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ITiere exist in the literature today many contributions dealing with the incorporation of fuzzy logic 
in expert systems. But, unfortunately, much of what has been proposed can only be applied to 
small-scale expert systems, that is when the number of rules is in the dozens as opposed to in the 
hundreds. The more traditional (non-fuzzy) expert systems are able to cope with large numbers 
of rules by using Rete networks for maintaining matches of all the rules and all the facts. (A 
Rete network obviates the need to match the rules with the facts on every cycle of the inference 
engine.) In this paper, we present a more general Rete network that is particularly suitable for 
reasoning with fuzzy logic. The generalized Rete network consists of a cascade of three networks: 
the Pattern Network, the Join Network, and the Evidence Aggregation Network. The first two 
layers are modified versions of similar layers for the traditional Rete networks, and the last, 
the aggregation layer, is a new concept that allows fuzzy evidence to be aggregated when fuzzy 
inferences are made about the same fuzzy variable by different rules. 

1     Introduction 

During the last decade, fuzzy expert systems have been proposed as a viable and user-friendly 
approach for reasoning and control in the presence of uncertainty for a variety of problem do- 
mains. It can no longer be disputed that fuzzy logic allows humans to interface with machines 
in a language that, at the human end, consists of expressions not unlike those we use in our 

testing and evaluation, the code for FuzzyShell is available on WWW at http://RVLl.ecn.purdue.edu/fuzzy- 
shell/fuzzy-shell. html 
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everyday discourse and that, at the machine end, possesses numerical attributes necessary for 
quantification. That fuzzy logic should be able to fulfill simultaneously the needs of both the hu- 
mans and the machines is made possible through the association of fuzzy membership functions 
with symbolic or conceptual variables, the reasoning itself consisting of inferring the membership 
functions for some of the variables as evidence becomes available for some others. 

While the use of fuzzy logic for control has mushroomed over the years - there are now 
thousands of papers on the subject - its use in expert systems, especially when long chains of 
inference are involved, has lagged. Some researchers would even go so far as to claim that fuzzy 
logic has not worked out at all for expert systems [11, 12]. The claim is made despite the fact 
that there now exist organizations offering fuzzy expert system shells. We believe that one of 
the better known such shells is the FuzzyCLIPS system, developed recently by the National 
Research Council, Canada[17]. In addition to the shells, there also now exist in the literature 
numerous reports on fuzzy expert systems for specific applications, such as CADIAG-2[1 21 
FRIL[3], RUM[5], FLOPS[7], FESS II[8], REVEAL[19], SYSTEMZ-II[21], FLISP[25], FESP[26]' 
Fault [27]. 

Because of challenges unique to fuzzy expert system design, especially when multiple levels of 
inference * are involved, there is always the question of whether the developers of a shell or an 
expert system took any liberty with the logic itself in order to get the entire software system to 
work. The special difficulties that fuzzy reasoning presents - difficulties that do not exist for the 
case of crisp reasoning - are two-fold: 

1) All the rules that contain the same linguistic variable on the consequent side must be fired 
and evidence aggregated for that linguistic variable in accordance with the method of inference 
chosen before a fact asserted by one such rule is allowed to trigger another rule. Said another 
way, an asserted fact about a linguistic variable cannot be allowed to trigger another rule if there 
are other rules yet to be fired that would assert further facts about the same linguistic variable. 

2) Since fuzzy terms often have overlapping membership functions, a fact such as (robot speed 
fast) should be able to match with a rule antecedent such as (robot speed medium) if there exists 
an overlap between the membership functions for the fuzzy terms fast and. medium. 

While it is clear that all the fuzzy expert system shells, FuzzyCLIPS being a case in point, are 
able to handle the second difficulty, the same cannot be said for the first difficulty. In fact, we 
are not aware of any fuzzy expert system shell that handles cleanly the first difficulty. 2 

We must hasten to add that if the goal was to design a shell for a small-scale expert system 
(one containing a dozen or so rules), it would be trivial to write a computer program that would 
handle both the above difficulties cleanly. The inference engine of such a program would consist 
of a simple do-loop that, for each cycle, would match all the facts with all the rules; for each cycle, 
a list of all the rules that can be triggered by the facts currently available would be constructed; 

"Multiple levels of inference" is synonymous with the notion of "chaining of rules." 
2Besides the two difficulties mentioned above, there also exist many other challenges that must be surmounted 

for building a fully functional fuzzy expert system, challenges such as knowledge acquisition, choice/ representation 
of membership function, etc. However, practicalities of research make it impossible to simultaneously attack all 
these problems. 



the rules would then be batched so that all the rules with the same linguistic variable on the 
consequent side would be in the same batch; and, finally, all the rules in the same batch would be 
fired one after another before any other activity of the inference engine, save for the incremental 
aggregation of the membership function for the consequent linguistic variable as each rule is fired. 
Unfortunately, such do-loops cannot be used for large expert systems. 

As years of experience with traditional expert systems have demonstrated, a simple-minded 
approach that entails that all the facts be matched with all the rule antecedents in each cycle 
of the inference engine results in computational complexity that is exponential in the number of 
rules. It is for this reason that the heart of all the commercial expert systems of the traditional 
non-fuzzy type, such as ART, CLIPS[9], OPS83[16], etc., that are designed to handle hundreds or 
thousands of rules consists of a Rete network or a variant thereof. Rete networks were originally 
advanced by Forgy [14, 15] to enhance the computational efficiencies of the traditional expert 
systems, that is expert systems that are based on Classic Logic. 

Therefore, if fuzzy expert systems are to become as successful as their more traditional coun- 
terparts, it is imperative that techniques such as Rete network be generalized from classic logic to 
fuzzy logic and that is exactly we have done in this paper. The main contribution of this paper 
is to show how a Rete network can be designed so as to carry out fuzzy inference with computa- 
tional efficiencies that are comparable to those of the now well-known expert system shells such 
as OPS5, OPS83, CLIPS, etc. without running afoul of the principles of fuzzy logic. 

As the rest of this paper makes clear, generalization of Rete networks to handle fuzzy inference 
has proved to be non-trivial, even when we restrict ourselves to the case of Mamdani-type 
inference [22]. As described elsewhere in this paper, our work has required complex data and 
control structures. While the Rete network for a traditional expert system uses basically two 
networks, one for matching facts with rule antecedents and the other for reasoning about the 
consistency of instantiations for the variables in the different antecedent statements of the rules, 
the generalized Rete network for fuzzy reasoning has required three networks. The additional 
network is needed for the incremental aggregation of fuzzy evidence as each rule is fired. In 
addition, as the reader will see, the other two networks for the case of fuzzy reasoning are quite 
different from such networks for the crisp case. 

While it is true that the current implementation of the generalized Rete network, as reported 
in this paper, is for the specific case of Mamdani-type fuzzy inference, it can easily be modified 
to accommodate most other types of fuzzy inference. 

In what follows, we will use a specific example to illustrate a fundamental problem with the 
currently available shells for fuzzy expert systems. We will then review the relevant concepts 
from fuzzy logic, focusing especially on Mamdani-type inference, and provide a brief review of 
production systems and Rete networks. That will be followed with a detailed discussion of how 
Rete networks can be designed to enable them to carry out Mamdani-type inference for our 
new reasoning architecture, named FuzzyShell. Finally, we will use an example to illustrate the 
workings of FuzzyShell. 



2    A Specific Example Illustrating a Serious Shortcom- 
ing of the Current Fuzzy Expert System Shells 

A fundamental problem with practically all the currently available shells for fuzzy reasoning is 
that they are surface-level modifications of existing rule-based programming shells. To us, trying 
to modify an expert system shell intended for crisp reasoning so that it can carry out fuzzy 
reasoning is a perfect example of fitting a square peg into a round hole. For reasoning that 
involves chaining of rules, these systems invariably violate the principles of fuzzy logic, as will 
be clear from subsequent discussion. In other words, they can be used with confidence only for 
control applications where in most cases only a single level of inference is needed. 

