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Executive Summary 

Users often work directly with a collection of legacy simulation programs. These users are respon- 
sible for producing the input files for these programs, executing them, and managing their results. 
This project is to design and construct a general-purpose environment to support these tasks. In 
particular, we explore how to base this environment on an explicit object-oriented domain model 
that describes the domain actions that are simulated by existing simulation programs and the domain 
objects that are provided as input to or generated as output from these programs. The goal is to 
demonstrate that it is both possible and beneficial to construct an environment through which users 
interact with legacy simulation programs solely through an explicit domain model. Our initial tar- 
get users are those working with a collection of programs that simulate the formation and orbit of 
space debris. 

Background 

The US Air Force has a large variety of legacy simulation programs. These programs often share a 
set of characteristics that make them difficult to use; namely, they can perform multiple tasks, take 
multiple input files with complex input formats and constraints, and produce multiple output files. 
These programs are useful, but exceedingly difficult to use. Users wind up constructing complex 
input files by hand and maintaining large directories of simulation inputs and outputs. 

It is possible to make these programs significantly easier to use by wrapping them in a nice visual 
interface, customized to each program. However, besides being expensive, doing so fails to provide 
support for managing simulation results, integrating the inputs and outputs of different legacy 
simulations, and using simulations to perform higher-level tasks, such as parametric studies. 

Objective 

The objective of this work is to provide an environment that addresses these problems. Specifically, 
our target is an environment that provides a single interface that is suitable across a wide collection 
of different legacy simulation programs, where this interface supports management of simulation 
results and integration of different simulations, while requiring only a formal description of each 
simulation's inputs, outputs, and performed function. 

Approach 

Our approach is to describe each simulation program in terms of an object-oriented domain model. 
Each program corresponds to a set of domain actions; each action requires a set of domain objects 
as input and produces a set of domain objects as output. The environment then supports acquisition 
of input objects from the user, mapping of domain objects to input files, execution of programs on 
those files, mapping of the output files to additional domain objects, and storage and retrieval of 
domain objects. 
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Technical Challenges 

One challenge is inherent in producing any general-purpose environment: it is necessary to provide 
an overall architecture for the system, which requires determining what the components of the envi- 
ronment are and how they should communicate with one another. 

Another challenge is specific to constructing our particular environment: it is necessary to deter- 
mine exactly what new functionality our object-oriented domain model buys us - beyond making it 
easier to execute legacy simulation programs. That is, we must determine how such an environment 
can best support the management of simulation results and the integration of different simulation 
programs. 

The final challenge is specific to determining whether our approach can work at all. This involves 
taking a sample domain and trying to create a domain model that covers the set of simulation pro- 
grams in that domain, as well as forming the mappings between the domain model and the actual 
inputs and outputs of those programs. 

Results 

This project has resulted in three things: a specification of the overall architecture for this environ- 
ment, a determination of the functionality that is possible given our approach and how it can be im- 
plemented, and an actual domain model for a small collection of programs that simulate properties 
of space debris. A shortcoming of the project is that the entire environment has not been imple- 
mented, only portions of it to test some key ideas. 

Payoffs 

The potential payoffs of this approach are that it may well significantly lessen the time it takes for 
users to perform needed simulation-based studies, such as parametric studies. This potential payoff 
arises because this approach hides the details of the simulation programs from their users and pro- 
vides significant support for the management and use of simulation results. It also arises because it 
changes the problem of generating a convenient interface to legacy simulation programs from cod- 
ing a program-specific interface into providing a program-specific description of its inputs, outputs, 
and function - a task that appears to be much easier. In addition, many issues that can't currently be 
conveniently addressed (such as dealing with large sets of simulation results) are handled automati- 
cally, without doing anything extra for a given legacy simulation program. 

Recommendations 

One recommendation is to continue this work, focusing on several tasks. The first task is to com- 
plete a robust implementation of the entire environment, or at least a complete subset of it. The 
second is to then experiment with this environment using our current domain model. This should 
give a quick idea of how much of a payoff there is with this environment. Assuming that the envi- 
ronment appears useful, the final recommendation is to form a domain model for a larger set of AF 
simulation programs in a domain other than space debris simulation, and to determine how well this 
environment and approach supports execution of this idea. 

IV 
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Overview Of Our Initial Approach 

Jump To: [Next Page] ^_  

Our initial approach (Phase One) focuses on dealing with individual simulation programs in isolation. 

We provide an environment that allows users to execute simulations in the following way: 

• The user selects a domain action to simulate. 

• The user provides the domain action's input parameters, specified in terms of domain objects and 

attributes. 

• The parameters are automatically mapped to input files. 

• The underlying simulation program or script is executed. 

• The resulting output files are mapped to a set of domain objects. 

• The user can then examine these objects or apply tools to visualize them. 

The environment (not the individual simulation programs) handles all interaction with the user and all 
management of simulation results. 

[UH/ISE Home Page I Phase One Report Index] 



How Simulations Are Executed 
Jump To: [Previous Page I Next Page] 

Input 
Objects SWMKBI ̂

^mmsi^mmmiimmmiim^mmmmm'mm 

Input 
Mapping 

Output 
Objects 

"■■■ ■—'«—•) 

[UH/ISE Home Page I Phase One Report Index] 



The Contents Of The Domain Model 
Jump To: [Previous Page I Next Page]  '  

The domain model necessary to describe exactly what a simulation program does must describe the 
different tasks the program can simulate, their input parameters, and the.r expected results. 

For example, consider IMPACT, a program that simulates space-based breakup events, such as 

collisions and explosions. 

The domain model necessary to describe what IMPACT does must do two things: 

• Describe the different tasks IMPACT can simulate, such as various explosions and collisions. 

• Describe the input parameters and expected results of these tasks in terms of domain objects, such 
as satellites, PBVs, boosters, debris clouds, debris fragments, and so on. 

[UH/ISE Home Page I Phase One Report Index] 
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An Example Domain Model: IMPACT 
Jump To: [Previous Page I Next Page]  

Below are links to a pictorial view of the tasks IMPACT can simulate, as well as to an object-oriented 
domain model that captures IMPACT'S simulation of these tasks. 

Example Domain Model: IMPACT Simulated Events 
Example Domain Model: IMPACT And Explosions 
Example Domain Model: IMPACT And Collisions 
Example Domain Model: IMPACT And Space Entities 
Example Domain Model: IMPACT And Space Debris 
Example Domain Model: IMPACT And Time 
Example Domain Model: IMPACT And Orbital Location 
Example Domain Model: IMPACT And Unit Values 
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Example Domain Model: 

IMPACT Simulated Events 

Jump To: [Next Page] 

Breakup-Event 

-Ex plosion 

Detonation 
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Hypervelocity-Collision 

Non-Catastrophic 
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Booster Catastrophic 

Non-Booster Catastrophic 

Head-On 

-Glancing-Blow 

Non-Booster Glancing 

Booster-Glancing 
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Example Domain Model: 
IMPACT And Explosions 

Jump To: [Previous Page I Next Page] 

Breakup-Event 
INPUT: 

Epoch (Absolute-Time) 
Min-Fragment [Length] 

+-- Explosion 
INPUT: 
Target [Tank-Containing-Entity] 
Available-Energy [Energy] 

OUTPUT: 
Fragments [Debris-Cloud] 

- Detonation 
INPUT: . 
Target (*) [Detonatable-Tank-Containmg-Vehicle] 
%-Energy-To-Heat [Unitless-Value] 
%-Energy-To-Spreading [Unitless-Value] 

+-- P.I. Explosion 
INPUT: , 
Target (*) [PI-Explodable-Tank-Containing-Vehicle] 
Time-To-Act [Relative-Time] 
Pressure-Build-Up [Pressure] 
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Example Domain Model: 
IMPACT And Collisions 

Jump To: [Previous Page I Next Page] 

Breakup-Event 
INPUT: 

Epoch [Absolute-Time] 
Min-Fragment [Length] 

+-- Hypervelocity-Collision 
INPUT: 
Target [Space-Entity) 
Projectile [Space-Entity) 

OUTPUT: 
Mass-Transfer [Mass] 
Relative-Velocity [Velocity] 
Number-Of-Debris-Clouds [Unitless-Value] 
Debris-Clouds [Collection of Debris-Cloud] 
Fragment-Mass-Bin [Mass-Bin] 

Non-Catastrophic 

I 
+— Head-On 

I 
+-- Catastrophic 

+-- Booster-Catastrophic 
INPUT: 
Target (*) [Booster] 

+-- Non-Booster-Catastrophic 
INPUT: 
Target (*) [Non-Booster] 

+-- Glancing-Blow 
INPUT: 
%-Directly-Fragmented [Unitless-Value] 

- Booster-Glancing-Blow 

- Non-Booster-Glancing-Blow 

[UH/ISE Home Page I Phase One Report Index I Domain Model Example - Main Page] 



Example Domain Model: 
IMPACT And Space-Entities 

Jump To: [Previous Page I Next Page] 

Space-Entity 
HAS: 

Position [Orbital-Location] 

