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Preface 
This report summarizes research for Grant No F49620-93-1-0620 for the 12 

months from March 1996 to September 1997. We give a general overview of the work 
of the last year in the introduction with more detail provided in later chapters. This 
report and the previous Annual report constitute the Final Technical Report for the 
Grant. 
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1  Introduction 
Our effort in the last period has focused on three topics. First is construction of 

3-D models by use of smart 3-D pen. The other two efforts deal with the problem of 
aerial image analysis. First of these is about detecting changes in man-made struc- 
tures. The second is about detecting and describing building structures from multiple 
views. A brief summary of these efforts is provided here; details may be found in the 
following chapters. 

1.1 3DSketch 

Three-dimensional models are fundamental for many applications such as de- 
sign, analysis, visualization, animation, and multimedia presentation. The difficulty 
in building 3D models comes from three aspects: the input devices are two dimension- 
al, the output devices are also two-dimensional, and the 3D modeling tasks usually 
require artistic skills and computer experience. To tackle these problems, we use a 3D 
input device for direct 3D input and manipulations; for the output, we currently use 
projective display with many depth cues such as a floor mesh, shading, occlusion, etc. 
To make the modeling easier for a common user with no artistic or computer skills, 
we base our system on a conceptual model of freehand sketching. See Chapter 2. 

1.2 Change Detection 

In this effort, we address the problem of detecting changes in man-made struc- 
tures by using aerial images. Changes in image intensities do not always correspond 
to structural changes as pixel intensities can change with changes in viewpoint, illu- 
mination and atmospheric conditions. Also, not all changes on the ground are inter- 
esting, for example, some changes may be seasonal and not structural. We use a 
paradigm of comparing new images to 3-D models constructed from previous images 
rather than the previous images directly. We have developed techniques for image to 
model registration, model validation and change detection. We are able to detect 
changes such as missing buildings, buildings whose dimensions have changed or 
buildings that have been mismodeled (in dimension or position). Results on real data 
over the Ft. Hood site are presented in Chapter 3. 

1.3 Building Detection and Description 

Automatic construction of 3-D models of buildings from aerial images is impor- 
tant for a number of tasks. This problem is made difficult due to problems of low level 
segmentation, lack of direct 3-D information in 2-D images and complexity of images 
and the scene in urban environments. We describe a system that detects rectilinear 
buildings using multiple images. The images need not be all taken at the same time. 
We use hierarchical grouping and matching techniques to overcome ambiguity prob- 
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lems in matching of multiple image features. Good results can be obtained on build- 
ings with adequate contrast and limited occlusions. Examples from the Ft. Hood site 
are used to illustrate the performance of the system. See Chapter 4. 
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2 3DSketch: Modeling by Digitizing 
with a Smart 3D Pen 

Song Han and Gerard Medioni 

2.1  System Overview 
3D models are fundamental for many applications such as design, analysis, vi- 

sualization, animation, and multimedia presentation. However, building 3D models 
is not an easy task. The difficulty comes from three aspects: firstly, the input devices 
(mouse and keyboard) are two dimensional and lack the freedom for a user to specify 
and manipulate in three dimensions; secondly, the output devices (screens) are also 
two-dimensional and do not provide enough cues for exact alignment and depth per- 
ception; thirdly, the 3D modeling tasks usually require artistic skills and computer 
experience which only special groups of people may have. 

To tackle the above problems, we use a 3D input device for direct 3D input and 
manipulations; for the output, we currently use projective display with many depth 
cues such as floor mesh, shading, occlusion, etc. A stereo display device is preferred 
and will be used later. To make the modeling easier for a common user with no artistic 
or computer skills, we base our system on a conceptual model of freehand sketching. 
Our system is novel in that the user only needs to draw unstructured strokes and the 
computer programs will infer structured representations automatically, and thus the 
3D modeling work becomes casual and easy. 

Fig. 1. System set-up 
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Our "3DSketch" system can be used for 3D design, digitizing, and data visual- 
ization, but we currently concentrate on 3D modeling by digitizing from a real object. 
The system set-up is shown in Fig. 1, in which an SGI Indy workstation is used for 
computation and display, a mouse is used by left-hand for menu/icon clicking and 3D 
rotation, a 3D pen is held in the right hand, and a 2-button foot pedal is used to pause/ 
continue/stop the data sampling procedure. 

The software has three major modules: Prototyper, Refiner, and autoTracer. 
With the Prototyper module, the user quickly builds a "clay" prototype by sketching a 
few strokes. With the Refiner module, the user locally improves the prototype surface 
and aligns edge/corner features by adding more strokes. The autoTracer module au- 
tomatically finds creases and corners from the stroke data over smooth regions, so 
that the user can avoid the tedious tracing of such features in the Refiner module. The 
automatically traced features are then fed into the Refiner module to improve the 
model. Fig. 2 shows an example. 
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prototyper auto tracer 

Fig. 2. Three modules of the system 

refiner 

From the programmer's view, the clay prototype modeling is implemented as iso- 
surfacing of a 3D scalar field. The local refinement is a procedure of deformable sur- 
face fitting and active edge alignment, using energy minimization in potential fields. 
The automatic tracing of discontinuity edges and corners are based on directional dif- 
fusion and topology analysis of a 3D tensor field. 

We implemented the user interface using Xt/Motif and OpenGL. We do not use 
the 3D pen as a menu/icon selection device, since that will require extra motion of the 
right hand which does not always rest on the desk. The left hand is always resting on 
the desk, so hand fatigue is not a problem and the menu/icon selections are allocated 
to the left hand. Also we want to make use of the Motif utilities as much as possible, 
instead of writing very low level interactions from scratch using the 3D pen. However, 
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we have made efforts to reduce the left hand operations by introducing gesture recog- 
nition in the system, so that some menu/icon selections are not really necessary. 

A "virtual" pen is also displayed on the screen to mimic the actual motion of the 
3D pen. The user can look at the pen to check the orientation of the coordinate system, 
the display mode, or to test lighting and rendering parameters on the pen for fast 
feedback. If the left button of the foot pedal is pressed, the data digitizing begins. If it 
is released, the digitizing pauses. Pushing the right button will finish a session of dig- 
itizing and back to viewing and modeling mode. If the pen stays static or moves very 
little, the data recording program will not update the data input, so the user can 
pause during sketching. A screen shot of the interface is attached in the end of the 
paper. 

2.2 Motivation 
We humans can effectively perceive a smooth world and detect discontinuities 

from noisy sparse scattered samples. There are some very general principles in our 
human perception processes to account for the regularities in the visual world. If we 
can convert such perception principles into computer programs, the computer will au- 
tomatically infer and reconstruct a complete (or nearly complete) model from a com- 
pact set of samples. This can remove or significantly reduce the laborious manual 
overhead in the dense sampling or rigorous structuring in building computer models. 
Our goal is to free the sketcher from such difficult tasks and allocate them to comput- 
ers. The tasks allocated to the users are limited to some high level decisions and a few 
essential operations. 

Based on this philosophy, we started to develop the 3DSketch system using a 3D 
digitizing pen. We call the system "3DSketch" since the strokes are sparse, only giving 
a "sketchy" description of the object. We demonstrate how to reduce the user's work 
by making the 3D pen more "intelligent". The user would feel as if he/she had a "smart 
pen" that can understand his/her intent from the quick sketch and shows a regular- 
ized model, with degeneracy automatically detected and marked. 

Since current computer modeling tools require precise structured operations, 
the tools block the user's flow of ideas and interfere with the user's concentration on 
creativity. Artists and designers still prefer to make freehand sketches on paper with 
a pen for quick feedback in visual thinking. Some researchers tried to convert such 
hand sketches to computer models. Lipson and Shpitalni [1] implemented a system to 
reconstruct 3D models from freehand sketches. The problem with these systems is 
that the 3D models are inferred from a finished entire 2D sketch, so a lot of interme- 
diate information, such as the orientation of a curve, the sequence between a few 
curves, the grouping of strokes for a part, and the outer boundary of an object, is al- 
ready lost. The inference system must perform segmentation, recognition, reconstruc- 
tion, and representation tasks to interpret the entire finished sketch, and these tasks 
are often coupled together, making the problem very hard to solve. To avoid such prob- 
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lems, an interactive system is preferred to perform incremental inference while the 
sketching is being done, and thus the intermediate information can be utilized. In our 
system, intermediate information is used and timely feedbacks are provided. 

