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ABSTRACT 

In the linear theory of elasticity, Saint-Venant's principle is used to justify the ne- 

glect of edge effects when determining stresses in a body. For isotropic materials, the 

validity of this is well established. However for anisotropic materials, experimental 

results have shown that edge effects may persist much farther into the material than 

for isotropic materials and as a result cannot be neglected. This research examines 

the effect of material anisotropy on the exponential decay rate for stresses in a semi- 

infinite elastic strip. A linear elastic semi-infinite strip in a state of plane stress/strain 

subject to a self-equilibrated end load is considered first for a specially orthotropic 

material and then for the general anisotropic material. The problem is governed by 

a fourth-order elliptic partial differential equation with constant coefficients. Con- 

servation properties of the solution are derived to help to determine a stress decay 

rate estimate. Energy methods are then used to establish lower bounds on the actual 

stress decay rate. Both analytic and numerical estimates are obtained in terms of 

the elastic constants of the material and results are shown for several contemporary 

engineering materials. When compared with the exact stress decay rate computed 

numerically from the eigenvalues of a fourth-order ordinary differential equation, the 

results in some cases show a high degree of accuracy. Results of the type obtained 

here have several important practical applications. For example, the results provide 

physical insight into the mechanical testing of anisotropic and laminated composite 

structures and are useful in assessing the influence of fasteners, joints, etc. on the 

behavior of composite structures. 
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Chapter 1 

INTRODUCTION 

When considering plane deformations in the context of linear elasticity theory, Saint- 

Venant's principle is often used to justify approximations that neglect edge effects 

(see [1], [2] for recent reviews). As a result, this principle is also the basis for many 

approximate "strength of materials" formulae that are widely used in engineering 

practice. Experimental evidence has supported the use of Saint-Venant's principle in 

this manner. For instance, it is commonly known that for structures made of homoge- 

neous isotropic materials, stress effects due to self-equilibrated edge loads decay with 

distance from the loaded ends over relatively short lengths, e.g. one strip width for a 

semi-infinite strip. For structures made of homogeneous anisotropic materials, how- 

ever, it has been shown that these local stress effects may persist well into the interior 

of the body and thus cannot be neglected when making approximations (see [1] -[10]). 

It is the goal of this dissertation to investigate the behavior of local stress effects for 

anisotropic materials with a particular emphasis on determining the influence of the 

elastic constants of the material on the rate of stress decay. 
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The particular problem that we consider is that of a linearly elastic semi-infinite 

strip in a state of plane stress/strain subject to a self-equilibrated end load. For strips 

made of specially orthotropic materials, this stress decay problem may be formulated 

in terms of a single dimensionless material parameter. For strips made of general 

anisotropic materials, however, the problem is more complex and involves three di- 

mensionless material parameters. In both cases, the elasticity problem is governed by 

a fourth-order elliptic partial differential equation with constant coefficients, whose 

exact analytical solutions are difficult to obtain. In studying the effects of material 

anisotropy on the exponential decay for stresses, we will develop methods of exam- 

ining the relevant elasticity problems without having to find exact solutions. Energy 

methods and estimating techniques for partial differential equations will be used to 

obtain bounds on the solution and on the stresses (which are second derivatives of 

the solution) with an emphasis on obtaining bounds for their decay rates. In addition 

to the specific problem of plane elasticity for a semi-infinite strip, these methods can 

also be applied to other more general situations, i.e. problems with different geome- 

tries, problems with different governing equations, nonlinear problems, etc. (see e.g. 

[1], [2]). Through the use of such energy methods and estimating techniques, both 

analytic and numerical decay rate estimates are obtained in terms of the elastic con- 

stants of the material. For a set of specific materials, these estimates are compared 

with the exact decay rate computed numerically from the eigenvalues of a fourth- 

order ordinary differential equation. The results in some cases show a high degree of 

accuracy. 

Much work has already been done with isotropic materials in a state of plane 
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stress/strain for which the governing equation is the bihaxmonic equation (see [3], 

[11] -[15]). Various energy methods and differential inequality techniques have been 

developed to obtain lower bounds for the decay rate that accurately estimate the 

exact decay rate of the solution. Fewer results are known for anisotropic materials in a 

state of plane stress/strain where the governing equation is a generalized fourth-order 

elliptic partial differential equation with constant coefficients. Much of the analysis 

that has already been done for anisotropic materials has been concerned with exact 

numerical solutions to the problem rather than analytic estimates. This dissertation 

will extend some of the known techniques used for the biharmonic equation and apply 

them to the generalized fourth-order problem. In the process, new techniques are also 

generated. Ultimately, an explicit "formula" for the decay rate of stresses is sought 

which, although it will be an estimate (in fact, a lower bound for the exact decay 

rate), will reveal how the elastic constants are involved. 

This research has several applications in the field of structural analysis and design. 

For example, in the mechanical testing of anisotropic and composite materials, regions 

of uniform stress and strain fields are necessary for accurate measurements of material 

properties. Thus it is crucial to have an understanding of the local stress behavior 

and edge effects that may be induced through the testing procedure. Another area of 

application is in assessing the influence of fasteners, joints, rivets, etc. in composite 

materials. Here, an understanding of local stress effects and how far into the material 

they penetrate is of critical importance to the designer. Results of the type obtained 

in this research could also allow for "tailoring" a material with specific properties to 

ensure that local stresses attenuate at a desired rate. 
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The organization of this thesis is as follows. In Chapter 2, we formulate the 

anisotropic strip problem and its nondimensional form. Several conservation prop- 

erties are derived for later use. The strain-energy for the problem is examined, the 

positive-definiteness of which leads to restrictions on the material constants. Energy 

methods that involve estimating techniques using differential inequalities are outlined 

and several energy norms are presented. In Chapter 3, we examine these energy meth- 

ods for a special class of materials, namely orthotropic materials and the problem is 

reduced to the orthotropic strip problem. This serves as a simpler setting within which 

to illustrate the energy techniques of this dissertation. Several decay rate estimates 

are developed and then compared with exact solutions. Where possible, explicit for- 

mulae for the estimated decay rates are obtained and the results are compared with 

exact decay rates (computed from roots of a transcendental equation) for a variety of 

materials used in composites technology. Asymptotic results for strongly orthotropic 

materials are also developed. In Chapter 4, we return to the anisotropic problem 

and extend the techniques from Chapter 3 to cover more general materials. The 

complexity of the analysis is greatly increased. Several estimates are developed and 

numerical results are compared to exact solutions. The accuracy of these results and 

their implications for future estimating techniques are discussed. Finally, in Chapter 

5 we summarize the important results obtained in this dissertation and indicate some 

directions for future research. 



Chapter 2 

ANISOTROPIC ELASTIC 

STRIP PROBLEM 

In this chapter, the anisotropic elastic strip problem is formulated and preliminary 

material needed for the estimation techniques used in later chapters is presented. The 

chapter begins with a formulation of the physical problem, which is then nondimen- 

sionalized. Next, several conservation properties are examined as well as positive- 

definiteness of the strain-energy density. The chapter ends with an outline of the 

energy arguments that form the basis for subsequent estimation techniques. 

2.1    Problem Formulation 

Consider an homogeneous anisotropic linearly elastic body that occupies the following 

region described in the x\, xi, x$ Cartesian coordinate system by 

xi  > 0,       -H < x2 < H,       -T < x3 < T, (2.1) 
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where 2H is the height of the body and 2T is the thickness that may be taken to 

be infinite or infinitesimal. For a material with the x\ — x2 plane a plane of elastic 

symmetry, one can define a state of plane deformation such that the infinitely thick 

body is in a state of plane strain or such that the infinitesimally thin body is in a 

state of plane stress. All surfaces of the body will be traction free except for the 

surface X\ = 0, where a prescribed self-equilibrated traction is applied. For this type 

of loading, it is assumed that the stresses decay to zero as x\ —* oo. The two plane 

strain and plane stress elastostatic problems are identical mathematically and differ 

only in the numerical value of the elastic constants used for each problem. Both result 

in the consideration of an anisotropic elastic semi-infinite strip occupying the region 

$£ in the x\ — x2 plane defined by 

ft:       X!  >  0,       -H <  x2  < H, (2.2) 

with traction-free lateral surfaces , a prescribed self-equilibrated edge load on the end 

X\  = 0 and stresses that decay to zero as Xi  —> oo (see Figure 2.1). 

x2i 

H 

0 
-H x1 

Figure 2.1: Semi-infinite strip 

The in-plane components of the strain tensor en, ei2, e22 are related to the in- 

plane components of the stress tensor Tn, T12, r22 by the following reduced constitutive 
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equations (see e.g. [4]), 

en   =   ßuTn + /312T22 + Ä6n2, 

e22     =     #2lTn   +   #22722   +   #26Tl2, 

2ei2   =   ßeiTn + ße2T22 + #667i2, 

or in matrix notation 

en 

e22 

2e12 

■ 

#11 #12 #16 Til 

#21 #22 #26 T22 

#6i #62 #66 Tl2 

(2.3) 

(2.4) 

The constitutive equations are obtained from the general 3-D constitutive equations 

by invoking the assumptions of plane strain or plane stress to obtain a reduced 2-D 

form. The constants ßpq = ßqp (p,q = 1,2,6) can be written in terms of the elastic 

compliances apq. In the case of plane stress, the #p,'s are the elastic compliances 

themselves, while for plane strain they are related by 

A.    =    ^   ~    ^ («33   *    0). 
033 

(2.5) 

For materials that are transversely isotropic about the Xi axis (or for specially or- 

thotropic materials whose fibers run in the x\ direction), considerable simplification 

results from the fact that 

<*22   =   033,      Ol2   =   «135      Gl6   =   «26   =   036   =   0. (2.6) 

As a result, #i6 = #26 = 0 and the elastic constants ßpq may be expressed in terms 

of the usual engineering constants v, E and G which denote Poisson's ratio, Young's 

modulus and shear modulus respectively, so that one obtains 
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1 VLT 
plane  stress   :   ßu  =  —,      ßu  =  —— 

AL tii, 

ßi2 =  -jk     ßee =  -^,    As = fte = 0 (2.7) 

plane strain   :   ßn  =  -=r{l - v\TETjEL),     ßu =  —=-(1 + vTT) 
£>L MIL 

&2  =  ^"(1-4T)>      ßee =  -!-,    ßxe = ß26 = 0.  (2.8) 

In these expressions, L denotes the longitudinal direction parallel to the xi axis and T 

denotes the transverse direction. Further simplification arises in the case of isotropic 

materials such that 

1 v 
plane  stress   :   ßn  = ß22 =  Tö      ßu  =  -TT 

ßes  =   ^,     ßie  =  Äe  =  0 (2.9) 

p/ane  «tram   :   /?u  = /?22  =  -^(l - v2),     ß12  =  -—(1 + v) 

ßee =  ^,    Ä6 = Ä6 s 0. (2.10) 

Returning to the anisotropic analysis, an Airy stress function <j>(xi,X2) is defined 

in terms of which the Cartesian components of the stress tensor r are given by 

Til    =    ^,22,        722    =    0,11,        Tl2   =    —0,12 , (2-H) 

where a comma denotes partial differentiation. With the Airy stress function defined 

in (2.11), the equations of equilibrium (with zero body force) 

Taßfi  =  0 (2.12) 
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are identically satisfied. The compatibility equations then yield the following govern- 

ing differential equation on 9£ (see e.g. [4], [16]), 

#22^,1111   —   2^26^,1112   +   (2/?12   +   ^66)^,1122 

—   2^16^,1222   +   /3ll^,2222   =   0, (2.13) 

which involves all six independent elastic constants. It is assumed that these elastic 

constants are such that the associated strain-energy density is positive-definite which 

ensures that the partial differential equation (2.13) is elliptic (see section 2.4 for 

further discussion). The traction-free boundary conditions on the surfaces of the 

strip may be written in terms of the Airy stress function and then integrated to yield, 

on using the self-equilibration conditions, 

<f> = 0,     ^,2 = 0 at x2 = ±H, (2.14) 

<£ = ffa),       <t>,\  = g(x2) at xx  = 0, (2.15) 

<f>taß  —*•  0     (uniformly in x2)     as     Xi  —*  oo, (2.16) 

where f(x2) and g(x2) are prescribed functions that satisfy certain continuity condi- 

tions at the corners of the strip. Since these continuity conditions will not be used 

here, their explicit forms are not given. Equations (2.13) - (2.16) constitute the 

fundamental boundary value problem associated with the semi-infinite anisotropic 

strip in a state of plane stress or plane strain, which is referred to henceforth as the 

homogeneous anisotropic elastic strip problem. 
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2.2    Nondimensionalizat ion 

In the analysis of this problem the governing partial differential equation is first nondi- 

mensionalized, reducing the number of independent elastic constants. Returning to 

equation (2.13), we define the dimensionless coordinates £, TJ as 

X2 

H' 
(2.17) 

and obtain the nondimensional equation for the Airy function <f>(£,r)), 

&2 

H* (10 +** 2/3: 26 

H4 
(ßn\ T . ,    [2ß12 + ßee\ (ßii\ * , 

(i 

-jf-\   4>&m +  "git mm  =  °- (2-18) 2ÄJ 
#4 

H4 

Multiplying through both sides by j- yields 

4>,nii ~ 
2ß 26 

LA'IÄJ 
4&(* + 

2^i2 + ßee 

(Äi&a)*  . 

2016 

^.«»m 

L/ft/^J 
farm  +  ^.vnw   =  °» (2.19) 

on the domain   £ > 0, — 1 < »7 < 1.   If one defines the following nondimensional 

quantities, 

ei   = 
"2/?l2   +   &6 

.   (Ä1Ä2)*   . 

-1 

e2  = 
J?26_ 

A4. 
-1 

«3   = 
0 

-1 
16 

22. jtfl&J 
(2.20) 
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then the nondimensional governing equation becomes 

2 12 
4>ACtt  ~  —^«i» +  —$Mim  ~  —4>&m  +  fiw  =  °> (2-21) ti ei e3 

on the new region R denned by 

R:      £ > 0,       -1  < T) < 1. (2.22) 

This governing equation now involves the three nondimensional constants t\, e^ and €3, 

rather than the six independent elastic constants ßpq originally present. Transforming 

the boundary conditions (2.14) - (2.15) to the nondimensional variables results in 

<f> = 0,      <t>,r,  = 0 at  n  =  ±1, (2.23) 

4 =  Ffo),       *e  =  Gfo) at £ = 0, (2.24) 

^,a)3 —► 0     (uniformly in xi)     as     £ —► 00, (2.25) 

where a, ß £ {£, 77} and F^), G(»7) are prescribed functions. We note that a 

similar nondimensionalization scheme for an orthotropic material weak in shear was 

carried out in [8]. Similar nondimensionalizations have also been used in the buckling 

of anisotropic structures (see e.g. [17] and the references therein). 

2.3    Conservation Laws 

Before proceeding further, several inequalities known as "conservation laws" are de- 

rived that will be used later to obtain the desired decay estimates. The basic method 
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to obtain the inequalities is the same in each case. The governing equation is first 

multiplied by an axial derivative of the Airy stress function and then integrated over 

the cross section of the strip. The result is simplified using integration by parts and 

the known homogeneous boundary conditions on the unloaded edges of the strip. 

For the first conservation law, the governing equation (2.21) is multiplied by fa 

and then integrated over Lz, where Lz is the cross section of the nondimensional strip 

at £  =  z, (see Figure 2.2), so that we have 

r 2 12 
/    [fa (<£,«« ^«n  +  — fatm  ~  -T^Awm  +  4><wm)] drl   =  °-       (2-26) 

Figure 2.2: Cross section of strip 

Performing integration by parts on some of the terms, making use of the boundary 

conditions <f> =  0, <l>iV  = 0 at 77 =  ±1, and removing a ^-derivative gives rise to 

^ jLm [Mm ~ \?M + \fm ~ ^fiv + jM,ii\ dri = 0.       (2.27) 
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Upon integration, we obtain Conservation Law 1; i.e., 

JL   [fa fan ~  2 ft« +  2 ft" ~  2c^'irt + Y^4"^ dV = Cu ^2'28^ 

where C\ is a constant. The integral on the left hand side of (2.28) is independent of 

the axial coordinate £, and so is a "conserved" quantity. Using similar procedures, 

the second conservation law results from multiplying equation (2.21) by <^^ and 

integrating over the region Lz. Starting with 

r 2 12 
L   [fa(( {fattt -  —fottu +  —fa(nn ~  —fawn + hwm)] dll  =  °      (2-29) JL, ti t\ C3 

and using integration by parts along with the homogeneous boundary conditions, one 

obtains 

Ti L \+*to+*m + \**» " ^ft« + 2^"ft«" " 7^«^ dr, = 0. (2.30) 

Upon integration, Conservation Law 2 is obtained; i.e., 

where C<i is a constant. 
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The constants C\ and C2 are as yet unspecified. However by evaluating the inte- 

grals as z —* 00, their signs may be determined and the conservation laws (2.28), 

(2.31) may be rewritten. To do this, we make a minor additional assumption on the 

behavior of a third derivative of <f> as £ —> 00, namely that 

<f)£tt =  0(1)       (uniformly  in  n)     as  £ —* 00. (2.32) 

It then follows that 

& = 0, C2 = - .lim JLi \<?m drj  < 0, (2.33) 

since <f>t^, <f>^v, <f>iT)TI —» 0 as £ —> 00. Thus, the first and second conservation laws 

imply 

/   VMm + #U + ^-Mxldv =   /   [<f>% + Irtfir,} dn, (2-34) 

and 

/   [2*W.™  + <&,„  +  7^] <fy   <   /   [$« +  ^,a,^J dr,,      (2.35) 

respectively. These results will be used in later sections. It is worth noting here that 

the nondimensional parameter e3 (and so /?i6) does not appear explicitly in (2.34), 

while €2 (and so /?26) does not appear explicitly in (2.35). The details of the derivations 

outlined above may be found in [18]. 
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2.4    Positive-Definiteness of the Strain-Energy 
Density 

It was observed in section 2.1 that the elastic constants ßpg in the governing equation 

(2.13) are such that the associated strain-energy density is positive-definite, ensuring 

ellipticity of the governing partial differential equation. This will now be discussed in 

more detail. 

