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ABSTRACT 

TWO SELECTED TOPICS INVOLVING THEORY AND APPLICATIONS OF 
INFINITE ARRAYS OF MICROSTRD? ELEMENTS 

SEPTEMBER 1995 

STEPHEN DONALD TARGONSKI 

B.S.E.E., UNIVERSITY OF MASSACHUSETTS 

M.S.E.E., UNIVERSITY OF MASSACHUSETTS 

Ph.D., UNIVERSITY OF MASSACHUSETTS 

Directed by: Professor David M. Pozar 

The objective of this work was to develop theory for infinite arrays of microstrip elements, 

and incorporate that theory into the modeling of large finite arrays. The first topic, the 

effect of random positioning errors on the input impedance of an infinite array of printed 

dipoles, utilizes the infinite array solution to gain insight into the reduction or possible 

elimination of scan blindness for these arrays through the intentional introduction of 

random element positioning errors. Both planar and linear infinite random arrays are 

examined. In the second topic, the analysis and design of a microstrip reflectarray using 

patches of variable size, a rigorous solution to plane wave scattering from an infinite array 

of microstrip patches is performed. The data from this solution is then used to design a 

finite sized microstrip reflectarray. Several new topics in reflectarray analysis and design 

are examined, including the design of millimeter wave microstrip reflectarrays. 
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CHAPTER 1 

EFFECT OF RANDOM POSITIONING ERRORS ON THE INPUT IMPEDANCE 

OF AN INFINITE ARRAY OF PRINTED DD?OLES 

1.1      Introduction 

A problem in the use of phased arrays of printed elements is the appearance of 

scan blindnesses at certain angles [1]. These blindnesses occur because the mutual 

coupling between the elements in the array add in phase at the blind angles, creating a 

highly reactive input impedance. This problem can be alleviated by introducing random 

positioning of the elements in the array, thereby randomizing the phase of the mutual 

impedance between the elements. 

Two articles discuss the removal of scan blindness through the use of random 

element positioning [2,3]. However, these and other papers on random arrays have 

always studied the effect on the array pattern only, and have not examined the input 

impedance of the elements. 

In order to study the effect of random positioning errors in an infinite array an 

impedance analysis must be done, since there is no specific definition of an antenna pattern 

for an infinite array. The active element pattern is often referred to, however, this also 

depends on the input impedance of the elements. In this chapter the solution for the 

expected value of the input impedance of an infinite array of printed dipoles on a dielectric 

substrate is presented. However, a limitation exists in the analysis in the fact that the 

terminal current at each dipole must be fixed. 



Specifically, in this chapter: 

• Two infinite planar arrays with random positioning and varying degrees of 

randomization will be analyzed. 

• Two infinite linear arrays with random positioning and varying degrees of 

randomization will be analyzed. 

• Averaged results from several large, but finite, random linear arrays will be 

compared to the results from an infinite random linear array to validate the 

analysis. 

1.2      The Infinite Random Planar Array 

The geometry of the infinite random planar array is shown in Figure 1.1. The 

element positions along the x axis are placed at xffl=ma+Am, where the A^s are 

independent identically distributed uniform random variables with zero mean defined on 

the interval [-6,8]. This formulation is of the form of a "binned" random array [4], as 

compared to the totally random array. It has been shown that for element spacings of less 

than a wavelength, scan blindness for this array geometry occurs primarily in the E-plane 

[1]. Therefore, randomization has only been introduced in the x-direction. 
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Figure 1.1 Geometry of the infinite random planar array of printed dipoles. 

A theoretical approach similar to the one presented in reference [1] was used, 

with a single PWS mode assumed for the current on each dipole. The single PWS mode, 

while not providing a rigorous solution for the actual input impedance, should be sufficient 

for predicting the existence or non-existence of scan blindnesses. 

The analysis begins with the Green's function for the electric field at (x,y,d) of a 

single infinitesimal electric dipole located at (x0,y0,d) on a grounded dielectric slab, 

G,(x.j1x.,yJ--^JJß,(^,^)«*(^,e*^*)rfMfc, (1-0 

where Z0 is the intrinsic impedance of free space and the kernel function Q^ is listed in the 

Appendix. 



For the infinite planar random array, the total electric field is the superposition of 

the electric field from each element. The elements are phased to produce a beam in the 

(u,v)=(sin 0 cos <J>, sin G sin <j>) direction, and the appropriate phasing is selected to 

account for the non-periodic positioning. This yields 

ßo 
00 00 

(1-2) 

In the above expression, F( kx,ky) is the Fourier transform of the piecewise 

sinusoidal mode used on the dipoles, given by 

2ke(coskxh-coskeh) sinkyw/2 

where h is the mode half-length and ke = k0-yj{er + \)l2. 

The input impedance of the (m,n)=(0,0) dipole can then be computed as 

Z™ = -\\Ex{x,yyjx{x,y)dxdy (1-4) 

where the area of integration is over the surface of the dipole. This yields 



rOO zr= 
CO 00 

£ £ gAo-^j JÖÄ(^j^)F2(ytx>^y^e^V(Ar-B-t')(A"-A<,VM^ 
'o m=—oo n=-oo 

(1-5) 

The above equation for the input impedance is a random variable which is a 

function of the independent random variables A,,,. The expected value of a function of a 

random variable is computed as 

E[Y]=lg(x)Mx)dx (1-6) 

where the random variable Y is a function of the random variable X i.e- Y=g(X). Also, 

fx(x) is the probability density function for X. 

Using (1-6), the expected value of input impedance is computed as 

o m=-oo JI=-OO 

where 

(l-7a) 

E[e X^u-^KA.-Ao) 
] = 

1    ;   ro = 0 

S(kx) ;   m*0 
(l-7b) 

and 



S(kx) = 
sin(^0t/-AI)g> 

(l-7c) 

While the input impedance of (1-6) is not periodic, the expected value of (l-7a) is. 

Therefore, the Poisson sum formula can be applied to this expression. Applying the 

formula and performing some algebraic manipulation yields 

CO CO 

*1u)K0 i^-eo-«, O0Ko m=_m  ^_x 

(1-8) 

The first term in (1-7) resembles the solution for an infinite H-plane linear array, 

while the second term resembles the solution of an infinite planar array. For E-plane scan 

the first term remains constant, but the second term contributes a scan blindness. This 

blindness is caused by coupling to higher-order Floquet modes [1]. 

An interesting result occurs when the degree of randomization is increased by 

enlarging 8. As 8 approaches 0.5a, its maximum allowable extent, the function StkJ 

approaches zero for m?K). This has the effect of eliminating coupling to any higher-order 

Floquet modes, thereby eliminating the scan blindness, at least in the average sense. 

At this time an important point must be brought up in the analysis. In the above 

formulation, the terminal current on each dipole is held constant with uniform amplitude. 

While this assumption is valid for the periodic array, in the case of the random array 

differences in the mutual coupling between elements will in general excite different 



currents on each dipole. Therefore, for the analysis to be valid, each dipole must be fed 

with a current generator which holds the dipole currents fixed as their positions are varied 

inside each bin. This gives rise to the equivalent circuit shown in Figure 1.2. Here a 

current generator with internal impedance Z^ feeds the dipole with input impedance Zd. 

As the position of the dipole varies inside the bin, the current supplied by the generator 

changes accordingly to keep the current id constant. This fact is not critical in interpreting 

the results of the infinite array analysis, however, it becomes crucial when formulating 

large finite arrays that simulate the behavior of the random infinite array. 

+ 

V, 

v \1/ 'd 

z. 

Figure 1.2. Equivalent circuit for dipoles fed with current generators. 



From this equivalent circuit, the total power supplied and the portion supplied to 

the dipole can be easily computed. Keeping in mind that the magnitude of the dipole 

current, id, is unity and is fixed, we get 

(l-9a) 

Pd = Re{Zd} (l-9b) 

In the case of the random infinite array considered here, Zd=E[Zto]. The power Pd 

as defined in (l-9b) can be interpreted as the average combined radiated power and power 

launched into surface waves. 

The surface wave efficiency, computed from the expected value of radiated power 

and power coupled into surface waves, of the infinite random planar array is an interesting 

topic. For the periodic infinite planar array, there is no power transferred into surface 

waves except exactly when scan blindness occurs - i.e. for all other scan angles the surface 

wave efficiency is 100%. However, as randomization of the element positioning is 

introduced, power can be coupled into surface waves. The mathematical interpretation of 

this power is the contribution of the surface wave poles in the first term of (1-8). The 

contribution of these poles is included in the numerical calculation of the infinite integral, 

and is denoted as Z^. The surface wave efficiency is then computed as 

"-—Mmr <M0) 



Examples of the ratio of average power dissipated by the dipole array to the total 

power supplied by the source are shown in Figures 1.3a and 1.3b. Scan is in the E-plane. 