To drive home this point, consider, for illustration, the following three rules: 

rulel: IF (X is A) THEN (Y is B) 
rule2: IF (X is A') THEN (Y is-B') 
rule3: IF (Y is B) THEN (Z is C) 

Assume that the terms A and A' associated with the linguistic variable X have overlapping 
membership functions, and that the same is the case for the terms B and B' associated with 
the linguistic variable Y. Assuming that the working memory contains the fact (X is A), let's 
now examine how a traditional expert system modified to carry out fuzzy reasoning would make 
inferences. 

The fact (X is A) would enable rulel and, after this rule is fired, the fact (Y is B) would 
be asserted into the working memory. Under the commonly used LEX and MEA 3 conflict 
resolution strategies - strategies in which the time recency of the enabling fact plays a decisive 
role in deciding which rule to fire next - this new fact would now enable rule3. The problem is 
that if the dictates of fuzzy logic are not to be violated, then rule2 must also be fired before rule3 
is picked. (Recall, the fact (X is A) will also enable rule2 due to the overlap between membership 
functions for the terms A and A'.) In other words, all the enabled rules that have anything to 
say about the linguistic variable Y must all be fired and their conclusions aggregated prior to 
selecting any rules for firing whose antecedents containing this linguistic variable. 

It is true that with a different strategy in a traditional production system, such as- the breadth- 
first strategy, it would be possible to ensure that both rulel and rule2 are fired before the selection 
of rule3. But it is often not possible to use the breadth-first strategy. For example, backward 
reasoning can only be carried out with the MEA strategy[6]. 

Therefore the upshot is that today one must either resort to highly inefficient systems that 
carry out a brute-force implementations of fuzzy-logic in which every fact must be matched with 
every rule for every cycle of the inference engine, or one might try to use modifications of the 
currently-available computationally-efficient expert system shells, but at the risk of implementing 

3These acronyms stand, respectively, for the lexicographic and the means-end-analysis strategies. These are 
two of the more common strategies for conflict resolution in a traditional production system. In OPS like expert 
system shells - that includes the CLIPS shell - the MEA strategy is particularly useful for backward reasoning[6]. 



faulty logic. While the former types of systems can only be used when the number of rules is 
small, usually in the tens as opposed to hundreds, the use of the latter is fraught with the 
possibility of error in the inferences drawn. 

3    Fuzzy Logic 

Despite the existence of voluminous literature on the subject [4, 13, 20, 22, 23, 28, 29, 30, 32], 
we feel it is necessary for us to include a very brief review of fuzzy logic for two reasons: We 
wish to inform the reader as to which fuzzy logic - especially what compositional operators for 
propagating evidence - we have used for the new class of Rete networks presented in section 5. 
Additionally, we believe that a brief fuzzy logic review here would be helpful to the readers who 
are from the traditional expert system community.4 

Central to fuzzy logic is the notion of a linguistic variable, such as distance, whose values 
are known as the terms, such as very-far, far, very-near, near, close, very-close. The range 
of numerical values spanned by a linguistic variable is called the universe of discourse for that 
variable. Associated with each term is a fuzzy membership function, a function whose range is the 
closed interval [0,1] and whose domain is a subset of the universe of discourse. A term together 
with its membership function is also called a fuzzy set. The three basic operations on fuzzy 
sets are those of union, intersection, and complement. There are various ways of generalizing 
the definitions of these operations from crisp sets to fuzzy sets. We will now briefly state the 
definitions on which our work is founded. Suppose for a linguistic variable U we have two fuzzy 
sets A and B, with membership functions given by fiA and fiB, respectively, the membership 
function of the union is given by 

VAL>B(U) = max[pA(u), PB{U)] 

The max operator above is just one of the many S-norm functions [10] commonly used in fuzzy 
logic for implementing the union and it represents the "most pessimistic" of them. Similarly, 
for the definition of intersection, let A and B be the terms of the same linguistic variable U, the 
membership function of the intersection is given by 

l*Ar\B{u) = mm[(iA(u),fiB(u)} 

The min operator is one of the T-norm functions that define intersection and represents the "most 
optimistic" of them. Both the max operator for union and the min operator for intersection are 
arbitrary but commonly used choices among all possible ways of defining such operators. 

4The explanation of our work is made complicated by the fact that it represents a bridge between two rather 
disparate fields of knowledge, fuzzy logic and Rete networks. To make our work accessible to readers from the 
traditional expert systems community, we must provide at least a brief review of the fuzzy logic ideas, although 
at the risk of sounding pedestrian to the fuzzy logic community. And, similarly, to make our work accessible 
to the fuzzy logic community, we must not gloss over too quickly the concepts from Rete networks. Hence the 
material reviewing Rete networks. 



Finally, the complement can be defined by 

C(VA(U)) = 1 - nA(u) 

Besides these basic operations, fuzzy inference requires that we associate a fuzzy membership 
function with each implication. Along the lines discussed in[22] , for the rule "IF A THEN B" 
a possible fuzzy membership function is 

HA^B{U,V) = mm(fiA(u),fiB(v)) 

where u and v span the universe of discourse corresponding to the terms A.and B. Note that 
HA^B{U,V) is a two-dimensional set. To drive home this very important point, consider the 
following rule 

IF distance is close THEN brake hard 

In Fig.l, we have shown the fuzzy membership function, fidistance-.chse^brake-.hard, in the form 
of a matrix of numbers that are boxed when //c/ose is as shown just below the horizontal axis (on 
the line labeled fiA) and fj,hard as shown to the left of the vertical axis. Shown in Fig.2 are the 
membership functions for the different terms for the linguistic variables distance and brake. 

Fuzzy Membership Function of the Rule 
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Figure 1: A pictorial illustration of the compositional rule of inference. 

As suggested by Zadeh, given data Adata, fuzzy evidence can be propagated through a rule by 
using what is usually referred to as a Compositional Rule of Inference (CRI)[31]. To explain the 
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Figure 2: Fuzzy membership functions for close, very-close, hard and very-hard. 

CRI we use, let's say the given rule is "IF A THEN B" and the data available is Adata. Our goal 
now is to infer a new membership function for the term B in the consequent of the rule in the 
light of the available fact Adata. The following CRI is common in the literature 

HB(V) = sup{rmn[fiAdata(u),fiA^B(u,v)]} 
U u 

where u spans the universe of discourse for the term A and v the same for the term B. Obviously, 
the terms A and Adata must span the same universe of discourse. To illustrate this further with 
our example, we have shown in Fig.l the sup-min operation demanded by the formula above 
leading to the inferred membership function for the consequent variable hard. The inferred 
membership function is shown as a column of numbers to the right of the box. In this case, Adata 

is very-close (see Fig. 2). This inferring process is denoted by 

B = Adata o(A-+B) 

In practice, there is a faster way to implement the above CRI. As shown in Fig.3, we get the 
same result if we first take 

supmin[^data,//A] 

and use the number thus obtained to truncate the membership function for the consequent term 
B. We will refer to the number obtained from the sup-min operation above as the degree-of-match 
between Adata and A. Using the example membership functions shown in Fig.2, the reader can 
easily verify the veracity of this statement. So while it is common to show figures like the one in 
Fig.3 to explain the propagation of fuzzy evidence, for theoretical analysis one has to resort to 
the compositional formulas shown above. 

We will now discuss the case when fuzzy evidence must be propagated through multiple rules 
simultaneously and the results aggregated. Consider the case when we have the following two 
rules that can both be triggered by the same data. 

Rulel: IF distance is close THEN brake hard 
Rule2: IF distance is very-close THEN brake very-hard 
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Figure 3: The degree of match between close and very-close is used to truncate the membership 
function of the consequent term hard associated with the linguistic variable brake. 