The total strain-energy for this boundary value problem is denoted by / WdA 

where 9fc is the original region occupied by the semi-infinite strip. The strain-energy 

density W can be expressed as 

2W = Ta0eaß (2.36) 

where upon using (2.4), one obtains 

2W = ßnr^ + ß22r\2 + far?2 + 2ß12rnT22 + 2ß16TUT12 + 2ß26r22r12. (2.37) 

This quadratic form may be written in matrix notation as 2W = tTBt, with 

t  = 
Til "Ai Aa As 
T22 ,       B = Ai Aa Ae 
Tl2 Ai Aa Ae 

(2.38) 

where B is the same symmetric matrix that appears in equation (2.4) and the super- 

script T denotes the transpose. The usual physical assumption that the strain-energy 

density is positive-definite , i.e. W(T) > 0, VT ^ 0 (with equality if and only if 

r = 0) is equivalent to the assumption that B is a positive-definite matrix. Positive- 

definiteness of a symmetric matrix requires that the diagonal elements be positive 
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and that the determinants of the leading principal submatrices be positive as well. 

Specifically, this requires 

Al, fa, fa > 0, (2.39) 

fa fa - #2  >  0, (2-4°) 

fafafa + 2fafafa - ßnßle - faßte ~ faßlt > °- (2-41) 

A further requirement is that the determinant of any submatrix, including principal 

minors, is positive. This yields, in addition, 

fa fa - ßle > 0, (2-42) 

ßxxfa - ßie > 0. (2-43) 

For materials transversely isotropic about the xx axis (or for specially orthotropic 

materials), fa = ß2& = 0, and conditions (2.39) - (2.43) reduce to 

fa, fa, ßee  >  0, (2.44) 

fa fa ~ #2  > 0, (2-45) 

It will now be shown that positive-definiteness of the strain-energy density W 

implies ellipticity of the governing equation (2.13). (Note that (2.13) is the original 

version of the governing equation rather than the nondimensionalized version (2.21). 

When working with the strain-energy it is more convenient to use the original xi — x2 

domain since the strain-energy is not easily expressed in terms of the dimensionless 

parameters Ci, e2, £3 in the ( - 7/ domain; see equation (2.59) below.) The governing 

partial differential equation 
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ß22<f>,im   —   2/326<A,H12   +   (2/?12   +   ^66)<^,1122 

"   2016^1222   +   ßn(f>,2222   =   0 (2.46) 

is elliptic provided that the associated characteristic equation has no real roots, where 

the characteristic equation, denoted by P(fi)  =  0, is 

P(H) = ßnfi4 + 2ß16fi
3 + (2ß12 + A*)/*2 + 2^26/x + £22 = 0.       (2.47) 

As noted in Lehknitskii [16] (see also [19]), choosing sM = [^2, 1, fi\T and using the 

positive-definite assumptions on B yields 

sjBsM = P(fi)  > 0      V fi  real. (2.48) 

Thus P(fi) can have no real roots and (2.46), i.e. (2.13), is elliptic. The estimates of 

concern in this dissertation are relevant to elliptic partial differential equations. 

The positive definite conditions (2.39) - (2.43) will be used in later sections to 

simplify expressions. Again it is noted that these conditions are in terms of ßpq 

rather than ei, e2 and e3. Ideally, one would like to obtain these conditions in terms 

of the dimensionless variables, but this is not easily done as the strain-energy density 

W contains the constants ßu and ß^ in separate terms rather than combined as they 

appear in ei and the governing equation. 

2.5    Energies 

In this section, the ideas behind the energy methods used in later chapters will be 

developed. First, the methods themselves are outlined and then several specific energy 

functionals are derived. 
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2.5.1    Energy Methods 

The stress decay estimates presented in the following chapters make use of energy 

arguments that produce bounds on energy functionals and thereby lead to decay rate 

estimates for the stresses in the material. To motivate the choice of energy functionals 

used in this dissertation, consider first an isotropic strip in a state of plane stress or 

plane strain. On using (2.9), (2.10) and (2.20), we find that 

1        11 
Cl = 9'    7 = 7-°' 

and so (2.21) reduces to the biharmonic equation, 

(2.49) 

<£,«« + 2<f>,Uvv + <f>,r>ivv = °- (2.50) 

A natural energy functional associated with the biharmonic equation is the quadratic 

functional 

E1(z) =   I    <j>,aß<f>,aß dA, (2.51) 
JRz 

where the region Rz is the shaded region illustrated in Figure 2.3. In (2.51), the indices 

a and ß denote either £ or 77 and the repeated index denotes summation over £ and TJ. 

-1 

l 

Rz jMm, 
w///Ä\ 

Figure 2.3: Region Rz 

This energy functional is related to the total strain-energy of the material stored 
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to the right of £ = z (see [11]) and is referred to as a "first-order energy", (see [15]). 

Another energy functional associated with the biharmonic equation and referred to 

as a "second-order energy" has also been introduced (see [15]) as 

ft(*)  =   /    *A*ß*A«ß dA- (2-52) 
JRZ 

This energy can be viewed as the first-order energy defined on <j>£. The basic idea 

behind the energy methods used in later chapters of this dissertation is to consider a 

function F(z) that is a combination of these energy functionals. The goal is then to 

find the largest positive value of the constant k such that 

F'(z) + 2kF(z) < 0, (2.53) 

where the prime denotes differentiation with respect to z. This may be accomplished 

through the use of the governing equation, conservation laws and various other in- 

equalities. Equation (2.53) implies the first-order differential inequality 

F\z)  <  -2kF(z), (2.54) 

which leads to the exponential decay estimate 

F(z)  < F(0)e-2kz, z > 0. (2.55) 

It can further be shown, depending on the function F(z), that the energies themselves 

have the same exponential behavior, i.e. 

Ea{z)  < Kae~2kz, z > 0, (2.56) 

where Ka (a = 1,2) are constants. Since the energies are quadratic in the derivatives 

of <f> and the stresses r are defined as second derivatives of <j>, one can obtain bounds 
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on the stresses r such that the exponential decay from the end z = 0 is of the form 

r ~ Ke~kz. (2.57) 

The value of this estimated decay rate k gives a lower bound for the decay rate of the 

stresses in the material occupying the domain in Figure 2.2. 

2.5.2    Derivation of Energy Functional 

In the previous section, the first-order and second-order energies, (2.51) and (2.52), 

were described for an isotropic material. Their analogs for the anisotropic strip as 

well as additional energy functional will now be derived. 

There are two types of energy functional that are used in this dissertation. The 

first type involves the real physical strain-energy of the material. The second type 

involves functionals that are not directly related to the physical strain-energy but 

are similar in structure. These "mathematical energies" are essentially norms for 

the problem. For the anisotropic strip, the strain-energy density W was expressed 

in terms of the stresses r in equation (2.37) of section 2.4. The total strain energy 

E =      WdA is written in terms of the Airy stress function (2.11) as 

IE   =    I 2W dA 

=      /    [/W?22   +   /W?n   +   /W?12   +   2/?i2<£,ll<A,22 

- 2/W,22^,i2 - 2^26^,11^,12] dA. (2.58) 

This energy E is the total physical energy of the semi-infinite strip in Figure 2.1, 

while E(z) is the stored physical energy in the strip region to the right of xi = z. 

Using the same nondimensionalization scheme presented in section 2.2, and letting 
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Ep(z) now represent the nondimensional scaled physical energy, one obtains 

*M   =   jR[*% + em + -fife****. + -^$f* 
2 2 
 4>Al4>M fatlhrm] dtdT)i (2-59) 

£2 e3 

where i?z is the shaded region shown in Figure 2.3. The term (fr^m in the integral 

(2.59) may be integrated by parts and simplified using the boundary conditions to 

yield 

/   4>#tmdA   =    I    IfadA-  f  <f>ti (z,r,)<f>tT)V (z,V) dri        (2.60) 

where the last term in (2.60) is a line integral contribution. Thus, one obtains 

EP(z)  =  jR [<?M + #„ + -4% - -MM ~ -Mm) Wv 

-Ä/->^- (2-61) 

Either of the forms (2.59) or (2.61) may be used to express Ep(z). In (2.61), we 

see the explicit dependence on the parameter t\, while in (2.59) this parameter is 

not explicitly present. As was mentioned previously, this physical energy cannot be 

easily expressed solely in terms of the parameters t\fy and €3. A similar observation 

was made in the context of buckling of anisotropic plates [20]. This motivates the 

use of mathematical energy functionals that can be expressed solely in terms of the 

nondimensional parameters. 

Next, several mathematical energies that are analogs to (2.51), (2.52) will be 

developed. The basic method in developing these functionals is to multiply the gov- 

erning differential equation by the Airy stress function itself or an axial derivative and 

then integrate over the region Rz in Figure 2.3. This method is very similar to the 
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method used to derive the conservation laws in section 2.3, except that the integration 

now is over a two-dimensional region rather than a one-dimensional region (line inte- 

gral). Upon use of the divergence theorem and simplification due to the homogeneous 

boundary conditions, the energy functional can also be conveniently expressed as a 

line integral. The following analysis is carried out in the nondimensional domain. 

To obtain the first-order energy functional for the anisotropic strip, the nondi- 

mensionalized governing equation (2.21) is multiplied by <f> and integrated over Rz, 

r 2 12 
/    ^[«TW fatto +  T<t>Mvv  ~  —famm + W dA  =  °- (2*62) 

JRZ C2 el e3 

Integration by parts and use of the divergence theorem once yields 

. 2 2 1 
/ [-Mm ~ Mmv + —MAI* + —hit*™ ~ TMAZV] 

dtdv 
JRZ ^2 e3 el 

/• 2 2 1 
=  - /     [(#,{« #,«>€ + (#« - 7#.€w + -<t><t>,Kr,)nv] ds (2-63) 

JdRz (-2 e3 e3 

where dRz denotes the boundary of Rz, and n€, n„ are components of the outward 

unit normal to the boundary in the f, TJ directions. Repeating this process results in 

L[4^ ~ fa+*+ fa" fa**+ *J didn 

. 2 2 1 
= - /   [(<M>AK M>&tv - MM + —MA* - —M*n)ni 

JdRz £2 e2 el 

2 1 2 
+  {Umn <J>Mv +  ~UA^ ~ Mm +  -MAV)^) 

ds-  (2-64) 
£3 c3 e3 

The quadratic functional on the left-hand side is the anisotropic analog of (2.51). It 
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will be called a "first-order" anise-tropic energy and denoted by Ei(z), i.e. 

&(*) = / W< - -*«**i + r^ - f^^* + *U rfÄ    (2,65) 

When ei = \ , t^1 = 0 , cj1 = 0 , (2.65) reduces to (2.51). The boundary 

integral on the right-hand side of (2.64) may be evaluated and simplified using the 

boundary conditions on the lateral sides of the strip and at the far end, so that the 

energy functional can be expressed in terms of a line integral as 

/ 12 2 
Ei{z) = - / [-#,«* + M& + —4>,n<t>,ir, + —HAITI - —MAI] 

dv, (2-66) 
JLZ t\ ti t2 

where Lz denotes the line segment -1 < r) < 1, £ = z (see Figure 2.2). Noting 

that 

/   HAIV dv  =  - I   <M« drt (2-67) 

and 

J^ M,(v dr, = j^ [&\^ dr, = 0, (2.68) 

we get 

£i(z) = - / [-HAU + MAi + T^>*> ~ T*»**& dr>' (2'69) 
JLZ Cl «2 

It is worth noting that the parameter e3 does not appear explicitly in (2.69). The 

energy E\(z) given by (2.65) or (2.69) is one of two mathematical energies that will 

be used in later chapters. 

To obtain a second anisotropic energy functional, the governing equation is mul- 



CHAPTER 2.  ANISOTROPIC ELASTIC STRIP PROBLEM 24 

tiplied by <f>t^ and integrated over the region Rz, 

r 2 12 
/    <£,«[<£,«« <t>mn +  T^Uvv  -  —fawn  + 4mm] dA  =  °-        (2-70) 

JRZ £2 el e3 

Following the same procedure as before, using integration by parts and the divergence 

theorem repeatedly, one obtains 

. o 12 

2 2 1 
+ (<£,«<£,w) + taitaro ^.«te - —faifavv + —^tt^ttuK] <*5- (2-71) 

£2 c3 el 

The quadratic functional on the left-hand side of (2.71) is the anisotropic analog of 

(2.52). It will be called a "second-order" anisotropic energy and denoted by E2(z), 

i.e. 

M*)  =   /„ W«  -  f^«^«" +  f#*» "  f*tti**w + ^J «^   (2-72) 

The boundary integral on the right-hand side of (2.71) may be evaluated and simpli- 

fied using the boundary conditions on the lateral sides of the strip and at the far end, 

so that the energy functional can be expressed in terms of a line integral as 

Mz)  =  ~ L ßtt^tt - ^^.w>] dV- (2-73) 
J Lit 

We note that none of the nondimensional material parameters e,- (i = 1,2,3) ap- 

pear explicitly in (2.73). The energy E2(z) given by (2.72) or (2.73) is the second 

mathematical energy that will be used in this dissertation. 
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It should by noted that there are many additional energy-like functional that can 

be obtained following the procedure used above. Depending on how the integration 

is performed, terms that are different than those presented here may arise. However, 

the energy functional (2.65), (2.72) have been found to be the most useful in the 

present study. It is also noted that some of these alternate energy forms may not be 

positive-definite and hence would not be suitable norms. 

2.5.3    Positive-Definiteness of the Energy Functionals 

It was stated previously that the real physical strain-energy of the material must be 

positive-definite and the conditions that this imposed on the elastic constants ßpq 

were derived. These conditions result from physical properties and must hold for all 

materials regardless of which energy functionals, real or mathematical, are used in the 

estimation techniques. If other energy functionals different from the physical strain 

energy are introduced into the problem, then this may impose additional constraints 

on the elastic parameters. Since the mathematical energies presented in the previous 

section are to be used as norms, by definition they must be positive. This requires 

that the integrands be positive-definite quadratic forms in their arguments. This in 

turn imposes restrictions on et, e2 and €3. 

Returning to (2.65), one can rewrite the integrand of E\(z) as a quadratic form, 

<^f Bi<£x, where 

*1    = 

fat 
<l>,vv and       Bi  = 

1 

0 
1 

0 
1 

1 

1 
V2€2 

>/5e3 1 
\/2~e3 2Ci 

(2.74) 
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Positive-definiteness of E\{z) imposes the following restrictions 

-  >  0, 

>  0. 

(2.75) 

(2.76) 
c2 c3 

(We observe that (2.75) is implied by (2.76).) Returning to (2.72), the integrand of 

2£2(-z) can be expressed as a quadratic form, <£2B2<£2, where 

<f>2   = 

fatt 
farm and B2 = 

1 

0 
l 

"\/2e2 

0 
1 

1 

1 
V2t2 

V2C3 

y/2€3 2Ci 

(2.77) 

Positive-definiteness of E2(z) again results in the requirement (2.76) since B2 = Bi. 

The restrictions (2.75) and (2.76), which result from using the mathematical ener- 

gies E\{z) and Ü?2(z), will be assumed henceforth and are in addition to the constraints 

(2.39) - (2.43) imposed by positive-definiteness of the physical strain energy. All of 

these constraints will be useful in simplifying expressions appearing in later chapters. 



Chapter 3 

THE ORTHOTROPIC CASE 

In the previous chapter, the elastic strip problem was formulated for anisotropic ma- 

terials. However, the problem is simplified when one considers specially orthotropic 

and transversely isotropic materials. These form a special class of materials for which 

some of the elastic constants vanish. This special case will be examined first and will 

be referred to as the orthotropic case (although it includes both specially orthotropic 

and transversely isotropic materials). Several estimation techniques, both analyti- 

cal and numerical, will be presented. These estimates will be compared with exact 

numerical solutions and the results discussed. 

3.1    For mulat ion 

The governing partial differential equation, conservation laws, and energy functional 

of the previous chapter have been derived for an anisotropic strip. Consider now a 

subclass of materials for which the anisotropic material constants ßiß and /?26 vanish, 

27 
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i.e. 

ß16 = ß26 = 0. (3.1) 

(As pointed out in Chapter 2, this simplification includes both specially orthotropic 

and transversely isotropic materials.) In view of the definition (2.20), Equation (3.1) 

implies that 

1 =  1 = 0. (3.2) 

Returning to the governing equation (2.21) and using (3.2), one obtains the reduced 

equation 

<£,««  +  — 4 Ainu + $,mm  ~  °> (3'3) 

which contains only one elastic parameter t\ instead of the three parameters ei, e2, 

e3 present in the anisotropic case. (As we remarked in Chapter 2, when t\ = ^ m 

(3.3), the familiar biharmonic equation (2.50) governing isotropic materials results.) 