2.3 Interactive Sketching Techniques 
Most interactive 3D design packages use curve-based sketching methods, such 

as sweeping, revolving, and extrusion. These methods usually produce quadrilateral 
meshes. To make a whole object, several patches have to be aligned, with possible 
gaps and holes filled by more operations. Since the input device is often a 2D mouse, 
the user switches between XY, YZ, and ZX planes to draw the curves, and the user 
operations are specified by menus, icons, keyboard shortcuts and direct manipula- 
tions. Zeleznik, Herndon and Hughes developed an interactive system SKETCH [6], 
which does not use any menus or icons, instead the system automatically infers hand 
gestures from the 2D mouse strokes to determine the solids or surfaces the user in- 
tends to input. Adding some hand gestures significantly makes the system easier and 
faster to use, but totally getting rid of menus/icons may be impractical since there are 
too many possible gestures in the sketching procedure. In the Quick-sketch system 
made by Eggli et al. [2], the user sketches over a pressure-sensitive screen with a pen, 
and the system provides icon highlighting feedback, and user correction is allowed to 
override the automatic gesture recognition. We use gestures as well as menus/icons 
in our 3DSketch system, but our sketching device is a 3D pen, and the system has 
more self-adaptation and spatial reasoning ability. 

In other related work, 3D devices are also used to replace the 2D mice. Sachs et 
al. [4] described a "3-draw" system. The user holds a mirror-like plate in the left hand 
to rotate the whole screen display, and holds a 3D stylus in the right hand to sketch 
curves in 3D space. Deering [5] implemented a virtual environment called "holosk- 
etch". Despite the existence of so many 3D modeling software packages, we find that 
many producers still prefer to start with clay models because clay is malleable and 
allows artists the full flexibility to manipulate surfaces in ways that are not easy to 
use or not available in off-the-shelf modeling softwares. Many methods and steps are 
involved in translating a clay model into a computer model. Our goal is to make the 
translation more efficient. Our system is special in that it allows random scratching 
over a region, so that rigorous curve tracing or structured patch meshing is not re- 
quired. Such random scratching is much easier and faster to use than the convention- 
al curve-based designing schemes. For the latter, the user cannot pause during 
sketching a curve, and must follow a restrictive sequence to specify a surface mesh, 
mostly a rectangular mesh which has artifacts in modeling irregular shapes and cor- 
ners. 

Many modeling activities, such as sketching and sculpting, involve both hands. 
According to Guiard's psychophysical research [3], the left and right hands often act 
as elements in a kinematic chain. For right-handed people, the left hand acts as the 
base link of the chain. The right hand's motions are based on this link, and the right 
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hand finds its spatial references in the results of the motion of the left hand. Also, the 
right and left hands are involved in asymmetric temporal-spatial scales of motion: 
right hand for high frequency fine motion, left hand for low frequency coarse motion. 
Our 3DSketch system uses this natural division of manual labor by assigning the low- 
frequency coarse setting of spatial context to the left hand, and the high-frequency 
fine selection and manipulation operations to the right hand. The left hand provides 
context by doing menu/icon selection, rotating the global scene, and providing con- 
straint mode. The right hand operates in the frame of reference set up by the left 
hand, and operates after the left hand's selection of a command and picking of a tool. 
The right hand performs finer sampling, sketching and manipulation of the surface 
geometry. 

Although the 3D pen can also be used for designing surfaces from imagination 
or fitting surfaces to real data such as CT/MRI medical data, we are now just concen- 
trating on modeling by digitizing an existing object. Some subtle differences may exist 
between these applications. For example, a sphere can be designed by clicking at the 
center then stretching an initial sphere to a desired radius. But in digitizing, the 
probe can never move inside a solid object to specify a center. For digitizing, one dis- 
play view is enough, but for modeling and visualization of real data, multiple display 
views may be necessary for 3D alignment. 

To digitize curved, especially organic shapes, current systems require that the 
user trace very dense and regular meshes on the surface. Such work is tedious and 
time-consuming (8 hours are reportedly needed for an experienced modeler to manu- 
ally complete a surface mesh by digitizing a toy cat). Our system allows the user to 
casually specify the most important features and let the computer to fill in the regular 
gaps. 

Ü 
V 

itf 

(a) boxing-up, dimensions, proportions 0>) local refinement 
Fig. 3. Steps in sketching an ellipse 

Textbooks on sketching teach the students to first box-up the objects to draw, 
outline dimensions and proportions, then refine the details. The simplest example is 
to sketch an ellipse. First draw a horizontal axis and a vertical axis, then draw a rect- 
angle box, see Fig. 3(a), and small arc segments are drawn at the top, bottom, left and 
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right locations to provide tangent constraints. From this incomplete sketch, we can 
already perceive a good ellipse (our eyes or brains fill the gaps based on perceptual 
experience). To finish the sketch, more strokes inside these key points and segments 
are filled in, and some local modifications may also be made, see (b). 

These techniques provide guidelines for our system design. In our system, the 
user first makes a very crude prototype (a blob, a plate, a stick, etc.); then adds more 
strokes to specify surface details, edges, and corners, and the crude surface will auto- 
matically deform to reach the sketch strokes and the surface edges and corners will 
also move to align with the specified edges and corners. Since it is difficult to trace the 
pen along ridge edges on objects (the pen will often slip off the object), we provide an 
automatic inference module which can infer edges and corners from the user's sketch- 
ing strokes over the nearby smooth regions, and thus the user is free from the edge 
tracing tasks. The automatic inference module is based on our group's previous re- 
search on perceptual grouping [18, 9]. 

In next Section, the principles and the implementation details are given. The 
work is summarized in Section 5 and the future directions are discussed in Section 6. 

2.4 Three Modules of the System 
2.4.1 Prototyper: Boxing-up and Outlining 

2.4.1.1 User's View: Clay Modeling 
In the prototyping module, the user rapidly builds a 3D model giving a crude 

shape but with the correct topology of the object. We implemented an efficient volu- 
metric clay modeling scheme based on hand gesture recognition, and the program au- 
tomatically results in a regular dense mesh from the clay pieces. Thus, the user does 
not need to manually trace the dense mesh as in the currently commercial packages. 

An object is either a simple entity or an assembly of several parts, and a part is 
approximately a blob, a stick, or a plate, and each part can be globally deformed to 
produce a more general part. To digitize a human head, a single sphere prototype can 
be produced by just clicking 4 points on the head, then the sphere can be globally ta- 
pered, and then locally deformed in the refinement module. To digitize a hand, we can 
specify the palm, the thumb, and the four fingers separately then glue them together 
to give a single triangular mesh for later local refinement. A finger may also be pro- 
totyped as a cylinder, or as a few shorter jointed cylinders, or as a few glued blobs. 
Compared with surface patch method, volumetric clay modeling is more efficient and 
there are no gaps or holes in the parts or the objects, and it does not require Boolean 
operations in the composition. 

Gesture recognition is used for fast modeling without clicking the menus or 
icons. The recognition rules are as follows: if more than three strokes are sketched, an 
ellipsoid is generated; if only two strokes, the closed (or almost closed) stroke is taken 
as cross-section and classified into a square or an ellipse in 3D space, and the other 
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open stroke is used as the sweeping axis for the cross-section. If both strokes are 
closed, a negative part is recognized, i.e., a hole is produced. Of course, the user can 
always override the recognized properties by manually clicking the icons; for example, 
the user can sketch a closed curve as the cross-section of a hole, and then sweep along 
the hole to specify an axis, then changes the default "positive" property to "negative". 
Fig. 4 shows a prototyping example. 

To further reduce the menu/icon clicking, we plan to implement more gestures 
for delete, undo, redo, etc., but the menu/icon options are still available. 

2.4.1.2 Programmer's View: Scalar Fields and Iso-surface Extraction 
Clay models are simulated as equipotential surfaces (or iso-surfaces) traced 

from a generated scalar field in 3D space. For example, if a fire is placed at (0,0,0), the 
temperature at any position may be defined by t(x,y,z)=f(ot?+y?+z?), where f(d) is any 
decreasing function and we use f(d)=2(d/R)3-3(d/R)2+l (for d<R), and f(d)=0 (for 
d>R). Then, given a specified temperature value T, the iso-surface is defined by 
t(x,y,z)=T, which is a sphere. If one more fire is put at a nearby position, the new tem- 
perature field will be the summation of the two fields, and the iso-surface ti+t2=T will 
become a peanut-like shape. But for the user, it works as if two soft clay blobs blended 
into a peanut-like shape. Different field functions define different shapes of clay parts. 
We use ellipsoids, blocks, and cylinders. Furthermore, if ice (instead of a fire) is put in 
the space, a negative temperature field will result in a cavity, a hole, or a tunnel. Also, 
a clay part only blends with parts in the same group. For example, a finger is allowed 
to blend with the palm but will not blend with other fingers. 