The average power is plotted for various degrees of randomization. It is evident from the 

figure that for the periodic array (5=0) a scan blindness occurs around 45° for both cases. 

The blindness is narrowed as randomization is introduced but is not completely removed 

until the maximum amount of randomization (8=.25X) is introduced. 

The expected value of input impedance for an infinite random planar array is 

plotted on a 50 ohm Smith chart in Figure 1.4. Again, it is evident that a blindness 

appears at 45.6° in the E-plane. This plot gives an insight into the blindness phenomenon 

for the infinite random array, especially the curve for 5=0.2X.   The expected value of the 

impedance for this particular randomization follows the curve for 8=0.25X closely except 

near the blindness angle, where it exhibits behavior similar to the periodic array. As will be 

seen in the next section, blindness in the infinite linear array exhibits a different behavior. 

The surface wave efficiency for both examples is shown in Figures 1.5a and 1.5b. 

For the periodic array, no power is coupled into the surface wave except exactly at 

blindness, yielding and efficiency of unity at all other angles. As the degree of 

randomization is increased, more power is allowed to be coupled into a surface wave 

thereby decreasing the efficiency. The efficiency of the example shown in Figure 1.4b has 

a markedly lower efficiency than the example of Figure 1.4a, suggesting a "stronger" 

surface wave in this case. 
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Figure 1.3. Ratio of average dipole (radiated & surface wave) power to total power supplied by 
source for an infinite planar array of printed dipoles. E-planescan. Values are 
normalized at broadside, (a) a=b=0.5k, L=039\, w=0.0lX, d=0.19X, er=2.55. 
(b) a=b=0.5X, L=0.156X, w=0.0lJt, d=0.06X, er=12.8. 
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Figure 1.4.  Expected value of input impedance for infinite random planar array versus E-plane 
scan. Normalized to 50 ohms. a=b=0.5X, L=0.39A, w=0.0lX, d=0.19X, er=2.55. 
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Figure 1.5. Surface wave efficiency versus E-pIane scan for infinite random planar array. 
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1.3      The Infinite Random Linear Array 

The geometry of the infinite random linear array is shown in Figure 1.6. The 

geometry is similar to that of the planar array, with element positions along the x axis 

given by xm=ma+Am, where the A^s are as defined in the previous section. The equivalent 

circuit shown in Figure 1.2 is used to feed the elements. An E-plane array is considered. 

4 
y 

l-L-f n         1 
->JL 

a 

z 
t1 

I *TTTrtrrrrTTTTTTrTTTrTTTTTTTTTZrTTTTTrrrTTTrTTT 

^CROUND PUNK 

Top View Side View 

Figure 1.6 Geometry of the infinite random linear array of printed dipoles. 

The method of analysis closely follows that of the planar array with a single PWS 

mode assumed for the current on each dipole. The total electric field for the array in the 

array plane is given by 

Ex{x,y) = --^j- £ e*°^~™} ]Q„(kx,ky)F(kx,ky)e
Jk'(x-ma-A'^'ydkxdky (1-11) 

Following the same steps taken in the analysis of the planar array yields the 

expected value of the input impedance as 

^ZJ = I^f h^,ky)F\kx,ky)[l-S(kx)}ikxdky+J^-± }Q{kx,ky)F\kx,ky)S{k,)dky 

(1-11) 
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Examples of the ratio of average power dissipated by the dipole array to the total 

power supplied by the source are shown in Figures 1.7a and 1.7b. For the periodic array 

(5=0) a scan blindness occurs around 45° for both cases. As was the case with the infinite 

planar array, the blindness is narrowed greatly as randomization is introduced but is not 

completely removed until the maximum amount of randomization (5=.25X) is introduced. 

The surface wave efficiency for both examples is shown in Figures 1.8a and 1.8b. 

The infinite linear array differs from the planar array in that even in the periodic case a 

surface wave can be launched (the periodic planar array can support a surface wave only 

exactly at blindness). For scan angles that are greater than the blindness angle, a large 

amount of power is coupled into this surface wave, thereby lowering the efficiency. As 

the degree of randomization is increased, the efficiency decreases near broadside but 

increases for those angles which are greater than the blindness angle. Again, the average 

efficiency of the example with high relative permittivity has a markedly lower efficiency 

than the example of Figure 1.8a. 

1.4      A Finite Linear Array Example 

The ultimate goal of any infinite array analysis is to try to effectively model large 

finite arrays with the added bonus of increased computational efficiency. Therefore, a set 

of fixed parameters for a large finite linear array were chosen and several random arrays 

were analyzed to see if the solution for the infinite array does in fact model the behavior of 

the finite array. Also, looking at the input impedances of the individual elements in the 

finite random array gives a good idea of the variance of the input impedance, a calculation 

which is extremely complicated for the infinite array. The average surface wave efficiency 

for the finite arrays can also be examined. For this example, linear arrays consisting of 99 

elements were considered with the other parameters as listed in Figure 1.8b. 
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Figure 1.7. Ratio of average dipole (radiated & surface wave) power to total power supplied by 
source for an infinite E-pIane linear array of printed dipoles. Values are normalized at 
broadside, (a) a=0.5X, L=0.39A, w=0.0lX, d=0.19k, er=2.55.  (b) a=0.5Jt, L=0.15O, 
w=0.01k, d=0.06X, er=12.8. 
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Figure 1.8. Surface wave efficiency for an infinite E-plane linear array of printed dipoles. 
(a) a=0.5X, L=0.39X, w=0.0lX, d=0.19X, er=2.55. (b) a=0.5Jt, L=0.156k, w=0.0lX, 
d=0.06X, er=12.8. 
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In order to provide data to compare to the infinite array solution, several random 

finite arrays were generated and the results from each were averaged. The element 

positions along the x axis are given by xm=ma+Am, and for each element the value A„, was 

generated from a uniform random variable with zero mean defined on the interval [-5,8]. 

The result is a finite array with fixed, but non periodic, element positions. 

For large degrees of randomization many arrays had to be analyzed to get a good 

average result due to the large variance in input impedance. For this purpose a full-wave 

moment method solution for the finite array, even using only a single mode on each dipole, 

is computationally impractical. Fortunately an asymptotic expression for the mutual 

impedance between elements exists [5] and data computed by this method can easily be 

curve fitted for the case of the linear E-plane array. For closely spaced elements the 

mutual impedance was computed using a spectral domain integration and also curve-fitted. 

With this approach solutions for several random finite arrays with a large number of 

elements can be computed rapidly with a great deal of accuracy. 

The analysis proceeds similarly to that of the infinite random linear array with a 

fixed terminal current on each dipole. The input impedance for the n* dipole is then 

computed as 

4« £„ m=l -»-co 

where N is the number of elements and ^ is the position of the m* element. The spectral 

integral in (1-12) is just the mutual impedance of two dipoles in the array (obviously the 
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dipole self-impedance in the case where m=n) so the asymptotic data mentioned above 

may be used and the input impedance computed as 

z: =7%-S^"(I""X")^(xm-xJ (1-13) 
4 A2*. m=l 

Plots comparing the ratio of average power dissipated by the dipole array to the 

total power supplied by the source for the finite and infinite cases are shown in Figures 

1.9a,b,c,d for cases with 6=0,8=0. U, 6=0.2X, and 6=0.25?i respectively. Twenty-five 

distinct finite arrays were used to generate the data. The agreement is quite good in all 

cases, and while a true blindness is not seen in the finite array, a dip in the power ratio is 

evident near the 45° scan angle except for the 5=0.25X. case.    The case of free excitation 

for a finite array is also considered in Figure 1.9. It is seen that with varying 

randomization the blindness is reduced to a greater extent with free excitation than by 

using fixed terminal currents at each dipole. The results between the two cases are not 

significantly different, however. 

The average value of input impedance for the finite and infinite arrays is compared 

in Figures 1.10a,b,c,d for cases with 6=0,6=0.R, 8=0.2%, and 6=0.25X, respectively. 

Agreement is excellent, with slight deviations at the blindness angle due to the finite size 

of the array and possible errors in the curve fit used for the mutual impedance. 

