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1.0 PROJECT OBJECTIVES 

The project objectives included investigation and development of two 
methods for characterizing the grain size distributions of particle assemblies, with 
specific reference to coarse-grained (non clay-size) soils. The two methods 
included: 

a) Hough Transforms and Active Contouring (Snakes) 

b) Edge Scan Methods 

2.0 STATUS OF THE RESEARCH EFFORT 

All originally proposed tasks were completed during the 1-year project 
period and some work was performed beyond that which had been proposed. Both 
the Hough Transforms/Active Contouring Method and the Edge Scan Method 
were shown to reliably predict grain size distributions under idealized laboratory 
conditions. Newer research is already underway at the University of Michigan 
which builds on the findings of the present study. Specifically, methods are being 
developed to overcome the intensive computational requirements of active 
contouring. 

3.0 CHARACTERIZATION OF PARTICLE ASSEMBLIES THROUGH 
DIGITAL IMAGE PROCESSING 

3.1 Introduction 

Determination of grain size distribution of soils by computer vision 
techniques is a fairly straightforward task as long as the soil grains are non- 
contacting. Raschke and Hryciw (1997a) have shown that the grain size 
distribution of even non-uniform soil can be determined by collecting and 
analyzing images of a soil specimen spread out over a back-lit glass plate at a 
series of magnifications. Santamarina et al. (1996) have used a similar "zooming 
technique" to study blast fragmentation. Kuo and Frost evaluated soil uniformity 
while Bhatia and Soliman (1990) and Frost and Kuo (1996) studied void 
distributions. 

When soil grains are in contact, such as in images collected in-situ by a 
vision cone penetrometer (VisCPT) (Raschke and Hryciw, 1997b), soil 
characterization becomes a much more formidable task. The major difficulties 
arise in edge detection and segmentation of particles. The present research effort 
developed two approaches for characterizing in-situ soils by computer vision 
techniques: 1. Edge detection and completion by Hough transforms combined 
with active contouring; and 2. Edge pixel density methods. 
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3.2 Hough Transformation and Active Contouring Methods 

The Hough Transform (HT) is a method for the detection and segmentation 
of objects in an image, even when the objects' edge map is faint, partially 
occluded or missing. The method was initially developed by Hough (1962) to 
detect straight edges but was later extended to cover other objects including 
circular arcs by circular Hough transforms (CHT) (Duda and Hart, 1972; Nair and 
Saunders, 1996; Daisheng et al., 1995) and complex predefined shapes using 
generalized Hough transforms (GHT) (Ser and Siu, 1995). 

The basic principle of the CHT method involves the construction of 
normals to the known edges of the soil particles at each edge pixel location. Each 
normal vector defines the locus of centers of all possible "voting" circles that pass 
tangentially through an edge pixel. An accumulator array tallies the votes by 
incrementing by one all cell locations through which the normal line passes. The 
corresponding radius of curvature of each voting circle is also saved. The process 
of finding voting tangential circles to the edge boundary is continued over all edge 
pixels in the edge map image. 

Figure 1(a) is an edge map of an occluding assembly of Ottawa 20-30 sand 
grains. Figure 1(b) is the corresponding Hough transform accumulation array 
superimposed over the edge map. Pixel locations with higher accumulations are 
represented by darker amber color. Due to the generally convex edges of soil 
grains, the edge normals tend to converge towards the centers of the grains. 
However, because of particle non-sphericity, a region or "cluster" of pixels with 
high accumulations of votes develops. The clusters were delineated by passing a 
relatively large median filter (15 x 15) with a minimum threshold cut off of 4. 
This smoothing filter eliminates cells with relatively few votes. The resulting 
clusters are shown in Figure 1(c). The cluster position represent a potential 
location for the center of a particle. 

The next step is to estimate the size of corresponding particle. The median 
radius of arcs corresponding to all of the normals passing through a pixel in the 
cluster is then found. The median filter was found necessary to eliminate any 
outlying radii belonging to that particular pixel. The average of these medians 
taken over all of the pixels in the cluster, Ravg. is an approximation of the particle 
size. Ravg was found to correlate well with the radius of rounded soil grains, but 
the accuracy diminished as roundness decreased. It is also observed in Figure 1(c) 
that more than one cluster per grain can develop, particularly for elongated 
particles with large aspect ratios. Thus, the information obtained from the CHT, 
namely cluster location and Ravg> must serve as input to yet a more robust 
segmentation technique, called "active contouring". 
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The use of active contour models, sometimes referred to as "snakes", to 
extract features of interest in images was introduced by Kass et al. (1987) and 
Terzopoulos (1987). An active contour may be described as an elastic ring of 
nodes connected by springs. It is placed on an image and subjected to "external" 
forces which move and deform it from its initial position to best fit a desired 
feature in the image. The elastic stiffness of the snake preserves its continuity and 
smoothness during deformation. The external forces may be derived from the gray 
scale gradients in the image, being maximum at locations of sharpest change. 
Sharp gray scale changes normally reflect the presence of edges in the image. 
Thus, the elastic snake once placed inside the image, will be subjected to attractive 
forces from the edges that will mobilize, deform and finally lock the snakes onto 
the local salient boundaries. 