For example, if the measured distance, considered as a discrete value, has a value which has 
a non-zero membership in both the sets close and very-close, then both the rules shown above 
can be fired. If the measured distance is itself a fuzzy set - on account of the uncertainties 
associated with the sensor - and this fuzzy set has a non-zero intersection with the fuzzy sets 
close and very-close, then again both these rules could be fired. Two important issues need to 
be resolved with regard to the propagation of evidence through multiple rules: a) Is the order in 
which the rules are invoked important? and b) How to combine the conclusions drawn from the 
all the rules fired from a given set of facts? The following lemmas answers both questions. For 
proofs, the reader is referred to [20]. 

Lemma 1:  Given a fact A that can match the antecedents of rules Ri,R2, ,i?„, each rule 
being of the form A{ 
relationship: 

Bi, the overall conclusion from the rules satisfies the following distributive 

Ao\jRi=\jAoRi B 
»=1 t=i 

Note that a set of rules that can all be fired by a given fact have been represented by a union 
operator; also note that B is the fuzzy set obtained by aggregating together the appropriately 
modified conclusion fuzzy sets B1,B2,....,Bn. Representing a set of rules by a union operator is 
justified because the different rules represent alternative ways of asserting the conclusion. The 
lemma above tells us that if we wish to propagate a fuzzy fact through, say, two different rules, 
we should propagate the fact through each rule separately and then take fuzzy union of the 
conclusion fuzzy sets. 

While the above lemma teaches us how to deal with multiple rules, there is only one term 
in each rule antecedent. We will now allow each rule to contain multiple terms, expressed as 
conjunctions, in its antecedent. In what follows, we will show two more lemmas, derived by Lee 
[20], which will tell us how to carry out the fuzzy inference in one rule, and then how to obtain 
the final conclusion of a linguistic variable for a set of firing rules. 

Lemma 2: Given two facts A and B, corresponding to two different linguistic variables, that 
can match the two facts in the antecedent of a single rule of the form "IF Ai and Bi THEN C,", 



the conclusion fuzzy set for C,- can be obtained by the following formula: 

d = [A o (A*'-* d)] n [B o (Bt -> d)] 

Lemma 3: Given two facts A and B, corresponding to different linguistic variables, that can 
match the two facts in each of rules Ri,B,2, ,Rn, each rule being of the form "IF A{ and 
Bi THEN Cj", the overall conclusion that can be drawn from the rules obeys the following 
distributive relationship: 

C = (J [Ao (Ai -► d)] n [Bo(Bt - d)\ 
j=i 

This lemma tells us that the final conclusion is to be made by propagating the fuzzy evidence 
through each rule separately and then taking a fuzzy union of the resulting conclusions. The 
readers should find it easy to extend the above lemmas for the case with multiple inputs and 
multiple outputs. 

An Important Issue Related to Fuzzy Evidence Aggregation 

The different terms for a linguistic variable will ordinarily be defined by a human user. Unfortu- 
nately, if two different rules assert two different terms for the same linguistic variable, then the 
composite fuzzy membership function for that linguistic variable may not correspond to any of 
the pre-defined terms. Consider the following fact and rules. 

Fact-1:   (distance is near) 

Rule-1: IF (distance is close)  THEN (speed is slow) 
Rule-2: IF (distance is far )  THEN (speed is medium) 
Rule-3: IF (speed is fast )  THEN (...) 

The membership functions of fuzzy terms of speed and distance are shown in Fig.4. Rule-1 
and Rule-2 will be activated by Fact-1 since the membership function for near has an overlap 
with those of close and far. It is clear that after Rule-1 and Rule-2 have fired, the composite 
membership function for the consequent linguistic variable will look like what is shown in Fig.5. 
If a purely numerical approach to fuzzy evidence accumulation was used - as would be the case 
for small-scale systems - such a composite membership function would pose no problems even 
though it does not correspond to any of the terms shown for the consequent linguistic variable. 
However, for a large-scale system, there needs to be a mechanism for associating a label with 
any arbitrary membership function that the process of evidence accumulation might result in. 

Therefore, in FuzzyShell, for each linguistic variable we define a special term, called the aggre- 
gate-term. This term is a shell-created special term for each linguistic variable for which fuzzy 
evidence is asserted via the consequents of two or more rules. Evidently, this term does not 
possess the usual semantics; for example, for the linguistic variable speed, the usual terms, slow, 



slow medium fast 

distance speed 

Figure 4: Membership Functions for the terms distance and speed. 

medium and fast, possessing obvious meanings, stand in contrast to the term aggregateJerm that 
admits any membership function. 

For the example shown above, it is obvious that after the evidence is accumulated from Rule-1 
and Rule-2, Rule-3 would fire due to the overlap between the accumulated in the form of the 
asserted membership function for the term aggregateJerm and the membership function for the 
term fast. 

speed is aggregate_term 

distance speed 

Figure 5:  The composite membership function obtained for the consequent linguistic variable 
after the fuzzy evidence is combined from Rule-1 and Rule-2. 

4    Production Systems and Rete networks 

All large-scale expert-system shells of note, such as the CLIPS system from NASA, the commer- 
cial systems ART, OPS5, OPS83 and many others, are founded on the concept of production 
systems, a concept that was first promulgated by Newell and his co-workers [24] and subsequently 
made useful for practical problem solving by the seminal work of Forgy on Rete networks [14, 15]. 

The overall organization of a production can be explained very quickly with the help of Fig.6. 
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Figure 6: Architecture of a production system. 

The three principal components of a production system are a working memory lot data, also called 
the facts; a -production memory for rules; and an inference engine, whose function is to infer new 
facts from existing facts and the rules and then to assert the new facts into the working memory, 
and then to continue this process of discovering new facts via the rules through the new store 
of facts in the working memory, until of course no further facts can be inferred. Traditionally, 
the statements on the left hand side of a rule are called the condition elements in the argot 
of production systems and the statements on the right hand side the action elements. What 
gives an expert system the flavor of a production system is the manner in which the inference 
engine operates. Each cycle of the inference engine consists of three steps, each corresponding 
to one of the modules shown inside the inference engine box in Fig.6. The first step consists of 
propagating the latest changes to the working memory through the Rete networks - its operation 
will be explained shortly - and figuring out which rules are enabled by the latest facts. This set 
of rules is called the conflict set or the agenda. The second step consists of ordering the rules 
posted on the agenda on the basis of considerations such as whether or not the same rule was fired 
before, the recency of the enabling facts from the working memory, the simplicity/complexity of 
the rule, etc. The top-ranked rule is then selected from the agenda thus ordered. The last step 
of the inference engine then executes the actions listed on the right-hand-side of the fired rule. 
This action may consist of either asserting the newly inferred facts into the working memory, or 
invoking functions or procedures that are external to the production system. 5 This then is the 
explanation in a nutshell of a production system. We are now ready to explain the operation of 

5 For further discussion on the different possible strategies for ordering the rules posted on the agenda - these 
strategies carry names like LEX, MEA, Depth-first, etc., - the reader is referred to [6, 18]. 
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Rete networks. 