The corresponding reduced forms of the conservation laws may be obtained from 

(2.34) and (2.35) upon using (3.2). This results in the following orthotropic conser- 

vation properties, 

/   [2^« + ÄJ ** = I   Wtt + M'1 dn (3'4) 
JJJX J Liz C1 

and 

JLa P W.™ + Ä„ + ^kl *n < JLm W«l <*»■ (3-5) 

The strain-energy density W must be positive-definite and the restrictions this im- 
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poses on the elastic constants ßpq for the orthotropic case were presented in section 

2.4, see equations (2.44) and (2.45). 

The orthotropic analogs of the energy functionals presented in section 2.5 may 

also be obtained by using (3.2). The nondimensionalized physical strain-energy Ep(z) 

given by (2.61) becomes 

JHz cl 

-^mJ-*Mmdni (3'6) 

where the superscript orth refers to orthotropic materials. Again, it is noted that this 

physical energy cannot be written solely in terms of the dimensionless elastic param- 

eters, owing to the line integral contribution. The mathematical energies E\(z) and 

E2(z), given by (2.65) and(2.72), become 

E?h(z) = jf& [ft« + i^„ + ft J dA, (3.8) 

respectively. Using (2.69) and (2.73), we can also express these energies as line inte- 

grals where 

E{Tt\z) = - / [-#,«< + Mtii + i^l <*?. (3.9) 

*r*w = - / UM*** - ^J <*?• (3-io) 

The assumption (2.75), i.e. t\ > 0, ensures that the energies (3.7), (3.8) are positive- 



CHAPTER 3.   THE ORTHOTROPIC CASE 30 

definite. Several energy estimates using these energy functional will be presented for 

this orthotropic elastic strip problem. We note that these orthotropic versions of 

the governing equation, conservation laws and energy functionals all involve only one 

elastic parameter t\. 

3.2    Preliminary Inequalities 

Before proceeding further, it is convenient to record several inequalities which play 

an important role in the arguments to follow. The first group consists of the well 

known Wirtinger-type inequalities, which have been widely used in previous work on 

Saint-Venant's Principle (see e.g. [1], [2], [3]). These inequalities hold for sufficiently 

smooth functions W(T)) defined on the domain (—1,1) and are the following: 

(»)  Iiw(n)  e  C^-l.l)  and  tu(-l)  = 0,   to(l)  =  0,  then 

(u) Ktt(>|) € Ca(-l,l) and to(-l) = u>,„(-l) = 0,  to(l) = wtV(l) = 0, then 

^drj  >  — j^dr,. (3.12) 

(m) If w(ti) € C2(-l,l) and w(-l) = u>,„(-l) = 0,  u>(l) = io,„(l) = 0, then 

£ym*l  >  ftjly*!* (3-13) 
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where /^ = 4.73, a value slightly larger than ^. For convenience this latter quantity 

will be substituted in (iii) so that one obtains 

In all of these inequalities, h is the length of the interval of integration, i.e. h = 2. 

When applied to the semi-infinite strip problem, h represents the nondimensionalized 

height of the strip. These inequalities may be derived from variational formulations 

and the optimal constants that appear on the right-hand sides of (3.11) - (3.13) cor- 

respond to the smallest eigenvalues in such formulations. Proofs of these inequalities 

may be found in [21], [22] and [23]. 

Another inequality that will prove useful in the subsequent analysis is the arithmetic- 

geometric mean inequality which has the following two forms, 

b2 

-2ab < aa2 + -, (a > 0) (3.15) 
a 

or 

b2 

lab < aa2 +  -, (a >  0). (3.16) 
a 

Both of these forms may be obtained by observing that 

b "2 

y/Ha ± -=\    > 0. (3.17) 

3.3    Analytic Estimate 

The first energy estimate that will be developed is an analytic estimate which yields 

an explicit formula for the estimated decay rate in terms of the elastic parameter t\. 
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The estimate will be derived first for the general case of ei > 0 and then specialized 

to an asymptotic result for small ei. 

3.3.1    General Estimate 

For this analytic estimate only one of the energy functionals, E^Tth(z), defined in (3.7) 

is used. Following an energy method first developed in [11] for the isotropic case, let 

the function F{z) be defined by 

F(z) = Ex{z) + 2k   I™ Ei{s)ds, (3.18) 

where k > 0 is an unspecified constant. Here, the superscript orth has been dropped 

for convenience but it will be assumed for the remainder of this chapter that the 

functionals refer to orthotropic versions. We then have 

F\z) + 2kF(z)   =   E[{z) - 2kEx{z) + 2kE1{z) + Ak2 J°° E1(s)ds 

=   E[{z) + U2 f°° E1(s)ds. (3.19) 

In order to express the terms Ex{z) and / E\{s)ds as line integrals, we first note a 

result derived in [11] that follows from the definition of derivative, 

ffdA = -[f drj, (3.20) 
JR2 JLx 

d_ 
dz 

for functions / continuous on Rz. Using    /   =   [<j>2^ +  }-<!>%  +  ^fw]    in (3.20) 

yields an expression for Ex{z) as a line integral, 

K(z) =  - /   [^ + U% + #J drj. (3.21) 
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Similarly, using   / = [~Hm + M& + ^<l>,vM   in (3-20) implies in addition, 

using (3.9), that 

Ei(z) = -f   f   [-M#t + MM + -%>*,] dA. (3.22) 
az JRX t\ 

On integration, and using the divergence theorem and boundary conditions, one ob- 

tains an expression for /   E\{s)ds as a line integral, 

f°° f 1 
/    E^ds   =   -       [-Um + MM + —(f>,r,<f>,iv\ dA. 

Jz JRz ^1 

=   -/Lj[#.« " ti "  ^tiUv- (3-23) 

Returning to (3.19), we then have 

F\z) + 2kF{z) 

, 1 AU2 

=  ~        Ktt +  ~tiv  + tin + 4fcV^.« " 4*2^  -  T-fti dV.     (3.24) 
JLZ cj &t\ 

Recall from section 2.5 that the objective is to find the largest positive value for k 

such that 

F'(z) + 2kF(z) < 0. (3.25) 

Denoting the right-hand side of (3.24) by J(z) and completing squares, one obtains 

m = - / [(<*,« + 2*w + f#, + $ 
J Li t\ 

2 
7)71 

2Jb2 

- 4fcVfe  -  ^-ft  - 4*V] *7 (3.26) 

which upon dropping the first squared term yields the inequality 

m  <  - L   [7«, + tin - 4fcV2 - 4*V* - ^2„] ^. (3.27) 
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This inequality will now be simplified using the Wirtinger inequalities of section 3.2. 

Recalling the boundary conditions (2.23), an admissible choice for w in (3.11) is 

w = <j>£, which yields 

L^**1 - ¥ ißd^ (3-28) 

which may then be used in (3.27) to obtain 

J(2) * "L Kit - **w+ ^ - TT^ -4*vi dr) 

<   - I   Ww - T-fi, - **V] «*?, (3-29) 

provided 

(: 

1 f. _ 4Ä21   > 0. (3.30) 
kd Ä2 

Now, choose w = <f> in (3.12) to yield 

1«.*> * £ 1 * *• (3-31) 

which may then be used in (3.29) to obtain 

jw * -L[(^ ~ v}* ■4fcV] dv-       (3-32) 

Finally, choose w =  (/> in (3.11) to obtain 

l^'^I^ <3-33> 
which when used in (3.32) leads to the result 

'«*-/„ "£-£>-«*£]£*• <»•«> 
The problem is now to find those values of k for which J(z)   <  0 and condition 

(3.30) holds. Since the values of k so obtained will be lower bounds on the exact decay 
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rate for stresses, we seek the largest possible k in order to yield the best estimate. 

This reduces to the following problem characterizing the appropriate choice of k: 

Choose the largest k such that 

( 

subject to the constraint 

T>-B*i-kl>-« <3-35> 

* * ä^f <3-36> 

In these expressions,   h  =   2   is the non-dimensional strip width. Rewriting (3.35) 

as 

k + * 2^r - J? * "• <3-37> 
it is observed that the largest value of k for which this is satisfied occurs when equality 

holds in (3.37). Using the quadratic formula yields the roots of this equation as 

*= -iS* (x - ^+ i6e0 ^3-38) 

so that 

where signs have been chosen so that k and k2 are positive real quantities. With k 

given by (3.39), the condition (3.36) is satisfied if ei < ^. When t\ exceeds this 

value, we choose 

* - 2X7T      " « > T- (3'40) 

It is easily verified that the choice of k given by (3.40) satisfies (3.35). 
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From (3.25), we obtain the decay estimate 

F{z) < F{0)e~2kz, z > 0 (3.41) 

It will now be shown that the energy functional E\(z) has this same exponential 

decay behavior. Following the arguments of [11], it follows from the definition (3.18) 

of F(z) that 

Ei(z) < F{0)e-2kz. (3.42) 

It remains to find an upper bound for .F(O). Substituting the definition of F(z) 

directly into the left-hand side of (3.41) leads to the inequality 

e-2kz   f°°El(x)dx\   < F(0)e-4kz. (3.43) 
Jz J 

d_ 
dz 

Integrating this inequality from z = 0 to z =  oo results in 

/    Ex{x)dx < 
Jo 

■F(O)   _  J_ 

4Jk    ~  4Jfc 
Ex(0) + 2k  fe°Ei(x)dx\. (3.44) 

Solving for the integral of E\ gives 

2k   /°° E!(x)dx  < Ei(0). 
Jo 

Combining (3.45) with (3.18) yields the following bound on -F(O), 

F(0) < 2E1(0), 

which when substituted back into (3.42) yields the desired result 

Ei(z)  < 2E1(Q)e-2kz,      z > 0. 

(3.45) 

(3.46) 

(3.47) 

Notice that when z = 0, the inequality (3.47) is not sharp. It has been shown in [24] 

that the multiplicative factor of 2 on the right-hand side of (3.47) can be eliminated 

(see also the discussion on p. 228 of [1]), thus remedying this shortcoming. 
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It is reasonable to expect from the definition of E\{z) as quadratic in the second 

derivatives of <j) and hence quadratic in the stresses r, that the stresses themselves 

have the exponential decay behavior 

\T(£, 7/)|  < Ke~ki        for fixed 77, (3.48) 

where T denotes a typical stress component. The derivation of such pointwise esti- 

mates is technically elaborate (see [1] for a discussion) and we shall not pursue this 

here. The estimated decay rate is given by (3.39), (3.40) as 

^ /„«,>£ (3.49) 

This value of ib gives a lower bound on the nondimensional decay rate for stresses 

in the material. Transforming this result back into the original variables xi and x2, 

using the change of variable presented in section 2.2, implies that the exponential 

decay factor in the stresses is given by 

e-*e  = «-**>**  =  e-"'% (3.50) 

where 

for   €i   <   —, 

To obtain these expressions, we have set h  =  2. We note that ^   «  0.433. The 

fraction ^ is the estimated decay rate in the original domain where H denotes the 
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half-width of the original strip. The dependence of the decay rate on the strip width 

may be more conveniently expressed by writing the decay rate as |^ where 2H is 

now the total width of the strip. The analytic estimate (3.51) gives a formula for the 

decay rate in terms of the elastic parameter ei and the quantity (j^) * which will be 

referred to as the "beta ratio". 

For isotropic materials where £i  =  |, ($£)*   =  1> we obtain from (3.51) that 

s = 57b"i- (X52) 

Note that this is precisely the same estimate that was obtained by Flavin [12] for 

the biharmonic equation, using a modification of the earlier arguments of Knowles 

[11]. This is also the result obtained by Oleinik and Yosifian [13], [14] using alternate 

methods. The decay rate estimate given by (3.52) improves upon the estimate in [11], 

which gives a decay rate of (i^^)5^  «  jg. 

3.3.2    Asymptotic Estimate 

The previous estimate was derived for ei > 0. If ei is small enough, a Taylor 

expansion may be introduced yielding an asymptotic version of the analytic estimate. 

Recalling the Taylor expansion for y/1 + x as 

VTT^ = i + | _ f! + lx3 + . . .       (|X| < 1} (3.53) 

and substituting this expansion into the first equation of (3.51), with x   =   16t\, 

yields 

,.=  _I_(8£;_32£; + ...)igl)i. (3.54) 
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On retaining the leading order term, we find that 

'•-^(1)*-    "«-0- (3-55) 

Note that the Taylor expansion for k* is valid for ea < i. It is observed that 

for small t\ this asymptotic analytic estimate for k* approaches the general analytic 

estimate (3.51) from above due to the alternating signs of the terms in (3.54). Thus, 

it is no longer guaranteed that (3.55) is strictly a lower bound. In fact, if the general 

analytic estimate is very close to the exact decay rate, then the asymptotic estimate 

may overestimate the exact decay rate. Hence, (3.55) must be viewed simply as an 

approximation rather than a lower bound. 

The values of the two estimates (3.51), (3.55) for a set of materials (in plane stress) 

are shown in Table 3.2. The materials themselves are listed in Table 3.1 together with 

their elastic moduli. For all the materials listed, the result (3.51)i is applicable except 

in the isotropic case, where (3.51)2 is used. We will discuss these results at the end 

of Chapter 3. 

3.4    Conservation Law Estimate 

The next estimate that will be developed is derived from similar arguments as the 

previous analytic estimate, using in addition the conservation property (3.4). It will 

be seen that this yields a significantly improved result. Again, this estimate is first 

derived for the most general case of ei > 0 and then an asymptotic result is derived 

for small t\. 
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3.4.1    General Estimate 

For this estimate, both of the orthotropic energies E\(z) and £2(2) are used. Let 

F(z) be defined by 

F(z) =  [E2(z) + mEi(z)] + 2k f° [E2(s) + mEi(s)] ds, (3.56) 

where m and k are both positive constants to be determined. The detailed procedures 

for this estimate follow closely the arguments given in [3] for the isotropic strip where 

ei  =  §. With F(z) defined in (3.56), we have 

F'(z) + 2kF(z) = E'2(z) + mE'x(z) + 4k2 J°° [E2(s) + mE^s)] ds.    (3.57) 

E2(s)ds as line integrals, as was 

/ f°° 
already done for Ex(z) and /    E\(s)ds in the previous section. 

Following similar procedures, let    /  =   [<f>2^  +  T"^^  +  ^TJTJ]    ^n (3.20) to 

obtain a line integral expression for E'2(z), 

E'2(z) = - f° [fa + jfa + fa] dV. (3.58) 

Letting    / =  [<f>,^<f>,^ - <ß,tv<f>,vvv\    in (3-20) yields 

M*)  =  j-JRt [Mm ~ M,*m] M, (3-59) 

which, when combined with the divergence theorem and boundary conditions, yields 
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/•oo 

an expression for /    E2(s)ds as a line integral, 

/    E2(s)ds   =   - I    fete - <f>,tn<i>,vT,v] dA 

=   jLx [& + % &,. (3.60) 

Substituting (3.21), (3.23), (3.58) and(3.60) into (3.57) results in 

F'(z) + 2kF(z)   =   - /   [#« + U\irt + <&,„ + (m - 2*V* 

+ (m - 2fc2)#,„ + ^„ - 4fc2m^ 

- -^p^i + M2mU,ii] dv 

=   -J(z). (3.61) 

We now seek positive values for k and m such that the integral J(z) is nonnegative. 

The first step in simplifying J(z) is to make use of the conservation property (3.4) 

which may be rewritten, upon using the arithmetic-geometric mean inequality (3.15), 

as 

JLZ t\ JLz 

<     j   [aft + -fta] dr, (3.62) 
JLi? of 

for a >  0. Thus we have from (3.62) that 

jL/m dr,  > JLm K„„ " afa - jfAv - a* ft] «ft,. (3.63) 

Using (3.63) in (3.61), we obtain 

J(z)   >    /   [(m-2k2 + a)ftv + (m~2fc2-a)^ + (---)ftv 

-(4*2m + a2)^ - —#, + 4fc2m#.« 

+ ^k + «J «*?■ (3-64) 
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On using again the arithmetic-geometric mean inequality (3.15), we obtain 

/  2#.« dr,  >  -7 /  tfdr, -  - i  <f>% dr,,     7 > 0. (3.65) 

On employing the Wirtinger inequality (3.14) with the choice w   =   ^ we obtain 

from (3.65) 

/  WM dr,  >  -^- \u fm dr, -I lu 4% dr,, (3.66) 

which may be used in (3.64) to yield 

2kh m   >   I [«„„ +  ^k + (m-2*-«-^tf 2 

+ (m-2fc2 + a- ^   )^ + *-£-2$, 

- (4fc2m + a2)^ - ^tf„] <*.?. (3.67) 

Next several Wirtinger inequalities will be used, the validity of which make use of 

the boundary conditions (2.23). The choices w = <f> and w = <f>^ in the inequality 

(3.12) yield 

/,/-** £/«/"•* (3'68) 

and 

h2 

L^s^L****** (3-69) 

respectively. Similarly, the choices of w = <j>t^ in (3.11) and w = <f>£ in (3.14) yield 

/*/*«*» - ^L^dv (3J0) 
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and 

jLf**> < jjsy L^*» **> (3J1) 

respectively. Using (3.68) - (3.71) in (3.67), provided that (m-a)  < 0, we obtain 

+ \¥r1
+Tn-2k    a~ —M« 

r , 9 2k2mihA        k2m h2 •> ,    i   ,    ,„ „N 
+ {m - 2*2 + a -      (3£)

7
4      - -g^}**»] <*>?• (3-72) 

It then follows that the integral J(z) will be nonnegative if we can choose positive 

constants m, a, 7 and &, such that the coefficients of <f>2£nn, <f>2^ and <f>2vv in (3.72) are 

nonnegative. Following the notation introduced in [3], we let 

m = £M,       *-£*•,       .-^,       7 = ^, (3.73) 

where h  =  2. The problem is then to find positive constants M, /?, 5 and K, such 

that 

ß > M, (3.74) 

1 + ^ - # - "(IF * "• (3'75) 

i + M - 2K2 - ß - ^^- > 0, (3.76) 
Ci 0 

M - 2K2 + ß - — jjjj- > 0. (3.77) 

We desire the choice of constants, satisfying (3.74) - (3.77), to maximize the value of 

K and hence maximize k. In [3] it was shown that choosing 

ß = M (3.78) 
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resulted in the maximum value of k for the case where t\   =   §, i.e. for isotropic 

materials.   Similar arguments can be used to show that (3.78) also provides the 

maximum value of k in the present case. On choosing (3.78), the remaining conditions 

(3.75) - (3.77) become 

jf <  KIL^Q, (3.79) 
4M 

*• ^UITM)' (3'80) 

2M 
K2 < 

M       2MS 
2 + T- + 

2ei        (I) 3U 

(3.81) 

It is readily verified that the right-hand sides of (3.79),(3.80) and (3.81) are strictly 

monotone functions of the variables M and 8. Thus the maximum choice for K 

satisfying (3.79) - (3.81) results from equating these three expressions. Equating 

(3.79) and (3.80) results in the following expression for 6, 

"     {&![(§)«-AP]-4M}" l "   ; 

Equating (3.79) and (3.81), and using (3.82), results in a sixth order polynomial 

equation for M, 

(J)
4
[M

3
 + 20eiM

2 -  Q4M - 4(^)4ei] [2ClM
2 + 4M - 2 (J)4^] 

- 8M2e2 [(^)4 - M2     =0. (3.83) 

The roots of (3.83) may then be used to obtain K by taking equality in (3.79), where 

it can be observed that the smallest value of M yields the largest value for K. The 

sixth order polynomial (3.83) was solved using MACSYMA for the set of materials 
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given in Table 3.1. For each specific material, t\ was determined and substituted into 

(3.83), which was then solved numerically. For all of the materials, the six roots M,-, 

i € {1,2,3,4,5,6} were such that the smallest positive root resulted in a negative 

choice for 6, and hence was inadmissible. The second positive root in each case gave 

the desired maximum value for K satisfying (3.79) - (3.81) and hence from (3.73) the 

maximum value for k. 