The calculation of surface wave efficiency for the finite arrays is much more 

involved than in the case of the infinite array. Because a curve fit was used to find the 

mutual impedance between elements, Z^ cannot be computed and (1-10) cannot be used. 

However, the total radiated power can be computed by integrating the far-fields of the 

array, and the surface wave efficiency defined as 
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Figure 1.9. Ratio of average dipole (radiated & surface wave) power to total power supplied by 
source for 99 element finite linear array and infinite linear array.  Values are 
normalized at broadside.   a=0.5X, L=0.156A, w=0.01k, d=0.06X, er=12.8. (a) 5=0 
(b)6=0.lX, (c)6=0.2X, (d) 8=0.25*. 
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9 = 45° 

O    Finite Array 
•    Infinite Array 

(a) 

Figure 1.10. Plot of average input impedance for 99 element finite linear array and infinite linear 
array cases.  Values are normalized to 50 ohms. a=0.5X, L=0.156X, w=0.0lX, d=0.06X, 
er=12.8.(a)8=0 (b)8=0.lX, (c) 8=0.2*, (d) 8=0.25*, 
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Prud f)     — £H2_ (1-14) 

I>; 
«=i 

where Pf is the power delivered to the n* dipole as is given by (l-9b). 

To find the radiated far field of the dipole array, a stationary phase evaluation of 

the Green's function is performed [6]. The far field of the n* dipole with an x-directed 

current is given by 

^sinfy/^ 
cosösin^ (l-15a) 

eik°r Z„ 
'On       1n      __      r\ _~       '   v"x>">. ■"A»   — •*« V¥F(^,i) k0kt sin k^d^ 

r    2* \      *m       j 

kx = sin 0cos 0   ;   k = sin ösin 0 

COS0COS0 (l-15b) 

where Z0 is the intrinsic impedance of free space and /„ = e**"-" is the dipole terminal 

current. The expressions for k,, k^ Te, and Tm are given in the Appendix. 

The total radiated far field from the array is then given by 

N 

^=14^**^ (l-16a) 
M=l 
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N 

Ei^E+e**'*""« (l-16b) 
B=l 

The radiated power is then found by integrating the far fields, 

P«' = i-Jo  Jo   N + N  )sin0^^ <M7> 
o 

Plots comparing the average surface wave eflBciency of the finite arrays to the 

surface wave eflBciency of the infinite random linear array are shown in Figures 1.1 la,b,c,d 

for cases with 8=0,5=0.IX, 8=0.2^, and 8=0.25X, respectively. To find the average 

surface wave efficiency, the surface wave efficiency of each individual finite array is 

computed using (1-14), and the results are averaged. The agreement in all cases is 

excellent, thereby validating the use of (1-10) in computing the surface wave efficiency for 

the infinite array and showing that the infinite array solution sufficiently models the 

behavior of the finite arrays. 

To complete the analysis, the computed reflection coefficient for each dipole in the 

finite arrays was also calculated. The matching impedance, Z^, used in the calculation was 

the expected value for the infinite array at broadside, and the dipoles were conjugate 

matched, i.e. |r„ | = (Z£ - Zb) I {Z"m + Z*b). While this calculation does not present any 

significant physical meaning, it does give some insight into the variance of the input 

impedance as the dipole positions are randomized. 

Histograms showing the distribution of the magnitude of this reflection coefficient 

are shown for no randomization in Figures 1.12a&b, and for cases with 8=0.25X in 

Figures 1.13a&b. In the periodic case the reflection coefficient is quite small for the great 
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majority of the dipoles, with elements near the edge exhibiting a slightly higher reflection 

coefficient magnitude. The case with 5=0.25X is much more interesting. The majority of 

dipoles at broadside have reflection coefficient magnitudes in the 0.3 to 0.6 range, 

showing that the median and mean values for the input impedance are quite different. 

Also, there are a few elements exhibiting reflection coefficient magnitudes of greater than 

unity. 

While this seems like an erroneous result at first glance, it can be explained by 

mutual coupling of power between the dipoles [7]. When the mutual coupling between 

elements is strong, a great deal of power can be delivered through this mutual coupling to 

some elements, and in some cases this coupled power exceeds the power supplied to the 

element by the feed. This results in a negative input resistance for the element and a 

greater than unity magnitude reflection coefficient. The total power balance for the array 

is preserved, however. 

In this chapter the solution for the expected value of input impedance for an 

infinite array of printed dipoles was presented. Planar and linear E-plane arrays were 

considered. The scan blindness phenomenon was seen to be reduced with the introduction 

of randomization, and to disappear completely only when the full extent of randomization 

was introduced. Several large finite arrays with element positions generated from a 

uniform random variable were analyzed and averaged data from these arrays compared 

well with the infinite array calculation. 

A limitation of the practicality of this analysis is the stipulation of a fixed terminal 

current at each dipole, which would be a difficult and cost prohibitive measure to 

implement in an array of printed dipoles. A fixed terminal current at each dipole reduces 

the effects of mutual coupling on the array pattern, however, which can be quite severe in 
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a random array. The alternative is the case of using free excitation for each dipole. This 

method, while being easily implemented, suffers greatly from mutual coupling effects in 

the random array environment. 

These effects can be seen by examining the patterns shown in Figure 1.14. The 

patterns shown are for the cases of free excitation and fixed terminal current, and for both 

cases the element positions are the same. The effect of mutual coupling in the free 

excitation case is easily seen in the high sidelobes that are present in the radiation pattern, 

which is a major problem associated with randomly spaced arrays. For the case of fixed 

terminal currents, the sidelobes are of much lower intensity. 

A conclusion of this work is that the method of using randomly spaced elements in 

an array of printed dipoles, while being a valid technique for eliminating scan blindnesses, 

is not very attractive in terms of performance and cost. A much more practical method is 

to make a proper choice of substrate in order to move any scan blindness effects near 

endfire. 
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Figure 1.14. Radiation patteras for a 99 element E-plane linear array of printed dipoles with 
randomly spaced elements. Element positions were generated with 8=0.231   a=0.5X, 
1=0.156X, w=0.0lX, d=0.06X, er=12.8. 
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CHAPTER 2 

ANALYSIS AND DESIGN OF MICROSTRIP REFLECTARRAYS USING 

PATCHES OF VARIABLE SIZE 

2.1      Introduction 

In a great number of microwave applications a highly directive antenna with a main 

beam scanned to a certain angle is required. Two types of antennas that do this are 

reflectors and arrays. The reflector antenna uses its geometry to create the desired phase 

across the aperture, while an array antenna employs distinct elements fed with progressive 

phasing. Reflector antennas are advantageous in that they typically exhibit large 

bandwidth and low loss; the main disadvantage of the reflector is the geometrical 

constraint it imposes on the design. The most widely used reflector, the parabolic 

reflector, also produces a cross polarized field which is inherent in its geometry. 

Microstrip patch arrays are lightweight, low-profile antennas that are capable of low cross 

polarization levels but typically have small bandwidth and fairly large loss at microwave 

frequencies. 

Obviously, cases arise where it would be beneficial to combine some of the more 

attractive features of reflectors and arrays. This is accomplished by the reflectarray [8]. 

Reflectarrays are illuminated by a feed antenna which excites an array of radiating 

elements comprising a reflecting surface, and these elements produce a scattered field. 

Many types of reflectarrays, the microstrip reflectarray included, also produce a specularly 

reflected field component as in the case of a geometric reflector. The total field then 

consists of the scattered field and any specular reflection.   The array elements can be 

tuned to produce the required phasing over the aperture, thereby eliminating the 
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geometrical constraint of ordinary reflectors. Also, the radiating elements are typically 

tuned so that the radiated field reacts favorably with any specularly reflected field. 

Early reflectarray designs employed arrays of dipoles, spirals, and waveguides [8], 

[9], [10]. By using microstrip elements in the reflectarray, one gains all of the advantages 

of microstrip, and with this reasoning a microstrip reflectarray using circular elements was 

proposed in 1978 by Malagisi [11]. More work on microstrip reflectarrays with circular 

elements, including a treatment of scattering from infinite arrays, was performed by 

Montgomery [12]. 

In [13], a microstrip reflectarray was designed using patches with an attached 

microstrip line stub for phasing as radiating elements. In [14], it was shown that the same 

type of phase control could be achieved by using patches of variable resonant length, 

without tuning stubs. This technique eliminates the need for a triangular grid spacing to 

accomodate the stubs, and produces a slightly larger bandwidth since the bandwidth of the 

stubs is no longer a factor. 