Tank-Containing-Entity 
HAS: 

Vehicle-Type [VEHICLE-LABEL: Booster, PBV, Satellite) 

+-- Tank-Containing-Vehicle 
HAS: 

Tank [Tank) 

+-- Detonatable-Tank-Containing-Vehicle 
HAS: 

Tank (*) [Detonatable-Tank] 

- PI-Explodable-Tank-Containing-Vehicle 
HAS: 

Tank (*) [PI-Explodable-Tank] 

+-- Fragment 
HAS: 

Spread-Velocity [3D-Velocity] 

Space-Entity-Component 

I 
+-- Tank 

I 
+-- Detonatable-Tank 

HAS: 
Dry-Weight [Mass] 
Material-Density [Density] 
Thickness [Length] 

- PI-Explodable-Tank 
HAS: 

Shape [SHAPE-LABEL: spherical, cylindrical] 

[UH/ISE Home Page I Phase One Report Index I Domain Model Example - Main Page] 



Example Domain Model: 
IMPACT And Space Debris 

Jump To: [Previous Page I Next Page] 

Space-Debris 

+-- Debris-Cloud 
HAS: 

Post-Collision-Velocity [3D-Velocity] 
KE-To-Heat [Energy] 
KE-To-Spread [Energy) 
Fragment-Spread-Velocities [Collection of Fragment-SV-Group] 
Bin-With-Largest [Unitless-Value) 
Bin-With-Smallest (Unitless-Value) 
Num-Fragments [Unitless-Value) 
Min-Fragment-Size [Length] 
Fragments [Collection of Fragment] 

- Fragment-Group 
HAS: 

Bin-Containing-Group [Unitless-Value] 
Characteristic-Velocity [Velocity) 
Max-Possible-Spread-Velocity [Velocity] 
Num-Fragments [Unitless-Value] 
Num-Spread-Velocities [Unitless-Value] 
Entries [Collection of Spread-Velocity-Group] 

■- Spread-Velocity-Group 
HAS: 
Num-Fragments [Unitless-Value] 
Spread-Velocity [Velocity] 

-- Mass-Bin 
HAS: 
Num-Bins [Unitless-Value] 
Entries [Collection of Mass-Bin-Entry] 

+ -- Mass-Bin-Entry 
HAS: 

Entry-Index [Unitless-Value] 
Entry-Max-Mass [Mass] 
Entry-Max-Size [Length] 
Entry-Min-Size [Length] 

+-- Fragment 
HAS: 

Entry-Index (Unitless-Value] 
Velocity [3D-Velocity] 

[UH/ISE Home Page I Phase One Report Index I Domain Model Example - Main Page] 



Example Domain Model: 
IMPACT And Time 

Jump To: |Previous Page I Next Page] 

Clock-Info 

+-- Absolute-Date 
HAS: 

Month [Unitless-Value] 
Day [Unitless-Value] 
Year [Unitless-Value] 

- Time-Info 

Absolute-Time 
HAS: 

Date [Absolute-Date] 
Time-Within-Day [Relative-Time] 

Relative-Time 
HAS: 

Hours [Elapsed-Time | Time-Unit=hours] 
Minutes [Elapsed-Time I Time-Unit=minutes] 
Seconds [Elapsed-Time | Time-Unit=seconds] 
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Example Domain Model: 
IMPACT And Orbital Location 

Jump To: [Previous Page I Next Page] 

Location-Info 

I 
+-- Orbital-Location 

I       "^Reference-Frame [REF-LABEL: earth-centered, spherical, classical) 
I Actual-Position [3D-Position] 

Actual-Velocity [3D-Velocity] 

+-- 3D-Position 
HAS: 

X [Length) 
Y [Length) 
Z [Length] 

- 3D-Velocity 
HAS: 

Xv [Velocity] 
Yv [Velocity] 
Zv [Velocity] 

[UH/ISE Home Page I Phase One Report Index I Domain Model Example - Main Page] 
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Example Domain Model: 
IMPACT And Unit Values 

Jump To: [Previous Page] 

Values 
I 
+-- Sole-Value 

HAS: 
Actual-Value [Unitless-Valuel 

+-- UnitLess-Value 

I 
+-- Unit-Based-Value 

I 
+-- Elapsed-Time 
|     HAS: 

Time-Unit [TIME-LABEL: seconds, minutes, etc...] 

+-- Length 
HAS: 

Length-Unit [LENGTH-LABEL: feet, meters, miles, etc...] 

+-- Mass 
HAS: 
Mass-Unit [MASS-LABEL: lbs, g, kg, etc...] 

+-- Velocity 
HAS: 

Length-Unit [LENGTH-LABEL] 
Time-Unit [TIME-LABEL] 

+-- Density 
HAS: 

Mass-Unit [MASS-LABEL] 
Volume-Unit [VOLUME-LABEL] 

+-- Pressure 
HAS: 

Mass-Unit [MASS-LABEL] 
Area-Unit [AREA-LABEL] 

+-- Range-Value 
I 
+-- Density-Range 

HAS: 
Min-Value [Density] 
Max-Value (Density) 

[UH/ISE Home Page I Phase One Report Index I Domain Model Example - Main Page] 
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1 
Our Initial Architecture 

Jump To: [Previous Page I Next Page] 

Task and 
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Task Execution Interface 

Jump To: [Previous Page I Next Page] 

The task execution interface supports task selection, task specification, and task result retrieval. A task is 
a request to simulate a particular domain action. 

• Task selection involves choosing a particular type of task to execute. It is accomplished in one of 
two ways: 

O The user browses an event hierarchy to locate the desired task type. The executable tasks are 
the leaf nodes of the hierarchy. 

O The user retrieves a existing task (using a constraint-based query mechanism). The input 
objects used for that task become the default input objects for the new instance ofthat task 
(the assumption is that the user will change some of these values). 

• Task specification involves specifying values for the parameters of a selected task (instances of 
domain objects). It is accomplished in one of three ways. 

O By creating a new domain object of the needed type from scratch. 

O By directly using an existing object retrieved from existing instances of that object type. 

O By modifying an existing object retrieved from existing instances of that object type. 

• Task result retrieval involves retrieving the results of previously executed tasks. The user does so 
by executing queries that specify constraints on previously executed tasks, the input parameters, 
and their output results. 

[UH/ISE Home Page I Phase One Report Index] 

14 



flflflHH 
An Example Of Task Execution 

Jump To: [Previous Page I Next Page] 

Given the domain model for IMPACT, the following actions are required to simulate an explosion: 

• The user selects a particular type of Breakup-Event as the task (e.g., Detonation). 

• The user specifies the values of the parameters the Detonation requires. This is the information 
necessary to construct the target and projectile objects (e.g., mass, position, etc.), as well as any 
detonation-specific parameters (e.g., energy available for detonation). 

• These parameters are mapped into the input file IMPACT requires, with the various required 
place-holders and flags automatically placed into the file. 

• The IMPACT program is executed, creating an output file. 

• The output file is mapped into objects representing debris clouds (as well as fragment bins, 
masses, and any other produced objects). 

• The user can then retrieve the contents of these debris clouds or the output from any other 
previously executed task. 

Below are links to the specific objects the user must supply and can then access after executing the 
simulation. 

• Executing An IMPACT Detonation: An Overview Of Its Input 
• Executing An IMPACT Detonation: A Detailed Look At Its Input 

[UH/ISE Home Page I Phase One Report Index] 
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Executing An IMPACT Detontation: 

An Overview Of Its Input 
Jump To: [Next Page] 

Assume the user has selected Detonation as the simulation task. 

The user must then provide the the necessary input objects for this Detonation task. In particular, these 
are the high-level objects the user must supply (field name, type, and what leads to the need for the 

field): 

Epoch 

Min-Fragment 

Target 

Available-Energy 

%-Energy-To-Heat 

Absolute-Time <- Breakup-Event 

Length <- Breakup-Event 

Detonatable-Tank-Containing-vehicle 
<- Explosion/Detonation 

Mass <- Detonation 

Unitless-Value <- Explosion 

%-Energy-To-Spreading  Unitless-Value <- Explosion 

These parameters can be supplied in any order and can be: 

• Already-created objects. 

• Newly-created objects. 

• Variants of existing objects. 

[UH/ISE Home Page I Phase One Report Index I Task Execution Example - Main Page] 
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The Domain-Object Repository 
Jump To: [Previous Page I Next Page] 

The Domain Object Repository (DOR) contains all user-created objects and user-executed tasks. 
Conceptually, it is essentially an object-oriented database. 

All objects in the DOR have additional attributes that describes how and when the objects were created 
and in which tasks they were used. 

• Creator (user who created object or executable task that produced it as output). 

• Creation-Time (time/date when object was created). 

• Tasks-Using (the tasks that take this object as input). 

All tasks in the DOR have additional domain-independent attributes that describe who executed the task 

and when. 

• Executor (user who executed task). 

• Execution-Time (time/date when task was executed). 

Finally, everything in the DOR (object or task) has several additional attributes: 

• Name (a string identifier to support retrieval by name). 