Rete networks have been used in the traditional expert systems to ameliorate the compu- 
tational burden that would otherwise be associated with matching all the rules with all the 
facts on each cycle of the inference engine. A regular Rete network compiles all the rules into 
a tree-structured sorting network of feature tests. Only the rule-antecedents are used for the 
creation of a Rete network. Generally speaking, a Rete network contains two networks that are 
the Pattern Network and the Join Network, the former for the purpose of representing all the 
condition elements in all the rules (in a manner that eliminates duplication between the rules), 
and the latter for comparing the bindings of those variables that are common to the different 
condition elements for the same rule. To illustrate the organization of a Rete network, consider 
the following example where we have shown the condition elements of two rules: 

(rule-name rule-1 
(robot (mission navigation)( sensor ?x)) 
(sensors( priority low)(sensor ?x)) 

(rule-name rule-2 
(robot (mission navigation) (sensor ?x)) 
(sensors (priority high) (sensor ?x)) 

In the Rete network, shown in Fig.7, each condition element of each rule is represented by a 
sequence of tests, each test corresponding to one node, called the pattern node, in the Pattern 
Network. For example, the first condition element of rule-1 is represented by the pattern nodes 
a, b, and c, whereas the second condition element of the same rule is represented by d, e, and 
f. The join node, marked Jl, for rule-1 holds the test on the variable that is shared by the two 
condition elements of the rule. In this case, the test ensures that the bindings for the variable 
?x are consistent. 

When a new fact is asserting into the working memory, the fact becomes a token that traverses 
through the Pattern Network, and subsequently may be propagated to the Join Network to find 
out which rules can be enabled. The syntax of a token is represented as follows. 

(tag Fact-ID) 

where the tag could be "+" or "-" for representing the addition or deletion for the tokens, 
respectively. The Fact-ID contains the working memory elements or sequences of working mem- 
ory elements. To explain how the tokens are propagated, assume that the following fact is 
asserted into the working memory. 

Fact-1: (robot (mission navigation)(sensor range-sensor)) 

12 
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Figure 7: Rete network for rule-1 and rule-2. 
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A token (+ Fact-1) will be created, and then propagated into the pattern network along arcs 
that contain tests relevant to the fact. 6 In this case, the first element of the token will pass 
the test in pattern node a since this node tests for whether or not the first field contains the 
symbol robot. For similar reasons, the token would also pass through the node b. As the token 
passes through the pattern node c, the variable ?x will be bounded to be range-sensor. Finally, 
the token will be saved in what is referred to as the left memories of the join nodes marked Jl 
and J2. This would remain the status of the Rete network if no further information were to 
be injected into the production system. Now assume that the following fact is asserted into the 
working memory. 

Fact-2: (sensors (priority high)(sensor range-sensor)) 

This will cause the token (+ Fact-2) to be injected into the Rete network at the root node. 
In a manner similar to what happened for the previous token, the new token will travel along the 
path composed of the pattern nodes d, g, and h, and will then come to rest in the right memory 
for the join node J2. Given the tokens residing in its left and the right memories, the join node 
J2 is now able to carry out the test assigned to it and declare that the rule-2 is to be placed on 
the agenda. 

The important features to note about a Rete network are that it eliminates temporal and 
structural redundancies for figuring out what rules would be enabled at each cycle of the inference 
engine. Since all the changes to the working memory are propagated into the network in the 
form of positive and negative tokens, a fact once absorbed into the network remains there until 
a negative token regarding the same fact is propagated into the network. A negative token is 
propagated when a fact is retracted. So, unless a fact is retracted, computations for matching 
the fact with the condition elements need to be carried out only once. This is referred to as 
elimination of temporal redundancies in the matching process. Another important feature of a 
Rete network is that it eliminates the structural redundancies, that is redundancies caused by 
structural similarities between the different statements of rule-antecedents. For example, the 
pattern node d is shared by rule-1 and rule-2. By eliminating the redundancies mentioned above, 
a Rete network can reduce the computational complexity for matching the facts with the rules 
from exponential time complexity in the number of rules to polynomial time complexity [14]. 

5     Architecture of FuzzyShell 

We will now present our new architecture for a fuzzy expert system shell, FuzzyShell, that employs 
a new class of Rete networks which make possible fuzzy inference for large-scale expert systems. 
Since this system is based on the same principles as a production system, its computational 
efficiencies parallel those of such well-known systems as CLIPS, OPS83, etc. 

To speak more precisely, the search for which arcs to use for propagating a token takes place in a depth-first 
fashion. 
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Figure 8: Architecture of FuzzyShell 

Fig.8 depicts the overall flow of control and the various modules of the FuzzyShell. All the 
symbols, fuzzy and crisp, are interned in a module called the the Fuzzy Symbol Manager where 
the latest membership functions for the fuzzy terms are stored. Therefore, when the firing of a 
rule calls for a change in the membership function of a variable, that change takes place in the 
Fuzzy Symbol Manager. 

Besides the Fuzzy Symbol Manager, what makes FuzzyShell truly different from the more 
traditional production systems is the new three-layer Rete network shown in Fig.8. The first two 
layers, the Pattern Network and the Join Network, are similar but not at all identical to such 
layers in, say, CLIPS. But the third layer, the Evidence Aggregation Layer, is new and designed 
solely to account for the fact that, in fuzzy inference, the membership function of a given fuzzy 
term can be modified by multiple rules and that all these changes must be aggregated together 
before that variable participates in subsequent cycles of the inference engine. 

In what follows, we will show how the working memory elements are represented in FuzzyShell. 
We will then discuss the representations used for rule antecedents in the Pattern and the Join 
Networks; we will show representations that allow the antecedents to be of arbitrary length. 
We will also discuss how the Pattern Network calculates the degree of match between a data 
membership function and one associated with a matching term in a rule antecedent. Next, we 
will discuss how the Join Network enforces consistency across different antecedent elements in a 
rule. The last subsection will then present the workings of the Evidence Aggregation Network. 
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Figure 9: Shown here is the representation for a symbol in the working memory. 

5.1     Representation of Working Memory Elements 

Each Working Memory Element is composed of symbols, fuzzy and crisp. Each symbol, fuzzy 
or crisp, is represented by instantiating the data structure shown in Fig.9. This representation 
consists of a field for name; a field for type, indicating if the symbol is crisp or fuzzy; and a field 
for membership-function that points to a data structure where the membership function of the 
symbol resides. The membership function is allowed to be piecewise linear continuous, as shown 
in Fig. 10, where the membership function is represented by a linked list of nodes such that each 
node contains a value from the universe of discourse and a membership grade corresponding 
to that value. To compute the degree-of-match between two membership functions, the system 
computes the intersection of the membership functions comparing each linear edge in one function 
against all the linear edges in the other. For example, to compute the intersection of the two 
membership functions shown in Fig.ll, the edge a of one of the functions will be compared with 
all the edges of the other; and then edge b will be compared in a similar manner; and so on. If 
N is the number of linear segments in a membership function, the complexity of this approach is 
obviously 0(N2), but given that N is usually a very small number, the resulting computational 
burden is minimal. After the intersection points between the two membership functions are 
computed, the point that has the largest value for the intersection is retained; this largest value, 
as for example represented by the /j,d value of the point p in Fig.ll, corresponds to what would 
result from the sup-min operation. 

As we mentioned in the previous section, a special term aggregateJerm is used to represent 
the accumulated evidence for a linguistic variable during the inference process. For FuzzyShell 
to work in complex domains, a linguistic variable may have different aggregateJertn in different 
but related contexts. To drive home this point, assume that we wish to assert the following facts 
into the working memory: 

Fact-a: (robot (name Peter)(speed fast)) 
Fact-b: (robot (flame Alvin)(speed medium)) 
Fact-c: (robot (name Peter)(speed medium)) 
Fact-d: (robot (name Alvin)(speed slow)) 

Obviously, the different terms for the linguistic variable speed in Fact-a and Fact-b should not be 
aggregated into a single membership function since the facts relate to different robots. However, 
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p3:(x3,n3) 

p4:(x4,fi4) 

Figure 10: The linked list shown in the lower portion allows the membership function shown in 
the upper portion to be piecewise linear continuous. 

the fuzzy evidence in Fact-a and Fact-c should be aggregated into a single membership function 
function for speed. The same would be the case for Fact-b and Fact-d. Assume that the following 
two facts represent the accumulated evidences, Fact-1 for Fact-a and Fact-c, Fact-2 for Fact-b 
and Fact-d: 

Fact-1: (robot (name Peter) (speed aggregate_term)) 
Fact-2: (robot (name Alvin)(speed aggregate_term)) 

Evidently, the two instantiations of the data-structure of Fig.9 for the same fuzzy term ag- 
gregate Jerm will be different. Each will have a pointer from the data structure representing the 
entire working memory element. 

p(xjid) 

Figure 11:   Shown here are two membership functions for two separate fuzzy sets to illustrate 
how to compute the degree of match between them. 