2.4.2 Refiner: Adding Details to the Prototype 

2.4.2.1 User's View: A Magnetic Pen-tip 
Since the prototype only gives a crude initial model, the user still needs to im- 

prove the surface by adding more details. This is similar to the previously mentioned 
ellipse sketching procedure, where more local modification strokes are added to im- 
prove the boxing-up prototype. In our system, the user randomly sketches over a re- 
gion where corrections are needed, and the surface will adapt to the new strokes to 
yield a better shape. The user can also trace the crease edges and mark corners on the 
object for the model to align with. Finally a smooth surface with preserved and 
aligned creases and corners will be obtained. The user feels as if the 3D pen has a 
magnetic pen-tip which attracts the surface to desired positions. See Fig. 5 for a dem- 
onstration. 

2.4.2.2 Programmer's View: Potential Fields and Energy Minimization 
Since the clay parts are solid models (balls, sticks, cubes) and lack local details, 

we now treat the prototype as a surface model for local refinement by adjusting the 
positions of control points. The triangle mesh is updated to a quadratic triangular 
Bezier surface. Each data point contributes a negative spherical potential field which 
decays with distance, and thus three potential fields are generated by surface points, 
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Fig 4. Clay Prototyping by hand gestures 

crease points and corner points, respectively. Energy minimization is performed to de- 
form the surface and align its edges and corners. Using potential fields makes surface 
fitting fast enough for interactive modeling. In Hoppe et al.'s work [10] [11], the dis- 
tances from data points to the triangle mesh is computed many times during the en- 
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Fig. 5. Refining a blob into a tooth 

ergy minimization iterations, and the program runs for hours. By contrast, the 
potential field is only computed once for each data point, and is incrementally updated 
with new sketching strokes. 

The energy to be minimized is defined as follows: 

= ^smooth     ^surface+ ^creases     ^corne 

At first, the surface is a quadratic Bezier spline surface which is at least C° by 
sharing control points between adjacent triangles, but we still need the smoothness 
energy to minimize the mesh roughness. The smoothness energy is defined in terms 
of the first-order derivatives [9]. The surface energy is for surface fitting. Minimizing 
the crease/corner energy aligns the creases/corners and significantly reduces the total 
energy, or cooperatively improve the surface fitting precision, and we thus do not have 
to subdivide the triangles into many tiny ones to obtain a good fitting if misaligned 
edges and corners are present. After the TriBezier surface is refined, creases and cor- 
ners are marked and the model is upgraded to C1 triangular B-spline (TriB) surface 
with preserved edges/corners (TriBezier is a special case of TriB), one more time of en- 
ergy minimization is performed to obtain the final surface [9]. 

We use the Levenberg-Marquardt algorithm with numerically estimated gradi- 
ents of the energy and take the steepest descent direction in iterations (in physics, the 
gradient of a potential field is a force field). To maintain interactive speed, the active 
triangles should be kept as few as possible, so the user must move the pen locally, in- 
stead of traversing a long stroke over the object. After a region is refined, the pen can 
be moved to another local region. 

We have recently found that vector potential fields provide better convergence 
than the scalar potential fields, at the cost of more storage and computation. The rea- 
son is that some position may receive conflicting forces from nearby data points. Using 
vector potential field with radial directions for each data point will cancel out the con- 
flicting forces in the accumulated potential field, making it possible to attract the sur- 
face toward correct directions more efficiently. 
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2.5 AutoTracer: Feature Inference 

2.5.1 User's View: Sketching Smooth Regions 

In the "Refiner" module, the user quickly and randomly sketches more strokes 
to improve the model. But, tracing and aligning the creases and corners is still te- 
dious. Valley creases are easier to trace, but the ridge creases are difficult to trace. The 
pen will slide off the ridges very often. Touching a few points on the ridges is easier 
but much slower if the ridges are curved. With the "AutoTracer" module, the user ca- 
sually and quickly sketches over the smooth surface regions, then the computer will 
automatically infer creases and corners between these smooth regions, and the user 
doe not need to manually trace the edges or mark the corners. Then the Refiner mod- 
ule is used to perform the energy minimization which deforms the smooth surface and 
better aligns the creases and corners. Fig. 6 shows the data points produced by sketch- 
ing over a banana, and the surface with automatically detected and aligned crease 
edges. The user does not have to trace the edges, making sketching much easier. The 
inference, however, runs for 3 minutes and thus this module is not done in real-time. 

Fig. 6. Strokes over a banana and the result 

2.5.1.1 Programmer's View: Inkspot Diffusion 
From the programmer's view, the problem is to reconstruct smooth surfaces from 

the scattered points or curve segments, and also to localize creases and corners, if any. 
If the user sketches slowly, the line segment between two sequential points may pro- 
vide a good estimation of the tangent of the surface, and a stroke (i.e., a polyline or a 
fitted B-spline curve) provides a "streamline" over the object (imagine that the user is 
sketching over a streamlined car hood). However, if the user sketches very quickly, the 
sampled data points are far apart, and connecting them into a polyline, or fitting them 
to a spline curve may not yield truthful streamlines of the surface, so more strokes are 
to be added to obtain enough samples. To make the sketching easy, these strokes do 
not have to be parallel and the user can change stroke directions while sketching, so 
the recorded data are just unstructured strokes. To obtain a geometric model of the 
surface, the programmer's task is to diffuse these streamlines into a stream surface. 
In addition, the crease edges and corners between these smooth stream surfaces are 
to be extracted automatically. 

To be as general as possible, we only use the sampled unstructured points and 
diffuse them into a stream surface. This is equivalent to diffusing rain droplets on a 
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car's hood into a shallow water stream surface and thus obtaining the surface model 
of the hood. Since we are using a 3D "pen", we'd like to call each data point an inkspot 
(similar to "streamball" in [13]). To simplify the principles, we first explain the diffu- 
sion procedures in 2D, that is, to diffuse inkspots on a sheet of paper into streamlines 
and detect the corners as well. If the user sketches slowly, the streamlines are readily 
available by simply connecting sequential inkspots and fitting them with a B-spline 
curve, and then we can skip the inkspot diffusion step and directly diffuse the stream- 
fines into stream surfaces. Details on the algorithms can be found in [18, 9]. 

Fig. 7 (a) shows some inkspots with added noise for testing. In (b), an inkspot is 
shown. The mass density is the largest and the grayscale the darkest (black) at the 
inkspot position. Then as an inkspot diffuses, its mass density decays with distance 
and the ink darkness decays also. For a position on the paper, since the ink reaches 
the position from a specific direction, physical measures such as mass density, veloc- 
ity, and kinetic energy density are all vectors. For each position, all nearby inkspots 
can diffuse and reach this position with different mass density along different direc- 
tions. That means that each position accumulates many mass density vectors, as de- 
picted in (c), and thus each position contains a tensor and the paper becomes a dense 
2D tensor field. This is similar to the stress tensor field inside a solid, where each po- 
sition receives stress forces of different strength and directions from all nearby posi- 
tions [15,16,17]. 

,,,......... „ss      //f major 

(c) accumulated mass 
(a) inkspots of a sketch (b) diffusion of inkspot density vectors 

Fig. 7. Inkspot diffusion 

Mathematically, we compute at each position a 2x2 covariance matrix (or called 
second-order moments, or scatter matrix) of all accumulated vectors, and the two 
eigenvectors defining the major and minor axes of an ellipse, as seen in (c). A large 
thin ellipse indicates an ink stroke passing through this position, and the major 
eigenvector gives the tangent direction of the stroke; by contrast, a large round ellipse 
have two salient directions, indicating an intersection of two or more strokes. More 
specifically, the major eigenvalue yields an absolute measure of ink mass density, and 
the ratio (eccentricity) tells whether this position is a stroke curve position or an cor- 
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ner/intersection position, whereas small eigenvalues indicate positions far from the 
inkspots. 