We see from (3.61) that this value for k yields an exponential decay for F(z) of 

the form 

F(z)  < F(0)e~2kz, z > 0. (3.84) 

From the definition of F(z) in (3.56), we find that 

E2(z) + mEiiz) < F(0)e-2kz, z > 0. (3.85) 

Adapting the arguments given in (3.42) - (3.46) and modelled after [11], it can be 

shown that 

F(0) < 2[E2(0) + m£i(0)]. (3.86) 

It then follows from (3.85) and (3.86) that 

E2(z) + mE1{z) < 2[£2(0) + mE1(0)]e-2kz,       z > 0, (3.87) 

and hence, since E\(z) and E2{z) are nonnegative, 

Ei{z)  < 2 £i(0) + ^2(0) 
m 

e-2k2,       z > 0, (3.88) 

E2{z) < 2[£2(0) + m£,(0)]e-to,        z > 0, (3.89) 
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showing that the energies Ei(z) and E2(z) have the same exponential decay as F(z). 

Again, it can be shown using arguments in [24] that the multiplicative factors of 2 on 

the right-hand sides of (3.88) and (3.89) can be eliminated. 

The derivation of pointwise estimates for the stresses r of the form (3.48) is again 

technically elaborate (see e.g. [1], [2], [3]). Assuming a result of the form (3.48), and 

transforming this result back into the original domain leads to an estimated stress 

decay rate of |^ where k* is given by 

--»(£)'• (3.90) 

Although this conservation law estimate does not give an explicit formula for the 

decay rate in terms of the elastic constants, the numerical results show a considerable 

improvement over the analytic estimate (3.51). These results are shown in Table 3.2. 

The results for the isotropic case, which coincide with [3], are also shown in Table 

3.2. 

3.4.2    Asymptotic Estimate 

The technique based on the conservation property (3.4) can also be used to obtain 

an asymptotic estimate for small t\. Using perturbation methods, we look for roots 

M of (3.83) of the form 

M = mo + mjCj + m2el +. . . (3.91) 

where M has been expanded in powers of the small parameter t\ and m0, m\ and 

m2 are constants to be determined. Keeping only the first three terms, we substitute 
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(3.91) into (3.83) and collect like powers of t\. This results in an equation of the form 

Ao + Aid + A2t\ + ...      ANe» + 0(ef+1) = 0. (3.92) 

Using the Fundamental Theorem of Perturbation Theory (see [25]), we set each of 

the coefficients A{ in (3.92) equal to zero, which in turn gives values for m0, mi and 

m,2. This process results in four roots of the form (3.91), 

Mi = (!)'"8ei + IT'1 + • • • (3,93) 

M2   =   - (J)2 - 8£l - 
2-fel + . . . (3.94) 

M3   =   IQ** + ••• (3-95) 
M4   =   -4d + . . . , (3.96) 

while the remaining two roots of (3.83) take on a different expansion that is propor- 

tional to ej"1. It is observed that Mj and M3 give two positive roots while M2 and 

M4 give two negative roots. Furthermore, it is seen that M\ given by (3.93) yields 

the second positive root, which was the root of (3.83) obtained using MACSYMA 

that yielded the maximum value for K. Taking the first two terms in (3.93) as an 

approximation for M, i.e. 

M ~ 7 - 8ci,       as ei -» 0, (3.97) 
4 

and substituting into (3.79) with equality holding, we find that 

K [(I)4 - (I - 8ex)^ 
J\    ~     r ;  

2(|-8ei)* 

(36c!  - 64ej)» 

(9 - 32ei)* 

=   2Vü(l - yei)*(l " f«i)"*,      ««i - 0. (3.98) 
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Noting the Taylor expansions 

x        x2 

(1 + S)\ = l + | _ 1- + . . .       (|*| < 1) (3.99) 

(1 + X)-1 = 1 _ £ + ?f! + . . .       (|x| < 1) (3.100) 
2 8 

we obtain from (3.98), 

8 16 
K   ~   2^(1 - -a + . . . )(1 + yej + . . . ) 

~    2^(1   +   -€!   +   ...) 

~   2^,       a« d -» 0, (3.101) 

where the leading order term has been retained in the last step. 

Returning to (3.73) and (3.90) we have the following asymptotic conservation law 

estimate for k*, 
(. i 

^i) as  e1  -4  0 (3.102) 
P22/ 

which improves upon the asymptotic analytic estimate (3.55) by a factor of v2. 

Note that this estimate is valid for ei < ^ w .28. It has also been shown in 

[6], [7] that (3.102) follows from an asymptotic analysis of the exact decay rate, so 

that the conservation law argument yields an estimate for the decay rate which is 

asymptotically exact. This asymptotic conservation law estimate is shown for a set of 

orthotropic materials in Table 3.2. We again observe that (3.102) is not guaranteed 

to be a lower bound for the exact decay rate but rather an approximation, valid for 

small £i. Further discussion of the result (3.102) will be given later in this section. 
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3.5    Exact Decay Rates 

The exact solution to (3.3) subject to the boundary conditions (2.23) - (2.25) may 

be obtained using a separation of variables technique. First, we seek solutions of the 

form 

<f> = e~^F(r)),        7 = constant. (3.103) 

This form is chosen since we seek stresses that decay exponentially in the axial direc- 

tion. Substituting this form for <f> directly into the governing equation and boundary 

conditions gives 

F"" +  i-f + 74F  =  0, on  (-1,1) 

F(-l) = F(l) = 0, (3.104) 

F'(-l) = ^'(1) = 0- 

This is a fourth-order eigenvalue problem for an ordinary differential equation. Solu- 

tions to (3.104) are sought in the form 

F =  Aemv, m =  constant, (3.105) 

which when substituted back into the boundary conditions (3.104) yields one of three 

separate characteristic equations (or eigenconditions) for 7 ,depending on the range 

of ei (see [6], [19]). The eigenvalues 7 are complex in general. Numerical solutions to 

these eigenconditions have been computed in [6] and [19]. The decay rate is obtained 

from the eigenvalue with the smallest positive real part. Once obtained, this result 

must be transformed back to the original variables xi and x-i to arrive at the exact 
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decay rate for the material. Exact decay rates for a set of orthotropic materials (in 

plane stress) are shown in Table 3.2 using the methods of [19] which will be discussed 

more fully in the next chapter. In this table, note that for all the materials other 

than isotropic, the exact decay rate is just the purely real first eigenvalue. In fact it 

can be shown from [19] that the transition point where the eigenvalue changes from a 

purely real value to a complex value occurs when cj = ^. For ei < ^, (a condition 

satisfied by all of the orthotropic materials in the table), the first eigenvalue is purely 

real. 

In the case of isotropic materials where ea   =   |, the eigenvalue problem (3.104) 

reduces to 

F"" + 27
2F" + i4F = 0, on  (-1,1) 

F(-l) = F(l) = 0, (3.106) 

F'(-l) = F'(l) = 0. 

This is a well-known eigenvalue problem whose solutions F are known as the Fadle- 

Papkovich eigenfunctions (see e.g. p. 231 of [1] for a discussion). Seeking solutions of 

the form (3.105) and using the boundary conditions (3.106) leads to an eigencondition 

for 7, 

sin (27) = ±27. (3.107) 

The smallest real part of an eigenvalue 7 arises from the taking the minus sign in 

(3.107), (corresponding to symmetric deformations), and is given by 

Re 7 « 2.106, (3.108) 
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so that the stresses decay as 

e"2106«. (3.109) 

Transforming this result back into the original variables, we see that the stresses decay 

as 

e-W*i, (3.110) 

and so we recover the well-known result (see e.g. [1], [26]) that the exact decay rate 

for stresses in the isotropic material is ^^. 

3.6    Discussion of Results 

We now discuss the stress decay estimates for orthotropic strips obtained in this 

chapter and compare them with the corresponding exact decay rates that were com- 

puted numerically. The materials used for comparison are contemporary engineering 

materials, and are listed in Table 3.1 along with their elastic moduli and Poisson's 

ratios. All of the materials are specially orthotropic with the fibers parallel to the 

x\ direction. Decay estimates were evaluated for each of the materials in Table 3.1 

and the results are shown in Table 3.2 along with the exact decay rates. All of the 

results were computed for plane stress (and thus, from (2.7), the values of VTT were 

not needed). The isotropic case is included in the last row of the table for comparison. 

The analytic estimate (3.51), asymptotic analytic estimate (3.55) and asymptotic 

conservation law estimate (3.102) all yield an explicit formula for the decay rate in 

terms of the parameter t\ and the beta ratio (§"-)*. (Recall that the general conser- 

vation law estimate did not yield an explicit formula and thus was purely a numerical 
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estimate.) It is now useful to express these decay estimates in terms of the engineer- 

ing constants of the material. Using the definition (2.20) of t\ and recalling (2.7), we 

obtain that for plane stress, 

ei  = 
\E~L(        GLT        \ (ßu\*  =  (ET\1 (zm) 

ET\EL-2VLTGLTJ'        \fa) \Ej   ' v*     ' 

Here E, v and G are the Young's Modulus, Poisson ratio and shear modulus respec- 

tively. Using (3.111), the analytic estimate (3.51) becomes 

, „   _   7T  / ET        2ETVLT 

IVÖZT        ET~ 

.f     [E~l (        GLT        \  <  \/3 
V ET \EL — 2VLTGLT ' 4 

k.   =   * Ph        2ETVLT ..,     \EL (        GLT        \  ^  \/3 
%J    V ET\EL- 2VLTGLT) 4 ' 4 V GLT EL 

(3.112) 

Similarly, the asymptotic analytic estimate (3.55) becomes 

JL /        GLT ag     EL (        GLT        \  _^ Q       ,g 113N 

y/2\ EL-2VLTGLT' VET\EL-2ULTGLTJ ' 

while the asymptotic conservation law estimate (3.102) becomes 

,» /        GLT EL (        GLT        \  _^ Q /O y\£\ 
V EL — 2VLTGLT ' V ET \EL — 2VLTGLT' 
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To discuss these results, we refer to Table 3.2 where it is observed from examining 

the first column that the materials are ordered according to increasing values of e\. It 

is also observed that all of the decay estimates presented in the table have the same 

relative ordering as the exact decay rates given in the far right column. The second 

column shows the analytic estimate (3.51) (or equivalently (3.112)) for each of the 

materials. For the isotropic case, the analytic decay estimate is roughly half of the 

exact decay rate. However, as one moves upward in the table (i.e. as ei decreases) the 

analytic estimate improves in accuracy so that for boron epoxy which has the smallest 

value of ei, the analytic decay estimate is about 70% of the exact decay rate. As was 

mentioned previously, (3.51)i was used for all materials except for the isotropic case 

where (3.51)2 was used. 

The asymptotic analytic estimate (3.55) (or equivalently (3.113)) is presented in 

the third column of Table 3.2. For the materials for which this estimate is applicable 

(i.e. ei < |), we see a slight improvement over the general analytic estimate. Again, 

we see that as t\ decreases the agreement between the asymptotic analytic estimate 

and the exact decay rate improves as expected. 

The fourth column in Table 3.2 shows the general conservation law estimate that 

arises from solving the sixth order polynomial given by (3.83). While this estimate 

does not provide an explicit formula for the decay rate, obtaining it is not compu- 

tationally intensive. The results show much better agreement with the exact decay 

rates than obtained by either of the analytic estimates. The improvement for the 

isotropic case is only slight, but as ei decreases the improved agreement becomes much 

better.  For materials with small values of ei the conservation law estimate yields a 
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fairly accurate approximation to the exact decay rate. 

Finally, the fifth column shows the asymptotic conservation law estimate (3.102) 

(or equivalently (3.114)). For the range of ei where this decay estimate is valid i.e. 

ei < 0.28, we see a further improvement over the general conservation law estimate. 

Again, as t\ decreases this asymptotic estimate more closely approximates the exact 

decay rate so that for small ex there is very little error. This is to be expected 

since, as mentioned previously, (3.102) also results from an asymptotic analysis of the 

eigencondition characterizing the exact decay rate. 

The results in Table 3.2 indicate that the orthotropic decay estimates obtained 

in this chapter yield the best agreement with corresponding exact results for the 

materials with small values of t\. This may be related to the fact that for small values 

of t\ the smallest eigenvalue of equation (3.104) is purely real, and the methods used 

in this chapter make use of real analysis arguments to estimate this quantity. It is also 

observed that the conservation law approach yields the best estimate, asymptotically 

approaching the exact decay rate. This suggests that the conservation laws derived in 

Chapter 2 play an important role in estimating the exact decay rate since they provide 

results that are in good agreement with corresponding exact results and are not 

computationally intensive. For both the analytic and conservation law estimates, their 

asymptotic versions yield improvements suggesting again that the energy methods of 

this chapter work best for materials with small values of t\. 

While it appears from Table 3.2 that the decay estimates are ordered in terms of 

increasing t\ (with the boron epoxy as an exception), this is somewhat misleading. 

From the formulae (3.51), (3.55) and (3.102), we see that the decay estimates are 
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dependent on both Ci and the beta ratio (|£)« and are thus ordered by a combination 

of these quantities. An interesting simplification results when one considers specially 

orthotropic (or transversely isotropic) materials with a high degree of orthotropy in 

the axial direction. For such strongly orthotropic materials, we assume (see [6], [7]) 

that 

I«1'    f«1'    t^1- <3-115> 
Using (3.115) in (3.111) we obtain 

ei „     G-=,        (Sn)* =  (ft)*. (3.116) 1 y/EZE? \fa) \EL) 
V ' 

It follows from (3.115) and (3.116) that ex « 1 and that the decay estimates 

for small t\ are valid for strongly orthotropic materials. Upon using (3.116), the 

asymptotic analytic estimate (3.55) and asymptotic conservation law estimate (3.102) 

reduce to 

and 

as GLT 

EL 

as GLT k'~"(w'   aslk-*0' (3-118) 

respectively. Both of these decay estimates are of the form 

GLT 
k* = 0 m as 0, (3.119) 

EL 

a result which was first established in [5] using the energy decay arguments of [4]. 

The result (3.118) was also obtained in [6], [7] from an asymptotic analysis of the 

exact decay rate. 
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The material constant ratios given in (3.115), the asymptotic conservation law es- 

timate for strongly orthotropic materials (3.118), and the exact decay rates (repeated 

from Table 3.2 for convenience) are tabulated in Table 3.3. In this table, the mate- 

rials are now ordered by increasing values of ^f21, thus switching the order of boron 

epoxy and ultra-high modulus graphite epoxy from Table 3.2. The estimate (3.118) 

and the exact decay rates are seen to increase with ^2L. All but the last two mate- 

rials in the table may be considered strongly orthotropic. The result (3.118) provides 

an extremely accurate estimate for the exact decay rate for the strongly orthotropic 

materials. (See e.g. [2], [7], [9], [10] for a discussion of the utility of (3.118) in the 

mechanics of laminated composite structures.) 

The results of this chapter have been obtained for the case of plane stress. Nu- 

merical results for the case of plane strain have also been calculated. The results are 

not presented here as they differ very little from the plane stress case. Recall that the 

only difference between these two formulations is in the values of the elastic constants 

ßpq. For the case of strongly orthotropic materials, we still obtain (3.118) in plane 

strain. 