In this chapter the steps taken in the design of a microstrip reflectarray using 

patches of variable size will be outlined. The design procedure will be similar to that of 

[13], using the moment method solution for plane wave scattering from an infinite array of 

microstrip patches as a building block on which to design the electrically large, albeit finite 

sized, reflectarray. At each unit cell in the reflectarray, reflection phase data computed 

from the solution of plane wave scattering from infinte array of uniformly sized patches is 

used to pick a patch length, and then a patch of the required length is placed in the 

corresponding unit cell of the reflectarray. This results in a large array of elements, each 

with a slighly different resonant length. Each unit cell in the reflectarray is then assumed 

to radiate with the same characteristics as if it was in the infinite array environment. 
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Several topics in the analysis and design of microstrip reflectarrays which were not 

treated in [13] are discussed in this chapter, specifically: 

• Computational efficiency issues for the moment method analysis, with a marked 

increase in resulting efficiency. 

• The effect of including both TE and TM polarized field components in describing the 

incident field, including the generation of a cross polarized field similar to that 

produced by a parabolic reflector. 

• The effect of using an offset feed to reduce beam squint with frequency. 

• A detailed analysis of dielectric and conductor losses. 

• An involved discussion on potential sources of phase error that can degrade the 

performance of the reflectarray. 

• The design, manufacture, and test of several millimeter wave microstrip reflectarrays 

to see if the concept is feasible at these frequencies. 

2.2      The Moment Method Solution of Plane Wave Scattering From an Infinite Array of 

Microstrip Patches 

The moment method solution for plane wave scattering from an infinite array of 

stub tuned patches is described in great detail in [13]. For that problem, piecewise 

sinusoidal (PWS) modes were used in the analysis. These modes were needed due to the 
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irregular shape of the stub tuned patch. In [14], a similar solution is performed on patches 

of varying length, however, due to the simple rectangular shape of the patches, entire 

domain modes were used. This speeds up the analysis since fewer modes are needed. 

In both cases the results from the moment method solution are employed in 

designing a finite reflectarray. It should be noted that both of these methods achieve 

essentially the same effect; the relative phase of the total far field as the patch is operated 

off resonance is tailored to produce a collimated beam. In [13], a variable length stub on a 

fixed size patch shifts the resonant frequency; in [14] a variable length patch produces the 

same result. 

The geometry of the infinite array problem is shown in Figure 2.1.   A patch of 

length / and width w resides in a unit cell of dimensions a and b in the x and v direction, 

respectively. The patches reside a distance d above a ground plane, separated by a 

dielectric substrate with relative permittivity er. A triangular grid is used for the first 

design example in Chapter 3, however, the rectangular grid is used for all other examples 

and presented results. 

A brief outline of the moment method solution described in [14] is now presented. 

The incident field is a plane wave of the form 

E'nc = E eJk°(XUo+yv°'*'zcai9°) (2-11 

In general, the incident field contains a TM component (0 polarized) and a TE 

component ($ polarized). Since the reflecting surface is infinite, we can also describe the 

specularly reflected and scattered fields as plane waves. The specularly reflected and 

scattered fields are given by 
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Figure 2.1.  Geometry of the infinite array scattering problem, (a) Rectangular array grid, (b) 
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u0 = sin 60 cos<j)0       v0 = sin 0O sin <f>0 

(2-2) 

(2-3) 

where 

R = 
A»      ° 

0      ^ 
s = 

.3*    3» 
(2-4) 

The total field is then the vector sum of the specularly reflected and scattered 

fields. The specular reflection matrix can be computed easily through a transmission line 

analogy, and the scattering matrix is computed using the moment method solution. The 

patch current is expanded in a set of N basis functions, 

^)=Zv,(v) (2-5) 
;=i 

where the /, are the unknown coefficients of each mode, and each expansion mode has a 

Fourier Transform F,(kx,ky). The unknown coefficients can then be found as 

I = Z~l-V 

where 

(2-6) 

^-iIS^'G^ ab m=-<o »=-» 
(2-7a) 

for the rectangular grid, and, for the triangular grid [13] 
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Z# = --r4—£ ZK-G-Fj (2.7b) 

Also, 

Vt = JJj; • (I** +E*)ds (2-8) 
s 

In equations (2-7a) and (2-7b), G is the dyadic Green's function for an electric 

current source on a dielectric substrate [13], and in (2-8) the area of integration S is the 

area of the patch. 

The summations in (2-7a) are over the Floquet modes defined as 

,     ,        lion „, „ . 
ks = keu0+  (2-9a) 

a 

2m 
b k, = Kv,+-T- (2-9b) 

while in (2-7b), (2-9b) becomes 

2707       lion 
bsina   a tan a K = kovo +T^rz—^rz (2"9c) 

2.2.1    An Efficient Mode Set for the Plane Wave Scattering Problem 

In the computer program that implements the moment method solution most of the 

CPU time required is in computing the impedance matrix elements of (2-7), since the 

expression for each matrix element is not in closed form, but in the form of an infinite sum. 

Therefore, choosing a set of basis functions which provides convergence with a minimum 

number of modes is essential for obtaining good computational efficiency. 
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The set of basis functions used in [14] is a set of entire domain sine modes, 

/;•(*)= 

sin—(X+//2),     for|x|<//2 
(2-10) 

for|x|>//2 

with Fourier Transforms given by 

K{K)=**2»U!1. (2.n) 

-kt mit 

J V l 

where 1 is the mode length. 

For the plane wave scattering problem, odd modes (those with an even numbered 

index) make a negligible contribution for incidence angles of less than 60°. Therefore, in 

all calculations presented here, only even modes will be used. Even using just these 

modes, a large number are needed for convergence of the moment method problem. 

A plot of computed reflection phase versus number of entire domain modes used is 

shown in Figure 2.2. It is evident from this plot that convergence of the phase does not 

occur until over 100 modes are used, resulting in a huge impedance matrix, and long 

computation times. This is due to the fact that the computed resonant frequency of the 

patch changes slightly as more modes are used. For very narrowband patches, such as the 

one in this example, a slight shift in resonant frequency produces a large shift in reflection 

phase. For patches that exhibit wider bandwidth, the reflection phase is not as dependent 

on resonant frequency, and the moment method solution converges with fewer modes. 

However, more than twenty modes are needed for almost all cases, and the matrix fill time 

is significant. 
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Figure 2.2.  Computed reflection phase of infinite array of microstrip patches versus number of 
entire domain expansion modes. Thick line is reflection phase computed with one 
entire domain mode and one edge condition mode. f=27.3 GHz, a=.6087cm, b=.6667cm, 
er=2.95, d=.0254cm, tan 5=.0074, l=.3cm, w=.3cm, 6=0°, 4>=0°. 
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In order to find a more efficient mode set for this problem, the current vector of 

(2-6) was examined. For many different test cases, it was found that the current 

coefficients were all in phase and their magnitude dropped off asymptotically, with 

increasing index.   A plot of the magnitude of the current coefficients is shown in Figure 

2.3. The logarithmic graph shows a linear dependence for n>2 modes, suggesting that the 

magnitude drops off as rfi, where s=-1.5 is the slope of the line. 

en 

0.001 

stopje=-jh$~ 

10 

Number of Expansion Mode 
100 

Figure 2.3.  Computed magnitude of current coefficients of entire domain expansion modes for the 
moment method solution of an infinite array of microstrip patches versus mode number. 
f=27.3 GHz, a=.6087cm, b=.6667cm, er=2.95, d=.0254cm, tan 6H0074, K3cm, w=Jem, 
8=0°, 4>=0o. 

43 



Since only even entire domain modes are used, the current coefficients are akin to 

the coefficients of a Fourier cosine series. A suitable expansion mode whose Fourier 

cosine series coefficients exhibit the same asymptotic behavior shown in Figure 2.3 is the 

edge condition mode [15] given by 

Je(x,y) = -yla2-x2 (2-12a) 

with Fourier transform 

a 

Fe(kx) = ^-Mkxa) (2-12b) 
k. 

where Jj(x) is the Bessel function of the first kind with order one. The large argument 

formula for this Bessel function is 

37r"\ 
A(*) * -i — cos x —— (2-13) 

nx \ 

Substitution of (2-13) into (2-12b) reveals the asymptotic behavior of Figure 2.3. 