1/ r ' 
/' 

(a) linear diffusion (b) curved diffusion 

Fig. 8. Second pass inkspot diffusion 

After the above diffusion, we obtain an estimated stroke direction (curve tan- 
gent) at each position, and we can further improve the diffusion result by a second 
pass of diffusion, but this time with an oriented diffusion: the mass density decays 
with distance and also decays with the offset angle from the tangent. If the tangent 
direction is very certain (the ellipse is very thin), a linear diffusion pattern in Fig. 8(a) 
is used. If the tangent direction is not very certain (round ellipse), the stroke at this 
position is either very curved or at a corner/intersection, so a curved diffusion pattern 
is used, see Fig. 8(b). 

Fig. 9 (a) is the mass density after the second pass diffusion, and (b) is the stroke 
curves traced by searching for locally darkest positions. The intersection positions 
(degenerate points) are also marked. 

I 
\ 

1 

\ 

Y 

(a) diffused ink (b) traced streamlines with intersections marked 

Fig. 9 

In 3D space, inkspots or ink streamlines diffuse to yield a 3D tensor field. At 
each position the tensor is represented by three eigenvectors which depict an ellip- 
soid. If the ellipsoid is stick-like, the position belongs to a surface since there exists a 
unique major normal direction; if it is plate-like, this position is along an edge since 
there are two major normal directions; for a blob, this position is a corner due to the 
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three conflicting stream surface normal directions. See Fig. 10 for an intuitive illus- 
tration. 

stick 

Fig. 10. Eigen analysis of the 3D tensor field 

Fig. 11 (a) show 3D strokes sketched over the smooth regions of a wood part. 
Note that we do not trace any edges or corners. The AutoTracer module infers poten- 
tial fields for surfaces, edges and corners. A sphere is given by the Prototyper module, 
and the Refiner module is called to deform the C° TriBezier prototype and align the 
edges and corners. Finally the edges and corners are automatically marked, and the 
TriBezier surface is upgraded to TriB surface which is C1 everywhere except along the 
edges and at the corners, then the Refiner module is called once more for the TriB sur- 
face [9]. 

2.6 Summary 

We have described a two-handed 3D "sketching" system using a 3D stylus, and 
we focus on modeling by digitizing (tracing) an existing object. First, the user simply 
sketches a few strokes over the object to obtain a 3D prototype; then when the user 
randomly sketches more strokes over the object and specifies creases and corners, the 
3D model will deform to follow the details and the edges and corners will align with 
the sampled creases and corners. The system can also automatically perform spatial 
reasoning from unstructured fragmented sketches to infer smooth surfaces and ex- 
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Fig. 11. Autotracer on a piece of wood 

tract creases and corners, so that the tedious manual sampling of creases and corners 
can be avoided. 

Technically, the prototyping module uses equipotential surfaces of a scalar field 
to produce clay-like models; for the local refinement module, scalar or vector potential 
fields are used to generate attractive forces to deform the shape; for the automatic in- 
ference module, tensor fields are used to find surfaces and features (creases and cor- 
ners). 

2.7 Future Work 

The internal surface representation is triangular splines, whose good properties 
in arbitrary triangulation and local subdivision makes it more flexible to model gen- 
eral surfaces than the rectangular splines. Spline models involve much fewer control 
points than the polygonal models in describing smooth surfaces, and thus are advan- 
tageous for iterative minimization and interactive editing. We have used TriBezier, 
TriB, TriNURBS for open and spherical surface modeling [9]. For arbitrary topology 
surfaces, we now use triangular Bezier surfaces, but will soon upgrade to triangular 
B-splines [19]. After the model is refined, some flat regions may have redundant tri- 
angles, and a mesh decimation is necessary to simplify the model. The decimation can 
also yield a multiresolution representation, which is useful for viewing and anima- 
tion. 

For the user interaction, we now use a 2D mouse for menu selection and 3D ro- 
tation. We have recently ordered a 6-degree-of-freedom space ball, which will provide 
more ease of use for the left hand operations. Some company has attached a laser 
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beam and sensor at the pen tip, so that the object will not be damaged by the touching 
of the sharp pen tip during sketching. More hand gesture recognition techniques will 
be applied to further reduce the time necessary for looking at the screens for menus 
and icons. With a see-through head mounted display, the user could directly see the 
3D model imposed on the real object, and find the regions where more refining strokes 
are needed, and a translucent display which does not block the user's view may be 
helpful. 
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3 Detecting Changes in Aerial Views 
of Man-Made Structures 

Andres Huertas and Ramakant Nevatia* 

3.1  Introduction 

One of the key applications for aerial and space image analysis is for detecting 
significant changes on the ground. This could be for various purposes such as urban 
planning, agricultural analysis, environmental monitoring and military intelligence. 
We focus on changes in man-made structures, particularly buildings, rather than 
changes in the vegetation. Note that while changes in the desired structures should 
be reflected in some changes in the image, not all changes in the images may be 
caused by 3-D structural changes. Image intensities can vary due to a number of fac- 
tors such as changes in illumination, viewpoint, atmospheric conditions. Further, sea- 
sonal variations may cause changes in vegetation and ground cover; while these 
represent "real" changes on ground, they may not correspond to structural changes. 

There is little previous work in structural change detection. Early work in 
change detection was based on determining pixel intensity changes 
[Lillestrand,1972], We believe that the solution to finding structural changes lies in 
not comparing images taken at different times directly but rather in comparing new 
images (or descriptions derived from them) to an abstract model derived from previ- 
ous observations; such models have come to be called site models [Gerson & Wood, 
1996]. This approach also allows an updating of the site models which may be one of 
the prime goals of the change detection analysis. 

A new image can not be directly corresponded to an abstract model. Instead, we 
must compute descriptions from the image that can be corresponded with the model 
or descriptions that can be derived from the model. This is a common problem in ob- 
ject detection in computer vision and various techniques such as alignment have been 
developed to solve it [Huttenlocher & Ullman, 1990]. The change detection problem is 
simpler to the extent that some parameters of the pose of the objects may be known a 
priori. However, the objects themselves may have changed and not fit a prior model 
exactly. Also, aerial images typically contain a large number of man-made and natu- 
ral objects, not all of which may have been modeled (for example, we do not assume 
models for trees in a scene). The objects of interests may be partially (or totally) oc- 
cluded by other objects and shadows cast by them may cause confusion. The images 
also contain significant amount of texture, thus leading to a large number of features 
at the lower-levels (such as edges) that prohibit use of combinatorial techniques to 
search for desired objects. Finally, we need to verify that the suspected changes actu- 
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ally correspond to some 3-D structures and to derive a description of the changes 
where possible. 

The system described in this paper is designed for detecting changes in 3-D 
building structures. We further assume that the buildings are rectilinear and have ei- 
ther flat or simple gable roofs. Composite shapes (such as "U or "T") are allowed. Each 
part is represented by its 3-D wire-frame (consisting of any number of vertices and 
edges). We assume that the camera geometry and approximate viewpoint from which 
images are taken are known. Specifically, we assume that the errors are such that a 
projected model can be corresponded with the image by translation only; this is a rea- 
sonable assumption for many imaging situations; errors in other parameters would 
only affect the registration stage of our system as described below. 

The change detection process consists of the following five major steps: 

• Site Model to Image Registration: This step is to register the new image(s) to 
the stored site model(s); our system uses fine feature matching. 

• Site Model Validation: This step verifies whether the objects in the site model 
are present in the new image by comparing predicted features with observed fea- 
tures. A confidence value is computed for each object in the model; low confi- 
dence values are likely to represent possible changes to the objects. 

• Structural Change Detection: In this step, we analyze in more detail possible 
change in the site indicated in the previous step, and determine if the missing 
correspondences can be explained by the imaging and viewing conditions or 
whether evidence exists for actual changes. Our system is able to detect missing 
(or mis-placed) buildings, buildings with dimensional changes, and new build- 
ings under certain conditions. 

• Site Model Updating: In this step, 3-D models of changes are constructed where 
possible. These can be reported to a human analyst and reflected in an updated 
site model (which can then be used to process new images at the next cycle). 
The following sections describe the processing at each step and illustrate with 

an example. More results and evaluations are described in section [3.6]. Our system 
has been tested primarily on data available for the Ft. Hood, Texas, site. The site mod- 
els for our tests were constructed by using tools provided in the Radius Common De- 
velopment Environment (RCDE) [Strat et al. 1992; Fua, 1996]. The kinds of changes 
we are looking for occur over relatively long periods of time; unfortunately, we were 
not able to acquire data reflecting such changes for this site. Instead, we have modi- 
fied the site models which should have the same effect as our system only compares 
images with site models rather than previous images. This method also provides a 
check on the accuracy and validity of previous site models. Our system has been port- 
ed to an industrial laboratory for possible use in current applications. 

