
[0: 

fei* 

Unsteady Ice Jam Processes 
Jon E. Zufelt and Robert Ettema December 1997 



Abstract: Icejams cause flooding in northern temperate- 
climate areas, usually forming rapidly, often with little 
warning, constricting water flow and elevating water 
levels. Consequently, jam formation comprises highly 
unsteady processes: drifting ice pieces are brought to 
rest, accumulated ice shoves and thickens, and initial 
water depths and velocities change. Those processes 
are even more unsteady when a jam collapses. Prior 
simulations of icejams, however, treat them as simply 
stationary, uniformly thick accumulations of ice pieces. 
No account is taken of the impact forces exerted by 
moving ice, an estimation that is further complicated by 
the need to couple equations describing water flow and 
ice movement. Under the dynamic conditions attendant 

tojamformation,waterflowandicemovementinteractively 
influence each other. This report evaluates the importance 
of ice momentum on ice jam thickness and thickness 
distribution using experiments conducted with laboratory 
flumes and a numerical model in which the equations of 
motion for one-dimensional flow of water and ice are 
solved as fully coupled. In this regard, the model is 
unique, enabling simulation of the important unsteady 
interactions of water and ice, and determination of their 
effects on jam thickness. Ice momentum should be taken 
into accountformostjams because it leads to significantly 
thicker jams and affects the thickness profile. A useful 
dimensionless parameter is identified for generalizing this 
finding. 

Cover: Example of destructive power of a highly dynamic ice jam on the St. John River. 
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Unsteady Ice Jam Processes 

JON E. ZUFELT AND ROBERT ETTEMA 

INTRODUCTION 

Background 
Ice jams cause massive damage annually throughout the world's northern tem- 

perate regions. In the U.S. alone, the annual damages from ice jams average $125 
million (USACE 1994). These include property losses, emergency assistance, flood 
insurance, and increased operation and maintenance costs, replacement of infra- 
structure, and loss of hydropower revenues. Most damages are caused by high 
water levels associated with ice jams, though some are from the direct impact of 
moving ice during ice runs. 

The formation and evolution of ice jams comprise a series of inherently unsteady 
processes, in which moving ice is brought to rest in accumulations that shove and 
thicken in accordance with changing forces exerted by water flow, accumulation 
weight, and bank roughness. These processes are even more unsteady when a jam 
collapses, plows downstream, and possibly reforms. Prior formulations for ice jams 
treat them as stationary, steady-state ice accumulations that are subject to invariant 
flow conditions. This study, however, presents the first formulation for and exami- 
nation of the fully coupled dynamic nature of the unsteady processes associated 
with jam formation. 

Need for research 
In efforts to protect life and property from the damages attendant to ice jams 

and related flooding, prior models were developed to predict water-level changes 
caused by ice jams. Those models treat the evolution of ice jam thickness (shoving 
and thickening) as quasi-steady, with jam thickness spontaneously adjusting to a 
new equilibrium value in concert with water flow changes. Steady-flow models, 
such as HEC-2 modified with ice cover option, simply provide the steady water 
levels that would exist with a uniformly thick jam already in place. The long-stand- 
ing assumption used is of an ice jam of equilibrium thickness, floating in static 
force equilibrium just on the verge of stability or failure. Other models simulate the 
unsteadiness of the water flow using the conservation of mass and momentum 
equations for the water, but solve in an uncoupled manner for thickness between 
time steps, again by the static force balance. 

There currently are no formulations that describe the coupled interaction of the 
water and ice movement and their effects on flow depth and ice thickness. Also, no 
information exists on how jams evolve, fail, and thicken. In that regard, the follow- 
ing important groups of questions need to be addressed: 

• How do ice jams evolve? Present formulations allow for instantaneous changes 
in the jam thickness attributable to changes in the forces acting on the jam. No 
account is currently made for the impact forces generated by moving ice. Once 
a jam fails, ice is mobilized and travels downstream, often at high speed 
(Henderson and Gerard 1981). Do jams move and then thicken upon failure, 
thicken as they fail, or thicken and result in a progressive downstream-mov- 
ing failure? 



• To what extent does ice momentum affect jam thickness? If jams move upon 
failure, the force levels acting on the jam inevitably change. What are these 
changes and how do they affect the forces acting on the jam? 

• What are the effects of the interaction of the water and ice motion? The water 
shear stress on the jam underside is one of the principal forces on the jam. 
When a jam fails and moves, however, this force is reduced, which interac- 
tively reduces the resistance to water flow. As water and ice motion are inter- 
related, what are the consequences, for jam thickness prediction, of uncou- 
pling their influences as is currently done in existing formulations? 

Field observations 
The inherent unsteadiness of jam formation and failure is obvious from field 

observations. As an example, observations of a freezeup jam on the Salmon River 
near Salmon, Idaho, made from a small bridge about 1 km downstream of the lead- 
ing edge (head) of the jam, are presented here. The jam was approximately 25 km 
long, and, owing to mild weather (-3°C), the leading edge had been stationary 
over the night. Water levels were slightly more than bankfull at the bridge and 
thick frazil accumulations filled the channel. 

The water level began rising, first noticeably at the treeline along the bank, then 
in mid-channel, as the water began to flood the surface of the jam (Fig. 1). The ice in 
the channel appeared to rise slightly, and shear cracks could be seen forming about 
10 m out from the banks. The water levels continued to rise and the ice, groaning, 
began to slowly move downstream en masse (Fig. 2). In a matter of seconds, the 
entire channel section of the jam for about 1 km on either side of the bridge 
(between the shear cracks) was moving downstream (Fig. 3). As the ice moved, the 
water level fell, until the center portion of the channel was clear of ice upstream to 
where the leading edge had previously been located. Once the ice had passed, 
water levels dropped by approximately 0.5 m, exposing shear walls of ice along the 

Figure 1. Ice jam at first signs of failure; view is looking downstream. 
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Fz'gwre 2. Ice jam failure at beginning of ice motion; view is looking upstream. 

banks (Fig. 4). The shear walls were grounded on the bed. The unsteadiness 
observed is significant because the time lapsed since the water levels initially rose 
to the final passage of the ice from upstream was only about 15 minutes. Questions 
remain as to what happened to the ice as it traveled downstream, what caused the 
initial water level rise, and what combination of water and ice flow resulted in the 
initial accumulation. 

Figure 3. Ice jam failure with ice fully mobilized; view is looking downstream. 



Figure 4. River channel following ice jam failure; view is looking upstream. 

Objective and approach 
The ultimate objective of this work is to address the three sets of questions pre- 

sented in the Needs for Research section. To do so required carrying out the follow- 
ing tasks: 

• Determine the temporal sequence of events associated with ice jam formation, 
failure, and reformation. 

• Identify the important processes and parameters involved in shoving and thick- 
ening, and properly formulate the equations describing them. 

• Develop a numerical model, correctly representing the shoving and thicken- 
ing of ice, for use in examining the formation and evolution of jams, including 
freezeup and breakup jams. The model would be used further to investigate 
1) the progression of freezeup jams formed at an ice boom; 2) the effects of a 
jam on hydraulics as the length of the jam increases and evolves by shoving 
and thickening; 3) the failure of an ice jam ascribable to increases in water 
discharge simulating the effects of hydropower releases or surges from the 
failure of upstream ice jams; and 4) the effects of ice momentum on the pre- 
dicted thickness of jams. 

• Identify a parameter that delineates when the effects of ice momentum be- 
come important for determining a jam thickness profile, and when a fully 
coupled, moving ice model should be used instead of a steady-state, station- 
ary ice model. 

Discussion 
Although the published literature on jams contains descriptions of the general 

processes leading to shoving and thickening, there is no description of how jams in 
fact move and, in so doing, modify water flow. In very general terms, an ice jam 
forms when the downstream movement of ice is stopped. If the forces exerted on 
the jam continue to increase (owing to increased water discharge, increased cover 



length, or reduced jam strength), the jam eventually fails and moves downstream. 
If an area of channel downstream is encountered where the resisting forces on the 
moving ice are again great enough, the jam will reform. Existing models predict 
the equilibrium jam thickness, which is the constant thickness that would be 
expected in a uniform channel under conditions of steady flow when the resisting 
and downstreanvacting forces are perfectly in balance. Those models assume that, 
when the net downstream-acting force reaches the level of passive pressure failure, 
the jam must thicken to withstand the forces. The unsteadiness of both the ice and 
water movement during a shoving and thickening event make the concept of equi- 
librium thickness questionable. 

In contrast with jam formation, juxtaposition (or surface assembly) of ice floes is 
primarily a single-layer process that can be adequately described from hydraulics 
considerations, and from the size, shape, and distribution of ice pieces. Much work 
has addressed the problem of block underturning at the upstream edge of obstruc- 
tions, and some work has addressed what happens to the blocks following 
underturning. Such cover-formation processes are easy to visualize in the labora- 
tory and the river, as they generally occur at the water surface and entail the 
motion of single-layer ice floes coming into contact with a stationary obstruction. 
The juxtaposition of ice floes or the motion of an ice block at the upstream edge of 
an obstruction can be considered to be a fairly steady process because the effects of 
ice-piece movement on the hydraulics are minimal. 

Shoving and thickening, however, are much more common in nature during the 
development of freezeup jams (made up of frazil slush or pans and small ice pieces), 
as well as during the formation and evolution of breakup jams. The manner whereby 
jams form and evolve is also important in determining how they fail. In compari- 
son to the fairly steady water and ice motion during juxtaposition or underturning, 
the ice and water interaction during jam failure and thickening results in highly 
unsteady water and ice velocities, depths, and thicknesses. 

REVIEW OF ICE JAM MODELING 

It is convenient to review prior ice jam modeling in the context of the ways jams 
develop and are classified. This section presents an ice jam classification system, 
reviews past analyses of stationary jams, and briefly describes existing numerical 
models used for predicting jam thickness. 

Review of ice jam classification 
The International Association for Hydraulic Research (IAHR) Working Group 

on River Ice Hydraulics (IAHR 1986) published a state-of-the-art report classifying 
the different types of ice jams and reviewing techniques for their analysis. The 
report defines ice jams as stationary accumulations of fragmented or frazil ice that 
restrict flow. This broad classification could include any form of ice cover or accu- 
mulation, except for a thermally grown sheet ice cover. The classification system 
distinguishes ice jams by their season of formation, dominant formation process, 
spatial extent, and state of evolution. It is clear from the classification that jam for- 
mation, whichever type of jam forms, is intrinsically unsteady. Jams develop and 
adjust in thickness and extent in accordance with flow conditions, ice availability, 
and weather conditions. Also clear from the report, however, is that existing for- 
mulations of jams assume steady conditions, although unsteady water and ice move- 
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Figure 5. Cross section ofafreezeupjam. 

merit play important parts in the development of nearly all the jam types in the 
IAHR classification. 

Season of occurrence 
Ice jams are typically called freezeup or breakup jams, in accordance with the 

season in which they form. This classification suitably represents the hydrological 
and meteorological conditions prevailing during jam formation. 

Freezeup jams form during periods of subfreezing air temperatures when frazil 
ice production is great. Their composition is mainly frazil and broken pieces of 
shore ice, as depicted in Figure 5. Frazil ice forms in areas of high water velocity 
and turbulence, where heat loss from the water surface is greatly increased. Some 
areas may remain open and produce frazil throughout the winter. Subfreezing air 
temperatures reduce basin runoff, resulting in fairly steady water discharge from 
base flow. The ice discharge varies as frazil production increases or freezeup jams 
form and cut off the supply of frazil to downstream reaches. 

When frazil travels downstream, it agglomerates as slush, which rises to the 
water surface and forms ice pans. The pans may break upon passing through very 

Figure 6. Surface jam resulting from juxtaposition of frazil pans. 



Figure 7. Freezeup jam following shoving and thickening. 

turbulent areas of flow or strengthen by freeze-thickening. Pans may slow at chan- 
nel constrictions or stop at downstream ice covers. Stopped and juxtaposed frazil 
pans form surface jams as shown in Figure 6. With continued transport of frazil 
into a reach, the length of a cover of juxtaposed ice pans may increase to the point 
where downstream forces exceed the cover's strength, causing shoving, collapse, 
and thickening of the cover. Figure 7 shows a freezeup jam formed by shoving and 
thickening of ice. Freezeup jams may strengthen by surface freezing, which usually 
causes them to be thinner than breakup jams formed at similar flow rates. 

While water discharge may be steady during the formation and evolution of a 
freezeup jam, flow depth, ice velocity, and jam thickness are not. With continued 
frazil production, a freezeup jam may progress upstream with time, raising water 
levels as it progresses. Figure 8, for example, shows the temporal variation of the 
location of the upstream edge of a freezeup jam on the Salmon River in Idaho for 
the winter season 1990-91. The jam initiated on Julian Day 61 (30 November) and 
reached a maximum length of approximately 34 km (21 river miles). This freezeup 
jam is an annual occurrence and consistently initiates in a deep pool at river-mile 
233. The upstream progression of the freezeup jam varies from year to year and 
depends on air temperature. Plotted in Figure 8 is the daily mean air temperature; 
frazil ice is generated when air temperature plunges below 0°C. Water depths 
experience unsteady variations because of the shoving and thickening of the 
freezeup jam. Indeed, field measurements show that as the jam progresses through 
a reach, the water level increases by approximately 2 m. 

Breakup jams occur during periods of relatively warm weather and are typified 
by periods of increased runoff. The runoff results from snowmelt, rain, or ground- 
water release. For these jams, water discharge usually is highly unsteady with surges 
being possible owing to the failure and reformation of jams as breakup progresses 
downstream. Many anecdotal accounts of the highly unsteady nature of breakup 
jams have been presented (Moberley and Cameron 1929, p. 151). Moberley was the 



Figure 8. Temporal variation of 
air temperature and location of 
upstream edge ofafreezeupjam 
on the Salmon River, Idaho, 
1990-91. 
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Factor of the Hudson's Bay Co. post at Fort McMurray in Alberta and described the 
following events on the morning of 20 April 1875: 

...The winter of 1874-75 was a bitter one, with deep snow and never a thaw until 
April. On the 2nd or 3rd of that month, however, a further heavy fall of snow was 
followed by a sudden rise in temperature. The change of weather and the weight of 
melting snow caused the ice for the 85 mile stretch of rapids above the fort [Fort 
McMurray] to breakup, and it came down the Athabasca with terrific force. On strik- 
ing the turn of the stream at the post it blocked the river and drove the ice 2 miles up 
the Clearwater [a major tributary] in piles 40 to 50 feet high. In less than an hour the 
water rose 57 feet, flooding the whole flat and mowing down trees, some 3 ft. in diam- 
eter, like grass.... 

As its name implies, a breakup jam consists of pieces of broken sheet ice, refro- 
zen frazil ice, and brash or slush ice. Figure 9 depicts a fairly typical breakup jam. 
Freeze-bonding of ice pieces is usually negligible for a breakup jam, because the 
above-freezing air in which they form inhibits it. Breakup jams typically form at 
reaches where the downstream progression of a run of moving ice (or breaking 
front) slows because of reductions in channel slope, or width, or where it encoun- 
ters resistant portions of ice cover, such as locations of freezeup accumulations. 
The severity of flooding during breakup jams depends on many factors, such as 
initial ice cover thickness and strength, characteristics of the runoff hydrograph, 
and, relatedly, weather. Gradually warming weather with no rain, for instance, 

Ice Blocks 
Brash/Slush 

Water Level 

Figure 9. Cross section of a breakup jam. 
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Figure 10. Mid-winter breakup jam on the Kennebec River in Maine. 

mildly increases runoff discharge and decreases ice strength, often resulting in less 
severe jamming and flooding. 

Conversely, mid-winter jams happen with the onset of mid-winter thaws (usu- 
ally in January for the northern U.S., but also in early February, and late Decem- 
ber). Rain and snowmelt runoff on impermeable frozen ground can result in very 
steep increases in river discharge that break up relatively strong ice covers. While 
ice covers in early to mid-winter are typically not as thick as they might be in late 
winter or early spring, mid-winter jams can produce severe flooding. Also, since 
the weather systems bringing mild mid-winter weather are usually short-lived, 
and are soon followed by frigid weather, these jams may remain in place, consoli- 
dating as virtually a monolithic mass of ice. This sets the stage for additional prob- 
lems later during the normal breakup period. Figure 10 shows a mid-winter breakup 
jam on the Kennebec River in Maine. It formed during January 1996 at a peak dis- 
charge of approximately 2000 m3/s. Once the flow receded to the river's normal 
winter levels of 200 to 300 m3/s, the jam grounded in many locations and contin- 
ued to cause increased water levels upstream. 

As a further example of the highly unsteady nature of breakup jams, Figure 11 
shows the stage hydrograph for a gauging station on the St. John River in northern 
Maine, where breakup jams are an annual occurrence. Superimposed on the gen- 
eral rise in river stage are several short-duration peaks attributable to ice jam for- 
mation and failure. Additional instrumentation installed at the gauge site identi- 
fied the initial time of failure of the sheet ice cover as 0610 on 22 April 1994, which 
corresponds to the stage drop following the first large peak. Subsequent peaks are 
most likely ascribable to reformation and failure of additional jams downstream 
from the gauge or from surges due to failure of jams upstream from the gauge. 
Field observations have shown that jams do form at locations approximately 1,4,8, 
and 15 km downstream from the gauge. 



Figure 11. Stage record for 
USGS station no. 0101000 on 
the St. John River in Maine dur- 
ing 1994 breakup. 
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Dominant formation process 
Ice jams are also classified in terms of the processes dominating their formation. 

The important processes are transport and deposition of ice, congestion of ice, and 
shoving and thickening of ice. 

Jams known as "hanging dams" are local, thick accumulations of frazil ice. Frazil 
ice arriving at the upstream edge of an existing ice cover may submerge and travel 
beneath the cover until reaching an area of lower water velocity, where it deposits 
on the underside of the cover. These formations, or hanging dams, may continue to 
develop during the entire winter season, growing up to thicknesses of 20 m. Large 
hanging dams may constrict flow and block the downstream passage of ice, occa- 
sionally initiating more severe breakup jams. 

A congestion or surface jam forms when ice transport along the water surface is 
reduced by shore ice growth, transverse floating objects, or channel constrictions, 
such as bridges. This initiation method is typical of both freezeup and breakup 
jams. Water flow is fairly steady for congestion jams, which, initially at least, are 
relatively thin (i.e., single floe thickness). 

A submergence or frontal progression type of jam typically forms at some trans- 
verse floating barrier, such as an intact ice cover. Arriving ice floes tip and sub- 
merge, but come to rest almost immediately at the upstream edge of the obstruc- 
tion, causing the jam to progress upstream. This type of jam, often called a narrow 
channel jam, primarily forms during the freezeup of contacting frazil pans. 

Given a steady ice supply from upstream, both the congestion and frontal pro- 
gression type of jams may grow to a point beyond which they are not able to with- 
stand the increased streamwise load exerted by additional ice conveyed to the jam 
or by increased discharge. Then, shoving and thickening occur. A jam formed by 
shoving and thickening is sometimes termed a wide channel jam. It will remain in 
place as long as the downstream acting forces of water shear and gravity (and pos- 
sibly wind shear) can be resisted by the jam's strength and resistive shear stresses 
acting between the ice and the banks. If the load (water drag and ice weight) 
becomes too great, the jam must thicken to increase its resistance to downstream 
movement. Thickening increases both the jam's strength and the shear stress 
between the jam and the bank. 

Once a jam collapses, thickens, and possibly moves downstream, jam reforma- 
tion becomes highly unsteady. The shear stress exerted on the jam underside 
reduces as it begins moving, which in turn increases water velocity and reduces 
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depth. Ice acceleration produces an ice momentum that must be overcome to arrest 
ice motion at a location downstream where thickening takes place. During shoving 
and thickening of accumulating ice, water depth and velocity, ice thickness, and ice 
velocity are all interrelated and vary with distance and time. It is this unsteady 
nature of shoving and thickening that this study addresses. 

Spatial extent 
The horizontal and vertical extent of a jam are also used to classify jam type. In 

plan, jams are either partial or complete, according to their extent across a river. A 
partial jam means that a portion of the river width remains as an intact ice sheet, or 
one channel around an island jams while the other remains clear. In vertical sec- 
tion, jams are classified as floating or grounded. Grounding, when ice extends to 
the channel bed, takes place quite often near the riverbanks, at shallow areas such 
as bars or crossings, and near the toe region of a thick jam. Grounded jams usually 
result from very unsteady water and ice flows. They severely limit water flow, greatly 
increasing water levels. Water may flow as seepage through grounded accumula- 
tions or even over the top of a jam. Little is known about the mechanism of ground- 
ing or the permeability of grounded jams. Floating jams are more common and 
easier to analyze, though they may become partially grounded when river flow 
recedes. Most analyses to date assume floating jams, whose flotation follows 
hydrostatic pressure law. 