By using this edge condition mode, only two expansion modes are needed for 

convergence of the moment method solution - the first mode in the entire domain 

expansion of (2-10) and the edge condition mode of (2-12). The computed reflection 

phase using these two modes for the case in Figure 2.3 was 171.5 degrees, the same value 

arrived at with the entire domain expansion, but using over one hundred fewer modes. 

Adding more modes along with the edge condition mode does not change the value of the 

reflection phase, showing that the solution has indeed converged. 
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2.2.2   Increasing the Computational Efficiency of the Floquet Mode Summation 

The infinite sums of (2-7) are computed numerically, therefore, a limit must be set 

by which to truncate the series. In [1] a range of-60 < m < 60, -60 < n < 60 provided 

sufficient convergence, and that range also provides sufficient convergence for most cases 

in the present case. This gives a summation over the square region of the k„ ky plane as 

shown in Figure 2.4a. 

Such a wide region is not needed for convergence, however. Because the infinite 

array assumption provides a summation over discrete Floquet modes instead of an 

integration over a continuous spectrum, performing the calculation over an irregularly 

shaped region is easily implemented - only a single FORTRAN program line was needed 

to define the region shown in Figure 2.4b. For a single element or finite array, where an 

integration in polar coordinates is performed, the technique is still valid but the 

implementation is much more complex. 

To find a suitable region to sum over, the magnitude of the quantity inside the 

summation of (2-7) was examined. Areas inside the region depicted in Figure 2.4a where 

the magnitude is sufficiently small can be neglected in the summation, as their contribution 

to the final sum is negligible. A contour plot of this quantity is shown in Figure 2.5. 

Parameters for a typical case were used to construct the plot, and the patches are near 

resonance. Entire domain cosine modes were used as the expansion and testing modes, 

however, using the edge mode of (2-12a) produces similar results. From this plot it is 

readily seen that the summation of the Floquet modes only needs to be performed over a 

hyperbolic region as shown in Figure 2.4b. This region is defined by the equation 

abs(m2n) < a (2-14) 
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Figure 2.4 Area of summation of Floquet modes in the spectral domain. Indices shown are m,n. 
(a) Square region, (b) Hyperbolic region. 
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Logarithmic Scaie 
Contours -50, -40, -30, -20, -10, 0 dB 

Figure 2.5.  Contour plot of magnitude of i=l, j=l impedance matrix element versus m,n. 
f=27.3 GHz, a=.6087cm, b=.6667cm, er=2.95, d=.0254cm, tan «=.0074, l=.3cm, 
w=.3cm,e=0°,^=0°. 
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where a is a constant. A value of 4000 provides excellent convergence while resulting in a 

4 to 1 savings in CPU time needed to compute each impedance matrix element.   In order 

to validate that the region is large enough to ensure convergence of the summation, 

several curves of reflection phase versus element length were computed using the 

parameters given in Figure 2.5. The results are shown in Figure 2.6. It is seen that the 

hyperbolic region is indeed large enough for convergence. 

The hyperbolic region is valid for most practical cases, and it also appears to be 

valid for any moment method solution involving microstrip patches where entire domain 

modes are used. However, the extents of the region vary with some of the parameters 

used. This is due to the fact that the region is formed mostly by the shape of the Fourier 

transforms of the expansion and testing functions. Entire domain modes with higher 

indices will increase the size of the region, as will the use of very small patch dimensions 

since both of these factors have the effect of "widening" the respective Fourier transforms. 

For the problem of plane wave scattering, however, the phase response is 

dominated by the specular reflection when the patch dimensions are small. Also, as was 

shown in the previous section, entire domain expansion modes with indices higher than 

one are not needed for convergence of the moment method solution, and the behavior of 

the edge mode of (2-12a) is very similar to that shown in this section. Therefore we can 

use the same hyperbolic region for all patch lengths with a great deal of accuracy. 

2.3 Effect of Using TE and TM Incident Field Components 

For the reflectarray design process described in [13], the incident field at each 

unit cell is locally approximated by a TM polarized plane wave incident at angle (0,<|>)= 

48 



•     Broadside incidence - hyperbolic region 
 Broadside incidence - rectangular region 
 Forty degree incidence - rectangular region 
o    Forty degree incidence - hyperbolic region 

360 

(0 300 
0) 
o 
L. 
O) 

•o 240 
^■^ 

0 
CO 
CO 180 

DL 
c 
o 

35 120 
O 
o 
c 
0) a: 60 

•     a:    m 

: ] I L._5sl  
I                !                !              \!\ 

i                     !                      i                      i  \    \ 
!                !                I                !   \1 

 f T " T T""t?\"" 
!                !                !                !       \ \ 
:               !               i               i       \  \ 
;                i                !                !        V   \ 
;              ;              !              •        \  \ 

 i i i__  ....i L..1 

•                    i                    :                    •              \    i\                 i 
!                i                !                !            l i \            i 
I                i                !                !             V i  \           I 
I                !                i                I              \l    \          I 

■      \       \       \       1      6 \   ! 

!                         :                        ■                        1                        !        \        \l 

1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1—1—l.-L.  1.    1      1.1     1    1-1-    1     1    .1.-1.    1111 "YTTV 

0.25    0.26    0.27    0.28    0.29     0.3     0.31    0.32    0.33    0.34    0.35 

Element length (cm) 

Figure 2.6.  Computed reflection coefficient phase versus element length using Floquet mode 
summation over rectangular and hyperbolic regions. f=27.3 GHz, a=.6087cm, 
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(9j,0). This gives a x-polarized tangential field across the dielectric-free space boundary, 

and also reduces the complexity of the scattering problem since for this case only a TM 

polarized scattered field will result. The pattern function is then generated by 

N 

«=S4<-^ 
where 

E^ = incident field at r* patch 

rt is a vector from the origin to the f* patch 

f0 is a unit vector in the direction (0, <j>) 

(2-15) 

Because only one polarization is assumed, all quantities above are scalars and 

only the co-polarized field can be computed. 

The incident field at each unit cell is more accurately described by a 

combination of TE and TM polarized plane waves incident at (0,(t»)=(0i,<J)i), where the 

subscript /' denotes the unit cell of interest in the reflectarray. This, however, provides a 

much more complex problem. Due to the difference in specular reflection, the moment 

method solution must be run separately for the TE and TM components. Also, 

computation of the reflectarray scattered field is more complex due to the fact that more 

than one field component is now present in the total scattered field. 

In order to compute the reflectarray scattered field, equivalent electric currents 

are defined which produce the computed total far field. To find these currents, an infinite 

array of infinitesimal dipoles on the dielectric substrate is assumed, and the element at the 

origin in this infinite array is placed in the unit cell of interest in the finite reflectarray. The 
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procedure for defining the infinitesimal current starts by obtaining the total reflected and 

scattered far field components,Ee and E+, from the infinite array solution outlined in 

Section 2.2. Then, following theory presented in [13], 

Ex = cos öcos <j£e - sin $E^ (2-16a) 

E = cos 6 sin $Eg + cos QE^ (2-16b) 

and 

Jx =      /b      2(GJS, - G„£,) (2-178) 
G G  -G 

jy=—J°—(-Gj£x+GJ£,) (2-17b) 
G G  -G ^"xx^yy      ^xy 

where G is the Fourier transform of the Green's function listed in the Appendix and is 

evaluated at the point (kx, ky) = (sin 0cos 0, sin 0sin 0). 

An infinite array of these infinitesimal dipoles (with appropriate phasing to 

generate a plane wave at the required angle) produces the same total field (specular and 

radiated) that was computed from the moment method solution. Then, the "unit cell" 

concept is employed and the infinitesimal current located at the origin is placed in the unit 

cell of interest in the finite reflectarray. Repeating this procedure for each cell in the 

reflectarray produces a finite array of infinitesimal dipoles that is the same size as the 

reflectarray. The pattern function for this array is then easily computed. An alternative 

method for the calculation of the pattern function for the reflectarray without using these 

equivalent currents is presented in [16]. 
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By using this approach, it is possible to see the dependence of reflection phase 

versus azimuth incidence angle. A plot of the normalized reflection phase for the co- 

polarized field versus azimuth incidence angle for several different incidence angles in 

elevation is shown in Figure 2.7. It is seen that when the elevation angle is small there is 

not much difference in the reflection phase versus azimuth, but as the elevation angle 

increases there is a large deviation in the reflection phase. This result is not unexpected, 

since for larger incidence angles in elevation there is a marked difference in the specular 
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Figure 2.7. Computed reflection coefficient phase versus azimuth incidence angle for different 
elevation incidence angles. f=28 GHz, a=.5442cm, b=.5442cm, er=2.2, d=.0508cm, 
tan 5=.0028, l=.315cm, w=.315cm 
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reflection phase for TE and TM components of the reflected field. However, it is 

interesting to note that the reflection phase for purely TM (<|>=0o) and purely TE 

(<J)=90°) incidence is not that different; it is the case where the ratio of TM and TE 

components in the incident field is almost equal (around <J)=45°) where the largest 

deviation in reflection phase (as referenced to the value for purely TM incidence) occurs. 