• Parent (an object or task that it was created as a variant of, if any). 

[UH/ISE Home Page I Phase One Report Index] 
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The Basic Domain-Object Hierarchy 
Jump To: [Previous Page I Next Page] 

Entry 
HAS: 

Name [Unit less-Value] 
Parent [Entry] 

-Domain-Object 
HAS: 

Creator [Unitless-Value] 
Creation-Time [Absolute-Time] 
Tasks-Using [Collection of Domain-Action] 

+—Domain-Act ion 
HAS: 

Executor [Unitless-Value] 
Execution-Time [Absolute-Time] 

[UH/ISE Home Page I Phase One Report Index] 
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The Purpose Of The Domain-Object 
Repository 

Jump To: [Previous Page I Next Page] 

The Domain-Object Repository exists to support object and task retrieval so that: 

• Retrieved objects can be fed into new tasks. 

Example: Using a satellite created for a glancing-blow collision in a catastrophic 
collision. 

• Retrieved tasks can have their inputs slightly modified before being reexecuted. 

Example: Using a satellite created for a glancing-blow collision and modifying some 
of its attributes for another glancing-blow collision. 

• Retrieved objects and tasks with similar properties can be examined for their similarities and 
differences. 

Example: Retrieving all satellites with a mass larger than 20kg to examine their other 
attributes to see what else was varied. 

[UH/ISE Home Page I Phase One Report Index] 
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Support For Domain-Object Retrieval 
Jump To: [Previous Page i Next Page] __ — 

At a minimum , the DOR must support retrieving objects and tasks by specifying: 

Entry type constraints 

Example: Retrieve the explosions. 

Combinations of entry type constraints with attribute value constraints {specific values, sets of 

values, and ranges of values) 

Example: Retrieve the break-up events with target mass equal to 20kg. 

Example: Retrieve the collisions named Test-Coll, TestCol-4, and TestCol-6 

Example: Retrieve the explosions with a target mass greater than 20kg. 

Retrieval essentially involves running through each instance of a specified type and verifying that its 

attributes meet the specified constriants. 

[UH/ISE Home Page I Phase One Report Index] 
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Extending Retrieval To Intelligently 
Handle Units 

Jump To: [Previous Page I Next Page] 

Many objects contain two attributes: a value and a unit to use to interpret that value (e.g., the target mass 
is of type Mass, which is a numeric value and a umt of mass). 

Retrieving all objects with a unit-based attribute is problematic since each instance may have a different 
unit used as part of a particular attribute's value 

Example: All Boosters with a mass greater than 20kg, where one booster can have a mass 

of 401b and another of 5000g. 

We address this units problem by: 

• Extending the domain model to explicitly define conversions between instances of a unit type 

Example: a "mass-object" is a unit type, and there are conversions defined between 
masses with different unit-values. 

• Extending the retrieval process to check for and apply an optional conversion defined for a given 
attribute before checking the constraints involving that attribute. 

Example: An attribute that's a mass will have its value converted to grams and then 
have the constraint applied to it. 

[UH/ISE Home Page I Phase One Report Index] 
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Input/Output Mappings 
Jump To: [Previous Page I Next Page]   

Every task is associated with: 

• An executable program or script to carry out the simulation. 

• An "input mapping" that constructs the actual input files from the user-supplied domain objects. 
This involves: 

O Placing each attribute or parameter value in the appropriate location in the program's input. 

O Converting the attribute's value to the units expected by the program. 

O Placing any other values in the input files for the specified task. 

• An "output mapping" that creates and fills in domain objects from the actual output files produced 
by the executed simulation. This involves: 

O Creating objects to hold the resulting output. 

O Locating the values of object attributes in the output files. 

[UH/ISE Home Page I Phase One Report Index] 
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Support For Input/Output Mappings 
Jump To: [Previous Page I Next Page]  __ 

In general, the mappings between object attributes and input and output files can be arbitrarily complex.^ 

• The mapping process may require writing a complete program to transform a collection of domain 
objects into a simulation program's input files or to transform its output files into a collection of 
domain objects. 

• In many cases, however, the mappings are much simpler, and can be handled by a relatively 
straightforward special-purpose language. 

As a result, our approach is to support both ends of the spectrum by providing: 

• A general API that a mapping program can use to access the database of domain-objects. 

• Special-purpose languages for describing input and output mappings. 

[UH/ISE Home Page I Phase One Report Index] 
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An API To Support Mapping 
Jump To: [Previous Page I Next Page] 

The API includes operations to: 

• Access general information: 

O Retrieve the specific domain action being executed. 

O Retrieve the list of attributes for any object. 

O Retrieve the type of each attribute. 

• Support input mappings. 

O Retrieve the value of a particular task or object attribute. 

O Retrieve the value of a paritcular field after converting it to a particular type of unit. 

• Support output mappings. 

O Construct an object of a particular type, 

O Specify the value of an object's attribute. 

O Create a collection. 

O Add or delete objects from a collection. 

[UH/ISE Home Page I Phase One Report Index] 
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Mapping Languages 
Jump To: [Previous Page I Next Page]  -^ 

There are two mapping languages: 

• An input mapping language that describes how to place attribute values and constants in the input 
andX Sdes inechanfsms for conditional placement of values and for handling collecUons of 

values. 

• An output mapping language that describes how to take output values and place them in the input 
and that includes mechanisms for ignoring output values. 

Below are links to an initial pass at these special purpose mapping languages, and examples using them. 

• A Language For Describing Input Mappings 
• An Example Input Mapping: Explosions Into IMPACT 
• An Actual IMPACT Input: Simulating An Explosion 
• A Language For Describing Output Mappings 
• An Example Output Mapping 

[UH/1SE Home Page I Phase One Report Index] 

25 



A Language For Describing Input 
Mappings 

Jump To: [Next Page] 

The current language for describing input mappings is a small set of commands that focus on placing 
particular object attributes into the appropriate location in the appropriate input file. 

• value places a constant in a particular place in the input file. 

value file-name line-no line-pos specific-value 

• item exists to place an attribute value in a particular place in the input file (converting it to the 
appropriate unit if specified). 

item file-name line-no line-pos attribute-path [unit-desc] 

• items exists to allow a collection of objects to be placed in the input file. 

items file-name attribute-path 
commands 
end-items 

• condition exists to allow conditional placement and substitution of attributes and values in the 

input file. 

condition attribute-path 
when value 
commands 
end-when 

end-condition 

The various terms are: 

• file-name is an absolute file name (or a * to indicate the same file name as in the previous 
command). 

• line-no is an absolute line number (a value) or a relative line number (a value preceded by a plus 

sign). 
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• line-pos is similar to line-no. 

m specific-value is a constant to be placed in the specified position as is. 

• attribute-path is of the form fieldfield..,field (e.g., Epoch:Absolute-Day:Week). 

• unit-desc is one or more pairs of the form attribute-name=unit-name (e.g., Mass-Unit=kg). 

• commands is one or more of the above commands. 

[UH/ISE Home Page I Phase One Report Index 1 Mapping Languages - Main Page] 
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^^^R^r 
An Example Input Mapping: 

Explosions Into IMPACT 
Jump To: [Previous Page I Next Page] 

# 
# EPOCH 
# 
value impact.in 
item * +1  0 
item * +0 +1 
item * +0 +1 
item * +0 +1 
item * +0 +1 
item * +0 +1 

0  0  "Epoch" 
Epoch:Date:Year 
Epoch:Date:Month 
Epoch:Date:Day 
Epoch:Time-Within-Day:Hours:Actual-Value 
Epoch:Time-Within-Day:Minutes:Actual-Value 
Epoch: Time-Within-Day: Seconds-.Actual-Value 

# 
# RANDOM SEED FOR FRAGMENTS/VELOCITIES 

II 
value * +1  0  "Random Number Seed" 
value * +1  0  "3.42" 

# 
# TYPE OF BREAKUP-EVENT 

# 
value * +1  0  "1-Explosion, 2-Collision" 

value * +1  0  "1" 

ft POSITION OF TARGET 

# 
condition Target:Orbital-Position:Reference 

when earth-centered 
value * +1 0 "ECI-Breakup Position (m)" 

end-when 
when spherical 

value * +1 0 "Spherical-Breakup Position (m) 

end-when 
when classical-orbital 

value * +1 0 "Classical-Orbital Position (m) 

end-when 
end-condition 

item 
item 
item 

+1 0 Target:Orbital-Position:Position:X:Actual-Value Length-Unit=miles 
+0 +1 Target:Orbital-Position:Position:Y:Actual-Value Length-Unit=miles 
+0 +1 Target:Orbital-Position:Position:Z:Actual-Value Length-Unit=miles 

tt 
ft TYPE OF TARGET 
t( 
value * +1 0 "Target type, 1-Booster, 2-PBV, 3-Satellite" 
condition Target:Vehicle-Type 
when booster 

value * +1 0 "1" 
end-when 
when pbv 

value * +1 0 "2" 
end-when 
when satellite 

value * +1 0 "3" 
end-when 

end-condition • 
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# 
tl MASS OF TARGET 
f 
value * +1 0  "Target Mass (kg)" , 
,Uem  * +1 0  Target:Mass:Actual-Value Mass-Umt=kg 

ft VELOCITY OF TARGET 

' condition Target:Orbital-Position:Velocity 
when earth-centered 

value * +1 0  "ECI-Pre-Breakup Velocity (m/s)" 

end-when 

"^vaST^fo  "Spherical Pre-Breakup Velocity (m/s)" 

end-when 

^valur^lV'-Classical  Pre-Breakup Velocity   (m/s," 
end-when 

^m
CO"di^°n0 -get:Or,ital-Position:Vel^ 

£Z    **  :°0 li J^^iSiS^itlSivS^g^iSual-V*!«. Length-Unit=miles 

# 
ft LOSS OF ENERGY 

value *  +1 0  "Fraction of energy to heat/spreading 
item  *  +i  o Target:%-Energy-To-Heat 
item  .  +0 +1 Target:%-Energy-To-Spreading 