For the circular Hough transformed edge map described earlier, a circular 
active contour is placed around each cluster zone. The starting radius is set at 
about one-half the RaVg obtained from the CHT. Since all of the analysis is 
performed on a thresholded edge map image, no gray scale gradients are present 
other than at the edges. Thus, for the snake to grow and lock onto the boundary 
edges, a "gradient potential" must be introduced and superimposed over the image. 
This gradient potential will provide the required external force field that will 
stretch the snake radially to the extent that it can reach the edges. The combined 
attractive forces from the gradient potential and the edge gradient enhance the edge 
detection, especially when detected edges are in small disconnected segments, 
such as in the case of an occluding soil grain assembly. 

A Gaussian gray scale distribution centered around the clusters was found 
to provide the needed smooth transitional gradient. The peak value is chosen such 
that its gray scale magnitude does not exceed that of the edge map pixels. The 
Gaussian distribution is adjusted so that the gradient will tend to enlarge the snake 
radially even beyond the grain edges. This is controlled by setting the standard 
deviation of the Gaussian distribution, SQ. This parameter defines the limit to 
which the Gaussian image has a positive normal gradient. Figure 1(d) shows the 
grain edge map with all Gaussian gray scale distributions over the cluster zones 
from Figure 1(c). 

Figure 2 shows several stages of active contouring, starting with the initial 
snake, followed by the growth phase and finally complete edge enclosure. It is 
noted that the snake was able to enclose the grain even with part of its edge 
missing. The elastic stiffness of the snake membrane limits the snake bulging 
through the missing edge. Once the snake locks into position and reaches an 
equilibrium state with the external force field, a simple routine is run to estimate 
the size and possibly other shape characteristics of the enclosed grain boundary. 
When more than one cluster is found for a particle by the CHT, snakes are placed 
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around each cluster but only the snake which provides a better correlation with the 
edge map is retained. 

Active contouring in conjunction with the circular Hough transform was 
performed on the grain particles shown in Figure 1, but with the grains first being 
detached. The "actual" grain size was obtained by pixel counting. As shown in 
Figure 3(a), excellent agreement (correlation coefficient, r=0.996) was found 
between the actual grain size and the size obtained from the active contouring. 
The soil particles were then pushed gently against each other to form the assembly 
shown in Figure 1. The same analysis was performed with three different GG to 
study the effect of this parameter on the accuracy of the method. Figure 3(b) 
indicates considerable underestimation of the grain sizes (r=0.139) when a small 
GQ of 0.6 RaVg is used. This occurs because of the limited spatial distribution of 
the external force field resulting in an inability to push the snake to the edges. 
Much better agreement is achieved (r=0.899) with a larger CTG of 2.0 Ravg as 
shown in Fig. 3(c). Finally, when the dispersion coefficient is drastically 
increased to 2.7 Ravg, many grain sizes are overestimated (r=0.667) because the 
high dispersion coefficients tend to bulge the snake beyond the actual particle 
limits through the missing edges. As a conclusion, a CTG of 1.5 to 2.0 times Ravg 
is recommended. 

3.3 Edge Density Method 

A simpler, yet similarly robust approach for soil characterization is through 
statistical edge data analysis. This method is based upon evaluation of the edge 
pixel density of an edge map using sampling windows of different sizes. Two 
types of soils were studied in this analysis, Muskegon Dune 10-20 sand and 
Ottawa 60-70 sand. Figures 4(a) and 4(b) are the edge maps of these two uniform 
soils after applying an edge detection filter. Figure 4(c) shows an interface 
between these two soils while Figure 4(d) is a mixture of the two. 

The procedure is straightforward. Once an edge map is developed, 
sampling seeds, represented by the black dots in Figure 5, are placed on a regular 
grid pattern. These seed locations represent the centers of a growing sampling 
window as shown. The analysis commences with the smallest available sampling 
window, a 5 x 5 kernel size. A search routine is applied to count all edge pixels 
enclosed within every sampling window. The edge pixel density (EPD), defined as 
the ratio of all edge pixels to total pixels in the window is computed. The process 
of evaluating the EPD continues with successively increasing window sizes around 
each seed. 

The EPDs of all 24 sampling windows (Figure 5) for all four soils are 
shown as a function of the window size in Figure 6. The window size is given by 
the dimensionless quantity (window size/image size). It is clear from Figures 6(a) 
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and 6(b) that for uniform soils the edge pixel density is directly related to the 
average soil grain size. Furthermore, the EPDs of all sampling windows tend to 
merge into a narrow band at an early stage in the analysis. For an interface (Figure 
6(c)), the EPDs tend to converge to two narrow bands, one for each of the soils. 
Finally, for the case of a mixture of two soil sizes, the EPDs do not converge, even 
at large sampling window sizes, due to the non-uniform edge distribution across 
the image. 

The coefficient of variation (CV) of the EPDs provides additional insight 
regarding soil sizes. Figure 7 shows that for uniform soils the rate of decay of the 
CV with image size is directly related to the average grain size with the decay for 
larger grain sizes being slower than for finer soils. Mixed soils tend to exhibit 
larger CVs than uniform soils at high sampling window sizes. Most significantly, 
very high CV values are a signature of an interface in the image. 
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Figure 7. Coefficient of Variation versus Sampling Window Size. 
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4.0   CONCLUSIONS 

Two methods have been developed for determination of soil grain size from 
images of contacting soil particles: 

1. A reasonably precise measure of grain size can be obtained using circular Hough 
transforms in conjunction with active contouring. However, the method is 
computationally very intensive and has only been tested on highly idealized assemblies 
of soil grains. 

2. Edge pixel densities (EPD) and their coefficients of variation with increasing sampling 
window size provide a rapid means for assessing grain size and uniformity and for 
detection of soil interfaces within an image. 
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