State of evolution 
The final classification category is that describing the state of jam evolution: 

steady-state, evolving in time, or evolving up-channel. An evolving jam continues 
to be subject to unsteady flow rates, ice discharges, or changes in other ice variables 
(such as strength). A breakup jam, already formed and undergoing shoving and 
thickening, will continue evolving with nonuniform thickness, depth, and water 
velocities. A freezeup jam may experience fairly steady flow rates, but frazil ice 
production and transport may cause it to shove and thicken with time. Figure 12 
shows ice jam evolution with time. As the jam thickens and progresses upstream, 
water levels rise and velocities decrease. Whatever the final water surface level and 
jam thickness profile might look like, the ice thickness and velocity are not steady 
as the jam develops. 

If conditions do become steady, uniform, and stable, a jam may have an equilib- 
rium section. Strictly speaking, an equilibrium section is uniform only in a reach- 
averaged sense. Figure 12d shows that the thickness and depth are nearly constant 
in the longitudinal direction. Moreover, the bed slope, water-surface slope, and 
energy slope are equivalent in the equilibrium section. These conditions of unifor- 
mity were assumed by ice researchers when formulating the first analyses of forces 
exerted on a stationary jam (e.g., Pariset and Häuser 1961, Uzuner and Kennedy 
1976). 

Analysis of stationary jams 
A major advance in addressing the effects of ice jams on water levels, and in 

estimating jam thicknesses, was the realization that a floating jam could be likened 
to a granular material contained between two parallel walls. The behavior of a 
granular material is influenced by the forces exerted upon it and its material prop- 
erties. As the length of a jam increases, these forces increase, as do stresses within 
the jam. 
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Figure 22. Idealization of ice jam evolution with time. 

The first analysis was done by the Canadian R.J. Kennedy (1958), who was inter- 
ested in the forces exerted on a boom by a pulpwood jam. To determine those forces, 
he developed the following relation 

B — + xsB-2k0XF = 0 (1) 
dx 

where 
B = width of the holding area 
tj = shear stress on the underside due to water flow 
k0 = coefficient of lateral thrust 
X = coefficient of friction of the pulpwood against the shore boundary 
F = force per unit width acting in the downstream direction (^-direction). 

If there exists a force fa exerted by the water impinging on the upstream end of the 
accumulation, then eq 1 can be integrated to obtain the force at any location x (mea- 
sured from the upstream end of the accumulation), i.e. 

F = -^- + 
2Xkn h- 

Bx{ 

2Xh OJ 
exp 

-2Xk0x 
(2) 
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Equation 2 shows that, as the length of the accumulation increases, the force 
level reaches an asymptotic value that is related only to the water drag and cover 
width (friction and lateral stress coefficients being constant). Kennedy's formula- 
tion, however, neglected the streamwise component of the weight of the pulpwood 
and assumed that the depth (and therefore water shear) was constant. Consequently, 
the force through the jam would be independent of the thickness and bulk density 
of the pulpwood accumulation. 

Berdennikov (1964) investigated the forces exerted on an ice boom retaining an 
ice accumulation. While he initially identified the weight component of the ice mass 
parallel to the water surface as one of the forces to be considered, he dismissed this 
force and the hydrodynamic pressure against the leading edge of the cover fa as 
being so small as to be negligible. His expression for the normal stress in the ice 
field cx, assuming that o~x = 0 at x = 0, is 

Bij 

2M0r, 
1-exp 

-2Xk0x 
(3) 

Pariset and Hausser (1961), then Pariset et al. (1966), advanced Kennedy's for- 
mulation by including the streamwise components of the weight of the cover and 
an assumed "cohesive" stress acting between the ice and the banks. Summation of 
the forces acting on the ice cover (Fig. 13) gives 

dFB + 2(zcr\ + Xk0F)dx = (x{ +/3 )Bdx (4) 

where 
F 

11 

h 

= force per unit width acting in the downstream direction 
= cohesive stress per unit area at the banks 
= cover thickness 
= downstream component of the weight of the cover per unit area and B, k0, 

X, and Xj are defined as above, so that 

h = siPgns (5) 

where 
si = 

P = 
g = 

specific gravity of ice 
density of water 
acceleration due to gravity 
slope. 

Figure 13. Forces acting on an ice cover. (After Pariset et al. 1966.) 
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Because their formulation is for a uniform channel, bed slope, water surface slope, 
and energy slope are taken as equal. Integration of eq 4 results in an expression for 
the longitudinal force per unit width as a function of the distance from the 
upstream edge of the cover, similar to eq 2, i.e. 

2k0X
K '   J3>   k0X    [2k0Xy '   J3>   k0X   n)    v 

2k0Xx 
(6) 

where/j is as defined above. Equation 6 is based on an assumed "equilibrium thick- 
ness" of an ice jam over steady, uniform flow. Pariset et al. also suggest definitions 
for narrow and wide jams. When the term within the large brackets of eq 6 (the 
multiplier of the exponential term) is negative, the longitudinal force F is a maxi- 
mum at the upstream edge of the cover (x = 0). This is the case for so-called narrow 
jams. As the cover progresses upstream, the downstream thrust is resisted by shear 
stress at the banks, which grows faster than the additional hydrodynamic forces 
exerted on the jam. Conversely, when the term within the brackets is positive, the 
longitudinal force F grows with distance downstream from the upstream edge of 
the jam, asymptotically approaching a maximum as the distance grows very large. 
This maximum longitudinal force acting through a wide jam is 

Pariset et al. recognized that this maximum force (or sum of external forces) is 
resisted by the strength of the accumulated ice, which is assumed to behave as a 
granular material. If Fmax exceeds jam strength, the jam fails and must thicken until 
there is a balance between the external forces and jam strength. They likened the 
maximum strength of the ice jam to that of a granular material under complete 
mobilization of the passive pressure resistance, i.e. 

Kpsipg(l-si)^- = tan2^ + |jsipg(l-si)^- (8) 

where Kp is a passive pressure coefficient and <j> is the angle of internal resistance of 
the accumulated broken ice, and is commonly taken as the angle of repose for granu- 
lar materials. Pariset et al. then equated jam internal stress to the sum of the stresses 
exerted by the external forces. In doing so, they introduced the coefficient (i, where 

lL = k0Kpl (9) 

which combines the ice properties into one coefficient. The stress balance results in 
an equation relating jam thickness and stresses exerted against the jam: 

W^O^—M/s)-^1. (10) 

The shear stress Tj in eq 10 is expressible as 

u2 

^i=PS^2 (11) 

where u is water velocity beneath the cover and C is the Chezy coefficient. Pariset 
et al. assumed that values of C are essentially equivalent for the ice surface and the 
bed. 
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The weight of the cover in the downstream direction f3 can be defined as 

/3=SiP^l-2^ C KH 

(12) 

where RH is the total hydraulic radius beneath the ice. Substituting eq 11 and 12 
into 10, and dividing by H2 (H = the open water depth just upstream of the ice 
cover), renders eq 10 dimensionless, i.e. 

Buz 

|xC2H2 
l + SiJ- = -^Usi(l-^ 

Pg^H H 
(13) 

Equation 13 can be used to predict ice thickness for the wide-jam case. Pariset et al. 
recognized that freeze-bond forces are of lesser importance for thicker jams, and 
are not important during breakup conditions, because jam resistance is dominated 
by gravitational effects, i.e., ice weight. They developed a dimensionless stability 
parameter X to relate jam thickness to upstream open-water conditions: 

X = Q1 Bun 
^(l-4£ 1 H 

BC2HA C2H2 
1 + Sj 

H 

(14) 

where Q is water discharge and w0is bulk open water velocity for uniform flow far 
upstream of the jam. Values of X are plotted in Figure 14 for s4 = 0.92 and p. = 1.28, 
which are values adopted by Pariset et al. for jams in the St. Lawrence River. The 
figure indicates jams as being stable (inside the bell curve) or unstable (outside the 
curve). The curve is useful, but it does not enable direct calculation of ice thickness. 
Moreover, it assumes equilibrium conditions, i.e., steady, uniform flow of water 
and uniform ice thickness. 

Uzuner and Kennedy (1976) presented a detailed formulation of the time- 
dependent differential equations describing the force equilibrium in a static, float- 
ing ice jam. Their formulation is 

3x10   i r 

% 
ii 
x 

Stable* \      Unstable 
Region'   \      Region 

Figure 14. Dimensionless stability 
parameter. (After Pariset et al. 1966.) 
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dx ^0X ^ ~ du ^xy) ~ Ti C0S[ Si Ht ] ~ SiPST1 Sin^6 + a) = 0 (15) 

where 
0"x - normal stress in the streamwise direction 

xxy = shear stress at the banks 
ij = shear on the underside of the cover 
9 = slope of the bed 

(9 + oc)= slope of the water surface. 

Uzuner and Kennedy expressed ox and txy as functions of the average vertical 
stress az within the cover 

°z = j W(l - si X1 ~ V) cos(6 + a) = yeTi (16) 

where p is jam porosity and ye is the equivalent unit weight of the jam. The Rankine 
and Mohr-Coulomb stress theories for granular materials give 

ox=Kpc^ (17) 

and 

%=C0ö; + Q (18) 

where 
Kp = passive pressure coefficient 
C0 = shear stress coefficient 
Q = assumed cohesive intercept. 

Substitution of eq 16 through 18 into 15, integration of the modified equation, eq 
15, then normalization using x0 = x/hn and r|0 = r\/hn, yields 

^0
!^L = h+hT)o+hT\o2 (19) 

where x. 
h=W±h^ (20) 

WS0-2§- 
 2- (21) 

2KpJe 

"^ (22) KpB yll> 

K fbln2 

ZgS0 

(23) 

Also 
S0 = bed slope (sin 0) 
/b = Darcy-Weisbach resistance factor of the bed 
qn - unit discharge at a location upstream where ice does not affect the flow. 
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The Uzuner and Kennedy formulation of the force balance associated with gradu- 
ally varied, unsteady water flow was too complex for a general solution. They did 
show that, for a condition of quasi-steady jam formation in which the jam progresses 
upstream at a constant rate, the unsteady water flow equations are constant with 
time. For the section of the jam considered to be in equilibrium, eq 19 can easily be 
solved for r|0 using the quadratic formula by setting the term on the left-hand side 
to zero. 

The formulations proposed by Pariset et al. and Uzuner and Kennedy compose 
the basis for most subsequent analyses of static ice jams. Beltaos (1983), most nota- 
bly, adapted the formulations for wide-river jams and expressed flow depth 
beneath a jam h as 

If 
4gS0 

/o 

1 
^3 (24) 

where fQ is a composite value of the Darcy-Weisbach resistance coefficients for the 
bed and the jam underside. Solution of eq 10 for jam thickness, assuming that cohe- 
sion is negligible, and that/3 is given by eq 5, yields 

BSn 

M1 -Si) 
1 + 1 + 

(2/0)3n(l-Si) X 
Jo j 

(    2  > 
1 

US°J 

1 " 
3 

1" 
2 

BS0 (25) 

where /j is a Darcy-Weisbach resistance factor for flow along the jam underside. 
Beltaos also presented field data, consisting of thickness measurements for several 
ice jams that had refrozen in place. Using eq 25, he back-calculated values of u and 
found them to range from 0.6 to 3.5, with these upper and lower limits obtained for 
conditions of considerable uncertainty. If the two extreme values are excluded, his 
data show consistently that \i = 0.8 to 1.3. Beltaos found, on average, that n =1.2, 
which is in good agreement with the value of 1.28 suggested by Pariset et al. 

Numerical modeling 
Several numerical models of jams have been developed. They assume that a 

balance exists between forces acting on the jam, predict equilibrium jam thickness, 
and estimate jam effects on water levels. Existing open-water models for steady 
and unsteady flow simulations have been adapted by the use of equations similar 
to eq 25 to provide estimates of ice jam conditions. Other models have been devel- 
oped using steady or unsteady water flow and equilibrium (uniform) or 
nonequilibrium thickness. 

HEC-2, the step-backwater program developed by the U.S. Army Corps of Engi- 
neers, was modified to include an ice cover (HEC 1979). In its initial version, the 
cover, or jam, was treated simply as a boundary, floating at hydrostatic pressure, 
that provides an additional resistance to flow at the water surface. The cover is 
taken as being static, with the user of the program inputting values of cover thick- 
ness, roughness, location, specific gravity, and a value of \i. The program calculates 
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the ice-affected water levels with the input configuration of the cover and also 
determines if the cover is stable according to the stability parameter proposed by 
Pariset et al. To generate an equilibrium thickness profile, many iterations are nec- 
essary with modifications made to the ice thickness and roughness values. 

DWOPER, an unsteady flow forecasting model developed by the U.S. National 
Weather Service, was also adapted to investigate the effects of ice covers on water 
levels. Daly and Ashton (1983) modified the St. Venant equations describing the 
unsteady water flow to include the frictional resistance of the ice to the water flow. 
They concentrated on running steady water discharges with a stationary ice cover 
and then instantaneously removing the cover, simulating a complete cover failure 
and passage downstream. The ensuing transients increased with increasing bed 
slopes as would be expected. Their work did not include nonuniform covers or 
jams and they pointed out the necessity of including ice motion in developing a 
truly unsteady ice jam model. 

Flato and Gerard (1986) and Flato (1987) applied their model, ICEJAM, to pro- 
duce ice jam profiles for a range of steady-flow discharges. As it uses a form of the 
differential equation describing the balance of forces on the ice cover, similar to 
that of eq 19, it can be used to describe the complete thickness profile even if there 
is not an equilibrium section. The input data necessary to run ICEJAM include 
water discharge, ice jam characteristics (bulk specific gravity, angle of internal 
resistance, and porosity), channel data, roughness of the bed and ice, and initial 
estimates of water depth and jam thickness. The model first calculates the normal 
depth (under ice) profile based on the initial estimates of ice thickness. It then solves 
the ice force balance equation in a forward-difference mode, stepping downstream 
from the upstream end of the jam. The hydraulic conditions are then modified for 
these new ice thicknesses by means of the standard step-backwater calculation tech- 
nique moving in an upstream direction. Iterations of the ice and water calculations 
continue until an acceptable tolerance is met. Adjustments are made in the ice thick- 
ness at the toe of the jam in relation to a prescribed ice erosion velocity. The model 
produced reasonable and stable results when a damping factor of V3 was applied 
to the calculated corrections for ice thickness. 

PJVJAM is a model developed by Beltaos (1993). It is based on a similar model 
proposed by Beltaos and Wong (1986). Both models use a steady water discharge 
and include the seepage flow through the jam in an attempt to better define ice 
thickness near the toe of the jam, which may be grounded. RIVJAM solves first- 
order differential equations for the water depth beneath the cover and the ice thick- 
ness. It does so by means of a predictor-corrector scheme, and the solution proce- 
dure may progress in an upstream or downstream direction. Beltaos (1993) showed 
that RIVJAM was able to reproduce ice thickness profiles for a variety of 
nonequilibrium and potentially grounded jams quite well, with appropriate choices 
of several model parameters. The most tenuous of these appears to be the seepage 
coefficient, which is similar in concept to hydraulic conductivity (with units of 
length/time) for high Reynold's number flows. The model, however, does not 
include the unsteady movement of the ice cover and thus cannot include the effects 
of ice momentum, which would be important in cases of grounded jams. 

A utility program was developed by Wuebben et al. (1995) for use with HEC-2 to 
simplify calculation of ice-affected water levels. The program, dubbed ICETHK, 
uses standard output variables from a HEC-2 simulation and calculates ice thick- 
ness based on an equation similar to eq 25. There are several calculation options, 
such as width smoothing, ice thickness smoothing, and overbank ice and rough- 
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ness coefficient assignment as a function of thickness based on the data of 
Nezhihovskiy (1964). The program then automatically updates the HEC-2 input 
file to reflect these new values of ice thickness and roughness. Iterations continue 
until a specified tolerance is met. Considerable judgment is necessary in the jam- 
toe area, where ice thickness conditions cannot be expressed adequately by the 
equilibrium thickness as provided by eq 25. 

Lai and Shen (1991) developed the jam model RICE, which is intended to simu- 
late unsteady conditions of water flow, water temperature, ice concentration, and 
thermal growth and decay of ice. In their model, ice travels downstream at the 
water velocity until it reaches some location where a jam forms, by either ice-piece 
juxtaposition or the narrow-jam or wide-jam accumulation modes. The wide-jam 
mode is taken to be governed by the ice force balance equation proposed by Pariset 
et al. Lai and Shen did recognize that as progression (by shoving) is taking place, 
there is a simultaneous change in the flow hydraulics. They take care of flow changes 
by solving the equilibrium thickness and step-backwater equations simultaneously 
in the reach where the jam is thickening. The RICE model has been used success- 
fully in simulations of ice conditions on the St. Lawrence, Niagara, Ohio, and Yel- 
low rivers, though, like other models, it requires significant calibration to match 
field data. 

Tsai et al. (1988) developed a jam model to investigate ice transport in rivers and 
ice jam initiation. They used a one-dimensional numerical scheme for solving the 
ice transport equations, i.e., conservation of ice momentum, ice mass, and ice area. 
The equations are solved in a Lagrangian form, where the trajectories of ice ele- 
ments at fixed Eulerian grid points at the beginning of a time step are traced on the 
x - t plane. Values of ice variables are then interpolated back to the grid points at 
the end of the time step. The de Saint Venant equations for unsteady water flow are 
solved using a four-point implicit finite-difference scheme. The ice transport and 
water flow equations are loosely coupled by first solving the water flow equations 
and then the ice transport equations based on the new values of the water flow 
variables. 

Shen et al. (1990) elaborated further aspects of this model, examining the vari- 
ous plausible constitutive relationships possible for describing the internal stresses 
and bank shear. For example, they describe a rapid flow regime as one in which the 
ice concentration is low and interaction between ice particles is minimal. Commen- 
surately, they characterize a slow flow regime as one in which higher (multi-layer) 
ice concentrations typically form, and where internal resistance is attributable to 
prolonged interaction of contacting particles. Their expressions for the streamwise 
stress ax and the stress normal to the bank xxy are equivalent to those for passive 
pressure resistance, as described by Pariset et al. The authors state the model 
appears to adequately describe the time and location of jam initiation in river chan- 
nels, but that more research is necessary to improve the constitutive laws. 

Summary 
While considerable progress has been made in modeling the unsteady flow 

associated with stationary ice jams, the unsteady aspects of ice movement have 
not been adequately addressed. Most models treat shoving and thickening as an 
instantaneous phenomenon, with no consideration for the effects of ice momen- 
tum on the resulting jam thickness and profile. Physics and field observations sug- 
gest that ice momentum should substantially affect jam thickness. 

The following sections describe laboratory and numerical experiments aimed at 
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evaluating the effects of ice momentum on jam thickness and profile. The numeri- 
cal model used for this purpose is a significant advance on prior models in so far 
that it includes ice momentum and directly couples ice and water motion. 

LABORATORY EXPERIMENTS 

Introduction 
As indicated in the last section, the literature on ice jams contains no studies 

describing how jam shoving and thickening occur, or generally evaluating the 
importance of ice momentum in jam development. The laboratory experiments 
conducted here provide the first diagnostic information demonstrating the impor- 
tance of ice momentum. 

All prior studies, certainly those that do not include ice motion, treat shoving 
and thickening as an instantaneous process. When the forces exerted in the down- 
stream direction on a jam reach the level of the passive pressure resistance of the 
jam, prior formulations let the jam simply thicken. No mention is made of the time 
required for thickening to take place, or where the ice mass required for the thick- 
ening originates. Equilibrium thickness theory (e.g., see Uzuner and Kennedy 1976) 
carries with it many assumptions, including steady, uniform flow and a stationary 
ice cover. Certainly, when a jam fails, it violates the latter assumption, which in 
turn violates the steady and uniform flow condition, because ice movement influ- 
ences water flow. Once an ice jam comes into motion, the shear stress on the under- 
side of the jam is reduced, because it is a function of the difference between water 
and ice velocities. Furthermore, the principal assumption used for describing the 
compressive stress state of ice jams diminishes in validity once a jam fails. The 
Mohr-Coulomb theory has been used with great success in describing the com- 
pressive strength of granular materials, such as ice rubble in a jam, under various 
states of stress. Once failure begins, however, the material undergoes changes in 
stress levels that are not well handled using this theory. As well as thickness and 
velocity changes, other jam characteristics, such as porosity or even ice-piece size 
or shape, may change. 