The decay rate results presented here may also be expressed in terms of decay 

lengths. If we denote the characteristic decay length d as the length over which the 

solution <j> and hence the stresses r decay to 1% of their original value, i.e. 

\T(d,x2)\  = Ke-k'$  =  —K, for fixed x2, (3.120) 

then we obtain that 

2k ' = T£W (3-121) 
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where 2H is one strip width of the material. Thus the decay length is inversely 

proportional to the decay rate k*, and underestimates of k* provide conservative 

overestimates of d. Table 3.4 shows the exact characteristic decay lengths for each 

of the materials previously mentioned. (The exact decay rates are repeated from 

Table 3.2 for convenience.) From the last row of Table 3.4 we recover the well known 

result that the Isotropie material has a characteristic decay length of roughly one 

strip width, meaning that approximately one strip width away from the edge the end 

effects are negligible. This is the general rule often invoked when using Saint-Venant's 

principle for isotropic materials (see e.g. [1]). However, for orthotropic materials the 

decay length may be much larger. As seen in Table 3.4, the decay lengths vary 

from roughly one strip width to six strip widths in the case of ultra-high modulus 

graphite epoxy. For this situation, end effects may persist much farther into the 

strip than for the corresponding isotropic case. Thus for orthotropic materials Saint- 

Venant's principle cannot be routinely applied as for isotropic materials. This fact 

poses a serious deficiency in the use of Saint-Venant's principle to obtain approximate 

solutions to anisotropic boundary-value problems. This emphasizes the importance, 

particularly in the case of strongly orthotropic materials, of obtaining accurate decay 

rate estimates such as (3.118). Here, very high aspect ratios (ratio of length to width) 

are necessary before end effects can be neglected. 
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Material EL (psi) ET (psi) "LT I/XT GLT (psi) 

Boron Epoxy 30.0 xlO6 3.0 xlO6 .21 .35 0.7xl06 

Ultra-high Modulus 
Graphite Epoxy 

45.0 xlO6 0.9 xlO6 .26 NA 0.6 xlO6 

Kevlar Epoxy ll.OxlO6 0.8 xlO6 .34 NA 0.3 xlO6 

High Strength 
Graphite Epoxy 1 

20.0 xlO6 1.0 xlO6 .25 .25 0.6 xlO6 

High Strength 
Graphite Epoxy 2 

18.5 xlO6 1.6 xlO6 .35 .20 0.832 xlO6 

S-glass Epoxy 7.5 xlO6 1.7xl06 .25 NA 0.8 xlO6 

Boron Aluminum 33.0 xlO6 21.0xl06 .23 .30 7.0 xlO6 

Table 3.1: Orthotropic materials and elastic moduli 
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Material 
(O 

Analytic 
Estimate 

(3.51) 

Analytic 
Estimate 

for small e1 

(3.55) 

Cons. Law 
Estimate 

Cons. Law 
Estimate 

for small e1 

(3.102) 

Exact 
Decay 

Rate k* 

BE 
(0.0745) 

0.337 0.341 0.445 0.482 0.487 

UM 
(0.0949) 

0.253 0.257 0.328 0.364 0.369 

KE 
(0.1030) 

0.363 0.370 0.467 0.524 0.534 

HS1 
(0.1362) 

0.375 0.388 0.468 0.548 0.567 

HS2 
(0.1578) 

0.458 0.478 0.564 0.677 0.708 

SE 
(0.2366) 

0.684 0.745 0.794 1.054 1.195 

BA 
(0.2946) 

0.955 NA 1.069 NA 1.942 

Isotropie 
(0.500) 

1.111 NA 1.220 NA 2.106 

Table 3.2: Plane stress results for orthotropic materials T ~  e    H as xi —► oo. 

Key for Materials 

BE = boron epoxy 
UM = ultra-high modulus graphite epoxy 
KE = kevlar epoxy 
HS1 = high strength graphite epoxy 1 
HS2 = high strength graphite epoxy 2 
SE = s-glass epoxy 
BA = boron aluminum 
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Material 

(O 
GLT/EL ET/EL GLT/ET Cons. Law 

Estimate 
(3.118) 

Exact 
Decay 

Rate k* 

UM 
(0.0949) 

0.013 0.02 0.66 0.358 0.369 

BE 
(0.0745) 

0.023 0.10 0.23 0.476 0.487 

KE 
(0.1030) 

0.027 0.072 0.37 0.516 0.534 

HSl 
(0.1362) 

0.03 0.05 0.6 0.544 0.567 

HS2 
(0.1578) 

0.045 0.086 0.52 0.666 0.708 

SE 
(0.2366) 

0.106 0.226 0.47 NA 1.195 

BA 
(0.2946) 

0.212 0.636 0.33 NA 1.942 

Table 3.3: Strongly orthotropic results: r ~  e" " H      as xi oo. 
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Material Exact 
Decay 

Rate k* 

Exact 
Characteristic 

Decay Length d 

UM 
(0.0949) 

0.369 6.24 x 2H 

BE 
(0.0745) 

0.487 4.73 x 2H 

KE 
(0.1030) 

0.534 4.31 x 2H 

HS1 
(0.1362) 

0.567 4.06 x 2H 

HS2 
(0.1578) 

0.708 3.25 x 2H 

SE 
(0.2366) 

1.195 1.92 x 2H 

BA 
(0.2946) 

1.942 1.18 x 2H 

Isotropie 
(0.500) 

2.106 1.09 x 2Ü 

Table 3.4: Exact characteristic decay lengths: d =   '-^^(2H) 



Chapter 4 

THE ANISOTROPIC CASE 

The techniques described in the previous chapter will now be extended to the general- 

ized fourth-order problem for the anisotropic strip. First, for the reader's convenience, 

we will recall several results that were derived in Chapter 2. Several estimates will 

then be presented and the results discussed. 

4.1    For mulat ion 

From (2.21), the nondimensional governing equation for the anisotropic strip is given 

by 

2 12 

£2 Cl C3 

From (2.34) and (2.35), the final reduced form of the first and second Conservation 

Laws are 

62 
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JLi VMm + <Pm +  jM*l\ dr,  = j^ [<j>% +  i^J dV        (4.2) 

and 

r 1 J 

JLM l^ii^m + $„„ +  -fi(„] drj  < 1^ [fia +  -<7W^„] dV,       (4.3) 

respectively. From (2.61), the nondimensional physical strain-energy is given by 

Ep{z) = JRW* 
+ ft* + 7f*> ~ TM,U - jM,m] dtdv 

From (2.65) and (2.72), the energy functional Ex(z) and E2{z) are given by 

E1(z)   =   jR[fi^ - -fafa + 1^ -  1^^, + fiv] dtdr,, (4.5) 

E2(z)   =   JR[fix - -te^„+ ^fifi, - ^W**, + fijdtdr,.  (4.6) 

From (2.69) and (2.73), the line integral representations for these energies are 

r 19 
Ei(z)   =   - /  [-<t><t>m + <fi4fa + -£„^„ t^x] drj,       (4.7) 

JL.Z t\ e2 

E^z)   =   ~ J^lMm ~ <f>,<v<f>,vvv\ dr]. (4.8) 
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Furthermore, it is assumed that 

111 /„ nx 
T  >   3 +  3   , (4-9) 
Cl ^2 e3 

so that the integrands in the energies E\{z) and ^(z) are positive-definite quadratic 

forms in their arguments. 

4.2    Basic Energy Estimate 

For the basic energy estimate only one of the energies E\{z) is used. As in (3.18) for 

the orthotropic case, let the function F(z) be defined by 

r°° 
F(z) = E^z) + 2k J    Et(s) ds, (4.10) 

where k > 0 is, as yet, an unspecified constant. From (4.10), we have that 

F'(z) + 2kF(z) = E[(z) + Ak2 I™ Ex(s)ds. (4.11) 

Returning to (3.20) and letting  / = [<f>% - ^,«^„ + ±4>% - i<f>,w<f>,(v + #J 

yields an expression for Ex{z) in terms of a line integral as 

K(*) = - i W< - 7-^.«^ + rfi* ~ r^^' + ^Jdr}-   (4-12) 

Similarly, letting   / =  [-#,*« + fa<f>& + M„<^„ - M^,«]   in (3.20) yields 

At 19 
El^ =  T* L   I-^^« + ^-« + T^An ~ -M,n\ dA, (4.13) aZ JR, €i C2 
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which when integrated using the divergence theorem and boundary conditions gives 

Ei(s)ds in terms of a line integral as 

f°° f 1 2 
/     E!(s)ds   =   - /    [-#,«£ + MM + —<f>,v<l>,iv - —4>,v<f>,iü dA 

Jz JRz €\ t.2 

=   -JLz [#,« " ft " ^ft, + jMA dv- (4-14) 

F'(z) + 2kF(z)   =   - /   [ft< + ft„ - Ifafa 
JLz C2 

Returning to (4.11), we have that 

2 

2 1 
-—t^m + — <t>\n + ^2H,a 

2k2 Rk2 

- 4*2ft - —ft + — 4>M dv 

=   J(z). (4.15) 

As before, we want to find values of A; such that J(z) < 0. The steps that follow are 

modelled essentially after Horgan [4], except that here we use the energy functional 

(4.5) (rather than the physical energy used in [4]) and a sharper Wirtinger inequality 

than that employed in [4]. 

If we define Ei(z)  =   /   2WidA, where 
J Rx 

2W1  = <f>% + ft,„ - j-M*, - jMm + ^-ft„  , (4.16) 

then from (4.15) we obtain 

J(z) = -JLi [2Wi - 4*2(ft - #,« + ^-ft, - jM,d\ dv-        (4-17) 

We can write 2W\ as a quadratic form as sTBs, where 
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s = and       B = 

1 

0 

l 
Vats 

0 X 

V2t2 

1 1 
\/2£3 

1 
V2€3 

1 
2£1 

(4.18) 

By virtue of (4.9), we know that 2W\ is positive-definite and we have the result that 

2Wk  > Am (<f>% + #,„ + 2$,), (4.19) 

where Am  > 0 is the minimum eigenvalue of B (see [27]). This leads to the inequality 

JlJx 

- 4*a(#  - #,« +  ä^ft  "  -*,4e)] ^       (4.20) 
2^ 
«2 

< 

- 4fc2^ - — ft + — *„*< - ^2] */    (4.21) 

2fc2 

-/Lx[AmÄ„ + 2Am^-4^-^ 

8ifc2 .   , 4Jfc4 .21  , 

^2 -*m 
(4.22) 

We now use the following two Wirtinger inequalities obtained by choosing w = <f> in 

(3.12) and w =  <£,€ in (3.11), 

L*~*'*TFL*>*'< <4-23) 

respectively. We shall set h = 2 (i.e. equal to the strip width) later. Thus we obtain 

from (4.22) that 
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4Jfc4 

h2 

C2 <*JI 

(4.25) 

Observe that the first three terms in the integrand may be written as a quadratic 

form as Q = dTDd, where 

d = and       D  = 
4fc2 

(2A£ - 4P) ^ 

4A£ 
«2 

2fc2' (4A£ - *f) 
(4.26) 

Here, D is a symmetric matrix and for convenience the subscript m has been dropped 

from the eigenvalue A. If we choose the constant k such that the eigenvalues of D are 

positive, i.e. D is positive-definite, then we obtain 

Q  >  u;(dTd)  = W($ + #,) (4.27) 

where u   >   0 is the minimum eigenvalue of D. Equation (4.25) then leads to the 

inequality 

4k4 

j(z) < -JLWft + *1) - —Wdn. 

Dropping the first term and using the inequality 

which is obtained from (3.11) with the choice w =  <f>, we then have 

(4.28) 

(4.29) 

(4.30) 
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We now choose k to be the positive root of the equation 

UT 4&4 

*> - — = ° (4.31) 

which, since A   >   0, is consistent with the earlier assumption that w  >  0. This is 

the largest positive value for k such the right-hand side of (4.30) is nonpositive. 

The problem may now be simplified using the following notation. Let 

k2 = ^1 
8 

a  = 
2d' 

(4.32) 

The matrix D in (4.26) can then be written as 

D = 
Ax2 1-5 a 

«2 

-2-      2-as 
£2 

(4.33) 

where h   =  2 has been used. The new notation now implies that in order to solve 

for the positive root k of (4.31), we must solve for the positive root s of the equation 

s2  = 2i/ (4.34) 

where 

2w 

is the minimum eigenvalue of 

E 
1-5 f- 

«2 

-2-      2-as 
«2 

Solving for v in the equation 

(4.35) 

(4.36) 

det\E - vl\  = 0, (4.37) 
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and returning to (4.34), we seek the positive root of 

s2  = 3 - (a + l)s - J{(a-l)s - l}2 + -s2  . (4.38) 

This is equivalent to seeking the smallest positive root of the quartic equation 

s4 + 2(a + l)s3 + (4a - 6 - \)s2 - 4(a + 2)s + 8 = 0, (4.39) 

where, from (4.32), a = ±. Returning to (4.32) thus yields the following value for 

the nondimensional decay rate k, 

k =  ^VTs, (4.40) 

where s is the smallest positive root of (4.39) and A is the minimum eigenvalue of 

(4.18). From (4.18), it can be shown that A is the smallest root of the characteristic 

polynomial 

A3 - &*>» - <53+£-l-> - £ + £ + ^  - 0.   (4.4,) 

With (4.40) as our value for k, (4.15) implies 

F(z)  < J?(0)e-2fc',       z >0. (4.42) 

Following exactly the arguments given in Chapter 3 (in (3.42) - (3.47)), with E\{z) 

now representing the anisotropic energy functional (4.5), we obtain 

Ei{z)  < 2E1(0)e-2k%      z > 0. (4.43) 

Again, this can be shown to lead to pointwise estimates for the stresses r such that 

\T((, I?) I  <  Ke-k* for  fixed rj. (4.44) 
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In the original variables, we obtain a decay estimate for r with exponential decay 

rate |^- where 

■'(»*■ 

(4.45) 

While this estimate does not produce an explicit formula for the decay estimate in 

terms of the parameters ej, e2, £3, the calculation of k is a straightforward procedure, 

involving the solution of the quartic and cubic algebraic equations (4.39) and (4.41) 

respectively. Numerical results are discussed at the end of this chapter. 

This energy method may also be carried out using the nondimensional physical 

energy Ep(z) given by (4.4) instead of the mathematical energy Ei(z). (Note that the 

analysis in [4] makes use of the physical strain energy.) The line integral representation 

of Ep(z) is easily obtained by using (4.7) and observing that 

Ep(z) = E1(z) - -?p= f  M,m dr,. (4.46) 
VP11P22 JLz 

The steps that follow using Ep(z) are essentially the same as those presented in the 

preceding analysis for E\(z), the main difference being that the problem now involves 

the constants ßpq in addition to the parameters ei, e2 and e3. The end result is that 

where s satisfies the quartic equation given by (4.39) but now a = —/66 , and A 

is the smallest root of the characteristic polynomial 

A    _   U./73-7T7 + 2)A     -   fe + 7T2 ~ 1 ~    /TT-TT-   +   !Tir)X k2v/ftÄ      ' K2ej     2e2
3 vW^       ßnß 22 

_  r       *       /A»    ,    Ä2_  _    ß\ßw x 1 Li   _  n   UAA\ 
lV^«1 2    +  C2e3       2A1fca

J       2t\        2e*J  - U- l4'48j 
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Numerical results for this Ep(z) formulation were calculated and compared with 

the results from the Ei(z) formulation (see Discussion of Results section). For all 

of the materials considered, the difference between the two results is rather insignifi- 

cant. The mathematical energy E\(z) involving the parameters ei, e2 and e3 only is 

algebraically simpler to use than the physical energy Ep(z). An advantage, however, 

to using the energy Ep(z) is that the results will be applicable to all physical mate- 

rials, while the results using Ei(z) depend upon the condition (4.9) being satisfied. 

This condition, which guarantees the positive-definiteness of the mathematical energy 

norm Ei(z), fails to hold for some materials (see Discussion of Results section). 

4.3    Nonlinear Optimization Estimate 

This estimate makes use of three weighted arithmetic-geometric mean inequalities, 

introducing three new parameters a, ß and 7 into the problem. Using the same 

function F(z), given by (4.10), as in the basic energy estimate, we recall from (4.15) 

that 

•I Li C2 

2 1 
C3 ti 

- 4*V1 - ^-ft +  *—4>M dV. (4.49) 

We seek positive values for k such that J(z)   <  0. From the arithmetic-geometric 

mean inequalities (3.15) and (3.16), we have the following three results 
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T*M***  Z  ol*«llfc,l  *  iTT^« + ^ 
£2 

2^ 

C3 

C2 K2 

2       1   ,„.a        ,     1,2 

f ^ < glWIfcl < £<7Ä + ±«), 

(4.50) 

**,*.„ < I^I^II^I < ^(/»c + ^y>       (4-51) 

(4.52) 

where a, ß and 7 are positive weights to be determined.  Using (4.50) - (4.52) in 

(4.49) we obtain 

^-/J^-RK + O-R)* 
2 
m 

+     i-     X 
&, + 4*"^« d     a\e2\     ß\tz\d 

-4*'(w+1)*-4*,(R+ä^*- (453) 

4fc4 

:^2 

Completing squares in (4.53) leads to the inequality 

+ (1_R)^" + £~^R"^R)^ 
-4*,(^l+1)*-4*'fä+äÄ1*,("4) 

which, on discarding the first term, yields 

4ifc4 

c1-*) 
^T^2] drj (4.55) 
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provided 

t1 - R) > °- (4-56) 

Using the inequality (4.24) in (4.55) yields 

provided 

(l_J__JJ|_£*!(J- + 1}   >0. (4.59) 
lea      a|e2|      ß\e3\) *>    \7\e2\ +   )   ~ V       ) 

Using the Wirtinger inequalities (4.23) and (4.29), we get from (4.58) that 

(4.60) 

provided 

(l - £)   > 0. (4.6!) 