5.2     Pattern Network 

As mentioned in Section 4, in a traditional (non-fuzzy) expert system the Pattern Network is used 
for creating and then maintaining matches between all the rule antecedents and the currently 
available facts.   As was mentioned there, each node of this network carries out a test that, in 
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Figure 12: Representation of a pattern node. 

effect, compares a symbol from a rule antecedent with a symbol in the same position in a fact. 
In other words, each "arm" of the Pattern Network is a string matcher for comparing condition 
element strings with fact strings. 

For obvious, reasons, when fuzzy predicates are involved there is much more to matching than 
carrying out a position-by-position comparison of symbols. Now we must also compare fuzzy 
sets associated with the symbols and ascertain the degree of match between a fact symbol and a 
condition element symbol. This introduces complications into the design of a Pattern Network. 
In order to explain how the Pattern Network works in FuzzyShell, we will first introduce the 
pattern node (Fig. 12), the basic building block of the Pattern Network. This node is connected 
to the rest of the Pattern Network via the five links shown, although not all of them may be used 
for any particular node, depending on the position of the node in the network. For example, 
the link, join, is used at only those nodes that feed information into the Join Network. Also 
shown in Fig. 12 is all the information that resides at each pattern node. The first one of these, 
alpha-memory, is used only in the terminal pattern nodes; these are the same nodes that use 
the join link. This information consists of the token that has propagated to that point. The 
second piece of information at each node, degree-of-match, represents either the sup-min of the 
fuzzy membership function for the variable that is under test and the membership function of 
the corresponding entity in the fact, or the least of such sup-min values for upstream variables. 
The next field, pattern-value, is the fuzzy term in the pattern. Finally, there is a field, mem-fun, 
for representing the membership function of the node if the node stands for a fuzzy variable. 
The following explanation will shed further light on how these different kinds of information are 
used. 

To explain further, consider first the following three condition elements in a rule-antecedent. 

Patternl 
Pattern2 
Pattern3 

(X (propl a) (prop2 b)) 
(X (propl a) (prop3 c)) 
(Y (prop4 d) (prop5 e)) 

where the fist pattern could, for example, stand for a real pattern like 

18 



I   Root node 

next ,, f last 

PN1 

Is the 1st element 
X? 

next | | last 

Is the value of 
propl a ? 

PN2next | | last 

Is the value of 
prop2b? 

PN3next | f last 

terminal node 
of Pattern 1 

PN4 
join Propagate tokens to 

the join network. 

Figure 13: This example illustrates the Pattern Network for Patternl. 
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Figure 14: This example illustrates the Pattern Network for Patternl and Pattern2. 
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Figure 15: This example illustrates the Pattern Network for Patternl, Pattern2 and Pattern3. 

(Robot distance medium speed low) 

These patterns are compiled in the order in which they are read in. Upon reading the first 
pattern, a network consisting of the nodes PN1, PN2, PN3 and PN4, as shown in Fig.13, is 
constructed. [The pointers next and last between the nodes make it possible for a token to tra- 
verse easily between nodes. More on this subject later.] When the second pattern is read in, 
this network is extended in the manner shown in Fig. 14 by the creation and inclusion of the 
nodes labeled PN5 and PN6. Note that this extension was achieved by first breaking the link 
next between PN2 and PN3 in Fig.13; this link now points from PN2 to the new node PN5. 
At the same time, the links right and left connect the two siblings nodes PN3 and PN5. Both 
PN3 and PN5 have PN2 as their common parent since the nodes prior to and including PN2 are 
common to both the patterns being compiled here. An important point to note is that when a 
new pattern is compiled, the network already constructed is searched in a depth-first fashion to 
seek out the nodes that can be reused. The pointer right is used to mark the bifurcation point, 
a point prior to which the nodes are common to two or more patterns. It is in this manner that 
the Pattern Network eliminates the structural redundancies in the matching process. The reader 
has probably already noted that of the two sibling links left and right, it would be sufficient to 
use only the latter to get rid of all the aforementioned redundancies. The link left is needed to 
eliminate those portions of a compiled network that correspond to a deleted rule. For exam- 
ple, if we wished to delete Patternl (supposedly, this pattern is the antecedent of some rule we 
wish to excise from the database) after the structure shown in Fig. 14 has already been created. 
The deletion of nodes must of necessity begin from the bottom of the Pattern Network, since 
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the lower down one goes into a Pattern Network, the more specific the nodes are to individual 
patterns and rules. So, in this case, the system would first delete node PN4. At the same time, 
through the last link of PN4, the system would discover that PN3 belongs to the same pattern. 
So this node would be deleted next. Simultaneously, the deletion algorithm would discover that 
the just-deleted node was a bifurcation point; this, through the link left, would result in the 
discovery of the sibling PN5. The last step undertaken by the deletion program would be to 
drop the right pointer from PN5. 

Now let's see what happens when Pattern3 is compiled. As shown in Fig.15, since none of 
the existing pattern nodes is reusable for embedding Pattern3 in the network, the new nodes, 
PN7 through PN10, are created. Comparing Figures in Fig. 14 and Fig. 15, note that the link 
next emanating from the Root node is broken with PN1; it is now directed to PN7. Therefore, 
the new entry point into the network will now be PN7. When a token corresponding to, say, 
Pattern 1 is now propagated into the network, it would clearly fail to descend down the column 
of nodes headed by PN7. This token will instead use the right pointer at PN7 to hop over to the 
PN1 node. 

Before we discuss how to build the Join Network, we will now describe how fuzzy evidence gets 
propagated through the Pattern Network. As we mentioned earlier, for each pattern node, there 
is a degree-of-match value stored in the node, the value obtained using the applicable principles 
of fuzzy inference. To be more specific, given a fact like (X is A) and a rule antecedent like (X 
is A'), if the membership functions of A and A' have an overlap, the match occurs and the value 
of degree-of-match is computed and stored in the corresponding node of the Pattern Network to 
indicate the extent to which the fact (X is A) matches the rule-antecedent (X is A'); this degree- 
of-match then becomes a part of the token that is transmitted downstream in conjunction with 
the fact. The syntax of this token is 

( + (fact-ID), degree-of-match) 

Consider, for example, the following patterns which are the antecedents of different rules. Addi- 
tionally, assume that the fact in the working memory is (robot (distance near) (speed fast)). 

Patternl 
Pattern2 
Pattern3 
Pattern4 

(robot (distance close) (speed fast)) 
(robot (distance far) (speed medium)) 
(robot (distance very-far) (speed slow)) 
(robot (distance far) (speed slow)) 

Fig. 16 shows how the fuzzy evidence is propagated through the Pattern Network given the 
fact (robot (distance near) (speed fast)). The number inside a pattern node is degree-of-match 
between the fuzzy term that corresponds to that node and the corresponding fuzzy term in the 
token. For example, at the node for the linguistic variable distance in the leftmost column in 
Fig.16, the degree-of-match corresponding to a match of the term close with the term near in the 
token is 0.6, the number shown inside the node. The minimum of this number and the degree- 
of-match number associated with the token is what gets passed down to the next node in the 
network. So, for the same node as before, the incoming token degree-of-match value is 1.0 and 
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the local degree-of-match value is 0.6. So the token degree-of-match is reset to 0.6, as depicted 
by the number shown next to the downward arrow emanating from the node. The operation 
of taking the minimum of the local and the token degree-of-match at each node corresponds to 
the intersection operation discussed in section 3. Now consider the case of Pattern3. As shown 
in Fig.16, since very-far is not the overlapping term of near, there is no token produced by this 
branch of the network. The tokens will be directly propagated from the terminal pattern nodes 
to the join network. 