Final Technical Report 24 



3.2 Site Model to Image Registration 

The first step is to register a site model to an image. In our task, it is reasonable 
to assume that the imaging parameters are known to some accuracy and that the er- 
rors are such that if a site model is projected by the known parameters, its features 
will correspond with those from the image except for translational errors (which may 
be quite large, in the order of tens of pixels). The registration problem is then that of 
determining this translation, which we model as being uniform across the image. We 
need to decide what features of the models and image should be matched to determine 
the translation. The models are abstract, 3-D wire frame structures, the image is a 2- 
D array of intensity values. We have chosen to match lines extracted from the image 
with the lines projected from the site models by the known (approximately) camera 
geometry. The line matching technique is adapted from an earlier method [Medioni et 
al., 1990] and has been described in [Huertas, et. al, 1995]. 

Figure 3.1 shows the line segments extracted from portion of an image of the 
site. The model registered with the image is shown in Figure 3.2 . We find this process 
to be quite robust, whether applied to small windows containing just a few buildings 
and to very large windows containing many tens of buildings (and other structures 
which may not be in the site model). 

Figure 3.1 Line segments extracted from a portion of 
an image from Fort Hood, Texas 

3.3 Site Model Validation 

The purpose of model validation is to verify whether the objects in the site model 
are present in the new image in the same form or whether they should be examined 
in more detail for evidence of significant changes. The previous step (registration) pro- 
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vides a correspondence between model and image segments. For model validation, we 
combine evidence from a variety of object features such as lines and junctions. We also 
look for 3-D evidence by evaluating expected shadows cast on the ground; in multiple 
images, this could come from feature correspondence information. Note that not all 
the features of the model may be visible in the image, some will be missing due to self 
and mutual occlusion. These occlusions can, however, be predicted from the viewing 
geometry and accounted for. There will also be missing evidence due to difficulties of 
feature extraction in images: low contrast edges may not be detected and line seg- 
ments fragmented due to surface and ground texture. 

Figure 3.2 Site model registered with image 

Before confidence values are calculated (as explained in section [3.3.4]), the sys- 
tem deals with a number of problems and ambiguities inherent to any matching pro- 
cess. We discuss these next. 

3.3.1 Missing Features 

To validate a model accurately we need to study the source of missing model-to- 
image correspondences. Some missing image features will be due to viewing condi- 
tions such as self-occlusion, occlusion by other objects, self shadows and shadows cast 
by nearby objects. These, however, can be predicted and explained from the site model 
itself. Missing correspondences may be due to over- or under-modeling of objects (Fig- 
ures 3.3 and 3.4) and are more difficult to predict from the model. The confidence as- 
sociated with over- or under-modeled objects may thus be underestimated or difficult 
to calculate. Over-modeling is due to the use of modeling primitives that introduce el- 
ements that do not correspond to actual physical elements or boundaries. Figure 3.3 
shows a building that has been modeled by two rectangle parallelepipeds. The thick 

Final Technical Report 26 



lines represent portions of the elements on the building model that do not correspond 
to physical boundaries. These can not be matched and the missing correspondences 
result in lower confidence. Figure 3.4 shows two buildings that are likely to be under- 
modeled (i.e. modeled by simpler shapes) due to their complexity. These require addi- 
tional search strategies designed to look for additional and possibly fragmented evi- 
dence, such as a large number of vertical or horizontal edge elements. Our system is 
not currently capable of determining these conditions, and thus the confidence values 
maybe underestimated. Some of these conditions may require annotations in the site 
model to help the system process these appropriately. 

(a) Building 

(b) Building Model 

(c) Image Segments Q^ 

Figure 3.3 Missing match due to over-modeling. 

Figure 3.4 Some buildings may be under-modeled 

3.3.2 Ambiguities in Matching 

The system currently deals with two ambiguities inherent to the matching pro- 
cess: multiple or missing matches, and coincidental alignments due to viewpoint, il- 
lumination direction, or due to adjacent structures. 

3.3.2.1 Multiple Matches 
The model-to-image matcher corresponds each model element with one or more 

image elements (Figure 3.5 ) possibly involving more than one object. Allowing mul- 
tiple matches is necessary to deal with expected fragmentation in the image elements. 
Fragmentation is due to inadequacies in the feature extraction process and due to ac- 
tual image content, such as occluding trees, road boundaries and shadows. If a model 
segment matches multiple colinear image segments, all the image segments are con- 
sidered to represent image support. If a model segments matches multiple parallel 
image segments, the overlap among these is considered to represent image support. 

M 
(a)       y 
odel^ tzz^Ezz^^ ̂ LÄe 

/     Li ii y / 
Figure 3.5 One-to-many 
correspondences. 
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3.3.3 Coincidental Alignments. 

Some multiple matches are due to coincidental alignments of buildings with oth- 
er structures (Figure 3.6 ). Some of these include roads, walkways, lawns, shadows 
and other adjacent objects. Nearby objects and shadows sometimes result in image 
features that have a larger extent than that predicted by the model features. These 
are explained by examining nearby shadows with knowledge of the direction of illu- 
mination, and by examining adjacent structures. Coincidental alignments due to 
nearby and adjacent structures are determined by looking for adjacent structures 
that help explain alignment, or a possible change in horizontal dimensions. An exam- 
ple of some ambiguities and alignments is shown in Figure 3.7 . 

Modelelements Image Elements 

Alignment 
Figure 3.6 Coincidental alignments. 

Figure 3.7 Example of ambiguities 

3.3.4 Validation Confidence 

We evaluate five kinds of evidence: edge visibility, edge presence, edge coverage, 
junction presence and shadow presence (these terms are explained below). Each evi- 
dence provides a score between 0 and 1 and a combined confidence score is computed 
by a linear weighted combination of them. We have chosen this method of combination 
for its simplicity. It works well in our tests but there may well be more optimal ways 
of combining such evidence. Here we have chosen a simple linear combination formu- 
lation with empirically assigned weights applied to the evidence terms. The weights 
however reflect the relative importance of the evidence but remain to be optimized 
over a larger sample of experiments. The confidence values derived take into account 
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only visible elements from the particular viewpoint of the image after accounting for 
self and mutual occlusion. (Figures 3.8 and 3.9): 

Let £ be a model object defined by a set of vertices and a set of edges. For each 
object, x, we calculate a confidence value C(x) as a contribution of the following terms: 

Edge Visibility: V(x) is given by the fraction of the model edges that are visible from 
the current viewpoint. Fewer visible edges result in lower confidence. 
Edge Presence: P(x) is defined as the fraction of the visible model edges that are 
matched to some image edges. In the schematic example shown in Figure 3.8 (a), all 
nine visible edges (dashed lines) have correspondences in the image (solid lines), giv- 
ing a P value of 1.0. An object that is only 50% visible but that has the visible 50% 
corresponded to image edges has a P value of 1.0 also. P is calculated separately for 
roof elements, vertical wall elements and base wall elements which are given dif- 
ferent weights (roof evidence is considered the most reliable, the wall base the least 
reliable). 
Edge Coverage: E(x) is defined as fraction of the lengths of the visible model edges 
that is actually covered by some image segments. Figure 3.8 (a) shows an object 
where all the model edges (dashed) have some, but small coverage; this object has 
good presence but poor coverage. Figure 3.8 (b) shows the opposite; a few model edges 
have good image edge support so the coverage is good but presence is not. E(x) is also 
calculated separately for roof and wall elements. E(x) is penalized by fragmented sup- 
port. 

I 

/„\ Good presence 
W Poor coverage 

^ Poor presence 
*■ ' Good coverage 

Figure 3.8 Presence and Coverage. 

Junction Presence: J(x) is defined as the ratio of the number of image L-junctions 
at locations predicted by the model (Figure 3.9 ) to the number of visible model verti- 
ces. Image junctions are extracted from the image from the line segments used for 
matching. 

Shadow Presence: S(x), is defined as the ratio of the number of shadow bound- 
aries and junctions extracted from the image matched to predicted shadows, over the 
number of visible predicted shadow elements (boundaries and junctions) derived from 
the model (Figure 3.9 ). See [Lin et al., 1995] for a description of our method to extract 
shadow boundaries and junctions from images. 

High confidence C(x) values indicate good image support while low values denote 
low support. Low values may signify change as lack of image support may be due to 
missing buildings, or buildings that have undergone significant change with respect 
to their current model. However, model buildings that have strong image support, 
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Figure 3.9 Shadows cast by a 
rectangular building. 

may have changed also as additions to structures, such as a new wings, may not affect 
significantly the appearance of the previously modeled portions. 