To model shoving and thickening, the principal effect of ice momentum, it is 
necessary to know how the process occurs. Though numerous ice jams and their 
failures have been observed for a wide variety of situations in the field, observa- 
tions are typically limited to the surface of the cover from the perspective of the 
shoreline. Even when jam failure and reformation are observed from the air, prac- 
tical limitations (i.e., altitude and sight distance) render the observations reach- 
averaged at best. The highly unsteady nature of most breakup jams reduces oppor- 
tunities for direct measurements of jam properties. Only in the rare incidence where 
a jam formed and refroze in place, following a reduction in water flow and a return 
of lower air temperatures, might this be done. While these few cases may provide 
useful data on jam thickness profiles, other items of interest, such as ice velocity 
and local water discharge at the time of jamming, remain unknown. A final note 
concerning jam observations is that, while the date of breakup ice runs and jam- 
ming in the northern U.S. might average 10 March (near equal amounts of daylight 
and darkness daily), about 80% of ice runs and jams take place during darkness. 

To qualitatively examine the importance of ice momentum on jam processes, a 
laboratory study was undertaken to simulate the shoving and thickening of a fail- 
ing ice cover. Of particular interest are the timing and mechanics of the process. 
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The study used a laboratory flume and a jam formed of ice pieces and plastic beads. 
The jam was destabilized by means of flow increases. The qualitative observations 
provided the insights necessary to numerically model unsteady jam formation. A 
brief series of quantitative experiments was also undertaken to address the appli- 
cability of equilibrium thickness theory for determining jam thickness, following a 
shoving and thickening event. 

Experimental setup 
The experiments were undertaken in three different flumes using real and plas- 

tic ice. Two of the flumes are refrigerated. One flume has a fixed slope bed (S0 = 
0.0033), is 1.22 m wide with a working depth of 0.61 m, and is 22.9 m long. The 
second flume is tiltable, 36.6 m long with a working section of 1.22 m wide by 0.61 
m deep (Fig. 15). Both flumes are housed in refrigerated rooms in which air tem- 
peratures can be regulated to -23°C. A selection of pumps delivers water from large 
sumps to each flume, resulting in non-recirculating flow. The sumps contain chiller 
coils to further reduce water temperature. The quantitative experiments were con- 
ducted using the tiltable flume and a third, unrefrigerated flume. This latter flume 
has a fixed horizontal bed, is 7.3 m long, and has a working section that is 0.92 m 
wide by 0.92 m deep. It has a large sump and can be operated in either the fully 
recirculating or "once through" mode. 

The visualization experiments entailed initially forming ice covers made of a 
single layer of ice or plastic beads. Then, water discharge was increased to destabi- 
lize the cover and induce shoving and thickening. For the experiments with real 
ice, ice pieces were formed from a thin sheet (about 15 mm) grown in the flume at 
very low flow. The randomly shaped pieces were approximately 80-120 mm in 
their longest dimension. Air temperature was increased to about 0°C, and the flow 
was increased until the ice pieces collected as a single-layer accumulation, or jam, 
held in place by a screen at the downstream end of the flume. The flow rate was 

Figure 15. CRREL refrigerated, tiltable flume. 
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Figure 16. Plastic beads used to simulate ice. 

then further increased in steps until the jam destabilized and shoving and thicken- 
ing took place. Step increases in flow rate were varied from 10 to 100% of the initial 
flow rate. 

Tests were also conducted using plastic beads formed from extruded polyethyl- 
ene strands that are chopped to produce uniform pieces approximately cylindrical 
in shape with a length and diameter of 3 mm (Fig. 16). The specific gravity of the 
plastic is 0.925. The beads form accumulations with a porosity of 0.40, very similar 
to natural ice, and have a dry angle of repose of 36°. When new beads are added to 
the water, they exhibit some surface tension effects (nonwetting), but after a few 
days they become fully wetted. The beads were used for the visualization experi- 
ments in the tiltable flume, as well as for the quantitative testing, because of their 
constant and uniform properties, as opposed to real ice. For the visualization tests, 
a uniform layer of beads was spread over the water surface at a very low flow. The 
flow rate was then increased to the starting flow level for the test and the bead 
cover was allowed to consolidate, typically resulting in thicknesses of one to two 
beads. Then, similar to the real ice tests, the flow rate was increased in steps until 
shoving and thickening took place. 

The quantitative experiments were conducted in two series of tests. The first 
were conducted in the unrefrigerated horizontal-bed flume to determine impor- 
tant physical parameters characterizing accumulations of beads. In these experi- 
ments, a stable bead jam was formed at a variety of flow rates, with detailed mea- 
surements taken of water surface slopes, depths, accumulation thicknesses, and 
velocity profiles. From these measurements, the values of the composite, bed, and 
jam underside friction factors were calculated, as was the value of (i for the beads. 
The second series of tests was conducted using the tiltable-bed flume in a warm 
environment. Similar to the visualization experiments, a bead jam was formed and 
disturbed by flow-rate increases. Measurements were made of jam thickness, 
extent, water velocity, water surface slope, and depth. These measurements, 
together with the values determined for (I and friction factors, allowed the jam 
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thickness, following shoving and thickening, to be compared with that predicted 
by equilibrium thickness theory. 

Observations of shoving and thickening 
The jams failed in two general ways with both the real ice and plastic beads 

simulating ice. The type of failure was related to the initial flow rate, jam thickness, 
and the relative increase in flow rate over the initial value. 

The first mode of jam failure is called here "progressive jam failure." It was the 
dominant mode for low initial water discharge, relative to the discharge needed to 
fail the entire cover, and when the relative increase in discharge was less than 50%. 
As the discharge was increased, the water level rose first at the upstream end of the 
flume as the discharge wave traveled its length. The consequent increase in shear 
stress on the underside of the cover caused minor consolidation at the upstream 
end of the accumulation and some underturning and transport of individual pieces. 

Small ridges of local thickening formed near the jam's upstream end. The ridges 
developed rather slowly, with the jam upstream moving into the ridge, while the 
portion of the jam downstream remained motionless. The increased thickness and 
roughness of the ridge further increased shear stress on the jam's underside in the 
vicinity of the ridge, initiating additional small failures and ridge-building events 
further downstream. When new ridges formed downstream, the activity at the 
upstream ridges slowed or ceased and the entire jam above the most downstream 
ridge began moving. 

With time, this progression of ridge-forming, herein termed the "shoving front," 
advanced to the jam's downstream end at the screen. At that point, the entire jam 
was in motion. The jam thickness subsequently increased at the screen until the 
thickening jam's strength could resist the downstream-acting forces. Although ridge- 
building resulted in minor local thickening as it progressed downstream, the major 
thickening occurred at the screen, then progressed back upstream. As thickening 
progressed upstream, the portion of the jam downstream of the "thickening front" 
became stationary. 

Meanwhile, the jam upstream was still moving. Figure 17 provides an idealized 
picture of the movements of the shoving front and the thickening front during the 
progressive failure of a jam. Ice velocities during jam failure and thickening were 
very much less than the bulk water velocity. 

Before Increase in Q ^==- 
Ice Cover Stationary 

Single Layer Thickness 

Screen 

Shoving Front 

...    , .   _ V7  Ice Cover Moving — 
After Increase in Q, V .-.-.-"-.-.-.-., 
Shoving Front Progression   — 

After Increase in Q, 
Stopping Front Progression 

Ice Cover Stationary Screen 

Single Layer 

Stopping Front 

Ice Cover Moving 
Ice Cover Screen 

Some Multilayering 
Multilayered 

Cover 

Figure 17. Progressive jam failure. 
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The second mode of jam failure is called here "complete jam failure." It was the 
dominant mode for relatively high initial discharge, for which the entire jam was 
close to a condition of instability. Discharge increases simply overwhelmed the 
entire jam. As discharge increased, water level rose, and a wave of water traveled 
the length of the flume. In these events, however, the entire ice jam (which was up 
to 30 m long) mobilized en masse and failed at the downstream screen. The thick- 
ening front then progressed upstream from the screen. During some tests with very 
large discharge increases, small ridges formed elsewhere within the jam, but the 
major thickening took place as the thickening front swept back upstream. The ice 
velocities for this type of failure were noticeably higher than for the progressive 
failure type, yet still only ranged up to 25% of the bulk water velocity. 

A few tests were also conducted in which the discharge was increased and held 
constant for a short period. These tests were conducted for initial discharges and 
discharge increases previously identified as causing a progressive jam failure. In 
these tests, the shoving front was allowed to progress about halfway down the 
flume, then the discharge was reduced to its original rate. As the discharge 
receded, the entire jam (which was moving upstream of the shoving front) stopped 
en masse. This left an ice accumulation that was nearly a single layer thick in the 
downstream reaches, but slightly thicker upstream. The discharge was then 
increased to the higher value. In all cases, the jam upstream of where the shoving 
front had previously progressed mobilized en masse. The shoving front then con- 
tinued its progression downstream as if the drop and subsequent increase in dis- 
charge had never happened. 

While the failure modes observed for the ice pieces and plastic beads were gen- 
erally similar, there were a few differences. As expected, the real ice was more 
angular and thus had a higher angle of internal resistance. Consequently, the accu- 
mulations of real ice were more resistant to increases in downstream load. A com- 
plication for the tests using ice was water-temperature regulation. Depending on 
air temperature, an accumulation may melt or it may further increase its strength 
owing to freeze-bonding of contacting pieces. The ice pieces were also much larger 
than the plastic beads, potentially violating assumptions that their behavior could 
be treated using continuum or particulate theory. 

An interesting finding from the tests was that small increases in discharge do 
not necessarily result in shoving and thickening. Sometimes, two or three small 
steps in discharge were required to destabilize a jam. This was especially true for 
the tests using ice, which involved a single layer of ice pieces with a rather high 
piece aspect ratio {L/r\Q), whereas the bead experiments involved a layer thickness 
of between one and two bead diameters. The high aspect ratio for the ice pieces 
invalidates assumptions of continuum theory for treating jam strength behavior. 
The initial discharge used for a test likely was substantially less than the discharge 
needed to destabilize the jam. For each bead experiment, once a shoving and thick- 
ening event was completed, the water discharge was further increased to start a 
second shoving and thickening event. Usually, multiple discharge steps were 
required for this, especially when the initial event had led to complete jam failure. 
Evidently the collapsed jam had thickened to an extent much greater than the equi- 
librium thickness estimated from the existing formulations (e.g., Uzuner and 
Kennedy 1976, Beltaos 1983). This preliminary finding strongly suggests the 
importance of ice momentum in determining jam thickness. It is this finding that 
prompted further experiments to compare thicknesses after shoving to those cal- 
culated using equilibrium theory. 
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Equilibrium thickness evaluations 
To compare thicknesses after failure and thicknesses predicted from equilibrium 

theory, the strength and hydraulic roughness properties of bead accumulations had 
to be determined. A useful formulation of static equilibrium thickness is 

T\ea = 
BS 

eq"2n(l-Si) 
1 + 1 + 

2BS2sig 

Y 
(26) 

in which w is average velocity and/- is the Darcy-Weisbach friction factor for the 
flow along the ice cover underside. The overall strength coefficient for the ice |X is a 
combination of several material properties, i.e. 

\i = k0XK (1-p) (27) 

where 
lateral stress coefficient (the fraction of the longitudinal acting force that 

is directed normal to the banks) 
A, = friction coefficient for ice sliding against ice at a shear boundary 
p = accumulation porosity 

Kp = Rankine passive pressure coefficient 

Kp = tan' 2   K 

4    2 
(28) 

with <|> being the angle of internal resistance, which is commonly assumed to be 
equal to the dry angle of repose of a granular material. 

Calculation of equilibrium thickness using eq 26 requires knowledge about the 
average velocity and energy slope of the flow, as well as about the specific gravity 
of the ice, accumulation porosity, friction factor for flow along the accumulation, 
and the overall strength coefficient p.. For jam equilibrium, bed slope, water surface 
slope, and energy slope are taken as being equal. While values of angle of internal 
resistance ()> and porosity p had been directly measured for the beads, values of 
lateral stress coefficient k0 or the friction coefficient X are unknown. Therefore, (i 
cannot be readily calculated from eq 27. Instead, values were back-calculated using 
eq 26, but this approach involves/j as an additional unknown. However, the Darcy- 
Weisbach definition of friction slope for the ice-affected layer of flow 

SgRi 

combined with eq 26 leads to an alternate form of eq 26 

(29) 

BS 
^ = 2n(l-Si) 

1 + 1 + 4Rjl-t(l-Si) 

SjSS 

Y 
(30) 

For this equation, only values of slope and hydraulic radius of the ice-affected flow 
area are needed to evaluate neq. 

Multi-layer bead accumulations, or jams, were allowed to form in the flume at 
different levels of steady discharge. Detailed slope measurements and velocity pro- 
files were obtained in the region where the accumulation thickness appeared uni- 
form. Figure 18 presents an example of a measured velocity profile and the fitted 
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Figure 18. Measured velocity 
profile with fitted log-law equa- 
tions for the ice and bed-affected 
areas. 
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log-law profiles calculated for the bed- and ice-affected portions of the flow area. 
By assuming the line of zero shear stress to be equivalent to the intersection of the 
two computed profiles, the depth of the ice-affected flow area could be determined 
and the hydraulic radius R, of that region calculated. The value of M. was then calcu- 
lated by back substitution into eq 30, using the measured value of accumulation 
thickness in the equilibrium reach. The value of |J. was found to average 0.75 for the 
three steady flow discharges considered. Though this value is at the low end of the 
range of 0.8-1.3 reported by Beltaos (1995), it reflects the effect of the difference 
between the shape of the beads and natural ice rubble. The beads are uniform in 
size and approximately cylindrical in shape, thereby having an angle of repose less 
than that of natural ice. The uniform shape of the beads causes their accumulations 
to deform more easily under stress and results in a lower K„ and thus \i value than 
is the case for natural ice rubble in a jam. 

With a known average value of [i determined for the beads, further experiments 
could proceed using the tiltable-bed flume without refrigeration. Fifteen experi- 
ments were conducted under a variety of initial discharges and discharge increases, 
as reported by Zufelt (1992). Each experiment was run in a manner similar to the 
visualization series, for which a bead cover was allowed to form at a low discharge 
and the flow then increased in steps until a shoving and thickening event took 
place. The energy slope was assumed to be equivalent to the water surface slope, 
which was calculated from measurements of water surface elevation along the flume. 
Slope was plotted against discharge, and a linear relation was obtained for the 
conditions before and after failure. Though a power relationship is to be expected 
between slope and discharge, the linear fit was adequate for the limited range of 
discharges used. The two relations also confirm an increase in jam roughness fol- 
lowing failure and thickening, as evidenced by the higher slopes following failure 
(Fig. 19). 

The variations in slope for similar discharges before failure in Figure 19 reflect 
slight variations in the configuration of the bead jam (thickness, extent, etc.) 
between successive tests. The slope-discharge relation was used for further calcu- 
lations. The composite Darcy-Weisbach friction factor fQ was calculated for each 
experiment as 

fo 
8gRS 

(31) 
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crease in slope after jam failure. 

0 0.02 0.04 0.06 

Discharge (m3/s) 

Figure 20. Calculated equilibrium jam 
thickness vs. discharge. 

in which u is average flow velocity and R is the composite or total hydraulic radius. 
An average value of fQ was calculated and used for the conditions before and after 
failure. The detailed velocity profiles from each test provided data on the ratio of 
the bed-affected to ice-affected hydraulic radii. Then, using the Sabaneev equa- 
tions 

/o 
./i+/b (32) 

and 

Rb    /b 
(33) 

it is possible to determine ratios of/; to/b and/; to/0. Average values of these ratios 
for the conditions before and after failure were calculated and used to calculate the 
equilibrium cover thickness expected for each experiment. Figure 20 is a plot of the 
equilibrium thickness vs. discharge for this series of experiments, using average 
values of/0 and/j//0. 

Figure 21 follows the changes in thickness experienced with step changes in 
discharge for one of the experiments. The initial thickness of a bead jam is slightly 
greater than that predicted using the equilibrium theory (eq 30) and was between 
one and two beads thick. Two step increases in discharge were necessary before a 
shoving and thickening event occurred, with the resulting thickness again slightly 
greater than that expected by theory. This first failure was a progressive jam failure 
with very small ice velocities. Two more step increases in discharge were necessary 
to again cause jam failure. The second failure was a complete jam failure, with the 
whole cover mobilizing en masse and thickening taking place initially at the down- 
stream screen. The final thickness was significantly greater than the equilibrium 
value for that flow level. 

The jam failures in each experiment were identified as either progressive or com- 
plete jam failures. The final thickness following failure was plotted in Figure 22 
against the equilibrium thickness predicted using eq 30. The progressive jam fail- 
ures resulted in accumulation thicknesses that plotted on or very slightly above the 
equality line in the figure. The complete jam failures, however, exceeded the equi- 
librium thickness in every case, often by a significant amount. 
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Figure 22. Measured vs. predicted jam 
thickness following progressive and com- 
plete jam failures. 

Discussion 
The laboratory experiments were conducted for two reasons: to obtain prelimi- 

nary insights into the shoving and thickening process, and to examine the applica- 
bility of equilibrium thickness theory for determining jam thickness in unsteady 
water and ice flow situations. The degree of ice movement and its effects on the 
water flow appeared to depend not only on the material properties of the particu- 
late material composing the jam, but also on the initial discharge and subsequent 
discharge increase. Two failure modes were identified: progressive and complete 
jam failure. Progressive jam failure took place at lower initial discharge and lower 
discharge increases relative to the discharge needed to completely destabilize the 
jam. It can be characterized as the smooth movement of a shoving front that travels 
downstream through the jam to the downstream end, causing minor consolidation 
and thickening. On reaching the downstream screen, a thickening front moves back 
upstream, resulting in a new, greater jam thickness able to withstand the higher 
discharge rate. For progressive jam failures, the final jam thickness is very close to, 
yet slightly greater than, the thickness predicted using equilibrium jam theory as 
represented in eq 30. 

Complete jam failure, on the other hand, occurred for initial discharges close to 
the discharge necessary to completely destabilize the cover. It can be characterized 
by the absence of (or instantaneous passage of) the shoving front. The entire jam is 
moved downstream en masse, failing and thickening at the downstream screen. 
The final thickness of jam is greater, sometimes significantly so, than the equilib- 
rium thickness predicted using eq 30. 

The experiments, particularly those producing complete jam failure, point to 
the importance of ice momentum in determining the thickness resulting from the 
arrest of a moving ice jam. The experiments also indicate that, especially for the 
progressive jam failures, the time for a shoving and thickening event to occur can 
be quite significant since the ice velocities are quite low. Shoving and thickening 
are not instantaneous and should probably not be treated as such. While the pro- 
gressive jam failure mode may not result in significantly greater ice thickness than 
that predicted using equilibrium jam theory, there arise conditions of nonuniformity 
of ice jam thickness, velocity, and depth that could significantly alter the very forces 
that determine water and ice flow. 

Additionally, the experiments reveal the important interactions of ice movement 
and water flow on one another. They show, therefore, the necessity of using a fully 

28 



coupled numerical model of ice jam formation. Such a model includes both ice 
velocity and the effects of ice momentum on the force balance, utilizing the full 
conservation of mass and momentum equations for the ice. 

FORMULATION 

Introduction and assumptions 
Formulated here are the one-dimensional, unsteady flow equations for water 

and ice. The equations, derived in integral form, are based on the conservation of 
mass and momentum for water and ice flow during jam formation and breakup. 
The integral equations are then discretized as finite-difference equations, approxi- 
mating the conservation laws in their integral form. The equations are expressed in 
terms of four dependent variables that fully describe the flow, as shown in Figure 
23, namely the velocities of the ice cover and under-ice water flow (i) and u, respec- 
tively), the ice cover thickness (n), and the under-ice water depth (d). All four vari- 
ables are functions of time and space. The equations are derived first in a general 
form, and then simplified in accordance with the assumptions listed below. Addi- 
tional simplifications for certain flow conditions are discussed subsequently. 

The assumptions made in developing the equations for water and ice flow 
include the usual St. Venant assumptions for one-dimensional flows (e.g., Cunge et 
al. 1980) are as follows: 

• Flow is one-dimensional, with velocity uniform across each cross section, and 
water level horizontal at each cross section. 

• Streamline curvature is small and vertical accelerations are negligible, so that 
pressure distribution is hydrostatic. 

• The effects of turbulence and boundary friction can be accounted for through 
resistance laws identical to those used for steady-state flow. 

• Average channel-bed slope is small so that the cosine of the angle it makes 
with the horizontal may be taken as unity. (This assumption is valid for bed 
slopes to about 0.01.) 

u(x,t) 

Figure 23. Ice and water flow. 
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Other assumptions include: 

• Cross sections are uniform and prismatic in shape, ensuring that streamline 
curvature remains small. For this analysis, a rectangular channel shape is as- 
sumed. 

• All flow is subcritical. Though there may be considerable changes in depth 
and ice thickness between two cross sections (notably at the locations of shov- 
ing or thickening fronts), it is assumed that through methods (i.e., with no 
explicit representation of fronts) suitably describe these fronts. 

