/SEI-97-TR-011 29

Composite objects allow us to generalize our approaches for integrating non-real-time ORBs
with real-time applications. We can view composite objects as a repair strategy for removing
(or resolving) mismatched assumptions between ORBs and real-time applications. The overall
goal of composite objects is to allow reliable integration of available off-the-shelf ORBs with
real-time systems, rather than requiring (or depending on) the success of the OMG in promul-
gating a new and improved CORBA specification. The design principles of composite objects
are non-interference, interoperability, and adaptive abstraction. In this paper we outlined sev-
eral ideas for developing composite objects, but to date these ideas remain untested. Continu-
ing work at the SEI and Humboldt University of Berlin will be focused on developing
prototypical implementations of composite objects.

30 CMU/SEI-97-TR-011

References

[ANSA] Advanced Networked Systems Architecture. Multiple articles avail-
able on the WWW.<URL: http://www.ansa.co.uk/ANSA/-
index.html>.

[Brown 96] Brown, A. & Wallnau, K. "A Framework for Evaluating Software
Technology." IEEE Software 14,2 (September 1996): 39-49.

[Gokhale 97] Gokhale, A.; Schmidt, D. C; Harrison, T. H.; & Parulkar, G. "A High-
Performance Endsystem Architecture for Real-Time CORBA." IEEE
Communications 14, 2 (February 1997): 72-77.

[McGoogan 96] McGoogan, J., ed. "Realtime CORBA - A White Paper - Issue 1.0."
OMG Real-Time Platform SIG, Initial Review Draft. November,
1996.

[NIST] National Institue of Standards and Technology. "Intelligent Control-
ler Systems Development." Articles available on the WWW . <URL:
http://isd.cme.nist.gov/brochure/SoftwareSystems.html>.

[OMG 95] Object Management Group. The Common Object Request Broker.
Framingham, MA: Object Management Group, Inc., 1995.

[Pollak 96] Pollak, B., ed. Portable Operating System Interface (POSIX) - Part
1x: Real-Time Distributed Systems Communication Application
Program Interface (API). IEEE Standard, P1003.21 LIS/V1.0, Sep-
tember 1996.

[Poize 97] Poize, A.; Fohler, G.; & Werner, M. "Predictable Network Comput-
ing," 423-431. Proceedings of the International Conference on Dis-
tributed Computing Systems (ICDCS'97). Baltimore, MD, May,
1997. New York, NY: IEEE Computer Society Press.

CMU/SEI-97-TR-011 31

[Rajkumar 95] Rajkumar, R.; Gagliardi, M.; & Sha, L.'The Real-Time Publish-
er/Subscriber Interprocess Communication Model for Distributed
Real-Time Systems: Design and Implementation," 66-75. Proceed-
ings of the First IEEE Real-Time Technology and Applications Sym-
posium. Chicago, IL, May 15-17, 1995. New York, NY, IEEE Com-
puter Society Press, 1995.

[Schmidt 97] Schmidt, D. C; Gokhale, A.; Harrison, T. H.; Levine, D.; & Cleeland,
C. "TAO: a High-Performance Endsystem Architecture for Real-
Time CORBA." RFI response to the OMG Special Interest Group on
Real-time CORBA, 1997.

[Sha 94] Sha, L; Rajkumar, R.; & Sathaye, S. S. "Generalized Rate-Mono-
tonic Scheduling Theory: A Framework for Developing Real-Time
Systems." Proceedings of the IEEE82A (January 1994): 68-82.

[Sha 96] Sha, L; Rajkumar, R.; & Gagliardi, M. "Evolving Dependable Real-
Time Systems," 335-346. Proceedings of the 1996 IEEE Aerospace
Applications Conference. Aspen, CO, February 1996. New York,
NY: IEEE Computer Society Press, 1996.

[Soley 95] Soley, R. M., ed. Object Management Architecture Guide, 3rd ed.
New York, NY: John Wiley & Sons, 1995.

[Thuraisingham 96] Thuraisingham, B.; Krupp, P.; & Wolfe, V. "Position Paper: On Real-
Time Extensions to Object Request Brokers," 182-185. Proceed-
ings of the Second Workshop on Object-Oriented Real-Time De-
pendable Systems (WORDS). Laguna Beach, CA, February 1996.
New York, NY: IEEE Computer Society Press, 1996.

[Wolfe 95] Wolfe, V. F; Black, J. K.; Thuraisingham.B.; & Krupp, P. "On Real-
Time Extensions to Object Request Brokers: A Panel Position Pa-
per," 182-185. Proceedings of the Second Workshop on Object-Ori-
ented Real-Time Dependable Systems. Los Alamitos, CA, February
1996. New York, NY: IEEE Computer Society Press, 1996.

32 CMU/SEI-97-TR-011

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (leave blank) 2. REPORT DATE

December 1997

3. REPORT TYPE AND DATES COVERED

Final

TITLE AND SUBTITLE

A Study in the Use of CORBA in Real-Time Settings: Model Problems for
the Manufacturing Domain

5. FUNDING NUMBERS

C —F19628-95-C-0003

AUTHOR(S)

Andreas Poize, Daniel Plakosh, Kurt C. Wallnau
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-97-TR-011

SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/AXS
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

ESC-TR-97-011

11. SUPPLEMENTARY NOTES

12.a DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS
12.D DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

The Object Management Group's (OMG) Common Object Request Broker Architecture (CORBA)
is an important and popular technology that supports the development of object-based, distributed
applications. The benefits promised by CORBA (abstraction, heterogeneity, etc.) are appealing in
many application domains, including those that satisfy real-time requirements—such as
manufacturing. Unfortunately, CORBA was not specified in light of real-time requirements, and so
the question remains whether existing object request brokers (ORBs) can be used in real-time
settings, or whether developers of real-time systems must await future extensions of CORBA that
address real-time issues or use non-CORBA- compliant ORBs. In this report, we describe the
application of an off-the-shelf ORB to two real-time model problems. Based on our experiences, we
believe that today's ORBs can be used in real-time settings, with certain caveats as outlined in this
report. We also outline the concept of composite objects, an approach for extending the range of
non-real-time ORBs into a greater variety of real-time settings.

14. SUBJECT TERMS

Common Object Request Broker Architecture (CORBA), composite
objects, manufacturing, object request brokers (ORBs), model
problems, real-time requirements

15. NUMBER OF PAGES

40
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

NSN 7540-01-280-5500

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY
CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

Standard Form 298 (Rev. 2-89)
Proscribed by ANSI Std. 239-18
298-102