Figure 3.10 shows the results of the validation step applied to the image shown 
in Figure 3.2 earlier. The labels indicate the validation confidence level as a function 
of C values: high (H) for C >= 0.5; medium (M) for 0.4 <= C <0.5 and low (L) for C < 
0.4. Note that a building indicated as having low (L) confidence has actually drasti- 
cally changed (or was grossly mis-modeled) whereas the ones marked high (H) are in 
fact, unchanged. Medium level (M) typically denote buildings with moderate or "ac- 
ceptable" image support. These assignments are arbitrary however, and would have 
to be set as a function of the task at hand. Some applications may require detailed 
explanations of possible change that require higher discrimination. Here we show 
only three for simplicity. 

3.4 Structural Change Detection 
The validation step makes available information that is used to start analyses 

to determine structural changes. Two cues are used to investigate structural changes: 

Validation Confidence values: These values reflect image support for a model 
object. Although low support may be due to poor image quality, lack of contrast, occlu- 
sion, or viewpoint, they can signify missing structures, substantially altered struc- 
tures or incorrect modeling. Medium level support denote "acceptable" indication of 
presence with reduced support due to poor image quality, lack of contrast and other 
image dependent characteristics. High values clearly denote strong presence and im- 
age support, at least for the modeled portions. 

Extra Image Elements: Model elements that correspond to image elements 
having greater extent than that of the model element provide preliminary indication 
of possible changes in dimensions. This situations occur regardless of confidence lev- 
els assigned. 

The above cues are used to further analyze whether one of the following three 
classes of structural change has occurred. The three classes are: missing (or mis- 
placed) buildings, dimensional changes, and new buildings. The methods to infer 
these changes are described next. 
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Figure 3.10 Validation result (partial) and 
confidence levels. 

3.4.1 Missing Buildings 

Model buildings having very low confidence values denote poor image support. 
The possible causes for this condition are that either the model is incorrect, the struc- 
ture is heavily occluded or that the building has been removed or destroyed (assuming 
that images are of sufficient quality), or that its position is grossly incorrect. A low 
confidence is sufficient to report a missing building, if additional images were avail- 
able, they could be examined for confirmation. Figure 3.11 shows the result in a small 
window containing two modeled buildings. The model building on the right was added 
to the model by hand to test this condition. It is reported as having low confidence cor- 
rectly as evidence for its presence can not be found in the image. 

3.4.2 Validated Buildings 

Model buildings having moderate (M) to high (H) levels of support are considered val- 
idated. That is, their presence in the image is verified. The buildings labeled (M) typ- 
ically require verification in another image to increase, if possible, their confidence 
level. An example is shown in Figure 3.12 . The L-shaped building in the small win- 
dow corresponds to the L-shapes building, labeled M on the top left of the image 
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Figure 3.11 Missing building (white outlines) 

Figure 3.12 Validation from another viewpoint. 

shown in Figure 3.10 . From this viewpoint the confidence value of this building in- 
creased to 0.5661, thus becoming validated with high confidence. 

3.4.3 Dimensional Changes to Modeled Structures 

In some cases, regardless of confidence, the system is able to cue possible struc- 
tural changes based on the fact that model edges are matched to longer image edges. 
Those cases where these conditions arise due to accidental alignments have been han- 
dled earlier, as explained in section 3.3.2. The remaining cases therefore represent 
cues for possible change. We apply a building finding tool at this stage to confirm a 
change (and to derive a description of the change) as shown later in section 3.5, how- 
ever, this relies on the building finder's ability to find new buildings. A less stringent 
criterion may be to only search for some additional evidence such as the extra edges 
casting a shadow and/or having other evidence of being above ground (from multiple 
images). We have not implemented such partial analysis though components of it are 
available in the building finding tool. 
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Figures 3.13 (a) and (b) show two examples of evidence that support cueing di- 
mensional changes. The matching and fine registration step correctly registers the 
modified models to the structures in the image. The thick white gray fines are the ex- 
tended image segments that matched the corresponding model edges thus triggering 
the cue. 

Figure 3.13 Actual change in dimensions. 

3.4.4 New Buildings 

One important type of site change is the introduction of new structures. For such 
changes, the previous model is less useful but can still be relied on to provide some 
context. Such context can consist of areas of interest and characteristics of existing 
buildings (to check if buildings similar to existing ones have been constructed). Our 
system only uses the site model to mask out the modeled areas and a building finding 
tool is applied to all other areas, or all other areas containing large number of un- 
matched image features such as corners. The camera models and terrain models as- 
sociated with the site are used to derive viewpoint and illumination parameters 
automatically. We have experimented with focus of attention mechanisms to select 
the areas where automated detection should be applied. 

Final Technical Report 33 



3.5 Model Updating 
The next task is to make a model for the detected structural changes and to in- 

corporate them in the site model. We describe two situations: where changes are made 
to existing structures and where new structures are detected. 

3.5.1 Modeled Buildings 

Changes in the dimensions of modeled structures that have been cued by the 
previous step need to be analyzed further, possibly using more than one view of the 
scene. We use a monocular building detection system [Lin et ed., 1995] to return the 
highest rated building hypothesis that can be formed in the location of the cued 
change. These are shown in Figure 3.14 for the two examples shown earlier in 
Figure 3.13 . The 3-D models are derived automatically. 

(a) 3-D model 
generated by 
building 
detector for the 
extended wing. 

(b) 3-D models suggested for changed wings. 

Figure 3.14 Suggested updating of cued changes 

3.5.2 New Buildings 

Detection of new buildings is a more difficult task as the site model is less help- 
ful. Our method consists of applying one of our building finding tools (see for example 
[Lin et al, 1995]) to areas of interest and reporting the results that are of sufficiently 
high confidence. Typically the system would be instructed to locate new buildings in 
designated areas that are of interest, such as functional areas. The buildings detected 
automatically become candidates to be added to the site model. 
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3.6 Validation and Change Cueing Results 
We have tested our system on several images of a modelboard and Fort Hood 

sites. In this section we show part of a representative example only, due to lack of 
space. Fort Hood images are typically 7775x7720 pixels in size. The 3-D site model 
contains 79 objects representing building structures. Processing time is about 15 sec- 
onds per structure on a Sun spare-10 workstation, running under the RCDE. The re- 
sults are summarized in table [1]. It shows the number of building objects visible in 
the image and the distribution of validation confidence values (H, M and L). The label 
codes are also shown in Figure 3.15 . The confidence values are dependent on the im- 
age content and may not necessarily reflect structural changes but generally there is 
a high correlation between confidence level and the number of buildings changed, not 
changed, or missing. All matching ambiguities, with one exception (not shown), are 
correctly handled. This case involves an alignment with a ground feature not present 
in the model, a situation, not currently handled by the system. The building involved 
is the only one, of the 54 non-changed buildings, cued incorrectly to have changed. 
This situation is however likely to be corrected by confirmation of the change using 
another view of the building. Fourteen buildings that are actually present in the im- 
age had changes. Thirteen of these are found to be changed correctly. Representative 
changes are shown in the Figure 3.15 with a circle on top and thick white lines cueing 
evidence of dimensional changes. The remaining changed building is an L-shaped 
building (not shown). The building has two wings, both of which have changed. Only 
the left wing is detected to have changed. This situation is likely to be corrected by 
reconciling the output from more than one view. 

Table 1: Summary of Results 
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Buildings that changed considerably or are missing have a low validation confi- 
dence (labeled L in Figure 3.15 ). There are 12 of these, 11 of which were added by 
hand to test the "missing building" detection capability. The remaining one, repre- 
sents a significantly changed building (The cross-shaped building in Figure 3.15 ). All 
these are labeled correctly as changed or missing. 