# ADDITIONAL ENERGY (detonation ignores) 

value * +1 0  "Energy added to target/projectile" 

value *  +1  0  "0 0" 

# 
* TYPE OF EXPLOSION 

value *  +1  0  "Type of explosion 1-det, 2-pi" 

value * +1 0  "1" 

# 
ft ENERGY FOR DETONATION 

# 
ft TANK DESCRIPTION 

E-    *•     ti     0    ;a^et:T9ank:Dry-Wei;ht:Actual-ValueMass-Unit=kg 

TtlT *    li    0    ;arg"tTa;k:Sateri:i-Sens;ty=Actual-Value Mass-Unit=kg volume-Unit=cubic-meter 

Iatem
e:  ti  S ;2JSSScTffi;ta.«:iU!t™i-Vfcl«.I-nath-Unit«t«:. 

item 
valui 
item 
valu 
item 

• MISCELLANEOUS PARAMETERS TO AID OUTPUT GENERATION 

value impact.in +1 0 "Index of minimum mass- 
value impact.in +1 0 28 . . 
value impact.in + 1 0 -Produce individual velocities 

value impact.in +1 0 "1" „„,. = ..*„„,.• 
value impact.in +1 0 "Produce individual rotations 
value impact.in +1 0 "1" 
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*^^^^F 
An Actual IMPACT Input: 
Simulating An Explosion 

Jump To: [Previous Page I Next Page] 

Epoch 
1991 2 20 10 45 0 
Random Number Seed 
3.42 
1-Explosion, 2-Collision 
1 
ECI Breakup Position (m) 
100 400 200 
Target type, 1-Booster, 2-PBV, 3-Satellite 

3 
Target mass (kg) 
100 
ECI pre-breakup velocity (m/s) 
100 400 200 
Fraction of energy to heat/spreading 
0.25 0.05 
Energy added to target/projectile 
0 0 
Type of explosion 1-det, 2-pi 
1 
Detonation Energy 
1000 
Dry Weight of Tank (kg) 
20 
Material Density of Tank 
.50 
Thickness of Tank (cm) 
2.0 
Index of minimum mass 
28 . . 
Produce individual velocities 
1 
Produce individual rotations 
1 
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A Language For Describing Output 
Mappings 

Jump To: [Previous Page I Next Page]   

The current language for describing output mappings is a small set of commands. 

• skip ignores input values (by ignoring a specified number of lines and then a specified number of. 

values). 

skip file-name lines-to-ignore values-to-ignore 

• place takes the next input value and puts it in the specified attribute. 

place file-name attribute-path 

• set places a constant in a specified attribute. 

set attribute-path constant-value 

• repeat executes a series of commands a fixed number of times, making available the repetition 

count. 

repeat count-variable start-count end-count 
commands 
end-repeat 

• create exists to allow the creation of an object of a particular type. 

create object-name object-type 

• append adds an object to the collection of objects making up an attribute's value. 

append object-name attribute-path 

The various terms are: 

• file-name is an absolute file name. 

• lines-to-ignore is the number of lines to ignore (it can be zero). 
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• values-to-ignore is the number of additional values to be ignored after the specified number of 
lines have been ignored (and it can also be zero). 

• count-variable is a variable that holds the current repeat count (which is updated by 1 each the 
commands are repeated). The variable only has meaning within the repeat construct. 

• start-count is the initial value of count-variable. 

• end-count is the final allowed value of count-variable. 

• object-name is a way to refer to a newly created object. 

• object-type is the name of a type in the domain model. 

• attribute-path can be in one of two forms. It can be the form field:field...:field (e.g. 
Epoch-Absolute-Day:Week), which defaults to starting with a field in the currently defined task. 
Or it can be of the form name.'field:field...:field (e.g., New-DC:Num-Fragments). 

• commands is one or more of the above commands. 

[UH/ISE Home Page I Phase One Report Index I Mapping Languages - Main Page] 
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An Example Output Mapping: 
IMPACT Into Collision 

Jump To: [Previous Page] 

# Skip initial junky output (7 lines, plus 2 values) 

« 
skip impact.out 7 2 

« Save Mass-Transfer as a result of collision, as well 
# as Relative-Velocity of target after collision 

* place * Mass-Transfer:Actual-Value 
set Mass-Transfer:Mass-Unit kg 
place * Relative-Velocity 
set Relative-Velocity .-Distance-Unit meters 
set Relative-Velocity:Time-Unit seconds 

# Save Mass-Bin by creating each individual Mass-Bin-Entry, 
t and then adding it to the collection of Mass-Bin-Entries. 

» 
skip * 11 0 
place * Fragment-Mass-Bin:Location-Of-Smallest 

repeat Next-Bin-Number 1 Fragment-Mass-Bin:Location-Of-Smallest 
create New-Bin-Entry Fragment-Bin 

set New-Bin-Entry!Entry-Index Next-Bin 

place * New-Bin-Entry!Max-Fragment-Mass:Actual-Value 
set New-Bin-Entry!Max-Fragment-Mass :Mass-Umt kg 

place * New-Bin-Entry!Max-Fragment-Size:Actual-Value 
set New-Bin-Entry!Max-Fragment-Size:Length-Unit cm 

place * New-Bin-Entry!Min-Fragment-Size:Actual-Value 
set New-Bin-Entry!Min-Fragment-Size:Length-Umt cm 

append New-Bin-Entry Fragment-Mass-Bin:Entries 

end-repeat 

# Save number of debris clouds 
ft 
skip * 5 0 
place * Number-Of-Debris-Clouds 

repeat Next-Cloud-Number 1 Number-Of-Debris-Clouds 
0 
# Save all of the info for each debris cloud 

ft 
create New-DC Debris-Cloud 

place  * New-DC!Post-Collision-Velocity:Actual-Value 
set New-DC!Post-Collision-Velocity:Distance-Umt meters 
set New-DC!Post-Collision-Velocity:Time-Unit  sections 

skip  *  2  0 
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place * New-DC!KE-To-Heat 
place * New-DC!KE-To-Spread 

skip * 7 0 
place * New-DC!Bin-With-Largest 
set New-DC!Bin-With-Smallest Fragment-Mass-Bins:Num-Bins 

# 
# Save the fragment groups for a debris cloud 
0 
repeat Next-Bin-Num New-DC:Bin-With-Largest New-DC:Bin-With-Smallest 

create New-Fragment-Group Fragment-SV-Group 

skip * 3 0 
place * New-Fragment-Group IBin-Containing-Group 

place * New-Fragment-Group!Num-Fragments 
place * New-Fragment-Group!Characteristic-Velocity:Actual-Value 
set New-Fragment-Group! Characteristic-Velocity-.Distance-Unit meters 
set New-Fragment-Group!Characteristic-Velocity:Time-Unit seconds 

skip * 1 0 
place * New-Fragment-Group!Num-Spread-Velocities 

# 
# Save the individual spread velocities 

It 
skip * 1 0 . . 
repeat Next-Spread-Vel-Num 1 New-Fragment-GroupINum-Spread-Velocities 

create New-Spread-Velocity-Group Spread-Velocity-Group 
place * New-Spread-Velocity-Group!Spread-Velocity 
place * New-Spread-Velocity-Group!Num-Fragments 
append New-Spread-Velocity-Group New-Fragment-Group[Entries 

end-repeat 

append New-Fragment-Group New-DC!Fragment-Spread-Velocities 

# . . 
ft Save the individual fragment mass and full velocities 

# 
skip * 1 0 
place * New-DC!Num-Fragments 

skip * 0 1 
place * New-DC!Min-Fragment-Size:Actual-Value 
set New-DC!Min-Fragment-Size:Length-Unit meters 

skip * 0 3 
skip * 1 0 
repeat Next-Fragment-Num 1 New-DC!Num-Fragments 
create New-Fragment 
place * New-Fragment:Mass-Bin 
place * New-Fragraent:Velocity:Xv:Actual-Value 
set New-Fragment:Velocity:Xv:Time-Unit meters 
set New-Fragment:Velocity:Xv:Distance-Unit second 
place * New-Fragment:Velocity:Yv:Actual-Value 
set New-Fragment:Velocity:Yv:Time-Unit meters 
set New-Fragment:Velocity:Yv:Distance-Unit second 
place * New-Fragment:Velocity:Zv:Actual-Value 
set New-Fragment:Velocity:Zv:Time-Unit meters 
set New-Fragment:Velocity:Zv:Distance-Unit second 

append New-Fragment New-DC!Fragments 

end-repeat 
end-repeat 
append New-DC Debris-Clouds 

end-repeat 
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How Simulation Input and Output Is 
Processed 

Jump To: [Previous Page I Next Page] 

Simulation input is generated by invoking a mapping program to generate the necessary input files. The 

mapping program: 

• Can be either a regular executable that uses the API or a program written using the special-purpose 

mapping language. 