For reflectarray designs with an CD ratio of 0.7 or higher, there are few unit 

cells where the elevation incidence angle is large enough to cause any significant change in 

the reflection phase versus azimuth, and in these cases the approximation of using a TM 

polarized plane wave incident at angle (8,<|>)=(8},0) at each unit cell is quite good. 

However, for designs with a lesser fTD, care should be taken in the design process to 

account for phase deviation with azimuth as this effect is more significant. 

Another interesting phenomenon which occurs in using this approach is the 

generation of a cross-polarized field. Again, due to the difference in the specular 

reflection phase for TE and TM components of the reflected field, a cross-polarized field 

results. This field is not unlike the cross-polarized component generated by a parabolic 

reflector; for a broadside beam the cross-polarized field is zero in the principal planes and 

has its maximum in the diagonal plane. In the analysis presented here, the cross-polarized 

field is modeled by the y-directed currents as given in (2-17b). 

An example of the currents used in the computer model is shown in Figure 2.8. 

For this design, the main beam was scanned off to 25° in the E-plane (x-direction). Note 

the anti-symmetry of the y-directed currents with respect to the x-axis; this produces a null 

in the E-plane for the cross-polarized field. If the reflectarray was designed to produce a 

broadside beam, a similar anti-symmetry would exist with respect to the y-axis, producing 
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a null in the cross-polarized field in the H-plane. Measured results support this type of 

behavior, as will be shown in Chapter 3. 

2.4 Finite Reflectarray Design 

As previously stated, the "unit cell" concept is employed in the process of using 

the data from the solution of the infinite array problem to design the finite sized 

reflectarray. The incident spherical wave from the feed is locally approximated by a plane 

wave at each unit cell. The required phase is achieved by selecting the proper patch length 

from the infinite array data, and a patch ofthat size is placed inside the corresponding unit 

cell in the finite reflectarray. This design process has been used before [13],[14], but is 

included here for completeness. 

The required phase at each element is arrived at by ray tracing, and the 

geometry of the finite reflectarray is shown in Figure 2.9. The incident phase at each unit 

cell is -k0Ri, where k0 is the free space wavenumber at the design frequency. In order to 

offset the phase delay from the incident spherical wave, a phase shift of +1^ is required. 

Then, to create a planar wavefront at angle 80, an additional phase shift is needed. This 

gives the total required phase shift at each element as 

h=K(Xt-rr?,) (2-18) 

where r0 is a unit vector in the direction of the main beam. In this work, only cases where 

the main beam is scanned off broadside in the E-plane are considered. This simplifies 

(2-18) to 

«/».^(^-x.smej (2-19) 
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Figure 2.9. Geometry of finite sized reflectarray. (a) Side view, (b) Top view. 
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2.5 Prime Focus and Offset Feeds 

Using a prime focus feed is the most straightforward design approach for a 

reflector or reflectarray. This corresponds to the geometry of Figure 2.9 by having x^K) 

and 9i=0o. Unfortunately, this configuration results in aperture blockage effects and, in 

reflectarrays which are scanned off broadside, beam squint with frequency occurs. For 

high gain reflectarrays with narrow beamwidths, this poses a serious problem. 

The offset feed is more attractive in the sense that aperture blockage effects are 

minimized, at the expense of a slightly more complicated design and analysis procedure. 

Also, the effect of beam squint with frequency can be greatly minimized by choosing the 

correct offset distance. 

To gain insight into how beam squint with frequency occurs in reflectarrays 

scanned off broadside, a linear E-plane reflectarray is considered. For collimation of the 

main beam at angle 0O, the progressive total phase (including all time delay effects from 

feed radiation and total reflection phase of the elements) is 

ftx) = -kfxsmOe (2-20) 

where kfis the free space wavenumber at some frequency other than the design frequency. 

The beam pointing angle then depends on the differential phase, 

6(x) = sin -i 
(    1 d<Kx)^ 
^  kf   dx 

(2-21) 
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Note that the main beam angle given by (2-21) depends on position in general. 

This can be interpreted as if a pair of elements close to that position are trying to create a 

main beam at angle 9(x). If there is no dependence on position, i.e. the derivative of <|)(x) 

is constant, then there is no phase error across the the array and a well defined beam will 

be produced at angle 9. 

Assuming that the incident phase at each patch is -k0Rj, using (2-19) gives the 

total differential phase across the aperture as 

im^-v^-^e. (2-22) 

For a prime focus feed, x<ffO, and substitution into (2-21) yields 

6{x) = sin -i xkf-K    k0  . 
(2-23) 

The position dependent term in (2-23) comes from a non-progressive quadratic 

phase error which results in higher sidelobes and loss in gain but does not affect the 

position of the main beam [17]. With this in mind, the beam pointing angle becomes 

independent of position and is given by 

0=sin"1 ^-sinÖ, (2-24) 
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For the offset feed, the position dependent term in (2-22) results from a 

combination of linear and quadratic phase errors, so that this term now affects the position 

of the main beam.   However, we can use this linear phase error to reduce the beam squint 

effect in (2-24) with the correct choice of feed offset. 

Using the condition in (2-20), no beam squint will occur if 

,     - - v on 0O (2-25) 

Substitution into (2-22) yields 

sin0o = X l"ff (2-26) 

The above condition is again a function of position, and cannot be met for all 

values of x. The beam position then depends on a weighted average of 0(x) as defined by 

(2-21). A very good criterion to use for reducing beam squint with frequency is to 

enforce (2-26) at x=0. This yields simply, 

eo=et (2-27) 

where 0; is defined as the angle from the phase center of the feed element to the center of 

the array, as depicted in Figure 2.9. 

In order to show the reduction in beam squint with frequency for the offset 

feed, a 64 element linear E-plane reflectarray using constant phase shifters for the 
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elements was analyzed for both offset and prime focus feeds. The condition of (2-27) was 

implemented for the offset feed, and the main beam was scanned to 40° in the E-plane at 

the center frequency of 11.95 GHz. A plot of main beam position versus frequency for 

both cases is shown in Figure 2.10. It is evident that the beam squint is eliminated for the 

offset case, while there is a great deal of movement of the main beam with the prime focus 

feed. 

The condition of (2-27) is generally good enough to prevent any appreciable 

squint of the main beam, however, the position of the main beam is also a function of the 

feed illumination. The tilt angle of the feed horn with respect to the normal to the 

reflectarray plane, 0h, can also slightly affect beam squint. Setting 8h=9j=40° gave a total 

beam squint of+0.1° over the frequency range shown, while setting 0h=42° gave the result 

of Figure 2.10, an elimination of practically all beam squint over the range of frequencies. 

2.6 Computation of Reflectarray Directivity 

The pattern function, F(0,4>), of (2-15) computes only the co-polarized 

component of the reflectarray scattered field. However, since the amount of power in the 

cross-polarized field is extremely small, (2-15) can be used in computing the directivity of 

the reflectarray. The simplicity of the equation also makes it well suited for this purpose. 

The directivity of the reflectarray can be computed as 

Do = AK— bax  (2.28) 

jJF2(e,<j>)sm6ddd<}> 
0 0 

60 



c 
o 
33 
"3 
o 
Q. 
E 
(0 
0 
m 
c 
a 
2 

44 

43 (A 

g>    42 

41  - 

40 

39 

38 - 

37 - 

36 
11 

•      \ 

■ 

• Offset Feed 

'■ 

• 

r   I  

I I I I , , . . .... i .... i ... . 

11.2    11.4    11.6    11.8     12     12.2    12.4    12.6    12.8 
Frequency (GHz) 

13 

Figure 2.10.    Position of main beam versus frequency for 64 element E-pIane linear reflectarray. 
Feed illumination is cos88. xoflf=-42cm, h=50cm for offset feed; h=70cm for prime 
focus feed. 