• Ice-piece properties remain constant (i.e., no heat transfer, phase change, or 
freeze-bonding between ice pieces). 

• Jams are particulate continua, such that forces and stresses are describable 
using Mohr-Coulomb stress theory and an average value across the cross sec- 
tion. 

• Jams float with a constant bulk specific gravity, do not ground on the channel 
bed, and are not subject to significant motion or accelerations in the vertical 
direction. 

Development of equations 
The integral form of the equations for water and ice flow are developed using a 

control volume approach. The Cartesian coordinate system used is depicted in Fig- 
ure 24, in which x denotes horizontal distance along the longitudinal river axis, y 
denotes vertical distance, and z denotes transverse distance normal to the longitu- 
dinal axis. 

Conservation of water mass 
Conservation of water mass requires the net inflow of water entering a control 

volume (bounded by Xy x2, the bed, and the bottom of the jam in Fig. 24) during a 
given period be equal to the change in water storage within the control volume for 
the period, that is 

t X 

I[(P"A)X2 -(P"^)x, }dt + ! Mt2 -(PAk ]dx = °• (34) 

For practical purposes, water is incompressible, such that p is constant and eq 34 
reduces to 

J (uA)X2 - (uA)Xi at + J (A)t2 - (A\x äx = 0. (35) 

Further simplifications are made subsequently, such as expressing area A in terms 
of flow depth d(x,t). 

Conservation of ice mass 
The net inflow of ice and pore water (between the ice pieces) into the control 

volume, bounded by Xy x2, and the bottom and top of the jam in Figure 24, is the 
time integral of the difference between the mass flow rates entering the control 
volume at x1 and leaving the control volume at x2, i.e. 

(Pi^i[l-p])X] + (p^W)X] -(pi«Ai[l-p])X2 -(pDAiSip)x At (36) 
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^ 

Figure 24. Longitudinal and cross-sectional views of ice and water flow areas, showing 
coordinate system used in equation development. 

where 

Pi 
v 

A 
v 

= ice density 
= ice velocity 
= cross-sectional area of the jam 
= porosity of the jam 
= specific gravity of ice. 

The first and third terms in eq 36 represent the mass flux of ice, while the second 
and fourth terms represent the pore water. Pore water is only contained in that 
portion of the ice area below the phreatic surface (SjAj). The experiments of White 
(1991) show that the velocity of flow through a stationary frazil cover is negligibly 
small (10~5 m/s), resulting in negligible mass exchange between the pore water 
and the underlying water flow. Hence, there is no term for seepage flow through 
the jam provided. Pore water is assumed to move at the same velocity as the ice 
and since p, = SjP, the ice and pore-water terms may be combined. Setting eq 36 
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equal to the change in ice storage over the time interval and considering p as con- 
stant results in 

t 

J I [MiSi )X2 - (wAiSj )Xi j dt + J   (M )t2 - {M )ti 
*2r 
J dx = 0 (37) 

Further simplifications are made subsequently, such as expressing A-x in terms of 
jam thickness r|(x,f). 

Conservation of water momentum 

The analysis examines the control volume for water flow beneath an ice jam 
whose channel cross section is prismatic. Figure 25 depicts the forces acting on the 
control volume that is bounded by Xy x2, and the bed and the bottom of the jam. 

Conservation of momentum in the x-direction requires that the change of 
momentum within the control volume between times 11 and t2 equal the sum of the 
net flux of momentum into the control volume and the integral of the external 
forces acting on the control volume during the same period. The momentum inside 
the control volume at any instant is 

x2 
\(pAu)dx 

so the net increase in momentum AM between times t-y and t2 is 

(38) 

*2 

AM= J (PA«)t2-(pA«)ti dx (39) 

The net momentum flux Mf into the control volume between times f-j and t2 is 

ti 

p^w2)    -ipAu2) dt (40) 

The external forces acting on the water control volume include: hydrostatic pres- 
sure; gravity forces due to the weight of the water, ice, and pore water; and shear 
stress at the bed, banks, and jam underside. The hydrostatic pressure forces acting 
at sections x1 and x2 are and as depicted in Figure 25. With the level of the phreatic 
surface above the bed denoted as D(x), the vertical distance above the bed as 8(x), 
and the local width as b(d), for any section x 

Figure 25. Forces acting on the 
water control volume. 
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dfx) 
Fpl =g]p[Dix)-S\b{x,b)dS, 

o 
(41) 

For a rectangular channel, b is constant in the vertical and equal to the top width B. 

Therefore 

d(x) 
Fpl =g Jp[D(x)-8]Bi8 . 

o 

Substitution of Dfx) = dfx) + s{r\(x) and integration gives 

Fpl'=pgß[rf2/2 + *iTi]. 

Thus, the time integral for the net pressure Fpl is 

dt 

(42) 

(43) 

JFpldt = {W - Fpl")dt = g jT(p/i)Xi - (pi- 
t, t/ ' M 

where 

I1=B\d2/2 + dsir\j. 

(44) 

(45) 

Two gravity forces act vertically on the water control volume. The first acts on 
the bottom surface of the control volume (the bed). It is attributable to the combined 
weight of water, ice, and pore water above. The second acts on the upper surface of 
the control volume (the bottom of the jam). It is attributable to the weight of the ice 
and pore water above. The horizontal component of the first gravity force is 

fgi = 1 [f>gA + PigAi (1 - p) + pgAiSip)S0dx = J pg(A + AiSi )S0dx (46) 

where S0 is bed slope 

b°~     dx 

For the period f j to t2 

t t   X 

\Fgldt= ] \pg{A + Aisi)S0dxdt 
h Mi 

(47) 

(48) 

The gravity force attributable to the weight of ice and pore water acting on the 
upper surface of the control volume (in the x-direction) is 

*2| *2. Fg2= 1 [pigAi{l-v)Sih+pgAiSipSih\dx= J [pgAiSiSfojdx 

where Sib is the slope of the jam underside 

(49) 

sib=- %>+<*). 
dx dx      dx 

_ dd 
~b°    dx 

(50) 

Substituting eq 50 into 49 and integrating over the period 11 to f2 gives 

3#Vi[ S0 - lFg2dt=llpgAisi\S0-—\dxdt (51) 
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The remaining forces to be determined are the boundary resistance or shear forces. 
The total shear stress produced by the water flow (averaged for the control-volume 
reach) is 

i = PgRSt (52) 

where R is the hydraulic radius of the section and Sf is the friction or energy slope 
associated with the water flow. The Darcy-Weisbach definition of friction slope is 

8Rg (53) 

where f0 is the composite (bed and ice cover) Darcy-Weisbach resistance factor. 
Equation 53 substituted into eq 52 gives 

Pgfl/o«2 _ P/o"2 

8Rg 8 (54) 

This shear stress is a total value, generated by the differences in the velocities of 
water flow relative to the velocities of the other boundaries of the control volume. 
It can be split into two parts: xb, the shear stress at the bed and bank boundary, and 
Xj, the shear stress at the ice boundary. Prior formulations (e.g., Beltaos 1983) have 
shown that the simple case of a static ice cover can be analyzed approximately 
using a "two-layer approach," separating the total flow area into one layer domi- 
nated by shear stress on the bed and banks, and another layer dominated by shear 

7777V77 
b) 

///S7// 

figure 26. Two-layer approach designation of shear stress due to water flow. 
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stress on the ice cover. Figure 26 identifies the two layers. Note that a refers to the 
area of each respective layer, P is the wetted perimeter, and the subscripts b and i 
designate the bed- and ice-affected variables. The dashed line indicates the line of 
nominal zero shear or the boundary between the two layers. The total shear force 
per unit length of flow area is 

xP = ihPh+xiPi . (55) 

If the "two-layer approach" is valid for any value of ice velocity t>, such as depicted 
in Figure 27, then the shear stress at each boundary is expressible as 

^b = 
pfbu\u\ (56) 

and 

p/i(M-t))|M-^| (57) 

The absolute value sign captures directional shear. It can be dropped provided that 
stress direction is preserved in the momentum equation. 

The "two-layer approach" assumes that each layer can be adequately described 
using the Darcy-Weisbach relationship for flow resistance and thus can be related 
to the friction slope of the water flow, i.e. 

Sf = 
fhu

2     /j(w--u) 
8Rbg        8Rig 

(58) 
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Figure 27. Shear stress due to water flow for cases of a moving jam. 
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As R = A/P, eq 58 can be rewritten as 

CX; 

«b 

1 
v/by 

(PL) 
{pb) 

U -1) 
(59) 

where ocb and o^ are the bed and ice-affected portions of the flow area. The total 
shear stress is xb + T; and the total shear force on a unit length of channel is xbPb + 
XjPi, which leads to the following expression for Sf 

S  -    T    -   XP   -Tbfl>+TiPi 
pgR    pgA pgA 

The time integral of the friction force is 

t t   X t   X 

JFfdt = f /pgAStdxdt = J \ [x^ + xiPi]dxdt. 

(60) 

(61) 

Equations 55 to 57, rearranged in terms of the unknown variables u, v, d, and r|, 
become 

xbfll+^ = £fiÄ+MÖizÄ 

p/b»2Pb n/i^-^P. 
fbu

2Pb 

p/b"
2Pb 

ab 

(62) 

An expression for S{ results when eq 59 and 62 are combined 

S   .-tbPb+TjPj ^fbu
2Pb 

PgA 8gA 
ufipi f"-» 

(63) 

The effects of flow and ice velocities on TjPj are evident in Figure 28. As ice veloc- 
ity increases beyond water velocity, the shear stress caused by the jam's presence 
reverses to the downstream direction and the portion of the flow area affected by 
this force increases. 

The full momentum equation for the water flow can be written as 

h h t2 t2 
AM-M{= \Fpldt + \F%ldt- \F 2dt- jFfdt. 

h h h h 

Equations 39,40, 44,48,51, and 61 combined with eq 64 give 

(64) 

T:R 

Figure 28. Shear force on the ice 
jam underside vs. ice velocity 
(tjPj vs. v). 
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J \{puA)   -{puA)    dx- j [pu2A)    -(pn2A) 

t t X 

gf\{ph)x -{ph)   ]dt + gj lp{A + AiSi)S0dxdt 

rff: 

fjXj 

isi So-T7 toj 
dxdt-g\ \pASfdxdt. 

Mi (65) 

If p is constant, eq 65 simplifies to 

J[(uA)t2-(uA)h]dx-j(u2A)x -(u2A)x 

f2*2 j)J '2*2 
&j I AiSi—dxdt + gl J A(S0-Sf)dxdf. 

<r-&k dt + 

(66) 

Conservation of ice momentum 
The ice control volume under analysis is bounded by %\, x2, and the bottom and 

top of the jam. Figure 29 depicts the control volume and the forces acting on the 
jam. The force associated with wind drag at the air/ice interface is neglected in this 
formulation, though it could readily be included. The momentum of the ice and 
pore water in the control volume at any instant is 

*2 
J (pivAi[l--p} + pvAisip)dx. (67) 

From Pi = Sjp, and regrouping the p and (1 - p) terms, the net increase in momentum 
within the control volume between ^ and t2 becomes 

AM= J (siPuA)t2-(siP^i)tl dx. (68) 

The net momentum flux into the control volume is 

[(piU^l-pfl + ^AiSip)]    -[(pi^2A[l-p]) + (p^2Asip)]x • (69) 

Once again, from p4 = Sjp, and regrouping the p and (1 - p) terms, the net momen- 
tum flux into the control volume between ^ and t2 becomes 

Mf=i (pu2AiSi)x   -(pu^Si^ it. (70) 

Figure 29. Forces acting on the 
ice control volume. 
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The external forces acting on the ice and pore water control volume include: 
hydrostatic pressure, a gravity force due to the ice and pore water in x-direction, 
shear stress on the underside of the jam from the water flow, and shear stress at the 
banks. The strength of the jam also resists ice motion, provided stress acting through 
the jam does not exceed the maximum allowable longitudinal stress. That limiting 
stress places the jam in the Rankine passive state of stress. 

The hydrostatic pressure forces acting at sections Xj and x2 are Fp2  and Fp2 

respectively. With the level of the phreatic surface above the bottom of the jam 
denoted as s-{(\{x), the vertical distance above the bottom of the jam denoted as 8(x), 
and the local width as b(S), then for any section x 

?p2 =g  Jp[siTi(x)-6]b(*,8)d8. (71) 
0 

For a rectangular channel, b is constant in the vertical and equal to the top width B. 
Thus 

fp2 =g  Jp[siTi(*)-8]Bi8. (72) 
o 

Integration of eq 72 yields 

Fp2'=P*B^t (73) 

Consequently, the time integral of the net pressure Fp2 is 

1 Fpidt = tk/ - Fp2")dt = g\\(pl2l  -(p/2)X2 dt (74) 

where 

h = B&f. (75) 

A gravity force acts on the bottom surface of the ice control volume (the bottom 
of the jam) from the weight of the ice and pore water above. The horizontal compo- 
nent of this gravity force equals and counterbalances F„2 

Fg3 = I [piSA (1 - Pfob + PSASiPSfo ]dx = \ [PSAsiSfo ] dx. (76) 

For the period t^ to f2 

f2 f2X2 ( dd\ 
J fg3* = J J P^Asi s0 - -fo YxdL C77) 

The shear stress on the underside of the jam attributable to water flow is equal 
and opposite to the shear force of the cover on the water, i.e. 

h 
Ti = lhdt- (78) 

h 

In the case of the jam, however, only the shear force along the jam underside, or 
XjPj, is included. From eq 62 above 
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TiPi=Efc&. (79) 
8 

Substituting for F^ gives 

h f2*2 f2*2 of (w-i))2P- 
\F&dt = J Ixftdxdt = J | P/lV       '    ' ixrff. (80) 
f, f,*i Mi 

From the assumption that ice jams can be treated as a particulate continuum, the 
vertical and horizontal stresses within jams can be related using Rankine stress 
theory. Previous researchers, as discussed in the Review of Ice Jam Modeling section, 
give the shear stress at the banks xxy as a function of the stress along the jam's 
longitudinal axis Gx. For a granular material, the normal stress can be expressed 
directly as a function of the vertical stress Gv, which results from the weight of ice 
acting downward to the phreatic surface through the jam, and from the buoyancy 
force acting upward in the submerged portion. Vertical stress ascribable to ice weight 
acting downward throughout the entire cover thickness is 

Ovi=Pi«y(1-p) (81) 

where y is measured from the top of the ice surface. The stress of the water acting 
downward in the wetted portion is 

ovw = pg{y-[1-sih)p (82) 

where y is measured from the top surface of the ice and y = (1 - SJ)T| represents the 
phreatic surface. The buoyancy force acting upward in the wetted portion of the 
thickness is 

«' = p*(y-[i-Sihi). (83) 

From eq 81 to 83, the total or effective vertical stress av is zero at the upper and 
lower surfaces of the jam, and av reaches a maximum at the phreatic surface. Over 
the entire thickness, the average vertical stress is 

c^ = w(l-p)(l-Si)^. (84) 

The horizontal or longitudinal stress in a granular material relates to the average 
vertical stress as 

ox=k1av (85) 

where fcj is a coefficient of proportionality reflecting the jam's state of stress, i.e., 
passive, neutral, or active. For passive-pressure loading conditions, fcj typically 
assumes the value of the passive pressure coefficient Kp, which represents the maxi- 
mum or failure stress of the material 

Kp=tan2U5 + -|j (86) 

where <j> is the angle of internal resistance measured in degrees. Equations 81, 82, 
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83, and 85 combine to give the force due to normal pressure for a general channel 
shape, i.e. 

'PP 

K P* | Pi (1 - p)[r,(x) - 8] b{x, 6) dh - ' I   p(l - p)[siTi(x) - §] b{x, 8) db 
0 0 

(87) 

For a rectangular channel, b is constant in the vertical and equal to the top width B. 
Therefore 

Fpp =KpgB{l-p) 

Integration yields 

T\(x) SjTl(;t) 

J Sip[ri(x)-8]rf8-   J   p[siTi(x)-8]rf8 
o o 

Fpp' =KpgB{l-V)sip{l-si)^-. 

The time integral of this net normal force in the x-direction is 

(88) 

(89) 

kPpdt = l(F'-F")dt = gsi{l-si)!\(PI3)    -(p/3)x dt 

where 

h=KpB^-(l-p). 

(90) 

(91) 

It should be recognized that, by setting the value of kx = Kp in eq 85, the jam is 
considered to be at its strength limit. A jam at rest could probably experience k-^ 
values ranging from Ka, the active pressure coefficient, to Kp, the passive pressure 
coefficient. For a cover in motion, k± most likely depends on ice velocity. More 
research is needed to determine the proper values of fcj tobe used in different states 
of ice motion. 

An important further force is a shear stress xxy, produced by ice grinding against 
the banks or channel sides. It relates directly to the normal stress in the x-direction 
at failure, i.e. 

% = axk0^ = Oy^O^p (92) 

where kQ is the coefficient of lateral thrust (percentage of normal stress acting in the 
x-direction that would act in the z- or cross-channel direction) and X is the sliding 
coefficient of ice on ice at the banks. Bank shear stress acts equally at either bank 
(for one-dimensional formulations, at least) and may vary between section Xj and 
x2. The force from the shear at the banks can be obtained from eq 84 and 92, i.e. 

Fis = 2? *oAJCpsiPg(l - PX1 - si) T"dx- (93) 

The time integral of this force is 
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h hx2 
!Fisdt = gsi{l-si)(l-p)nPIidxdt 

h*\ 

where 
J4 - k0XKpr] . 

(94) 

(95) 

Therefore, the full conservation of momentum equation for the ice cover 
becomes 

*, h 
AM - Mf = J Fp2dt + J Fg3dt + \Fiidt + \ Fppdt - \ Fisdt 

h h h h h 

or 

j  (SipvAi)   -(sipvAi)i   dx-j (pv2AiSi)    -(pv2ASi) 

'2r 1 '2*2 ( 7*ri\ 
= 8l {phi ~{Phl   dt + gj j pAASv-^Uxdt 

dt 

+ { J pl^-iu-vfdxdt + gs^l-s,)! (p/3)xi -(pj3) 

'2*2 

dt 

-$Si(l-SiXl-p)J jplidxdt. 
Mi 

(96) 

(97) 

With p being a constant 

*2r 
1 (si^i)t2-(si^i)ti  ^-l(v2Asi)x -(v2AiSi) dt 

?r,      . .      .       1 '?*? ( ^ä\   r     t_      '2*2/.p. 
= gl {hi  -{hi    dt + gj j AisilS0-^\dxdt+ j f HLL(u-v)2dxdt 

f,x. 
+«Si(l-Si)J fo^-foL   dt-gsi{l-si){\-V)\\lidxdt. 

h U *i 

(98) 

The integral relations given by eq 35, 37, 66, and 98 are valid for a channel of 
constant rectangular cross section. Substituting rectangular channel cross-section 
relationships for Sf, Iv I2, I3, and J4 (i.e., A = Bd and A{ = Br\), then canceling out 
common terms, produces the conservation of mass and momentum equations in 
their integral form. 

Conservation of water mass is 

j[MX2-MXl]A+?[(i)t2-(rf)ti 
X\ 

Conservation of ice mass is 

dx = 0. 

j 
t 

*2 

H^)Xl~H)^ dt+I (TI)   -(TI) dx = 0. 

Conservation of water momentum is 

(99) 

(100) 
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\\{ud)t  ~{ud)   }dx + ] (u2d)    -(u2d) rff 

+*J 
V 

+ dSiT\ 
U2 

+ dSjTl 

A,     V 

Conservation of ice momentum is 

f2*2        3d 
df-gj | T|SJ— dxdt 

'1*1 

/b(B + 2d)l   u 
dxdt = 0. 

(101) 

f[H)t2 -H)tl]^
+1 K1^ -fcHc, rft + gSi. 