Final Technical Report 35 



Figure 3.15 Validation and change detection result for a 
portion Fort Hood, Texas 

3.7 Conclusion 
We have shown some results and capabilities of our system for detecting and de- 

scribing structural changes. It has been tested on real images (though with simulated 
changes to the model) and seems to be quite effective at finding significant changes in 
rather complex images. It is able to find missing (or misplaced) buildings, buildings 
with changed (or incorrectly modeled) dimensions and new buildings (or previously 
unmodeled buildings). This system relies on use of a single image to find changes. We 
anticipate that its performance would be significantly enhanced by use of multiple im- 
ages as they would provide independent evidence of changes and also allow the rea- 
soning to proceed more directly in 3-D space. Several multiple image building finders 
are becoming available [Noronha & Nevatia, 1996; Jaynes et al, 1994; Collins et al 
1995] and could be easily incorporated in our method. Our system has been ported to 
an industrial laboratory for possible use in current applications. 
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4 A System for Building Detection 
from Aerial Images 

R. Nevatia, C. Lin and A. Huertas* 

Abstract 

We describe a method for detecting rectilinear buildings and constructing their 
3-D shape descriptions from a single aerial image of a general viewpoint. 2-D roof hy- 
potheses are generated from linear features by perceptual grouping. Good hypotheses 
are selected and then verified by computing wall and shadow evidence for them, 
which also provide the height information for the buildings. A 3-D reasoning process 
resolves conflicts among hypotheses in 3-D space. Results from several images can be 
integrated at a high level. An interactive system allows efficient editing of results by 
making use of the analysis performed by the automatic system; it also allows for some 
initial preparation of the data to improve results of the automatic system. Some re- 
sults and their evaluation are included. 

4.1  Introduction 
Detection and description of buildings from aerial images remains an active area 

of research; an excellent collection may be found in (Grün et at., 1995), some more re- 
cent work is described in (Fua, 1996; Henricsson et al., 1996; Weidner, 1996). Many 
different kinds of inputs, such as stereo images and range images, have been used. In 
this paper, we focus on the use of a single image. Lack of direct 3-D information makes 
use of a single image more difficult, but they are attractive due to the ease with which 
they can be obtained. It is also our experience that many of the processes involved in 
single image analysis are also required for multiple image analysis (Noronha & Neva- 
tia, 1997). Our system is restricted to rectilinear shapes with flat roof but allows for 
oblique (i.e. non-nadir) views. It also allows for efficient human interaction where the 
results of the automated system can be improved with relatively few and simple in- 
teractions before and after automated processing. 

Our basic approach is to use the geometric and projective constraints to make 
hypotheses for the presence of building roofs from the low-level features and to verify 
by using available 3-D cues. As, our system is restricted to rectilinear buildings with 
flat roofs, they project into compositions of parallelograms. We use shadow and wall 
evidence to verify and reconstruct 3-D structures. The system also analyzes the 3-D 
structures to resolve conflicts among them. A summary of this approach and some re- 
sults are given in section 4.2. In section 4.3, we describe how to integrate results from 
multiple images. We have also developed a methodology for efficient human interac- 
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tions with this system, for the purposes of editing the results or to provide some guid- 
ance prior to automatic analysis. Many errors of the automated system can be 
corrected (or prevented) by relatively simple user interactions. These methods and 
some results are described in section 4.4. 

4.2 Monocular Building Detection 
This system consists of several layers. At first, linear edges are detected from the 

image. Next parallelogram hypotheses are formed that are consistent with the projec- 
tive constraints given by the viewing geometry. Promising hypotheses are selected 
based on some 2-D and local 3-D evidence. The selected hypotheses are verified by 
searching for 3-D cues using wall and shadow evidence. The verified hypotheses are 
examined for mutual containment and overlap and a non-conflicting set is selected 
which provides 3-D building models. Each model is also assigned a confidence level, 
computed from combinations of lower-level evidence.The early stages of this process, 
including hypotheses formation, selection and verification by using wall and shadow 
evidence have been described previously (Lin & Nevatia, 1995) The current system 
uses an improved hypotheses generation system and various modifications have been 
made to the selection and verification steps, however, the general approach remains 
the same and we omit further discussion of them; details may be found in (Lin, 1996) 

4.2.1 Containment and Overlap Analysis 

The wall and shadow verification processes examine each hypothesis individually and 
do not analyze the relationships among them. Thus, some verified hypotheses might 
overlap with or contain others. At this stage, having knowledge of 3-D allows us to 
check that two inconsistent structures do not occupy the same 3-D space. 

When one hypothesis is contained in the other, two cases can occur, as shown in 
Figure 4.1 (a) and (b). In the first case, a contained hypothesis does not share any side 
with the containing hypothesis; here the latter is likely to be a superstructure on top 
of the former. We also adjust the height of the superstructure to be relative to that of 
the base. In the second case, the two hypotheses share some common boundaries. If 
the two have different heights, we consider them to be in conflict and remove the one 
with the lower confidence. If they have the same height, and share boundaries, the 
containing hypotheses is removed unless there is strong wall and shadow evidence for 
its non-shared roof boundaries. 

The overlap cases also fall in two cases. If the overlapping hypotheses have the same 
height, it is not considered a conflict and both are retained as shown in Figure 4.2 (a). 
When two roof hypotheses with different building heights overlap, they conflict in 3-D 
space and the one with weaker evidence is removed. Note that it is possible for two 
building hypotheses to have overlapping footprints even if the roof hypotheses don't 
overlap as shown in Figure 4.2 (b). 
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Figure 4.1 Containment analysis 
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(a) Overlapping hypotheses with the same height 

Figure 4.2 Overlap analysis 

overlapped 
footprint 

(b) Overlapped Footprint 

shadow occluded 
by building HI 

wall occluded 
by building H2 

Figure 4.3 Evidence occluded by other buildings 

4.2.2 Building Interaction Analysis 

When nearby buildings (or their parts) occlude another, they can affect the evaluation 
of wall and shadow evidence of the occluded objects. In Figure 4.3 , a part of shadow 
evidence of hypothesis H2 is not visible because of occlusion from HI, and a part of 
wall evidence of HI is blocked by H2. Say that there is enough evidence to support H2 
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but not HI. However, once H2 has been verified, the interaction analysis process re- 
evaluates HI by examining the evidence in the non-occluded area and verifies. Verifi- 
cation of HI causes confidence of H2 to be increased in turn. In general, this process 
may need to be iterated until no changes occur. 

Figure 4.4 (a) shows the detected wire frames of the two verified hypotheses for 
an example. Both were detected initially, but the confidences of both parts were in- 
creased after interaction analysis. Figure 4.4 (b) shows an example where only two 
of the three structures of the building in the scene are detected initially; the left part 
is not verified as its wall and shadow boundaries are occluded by the middle part. Af- 
ter analyzing the occlusion, the left structure is recovered and the confidence of the 
middle structure is increased also, because it is occluded partly by the right structure. 

(a) Low Occlusion Case (b) High Occlusion Case 
Figure 4.4 Results on two examples 

Figure 4.5 shows the results for a larger window (of an image from Fort Hood, Texas), 
containing several buildings in a complex scene viewed obliquely. As can be seen, most 
buildings are detected accurately. Only one has an obvious height error. No false pos- 
itives are detected. Two buildings are not detected. The one in the bottom left area is 
not detected because of severe occlusions by nearby trees. The other is the bright 
building with two wings; mutual occlusions between the two parts cause both to be 
not verified. The two C-shaped buildings are detected but the descriptions are not ac- 
curate. The middle parts of the C-shaped buildings are not hypothesized, because 
there is no other evidence besides a pair of parallel lines. A part of the building in the 
top middle area is not detected due to occlusion and low height. There are also some 
structures attached to the four buildings on the left side of this image that are not de- 
tected, largely because of their low height. 
It takes 877.58 seconds (14.62 minutes) to process image in Figure 4.5 on a SUN 
Sparestation 20 (using the RCDE environment with all code being written in COM- 
MONLISP). The most time consuming process, at 63% of the total, is that of parallel- 
ogram formation. The "higher-level" processes of hypothesis selection, verification 
and 3-D analysis take only a small fraction of the total time. The execution times are 
generally linearly proportional to the number of lines that are found in an image. 
There are many ways to measure the quality of the results. Following (McGlone & 
Shufelt, 1994; Shufelt & McKeown, 1993), we use the following five measurements: 
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Figure 4.5 Results with multiple buildings in an oblique image of a complex 
scene complex scene 

Detection Percentage (100*TP/(TP+TN)); Branch Factor (100*FP/(TP+FP); Correct 
Building Pixels Percentage; Incorrect Building Pixels Percentage and Correct Non- 
Building Pixels Percentage. The first two measurements are calculated by making a 
comparison of the manually detected buildings and the automated results, where TP 
(True Positive) is a building detected by both a person and the program, FP (False Pos- 
itive) is a building detected by the program but not a person, and TN (True Negative) 
is a building detected by a person but not the program. A building is considered de- 
tected if a part of the building is detected. The accuracy of shape is determined by 
counting correct building and non-building pixels. These quality measurements are 
rather consistent for most of the images processed. Average approximate values over 
several examples are: Detection rate, 70%; Branch Factor,6%; Correct Buildings Pix- 
els, 70%; Incorrect Building Pixels, 8%; and Correct Non-Building Pixels, 99%. 
Another method of evaluation is to examine the number of true and false positives as 
a function of the hypothesis confidence; Figure 4.6 shows results for 12 windows, 
each containing several buildings. It should be noted that there are no false alarms 
for high confidence values, thus a clear choice is available between higher detection 
rates and lower false alarms. 
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confidence values confidence values 