5.3    Join Network 

A last pattern 

left 

Join Node 

: binding-expressions 
: beta-memory 
: min-degree-of-match 

right 

T 
next aggregation 

Figure 17: Representation of a join node. 

In the previous section, we showed how the Pattern Network part of a Rete network can be 
generalized to handle matching for fuzzy strings. We will now do the same for the Join Network. 
Recall from Section 4, the purpose of a Join Network in a traditional expert system is to ensure 
that the bindings for the same variable in the different condition elements of a rule are consistent. 
In a fuzzy system, two different bindings for the same variable would be consistent if there is an 
overlap of the fuzzy sets for the two bindings. 

Consider the following rule antecedent. The two separate arms of the Pattern Network, cor- 
responding to the two condition elements shown, would come together at a join node as shown 
in Fig.18. 

(rule-name rule-1 
(robot (name Peter) (distance ?x) (speed ?y)) 
(robot (name Alvin) (distance ?x) (speed ?y)) 

Now assume that the following two facts are in the working memory. 

Fact-1: (robot (name Peter) (distance far) (speed fast)) 
Fact-2: (robot (name Alvin) (distance near) (speed medium)) 
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Figure 18: The join node for rule-1 will ensure that the bindings for the variables ?x and ?y are 
consistent. 
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Evidently, the match of Fact-1 and the first condition element will produce the instantiation 
far for the variable ?x and the instantiation of fast for the variable ?y. Similarly, the match 
of Fact-2 with the second condition element will yield the instantiation near for ?x and the in- 
stantiation medium for ?y. The join node shown in Fig.18 must now decide whether or not the 
different instantiations for the same variable are reconcilable on the basis of the overlap between 
the respective fuzzy sets. The join node carries out the following two steps: 

1. It compares the fuzzy sets of all the different fuzzy sets associated with the same lin- 
guistic variable, such as speed in the above example, and then takes sup-min of the fuzzy 
membership functions. 

2. The node calculates the minimum of all the sup-min numbers for all the different shared 
variables in the two inputs to the join node. This minimum must be non-zero for the join 
node to produce any output. 

How a join node accomplishes all of the above will be clear from its representation shown in 
Fig.17. There are six pointers employed by a join node. Four links, last, next, left, and right, are 
used for connecting the nodes within the Join Network. The other two links, pattern and aggre- 
gation, provide the pathways to the Pattern Network and the Evidence Aggregation Network, 
respectively. 

There are three kinds of information residing at each join node. The first, binding-expressions, 
is a pointer to the feature tests for the two inputs to ensure that the bindings for the variables 
shared by the rule antecedents are consistent as mentioned above. The second field, min-degree- 
of-match, is for storing the minimum of three such values, two coming from the two input tokens 
to the join node and one corresponding to the fuzzy match between the bindings for the variable 
in question. The value of min-degree-of-match for a join node is transmitted along with the token 
to the next level of the Join Network if the tests associated with that join node are passed. The 
last field, beta-memory, is the set of working memory elements associated with consistent variable 
bindings that have been tested by the join nodes up to and including the current one. Later we 
will have more to say about these different types of information stored at each join node. 

In our case, a rule with N rule-antecedents will have N join nodes, with each join node having 
either one or two input nodes, as shown in Fig. 19 for the case of two patterns from the first of 
the rule fragments shown below. The join nodes that feed rule instantiations into the agenda 
require two inputs, usually referred to as the left and the right memories in the literature on 
production systems; the right memory consists of what is pointed to by the pattern pointer and 
the left memory of what is pointed to by the last pointer. The join nodes that are more in the 
interior are of one input kind. These nodes are usually just below the terminal nodes of the 
Pattern Network and owe their existence to the resulting ease in programming. 

With the help of an example we will now illustrate how the Join Network takes advantage of 
any structural similarity that might be present across different rules through shared use of join 
nodes. In general, the following three conditions must be satisfied to share a join node: First, 
all the previous join nodes must be shared. Second, the join node to be shared must be entered 

25 



from the same direction. And third, the binding expressions generated by what would otherwise 
be a new jom node must be identical to the expressions generated when an already existing ioin 
node is instead shared. Consider the following three rules: 

(rule-name Rulel 
Pattern 1 
Pattern2 

(•••)) 

(rule-name Rule2 
Pattern2 
Pattern3 

(•••)) 

(rule-name Rule3 
Patternl 
Pattern3 

where Patternl, Pattern2 and Pattern3 are the different condition elements in the rules- these 
patterns result in a network like the one shown in Fig.15, with the leaves of this network being 
cal ed the terminal pattern nodes. The join part of the network that results from processing 
Rulel is shown in Fig. 19. 

While the field pattern is for creating links between the Pattern Network and Join Network 
the fields last, left, right, and next in a join node are essential for creating the needed pathways' 
for propagating the tokens. As mentioned before, at each join node the pointers last and pattern 
are pathways for the left and right memories, the former supplying all the partial matches in all 
the patterns encountered so far and the latter in the new pattern. Each join node is capable of 
querying the higher level nodes through these pathways and pulling in the partial matches. As for 
the downward pointers in Fig.19, they permit the system to focus on just those join nodes that 
are affected by the latest changes to the working memory. For example, if after the generalized 
Rete network is all assembled, two facts that can match Patternl and Pattern2 are placed in the 
working memory. Through the downward pointers join and next, Join2 node will be intimated 
that partial matches are available in its left memory. Via the join link, Join2 node will discover 
that information is also available in its right memory. With both memories being made available 
at Jom2 node, it will go ahead and decide whether or not Rulel should be placed on the agenda. 

After processing Rule2, the Join Network will look as shown in Fig.20. Note how the join 
field of -terminal pattern node of Pattern2" is broken for inserting another join node, Join3 and 
the right pointer of Join3 node made to point to the Join2 node.   This allows both the Join2 
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Figure 20: Join Network for Rulel and Rule2. 
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and Join4 nodes to inherit all the nodes that correspond to Pattern2. At a still higher level 
of complexity, now consider what happens when Rule3 is also processed. The new network is 
as shown in Fig.21. The new rule shares Patternl with the first rule and Pattern3 with the 
second rule. Rule3 causes redirection of the join pointer of "terminal pattern node of Pattern3" 
node from Join4 node to the new node Join5. Note that this redirection leaves undisturbed the 
pathways to the left and the right memories at Join4 node, since the former is via the last field 
and the latter via the pattern field, both these remaining unchanged. 

(terminal pattern ^ //terminal pattern "N T terminal pattern ^ 
node of Patternl J    ynodeof Pattern2y y node of Pattern3 ) 

; pattern 

Join5 
terminal join 
node of Rule3 

agenda 

Join2 
terminal join 
node of Rulel 

Join4 
terminal join 
node of Rule2 

Figure 21: Join Network for Rulel, Rule2 and Rule3. 