We now seek the maximum positive k such that J(z)   <   0 i.e., from (4.60), the 

maximum positive k such that 
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It is clear that the maximum value for k occurs when equality is chosen in (4.62), 

which upon using the quadratic formula yields 

2p"   vy  MAhi + 2^ 

+ ^-RM^+^-HH'-R)-14-63' 

Equation (4.63) guarantees a positive value for k2 due to the conditions (4.56) and 

(4.61), which in turn guarantees a real value for k. We observe that the formula 

for k given by (4.63) involves the parameters a, ß and 7 which have not yet been 

determined. It remains to choose positive values for these parameters such that k is 

maximized and such that the conditions (4.56), (4.59) and (4.61) hold. Since k given 

by (4.63) is a nonlinear function of the parameters a, ß and 7, and the constraints 

(4.56), (4.59) and (4.61) also involve nonlinear functions of these parameters, this 

formulation is called the nonlinear optimization estimate. 

We observe that the constraints (4.56) and (4.61) may always be satisfied by a 

proper choice of a and ß. The constraint (4.59), however, involves k as well as a, /?, 

7, and may or may not be satisfied by the choice of k2 in (4.63). If a, ß and 7 are 

chosen such that the constraints (4.56), (4.59) and (4.61) are satisfied with k given 

by (4.63), then this value of A; is a valid estimated decay rate. If (4.56) and (4.61) are 

satisfied by this choice of k but (4.59) is not, then instead of (4.63), we choose 

*a = U" ^H" Wsi) ((Ä+1)) ^' (4"64) 
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and so equality holds in (4.59). It is easily verified that k given by (4.64) satisfies 

(4.62). 

Equations (4.63) and (4.64) give two separate formulae for the estimated decay 

rate dependent on the choices of a, ß and 7 and valid under differing conditions. 

Furthermore, while there are many choices for a, ß and 7 which yield a valid estimated 

decay rate, we need a method to determine the proper choices of a, ß and 7 which yield 

the optimal decay rate. The two formulae (4.63) and (4.64) lead to two optimization 

formulations which will now be analyzed to determine the largest value for k. 

4.3.1    Nonlinear Optimization Analysis 

Of the three constraints (4.56), (4.59), and (4.61), that must be satisfied for the non- 

linear optimization estimate, two of them, (4.56) and (4.61), may always be satisfied 

by proper choices of a and ß. The remaining constraint (4.59) may be equivalently 

expressed as the following two reduced conditions, 

(- ~ "FT " Wl)  * °' (465) 
\ei        a\e2\        ß\e3\J 

fc2 < JE1(I_J U     1 
(4.66) 

where (4.65) is necessary in order for k2 to be nonnegative. From (4.56) and (4.61), 

we have 

«<M      *       i>JL, (4.67) 

0<M      +       \>± (4.68) 
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which in turn yield 

(£-=sr*ra) <(£-*-3)-       (4-69) 

where we observe that right-hand side of (4.69) is positive due to the positive-definite 

assumption (4.9) on the the energy functional E\(z). As long as the right-hand side 

of (4.69) is strictly positive, we are guaranteed that there is some choice of a and 

ß for which (4.65) is satisfied. The remaining constraint (4.66) may or may not be 

satisfied by a proper choice of 7, and thus determines which of the two formulae (4.63) 

or (4.64) is valid. We then have the following two optimization formulations: 

Optimization Problem 1: 

Maximize  F(a, ß, 7)  =  fc2  =  -^ (l - jfj) (jj + ^) 

+ 

subject to 

t1 - R) > ° (4-71) 

(l - ±)   >   0 (4.72) 

G - ^N - m) * ° (4-73) 

and 

i1      |62|J(h| + 2e1JU      a|e2|      ß\e3\)[l 
7M 
+7hi; 



CHAPTER 4.   THE ANISOTROPIC CASE 77 

Optimization Problem 2: 

Maximize G(a, ß, 7) = k2 =  —r I j—r - -TT—r)    ——r—r)     (4.75) 

subject to 

(x - A) > „ (4.77) 

£ - =H " *5i) * ° (4'78) 

and 

|e2|J (h| + 2ClJ U      aid      /?|e3|J(l 
7M 

Condition (4.74) results from using (4.63) in (4.66) and condition (4.79) is the in- 

equality that results when (4.74) is not satisfied. 

To maximize the functions F(a, /?, 7) and G(a, ß, 7), we now look at their 

partial derivatives with respect to the parameters a, ß and 7. From (4.70), it can be 

shown that 

F,a < 0,       Fß < 0,       F„ < 0. (4.80) 

Similarly from (4.75), it can be shown that 

G,a > 0,       Gjt > 0,        G„ > 0. (4.81) 
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Thus to maximize F(a, ß, 7) we seek the smallest possible values of a, ß and 7 while 

to maximize G(a, ß, 7) we seek the largest possible values of a, ß and 7. It will now 

be shown that in fact the choices of a, ß, 7, call them a*, ß* and 7*, which maximize 

F also maximize G. 

For fixed values of a and ß such that (4.71) - (4.73) are satisfied, F is a decreasing 

function of 7 and hence the choice 7^ which maximizes F is the smallest positive 

7 such that (4.74) is still satisfied. For fixed a and ß, the smallest positive 7 for 

which (4.74) is satisfied occurs when equality is taken, yielding a cubic polynomial in 

7 with one positive root 7^. At this value of 7 = 7^, the functions F(a, ß, 7) and 

G(a, ß, 7) are identical (recall that (4.74) results from (4.66)) and both are valid 

decay estimates. As 7 decreases below 7^, (4.79) is satisfied and G becomes the valid 

decay estimate. With a and ß still fixed such that (4.76) - (4.78) are satisfied, G is an 

increasing function of 7 and the choice 7^ which maximizes G is the largest positive 

7 such that (4.79) is satisfied, i.e. 

7^  = 7£  = 7*. (4-82) 

Furthermore, we have 

F(a, ß, 7*) = G(a, ß, 7*). (4.83) 

So for fixed values of a and ß, the optimal choice 7*, which maximizes both F and 

G, is found from computing the positive root of a cubic polynomial and, since F and 

G are identical at this choice of 7*, k is obtained from either (4.70) or (4.75), using 

h = 2. It then follows that over the full range of a, ß and 7, the choices a*, ß* and 

7* which maximize F also maximize G and that the two functions are identical at 
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these values. 

While (4.70) and (4.75) yield two explicit formulae for a decay estimate, they are 

in terms of three parameters that must be optimally chosen and a numerical procedure 

was necessary to do this. A program was implemented to run through the possible 

ranges of the parameters a and ß, obtained from (4.71) - (4.73) or equivalently (4.76) 

- (4.78), and compute an optimal value k for each pair of a and ß (in the manner 

previously described), and thus an optimal k over the entire range of a, ß and 7. The 

optimal decay estimate k in the nondimensional domain was then transformed back 

into the original domain so that 

"-*(£)* (4.84) 

and the stresses T have an exponential decay rate of ^. These results are shown at 

the end of the chapter. It is observed that while this nonlinear optimization estimate 

produces explicit formulae for the estimated decay rate in terms of parameters which 

may be optimally chosen numerically, the formulae (4.70) and (4.75) will be different 

for each material since the parameters a, ß an 7 must be optimally chosen in each case. 

This is in contrast to the formulae (3.51), (3.55) and (3.102) obtained in Chapter 3 for 

orthotropic materials. These formulae did not change from one material to another. 

Ideally, we would like to determine the optimal choices of a, ß and 7 analytically in 

terms of the material parameters ei, €2 and £3. Then the formulae (4.70) and (4.75) 

would be explicit in terms of ei, ti and e3 and valid for all materials satisfying (4.9). 

If we now consider the orthotropic limit for which j-, ^ —► 0, this nonlinear 

optimization formulation reduces to the following: 
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Problem 1 

Problem 2 

k2 = -*k + £{5+*        <4-85> 
where 

—  > 0      and      -\ - 4 > 0. (4.86) 
ex 4ef 

*=2^(^/rT1^-1)i'    «*T- (4-87) 

JT! 

*" = 5*7 (4-88) 

where 

—  >  0      and      JL _ 4  <  o. (4.89) 
ei 4ef 

*  * " S^f     £1 > T- (4'90) 

On comparing (4.87) and (4.90) with (3.49), we see that in the orthotropic limit the 

nonlinear optimization estimate reduces to the analytic estimate (3.49) developed in 

Chapter 3. This is not unexpected as the methods used to develop the two estimates 

are similar. 
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An alternative formulation for this nonlinear optimization method may be ob- 

tained using the physical energy Ep(z), given by (4.4), instead of the energy func- 

tional Ei(z). This leads to a nonlinear optimization estimate in four parameters a, 

ß, 7 and S characterized by the following two problems: 

Optimization Problem 1: 

Maximize F(a, ß, 7, 6) = *>  = -^ (l - JL - J|L) (jL + -^} 

7.       a \ßii\S WT    ,       ßee     V 7T2 

+ 2h2 

+ 4 
I «31        Sy/ß11ß22j 

(4.91) 

subject to 

ßee 1 1   ' 
.vOTaT       <*M        0M 

> 0 (4.93) 

> 0 (4.94) 

and 

7hl (i-^L- Ah\L\ (j_ + _JZLJ\ (  k*   _ _i L\ (- 

i / a» i i_y / 7hi y 
4WE3E     a|e2|      /?|e3|/   \l + 7\e2\) 

_4fi       «   __^W!_A__W    )   >0. (4.95) 



CHAPTER 4.   THE ANISOTROPIC CASE 82 

Optimization Problem 2: 

subject to 

( 

(4.96) 

(l-   « -j£jÜ > 0 (4.97) 
V      M VP11P22J 

(1 _ JL _ I/12'    ^ > 0 (4.98) 

^             X *   ^ > 0 (4.99) 
\/&Ä       aN       0M 

and 

(,       a \ßn\S WT, ßee     \ f    ßse 1 1   \ /   TM 
2V«^/IV^ä   «hl   ^IAH-TN/ 

1 /    fa 1 lV (   7M   y 
4\V^Ä     a|e2|      /J^l/   ^ + 7^1/ 

-4fl-^-#)(l-^-Jfs"    )<0. (4.100) 
V      M    VPÜP22J \      hl     0VP11P22/ 

Numerical results were calculated for this Ep(z) formulation and compared with the 

Ei(z) formulation. As was the case previously for the basic energy estimate, the 

difference between the two energy formulations was insignificant and it is clear that 

the Ei(z) formulation is much simpler to work with, keeping in mind however that 

the physical energy formulation has a wider range of applicability. 
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4.4    Higher-Order Energy Estimates 

In this section we adapt the conservation law approach, developed for orthotropic 

materials in Chapter 3, to anisotropic materials, making use of the higher-order energy 

functional E2(z). Thus for the estimates that follow, both of the anisotropic energies 

Ei(z) and E2(z) given by (4.5) and (4.6) are used. Let the function F(z) be denned 

by 

F(z)  =  [E2(z) + mE^z)} + 2*:/°° \E2{s) + mE^s)) ds, (4.101) 

where m and k are both positive constants to be determined. With F(z) defined in 

(4.101), we have 

F\z) + 2kF{z) = E'2(z) + mE[{z) + 4fc2 f°° [E2(s) + mEl(s)} ds.   (4.102) 

We now wish to express the quantities E2{z) and /    E2{s)ds as line integrals, as was 

t°° 
done previously for E'x(z) and /    E\(s)ds in the basic energy estimate of section 4.2. 

From its definition in (4.6), and using (3.20), we obtain a line integral represen- 

tation for E'2(z) as 

E2(z) = - /  [ft« - 7-W.K, + r^k " r******* + *J */• (4-103) 

Recalling (4,8), we obtain 

E2(z) =  YZIR, 
[^<te " M'vvv] dA' {4-104) 
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which, when integrated and combined with the divergence theorem and boundary 

conditions, yields 

/    E2{s)ds   =   - I   [<£,«te - favtmv] dA 

= l |& + % in- (4-105) 

We observe that (4.105) is identical to (3.60) obtained for the orthotropic case in 

f°° section 3.4, i.e.  the quantity  /    E2(s)ds has the same line integral representation 

regardless of whether E2(s) is the orthotropic functional (3.8) or the anisotropic func- 

tional (4.6). This is because the line integral representation (4.8) for the anisotropic 

energy functional E2(z) is independent of any material parameters. Substituting 

(4.12), (4.14), (4.103) and (4.105) into (4.102) results in 

F\z) + 2kF(z)   =   - f   [4%c + <%m - -4>mhto ~ -fawfato 
JLz €2 e3 

+ rftft + (™ - 2*2Ä + (™ - 2k2Kv 
2m                    2m m  2 ., 2    ±2 

~ —<P,ti<P,in —9m9*n +  —<P,tn  ~ 4* m<P,i 
£2 *3 €\ 

,,2     , ,           8k2m ,    ,          2k2m ,2l  . 
+ 4fc m#>M + ——<f>,i<f>,r, —?,J dV 

t2 ti 

=   -J(z). (4.106) 

We will now investigate several methods to obtain positive values for m and k such 

that J(z) is nonnegative. This in turn yields the exponential decay estimate 

F(z) < F{0)e~2kz, z > 0, (4.107) 

which, by following exactly the arguments outlined in (3.85) - (3.89), leads to bounds 



Ei{z) < 2 Ei(0) + -Ej(O) 
m , 
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on the energy functionals of the form 

\-2**,        z > 0, (4.108) 

E2(z)  < 2[E2(0) + mEi(0)]e-2kx,        z > 0, (4.109) 

where E\(z) and ^(z) now represent the anisotropic energy functionals. Again, the 

results (4.108) and (4.109) can be used to derive pointwise estimates for the stresses 

T such that 

|r(£, T/)|  <  Re-* far  fixed 77. (4.110) 

4.4.1     Quadratic Estimate 

This estimate, while modelled after the conservation law approach of Chapter 3, 

does not actually involve either of the anisotropic conservation properties (4.2) or 

(4.3). It does however use the combination of energy functionals E\(z) and E2(z) 

that was used in Chapter 3 for the orthotropic conservation law estimate. The result 

is a somewhat simpler quadratic polynomial for m in contrast to the the sixth-order 

polynomial developed in the orthotropic conservation law estimate. 

Starting with (4.106) and completing squares, we obtain 

J(z)   =   I   [{<f>m--<f>Mr,)2 ~ -2$*, + (</>,tvv --<f>,ttv)2 ~ -2$Ci 

+ ^k + (™ - 2fc2Ä + ("»- 2k2Kv 
2m . 2m m  2 il2     ,2 

t2 £3 ei 

+ Ak2mU,ti +  M* #,] df] (4.111) 
e2 t\ 
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which, upon dropping the first and third terms, results in 

2 2 1 

62 C3 el 

4k m<f>£ + 4k m<t><f>£t + 
C2 

drj. (4.112) 

Completing squares again yields 

'M*/J(H-iK-jtv*-2tv- 
f / 1       \2      1 2 1       1 

.2^2   ,   ^2^.. _L ^m^     _  2^m^2 — 4fc m^ + 4Ä: m4><f>,ii + 
C2 

■^^,1»  _ 
drj (4.113) 

which upon dropping the completed square term gives 

J(z)   >   /L>   [ (^ - 5 " 3) «*. " 2*% +  (m " 2*2)« 

+ m ( - - -j ) $    - -^tmttv ~ 4fc2m^ 
\ Cl C2 / C3 

Jl2     . .           8fc2m .    .          2fc2m  21 
+ 4fc m#,« +   <f>,t<f>,r, —<PiV   dr]. 

ti €\ J 
(4.114) 

Next, we use several Wirtinger inequalities to simplify the expression for J(z). Using 

(4.23) and (4.24) in addition to (3.70) from Chapter 3, we obtain 

+ 4fc2m#,tt +  <j>,t<f>,v hrmfav   dr)- (4.115) 
62 £3 J 

Using the arithmetic-geometric mean inequalities (3.15) and (3.16), we have, for ar- 

bitrary constants ß, 7, a > 0, 
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Sk2 4P m, 
1 ^*-* Wt i^"s+ ?<M *■ (4.116) 

" L 7T*-<* * * " I Rl* + > *■ «4-117) 

/  4fc2m#iW dr)   >   - I  2k2m[a<f>2 + -<f>2
u] drj 

JIJX J Liz ™ 

> -1 ^ys&°t"+& dri,      (4.118) 

where the last inequality follows on using (3.14), with w   =   <f>.  Substituting these 

inequalities into (4.115) yields 

{„,,     2k2mh2     2k2mh4a     77171  ,, 2 

+ f     (I       1\      4k2mh2        m   } j2 

Again using (4.23) and (4.24) we obtain 

(4.119) 

J 2     2k2mh2     2k2mh*a     mj_     4k2mh2)    2 

f     /l       l\      Ak2mh2       m       4k2mh2ß\  .2 1   ,    .. inft, 

It now follows that J(z)   >   0 if the positive constants m, fc, a, /? and 7 can 

be chosen so that the coefficients of <^, <f?m and <f>2ir) in (4.120) are all nonnegative. 
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Thus we seek m,k, a, ß and 7 such that 

U      el     4) h* k2   <    VC1    P    P' (4.121) 
2(1 + -^ 

V       ay :) 

Vfi__ji__N7/_ 
^fi + A' 
*2 V    My 

tf   <    V^     ?     1717/ (4.122) 
4/r 

4"R) 
^   £   -7 Zä"* M Ä5-T- (4-123) /        mft        amn' m/i'*    \ 

In order for k2 to be positive, the right-hand sides of (4.121) - (4.123) must also 

be positive. Recalling our fundamental assumption (4.9) on the e;, we see that the 

right-hand side of (4.121) is indeed positive. The remaining two conditions (4.122) 

and (4.123) imply the following bounds on 7, 

1 1 

«3 
< 7  <   l«a|. (4-124) 

U 4) 
It is readily verified that the right-hand sides of (4.121) - (4.123) are strictly monotone 

functions of the variables m, a, 7 and ß. Thus the maximum choice for k satisfying 

(4.121) - (4.123) results from equating these three expressions. Equating (4.122) and 

(4.123) yields the following expression for m, 

m  = 
h2 U      el      \e3\f) 

U    3    M7) Ui + (D4*2 + 2^Nj   2V    \l\)\1+W 
(4.125) 
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while equating (4.121) and (4.122) results in the following expression for a, 

a = 

2   1 + JL 
M 

Vei   4 M7, 
1       1 

4 4, (--- U   4 MT, 

m  = F(7, ß)m. 