• Must take care of unit conversions, either implicitly using constructs in the mapping language or 
explicitly within programs using the API. 

Simulation output is processed in two steps. 

• All of the individual domain objects needed to hold the program's resulting output are 
automatically created, except for those that are organized in collections. 

• The mapping program is then run to fill in their attributes, and to create and fill in objects that 

appear in collections. 

Processing simulation object appears to be more complex than producing simulation input. 

• Simulation input involves taking attribute values and placing them in input files. 

• Simulation output involves creating objects and collection of objects, 

The result is that our simple language to support output mappings is more complex than that for input 

processing. 
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Making Our Initial Approach Work 
Jump To: [Previous Page I Next Page]   

Given a set of simulation programs, it is necessary to perform the following actions to support their use: 

• Enumerate the various tasks that these simulation programs are used to simulate. These tasks 
correspond to the domain actions simulated by these programs. 

We initially assume a one-to-many mapping between simulation programs and tasks (i.e., a single 
program or script can perform many tasks, depending on options selected or particular input values 
given). We do not address the case where there are many simulation programs that perform the 
same general action. 

• Determine the parameters required by each task and the output values each task produces. The 
types of individual and groups of parameters and output values correspond to the domain objects. 

We fundamentally assume that there are usually high-level groupings of both parameters and 
output values that help organize specific lower-level input and output values. 

• Provide input and output mappings from object/attributes to and from the specific values required 
by the executing program. 

We fundamentally assume that in practice there are straightforward mappings between the domain 
model and the actual input and output, even though in general the input and output mappings could 
be arbitrarily complex. 

[UH/ISE Home Page I Phase One Report Index] 

36 



Costs Of Our Initial Approach 
Jump To: [Previous Page I Next Page]  

There are two key costs to this approach. 

• Time and effort to construct the domain model. This involves detennining which tasks each 
^ram performs and grouping its input and output parameters into higher-level abstractions. 

For IMPACT, this took approximately 2 person-days to cover the set of key tasks the 

program performs. 

• Time and effort to construct the input and output mappings. This involves determining exactly 
what type of input/output formats the simulation program requires and and generates, and it 
involves writing the mapping programs to produce them from the domain model. 

For IMPACT, this took approximately 3 person-days to cover the set of key tasks the 
program performs. 

In general, both of these tasks may require examining program documentation, sample input and output, 

and possibly the source code. 

These costs are reduced by a pair of factors. 

• There is potential of reuse for the domain model, as the domain model is not constructed from 

scratch each time. 

With IMPACT'S current domain model, approximately 20% of it can be reused across 
most simulation programs (time, units, and so on) and another 30% can be reused 
across programs in the same domain (debris clouds, fragments, and so on). 

• There is potential reuse of the input/output mappings. Once the mappings have been done for one 
of the tasks a program performs, the other mappings are much quicker. 

With IMPACT, over 80% of the input mapping description needed for a detonation can 
be reused for a pressure-induced explosion. 
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Analysis Of Our Initial Approach 
Jump To: [Previous Page] 

Our initial approach, applied only to simulation programs in isolation, provides several important 

benefits: 

• Users are isolated from the ugly details of running programs. 

• Users can reuse existing input data at arbitrary levels of generality. 

• Users no longer need to explicitly manage simulation results. 

• Users can perform content-based retrieval of previously executed simulation results. 

However, our initial environment has several drawbacks that must be addressed before deploying it to 
tackle simulation programs in isolation. 

• The task selection mechanism is too simplistic. 

• The input/output mapping languages are too tied to our initial simulation programs. 

• The domain-object retrieval query mechanism is too weak. 
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Benefit: Isolation From Simulation Details 
Jump To: [Next Page]  

Our approach hides from the user many of the details of actually setting up and running simulation 
programs and then interpreting their results. 

• Users are able to select tasks based solely on function. 

• Users no longer have to worry about file formats, special input parameters, unit values, and so on. 

An obvious alternative (that doesn't require a domain model) is to provide a GUI-based script that 
requests all of the values necessary to execute the program and sets up the program s input tiles. 

Our approach (in the simplest view) can be thought of as a mechanism to extend this alternative by: 

• Automatically generating the necessary GUI from a high-level description of the program's input 
(the domain model). 

• Semi-automatically transforming the input to what the program requires (the input mapping). 

However, this support for a nicer interface to an existing simulation programs is only one of the features 
of having an explicit domain model. 
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Benefit: Ability To Reuse Simulation Input 
And Output 

Jump To: [Previous Page I Next Page] 

Our approach allows users to reuse existing simulation program inputs and outputs at different levels of 
granularity. 

• Users can create an object once (as the input to one execution of a simulation task) and use it as 
input to multiple simulation tasks. 

• Users can modify existing objects and use them as inputs to new simulation tasks. 

There are several obvious alternatives. 

• Let users simply reuse entire input/output files by copying and editing. 

However, this forces users to worry about low-level file formats. 

• Have a GUI provide previously used values for each input parameter and allow the user to select 
the desired value. 

However, this breaks down when programs have many parameters or when the individual 
parameters have many past values. One way %o avoid this breakdown is to group parameters, 
which is exactly what our object-oriented approach does. 

In essence, this reuse supports simplifying the execution of a variety of different simulations, each 
differing in only a portion of their parameters. 
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Benefit: Simplified Management Of 
Simulation Results 

Jump To: [Previous Page I Next Page] 

Our approach greatly simplifies the management of simulation results: 

• By automatically gathering results into objects and attributes. 

• By supporting retrieval of results based on constraints on object and attribute values. 

• By automatically maintaining relationships between different simulation runs. 

One alternative approach is to have scripts automatically add web page links between a simulation 
program, its input files, and its output results. However: 

• This requires user assistance to describe links to facilitate later retrieval (e.g., naming a particular 

run with its purpose). 

• There is no structure between different runs (e.g., that a particular set of runs involved varying 
several particular high-level parameters). 

• It doesn't facilitate breaking up the input/output into smaller pieces (e.g., if only one or two of the 
output values are the ones of interest). 

Essentially, our approach eliminates the need for explicit user management of results. 
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Benefit: Content-Based Retrieval 

Jump To: [Previous Page I Next Page] _^^____  

n„r nnnroach suDDorts the retrieval of simulation tasks, inputs, and results based on content In 
^S^^%^ of task input or output and the system retrieves those entities that 

meet those properties. 

There are two alternatives: 

• Have the user label simulation inputs, output, and tasks and retrieve based on those labels. 

The idea here is that the labels somehow capture the key aspects of content that would be used for 
later retrieval. This is difficult to do in advance. 

• Have the user use lower-level tools (e.g., "grep") on the raw simulation input and output. 

Unfortunately, it is also often very difficult to specify just the particular items of interest using 
these tool, as well as to retrieve related data not explicitly matched within the tool. 

Essentially, our approach allows for specific retrievals without the need for labels or the use of matching 

tools. 
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Shortcoming: Problems With Task 
Selection 

Jump To: [Previous Page I Next Page] 

In our approach, task selection is done by the user using a standard "tree" browser to examine the event 
hierarchy. The user then selects a task by selecting a leaf node of the tree. 

There are two problems with this approach. 

• It forces the user to select a very specific task. 

This is problematic because the user may not be able to distinguish which leaf node is desired, 
because which node should be selected may depend on particular relationships between input 
parameters. 

For example, the user may only desire a collision, without knowing whether it should be 
catastrophic, a glancing blow, and so on. That's because the particular type of collision depends on 
the relative kinetic energies of the target and projectile. 

• It forces the user to know the name of the task to select. 

This is problematic because the user may want to select a task by functionality. 

For example, the user may want to produce a debris cloud and wants to select a particular task 
from a list of all tasks that are capable of doing so. 
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Shortcoming: Problems With I/O Mapping 
Languages 

Jump To: [Previous Page I Next Page] 

Our mapping languages were not designed to be general. Instead, they were developed in an ad-hoc 
manner to bf just powerful enough to support automating the mappings for the particular simulation 

programs we examined. 

This leads to a variety of I/O mappings that our I/O mapping languages can't handle, but that would be 
required to apply our model to other real-world simulation programs. 

The most important of these language shortcomings appear to be: 

• Our input mappings allows us to take an entire collection and dump it to an input file. It does not 
allow us to deal with only selected portions of a collection. 