Before we describe how to propagate the fuzzy evidence through the Join Network, we'd like 
to mention the different roles played in this process by the left and the right links. When two 
different rules share the same join nodes from the left input (example: Joinl is shared on the left 
hand side by Join5 and Join2), that is represented by left link from, in this case, Join5 to Join2. 
On the other hand, when two join nodes share a pattern on the right hand side (example: Join5 
and Join4 share Pattern3 on the right input), that is represented by link right from, in this case 
Join5 to Join4. ' 

As mentioned earlier, the fuzzy evidence is propagated from the terminal pattern nodes to the 
Join Network. Each join node contains the value of min-degree-of-match that was mentioned 
previously. This value will also be transmitted to other join nodes along with the tokens. Using 
the same strategy as in the Pattern Network, the tokens traverse the Join Network depth first. 
To explain further, for each join node, if the input token is received from the left input, a new 
token is propagated first via the link next assuming the tests on the variables are satisfied. 
The depth-first strategy will cause this token to be subsequently propagated via the link left. 
Similarly, if a token is received at the right input, a new token will be propagated first via the 
link next; subsequently, the same token will be propagated via the link right. Backtracking in 
this depth-first propagation is accomplished with the help of the pathways provided by the link 
last. 
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To illustrate the workings of join nodes in the network and the fuzzy inference operations 
that take place m these nodes, consider the following two-rule example and the facts (robot 
(distance far) (speed fast)), (mission (goal find-object) (speed medium) (sonar-reading safe)) 
(sonar-reading safe) and (turn-angle right-30): 

(rule-name rulel 
(robot (distance near) (speed ?x) ) 

(mission (goal find-object) (speed ?x)(sonar-reading ?y)) 
(sonar-reading ?y) 

(rule-name rule2 
(robot (distance near) (speed ?x) ) 
(turn-angle right-20) 

Shown in Fig.4 are the membership functions of the fuzzy terms for distance and speed.  We 
assume that the degree-of-match between right-20 and right-30 is 0.6.  The section of the Join 
Network that would correspond to these two rule antecedents is shown in Fig.22.   As shown 
in the figure, each node for the "terminal pattern node" of some pattern is equivalent to one 
condition element in a rule. There is a terminal join node where the condition-element branches 
come together for each rule and the output of the join node tells us whether or not a rule can be 
fired.  Recall that the min-degree-of-match to be sent by a join node is set to be the minimum 
of the mm-degree-of-match values for both inputs and the degree-of-match computed between 
those bindings for the variables. For example, the min-degree-of-match of the left input   Joinl 
for the Jom2 shown in Fig.22 is 0.5 and the degree-of-match of the right input for the Join2 is 
1.0. In addition, the sup-min number between fast and medium for the linguistic variable speedm 
Jom2 is 0.8. Thus, the min-degree-of-match of Join2 is 0.5. With both inputs available in Join3 
Jom3 will check weather or not the bindings for the variable ?y are consistent.   The sup-min 
number for the variable bindings of Join3 will be 1.0 since the bindings of the variable ?y for 
both inputs are bound to a crisp term, safe. Therefore, the min-degree-of-match of Join3 is 0.5. 
Since Jom3 is a terminal join node, this min-degree-of-match associated with Join3 will be sent 
to the Evidence Aggregation Network by the link aggregation. Via the link left, the node Join4 
can also receive the token sent by Joinl. Since Join4 receives 0.5 and 0.6 from the two inputs for 
the fuzzy evidence, the min-degree-of-match of Join4 is 0.5. Subsequently, Join4 will report that 
rule2 is enabled. So far, we have described how to build the Pattern and the Join Networks for a 
set of rules and how to propagate the fuzzy evidence through these networks without sacrificing 
the computational efficiencies. We now show how to aggregate the fuzzy evidence when multiple 
rules make inferences about the same linguistic variable. 

29 



/terminal pattern nodefon 
(robot (Adistance near) 

y (Aspeed ?x))      J 

terminal pattern node 
for (turn-angle right-20j 

Pattern 
Network 

(+ (robot 
Adistance far 
Aspeed fast) .5 

/terminal node for 
(mission (Agoal find-object) 

(Aspeed ?x) 
(Asonar-reading ?y) 

(+ (robot 
(Adistance far) 
(Aspeed fast) .5 

Join2 
binding test 
for ?x 

(+ (mission 
(Agoal find-object) 
(Aspeed medium) 
(Asonar-reading safe)/ 
1.0) 

left 

(+ (robot 
(Adistance far) 
(Aspeed fast)) 

(mission 
(Agoal find-object) 
(Aspeed medium) 
(Asonar-reading safi 

.5) 
Join3 

.    .   .   . binding test for ?y 
(+ (robot .       ....        .     ;   ,,, 

(-distance far)termma'Join node of rul41 

(+ (robot 
(-distance far) 
(Aspeed fast)) 

(turn-angle 
right-30) .5) 

(Aspeed fast)) 
(mission 

(Agoal find-object) 
(Aspeed medium) 
(Asonar-reading safe 

.5) 

(+ (sonar-reading 
safe) 1.0) 

Report that the rulel 
is activated. 

Figure 22: An example for propagating fuzzy evidence through the Join Network. 
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5.4    Evidence Aggregation Network 

Figure 23: The representation of an aggregation node. 

For a non-fuzzy expert system, the Pattern and the Join Networks perform the function of 
ascertaining which rules will be enabled by the facts in the working memory. As was mentioned 
earlier, this is all a Rete network has to do for a traditional expert systems. However, the 
Rete network for a fuzzy-logic based system must go one step further to solve the difficulty 1) 
introduced in Section 1 and make sure that all the fuzzy evidence for a given linguistic variable 
is aggregated before that linguistic variable is allowed to trigger any further rules. In this section 
we will show how this is accomplished by incorporating a third network, called the Evidence 
Aggregation Network, in the Rete network. It is the Evidence Aggregation Network that allows 
FuzzyShell to aggregate all the terms in all the consequents of the rules in the Agenda. This is 
accomplished before any of the rule is actually fired by the inference engine. 

Basic to the Evidence Aggregation Network is an aggregation node, shown in Fig. 23. An 
aggregation node can have multiple inputs from the terminal join nodes. During the network 
building process, the action elements of rules are scanned and parsed, and the rules whose 
consequents make assertions about the same linguistic variable are made to point to the same 
aggregation node. At the same time, a sub-node for each consequent element is created and 
made internal to the node for the respective linguistic variable. All such sub-nodes inside an 
aggregation node constitute a doubly linked list. In addition to the forward and backward 
pointers of a doubly linked list, each sub-node in an aggregation node may also contain what 
we refer to as a right pointer. The purpose of this pointer is to allow us to deal with multiple 
rules whose consequents make assertions about multiple linguistic variables. Also, each sub-node 
contains the following slots: degree-of-match, consequent-element, and flag. The purpose of the 
right link and the slots will now be explained with the help of the following example. 

Consider, for illustration, the following three rules: 
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Figure 24: This example shows how fuzzy evidence is aggregated in the Evidence Aggregation 
Network. 

rulel: IF (distance is near) THEN (speed is slow) (brake hard) 
rule2: IF (distance is far)    THEN (speed is medium)(brake medium) 
rule3: IF (speed is slow )     THEN (...) 

The complete Evidence Aggregation Network for these rules is shown in Fig.24. The left node 
is for the linguistic variable speed and the right node for brake, the other linguistic variable ap- 
pearing in the consequents of the rules. With the help of the right pointer attached to the first 
sub-node in the node for speed, the system knows that the assertions (speed is slow) and (brake 
hard) belong to the same consequent. Similarly, via the right pointer attached to the sub-node 
(speed is medium) the system knows that the assertions (speed is medium) and (brake medium) 
come from the same rule. Also, note that the two pointers used to glue the linked list of con- 
sequent items to an aggregation node are called the root and entry for reasons that are obvious 
from the figure. 

To explain how evidence gets aggregated by the Evidence Aggregation Network, we will con- 
sider the same set of rules as above and assume that the fact in the working memory is (distance 
is far). As shown in Fig.24, 0.5 represents the degree-of-match between the fact (distance is far) 
and the rule antecedent (distance is near) while 1.0 is the degree-of-match for the antecedent 
(distance is far) and the same fact. After rulel is enabled, the aggregation sub-node correspond- 
ing to (speed is slow) will receive the value 0.5 from the terminal join node of rulel via the link 
aggregation. Subsequently, the aggregation sub-node representing (brake hard) will also receive 
the value 0.5 via the link right.   Next, after rule2 is enabled, the aggregation sub-node corre- 
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sponding to (speed is medium) will receive the value 1.0 form the terminal join node of rule2 
and transmit it to the aggregation sub-node for (brake medium) via the link right. Finally, the 
results of the aggregation for the linguistic variables speed and brake will be asserted into the 
working memory. 