(4.126) 

It can be verified that 

ß > 0 => F(7, £)  > 0 (4.127) 

for 7 in the range given by (4.124), so that positive values for ß and m yield a positive 

value for a. Substituting (4.126) into (4.125) gives the quadratic equation in m 

where 

A   = 

Am2 + Bm + C = 0 

h2     fl       1 1   V 

5   = 

V     M/ Vei    4   4/    Vi   4    M7, 

U"i"i^j(4^ + 2^Hj"2(1_Njl1 + 
1^21 

(4.128) 

(4.129) 

The roots of (4.128) may be found explicitly from the the quadratic formula as 

mi>2 

-B ± VB2 - 4AC 
1A 

(4.130) 
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It follows from (4.129) that A > 0 and C > 0 and hence for m given by (4.130) to 

be a positive real root, the following additional restrictions must hold, 

B   <   0 

B2 - AAC   >   0. 

(4.131) 

(4.132) 

Once m, a, ß and 7 have been chosen to satisfy the necessary constraints, k can be 

determined from (4.122) with equality. This leads to the following formulation: 

Quadratic Estimate: 

Maximize H(-y, ß) =  k2  = 

subject to 

IT
2
 V^i      t\      |e3|7/ (4.133) 

«3 

kei      el) 

<  7  <   M, (4.134) 

^AM^THi^HX^-^)} 
ivV     fcslj     4*i U      3      N7Jj+elU      <*      M7JI + l-r^r 

and 

2V     NJ(
1+
|62|J        U     el     |e3|7j Ui + 2/3|, > 

1 
|€3 

(4.135) 

(4.136) 
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The inequality (4.135) results from (4.131) which gives a quadratic inequality for ß 

while the inequality (4.136) results from (4.132). Of the three constraints (4.134) - 

(4.136) that must hold for this quadratic estimate, (4.134) can always be satisfied by 

a proper choice of 7 while (4.135) then gives a lower bound on the choice of ß in terms 

of 7. Furthermore, it can be observed that the left-hand side of (4.136) grows without 

bound for ß large and increasing, while the right-hand side decreases with respect to 

ß, so that (4.136) is always satisfied for ß sufficiently large. Thus, we are guaranteed 

some choice for 7 and ß that yields a valid estimated decay rate k. While (4.133) 

gives an explicit formula for k, numerical procedures are necessary to determine the 

parameters ß and 7 that maximize k. 

Without implementing any numerical techniques to maximize k, we observe from 

(4.122) and (4.124) that 

'^(H-s). (4-137) 

where the right-hand side of (4.137) is positive by virtue of (4.9). Transforming this 

result back to the original domain and setting h = 2 yields the following bound on 

the estimated decay rate k* 

We recall that the stresses r have a decay factor of |^-. The inequality (4.138) yields 

an upper bound for the estimated decay rate solely in terms of the elastic parameters 

of the material, i.e. independent of 7 and ß, and will be used later to assess the range 

of validity of the method given here.  It will be shown that the quadratic estimate 
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is limited in certain ranges of the material parameters.  For this reason, numerical 

optimization techniques were not pursued. 

We now return to (4.121) - (4.123) and consider the orthotropic limit as j-, 

^- —► 0. Equating the three orthotropic versions of (4.121) - (4.123) leads to a 

quadratic equation in m that is simpler than in the anisotropic case and leads to the 

following orthotropic quadratic estimate: 

k* - *k <4-139> 
provided 

£- " 2c:  <  -2(^)"2 (4.140) 

which implies 

e1  > N » 0.639 . (4.141) 

The inequality (4.140) is a condition that is necessary for m to be a positive real 

quantity. Equation (4.139) is identical to the analytic estimate (3.49)2, however the 

range of t\ given by (4.141) is more restrictive than the range t\ > 0.433 required 

for validity of the analytic estimate. 

4.4.2    Quartic Estimate 

This estimate starts with J{z) given by (4.106) and makes use of the anisotropic 

conservation property (4.2) to simplify terms. This leads to a quartic equation for 

the undetermined constant m, in contrast to the quadratic equation for m which 

resulted in the the previous section. 

The conservation property (4.2) may be rewritten using the arithmetic-geometric 
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mean inequality (3.15) as 

JLz Lc2 ex J JLz 

<  i h + ift di]    (4.142) 

for a»  >  0. Thus we have from (4.142) that 

-T;L***»*I s ~L h* + ^« + ** ~ ^ + 7fi-. 

Returning to (4.106) and using (4.143) leads to the inequality 

dr). 

(4.143) 

f / m \ 0 0 

J(z)   >   JL      (
1_2Ü>)ft« + ftm ~  —tete» -  —^fiifefn 

+ ^k +  (— »' - f) ftf +   (m - 2*2 + f ) ft, 
2m ,     , /m      m \  ,, / ,,        wm\  ,, 

--^,(, + (--^j ft, - («2™+irjft 
.,2     , ,           8fc2m ,   ,          2fc2m,2l   , ,Ä^^ 

+ 4fc2m#.« +  M,v <j>U dq. (4.144) 
^2 ^i J 

Completing squares in the higher-order cross terms results in 

JW * 1 [(i-i)!^«-^!)^} - (T^fft^ 

+ ift(, + (">-2*2-y)ftE + (">-«' + ?) ft, 

~ —tvAin +  2^#, -   (4*™ + —J<^ 

yj cfy (4.145) .i2     , /            8fc2m ,    ,          2fc2m ,, 
+ 4fc m^iK +  <f>ti</>lV  

from which, upon dropping positive terms, we get 
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+ (m-2*>-£)#( +  (m-2t> + ^)^ 

<fy,    (4.146) 
.,2    ,,           8fc2m,   ,          2fc2m  2' + 4fc m#.« + ——<f>4p,n —4>t„ 

€2 Z\ 

provided 

m-) > 0. 
>J 

(4.147) 0-E 
On using (3.66) from Chapter 3, we have 

{„,,     m     2k2mi/h4\   ., 2m m   2 

wm\   2        8Ä;2 2k2m 
-{^2m + ^)^ +  ^M,-     £i « *7,     (4.148) 

where i/  >  0 is an arbitrary parameter. Now, using the arithmetic-geometric mean 

inequalities (3.15) and (3.16), we obtain 

l^'^-iä11*^^      (4-W9) 

- / f+.„*<, *? > -/   ITTWÜT, + yM*>, (4-150) 

for arbitrary S, \i  > 0 . Using these inequalities in (4.148) yields 

{3"i     rtl2     2fc2mi//i4     ^xml   2 im        m  \   2 

T-2k ~i?T"H)'- + IS'SJr* 

-(■ 

l2        um     4fc2mA  ,2 

-" T + lSTy*« 4Jfc2m + 
,,        (2k2m     Ak2m\  .,1   T     ,, ,rnN 

«-(—+7M,r-rM",>l) 
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Upon using (4.23) and (4.24) in the last two terms of (4.151), we obtain 

^>i[fe-^.-iK+{?-tf-^}* 
{3m 2     2k2muh4     fim     k2mh2     k2mh21    2 

~2~ (f)4    ~W\~~^~~W&*i *m 

{m        m       Ak2mh2     muh2     ik2mh28\  ,, 1   ,     ,, ,r„x 

On using (3.70) we obtain 

r    \[*2 /I 1 !\ , m    «is    2fc2ml ^2 jw > 1 l|i?U-(r^)i-iJ+T-»"-—}«« 

+ {-(=r-Sf-a--p-,(?+A)K drj, 

(4.153) 

provided 

£-<r^r3^ <««> 

It then follows that the integral J(z) given by (4.153) will be positive if we can choose 

positive constants w, i/, 6, [i, m and k such that the coefficients of <j>2^, <f>2£V and <f>2vr] 

are nonnegative and such that the conditions (4.147) and (4.154) are both satisfied. 

Since (4.9) implies that e§ > £1} these last two conditions may be combined together 

to yield the single constraint 

I1 - £) * Ä <«■> 
which shall be used henceforth. 
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Thus the problem is to find positive constants a;, v, 8, fi, m and k such that 

P     <       \^1        /*F3| 27T2/ fc  -       7nr^r~ > (4-156) 

/_i 1_ _ u_ 
V2ca     //|e3|      2i 

"  (A- \7T'*        7T 

m 

k   ~       ^h*    mPmT^' (4-157) mi// 
1 + (f )4 + 4ei*2 + 2*hk2 

A2 

Jfc2 < . 

■) 

(4.158) 

and 

m     .  . ael        _ 
ä^1" -T7-2—-T  =  /(ci, e2, eg). (4.159) 

e2le3 — el) 

For convenience, we now choose equality in (4.159) to obtain a valid decay estimate 

although this may or may not yield the optimal decay estimate. Upon choosing 

equality in (4.159) and introducing the notation 

2 o o 

m =  ^M,       v =  JLA,       *2 =  *-K\ (4.160) 

where h = 2, the inequalities (4.156) - (4.158) then read 

JL 1 M\ 

fr      Heal      4/J 

(»a ' 
2  U      |e3|J 

K2   <    V2ei 
(4.161) 

4 

#* < 
1 + MA(—)~4 + —- + 

(4.162) 

2 '        4ei     2<!>|e2| 

0+f) 
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The problem is now to find positive M, A, and K such that (4.161) - (4.163) hold, 

where 6 and /z are arbitrary positive parameters yet to be determined. 

First, we observe that in order for K2 to be positive, the right-hand sides of (4.161) 

and (4.162) imply the following restrictions, 

\t 

(4.164) 

(4.165) 

Since the right-hand sides of (4.161) - (4.163) are monotone functions of their argu- 

ments, the optimal value for K will be obtained by equating these three expressions. 

This leads to a fourth-order equation for M as 

©>(i+R)-fe-sr-a}" 
{2M(!-R)(1 + R) - (1 + ^ + 2^)fe-Ä-S} 

_ M» ( 1 1        "V = 0. (4.166) 
\2e,     p\c\     If) 

Once /i, subject to (4.165), and 8 have been chosen, equation (4.166) may then be 

solved numerically for M. Of the four possible roots, M must be chosen such that 

the constraint (4.164) is satisfied. K may then be found on equality in (4.161) and 

A in turn may be found from (4.163) with equality. Due to the complexity of this 

formulation and the number of parameters involved, numerical calculations were not 

pursued. 
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One can, however, obtain a bound on this quartic estimate as was done for the 

previous quadratic estimate. Returning to (4.161), we observe that 

_1 1_ 

R2     ^JN <   i   _   i (4>167) 
4 8ei        6e5 

where the condition (4.165) has been used in the last step. Referring back to the 

notation in (4.160) and transforming (4.167) back into the original x\ — x2 domain 

yields the following upper bound on the estimated decay rate k*, 

where the stresses r have a decay factor of |^. This bound, solely in terms of the 

elastic parameters of the material, will be used later to assess the range of validity 

of the present analysis. It will be shown that the quartic estimate, like the quadratic 

estimate, is limited in certain ranges of the material parameters. 

Again, it is easier to obtain results from this method in the orthotropic limit, i.e. 

as i, ~-  —* 0. The inequalities (4.156) - (4.158) then reduce to 

*2 * i£ -I • (4-169) 

*2  <  —, ^-—rrr. (4-170) 
4 

4TT2 

(mi/h4      mh2 \ 
1 + 7fF + ^V 

+ 2m 
k2    <    -^ =rr-. (4.171) 

Taking the limit in (4.159) also gives 

m 
u, >  -. (4.172) 
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From (4.169) we see that A; is a decreasing function of u> and therefore choosing 

equality in (4.172) will yield the optimal decay estimate. Upon using the notation in 

(4.160), the remaining conditions (4.169) - (4.171) become 

K2   < 

2 
-M 

16     ' 
(4.173) 

K2   < 
3M 

(4.174) 
4 K+-(DT 

K2   < 
- + 2M 

(4.175) 

In order for K2 to be positive, (4.173) implies that 

M <  -. (4.176) 

Due to the monotone nature of the right-hand sides of (4.173) - (4.175), the maximum 

value for K will be achieved by equating these three expressions. This leads to the 

following fourth-order equation for M, 

©4G+«Hiu'-(i+£)M --,e--)' ■ °- (4-m) 

The roots of (4.177) may then be used to obtain K by taking equality in (4.173), 

where it is observed that the smallest value for M yields the largest value for K. 

The fourth-order equation (4.177) was solved numerically using MACSYMA for the 

set of materials shown in Table 3.1 from Chapter 3. For each of the materials, the 

smallest positive root M gave positive values for A and K2 and hence gave the desired 
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maximum K satisfying (4.173) - (4.175). Using (4.160) and transforming this result 

back to the original domain yields 

*-H$' (4-178) 

where the stresses r have a decay factor of |^. Although this estimate does not 

yield an explicit formula for the decay rate in terms of the elastic constants, it does 

yield a numerical estimate. These results are shown in Table 4.1 together with the 

conservation law estimate of section 3.4. It is seen that the latter method yields a 

better estimate. 

4.5    Exact Decay Rates 

Exact solutions of the anisotropic equation (4.1) subject to the boundary conditions 

(2.23) - (2.25) are much more complicated and difficult to obtain than the solutions 

of the orthotropic equation (3.3) subject to the same boundary conditions. As in 

section 3.5, we seek solutions of the form 

<f> = e_7fF(r/), 7 = constant, (4.179) 

which leads to the following eigenvalue problem 

F     +  — 7.F    +  — 72F    + —73F   + 74F = 0, on (-1,1) 
^2 ci e3 

F(-l) = F(l) = 0, (4.180) 

F'(-l) = F'(l) = 0, 

which is the anisotropic generalization of (3.104) Seeking solutions to (4.180) of the 

form 

F = Ae"™, fi constant, (4.181) 
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leads to the characteristic polynomial 

P(fi)  = /x4 + -V + -n2 + -fi + 1  = 0 (4.182) 
^2 ^i €3 

whose roots fi are complex and occur in conjugate pairs (Equation (4.182) is actually 

the nondimensional version of (2.47)). Let the roots // of (4.182) be denoted by 

0i,2  = Pi ± iqu 03,4 = P2 ± iq2, (4.183) 

where pQ, qa depend on e, (i = 1,2,3). Substituting the general form for F given in 

(4.181) into the boundary conditions given in (4.180) results in the following eigen- 

condition for 7 (see Choi and Horgan [6]), 

[(Pi ~ P2)2 + (qi + qi)2] cos 2 (q1 - g2)7 - 

[(Pi - P2)2 + (91 - ft)2] cos 2(qi + 92)7 = 4gi?2 cosh 2 (pi - p2)7-       (4.184) 

The roots of (4.184) are complex in general and depend on the three elastic parameters 

€1, €2 and e3. Recently, in [19], this eigencondition has been simplified using a spherical 

representation to yield a reduced eigencondition for a modified eigenvalue £ in terms 

of two parameters ip and u> which may be determined from the elastic constants of the 

material (in [19], the quantity u> is denoted by 6). The actual eigenvalue 7 is related 

to the modified eigenvalue ( by the scaling 

C = PI, (4.185) 

where p is a third material parameter which may be determined from the elastic 

constants of the material. The reduced eigencondition can be solved for various values 
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of %j) and u>, see [19]. By interpolating from tables in [19] and scaling by the factor 

p, one obtains the real and imaginary parts of the eigenvalue 7 of smallest real part, 

which must then be transformed back into the original domain. The procedure from 

[19] was automated for this dissertation to produce exact decay rates with which to 

compare the estimates. While the procedure just outlined has already been developed 

in [19], the numerical results for specific materials are new and show some interesting 

trends. We note that an alternative analysis of exact decay rates has also been given 

recently in [28]. 

Exact decay rates were computed for each of the materials listed in Table 3.1 of 

Chapter 3. The materials were initially oriented with their fibers parallel to the axial 

direction, making a fiber angle of 0° with the xi-axis. For this situation, the strip is 

specially orthotropic. See Figure 4.1 for an illustration of the fiber angle 6, for general 

e. 