• Our output mappings do not allow us to conditionally place the output in different attributes or 

different objects. 

Essentially, these problems point out that it is worth some effort to explore how to develop more general 
input and output mapping languages. 
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Shortcoming: Weaknesses Of Our 

Domain-Object Retrieval Mechanism 
Jump To: [Previous Page] 

It is clearly necessary to provide some mechanism for retrieving objects and tasks by task type and 
attribute value. And the more powerful the queries supported by the retrieval mechanism, the eas.ei it >s 
for the user to retrieve precisely the desired objects. 

Our initial retrieval mechanism is primitive, except for its sophisticated handling of "units; \.It really 
serves only to illustrate the usefulness of object-retrieval within the context of our larger simulation 

environment. 

It falls short of being a general retrieval mechanism in two obvious places: 

• Not supporting retrievals that involve contains on the relationships between attributes (e.g., 
"retrieve all collisions with a target whose mass is less than that of its projectile ). 

• Not supporting logical relationships other than "AND" between attributes (e.g. "retrieve all 
coUislons with a target whose mass is greater than 100kg or whose projectile's mass is less than 

50kg"). 

Handling the logical relationships is a straightforward extension. Handling the relationship-based 
SlSraints fe less straightforward, as this extension can't be implemented by havmg the user s.mply fill 
in ranges on individual object attibutes. 
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Project Report: Phase Two 

Extensions To An Architecture Using a Domain 
Model To Support Simulation Execution and 
Simulation Data and Results Management 

• The Focus Of These Extensions 
• Overview Of Task Sequences 
• Purpose Of Task Sequences 
• System-Maintained Task Sequences 
• Example System-Maintained Task Sequences 
• User-Constructed Task Sequences 
• Example User-Constructed Task Sequences 
• Task Sequence Browsing 
• Examples Of Task Sequence Browsing 
• Benefits Of Sequence Browsing 
• Sequence Overviews 
• Examples Of Task Sequence Overviews 
• Alternatives To Task Sequences 
• Integrating Simulation Programs 
• File-Level Integration 
• Domain-Level Integration 
• Supporting Domain-Level Integration With Views 
• Supporting Simulation Program Evolution 
• Additional Integration Support 
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Purpose Of Task Sequences 
Jump To: [Previous Page I Next Page]  

Task sequences represent a subset of a history of simulation actions. 

They support asking and answering high-level questions about that history. 

• What specific simulation actions were done and what parameters did they use? 

• What actions and paramters led to a particular conclusion? 

• What actions weren't done or what parameters weren't tried? 

• What was common and different among the actions that were done? 

[UHASE Home Page I Phase Two Report Index] 

47 



Overview Of Task Sequences 
Jump To: [Next Page]   

The Domain Object Repository is an unorganized collection of domain objects and actions. 

A useful extension is to add an organizational mechanism called task sequences on top of the domain 
actions (tasks) in the repository. 

A task sequence is a named collection of ordered actions. There are two types of task sequences: 

• Temporally-ordered: organized so the domain actions simulated first appear before those 
simulated later. 

• Attribute-sorted: organized according to values of particular attributes of the domain actions. 

Some example task sequences are: 

The collection of all explosions with a target mass greater than 10kg, organized temporally 
from first to last (in the order executed). 

The collection of all glancing blow collisions, sorted by projectile mass. 

All task sequences are stored in the Task Sequence Repository (TSR), where they can be retrieved by 
name or by browsing. 

Task sequences are either user system-maintained or user-constructed. 
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System-Maintained Task Sequences 
Jump To: [Previous Page I Next Page] |  

System-maintained task sequences are automatically updated after each executed domatn acuon. 

They effectively form a history of the user's actions. 

They include: 

• A sequence of all user-executed actions, in temporal order. 

This sequence is labelled the Task-History-Sequence, and it forms a conceptual-level audit trail of 
all simulation actions done by a user. 

One use is to form a report on exactly what the user did to reach a particular conclusion. 

• One sequence per action type of all user-executed action ofthat type, again in temporal order. 

These sequences are labeled »^-history-sequence" and they provide action-specific audit trails 
(e.g., all explosions simulated by the user). 

One use is to make it easy to understand how exactly specific user actions differed. 
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Example System^Maintained Task 
Sequences 

Jump To: [Previous Page I Next Page] 

Here are some examples of different types of system-maintained task sequences. 

• A "task-history-sequence". 

• Its corresponding type-history-sequence's: 

O The "Breakup-Event-History-Sequence" is identical to the "Task-History-Sequence" 
(assuming that only different types of breakup events have been executed). 

O The explosion-related history sequences. 

O The collision-related history sequences. 
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An Example Task-History Sequence 
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The "Task-History-Sequence" (viewed with a dep.h of zero, and using (he defanl. names for each en.ry). 

Pressure-Induced-Explosion-1 
Pressure-Induced-Explosion-2 
Pressure-Induced-Explosion-3 
Pressure-Induced-Explosion-4 

Detonation-5 
Detonation-6 
Detonation-T 
Booster-Glancing-Blow-Collision-8 
Booster-Glancing-Blow-Collision-9 
Non-Booster-Glancing-Blow-Collision-10 
Pressure-Induced-Explosion-11 

Detonation-12 „ , , . .   in 
Non-Booster-Glancing-Blow-Colllsion-13 
Non-Booster-Glancing-Blow-Colllsion-14 
Non-Booster-Glancing-Blow-Collision-15 

Sequences can be viewed a, any depth. Here is an entty in the above sequence viewed a, a depth of one: 

Pressure-Induced-Explosion-1 
INPUT 

Epoch   [Absolute-Time-1] 
Min-Fragment   [Length-1] , .   ,     n Target   [Detonatable-Tank-Contaimng-Vehicle-l] 
Available-Energy   [Energy-1] 
Time-To-Act   [Relative-Time-1] 
Pressure-Build-Up   [Pressure-1] 

OUTPUT 
Fragments [Debris-Cloud-1] 
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Example Explosion History Sequences 
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The "Explosion-History-Sequence": 

Pressure-Induced-Explosion-1 
Pressure-Induced-Explosion-2 
Pressure-Induced-Explosion-3 
Pressure-Induced-Explosion-4 
Detonation-5 
Detonation-6 
Detonation-7 
Pressure-Induced-Explosion-11 
Detonation-12 

The "Detonation-Sequence": 

Detonation-5 
Detonation-6 
Detonation-7 
Detonation-12 

The "Pressure-Induced-Explosion-History-Sequence' 

Pressure-Induced-Explosion-1 
Pressure-Induced-Explosion-2 
Pressure-Induced-Explosion-3 
Pressure-Induced-Explosion-4 
Pressure-Induced-Explosion-11 
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Example Collision History Sequences 
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The "Collision-History-Sequence". 

Booster-Glancing-Blow-Collision-8 
Booster-Glancing-Blow-Collision-9 
Non-Booster-Glancing-Blow-Collision-10 
Non-Booster-Glancing-Blow-Collision-13 
Non-Booster-Glancing-Blow-Collision-14 
Non-Booster-Glancing-Blow-Collision-15 

The "Glancing-Blow-History-Sequence" is identical to the "Collision-History-Sequence", since all 
Collisions in our example are Glancing-Blow-Collsions. 

The"Booster-Glancing-Blow-History-Sequence": 

Booster-Glancing-Blow-Collision-8 
Booster-Glancing-Blow-Collision-9 

The"Non-Booster-Glancing-Blow-History-Sequence": 

Non-Booster-Glancing-Blow-Collision-10 
Non-Booster-Glancing-Blow-Collision-13 
Non-Booster-Glancing-Blow-Collision-14 
Dn-Booster-Glancing-Blow-Collision-15 Nor 
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User-Constructed Task Sequences 
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User-constructed task sequences have several purposes: 

• They capture answers to queries about the actions being done. 

• They allow users to group past actions according to particular properties. 

There are four types of user-constructed sequences: 

• A sequence of actions that results from a query, in temporal order (e.g., all collisions with a mass 
in a particular range and a projectile mass in another range). 

The user constructs it by specifying a set of constraints on the attributes of actions in an existing 

sequence. 

• A sequence of actions that are temporally related to a particular action (e.g., the set of explosions 
preceding, either directly or indirectly, a particular explosion). 

The user constructs it by specifying a sequence, an action, and the desired temporal relationships 
(e.g., preceding, following, and so on). 

• A sequence of actions that results from a set operation, in temporal order (e.g., all explosions that 
are not pressure-induced explosions with a target mass less than 10kg). 

The user constructs it by applying union, intersection, or difference to a pair of existing sequences. 

• A sequence of actions sorted according to user-supplied sorting criteria (e.g., ordering a of 
explosions by target mass). 

The user constructs it by specifying an an existing sequence and a list of attributes to use as the 
sort key (the primary key, the secondary key, and so on). 

After these sequences are constructed, they are assigned a name of the form "user-Ata/He-sequence", 
where Name is provided by the user. 
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Example User-Constructed Task Sequences 
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Query Constructed: All explosions with target mass less than 10kg. 