V      7x2 V27 

Mi h 

'W-PW] 

A, 

Kp(l-P)T1 
2\ 

dt 

dt 

1    hx2 , of 1 - S; ) f2*2 , .     , 
-T-J J/i(«-")2dxdt + ^—^-\\ kQ\Kp{l-p)vi

2dxdt = 0 

(102) 

Discretization of the system of equations 
The equations are transformed from their integral form into a differential form 

to facilitate the discretization needed to proceed with numerically simulating jams. 
By assuming the dependent variables to be continuous, differentiate functions 
enables their expansion as Taylor series. The terms in the conservation of water 
mass equation become thereby 

■ + ... id).   =(d), +-i-J-At + —V2— 
v h2    v ;ti     dt dt2     2 

i  i\       i  ->\       d(ud) A      o2(Md) Ax2 

(ud)    =(ud)   +  \   'Ax + —V^- + .... 
(103) 

'xi      dx dx< 

Then, by retaining only the first-order terms and assuming that the increments Ax 
and At approach zero 

*2r 

fe-^'l 

lim 
X2 >Xl 

x-tU 3(d) 
J (d)t -(d)t   dx= J l-^-dtdx 

*i h 

■2\ -\ f2*2 d(ud) 

j[H)x2-MxI]*=JJ^i'&aft- 
*1L      * 'J      Ml 

Consequently, the conservation of water mass equation reduces to 

(104) 

t2x2 

11 
3(d)    d(ud) 

~~dT     dx 
dxdt = 0. (105) 

If this equation is to hold everywhere in the (x,t) plane, then it will hold for an 
infinitely small volume, such that the eq 105 can be rewritten as 
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3(<VM=0 
dt        dx 

In a similar fashion, the conservation of ice mass equation becomes 

9(TQ | 3H)_Q 

dt dx 

(106) 

(107) 

The conservation of water momentum and conservation of ice momentum equa- 
tions contain a combination of single and double integrals. By Taylor series expan- 
sion as above, the conservation of water momentum becomes 

t2X2 

n d{ud) 4'2d) 
'd2 

+ dSjr| 

dt dx dx 
dxdt 

t2x2 

-g\\ 
Mi 

dA+dSo_^ÜßiM 
" dx        ° 8^5 

1 + k      B 
/b (B + 2d) 

and the conservation of ice momentum becomes 

u-v 2\ 
dxdt = 0 

(108) 

t2X2 

n 
'1*1 

dM   d(v\)       a jy A 
at dx -+8SiYx v2y 

^(I-I)^k(l-P) Tl dxdt 

t2x2 

^^(l-ptf-^^-J^iu-v)2 

2 

dxdt = 0. 
(109) 

Under the assumption that these equations also hold everywhere in the (x,t) 
plane, the conservation of water momentum equation is 

d(ud)   d(u2d)       did1 

•+—■—-+x— 
dt dx      s dx 

 l-dS;T| 
2 1 -gS{r[—-gdS0 

fhu
2(B + 2d) 

85 
1 + A     » 

fb(B + 2d){   u 
u-v 

= 0. 
(110) 

In a similar manner, the conservation of ice momentum equation becomes 

dt 

. g(l-«i) 

 H ! - + gS1 dt dx dx +&-*)£{ W-P)-. 
v2, 

.2     _c    , ™3d      /i   /-.    -\2 

'dx  ~pV     " 2 

*0wcp (i - P)TI
2
 - gris0 + gn—- ■£. (« - ^r = o. 

(Ill) 

The partial derivatives with combined dependent variables in the foregoing equa- 
tions are then expanded to separate the variables. The conservation of water mass 
equation becomes 

dd dd rdu „ 
— + u— + d— = 0. 
dt       dx       dx 

(112) 

43 



The conservation of ice mass equation becomes 

9r|      9T|      dx> _ 
dt       dx      dx 

(113) 

Expanding the terms in eq 110, combining with eq 112, and dividing by d, the con- 
servation of water momentum equation becomes 

d«      du      dd        3ri 
x+u*;+gTx+gSiTx-gS° 
fbu

2{B + 2d) 
8Bd 

l + i B 
fb(B + 2d){   u 

u-x> 
= 0. 

(114) 

Similarly, after expansion of the partials in eq 111, combining with eq 113, and 
dividing by r|, the conservation of ice momentum equation becomes 

dv      dv        dr\      dd     ,„      s „ u     s 3ri 

+^il^Kp(l-P)T1-^o-^(M-^
2=0. 

(115) 

Figure 30 shows the computational grid used for the numerical simulations in 
this study The discretization of the governing equations assumes that the values of 
the dependent variables and functions of the variables between the computational 
grid points can be expressed in terms of the values at the grid points. A function 
f(x,t) within the space interval; and (/' + 1) is replaced by the following weighted 
average 

/(^nh^/j+i+a-n/f 
and 

/fr'n+lH^l   +(1-^ 
rn+1 

(116a) 

(116b) 

tn+1 

t 
i 

Ax 
,00, n+1)                 t C{j+1,n+1) 

At 

tn     " Afl.n)                       f pBfl+1,n) 

tn-1 

i-1 j+1 

Figure 30. Computational grid used for the numerical simulations. 
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where Xj < x < Xj+1. Similarly, for the time interval tn<t< fn+1 

/(v) = eyf+1
+(i-e)/f 

and 

(117a) 

(117b) 

where 0 < 9 < 1 and 0 < *F < 1 are weighting factors. Subscripts denote the x- 
location while superscripts denote time level. By use of these relations, the finite 
difference equations that approximate the conservation laws expressed by the dif- 
ferential eq 112, 113, 114, and 115 can be developed. When V = 0.5, the resulting 
equations represent the Preissmann four-point scheme of finite differences. In the 
discretization, the derivatives of a function f(x,t) are estimated as 

/rn+l  .   rn+l\     I(XI     .   rtl 
df [f]+i +f]  H-Zj+i+jj 
dt 2Af 

and 9/   tf-f^ft-e^-jf 
dx Ax 

and the values of the variables, or the functions themselves, are estimated as 

(118a) 

(118b) 

/(*,') = 
e(jS"+1+Jj!S1)+(i-o)()5"+^1) (119) 

The above rules of discretization can be used to recast the conservation of water 
mass equation as 

<+rff+1)-(df+1+rff)   _ 
2Af 

Q(dft-d^) + (l-Q)(d?+1-d?) 

Ax 

+d 

where 

and 

e(M)?a1-Mj'+1)+(i-9)(Mf+1-M|')' 

Ax 

e(u|ai+»r+1)+(i-e)(Mr+i
+Mr 

2 

e(rf?ff+rff+1)+(i-e)(rff+1+rf|') 

= o 
(120) 

(121) 

(122) 

Similarly, the conservation of ice mass equation becomes 

(nja1+Tif+1)-(Tif+1+T1f) 

2At 
+ v 

ei(iija
1-Tif+1)+(i-ei)(T,j«+1-T1j')' 

Ax 

+r\ 
eih^-^D+q-ei^i-^)' 

Ax 

(123) 

45 



where 0j is a weighting factor for the ice variables 

and 

il = 

2 

ei(Ti)'V1
1
+<

1)+(i-ei)(11f+1+<) 

(124) 

(125) 

The conservation of water momentum equation transforms to 

("ffl+"r+1)-(»rw).- 
2At 

+ u 

'2 , /b»2 

8rf        4B 
, /b"     , /b"     , /i(»-•»)     ,   , 

- -        -- 8d 

eh^-Qq-e^-uf)' 
Ax 

'Q(d^-d^) + (l-Q)(d^-df) 

+g*i 
e^-^j+ft-e^-nf)' 

Ax 

Ax 

-?s0 = o. 

(126) 

where 17, d, and + u are defined as above. Note that the last term in eq 114 has been 
expanded for clarity and that the discretization of these terms containing squared 
variables are weighted averages of the squared terms. They are not squares of the 
weighted averages of the variables. This minor detail preserves the physical mean- 
ing of the terms. Those terms are 

u2=- 

2\"+*     I   2xtl+^ 

i+i -(-■ + (i-e) (»2L42): /j+i (127) 

and 

(u-v)  =■ 

\n+l 
([.-,f)™+([.-fI 

M + l 

+ (1-9) M%/M2); U  (128) 

The conservation of ice momentum equation transforms to 

(<ii+Df+1)-K+i+^) 
2At 

+ v> pj^1 -»r+i)+(i-ej)(i>r+i -of) 
Ax 

ig(l-Si)Kp{l-p) + gSi) 
ei^-Qli-eQ^-^) 

Ax 

+S 
Q(dft-df^)+(i-e)(d?+1-d») 

Ax -g$o 

g(l-Si)koXKp{l-p)f\     /. 

8s;ri 
=(K--O)2=0. 

(129) 
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Solution of the system of equations 

A Newton-Raphson iteration procedure was used to solve the system of equa- 

tions given above. If an equation is designated as 

F = F(dj, n j, Mj, -ü j, dj+1, n j+1, wj+1, i> j+1 (130) 

then for any two points 'f and 'j + V at any time, it can be expanded as a Taylor 

Series 

m+l p_"ip i  "^ 
3rf; 

3F 

3F 

3i(i 
AM 

AA + 
'    3d,. j+i 

]+1  arii 
ATlj + 

3F 

*lj+i 
ATlj+l + 

'    3u !j+i 

Aw. j+l' 
_3F 

8l); 
AUj + 

3F 
]    8u 

j+i 

Au j+i 

(131) 

where 'm' and 'm + l' indicate the iteration level and ')' and ';' + 1' indicate the x- 

location. The partial derivatives are evaluated on the basis of the values of the vari- 

ables after the 'mth' iteration. Therefore, each equation can be transformed into a 

linear equation in terms of the eight unknowns: Ad-., An, Au-., At»:, Ad;+1, Ar|j+1/ A«J+1, 

and Ai)j+1. The goal of the method is to solve for the change between 'm' and 'm + l' 

such thatm + *F => 0. It can also be seen that mF is a function of the final values of the 

variables at time 'ri and the values for the 'mth' iteration at time 'n + 1/ which are 

all known values. The transformed equations are then put into the form 

V—m+lr_niTr 

= flArfj + bAr|j + cA«j + dAv> + eM;+1 +/Ar)j+i + gAu;+1 + foAt>j+1 

where 

(132) 

e = - 

dF_ 

dd] 

dF 

dd j+l 

b = 

f = 

dF 

3r|j 

dF 

dF 

dll; 

dF 

3TI 
j+i 3«; j+i 

dF 

dv 

h-- 

) 

dF 

dv j+1 

Since ^=m+1F-mF' anc^ the Soal *s to achieve m+l p _^ Q 

K=-mF- 

For example, the conservation of water mass equation becomes 

F = 

tdn:l+dn+l\(dn+i+dn\    _ 

- -—- - + u 
2Af 

e(dft-df+1)+(i-Q)(d^-d?) 
Ax 

efwjs1 -"r+i)+(i-o)(«r+1 -«r)' 
Ax 

= 0 

(133) 

(134) 

and the derivatives are evaluated as 
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a = - 
dF üQ   e 
8dj     2Af    Ax    2 

dF 

e(t^-^)+(i-e)(»f+1-Mf)' 
Ax 

M\ 

c = - 
dF_ 

du-. 

ö(dft-d»+1) + (l-Q)(d«+1-d? 

Ax 
dQ_ 

Ax 

dF 

dF «e   e -+— 
dd]+1     2At    Ax    2 

/ = ^-0 

e(t^1-«f+1)+(i-9)(^+1-M}' 
Ax 

9T1J+I 

(135) 

(136) 

(137) 

(138) 

(139) 

(140) 

dF    e 
du 

j+l 

e^-^J+a-e^-rff) 
Ax 

rfe 
Ax (141) 

fc=iL=o. 
3\)j (142) 

The same procedure was followed for the other three equations, using the nota- 
tions F',F",F"',a',a",a"',...,K',K",K'" to distinguish among equations. The 
discretized equations and their derivatives are listed in Appendix A. 

For each point, there are now four unknowns (Ad, Ar), Au, and At») or a total of 
4N unknowns, where N is the number of cross sections. For each reach there are 
four linear equations or 4(N-1) equations. Four boundary condition equations are 
needed to close the system. The linear algebraic system can be represented as 

[A]{AZ} = {K}ox{AZ} = [A]-1{K} 

where 

and 

{AZ} = {Ad1,Ari1,Au1,A'u1,Ad2,Ari2,.../AdN,Ar|N,AMN,A'UN} 

{K}-[Ki,K{,Ki,K'{',K2,K'2,K2,K'2,...,KN,K^j,K^i,K^\  . 

(143) 

(144) 

(145) 

The coefficient matrix [A] is depicted in Figure 31. [A] is a banded coefficient 
matrix of 11 diagonals with the x's signifying boundary conditions and the empty 
spaces filled with zeros. The system is solved using a decomposition-back- 
substitution scheme to obtain the AZ terms. Subsequently, for the next iteration 
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[A]= 

X X X X 

X X X X 

a b c d e f g h 

a' b' c' d' e' f g' h' 

a" b" c" d" e" f" g" h" 

a'" b'" c'" d'" e"' 

a 
a' 

a" 
a'" 

f" 

b 
b' 
b" 

b'" 

g'" 
c 
c' 
c" 
c'" 

h'" 

d 
d' 

d" 
d'" 

e 

e' 
e" 
e'" 

f 

f 
f" 

f" 

g 
g' 
g" 

g'" 

h 

h' 
h" 
h'" 

a 
a' 
a" 
a'" 

b 
b' 
b" 
b'" 

c 

c' 
c" 
c"' 

d 
d' 

d" 
d'" 

e 
e' 

e" 
e'" 
X 

X 

f 

f 
f" 
f" 
X 

X 

g 
g' 
g" 
g'" 
X 

X 

h 

h' 
h' 
h" 
X 

X 

Figure 31. Coefficient matrix for the Newton-Raphson iteration procedure. 

m + ltfn=mdf + l+My (146) 

The values of the variables are updated in this way for the 'm + Y iteration and 
solved again until a specified tolerance is met. The tolerance is expressed in a least 
squares form 

Tol= I <m+1 N2      N 
F-mF)   =I(A's) (147) 

When the tolerance is met, the final 'm + Y iteration values are used as the values of 
the dependent variables for time 'n + Y. The time is then incremented and the 
iteration procedure begins again. For the first iteration at a time step {'m = 0'), the 
initial values of the variables are taken to be equal to the final value of the variables 
at the previous time step. 

Ice cover stability, solution methods, and boundary conditions 
The conservation of ice momentum, as expressed in eq 102 or 115, is actually an 

equation expressing a unique balance of ice momentum and external forces acting 
on an ice jam element. Through assumption of the passive-pressure failure criteria 
and adopting the Rankine equation for Kp (the passive pressure coefficient), the 
equation is valid for a static element of an ice jam at its limit of stability. The equa- 
tion is also valid for an ice jam element failing and in motion. In the former case, if 
the forces on a static element exceed the passive pressure limit, application of the 
equation (in concert with the other conservation equations) results in downstream 
ice movement. For an ice element in motion, application of the equation for a change 
in the forces may result in changes in ice velocity or thickness. For many cases, the 
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net force applied to the ice cover element may be less than that "allowed" by the 
passive pressure limit. Application of the equation in this case would result in 
either ice motion upstream (negative ice momentum) or thinning of the jam to 
achieve a balance. In natural systems, thinning or upstream movement of ice rarely 
occurs. The forces exerted on a thickened, but static, section of jam are reduced. 
The jam simply remains in place with no change in thickness. In such a case when 
the forces exerted lead to a stable jam (i.e., below the passive pressure limit), the 
conservation of ice momentum equation must be adjusted so that negative ice 
velocities or thinning do not take place. 

The computational procedure commences at the upstream end of the system, 
determining the stability of each reach at the beginning of each time step. The forces 
acting on the jam and water in the reach are assessed and compared with the maxi- 
mum resistive force at the downstream end of the reach. The assumption of passive 
pressure limits the net force at the downstream end of each reach to that given by 
eq 89. If the sum of the forces (normal force at the upstream end of the reach, ice 
momentum, hydrostatic pressure, gravity, shear on the underside of the cover, and 
friction at the banks) is less than the passive pressure limit, the reach is deemed 
stable. The stability check continues in the downstream direction with the normal 
force at the upstream end of the next reach set equal to the net force at the down- 
stream end of the current reach. The stability check assesses the stability of each 
cross section by comparing the net force and passive pressure resistance. 

Modifications to the conservation equations of ice mass and ice momentum 
applied to each reach are necessary, depending on the stability conditions at the 
ends of each reach. One of the upstream boundary conditions of the system pro- 
vides a relationship for the upstream ice thickness of the first reach. Thus, the con- 
servation of ice mass equation provides a relationship for the upstream ice velocity 
of a reach. The conservation of ice momentum provides a relationship for the down- 
stream ice thickness for a reach. One of the downstream boundary conditions of 
the system describes a relationship for the downstream ice velocity at the last reach. 
If a cross section is deemed to be stable, ice velocity in it will be zero, and the 
conservation of ice mass equation reverts to 

uf+1=0. (148) 

Several combinations of upstream and downstream stability are possible for a 
reach (Fig. 32). For the first case, both upstream and downstream ends are unstable 
and the full equations are used. In the next case, both ends are deemed stable and, 
thus, the ice velocity equals zero at both ends, and eq 148 is used. Because there is 
no ice movement, the ice thickness must remain constant. Consequently, the con- 
servation of ice momentum equation reverts to 

Tif+V-njI^O. (149) 

In the third case of Figure 32, the downstream end is stable and, thus, ice velocity is 
equal to zero. But the upstream end is unstable and the full ice-continuity equation 
is required. Ice moves into the reach, thickening at the downstream end, and 
requiring use of the full ice momentum equation. The last case shown occurs when 
the ice is stable at the upstream end, but unstable at the downstream end. Again, eq 
148 is used for the ice continuity equation, but the full ice momentum equation is 
required for defining the downstream thickness. 
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Figure 32. Conditions of ice jam stability for a computational reach. 

Three modes of solution of the system of equations are presented below. The 
fully coupled mode comprises the simultaneous solution of all four dependent 
variables using the full equations and Newton-Raphson iteration technique pre- 
sented above. The uncoupled or loosely coupled mode solves the water equations 
and ice equations separately and sequentially as is done in the moving ice model 
of Tsai et al. (1988). The static-unsteady thickness mode first solves the water equa- 
tions, then a modified version of the conservation of momentum equation not 
including the ice-momentum component. This latter procedure is comparable to 
the procedure used in stationary jam formulations. 

Fully coupled solution 
The fully coupled mode of solution uses the full equations of mass and momen- 

tum conservation for the water and ice with the simplifications mentioned above 
for sections and reaches that are determined to be stable. The four dependent vari- 
ables are solved simultaneously using the Newton-Raphson iteration scheme men- 
tioned above. The coefficient matrix, as depicted in Figure 31, is solved by decom- 
position-back-substitution using banded-matrix manipulation techniques. The 
coefficient matrix is a banded symmetrical matrix with five bands above and five 
below the main diagonal. Four equations for each reach relate the AN unknowns, 
where N is the number of cross sections. Two boundary condition equations at the 
upstream end and two at the downstream end are required to close the system. The 
upstream boundary conditions are typically a water discharge relation (e.g., speci- 
fied discharge) and an ice thickness relation (such as static equilibrium or specified 
thickness). The downstream boundary conditions are typically a specified depth 
relation (under ice) and an ice velocity relation. 
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Figure 33. Block diagram for the fully coupled solution scheme. 

The block diagram for the fully coupled solution scheme is presented in Figure 
33. The initial conditions are read and the timer incremented. Boundary conditions 
for the new time step are read and local jam stability checked. The coefficient 
matrix is then computed and solved, tolerances are checked, and variables are reset 
for the next time step. For special cases when the entire ice cover is deemed stable, 
the solution reverts to only the water variables, as the ice variables will remain 
constant. In this case, an abbreviated coefficient matrix is developed and solved 
that contains only two equations per reach and the two water boundary condition 
equations (water discharge upstream and water depth downstream). This abbrevi- 
ated matrix is a banded symmetrical matrix with two bands above and two below 
the main diagonal. The reversion to the abbreviated coefficient matrix reduces com- 
putation time. 

Loosely coupled solution 
The loosely coupled mode of solution also uses the full equations of mass and 

momentum conservation for the water and ice, including the simplifications for 
sections and reaches that are determined to be stable. However, in this mode, the 
water variables are solved separately and sequentially from the ice variables. Both 
solutions are by the Newton-Raphson iteration scheme presented above. The coef- 
ficient matrix for each solution is a banded symmetrical matrix with two bands 
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Figure 34. Block diagram for the 
loosely coupled solution scheme. 

above and two below the main diagonal. Two equations for each reach relate the 
2N (water or ice) unknowns. A single boundary condition at the upstream and the 
downstream ends is required to close the system. 