61 



The denominator is the radiated power from the reflectarray. However, the 

double integration in this expression must be computed numerically. Each point taken for 

the integration involves a summation over all unit cells as defined in (2-15). For the cases 

of interest in this work, high gain reflectarrays with hundreds or even thousands of 

elements, this approach is computationally infeasible. Also, the narrow beamwidths of 

these arrays require many more integration points to be taken. 

To increase the computational efficiency of the problem, the directivity is 

computed by an approximate method which is accurate when there is not a very large 

amount of phase error across the array. The radiated power is computed as the sum of the 

reflected power (same as incident power for the lossless case) from each unit cell. Each 

unit cell is modeled as a uniform aperture; the expression for the radiated far-field of the 

uniform aperture [18] is used in computing the numerator, while the aperture distribution 

itself is integrated to find the radiated power. The expression for directivity then becomes 

n     47Cab     a A,=—TT-COS0, 

V E,nc • R"" .eMf''fo) 

;=i 
N 

I 
i=i 
t\Er-K 

(2-29) 

where the unit vector r0 is in the direction of maximum radiation. The cos 80 term takes 

into account the projected aperture as the main beam is scanned offbroadside. This 

expression takes taper losses into account, but does not include spillover losses. These 

losses will be explained more fully in section 2.7.1. 
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2.7 Microstrip Reflectarray Gain-Loss Budget 

An excellent way to gain insight into the performance of microstrip reflectarrays 

is through a gain-loss budget. By examining such a budget, one can establish the 

maximum gain possible for a given size reflectarray, quantify all sources of loss, and then 

use that information to improve on a particular design. 

The maximum directivity for the reflectarray aperture occurs when all terms in 

the numerator summation of (2-29) are in phase and equal in magnitude, yielding 

4^0*^ (2_30) 

The gain of the reflectarray is then related to the maximum directivity by 

G=rp™ (2-31) 

The overall efficiency of the reflectarray, r\, is a product of several individual 

sources of loss which decrease the gain. In general, the efficiency is given by 

r)=r\snlnPncndnxnbnr (2-32) 

where 
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r\s = spillover efficiency 

7], = taper efficiency 

r)p = phase efficiency 

T]c = conductor efficiency 

x\d - dielectric efficiency 

r\x = polarization efficiency 

r\b = aperture blockage efficiency 

TJW = surface wave efficiency 

t)r = random error efficiency 

The main sources of loss in the reflectarray are spillover, taper, conductor, 

dielectric, and phase error loss, and therefore these losses only will be considered. 

Polarization loss, resulting from power being scattered into cross-polarized fields, and 

aperture blockage loss, resulting from power reflected from the reflectarray surface being 

blocked by the feed or its supporting structure, are very small as compared to other 

sources of loss and are therefore ignored. For very large planar microstrip arrays such as 

the ones incorporated into the typical microstrip reflectarray design, surface wave losses 

are also very small. Losses due to random surface errors are included in phase loss. 

2.7.1        Spillover and Taper Loss 

Spillover loss occurs from power radiated by the feed that is not intercepted by 

the reflecting surface, i.e. it "spills over" the edge. Taper loss occurs from having a non- 

uniform field incident on the reflectarray surface. An ideal feed source would provide 

uniform illumination over the surface of the reflectarray and would not radiate at all in 

other regions, but this is not physically realizable. 
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For practical feeds, there exists a tradeoff between spillover and taper loss. A 

good basis for choosing a feed is for it to have about a -lOdB taper at the edge of the 

reflectarray, which usually provides a near optimal tradeoff between spillover and taper 

losses. The maximum product of spillover and taper efficiencies is approximately 0.8 for 

practical feeds. 

Spillover efficiency can be computed by integrating the Poynting vector over 

the reflectarray surface and dividing the result by the total radiated power from the feed. 

-jJExH'-ds 

n. = 2^r-^  (2-33) 
JJ^(0.0)sin&/e# 
0   0 

where Ffeed is the power pattern of the feed and the integration in the numerator is over 

the reflectarray surface. Some algebraic manipulation yields 

II ——2 COS0OS 

n, = 2J2         (2-34) 
jJFfeed(d,<l>)smdddd<t> 
0   0 

Both of these integrations are easily computed numerically, and the integration 

in the numerator can be in either rectangular or polar coordinates, depending on the 

surface geometry. 

Taper efficiency can be computed easily by eliminating phase error from (2-29) 

and comparing the result to the maximum directivity of (2-30). This yields 
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n,=±% f- (2-35) 

1=1 

2.7.2       Dielectric and Conductor Loss 

At millimeter wave frequencies, dielectric and conductor losses in large 

microstrip structures can become quite high. Microstripline fed arrays typically suffer 

from high losses in the feed network. One of the distinct advantages of microstrip 

reflectarrays over series or corporate fed microstrip arrays at these frequencies is the 

elimination of feed network losses, however, dielectric and conductor losses are still 

present in a microstrip reflectarray. 

Dielectric loss is easily found by using a complex permittivity in the moment 

method analysis, 

e = eeer(l-jtmS) (2-36) 

Conductor loss is slightly more involved to calculate. It can be computed in the 

moment method solution by enforcing the condition E^ = ZJ on the patch surface, 

where Zs is the surface impedance of the conductor [15], This changes the impedance 

matrix elements of (2-7) to 

Z» = -j-ht il?-G.FJ+&Z, (2-37) 
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where 

AZ,=zJp;.J.<fc (2-38) 

Zs = (l + j)J^ (2-39) 

With the edge mode of (2-12a) having the index 1 and the entire domain mode 

of (2-10) (with m=l) having the index 2, substitution of these modes into (2-38) yields 

AZn=^ (2-40a) 

AZ12 = y,(7r/ 2)^- = 0.5668^ (2-40b) 

AZ22=-^- (2-40c) 

where / is the patch length and w the patch width. 

Due to the nature of the moment method solution, dielectric and conductor loss 

cannot be separated without running the solution twice to isolate each source of loss. 

Therefore, it is convenient to consider both sources of loss in one variable as the 

conductor-dielectric efficiency. 

The total conductor-dielectric efficiency can be computed as 

67 



N t 

ytotl 

nal=
±LT7- (2-41) N 

Figure 2.1 la shows the total conductor and dielectric loss for patches of 

different lengths and constant width on various substrate thicknesses. It is evident that the 

loss is large for patches near resonance, but is smaller for patches of other lengths. A 

slight shift in resonant frequency between the two cases is also evident. This is due to the 

fact that the fields underneath the patch are intensified near resonance, and the high loss 

tangent of the material causes a large amount of dielectric loss. Patches on thicker 

substrates have significantly less loss than those on thin substrates. 

Figure 2.1 lb shows total conductor and dielectric loss for patches of various 

widths and lengths, while the substrate thickness is held constant. Loss for the thin dipole 

is much greater near resonance than for the wide patch, however, the loss for the dipole 

drops off sharply so that loss for the wide patch is slightly greater for patches off 

resonance. This is explained by the narrowband nature of the printed dipole. The higher 

loss for the resonant dipole is explained by increased conductor loss which is caused by 

high current density on the dipole. 

2.7.3       Losses Due to Phase Errors 

In the microstrip reflectarray application, there are two main sources of phase 

error, namely, phase error incurred in the design process and random phase errors 

resulting from fabrication tolerances. These phase errors reduce the directivity of the 

array, and therefore decrease the overall efficiency. 
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Three types of phase error occur in the design process. One source is the 

dependence on the reflection phase versus azimuth incidence angle, as was described in 

Section 2.3. For most of the designs presented in the next chapter, only the incidence 

angle in elevation was considered in the design process. For the other designs, sets of data 

were computed at azimuth incidences of 0°, 45°, and 90°, and the appropriate patch 

lengths were interpolated from this data. Each design method contributes some small 

phase error, however, and the resultant directivity loss can be quantified by taking azimuth 

incidence angle into account in the reflectarray analysis. 

Phase error also results from the fact that the entire range of reflection phases 

from 0 to 360 degrees cannot be achieved, as can be seen by examining the reflection 

phase versus patch length curve of Figure 2.12. Basically, the range of unattainable 

phases is equal to 21^ cos 8 for square or wide patches. This phenomenon occurs 

because the grid of patches looks like a ground plane as the patch sizes approach the size 

of the unit cell. For narrow width dipoles, this effect is not as apparent and a greater 

range of phases may be attained. Phase error contributed in this manner can be also be 

quantified in the reflectarray analysis. 