Figure 4.6 Distribution of true and false 

4.3 Integration of Results from Multiple Views 
Results from several views can be integrated to get more robust results. Some struc- 
tures may be more reliably detected in some views depending on conditions, such as 
the viewing direction, the illumination direction, and the building orientation. The 
approach is not to perform complete stereo analysis but to merge the higher level 
structures only. Hypotheses in one view are projected into the other views (knowledge 
of relative camera geometry is assumed) and verified as any other hypotheses. If a 
building is correctly detected in one view, supporting evidence for it should be found 
in other views. On the other hand, if an incorrect hypothesis has been made, it should 
be unlikely to find much supporting evidence from other views. Based on this obser- 
vation, a better decision can be made by integrating all evidence from all available 
views. A building could be verified individually in more than one view resulting in 
multiple hypotheses for the same structure. An overlap analysis is performed and the 
hypothesis with the highest combined confidence is retained. A set of 3-D models is 
created from the list of retained hypotheses which can be projected into any view for 
visualization. The situation when none of the hypotheses from any of the views is cor- 
rect is not handled. 

Figure 4.7 shows an example of integrating the results from two views of a 
building. The building is composed of three structures. The main structure in the mid- 
dle is detected in the left image only and the right wing in the right image only. The 
left wing is detected in both images. After integration all three parts are verified and 
shown reprojected in the two views in Figure 4.7 . Similar improvements are obtained 
for other examples, such as the one shown in Figure 4.5 , but are not included for lack 
of space. 

4.4 Interactive Editing and Preparation 
While the automatic system performs well under many conditions, there are also sev- 
eral situations that cause it to fail to find a building or to find a correct description of 
the building. An interactive system has been developed to correct these errors. Many 
interactive systems for building detection have been developed in the past (Heller et 
al., 1996, Neuwnschwander et al., 1994). One different aspect of our approach is to use 
the partial results of the automatic analysis to reduce the required interactions from 
the user. 
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Image 1 Image 2 

Figure 4.7 Integration of results from multiple views 

There are two classes of interaction possible in this system. The first is a quali- 
tative (or initial) interaction, the second is a quantitative (or corrective) interaction. 
The input for the qualitative step is simply an indication of the problem, such as a 
missing building and its approximate location (indicated by positioning the cursor 
somewhere inside the roof area). This causes the automatic system to re-examine all 
of the roof hypotheses generated earlier by the system and select the one with the 
highest score. In many cases, just this interaction results in a correct building to be 
detected; it was not previously output because its score was too low. A version of this 
system also allows to qualitatively specify the probable cause of failure (such as a 
dark area) which can be used in selecting the best hypotheses (see (Heuel & Nevatia, 
1995) for details) 

If the building detected by qualitative interaction is not correct (in dimensions, 
location or orientation), quantitative, corrective interactions are needed. Two ways of 
correcting the hypothesis are available. The user can choose to associate extracted 
edges and corners with a part of the building model. For example, a roof-side of the 
building can be specified by an edge extracted in the image. Then this edge is added 
to the current hypothesis (by replacing the nearest edge of the current hypothesis). 
Such interactions are facilitated by mouse-sensitive features of the RCDE (Strat, et 
al., 1992). After each corrective interaction, the system forms a new parallelogram hy- 
pothesis and looks for new edges, shadow and wall evidence to support the new hy- 
pothesis. Therefore, it is possible that, after a manual correction of a roof-boundary, 
the wrong building height is also corrected automatically. 
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The user can also adjust the roof-parallelogram by dragging sides with the 
mouse, rotating or translating the whole model. Changes can only be made within the 
constraints of the building model, for example opposite sides remain parallel The ex- 
traction of a ground corner or edge (shadow corner or edge) determines the building 
height. These interactions are similar to a completely manual system. 

We find that, in conjunction with the automatic system, relatively few and sim- 
ple user interactions yield correct models. In order to complete the building detection 
task for the example of Figure 4.5 (14 buildings made of 29 rectangular structures), 
the following user interactions were required: two of the detected structures required 
1 quantitative correction; fifteen qualitative interactions were required to select hy- 
potheses for structures not detected; of these, 2, 4, 8 and 1 structures needed 0, 1, 2 
and 3 quantitative interactions respectively. 

Figure 4.8 shows several other building models (processed in four separate win- 
dows as shown). For this example, 38 of the structures (a rectangular building or a 
rectangular part) required no interactions. 27 structures were detected but required 
some corrective interactions (20 required one, 4 required two, and 3 required three in- 
teractions). 10 undetected structures were correctly detected with just one qualitative 
interaction. Remaining 29 undetected structures required 1 qualitative and 1, 2 or 3 
quantitative corrections (13 required one, 11 required two, five required three). In 
nearly all of the cases where corrective interactions are required, only corrections of 
the sides and height are necessary. 

Figure 4.8 Edited results for four windows from a large image. 

Initial Preparation 
The performance of this system can be improved by providing the automated 

system with some information prior to its computations. In normal operation, a user 
would need to select images and image windows to be processed anyway. It is a rela- 
tively simple task for the user to also provide an indication of where the desired build- 
ings are by simply pointing and clicking somewhere in the interior of such buildings 
and could be considered to be part of the preparation of the image data to be pro- 
cessed. Such input is viewed by the system in the same way as a qualitative input lat- 
er, i.e. a building hypotheses with the highest score is always selected. Also, no 
buildings are output in areas not indicated by the user. This simple input greatly im- 
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proves the performance of the automatic system, increasing its detection rate while 
reducing or eliminating the false alarms. 

Automatic results obtained by selecting the locations in the image of the 29 roof 
components is shown in Figure 4.9 (a). All roof components are detected but 14 re- 
quire quantitative corrections. Eleven of these required 1 correction and the other 3 
required two corrections. Figure 4.9 (b) shows the completed model. For this example, 
the number of structures requiring interaction is the same with initial preparation or 
without (as in Figure 4.5 ). However, the former case requires fewer corrections and 
takes about half as much time. 

We have attempted a preliminary quantitative evaluation of this approach by com- 
paring to the time required to construct building models in a given window by using 
traditional modeling tools, such as those supplied with the RCDE (Heller et al., 1996). 
For the interactive system, we only include the time needed for initial and editing 
steps but not the computation time for the automated step (as it can be executed off- 
line and does not require user's attention). The results on three windows from the Ft. 
Hood image data set are summarized in Table 1.1^, tj, and te denote time in minutes 
for manual, interactive and editing processes respectively. The L and I shape data are 
not shown due to lack of space but are similar to those shown in Figure 4.8 . The "com- 
plex" window is the one shown in Figure 4.9 . These results compare very favorably 
with the manual process that would be needed for the same task. As shown in the ta- 
ble, the speed-ups range from a factor of about 7 to about 11, the lower number being 
for more complex shapes where more user interactions are required. These results are 
preliminary and have not been tested on large data sets with different kinds of oper- 
ators (all times are for A. Huertas). Nonetheless, we believe that the indicated speed- 
ups are significant and offer potential for use in a practical system. 

Table 2: Time Comparison (time in minutes) 

Image 
Description 

#of 
Buildings 

#of 
Boxes 

•m ti te 

#of 
Boxes 
edited 

tm 

ti+te 

L-shape 8 12 8 0.2 0.5 2 11.4 

I-shape 19 35 28 0.6 2.5 4 9.0 

Complex 14 29 75 0.4 10 14 7.2 

4.5 Conclusion 
We have summarized our approach to automated building detection and description 
using a single intensity image, to integrating results of several such images, and of 
designing interactive tools for preparing data and editing results. The range of shapes 
to which these techniques can be applied remains limited but we believe that they 
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(a) Automated results with initial preparation 

(b) Completed 3-D model 

Figure 4.9 Results obtained with initial preparation and user interaction. 
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cover a useful and significant subset. The system has been ported to some user labo- 
ratories for further testing and evaluation. 
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