The block diagram for the loosely coupled solution scheme is presented in Fig- 
ure 34. The initial conditions are read, the timer incremented, and boundary condi- 
tions for the new time step obtained. The ice variable solution can have a different 
time step than the water variable solution and is specified as an even fraction of the 
water time step. This procedure is needed because the ice variables can change 
faster than the water variables, especially when moving ice stops and thickens. The 
ice cover stability is checked, the ice variable coefficient matrix is computed and 
solved, tolerances are checked, and the ice variables are reset for the next ice time 
step. If the entire ice cover is found stable, the ice variables are simply reset and the 
ice time step incremented. Following the correct number of ice time step calcula- 
tions, the water coefficient matrix is computed and solved, tolerances checked, and 
the water variables reset. This solution mode is included as a comparison to the 
fully coupled mode because there are currently no existing formulations that are 

fully coupled. 
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Static-unsteady thickness solution 
This solution mode is the same technique used by several models where the 

unsteady water flow is solved, followed by a calculation of the ice thickness. In this 
mode, the water coefficient matrix is solved and then the ice thickness calculated 
by an abbreviated form of the conservation of ice momentum equation, in which 
ice velocity is always assumed to be zero. The resulting calculation of ice thickness 
may violate ice mass conservation, since the ice velocity is neglected and is an 
instantaneous (not time-dependent) reassessment of ice thickness. Equation 129 is 
modified to 

(g(l-Si)Kp(l-p) + gSi) 
„n+l     r.n+1) 

Ax Ax 
-gs0 

^{l-Si)k0XKp{l-p)r\      /j_^_0 
(150> 

where the average (bar) terms are given as simple x-dependent averages. Previous 
formulations for jam thickness by a relation similar in form to eq 150 indicate that 
the integration can move either in an upstream or downstream direction (Beltaos 
1993). This study found, however, well behaved solutions only for integration in 
the downstream direction, given a thickness relation for the upstream boundary. 
An equilibrium thickness condition is specified at the upstream boundary by set- 
ting the d/dx terms of eq 150 to zero and solving the resulting relation for t|. In 
recognizing that the thickness does not decrease upon a reduction in the forces 
acting on the cover, the newly calculated thickness is compared to the previous 
thickness and the greater value adopted as the new thickness. This solution mode 
is the least computationally intensive but neglects the effects of ice momentum. It 
is included in this study only for comparison to the loosely coupled and fully coupled 
modes. 

Boundary conditions 
Boundary condition equations are necessary for the closure of the system of equa- 

tions for each solution technique described above. In general terms, upstream and 
downstream boundary conditions are specified in each case. For the fully coupled 
solution mode, ice and water boundary conditions are necessary at the upstream 
and downstream boundaries. Similar to open-water modeling, the water bound- 
ary conditions are typically a specified water discharge at the upstream and a speci- 
fied depth relation at the downstream boundaries. The ice boundary conditions 
include ice thickness at the upstream boundary and ice velocity at the downstream 
boundary. As mentioned in the foregoing sections describing the various solu- 
tion techniques, various relations can be used to describe these specified boundary 
conditions. 
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NUMERICAL MODEL DESCRIPTION 

Model description and capabilities 
A numerical model, called THKFUL, was developed on the basis of the one- 

dimensional, fully coupled equations presented in the Formulation section. The 
model, written in the FORTRAN programming language, computes the unsteady 
water depth, velocity, ice thickness, and ice velocity for a river channel. The current 
version of THKFUL assumes a prismatic, rectangular channel with uniform bed 
slope, constant values of bed and ice roughness, and invariant and uniform ice 
properties. 

The model THKFUL calls on many subprograms to do various computational 
tasks. A file utility subprogram opens all required input and output files. Another 
subprogram reads all the channel geometry, ice property, and physical constant 
data. One subprogram reads the initial conditions file of depth, velocity, ice thick- 
ness, and ice velocity at each cross section. Another reads the new boundary condi- 
tion data at the beginning of each time step. The stability of the ice cover at each 
cross section, assessed by means of a force accumulation, is determined using 
another subprogram. One of two equation-system solvers is called to compute flow 
and jam variables. FULSOL fills the coefficient matrix using the technique described 
in the Formulation section for the simultaneous solution of the four dependent vari- 
ables. However, if the entire ice cover is found to be stable, only the water variables 
are calculated by WATUNC, which fills and solves a smaller coefficient matrix. 
Another subprogram writes data to three output files with user-definable write 
intervals. The first output file provides a listing of the depth, velocity, ice thickness, 
and ice velocity at each cross section at the specified print interval. The second 
output file provides profile data for the bed, bottom, and top of the ice cover, and 
water level at the specified print interval. The third output file contains data neces- 
sary for compiling animated plots of the profiles with time. A full program listing 
can be found in Zufelt and Ettema (1996). 

Another program, called UNCTHK, is very similar to THKFUL, but operates in 
a loosely coupled mode. The ice and water variables are calculated separately and 
sequentially. In this model, the ice variable solver, ICEUNC, is called one or more 
times (as specified by the user) for each time that the water solver, WATUNC, is 
called. This modification was made because the ice variables can change rather 
abruptly, e.g., when a moving ice cover stops and thickens. The water variables 
tend to respond slower and smoother. One would expect that the results obtained 
from the loosely coupled and fully coupled models would approach each other as 
the time step is reduced. A program listing for UNCTHK is also included in Zufelt 
and Ettema (1996). 

The remainder of this section demonstrates the capabilities of the model THKFUL 
with sample output plots for a "baseline" configuration of geometric, hydraulic, 
and ice characteristics. The robustness of the calculation technique is demonstrated 
and the results of sensitivity testing with relation to Courant number and theta 
weighting factors for the water and ice are presented. Alternate boundary condi- 
tions are described and the effects of using variable size length steps are addressed. 

Baseline runs 
A baseline configuration was developed to provide a standard against which 

future runs could be compared. Care was taken in developing this 5-km-long 
"hypothetical river" to make sure that the geometric, hydraulic, and ice character- 
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Table 1. List of baseline testing parameters. 

Number of cross sections 
Length step 
Time step 
Channel width 
Bed slope 
Solid ice specific gravity 
Ice cover porosity 
Darcy-Weisbach friction factor—bed 
Darcy-Weisbach friction factor—ice cover 
kQ—coefficient of lateral pressure 
X—coefficient of friction, ice-on-ice 
Kp—passive pressure coefficient 
Theta weighting factor—water (9) 
Theta weighting factor—ice (9j) 
Maximum number of iterations/time step 

101 
100 m 
30 s 
100 m 
0.0005 
0.92 
0.40 
0.08 
0.12 
0.50 
0.65 
3.85 
0.60 
0.60 
4 

istics were in the middle of the 
ranges expected for ice-covered 
rivers at the time when ice jam- 
ming would be expected. Table 1 
provides the values of several key 
parameters chosen for the 
baseline configuration. The val- 
ues of the Darcy-Weisbach fric- 
tion factor were chosen to repre- 
sent a system where the ice jam 
roughness was significantly 
greater than the bed roughness. 
Values of Kp and (i were obtained 
as explained in the Laboratory Ex- 
periments section. Using these val- 

ues and eq 27 leads to k0X = 0.325. By substitution, the values in Table 1 for these 
two parameters were chosen. 

In addition to the parameters in Table 1, the tolerance for each variable, as 
expressed in eq 147, was set to ICH m. The upstream boundary conditions were 
specified as water discharge and equilibrium jam thickness by eq 147 with the non- 
uniform terms set to zero. The downstream boundary conditions were specified as 
normal depth beneath a uniformly thick ice cover and zero ice velocity. The up- 
stream water discharge for the baseline testing begins at a steady value of 100 
m3/s for 20 minutes, rises to 200 m3/s during the next 20 minutes, and remains at 
that level for a total test time of 600 minutes. This upstream discharge hydrograph 
is shown in Figure 35. The maximum number of iterations of the Newton-Raphson 
solution scheme per time step was set at four. However, rarely more than two itera- 
tions were required to reach the specified tolerance. 

The initial conditions for the baseline runs were determined by running the model 
with a steady upstream water discharge of 100 m3/s and a prescribed uniform 
thickness jam that was significantly greater than the equilibrium thickness pre- 
dicted from eq 25 to ensure that there would be no further thickening as the water 
depths and velocities adjusted to their steady, uniform values. Once the initial con- 
ditions for water depth and velocity were determined, the initial uniform ice thick- 
ness for the baseline testing was chosen to be only slightly greater than the equilib- 
rium value calculated using eq 25. For the baseline runs, this procedure resulted in 
the following set of initial uniform values of water depth and velocity, ice thick- 

ness, and ice velocity: 1.729 m, 0.578 
m/s, 1.50 m and 0 m/s, respectively. The 
equilibrium jam thickness was calcu- 
lated to be 1.47 m from eq 25. 

One of the most difficult tasks of mod- 
eling jam shoving and thickening is the 
presentation of results. The process is 
highly unsteady, with large variations in 
the values of the dependent variables 
over fairly short periods. Also, consid- 
ering the interest in all four of the vari- 
ables mentioned above means that a 

200 

160 

100 

700 

Figure 35. Upstream water discharge 
hydrograph for baseline run. 
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single plot of them becomes overly cumbersome to interpret. The interaction 
of the dependent variables with and on each other necessitates a form of output 
illuminating the changes in all the variables with time. One possible format 
is to present the output in the form of profile plots at specific times. While these 
sequential time plots can be animated with additional graphic enhancements, they 
cannot be presented easily in text form. Also, as the length of the modeled system 
increases, changes of values in the vertical become less obvious because of loss in 
resolution. Therefore, the water variables (depth and velocity) are plotted on one 
set of axes directly above the ice variables' (thickness and velocity) axes. This is 
done for several times at points on the inflow hydrograph where there are signifi- 
cant changes. Figure 36 presents the results of the baseline model for several time 
slices. 

Many interesting observations can be made from Figure 36. By 25 minutes (5 
minutes after the initial increase in upstream discharge), the water velocity has 
increased near the upstream end, but the depth has not changed significantly. The 
jam is thickening somewhat near the upstream end, but the ice velocity shows the 
most significant change. As the ice moves, the shear stress between the ice and the 
water decreases, resulting in less resistance to the water flow and lower water lev- 
els. At 35 minutes, ice is moving throughout the system and is by no means uni- 
form. The ice velocity plot shows that the jam failure is not simply a progressive or 
complete failure as envisioned in the laboratory experiments, but is rather a combi- 
nation of these two failure modes, with several areas of instability arising within 
the jam. Each of these instabilities moves downstream with time, resulting in local 
areas of thickening where ice velocity decreases. The stopping and starting of the 
ice movement, coupled with the thickening, results in changing stress levels and 
local states of stability of the jam. The local instabilities move downstream, eventu- 
ally dying out. At 45 minutes, the ice at the upstream end of the system has ceased 
moving, while several instabilities are continuing to move downstream. By 100 
minutes, all ice motion has stopped and the final thickness profile prevails. The 
water depths and velocities continue to adjust, however, until they reach steady 
values. 

What becomes most apparent from the output of the baseline runs is the high 
degree of interaction between the dependent variables. There is no simple mecha- 
nism by which an ice jam fails, moves, and thickens. Shoving and thickening are 
dominated by unsteadiness and nonuniformity Ice velocity depends on the forces 
currently exerted against the jam and, thus, is changing constantly as ice comes 
into motion and stops. Local changes in ice velocity or thickness cause changes in 
water shear on the underside of the jam, which then affect the forces on the jam. 
The final thickness profile also points to the importance of ice momentum. The 
downstream end of the simulated jam had a boundary condition of zero ice veloc- 
ity, i.e., no ice momentum at that location. Inspection of the ice momentum equa- 
tion for the last reach, however, shows that ice thickness at the downstream end is 
affected by the change in momentum between the last two cross sections. Ice thick- 
ness is least at the downstream end, where the effects of ice momentum are least, 
and is 1.73 m. This thickness is greater than the equilibrium thickness (ri = 1.70 m) 
calculated using eq 25, which does not include the effects of ice momentum. The 
upper reaches of the jam have greater ice velocities (as evident in the plots at 30 and 
35 minutes). The effects of arresting ice momentum are clearly reflected by the much 
higher levels of jam thickness in the upstream reaches. 
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2000 3000 
x Location (m) 

5000 

Model rigor 
An unsteady model should be able to operate in steady flow mode without prob- 

lems. This requirement is demonstrated in the previous section, when steady flow 
values were obtained for the initial conditions of the variables. A model should 
also be robust, being able to compensate for initial conditions far from steady or 
uniform. The model was tested under a variety of "bad input" conditions to see if 
it could adjust to steady flow conditions. 

The first tests involved initial conditions that included either a significant depth 
increase or decrease. The initial cover thickness was specified such that no thicken- 
ing would take place. The objective was to see if the model could return to steady 
conditions of depth and velocity (initial 
baseline conditions) given these nonuni- 
form initial conditions of depth. The up- 
stream discharge boundary condition 
was held at 100 m3/s. Figure 37 shows 
the water depth and velocity at 0, 5, 10, 
20, and 120 minutes for an initial local 
increase in depth. By 5 minutes, the ini- 
tial water storage "lump" is flattened by 
gravitational forces acting in the up- 
stream and downstream direction. It then 
slowly "drains" through the downstream 
end of the system with time, reaching 
steady uniform flow conditions by 400 
minutes. The water velocity depicted at 
time 0 is that associated with the onset of 
the simulation and not the initial condi- 
tions. The ice thickness remained constant 
at the initial value, and hence ice velocity 
remained equal to zero throughout the 
run. Figure 38 gives the initial and final 
water surface level profiles for this run, 
showing the impossible nature of the ini- 
tial water levels. A second, similar run 
looked at a local decrease in depth. Fig- 
ure 39 shows the water depth and veloc- 
ity at 0,5,10,20, and 120 minutes. In this 
run, the initial water storage deficit sends 
negative gravity waves both in the up- 
stream and downstream directions. The 
deficit slowly fills with time, reaching 
steady, uniform flow conditions by 400 
minutes. Figure 40 shows the initial and 
final water-surface level profiles for this 
run. 

Another run was made using initial ice 
jam thicknesses that would result in im- 
possible water levels. For this run, the 
steady, uniform depth of the baseline con- 
dition (1.73 m at a steady flow rate of 100 
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Figure 37. Water depth and velocity pro- 
files at various times for the initial condi- 
tion of local depth increase. 
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Figure 38. Initial and final water surface 
level profiles for depth increase. 
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Figure 39. Water depth and velocity pro- 
files at various times for the initial condi- 
tion of local depth decrease. 

m3/s) was overlaid with an ice jam that 
was generally 2.5 m thick, except for two 
areas where the thickness increased (to 
3.0 and 2.8 m). The 2.5-m thickness was 
chosen so that the jam would remain sta- 
tionary. The water depth and velocity 
beneath the jam adjusted to its final 
steady values by 150 minutes. Figure 41 
shows the bottom of ice and water sur- 
face profiles for the initial and final con- 
ditions. 

The final check on model rigor used 
a steady water flow rate of 100 m3/s, but 
an initial ice jam thickness that was less 
than the stationary equilibrium value of 
1.47 m as calculated using eq 25. For 
these runs, the ice jam was initially un- 
stable, resulting in ice movement and 
subsequent shoving and thickening un- 
til the forces on the ice jam attained a 
balance. Figure 42 shows the final ice jam 
thickness profiles for runs with initial 
jam thicknesses of 1.3 and 1.45 m. For 
the initial jam thickness of 1.45 m, ice 
moved only in the upstream reaches, 
with the ice downstream of 1500 m re- 
maining stationary and at the initial 
thickness. The shoving and resulting 
thickening at the upstream end, where 
the jam grew to slightly greater than 1.47 
m, caused depth to increase and, thereby, 
shear stress on the ice jam underside to 
decrease. This reduction in shear stress 
ensured the stability of the jam in the 
downstream reaches. 

The profile for the initial jam thick- 
ness of 1.3 m, however, shows that the 
jam was unstable over its entire length. 
Shoving and thickening resulted in the 
final jam thickness being greater than the equilibrium value of 1.47 m almost 
everywhere. The thinner area near the 2000-m location is caused by the timing of 
the thickening and the interaction among the dependent variables in this fully 
coupled solution. The stability of the jam at any section depends on the net forces 
acting on the jam, which in turn depend on the levels of depth, water velocity, jam 
thickness, and ice velocity. 

This check confirms the potential importance of ice momentum in determining 
jam thickness. The initial jam thickness of 1.45 m is very close to the equilibrium 
value but, with shoving and thickening, the eventual thickness is slightly greater. 
The initial jam thickness of 1.3 m, while fairly close to the equilibrium jam thick- 
ness value, results in a rather nonuniform thickness profile, which is nearly every- 
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Figure 40. Initial and final water surface 
level profiles for depth decrease. 
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Figure 41. Initial and final water surface 
level and bottom of ice profiles for an ice 
jam having nonuniform thickness. 

where greater than the equilibrium jam 
thickness calculated using eq 25. 

Courant number sensitivity 
Many calculation schemes are sensi- 

tive to the computational time and space 
intervals (Af, Ax) used. The sensitivities 
for hyperbolic problems are usually dis- 
cussed in terms of the Courant number 

Cr = 
At\u + c\ 

Ax 
(151) 

"P" "P-1" 

1.45 m Initial 
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' 0     1000   2000   3000   4000   5000 
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where c is the gravity wave speed 
through the fluid. Because of the as- 
sumption that ice floats on water and is 
free to move up and down in the verti- 
cal direction in accordance with the dic- 
tates of buoyancy, gravity wave speed 
beneath a jam would be equivalent to 
that of open water, i.e. 

(152) c = 4gd 

Figure 42. Final jam thickness profiles for 
two initially unstable jam thicknesses. 

The Courant number expresses the 
ratio of the distance traveled by a dis- 
turbance in one time step to the length 
of a computational distance step. For the 

simplest Method of Characteristics, the Courant number must be less than or equal 
to unity so as to ensure that the solution remains within the computational do- 
main. Implicit finite difference methods, as well as interpolated-grid Methods of 
Characteristics, relax this requirement somewhat. Care must be taken, however, to 
make sure that disturbances do not travel too far over a time step, thereby resulting 
in loss of resolution or too much smoothing. For a given computational length step, 
larger Courant numbers imply larger time steps and less total computation time, 
with concomitant loss of temporal resolution. 

Equations 151 and 152, applied to the baseline parameters in Table 1 and the 
initial conditions for depth and water velocity, yield Cr = 2.82. By calling this value 
nominally Cr = 3, runs were then made with Cr = 1,5,10,12, and 24. The Courant 
number was varied in these tests by adjusting the time step and leaving the length 
step at 50 m. The boundary conditions file was modified, however, to retain the 
same shape and timing of the inflow hydrograph. Figure 43 shows the final jam 
thickness profile for the runs with Cr = 1, 3 (standard), 5,10,12, and 24. The plot 
shows that there is little difference in results with Cr values up to 12, and that some 
diffusion or smoothing is evident for Cr = 24. 

Theta-weighting factor analysis 
The theta-weighting factors for the water 9 and for the ice 9, are presented in the 

Discretization of the System of Equations section and are used to describe the time 
averaging between the known conditions at the current time step and the future, 
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Figure 43. Final jam thickness profiles for 
Courant numbers of 1, 3, 5, 10, 12, and 
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calculated conditions. From eq 118b and 
119, it can be seen that, if 9 = 1.0, there is 
no consideration of previous values of 
the variables or their derivatives in the 
solution for their values at the new time 
step (except in the time derivative). 
Cunge et al. (1980) show that while the 
Preissmann scheme becomes second- 
order accurate under the special case of 
0 = 0.5, it also becomes dispersive due to 
the finite difference approximation of 
some of the higher order terms. For open- 
water simulations, the dispersion results 
in a wavy surface with relatively high- 
frequency oscillations. By specifying 
0.5 < 6 < 1.0, the solution becomes diffu- 
sive, smoothing out the high-frequency 
oscillations and providing a more realis- 
tic solution. The ideal solution would be 
one in which dispersion and diffusion are 
both minimal. 

A separate weighting factor 0; was 
specified for the ice. The movement of 
the ice can be quite different from that of 
the water because it can start and stop 
rather suddenly. The effects of using the 
current values of ice velocity to calculate 
the new values were unknown. For ex- 
ample, if the ice cover was in motion and the new stability check showed that it 
should be stable (the new ice velocity, x> = 0), the previous value of ice velocity may 
have an undesirable effect on the newly calculated ice thickness if 9; < 1.0. Detailed 
inspection of the calculated ice velocities (as ice begins moving and as it slows to a 
stop), however, showed that absolute changes in ice velocity over a time step were 
not large and, thus, the 0rweighted average of ice velocity would provide a proper 
solution. 

The effects of the water-weighting factor on the solution were investigated by 
running the baseline conditions at a variety of 0 values for 0j = 1.0. Values of 0 
tested included 0.5,0.55,0.6,0.66,0.8, and 1.0. The simulation with 0 = 0.5 resulted 
in unacceptable oscillations in the water depth and velocity, which, because the 
solution is fully coupled, resulted in large oscillations in ice velocity and thickness. 
The oscillations in the water variables aggravated the oscillations in the ice vari- 
ables and the solution became highly unstable. For instance, the depth would 
decrease with an accompanying water velocity increase that increased ice velocity 
and thickening, thereby further reducing flow depth. Figure 44 shows the final jam 
thickness profile for 0 = 0.55, 0.6, 0.66, 0.8, and 1.0. While 0 = 0.55 shows a smooth 
final profile, it resulted in highly variable water depths, especially at the initial 
increase in upstream water discharge. A value of 0 = 0.6 provided the most accept- 
able solution in terms of both water depth and ice thickness throughout the simu- 
lation period. 