6    An Example to Illustrate the Workings of FuzzyShell 

In what follows, we will use a simple example to show the workings of FuzzyShell. In particular, 
our example will illustrate how FuzzyShell addresses the first difficulty presented in the Intro- 
duction, namely, the difficulty of ensuring that the evidence from all the enabled rules containing 
the same consequent linguistic variable is aggregated before any other rules can be invoked. This 
example concerns a mobile robot that should either circumnavigate an object if the mission is 
obstacle avoidance, or that should approach the object if the mission is object recognition. In 
each case, the final inference can only be drawn after a two-level inference, meaning that the 
rules fired initially must enable other rules whose consequents constitute the final conclusions. 
For the sake of our explanation here, the following six rules will suffice. Note, however, that an 
actual system for mobile robot navigation will contain hundreds of rules and that many of the 
rules would be far more complicated than what we are able to show here. 

Fact-1: (robot (mission obstacle-avoidance)(sensor 2D-vision)) 
Fact-2: (2D-vision (pixel-position-x med-left) (pixel-position-y far)) 

(rule-name rule-1 
(robot (mission ?x)(sensor 2D-vision)) 
(2D-vision (pixel-position-x left) (pixel-position-y near)) 

(goal (mission ?x)(orientation NWW))) 

(rule-name rule-2 
(robot (mission ?x)(sensor 2D-vision)) 
(2D-vision (pixel-position-x med-left)(pixel-position-y far)) 

(goal (mission ?x) (orientation NW))) 

(rule-name rule-3 
(goal (mission obstacle-avoidance)(orientation NW)) 

(turn-angle right-20) 
(distance-to-travel medium)) 

(rule-name rule-4 
(goal (mission obstacle-avoidance)(orientation NNW)) 
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(turn-angle right-30) 
(distance-to-travel long)) 

(rule-name rule-5 
(goal (mission object-recognition) (orientation NWW)) 

(turn-angle left-40) 
(distance-to-travel short)) 

(rule-name rule-6 
(goal (mission object-recognition)(orientation NW)) 

=^> 

(turn-angle left-30) 
(distance-to-travel long)) 

The membership functions of the fuzzy terms for the linguistic variables pixel-position-x, pixel- 
position-y, orientation, distance-to-travel and turn-angle are shown in Fig.25. Assume that the 
depth-first strategy is selected for conflict resolution, meaning that a rule matched with the most 
recent facts will have a higher priority to be fired and the rules with the same priority will be 
randomly selected for inclusion in the agenda. After Fact-1 and Fact-2 have been asserted into the 
working memory to start the inference engine, rule-1 and rule-2 will be activated and placed in 
the agenda. Since both these rules contain the same linguistic variable in their consequent sides, 
the Evidence Aggregation Network will go ahead and compute the final membership function for 
this linguistic variable, taking into account the sup-min values propagated down by the Pattern 
and the Join Networks and the prior membership function for the variable. 

Since rule-1 and rule-2 are matched with the same facts, they have the same priority to be 
fired. Assume rule-1 is fired first. The firing of this rule will cause the membership function of 
the orientation variable to be updated with the latest membership function computed for this 
variable by the Evidence Aggregation Network. Fig.26 illustrates the inference process resulting 
from the enabling of rule-1 and rule-2 and the firing of rule-1. It is important to note that 
the fuzzy evidence of the variable orientation was updated on the basis of the two rules, rule-1 
and rule2, even though only rule-1 has been fired so far. Therefore, as far as fuzzy inference is 
concerned, we may think of rule-1 and rule-2 as being bundled together. But note that bundling 
together does not imply that rule-2 should be fired immediately after rule-1. In general, the 
consequent side of a rule (such as rule-2) will include action elements that are non-fuzzy; the 
inference process with regard to these action elements must proceed in the traditional manner. 

Firing of rule-1 will cause the following fact to be asserted in the working memory: 

Fact-3: (goal (mission obstacle-avoidance)(orientation aggregate_term) 

This new fact will now be encapsulated in a token and propagated through the Pattern Net- 
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Figure 25: Shown here are the membership functions of the fuzzy terms for the linguistic variables 
pixel-position-x, pixel-position-y, orientation, distance-to-travel, and turn-angle. 
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Figure 26: This figure illustrates how the membership function of aggregate Jerm for the linguistic 
variable orientation is aggregated in the first cycle of the inference engine. 
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work; as a result, the rules rule-3 and rule-4 will be enabled and placed in the agenda. At this 
time, the agenda will contain rule-3, rule-4 and rule-2. Since rule-3 and rule-4 are matched with 
the same fact, Fact-3, they have the same priority. In addition, their priority is higher than the 
priority of rule-2 since Fact-3 is the most recent fact. Recognizing that the enabled rule-3 and 
rule-4 contain the same linguistic variables in the consequents, the Evidence Aggregation Net- 
work will go ahead and figure out the updated membership function for the variables turn-angle 
and distance-to-travel taking into account, via the Pattern and the Join Networks, the fuzzy 
constraints generated by the condition-elements of the two rules. Assume rule-3 is fired first. As 
a result, the membership functions for the linguistic variables turn-angle and distance-to-travel 
will be updated to those computed by Evidence Aggregation Network, as pictorially illustrated 
in Fig.27. 

Now the agenda will contain rule-4 and rule-2 for firing. Since the former has a higher priority 
(owing to the higher recency number of the fact that enabled this rule), it will be fired next. 
Since, for the fuzzy part of the inference, the rule was already accounted for when it was first 
placed in the agenda, the firing of this rule would cause changes only if the consequent side 
contained non-fuzzy elements. In our example, no further changes would take place as a result 
of the firing of rule-4. Finally, rule-2 will be fired. Again, for reasons identical to those just 
mentioned, this firing will not cause any changes to the currently known facts. 7 

If the purpose of a fuzzy expert system is to only reason, then the evidence shown in Fig.27 for 
turn-angle and distance-to-travel will be the conclusive evidence for the robot motion. However, 
the expert system usually must make its overall conclusions known to the world in terms of 
numerical values for the different linguistic variables. FuzzyShell provides a simple command to 
defuzzify the linguistic variables based on the "center of gravity" method. 

7     Conclusion 

While it is relatively easy to program up a small-scale fuzzy expert system, the same cannot 
be said when hundreds or thousands of rules are involved, as is common with large-scale expert 
systems. Every fuzzy reasoning system that allows chains of inference, meaning that a rule is 
allowed to trigger other rules, must correctly address the first of the difficulties mentioned in 
the Introduction. The fuzzy expert system shells that are currently available commercially or as 
free-ware on the internet satisfy only one of these requirements for multi-step fuzzy inference. 
As was mentioned before, the reason for this failure in the software systems currently available 
is clear: these systems are a result of a mostly cosmetic modification of the traditional non-fuzzy 
expert system shells. On the other hand, in the work reported here we have completely modified 
the guts of an inference engine - the Rete network - to make it work correctly for the fuzzy case. 
How this Rete network is modified is one of the main contribution of our work. 

Although we have shown the two rules, rule-5 and rule-6, those rules will not be fired since the current mission 
of the robot is to avoid the obstacle. 
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Figure 27: This figure illustrates how the membership functions of aggregate J,erm for the linguis- 
tic variables turn-angle and distance-to-travel are aggregated in the second cycle of the inference 
engine. 
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