Pressure-Induced-Explosion-3 
Pressure-Induced-Explosion-4 
Detonation-"? 
Pressure-Induced-Explosion-11 
Detonation-12 

Temporal Chain: All explosions directly connected to Pressure-Induced-Explosion-4. 

Pressure-Induced-Explosion-1 
Pressure-Induced-Explosion-2 
Pressure-Induced-Explosion-3 
Pressure-Induced-Explosion-1 
Detonation-5 
Detonation-6 
Detonation-7 

Set Constructed: All items in the first but not the second. 

Pressure-Induced-Explosion-3 
Pressure-Induced-Explosion-4 
Detonation-7 

Attribute Ordered: Sort the previous set by target mass (in ascending order). 

Pressure-Induced-Explosion-3 
Detonation-7 
Pressure-Induced-Explosion-4 
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Task Sequence Browsing 
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All task sequences support browsing (running through the actions they contain in a forward or backward 
direction). 

Each action is displayed during browsing as a hierachical structure of fields and values. The user can 
control the depth of the hierarchy that's displayed. 

Browsing a sequence automatically highlights the differences between successive items in a task 
sequence. There are three cases: 

• The successive items are the same type (e.g., a sequence of Non-Catastrophic Collisions). 

The browser simply highlights the fields containing different values from the previous element 
(e.g., the target mass). 

• The successive items are different types, but share an ancestor (e.g., a sequence of Explosions 
containing a combination of Pressure-Induced Explosions and Detonations). 

The browser divides each action into shared fields and unshared fields and highlights the name of 
the shared fields containing different values from the previous action. 

• The successive items share no ancestor (e.g., the "Task-History-Sequence"). 

The browser leaves the shared fields section empty and places all fields in the unshared section. 
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Examples Of Task-Sequence Browsing 
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We provide a pair of browsing examples. In these examples, when moving from an action X to an action 

Y: 

• Unshared attributes (those in X but not in Y are indicated with a plus sign). 

• Shared attributes (those in both X and Y) with differing values are indicated with an asterisk. 

• Shared attributes with the same values have nothing preceding them. 

The examples show: 

• Browsing from one instance of a type to another instance of the same type (from 
Pressure-Induced-Explosion-1 to Pressure-Induced-Explosion-2). 

• Browsing from one instance of a type to an instance of a different type (from Detonation-5 to 
Pressure-Induced-Explosion-4). 
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Browsing Shared Types 
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• The user initially views "Pressure-Induced-Explosion-1". 

Pressure-Induced-Explosion-l 
INPUT 
Epoch [Absolute-Time-1] 
Min-Fragment [Length-1] 
Target [Detonatable-Tank-Containing-Vehicle-2] 
Available-Energy [Energy-1] 
Time-To-Act (Relative-Time-1] 
Pressure-Build-Up [Pressure-1] 

OUTPUT 
Fragments [Debris-Cloud-1] 

• The user then moves to view "Pressure-Induced-Explosion-2", with the two attributes that differ 
clearly highlighted. 

Pressure-Induced-Explosion-2 [from: Pressure-Induced-Explos ion-1] 

INPUT 
Epoch [Absolute-Time-1] 
Min-Fragment [Length-1] 

* Target [Detonatable-Tank-Containing-Vehicle-2] 
Available-Energy [Energy-1] 
Time-To-Act [Relative-Tlme-1] 
Pressure-Build-Up [Pressure-1] 

OUTPUT 
* Fragments   [Debris-Cloud-2] 

• This view shows at a high-level what was changed between the two items (and importantly, what 
remained the same). 

• The user can then examine the particular Vehicles and Debris-Clouds to determine the precise 
differences. 
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Browsing Differing Types 
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The user first views "Detonation-5". 

Detonation-5 
INPUT 

Epoch   [Absolute-Time-8] 
Min-Fragment   [Length-16] 
Target    [Detonatable-Tank-Containing-Vehicle-i\ 
Available-Energy   [Energy-2] 
%-Energy-To-Heat   [20] 
%-Energy-To-Spreading   [80] 

OUTPUT 
Fragments   [Debris-Cloud-5] 

The user then views "Pressure-Induced-Explosion-4" after having viewed "Detonation-5". 

Pressure-Induced-Explosion-4 [from: Detonation-5] 

INPUT 
Epoch [Absolute-Time-8] 
Min-Fragment [Length-14] 

* Target [Detonatable-Tank-Containing-Vehicle-^J 
Available-Energy [Energy-2] 

+ Time-To-Act [Relative-Time-12] 
+ Pressure-Build-Up [Pressure-4] 
OUTPUT 
* Fragments   [Debris-Cloud-1] 

The user sees that of the parts that were common between these simulations, the differences were in the 
Target and the resulting Debris-Could. 
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Benefits Of Task Sequence Browsing 
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All task sequences support browsing (the ability to run through the actions a sequence contains in a 
forward or backward direction). 

The ability to browse sequences aids the user in: 

• Determining what is changing between successive simulation actions (e.g., identifying the 
particular parameter(s) being studied in a parametric study). 

Example: Recognizing that the user repeatedly tried different target masses in a series 
of pressure-induced explosions (possibly to try to generate a debris cloud that matches 
an existing debris cloud). 

• More easily recognizing patterns of actions (e.g., noticing that certain sequences of actions are 
repeatedly executed). 

Example: Recognizing that the user repeatedly executing a pressure-induced explosion 
followed by a detonation for the same basic set of parameters (possibly to understand 
the differences in the effects of the two actions). 

• Understanding the process by which a particular conclusion was reached (e.g., noticing how and 
when parameters were changed as part of a parametric study). 

Example: Recognizing that the user firsj varied the target mass of a pressure-induced 
explosion, then varied the pressure buildup (possibly to first get a course match, then 
doing fine tuning). 
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Task Sequence Overviews 
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All task sequences support overviews. An overview is a summary of the actions the sequence contains. 

Currently, there are two types of overviews. 

• A "commonality/difference'1 summary: an overview of what's common and different between 
elements in the sequence. 

It summarizes what's shared in the sequence by type (e.g., a shared type or shared ancestor of all 
sequence actions, if any) and by attribute (e.g., the attributes that all actions have in common and 
that contain the same values). 

It also summarizes the differences by attribute (e.g., the attributes that all actions have in common 
but whose value differs among the actions). 

This overview is useful for determining which parameter was varied in a particular sequence of 

actions. 

• A "size" summary: an overview of the number of items of each type in the sequence, organized by 

type. 

This overview is useful for determining what actions a particular sequence emphasized. 

There are many other possible overviews (such as organizing the seqeunce by attributes and attribute 
values), as well as variants on these overviews (such as providing attribute ranges for shared attributes 
with unshared attribute values). 
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Example Task Sequence Overviews 
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Two possible task sequence overviews are: 

• Commonality/Difference Summary of "Pressure-Induced-Explosion-History-Sequence". 

SHARED AMONG SEQUENCE ELEMENTS: 
TYPE INFO: 

Breakup-Event 
Explosion 

Pressure-Induced-Explosion 
ATTRIBUTES: 

INPUT 
Epoch [Absolute-Time-1] 
Min-Fragment [Length-1] 
Available-Energy (Energy-1] 
Time-To-Act [Relative-Time-1) 
Pressure-Build-Up [Pressure-1] 

DIFFERENT: 
ATTRIBUTES: 

INPUT 
Target 

OUTPUT 
Fragments 

This overview makes it clear that only properties of the target were changed. 

• Size Summary of the "Task-History-Sequence". 

Breakup-Event 15 
Explosion 9 

Pressure-Induced-Explosion 5 
Detonation 4 

Collision 6 
Glancing-Blow-Collision 6 

Non-Booster-Glancing-Blow-Collision 4 
Booster-Glancing-Blow-Collision 2 

Catastrophic-Collision 0 
Non-Catastrophic-Collision 0 
Head-On-Collision 0 

This overview makes it clear that explosions were equally distributed between the two types, while 
collisions were focused on Glancing-Blow-Collision variants. 
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Alternatives To Task Sequences 
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The obvious alternative to task sequences for capturing and accessing historical information is to: 

• Maintain a log of commands executed and files accessed, along with the contents of those files. 

• Examine commands to determine what programs were executed. 

• Perform file "diffs" to determine how input changed between program runs. 

This alternative is problematic, as it focuses on low-level details (commands and files) and not 
higher-level actions (simulation tasks and their conceptual parameters). 

It therefore cannot conveniently answer high-level questions about simulation executions: 

• Determining which high-level tasks were simulated requires examining both the commands and 
their input files. 

• Determining which parameters were varied requires examining files and file "diffs" and trying to 
map low-level values to higher-level attributes. 
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Integrating Simulation Programs 
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We have so far focused on using a domain model to support the repeated execution of a single 
simulation program, concentrating on: 

• Simplifying the use of the program. 

• Allowing the reuse of input values across simulations. 

• Providing a domain-level history of how that program was used. 

However, we often want simulation programs in the same domain to take advantage of each other's 
results. 

The explicit domain model provides support for integrating multiple simulation programs and related 
tools. 