Figure 44. Final jam thickness profiles for 0,- 
= 1.0 and 6 = 0.55, 0.6, 0.66, 0.8, and 1.0. 
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Figure 45. Final jam thickness profiles for 
6 = 0.6 and ft- = 0.55,0.6,0.66,0.8, and 1.0. 
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The effects of the ice-weighting fac- 
tor were then investigated by running 
the baseline conditions with 6 = 0.6 and 
6i = 0.5, 0.55, 0.6, 0.66, and 0.80. Again, 
with a value of 0j = 0.5, the solution be- 
came highly unstable and gave unrea- 
sonable results in terms of ice thickness. 
Figure 45 shows the final jam thickness 
profile for 0; = 0.55,0.6,0.66,0.8, and 1.0. 
The profile shows little variation with 
0j = 0.6, providing physically reasonable 
results. Inspection of the values of the 
other dependent variables throughout 
the simulations showed that either 0j = 
0.6 or 0.66 would be acceptable. For the 
remainder of the model testing, the val- 
ues of 0 = 0.6 and 0; = 0.6 were used. 

Alternate boundary conditions 
The boundary conditions for the 

baseline runs included specified water 
discharge and equilibrium thickness at 
the upstream end, and zero ice velocity 
and a condition of normal flow depth 
beneath the jam at the downstream end. 
While these boundary conditions repre- 
sent plausible natural conditions, they 
are by no means all inclusive. A dam, for 
instance, typically has a water surface 

slope that decreases in the downstream direction and results in downstream water 
levels that are significantly above the normal depth. Ice jams in dam pools often are 
resistant to shoving and thickening because of the reduced shear stress and gravity 
forces exerted on them. The equilibrium jam thickness at the upstream end also 
implies that there is an unlimited supply of ice upstream of the jam that would 
continually move into the modeled reaches at the equilibrium thickness. 

Two alternative boundary condition types were developed. A condition of speci- 
fied ice thickness at the upstream end of the jam facilitates simulation of the upper 
transition zone where jam thickness is reduced. The effects of lower upstream jam 
thickness on the shape of the final jam thickness profile can also be investigated. A 
condition of specified water depth at the downstream end of the system facilitates 
simulation of ice jams in reservoirs or at other water-elevation control structures. 

A run was carried out to simulate jam shoving and thickening in a reservoir 
where the downstream depth was held at 3.0 m. The initial water depths and 
velocities for this run were determined by running a steady water discharge of 100 
m3/s with a uniform depth throughout the 3.0 m and letting the system attain 
steady flow conditions. The baseline inflow hydrograph was then run with all other 
parameters the same as for the baseline test. Figure 46 shows the initial and final 
water surface, and the bottom profiles of the jams. The downstream end experi- 
enced no shoving and thickening, remaining at the initial thickness of 1.45 m, while 

Figure 46. Final bed, bottom of jam, and wa- 
ter surface level profiles for the condition of 
downstream depth being held at 3.0 m. 
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Figure 47. Final bed, bottom of jam, and 
water-surface level profiles for the condi- 
tion of downstream depth being held at an 
initial depth of 1.729 m. 

the upstream reaches thickened to over 
2.0 m. The initial jam thickness profile for 
this test was specified as a uniform 1.5 m. 

Given the water surface profile that 
was specified as the initial conditions, the 
initial stable jam thickness would have 
been less in the downstream reaches. This 
may have resulted in significant shoving 
and thickening in those areas, leading to 
a totally different final jam thickness pro- 
file. 

For another run, the downstream 
depth was held at the initial uniform 
depth of 1.729 m. All the other conditions 
were the same as the baseline run. Fig- 
ure 47 shows profiles of the bed, bottom 
of jam, and water-surface level for this 
run. Confining the downstream depth 
required that the water velocity increase, 
which resulted in significant thickening 
and water-surface level rises. This figure 
shows that the profiles of the water sur- 
face and jam bottom at the downstream 
end are very similar to the classical 
downstream transition configuration of 
an idealized ice jam (e.g., Ashton 1986). 

Several other runs were made using a 
specified jam thickness as the upstream 
boundary condition. Three runs with jam 
thicknesses held at 1.47,1.4, and 1.3 m at 
the upstream end were compared to the 
baseline run (equilibrium jam thickness at the upstream end). Figure 48 shows the 
final jam thickness profiles for these runs. The profiles are very similar, with differ- 
ences primarily occurring in the most upstream 1000 m. The implicit nature of the 
numerical solution procedure extends the effect of the specified (artificially low) 
jam thickness for several computational steps downstream. Also evident from the 
figure is that the progression of the shoving and thickening differs in each run, 
resulting in slightly different jam thickness profiles. It would be expected that a 
locally weak reach would shove and thicken first, setting up changes in the water 
depth and velocity (since the solution is fully coupled). Minor changes in the water 
variables translate into minor changes in the ice variables and in the final, stable 
jam thickness profiles. 

1  1  1  1  1 1  1  1  I111 

 1.47 m  " 

1  1  1  1  1 1  1  1 I  i  i  i   i  I  i  i   i   i  I  i  i  i  i 

2000 3000 
x Location (m) 

Figure 48. Final jam thickness profiles for 
upstream jam thickness beingheldat 1.47, 
1.4, and 1.3 m. 

Effects of variable length steps 
Final testing of the model involved examining the effects on the predicted 

results of variable computational length steps. The finite-difference formulation 
allows variable length steps, whereas other computation methods do not without 
considerable difficulties (i.e., the Method of Characteristics). This facility is needed 
because field data are often variable in the distance between cross sections. While 
the computational effects of variable length steps should be minimal, care must be 
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Figure 49. Final jam thickness profile for length step reduced to 25 m. 
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Figure 50. Final jam thickness profile for length step changes in the first 2000 m of the 
system. 

taken not to violate any Courant number limitations identified earlier. 
The baseline run had uniform length steps of 50 m, which give Cr - 3. The 

Courant-number sensitivity findings described earlier indicate that Cr values in 
the range of 1 to 12 should provide acceptable results. From eq 151, this finding 
translates to acceptable length steps ranging from 16.7 to 200 m. Several runs were 
made with a variety of length steps. 

The first run involved changing the length step to 25 m for the first 1000 m of the 
system. This step length decreased the Cr to 1.5 in the first 1000 m of the system 
and increased the total number of cross sections to 121. All the other conditions 
were the same as for the baseline run. A similar run decreased the length step to 25 
m for the most downstream 1000 m of the system. These two reaches are where the 
greatest variations in the final jam thickness profile exist. Figure 49 presents the 
final jam thickness profiles for these two runs, compared to that of the baseline run. 
The 25-m upstream spacing resulted in a more gradual rise to the maximum thick- 
ness, which occurred around 1000 m. The final jam thickness was up to 0.05 m less 
than the baseline run, but only for locations upstream of 2000 m. Almost no differ- 
ence existed between the baseline and the 25-m downstream spacing runs, espe- 
cially in the most downstream 1000 m where the spacing was changed. 

The next two runs increased the length step in the most upstream 2000 m of the 
system to 100 and 200 m respectively. The values of Cr for the upstream 2000 m 
increased to 6 and 12, with the total number of cross sections reduced to 81 and 71 
respectively. Figure 50 presents the final jam thickness profiles for these two tests, 
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plotted with the jam thickness profile for 
the baseline test. The 100-m upstream 
spacing resulted in a final thickness pro- 
file that was almost identical to the 
baseline run. The profile shape and 
maximum thickness were very similar. 
The 200-m upstream spacing showed 
slightly more variation than the 100-m 
upstream spacing but was also very 
similar in shape and maximum thickness 
to the baseline run. 

The final run simulated random spac- 
ing of cross sections (typical of field data) 
by using randomly assigned length steps 

between 25 and 100 m (intervals of 5 m) for a total flow length of 5000 m with 81 
cross sections. Now, Cr ranged from 1.5 to 6. Figure 51 shows the final jam thick- 
ness profile for this run along with the baseline results. Minor variations existed in 
the final thickness profile (up to 0.03 m), primarily in the most upstream 2000 m of 
the system. Overall profile shape and maximum thickness, however, were very 
similar to the baseline run. This check on model robustness shows that variable 
length steps have minor negligible effects on predicted results, as long as the Cou- 
rant number limitations identified earlier are followed. 

Figure 51. Final jam thickness profile for 
random length steps throughout the system. 

Summary 
The main points emerging here are that the fully coupled model of ice jam 

dynamics is robust and versatile. Alternate boundary conditions and the use of 
variable length steps make the model adaptable to a variety of physical situations 
and computational capabilities. The sensitivities of results to computational pa- 
rameters are found to be minimal as long as the parameters are held within reason- 
able (practical, physically based) ranges. 

Even at this stage of use, the model shows that the effects of ice momentum on 
the solution are quite significant, as evidenced in the profiles of jam thickness. For 
example, the baseline jam thickness profile shows that almost the entire system 
ends up with jam thicknesses greater than those calculated using the stationary 
jam theory embodied in eq 25. Furthermore, the model shows that shoving and 
thickening make up a highly unsteady process, marked by variations and interac- 
tions between the dependent variables not represented in past modeling efforts. 
Small changes in any of the dependent variables can result in variations in the 
timing of the shoving and thickening event, with subsequent variations in the final 
jam thickness profile. 

UNSTEADY JAM DYNAMICS 

Effects of ice momentum 
A primary objective of this study is to ascertain the effects of ice momentum on 

jam formation and thickness. The importance of ice momentum already became 
evident when the stability and overall robustness of the numerical model devel- 
oped for the study were evaluated. The fully coupled, numerical model includes 
ice momentum in the conservation of momentum expression formulated for ice in 
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Figure 52. Comparison of thickness pro- 
file predicted by static-unsteady thickness 
model to fully coupled model and equilib- 
rium thickness. 

a jam. The static-unsteady thickness 
solution presented earlier allows jam 
thickness to fluctuate in time and space, 
but the streamwise movement of the ice, 
and therefore ice momentum, are not 
included. 

Early formulations of equilibrium jam 
thickness are based on uniform flow 
depths and jam thickness in a reach of 
constant water surface slope. As a result, 
the force balance only contains the fol- 
lowing terms: shear stress on the under- 
side of the jam from the water flow, the 
downstream component of the gravity 
force on the jam (based on the bed slope 
because of the uniform flow assump- 

tion), and the shear resistance at the banks. Because the thickness is considered 
uniform within the equilibrium reach, those formulations contain no terms reflect- 
ing changes in hydrostatic pressure, jam strength, water depth, or jam thickness 
along the reach considered. The formulation leading to eq 150, however, includes 
these terms, but with the ice velocity terms reduced to zero. The resulting force 
balance is affected by the nonuniform thickness of the jam as well as the nonuni- 
form depths within a reach. The more complete balance of forces expressed in eq 
150 enables more accurate modeling of jam profile, whether the profile includes an 
equilibrium-thickness section or not. 

To show the effects of ice momentum on jam thickness profile, the results of the 
static-unsteady thickness solution leading to eq 150 were compared to those 
obtained by the fully coupled model. The loosely coupled moving-ice model was 
also run for the baseline conditions and compared to the fully coupled results to 
demonstrate the effects of the coupling of the dependent variables on the jam thick- 
ness profile. 

The static-unsteady thickness model was run with the baseline inflow hydrograph 
and all other parameters the same as for the baseline condition. Figure 52 shows 
the predicted jam thickness profile obtained by the static-unsteady thickness model. 
Also plotted are the thickness profile predicted using the fully coupled model and 
the equilibrium thickness for the final flow level of 200 m3/s. The static-unsteady 
force balance represented by eq 150 includes the partial derivative terms represent- 
ing changes in jam strength and water surface slope along a reach. The changing 
water surface slope becomes particularly important as discharge increases, increas- 
ing the downstream-acting forces with a subsequent increase in jam thickness. With 
a milder rate of increase in discharge, the water surface slope would remain closer 
to the bed slope, resulting in a static-unsteady thickness profile nearer to the equi- 
librium thickness. The importance of ice momentum is clearly evident from the 
fully coupled thickness profile and results in much greater ice thickness. Ice veloc- 
ity, and, hence, ice momentum, are greatest in the upstream reaches where the 
increasing discharge wave is steepest. The ultimate arrest of this ice momentum is 
responsible for the significantly greater thickness. 

The effects of fully coupling the solution are determined by comparison with 
the results from the loosely coupled model. The loosely coupled moving-ice model 
was run with the inflow hydrograph and all other parameters the same as for the 
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Figure 53. Comparison of thickness profile 
predicted by loosely coupled model to fully 
coupled model. 

baseline condition. The number of ice 'dA L' ' ' '. i ' ' ' ' i ' ' ' ' I ' ' ' ' I ' ' ' ' 
calculation cycles for each water calcu- 
lation cycle was set to 1. Another run was 
made with the number of ice calculation 
cycles set to 2. Figure 53 shows the final 
jam thickness profiles for the fully 
coupled and loosely coupled model 
runs. The fully coupled model results 
show a more pronounced effect of ice 
momentum. As the number of ice calcu- 
lation cycles increases, the resulting 
thickness profile attains a shape closer 
to the fully coupled thickness profile. 
The minimal computational time saved 
by using the loosely coupled model with 
two or more ice calculation cycles is outweighed by the benefits of using a truly 
fully coupled model. 

Comparison with steady-state models 
Steady-state models of jam thickness existed before high-performance mainframe 

and personal computers became available. The computational power that exists 
today allows very large coefficient matrices to be solved with little effort. The 
execution time of the fully coupled model for tests similar to the baseline configu- 
ration described in the Baseline Runs section is much less than the time required for 
compilation of input files and analysis and plotting of output files. Even though 
computational speed and capability have greatly increased, there still are reasons 
(such as unsteady boundary condition information requirements) that a complex 
model might not be used. For many situations, a steady-state model may be appro- 
priate and provide results within a specified tolerance or accuracy desired. For 
instance, Uzuner and Kennedy (1976) could formulate the upstream transition 
region of jam thickness using a frame of reference that traveled upstream at the 
speed of the progression of the jam front. The moving reference frame made the 
flow quasi-steady and the computation much easier. 

A widely used steady-state model for calculating water levels in ice-covered 
channels is HEC-2 modified with the ice cover option or with the utility ICETHK, 
or both. This model has been shown (Zufelt and Doe 1986) to yield accurate results, 
provided the appropriate values of the jam-related variables are chosen. An impor- 
tant input variable for a steady-state model is water discharge. However, ice jams 
are markedly unsteady events characterized by widely fluctuating discharges: as 
level ice covers (whence the jam ice originates) and ice jams fail, releasing stored 
water, or as jams form, causing local reductions in discharge. A steady-state model 
cannot account for local variations in discharge caused by jam formation or failure. 

The discharge record shown in Figure 54 illustrates how unsteady flows can be 
during jam breakup. Fortunately, the stage gauge used to estimate the discharges 
in Figure 54 was located approximately 1 km downstream of the toe of the jam and 
was ice-free during the event (except when the jam failed and ice passed down- 
stream). The figure clearly shows when the jam initially formed, evidenced by a 
drop in the discharge downstream at the gauge. It shows, too, the rise in discharge 
as the water level in the jammed reach rose, and indicates the ultimate failure of the 
jam, evidenced by the rapid peak and passage of the discharge wave. The local 
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Figure 54. Discharge record during breakup jam initiation and failure. 

discharge at upstream locations, however, could be markedly different from that 
recorded at the gauge. In many cases, gauges are not located near the jammed reach 
and estimates of discharge become difficult. In some situations, a jam may create a 
backwater effect on the measuring gauge, and interpretation of the stage recording 
(in developing the discharge record) also becomes questionable. Winter discharge 
estimates can be off by as much as 25% because of backwater from ice jams. As a 
result, the choice of discharge used in a steady-state model can greatly affect the 
results of the modeling. 

The fully coupled model was used, in conjunction with the static-unsteady thick- 
ness model with a constant discharge, to determine how the choice of water dis- 
charge affects jam thickness profile. Figure 55 shows a hypothetical breakup jam 
discharge hydrograph. The hydrograph is characterized by a fast rise and very 
short duration peak, similar to the hydrograph depicted in Figure 54. While the 
fully coupled model uses this hydrograph as an upstream boundary condition, a 
steady-state model requires that a single discharge be chosen as an input variable. 
One choice might be the peak value of discharge. If the modeled system were of 
significant length, however, the instantaneous peak would be attenuated as it trav- 
eled downstream. Thus, the discharge felt at downstream locations (and conse- 
quently shear stress on the underside of the jam) would be less. 

Another choice for the steady-state discharge might be a time-averaged discharge 
based on the time required for a disturbance to pass through the system. Two tests 
were run with the static-unsteady thickness model at a constant discharge level 
and corresponding uniform values of depth and water velocity. This simulated the 
calculations of a steady-state model: one with a constant discharge of the peak 
value of 200 m3/s from Figure 55 and the other with a time-averaged constant 
discharge value of 167 m3/s. 

Figure 56 shows the final jam thickness profiles for these two runs, along with 
the final jam thickness profile predicted using the fully coupled model with the 
unsteady discharge hydrograph. The steady discharge levels and uniform initial 
conditions result in uniform jam thickness equal to that given by the equilibrium 
jam formulation represented by eq 25. The fully coupled thickness profile is greater 
than the equilibrium thickness for both of the steady discharge choices everywhere, 
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except the most downstream reaches. 
The effects of ice momentum and 
nonuniformities in depth and thickness 
on the fully coupled profile are clearly 
evident, even for this discharge 
hydrograph with a very short duration 
peak. The smaller thicknesses at the 
downstream end are ascribable to at- 
tenuation of the peak flow as it travels 
downstream. Figure 57 shows the dis- 
charge hydrograph at the upstream 
boundary, the midpoint of the modeled 
system, and the downstream boundary. 
The peak flow is greatly reduced as it 
travels downstream, with a maximum 
value less than 150 m3/s by the time it 
reaches the midpoint of the modeled 
system. The wave is also significantly 
flattened. The high-frequency fluctua- 
tions in discharge at the mipoint come 
from ice movement. As the ice moves 
and stops, resistance to water flow var- 
ies, resulting in local fluctuations in wa- 
ter discharge. 
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Figure 55. Hypothetical breakup jam dis- 
charge hydrograph. 
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Figure 56. Final jam thickness profiles for 
two steady water discharges compared to 
the fully coupled model results. 
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Dimensionless momentum parameter 
The numerical experiments show that 

ice momentum is important in the pre- 
diction of jam thickness. Its effect can be 
a large one, not only in the magnitude 
of the thickness as compared to that pre- 
dicted by equilibrium theory, but also in 
the nonuniform shape of the thickness 
profile. Some of the experiments show, 
however, that, for small changes in the 
discharge or for initial conditions of jam 
thickness that are slightly less than equi- 
librium thickness associated with the ex- 
pected flow levels (e.g., those presented 
in the Model Rigor section), ice momen- 
tum has a negligibly small effect. 

For example, the final jam thickness 
profile in Figure 42 is within 10% of the 
equilibrium thickness value for that water flow rate, for the jam with an initial 
thickness of 1.3 m. The average jam thickness, however, is 1.5 m or 2% above the 
equilibrium value. For this case, a steady-state equilibrium thickness calculation 
would have proved satisfactory. When unsteady boundary condition data are not 
available, it may be necessary to use a simpler steady-state model to provide jam 
thickness estimates, rather than using the fully coupled unsteady model. There- 
fore, it is useful to identify a parameter, or set of parameters, that indicate when ice 
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Figure 57. Water discharge at upstream 
end, mid-reach, and downstream end of 
the system. 
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momentum is important and should be taken into account for determining jam 
thickness profile. For these cases, the results of simpler steady-state models should 
be used with caution. 

The force balance on a jam at static equilibrium can be represented by equations 
such as eq 19 or 150 with the nonuniform terms set to zero. The downstream-acting 
forces of the water shear stress on the jam underside and the component of gravity 
due to the weight of the jam are balanced by the shear resistance at the banks 

&jt + gS0BSix\ = gSi (1 - p)(l - Si )fc0^pTl2 • (153) 

If the simplified notation of a + b = c is used to describe eq 153, then a/c represents 
the portion of the jam strength (represented by the bank shear resistance) mobi- 
lized by water shear stress. By assuming a wide, rectangular channel, the first term 
in eq 153 can also be written as 

-^-Ji 
2D

       
rQS^2T2/ 

v 8/o 
(154) 

Together with the equilibrium thickness given by eq 25, Table 2 was generated for 
jams at the verge of stability (equilibrium thickness) for flow in channels of differ- 
ent bed slopes. 