5» 
Figure 4.1: Fiber angle 6 

The principle axes of the materials were then rotated through a fiber angle range 

of 0° — 90°. For values of 0° < 0 < 90°, the principal axes of the material and 

the axes shown in Figure 4.1 do not coincide. For this situation the strip exhibits 
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anisotropy in the form of coupling between stretching and shearing in the x\ — xi 

plane. For 6 = 90°, the materials are specially orthotropic, but with their fibers 

parallel to the transverse direction. At each of the intermediate fiber angles, for which 

the strip is anisotropic, the techniques of [19] were used to calculate the exact decay 

rate. A plot of actual decay rates is shown below in Figure 4.2. For convenience we 

have chosen the three materials HS1, HS2 and UM for which to plot results. Decay 

rate curves for the other materials listed in Table 3.1 are similar in shape. 

decay rate k* 

10       20 30       40       50       60 

fiber angle in degrees 

90 

Figure 4.2: Exact decay rates vs. fiber angle 

It is of interest to note that for each of these materials while 0 = 0 produces 

the smallest decay rate (as expected), there is a fiber orientation angle in the range 

60° — 80° at which the decay rate is largest. This initially unexpected result has also 

been observed in other structural mechanics problems for laminates [20]. A similar 

non-monotonic behavior of decay rate with material properties has also been observed 

by Choi and Horgan [29] for a sandwich strip. Mathematically, this peak in the decay 
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rate can be traced back to the existence of a multiple eigenvalue which was found in 

[19]. There, the real and imaginary parts of the modified eigenvalue £ were plotted 

as functions of xp and u, forming surfaces in three-dimensional coordinate space, and 

a cusp was found to exist in the real surface, corresponding to a multiple eigenvalue 

at that point. This cusp is responsible for the two "kinks" in the decay rate curves 

of Figure 4.2. For each material, as the fiber angle is rotated, the real part of the 

modified eigenvalue ( traverses a path along the three-dimensional surface mentioned 

above, crossing over the cusp region twice. Due to the scaling factor p which yields 

the actual eigenvalue 7, the effects of the cusp are small the first time the cusp is 

crossed and exaggerated the second time. Thus we observe in each of the curves of 

Figure 4.2 a small "kink" when the fiber angle is near 0° and a large "kink", or peak, 

as the fiber angle approaches 90°. 

Physically, this peak behavior in the decay rate curves may be related to the severe 

non-monotone behavior of the elastic parameters ti and e3 with 0 in the particular 

fiber angle range (see e.g. Figure 4.17 below for HS1). This peak behavior may also 

occur because as the fiber angle increases, the effects of the matrix on deformation 

become increasingly more important. Thus for fiber angles near 90° the material 

behavior is dominated by the matrix in contrast to angles near 0° where the fibers 

have the dominant effect on the decay rate. 

We also observe from Figure 4.2 that for each of the materials there is a fiber 

orientation angle (roughly in the range 30° — 50°) at which the decay rate coincides 

with that for an isotropic material (k*  = 2.106). 
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4.6    Discussion of Results 

In this section, we refer to Figures 4.3 - 4.16 as well as Table 4.1 to discuss the basic 

energy estimate, nonlinear optimization estimate and higher-order energy estimates 

developed in this chapter. In contrast to the estimates of the previous chapter, the 

estimates of the present chapter do not produce explicit formulae for the decay rate, 

but rather require numerical methods of evaluation. For convenience we choose the 

three materials HS1, HS2 and UM as representative materials for which to show 

results. We also wish to thank Dr. M.P. Nemeth of NASA Langley Research Center 

for providing some of the numerical codes that were used in producing many of the 

figures. 

Figures 4.3 - 4.5 show the exact decay rate together with the basic energy estimate 

and the nonlinear optimization estimate, for each of the three materials HSl, HS2 

and UM respectively. Recall that these two estimates were the only estimates in the 

anisotropic case that yielded a numerical result (the higher-order energy estimates 

were not implemented numerically for the anisotropic case). It is observed for each 

of the materials that both the basic energy estimate and the nonlinear optimization 

estimate (lower bounds for the exact decay rate) greatly underestimate the exact 

decay rate, particularly in the middle fiber angle range of 20° — 70°. For the 

fiber angles near 0° and 90°, i.e. where the material is closer to being orthotropic, 

the estimates are better, though there is still room for improvement. The nonlinear 

optimization estimate is seen to be slightly better than the basic energy estimate as 

the fiber angle increases. 
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It is noted that in these preceding figures the estimates correspond to mathemat- 

ical energy formulations using the energy functional Ei(z). As mentioned previously, 

these estimates did not change significantly when the real physical strain-energy Ep(z) 

was used. This is now seen in Figures 4.6 - 4.8, where the basic energy estimate is 

shown using the two different energy formulations, again for the materials HSl, HS2 

and UM, respectively. The exact decay rate is reproduced for convenience. While the 

E\(z) formulation is slightly better in the outer ranges of the fiber angle and the Ep(z) 

formulation is slightly better in the middle range of the fiber angle, these differences 

are very small. Similar results are seen in Figures 4.9 - 4.11 where comparisons of the 

nonlinear optimization estimate with the two different energy formulations are shown 

for HSl, HS2 and UM. 

As mentioned earlier in this chapter, the estimates using Ep(z) have the advantage 

that they apply to all physical materials, while the estimates using E\(z) require a 

stricter positive-definite condition that may fail to hold for some materials. This can 

be seen from Figure 4.12 and Figure 4.13. Figure 4.12 shows the materials from Table 

3.1 for which the energy functional E\(z) is a positive definite quadratic form, i.e. 

materials for which j— ? — ?" > 0 (see equation (4.9)). This includes five of the 

seven materials listed in Table 3.1. Figure 4.13 shows the remaining two materials for 

which the positive definite condition (4.9) fails to hold at certain fiber angles. Thus, 

we observe that the Ei(z) formulations of this chapter cannot be applied to KE or 

BE in the middle fiber angle region. 

Figure 4.12 also indicates why the basic energy estimate and nonlinear optimiza- 

tion estimate shown in Figures 4.3 - 4.5 yield poor results in the middle fiber angle 
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range. For most of the materials shown in Figure 4.12, the positive-definite con- 

dition on Ei(z) is barely satisfied in the middle fiber angle range. This weakness 

of the energy norm E\{z) in this range limits the accuracy of the estimates of this 

chapter. For the basic energy estimate given by (4.40) and (4.45), we see that k* is 

proportional to vA where A is the smallest eigenvalue of the positive-definite matrix 

(4.18) arising in the quadratic form W\ in E^z). It then follows that the weaker the 

positive-definiteness of E\(z), the smaller the value for A and hence the poorer the 

estimated decay rate k*. Similarly, in the nonlinear optimization estimate given by 

(4.70) - (4.74), we obtained a result that was dependent on the positive-definiteness 

of Ei(z). Specifically, we found that in order for the conditions (4.71) - (4.73) to be 

satisfied for some choice of the parameters a and /?, the positive-definite condition on 

Ei(z) must hold (see (4.67) - (4.69)). It can further be observed that the weaker the 

positive-definiteness of the energy norm E\{z), the less freedom there is in choosing 

the parameters a and ß to maximize the decay estimate and hence the poorer the 

results expected. Thus the accuracy of both the basic energy estimate and the nonlin- 

ear optimization estimate is very closely linked to the degree of positive-definiteness 

of the energy norm involved. 

In Figures 4.14 - 4.16, we show some results for the higher-order energy estimates 

of this chapter, i.e. the quadratic and quartic estimates. For the anisotropic case, 

neither the quadratic estimate nor the quartic estimate yielded results that were 

very tractable numerically. However, explicit upper bounds were obtained for both of 

these estimated decay rates and are plotted in Figures 4.14 - 4.16 for HS1, HS2 and 

UM respectively. The quadratic estimate upper bound comes from (4.138) while the 
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quartic estimate upper bound is given in (4.168). For each of the materials shown, 

we observe that both the quadratic estimate upper bound and the quartic estimate 

upper bound are well below the exact decay rate in the middle fiber angle range. In 

the outer fiber angle ranges, these two bounds are much higher and in some cases 

exceed the actual decay rate. Since these are upper bounds for the estimated decay 

rates (which are, in turn, lower bounds on the exact decay rate), Figures 4.14 - 

4.16 show that these techniques will yield very poor results in the middle fiber angle 

ranges. In the outer fiber angle ranges there is the potential for accurate results as the 

upper bounds on the estimates exceed the exact decay rates, however the estimates 

themselves could lie well below the bounding curves. In fact, for the HS1 and HS2 

materials at 15° fiber orientation angle, attempts were made through trial and error to 

determine a numerical result from the quadratic estimate. The decay rate estimates 

so obtained were inadequate, however. For these reasons, numerical techniques were 

not further pursued. We also note from Figures 4.14 and 4.16 that for HS1 and 

UM there are certain fiber angle ranges for which the quartic estimate upper bound 

becomes negative. This implies that for these ranges the quartic estimate is invalid 

and cannot be applied. 

Results in the orthotropic limits for both the quadratic and quartic estimates 

were obtained earlier in this chapter. The orthotropic quadratic estimate required 

that t\ > .63 and hence this estimate does not apply to any of the materials in 

Table 3.1. The orthotropic quartic estimate, however, does apply to these materials 

and numerical results are shown in Table 4.1. Here, the exact decay rates and the 

conservation law estimate of Chapter 3 are included for comparison. It can be seen 
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that for orthotropic materials the quartic estimate is not quite as good as the conser- 

vation law estimate, particularly for materials with larger values of €\. It is, however, 

better than the analytic estimate (3.51), excepting the BA and isotropic materials, 

and better than (3.55) for small t\. 

Finally, in Figures 4.17 and 4.18 we show typical curves for the elastic parameters 

of the material as functions of the fiber orientation angle. Figure 4.17 provides plots 

for ei, e2 and ts for the HS1 material, and is representative of most of the other 

materials used in this dissertation. As the fiber angle increases, the elastic parameters 

all vary smoothly. We observe that t\ is symmetric about 45° where it reaches its 

maximum value while e2 and £3 are symmetric with respect to each other, and suffer 

a rapid variation near 9 = 90° and 0 = 0° respectively. In Figure 4.18 these elastic 

parameters are plotted for the KE material and we observe some atypical properties. 

Here, t\ still varies smoothly and is symmetric about 45°, however e2 and €3 show 

sharp jumps in sign. Such extreme behavior helps to explain the difficulty involved 

with obtaining accurate decay rate estimates for such materials. 
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Figure 4.3: Exact decay rate and estimates for HS1 
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Figure 4.4: Exact decay rate and estimates for HS2 
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Figure 4.5: Exact decay rate and estimates for UM 
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Figure 4.6: Basic energy estimate for HS1 with different energy functionals 
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Figure 4.7: Basic energy estimate for HS2 with different energy functionals 
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Figure 4.8: Basic energy estimate for UM with different energy functionals 
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Figure 4.9: Nonlinear optimization estimate for HSl with different energy 
functionals 
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Figure 4.10: Nonlinear optimization estimate for HS2 with different energy 
functionals 
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Figure 4.11: Nonlinear optimization estimate for UM with different energy 
functionals 
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Figure 4.12: Materials for which the positive-definite condition (4.9) is satisfied 
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Figure 4.13: Materials for which the positive-definite condition (4.9) fails 
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Figure 4.14: Upper bounds (4.138), (4.168) on estimated decay rate for HS1 
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Figure 4.15: Upper bounds (4.138), (4.168) on estimated decay rate for HS2 
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Figure 4.16: Upper bounds (4.138), (4.168) on estimated decay rate for UM 
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Material 
(O 

Quartic 
Estimate 

Cons. Law 
Estimate 

Exact 
Decay 

Rate k* 

BE 
(0.0745) 

0.409 0.445 0.487 

UM 
(0.0949) 

0.306 0.328 0.369 

KE 
(0.1030) 

0.438 0.467 0.534 

HS1 
(0.1362) 

0.447 0.468 0.567 

HS2 
(0.1578) 

0.522 0.564 0.708 

SE 
(0.2366) 

0.709 0.794 1.195 

BA 
(0.2946) 

0.853 1.069 1.942 

Isotropie 
(0.500) 

0.749 1.220 2.106 

***1 
Table 4.1: Quartic estimate for orthotropic materials : r  ~  e~ H      as x\ —> oo 
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Figure 4.17: Nondimensional parameters for HSl 
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Chapter 5 

SUMMARY AND 

CONCLUSIONS 

Several methods have been developed in this dissertation for deriving decay rate 

estimates for stresses in an anisotropic linearly elastic semi-infinite strip subject to a 

plane stress/strain deformation. The goal of the present study has been to examine 

the effects of material orthotropy and anisotropy on the decay rate of local stresses 

generated by self-equilibrated edge loadings. 

The problem was analyzed first for the important subclass of specially orthotropic 

materials, where two estimates (the analytic estimate and the conservation law esti- 

mate) were obtained that provide lower bounds on the decay rate for stresses in the 

material. The analytic estimate gave an explicit formula in terms of nondimensional 

material parameters and thus directly revealed the effects of material orthotropy on 

the stress decay rate. Two essential parameters required for determining the stress 

decay rates have been identified as the dimensionless parameter ei and the beta ratio 

119 
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(I11)*- Upon expressing these parameters in terms of the usual engineering material 

constants, the stress decay behavior can be found and trends can be identified for a 

wide class of materials. It has been shown that, in general, materials with the smallest 

values of ei have the smallest decay rates and hence the largest decay lengths. When 

compared with the corresponding exact stress decay rates, the analytic estimate has 

been shown to preserve relative ordering of the decay rates among the various mate- 

rials from Table 3.1 and, although an underestimate for the exact decay rate (and a 

overestimate for the exact decay length), the analytic estimate yields a conservative 

and useful result that captures the overall behavioral trends of specially orthotropic 

materials. While the conservation law estimate did not produce an explicit formula, 

numerical results were obtained that are significantly better than the corresponding 

results obtained using the analytic estimate, and for some materials were in good 

agreement with the exact stress decay rates. The improved accuracy of the conser- 

vation law approach, particularly for the strongly orthotropic materials considered, 

suggests the usefulness of such a method for estimating solutions to similar problems. 

For both the analytic and conservation law estimates, an asymptotic analysis resulted 

in asymptotic formulae for the estimated decay rates for materials with small values 

of ei. For strongly orthotropic materials these asymptotic formulae resulted in stress 

decay rate estimates that are proportional to (^L)5, a result that has already been 

applied to many practical problems involving composite materials. It has been fur- 

ther shown that for all of the analyses presented here for the orthotropic strip, the 

most accurate decay rate estimates are obtained for materials with small values of 

the orthotropic parameter Cj. 
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The strip problem has also been examined for anisotropic materials, where the 

difficulty encountered in obtaining results greatly increases. For this problem, four 

decay rate estimates have been derived; i.e., a basic energy estimate, a nonlinear 

optimization estimate and two higher-order energy estimates. Unlike the analyses for 

the orthotropic strip, explicit decay rate formulae for the anisotropic strip in terms 

of the elastic material constants were not obtained due to the increased analytical 

complexity caused by the presence of anisotropy. Both the basic energy estimate and 

the nonlinear optimization estimate yield numerical results that depend implicitly 

on the elastic parameters of the material, ei, e2, €3 in addition to the beta ratio. 

These estimates have been compared with corresponding exact decay rates computed 

numerically for a set of specially orthotropic materials in which the principal material 

axes were rotated through a fiber angle varying from 0° to 90°. Both the basic energy 

estimate and the nonlinear optimization estimate exhibited similar characteristics; 

they gave more accurate estimates for the fiber angles near 0° and 90°, where the 

material is close to being orthotropic, while giving less accurate results in the middle 

fiber angle region where more general anisotropy is observed. The limitations of both 

of these approximate methods for anisotropic strips has been found to be directly 

related to the positive-definiteness conditions on the energy norms. The higher-order 

energy estimates were modelled after the conservation law approach of Chapter 3 

and resulted in optimization problems which, due to the number of undetermined 

parameters involved, did not result in tractable numerical results. These higher-order 

estimates were found to simplify considerably in the orthotropic limit. However the 

numerical results obtained were not better than the orthotropic estimates of Chapter 
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3. Asymptotic analyses were not pursued for the anisotropic strip since small values of 

the parameters e2 and e3 do not have the physical significance that small values of e\ do 

for the orthotropic strip, i.e. corresponding to strong orthotropy. In particular, small 

values of e2 and tz are not exhibited by common materials of technological interest. 

In general, the methods of this dissertation when extended to the anisotropic strip 

were found to be difficult to implement and were not able to provide as accurate 

results as desired. Nevertheless, the results indicate some of the difficulties involved 

in modelling the anisotropic strip and give insight into what may be done to improve 

the estimates. Furthermore, since the results yield lower bounds for the decay rates 

and thus upper bounds for the decay lengths, the results are conservative and thus 

immediately useful from an engineering design perspective. 

We conclude with an outline of some areas of future research. Ideally, an explicit 

decay rate formula in terms of ci, e2 and €3 is desirable for the anisotropic strip. This 

would clearly reveal the importance of anisotropy on the decay rate of edge effects 

and would be applicable to a broad range of materials. This insight could stimulate 

the investigations of many other problems using a classical approach with anisotropic 

elasticity. Such insight could greatly assist in tailoring composite structures and 

provide guidance for modelling complex structures with powerful computational tools 

such as the finite element method. One promising approach to solving the anisotropic 

strip problem is the conservation law method. While one of the two conservation laws 

developed in this research was shown to yield highly accurate results for orthotropic 

materials, it remains to be seen whether the remaining conservation law can be used 

in a similar fashion or if additional conservation laws can be developed to improve the 
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results. Finally, as the anisotropic analysis revealed, the decay rate estimates obtained 

here are not accurate whenever the positive-definiteness of the energy norm is weakly 

satisfied. This suggests that alternate energy norms might be more appropriate for 

the analysis of the anisotropic strip. 
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