We consider supporting integration for two different types of situations: 

• There already exist a set of simulation tools designed to work together. Typically, these tools are 
already integrated at the file and program level. 

• There already exist a set of simulation tools in the same domain but not originally designed to 
work together. Often, these tools can be integrated at the file and program level with the use of 
intermediate programs to transform existing results and to request additional data. 
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File-Level Integration 
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One example of file/program level integration is: 

The Impact program produces a data file describing the particles that result from a simulated 
breakup event. This data file is then input (along with other information, including a catalog 
containing the orbital positions of various space-based objects) to a program called Debris, 
which computes the orbits of the particules and determines the probability of collision with 
existing space objects (based on catalogs of objects and positions). 

In general, with file-level integration, the process for executing a set of related simulations is: 

• Execute the first simulation program (perhaps multiple times). 

• Provide its output files along with other input to another simulation program, executing it (perhaps 
multiple times). 

• Repeat the process. 

The primary drawbacks are that: 

• Revision of parameters is done by modifying input file elements. 

• History can be maintained only at the file/program level. 
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Domain-Level Integration 
Jump To: [Previous Page I Next Page] 

The domain-model approach to integration has several key benefits in terms of executing simulations. 

• It provides a conceptual history across different types of actions simulated by different programs 
(effectively extending the benefits we received from applying the domain-model approach to a 
single program). 

Example: The user can execute a set of Detonations followed by a simulation thatuses 
the result of one of the detonations (e.g., Compute-Collision-Probabilities) and have a 
complete record of all action inputs and outputs in terms of domain objects. 

• It allows simple modification of needed input values of later actions in a series of domain actions. 

Example: After executing a Detonation to generate many of the initial values for 
Compute-Collision-Probabilities (Compute-CP) the user then repeatedly executes the 
Compute-CP with alternate Space-Object catalogs (but using the same Debris-Clouds 
produced by the detonation). 

Its costs are: 

• The execution cost of mapping to and from intermediate objects instead of directly using the files. 

• The development cost of producing the domain model and the mapping into and out of it. 
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Supporting Domain-Level Integration With 
Views 
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As a result of integration, we may have different domain actions use or produce different pieces of 

domain objects. 

Example: One action uses the summary information in the Debris-Cloud produced from 
Break-Up Event, while another uses the detailed information about Fragments. 

The problems are: 

• When obtaining information about a domain object from the user, we need only acquire that info 
needed by a particular domain action. 

• Actions may only produce part of the fields in a domain object, with the rest filled in by the user or 

other actions. 

We address these problems by adding a mapping mechanism called views. 

• A view is a domain object that corresponds to a subset of the attributes of another domain object. 

• Domain actions can specify their input and outputs in terms of views, when they aren't interested 
in the complete domain object. 
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How Views Work 
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A view is defined by specifying a name for the view and a set of attributes of an underlying domain 
object. 

When a view appears as an input for a domain action, the user can do one of several things: 

• Supply the underlying domain object. In this case, only the necessary attributes of that object are 
used. If any view attributes have not been supplied in that underlying object, the user must supply 
those values. 

• Create an instance of the view and supply values for its attributes. In this case, the system creates 
the underlying domain object and fills in only those attributes of it. 

• Supply another instance of the same view. In this case, the value of that view's attributes are used. 

When a view appears as the output of a domain action, the system automatically creates the underlying 
object and fills in the appropriate attributes. 
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Supporting Simulation Program Evolution 
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Having an explicit domain model also supports the evolution of a collection of related simulations. 

Two ways collections of legacy simulations evolve are: 

• Adding new tools to work with pieces of the domain model (e.g., adding a new 3-D viewer 
showing how a single Debris-Cloud forms). 

• Replacing an old model with a new model (e.g., replacing the underyling Debris program with a 
new program that consists of a high-facility orbital modeler, but that requires different 

parameters). 

Additions and modifications can be done by modifying or adding input/output mappings and by 
updating the domain model, without modifying the simulations themselves or their various underlying 

file formats. 

Here are examples of each task and how the domain model facilitates it: 

• Adding a new simulation tool 

• Replacing an existing simulation tool with a new tool that has an identical file or domain interface 

• Replacing an existing simulation tool with a new tool that has a modified domain interface 

Essentially, our approach describes simulation programs as if they were modules in an object-oriented 
programming environment, which gives rise to many of the same benefits. 
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Example: Adding A New Simulation Tool 
Jump To: [Next Page] 

Adding a new tool (e.g., 3-D viewer for a single Debris-Cloud) generally requires: 

• Updating the domain model. 

View-Space-Object 
I 
+—View-Debris-Cloud 

I  Has-Input 
I     Debris-Cloud 
I 
+—3-D View-Debris-Cloud 

lias-Input 
Viewer-Location  [Orbital-Location] 

Currently, we don't explicitly represent side effects, such as putting an object on the display. 

• Adding input/output mappings for the action. 

In this case, the mapping is from a Debris-Cloud and a Viewer-Location to the 
underlying format the viewing tool requires. 

For viewing actions, we need only worry about the input. 

The result is that the viewing tool is isolated somewhat from the details of the files Impact produces. 
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Example: Replacing With A "Similar" 
Simulation Tool 
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A new tool is similar to an old tool in one of two ways: 

• Identical file/command interface: the replacement differs internally but not externally. 

This situation is the trivial case, and occurs when the new program was designed from internal 
improvements over the original, with the explicit goal of keeping the interface the same. 

It requires only that the domain action(s) dependent on that program be linked to the new program. 

Example: Replacing the Impact program with an improved program. It requires updating the links 
between each of the Breakup-Events that Impact simulates to refer to the new Impact program. 

• Identical domain model interface: the replacement's I/O differs but it supports the same domain 

model. 

This situation occurs when the new program finds a different input or output format more 
convenient for the implementation. 

It requires changing both the links and the mappings between domain actions and the underlying 
simulation program. 

Example- Replacing the Impact program with an improved program that allows the input 
information to be specified with less redundancy and uses different units, and that produces its 
output in a more compact form. 
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Example: Replacing With A "Different" 
Simulation Tool 
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It's more difficult to replace a simulation tool with a different domain interface. That situation tends to 
occur when we substitute a more sophisticated or more optimized simulation model. 

There are several cases we can readily support when substituting a new simulation model: 

• It may require or produce new domain objects or simulate new domain actions. This case is 
handled by adding the new objects and actions to the model and providing the appropriate I/O 
mappings. Existing domain actions and objects are unaffected by this change. 

Example: Replacing Impact with a program that simulates several additional types of 
Breakup-Events. 

• It requires or produces objects with fewer attributes. This case is handled by establishing new 
views for the objects with fewer attributes and updating the I/O mappings. 

Example: Replacing Debris with a program that does not require the summary 
information produced by Impact and that docs not produce summary information in the 
resulting description of Debris-Clouds. 

• It requires or produces domain objects with additional attributes. This case can be handled either 
by adding the new attributes to the existing domain objects or by changing the existing domain 
objects to views of a more complex underlying object that includes these additional attributes. In 
either case, the existing I/O mappings must be updated. 

Example: Replacing Impact with a program that requires more information about the 
materials used in the objects and produces more information about each fragment. 
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provides support for integrating programs not designed originally to work together. 

Adding a new orbital modeler that requires a Debris-Cloud and 
ject-Catalog that are substantially different from those used by other programs. 

in be addressed by: 

lomain objects for the new program, taking advantage of existing objects wherever 

transforming domain actions that take objects created by existing action and additional 
>n and produce the new domain objects. 
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Project Status 

We divide our status report into three parts: 

• Project tasks we have successfully completed. 

• Project tasks we did not successfully complete. 

• Areas we want to explore in the future. 
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Completed Project Tasks 
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We have completed the following tasks. 

• Exploring in detail the key issues involved in using a domain model as an interface to accessing 
and executing legacy simulation software. 

• Specifying the features such a domain-model environment should provide and how they can be 

provided. 

• Formulating a domain model for a small set of programs used to simulate the formation and orbital 
behavior of space debris. 

• Designing and implementing a simplified version of the domain-driven execution model. 
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Project Tasks Not Completed 
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We have not completed the following tasks. 

• Implementing the entire simulation environment architecture that resulted from our initial 
exploration. 

Completing an initial implementation is a current masters thesis/project. 

• Providing a complete domain model for a domain consisting of a sizeable set of simulation 
programs. 

Tackling this domain model is another current masters thesis/project. 

• Evaluating the simulation environment with this domain model. 

This task will be addressed upon completion of the implementation and domain model. 
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Future Research 
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Some key research issues we will explore in the future: 

• Allowing multiple variants of existing models (e.g., adding another possible mechanism for 
computing collision probabilities, such as a quick and dirty approximation rather than a more 
computationally intensive but more precise model). 

This requires describing models in terms of more than just domain actions. 

• Exploring the benefits of using subsumption to represent the domain model (e.g., allowing users to 
retrieve simulation actions by properties of the action, rather than by name). 

This requires representing the domain model more formally than in our simple 
frame-based representation. 
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