Table 2 shows that, for very low bed slopes, downstream gravity forces are mini- 
mal with the water shear stress mobilizing most of the jam's strength. For the smallest 
bed slope, when the discharge was increased by a factor of 2, a/c remained very 
high and the equilibrium thickness increased by 24%. At the highest bed slope 
shown, water shear stress only engages a small part of the jam's strength. A similar 
factor of 2 increase in discharge increases a/c, but it still remains low and only a 6% 
change results in the equilibrium thickness. Smaller bed slopes are associated with 
lower water velocities, but also much lower jam thicknesses. As bed slope increases, 
water shear stress increases, but at a slower rate than the gravity force term (b in eq 
153). Once a jam fails, it is water shear stress that transports the ice downstream. 
While this finding is not entirely intuitive, it means that ice momentum effects be- 
come more important as the a/c ratio increases, i.e., for smaller bed slopes and 
smoother channels. 

Consider further the a and c terms and their ratio in eq 153 for a bed slope of 
0.0005 given in Table 2. Equation 154 shows that, for a given discharge, the a term 
has a set value. Equation 153 balances the forces by adjusting to the value of equi- 
librium thickness, giving a value for a/c at the limit of stability. But, for example, if 
the thickness had attained a value greater than the equilibrium level (say 1.60 m), 

Table 2. Ice parameters for channels at different bed slopes. 

Bedslope,S0 r\ecj at 100 m3/s a/cat 100 m3/s r\ecj at 200 m3/s a/cat 200 m3/s 

0.000005 0.21m 0.960 0.26 m 0.968 
0.00005 0.49 m 0.829 0.60 m 0.861 
0.0005 1.47 m 0.432 1.69 m 0.509 
0.001 2.30 m 0.277 2.57 m 0.352 
0.0025 4.74 m 0.121 5.02 m 0.171 
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eq 153 would no longer be in balance and would represent a condition of greater 
jam stability. In this case, the a/c ratio decreases because the a term remains con- 
stant. As water discharge increases, the jam should remain stable for a longer 
period prior to shoving and thickening, thus resulting in lower ice velocities and 
less of an effect of ice momentum on the jam thickness. Also, for a given initial jam 
thickness (whether at the limit of stability or not), a smaller discharge rise has less 
effect on jam thickness than does a larger one. Finally, a larger relative discharge 
increase has more effect than does a smaller one. For instance, ice momentum would 
be expected to influence the final jam thickness more for an increase from 100 to 
200 m3/s than an increase from 200 to 300 m3/s. 

To express these trends, a dimensionless parameter was developed that includes 
initial jam conditions (indicating how close the jam is to the limit of stability), as 
well as the relative increase in discharge expected. This number is 

Q = 
vQiny 

/i"ZB 
2- >» 

^(l-pXl-SiJfcoMCpTV v.Qin J 
(155) 

where Qin is initial water discharge and AQ is the expected change in discharge. 
This dimensionless parameter is the product of the initial state of stability of the 
jam and the relative discharge increase applied to cause an instability. 

Several runs were made with the fully coupled model using an inflow hydrograph 
that rose at the same rate as the baseline inflow hydrograph, but with ten different 
combinations of initial discharge and discharge increase as listed in Table 3. 

Runs were made for eight different bed slopes of 0.00005,0.00008,0.0001,0.00025, 
0.0005, 0.00075, 0.001, and 0.0025. The final jam thickness profile for each of these 
runs was compared to the equilibrium jam thickness rieq for the final discharge as 
calculated by eq 25. Average values of jam thickness r[ were calculated for each 
profile. The values of Q were plotted against rj / r\eq in Figure 58. The data points 
delineate a line, showing combinations of channel and flow conditions, or Q. val- 
ues, for which ice momentum significantly affects jam thickness (from the 11 / r\eq 
value). It is clear that ice momentum is very important for low bed slope values, 
because water shear stress engages the greater portion of the jam strength for these 
cases. The scatter in the data at higher values of rj / r|eq is most likely attributable 
to the highly nonuniform jam thickness profiles for those cases. Figure 59 shows a 
plot of the final jam thickness profiles for cases of relatively small, medium, and 
large ice momentum effects (T| /tleq). A smaller ice momentum effect results in a 
significantly more uniform thickness profile. 

Table 3. Characteristics of various inflow hydrographs. 

Hydrograph type    Initial Q (m3/s) Final Q(m3/s) AQ(m3/s) AQ/Q 

1 100 112.5 12.5 0.125 

2 100 125 25 0.25 

3 100 150 50 0.50 

4 100 175 75 0.75 

5 100 200 100 1.00 

6 100 250 150 1.50 

7 100 300 200 2.00 

8 112.5 200 87.5 0.78 

9 125 200 75 0.60 

10 150 250 100 0.67 
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Figure 58. Dimensionless jam thickness vs. Figure 59. Final jam thickness profiles for 
ice momentum parameter for several bed large, medium, and small ice momentum 
slopes. effects. 

A curve such as the one presented in Figure 58 could be used to determine the 
general effects of ice momentum on predicted changes in water discharge. A few 
simple calculations would allow a determination of whether a static, steady flow 
model is satisfactory or if a fully coupled model such as the one presented here is 
required to provide accurate jam thickness, and thus water surface, profiles. 

Effects of hydrograph shape on jam thickening 
The experiments discussed in the previous section show that the relative state of 

initial stability of a jam, in conjunction with the relative change in water discharge 
expected, determines whether ice momentum significantly affects jam thickness 
profile. Other factors may also determine when ice momentum is significant. Field 
observations have shown, in general terms, that fast rises in discharge because of 
heavy rain on frozen ground often result in severe ice jams producing devastating 
flooding. Commensurably, gradual warming trends with slower discharge increases 
and higher air temperatures, which cause the jam strength to weaken, often result 
in less dynamic or damaging jams. The experiments discussed in the Laboratory 
Experiments section attempted to simulate short duration peak flow events by in- 
creasing the water discharge and then decreasing it again after a short period. The 
effect of these short duration peak flows was to stall the progression of the shoving 
and thickening, resulting in only partially thickened jams. For those cases, the ice 
momentum may be important, but the peak discharge may be attenuated greatly 
by the time the disturbance travels the length of the entire system. 

A series of experiments was conducted to assess the effects of the shape of the 
inflow hydrograph on the resulting jam thickness profile and to establish whether 
ice momentum continues to be a consideration in these cases. Runs were made 
with various rates of rise on the rising limb of the hydrograph. The baseline runs 
had a rate of rise of 2.5 m3/s for each time step of 0.5 minutes. For these runs, the 
time step was held constant, but the boundary condition file describing the inflow 
hydrograph was modified for rise rates of between 10 and 0.3125 m3/s for the same 
0.5-minute time step. This modification resulted in times to peak fp (time for the 
hydrograph to increase from 100 to 200 m3/s) of 5,10, 20,40, 80, and 160 minutes. 
The inflow hydrographs are shown in Figure 60. Time to peak t„ was related to the 
base time tb defined as the time taken for a disturbance to travel the length of the 
simulated channel. From eq 152 
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Figure 60. Inflow hydrographs for various 
times to peak. 
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where LT is the total length of the mod- 
eled system. Runs were made for the 
values of tp given above and three dif- 
ferent bed slopes—0.00005, 0.0005, and 
0.001. A functional relationship between 
the ratio of average final jam thickness 
to equilibrium thickness T|/r|eq and 
tp/ tfr is evident in Figure 61. As the time 
to peak tp increases, the average final jam 
thickness rj approaches that predicted 
by equilibrium theory T|eq. The effects of 
fp on the shape of the final jam thickness 
profile is demonstrated in Figure 62, 
which shows the final profiles for times 
to peak of 5, 20 (standard), and 80 min- 
utes for the bed slope of 0.0005. As f„ 
decreases, the changes in water dis- 
charge for each time step increase, result- 
ing in larger gradients of the variables 
in the upstream reaches. The gradient 
terms (e.g., dt\/dx ) are not included in 
the equilibrium thickness formulation of 
eq 25 and play an important part in the 
full ice momentum equation. Also, the 
large changes in water discharge easily 
overpower the stability of the jam, result- 
ing in significant ice velocities and ice 
momentum effects. 

Experiments were also conducted to 
investigate the effects of the sustained 
time at the peak flow ts. For these runs, 
the standard inflow hydrograph rate of 
rise of 2.5 m3/s increase per time step 
was used, but the time at which the wa- 
ter flow was held at 200 m3/s, before be- 
ing reduced back to the initial value of 
100 m3/s, was varied. The sustained 
times simulated were 0 (instantaneous 
peak), 10, 20, 40, 80, and °° minutes (no 
discharge decrease) as shown in the in- 
flow hydrographs depicted in Figure 63. 
These runs were conducted at the same 
three bed slopes as above. 

Figure 64 shows relationships between the ratio of final average thickness to 
equilibrium thickness and ts/t^. For the case of the infinite sustained time, a nomi- 
nal value of is/fb (beyond which there were no changes in jam thickness) was cho- 
sen for plotting purposes. Again, the effect of bed slope is clearly seen. It is signifi- 
cant that, as the value of ts/tb reaches 1, the effects of further increases in the 

Figure 61. Dimensionless jam thickness vs. 
tp/tj, at three bed slopes. 
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Figure 62. Effect o/t„ on final jam thick- 
ness profile shape. 
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Figure 63. Inflow hydrographs for various 
times of sustained flow. 
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sustained time on the final thickness pro- 
file become negligible. The plot does 
show, though, that even with an instan- 
taneous discharge peak, the effects of ice 
momentum are important. 

Figure 65 presents the changes in the 
final thickness profile with increased ts 

for the 0.0005 bed slope. The increase in 
ts results in a slight smoothing and fur- 
ther thickening of the downstream 
reaches. Even for the instantaneous 
peak, however, the jam thickness in the 
upstream reaches is significantly greater 
than the equilibrium value of 1.7 m. 

10 
t 

Figure 64. Dimensionless jam thickness vs. 
tg/tj, at three bed slopes. 

SUMMARY 

It is well known that ice jams are in- 
herently unsteady events, in which mov- 
ing ice is brought to rest as accumula- 
tions that shove and thicken in accor- 
dance with changing forces exerted by 
water flow, accumulation weight, and 
bank roughness. These processes are 
even more unsteady when a jam col- 
lapses, plows downstream, and possibly 
reforms. Not well known, at least in any 
quantitative way, is how the inherent 
unsteadiness of those processes affects 
the jam formation and thickness profile. 
In particular, virtually nothing is known 
about the effect of ice momentum on jam 
formation and thickening. This study 
presents the first formulation and exami- 
nation of the fully coupled dynamic na- 
ture of the unsteady processes associated 
with jam formation. It does so by means 
of numerical simulations and laboratory 
flume experiments. The experiments 
also show that equilibrium thickness for- 
mulations consistently underestimated 
measured jam thickness. 

The numerical simulation uses the full one-dimensional unsteady flow equa- 
tions (conservation of mass and momentum) for water flow, ice movement, and 
jam formation. A unique aspect of the simulation is that the equations are solved in 
a fully coupled manner. The simulation model is shown to be robust, versatile, and 
accurate in calculating jam thickness profile under a variety of initial jam, flow, and 
channel conditions. The effects of the shape of the inflow water hydrograph on jam 
thickness profile are investigated and shown to be important. A dimensionless pa- 
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Figure 65. Effect ofts on final jam thickness 
profile shape. 
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rameter is used to delineate general conditions for which ice momentum signifi- 
cantly affects jam thickness profile. The parameter takes into account initial ice 
conditions and the expected flow changes. 

CONCLUSIONS 

The study led to the following principal conclusions: 

1. The flume experiments, which provide a detailed description of the observed 
processes of jam formation, failure, and evolution, brought to light two jam failure 
and reformation mechanisms—progressive and complete. Progressive jam failure 
and reformation happens with lower initial discharge and lower discharge increases 
relative to the discharge needed to completely destabilize the jam. It is character- 
ized by a smooth progression of a shoving front downstream through the jam. Com- 
plete jam failure, then jam reformation, occurred for initial discharges close to the 
discharge necessary to completely destabilize the jam. It is characterized by the 
entire jam mobilizing en masse, moving downstream, slamming into a downstream 
barrier (e.g., an existing, stationary ice cover, or an ice boom), and reforming. 

2. The flume experiments revealed that progressive and complete modes of jam 
failure and reformation result in measured jam thicknesses that exceeded those 
predicted using prior jam formulations, based on analyses of stationary jams. This 
finding confirms that the momentum of the moving ice arrested during jam forma- 
tion produces an important force that should be taken into account when estimat- 
ing jam thickness for many conditions. Prior formulations underestimate jam thick- 
ness because they do not include this force, or the interaction of the water and ice. 

3. The numerical simulation model provides further quantitative information 
illuminating the effects of ice momentum on jam thickness. Not only does ice 
momentum result in greater average jam thicknesses than predicted using the sta- 
tionary jam theory of prior formulations, it also induces a high degree of 
nonuniformity in a jam thickness profile. The interaction of the ice movement and 
water flow result in unsteady variations in water depth and velocity, as well as ice 
thickness and velocity, throughout the entire simulated flow and jam. It is these 
interactive effects that result in nonuniform jam thickness profiles. For this case of 
zero ice velocity at the downstream boundary, the profiles are characterized by 
greater thickness in the upstream reaches where ice velocity and, thus, momentum 
are greatest. The use of a fully coupled solution technique preserves this interac- 
tion of the variables. The loosely coupled solution results in some averaging or 
smoothing of the variables and their effects upon each other. As the time step 
decreases or the number of ice calculation cycles increases, the results of the loosely 
coupled model approach those of the fully coupled model. 

4. The dimensionless parameter Q. = (a/c)(AQ/Qin) is useful for delineating con- 
ditions when ice momentum should be taken into account for jam thickness esti- 
mation. In Q., a = (fiu

2B)/8, and c = ^si(l-p)(l-si)fc0XKpri2, so that (a/c) represents the 
portion of the initial jam strength mobilized by the water shear stress on its under- 
side. The parameter relates the ratio of average jam thickness, as determined by the 
fully coupled model, to steady equilibrium thickness determined from stationary 
jam models. The relationship is useful for establishing when changes in flow con- 
ditions (i.e., hydrograph properties) will destabilize a jam and, through ice impact, 
affect jam thickness profile. The parameter delineates the conditions when a fully 
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coupled model of jam evolution is needed to accurately predict jam thickness. 
5. The shape of an inflow water hydrograph and its peak flow are important in 

estimating jam thickness because they determine whether jams fail and reform pro- 
gressively or completely. Fast-rising hydrographs with attendant rising water lev- 
els result in larger gradient terms across a computational reach. The gradient terms 
(including ice momentum) result in greater predicted jam thickness. They are not 
present in equilibrium thickness formulations, which thereby underpredict thick- 
ness and water levels. The time that a flow remains at its peak value is also impor- 
tant. Instantaneous peaks are attenuated as they travel downstream, resulting in 
lower local discharges and lower stresses on the underside of the jam, leading to 
thinner jams. 

RECOMMENDATIONS FOR FUTURE RESEARCH 

The flume experiments and numerical model bring to light several areas where 
deficiencies in knowledge and formulation persist. 

Several parameters are necessary to characterize the properties of ice accumu- 
lated in a jam. Among the properties are angle of internal resistance <)>, coefficient of 
friction of ice on ice X, and the lateral expansion coefficient fc0. Practical measure- 
ments of (j) have been obtained for particulate materials, with an estimate given as 
the dry angle of repose of the material. No known experiments have been con- 
ducted, however, to determine suitable values of X or k0 for ice. Further laboratory 
experiments to define them are necessary. 

The full effects of ice momentum have not yet been fully identified because of 
the influence of ice velocity on the parameters mentioned above. Of particular 
importance is the temporal variation of these parameters as an ice jam fails and 
mobilizes, during which the forces on a jam continually change. The value of Kp is 
related to § and has been shown to be adequately described by Mohr-Coulomb 
theory for a stationary jam. The Rankine states of active and passive pressure 
described using Mohr-Coulomb theory are intended as point values at the instant 
of particulate material failure. Questions surround the value of the passive pres- 
sure coefficient once a jam fails or is moving downstream. A similar argument goes 
for the value of coefficient of friction of the ice along the shear boundary at the 
banks X. Certainly, if this coefficient is developed in a way similar to that for the 
simple static coefficient of friction, there must be changes that occur as the material 
comes into motion. It is likely that the coefficient would reduce once a jam moves, 
thereby resulting in a lower resistance to downstream movement. Thicker jams 
would result when the moving ice is finally arrested because bank friction is 
reduced. 

Several modifications to the model are possible to make the simulations more 
realistic. The modifications include the ability to use actual cross-section geometry, 
and changes in roughness coefficients, channel width, and ice parameters with dis- 
tance. Extending the model to two-dimensional coordinates would not only 
increase the computational time, but would also introduce difficulties in defining 
the failure mechanism. The model developed in this study assumes that ice param- 
eters are satisfactorily given as bulk properties. A more suitable advance might be 
the adaptation of the model to simulate branched systems, where jam formation in 
one channel would affect water and ice movement in another. 
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The very local problem of jam failure also is a candidate for future research. The 
vertical stress level throughout the thickness of a jam varies linearly when the jam 
is at rest. This stress description is the basis for the determination of K„ and other 
jam parameters. When water shear stress exists beneath the jam, however, the stress 
levels within the jam change. No information exists about these stress levels and 
whether they have an effect in setting up the initial instability within the jam. The 
vertical description of jam failure, whether the jam initially fails at the bottom or at 
the water-surface level, where stress is assumed to be the maximum, does not exist. 

The highly dynamic nature of ice jamming precludes direct measurement of thick- 
ness and ice velocity during formation, evolution, and failure. Equally difficult to 
obtain are time-histories of water discharge and depth at several locations within a 
reach experiencing jamming. A concerted effort needs to be undertaken to obtain a 
complete set of field data for an ice jamming event, including water depths, water 
velocities, ice thicknesses, and ice velocities at several locations. Another avenue of 
model verification and validation would be a detailed physical model study of ice 
jamming, going beyond the level of the flume experiments described in the Labora- 
tory Experiments section. Such a data set will allow the verification and comparison 
of unsteady ice models, such as the one presented in this study 
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APPENDIX A: DISCRETIZATION OF FUNCTIONS AND DERIVATIVES 

The Newton-Raphson iteration procedure required not only the discretization 

of the equations of motion, but also the partial derivatives of these discretizations 

with respect to the solution variables. For example, the conservation of water mass 

equation is discretized as 

(rf»++1i + d»+i)_(d»+1+i») 

2At 
+ u 

Q(dft-d^) + (i-Q)(dn+l-d») 

Ax 

e(uf^-uf^) + (l-Q)(u^-uf) 

Ax 
= 0 (Al) 

and the partial derivatives are evaluated as 

_3^__1 ÜQ    6 

~ dd} ~ 2At    Ax    2 

e^-Mf^j+a-e)^-«!1)' 
Ax 

3fi _9 

3«j     2 

Q(dft-d^) + (l-Q)(d?+1-d?) 

Ax 

dQ 

Ax 

d = ^ = 0 

_ aq _ i    we  e 
3rfj+1     2At    Ax    2 

e(u|'+
+

1
1-«r+1) + (i-e)(^+1-«f) 

Ax 

3rlj+i 

dFi    e 

3wj+1     2 

e(dft-df^)+(i-e)(d?+1-df) 
Ax 

dQ_ 

Ax 

and 

The conservation of ice mass equation F2 is given as 

p        (^ IT)-(<! + <)     - 
i"2 = H 1) 

2Af 

ej^-ri^j+li-eO^-nf) 
Ax 

+ T1 
Q^-vf^ + il-Q^-vf) 

Ax 

(A2) 

(A3) 

(A4) 

(A5) 

(A6) 

(A7) 

(A8) 

(A9) 

= 0 (A10) 
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and the partial derivatives are evaluated as 

dF2 

-u,-* 

3rjj     2Af     Ax     2 

e^-^Hi-eO^-u? 
Ax 

c =■ 
dF 

2--0 
3«; 

9\); 2 

ei^-^^-t-^-eO^-nf)' 
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dr|j+1     2Af    Ax     2 

= 0 

^(^-^^(i-eOf^-^f) 
Ax 

,/_   dF2 
du 

and 

j+l 

3uj+1      2 

ej^-Ti^j+ft-e^Ti^-Tif 
Ax Ax 

The conservation of water momentum equation is discretized as 

(AH) 

(A12) 
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1HH(M 
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Ax -£So=0 

and the partial derivatives are evaluated as 
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The conservation of ice momentum equation is discretized as 
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and the partial derivatives are evaluated as 
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The reach averages of the dependent variables and their combinations are given as 
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