Another source of error that occurs in the design process comes from the use of 

the infinite array approximation. When computing the reflection phase it is assumed that 

all elements are of equal dimensions, but in the actual reflectarray this is not the case as 

each unit cell contains a patch of a different length. The effect of mutual coupling, albeit 

small, is obviously different in these two cases, resulting in an error in the computed 

resonant frequency of each patch, and therefore phase error. This phase error is smaller 

for patches with wider bandwidth, as for these cases a shift in resonant frequency 

contributes less phase error. Unfortunately this error can not be quantified without 
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Figure 2.12.  Reflection phase versus patch length for plane wave scattering from an infinite array 
of microstrip patches. f=27.3 GHz, a=.6087cm, b=.6667cm, er=2.95, d=.02S4cm, 
tan 5=.0074, K3cm, w=.3cm, 9=0°, <p=0°. 
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Computing the actual moment method solution for the finite reflectarray, which is 

computationally impractical. 

At millimeter wave frequencies, slight random errors in fabrication (specifically, 

etching errors which affect the size of each patch) have the potential to create large phase 

errors. This is separate from systematic errors in fabrication, which will instead cause a 

shift in operating frequency. The potential for phase error is evident by examining the 

reflection phase versus length curve as depicted in Figure 2.12. Most patches in a typical 

reflectarray design are close to resonant length and operate in the linear region of the 

curve. For the particular case shown, the slope of the linear region is 47°/mil, and for a 

fabrication tolerance of 0.5 mil for each edge, random fabricational error can contribute as 

much as 47° of phase error. Again, this effect is not as significant for patches that exhibit 

wider bandwidths since the slope of the linear region is not as great. 

Random phase error contributed from fabrication tolerances, substrate 

inhomogeneties, surface errors, etc. also cannot be quantified analytically. All of the phase 

errors that cannot be quantified analytically are a possible source of directivity loss. If the 

rms phase error is known, the approximate directivity loss for small phase errors is given 

by [19] 

D-D0^ (2-41) 

where D0 is the directivity without phase error and a is the rms phase error across the 

array. As will be demonstrated in the next chapter, these phase errors are not large 

enough to disable the beam collimation effect of the reflectarray. 
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CHAPTER 3 

MICROSTRIP REFLECTARRAY DESIGN EXAMPLES 

3.1      Introduction 

In order to test the validity and feasibility of the analysis and design procedure 

described in the previous chapter, six reflectarray examples were designed, fabricated, and 

tested. A short description of each of these reflectarray examples is given in Table 3.1. 

Table 3.1. Listof microstrip reflectarray designs. 

Design # Approximate 
Design 

Frequency 

Size Substrate 
(en thickness) 

F/D Ratio Feed Type 

1 5.3 GHz 18"x24" Rogers 5870 
2.33,62 mil 

0.866 Pyramidal 
Horn 

2 28 GHz 6"x6" Taconic TLE 
2.95,10 mil 

0.656 Corrugated 
Conical Horn 

3 28 GHz 6"x6" Rogers 5880 
2.20, 20 mil 

0.656 Corrugated 
Conical Horn 

4 28 GHz 9" diameter 
circular 

Tacomc TLE 
2.95, 10 mil 

0.33 Backfire Feed 

5 76 GHz 6"x6" Rogers 5880 
2.20, 5 mil 

0.33 Open-ended 
waveguide 

6 76 GHz 6"x6" Rogers 5880 
2.20,5 mil 

0.33 Cassegrain 

In this chapter, measured results are presented for each of the design examples and 

are compared with theoretical predictions. Differences between measured and computed 

results are discussed, along with possible explanations for the discrepancies. A gain-loss 

budget is presented for each example, and each budget is examined in order to gain insight 

on how to improve the design. Also, several theoretical and measured radiation patterns 

are presented for each design over a given bandwidth. 
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3.2      Microstrip Reflectarrav Design Example #1 

Design #1 was constructed in order to provide a direct comparison with the stub- 

tuned microstrip reflectarray presented in [13]. This is a C-band design with the only 

difference from [13] being that variable sized patches are used to provide phase shift 

instead of stub tuned patches. The performance of both the stub-tuned reflectarray and 

the reflectarray using variable size patches is then compared. 

A scaled mask of this reflectarray is shown in Figure 3.1. This design was 

constructed on a 62 mil thick Rogers 5870 substrate, with a relative permittivity of 2.33. 

The reflectarray measured 18"x24", and a triangular grid spacing was employed with 

a=5.39cm, b=3.23cm, and a=33.4°. The design consisted of 263 patches with a fixed 

width of 2.382cm and varying length. Wide fixed-width patches provide better bandwidth 

than square patches, however, they can only be used for linear polarization. The feed horn 

was a pyramidal horn with the same dimensions as that in [13], with an aperture size of 

12.7cm x 8.89cm in the H-plane and E-plane, respectively. The feed was a prime focus 

feed placed 46.67cm over the face of the array, giving a f/D ratio of 0.866 with respect to 

the x-dimension of the reflectarray. The phase across the reflectarray was chosen to 

produce a main beam scanned to 25° in the E-plane (x-direction). 

A curve of total reflection phase versus patch length for this design for broadside 

incidence is shown in Figure 3.2. Graphs such as this are the essential building block in 

the design process, but they can also lend some insight into the performance of the 

reflectarray even before it is analyzed. The familiar "s-shaped" curve that was evident in 

Figure 2.12 is also apparent here. Two aspects of the curve that lend insight into the 

performance of the reflectarray are the slope of the linear region near resonance and the 
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Figure 3.1. Scaled drawing of reflectarray design example #1. 
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range of reflection phases that cannot be attained, which is aprroximately equal to 2k0d for 

patches. The slope of the linear region is directly related to the operating bandwidth of 

the reflectarray, and also can be a sign of how critical fabrication tolerances will be. 

Normally the range of phases that cannot be attained is small enough not to cause a 

significant change in the performance of the reflectarray, however, a region of 60° or more 

has the potential to deteriorate the performance significantly. Analyzing the data shown in 

Figure 3.2 yields the slope of the linear region to be 3.67mil and a 20° range of phases 

that cannot be attained. 

Computed and measured E-plane radiation patterns taken at the center-band 

frequency of 5.2 GHz are shown in Figure 3.3, and similar H-plane patterns are shown in 

Figure 3.4. This center frequency is slightly lower than the design frequency of 5.305 

GHz due to the fact that only 7 entire domain modes were used in the design process, 

which employed an early version of the moment method computer program. Use of one 

entire domain mode and one edge condition mode as described in Section 2.2.1 predicts 

this frequency shift. Examination of the radiation patterns shows a very good comparison 

of measured and computed results. The H-plane patterns are in very close agreement, 

while the measured sidelobe level and 3dB beamwidth are slightly higher in the E-plane. 

These effects can be attributed to aperture blockage effects and phase errors that were not 

included in the analysis. In either event, the overall result is a small drop in directivity for 

the reflectarray. 

Measured and computed H-plane cross-polarization patterns are shown in Figure 

3.5. Agreement between measured and computed patterns is fairly good, considering the 

low level of cross-polarized radiation present. The measured level of-30dB relative to the 

co-polarized field is 3dB higher than the computed level but still very low. With such a 

low level of cross-polarized radiation, many factors can alter the measured patterns or 
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Figure 3.3. E-plane patterns at S.2 GHz for reflectarray example #1. 
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Figure 3.4. H-plane patterns at 5.2 GHz for reflectarray example #1. 
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Figure 3.5. H-pIane cross-polarization patterns at 5.2 GHz for refiectarray example #1. 
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relative amplitude of the field, such as scattering off of the feed or its supporting structure 

or misalignment between the feed, radiating patches, and the transmit horn. 

To understand the degradation of the performance of the reflectarray with 

frequency, one can examine the radiation patterns at frequencies other than the design 

frequency. Such a plot is shown in Figure 3.6 - a plot of measured E-plane patterns at 5.2 

GHz and 5.7 GHz. Two effects are immediately apparent from examining the plots; a 

beam squint with frequency as described in Section 2.5, and also a rise in the specular 

reflection from the reflectarray surface. 

In most microstrip reflectarray designs, the majority of patches operate close to 

resonance at the center frequency. For this design example, 53% of all patches are within 

5% of the resonant length of 1.71cm at 5.2 GHz. Also, at resonance, the scattered field is 

180° out of phase with the specularly reflected field [13]. This fact, combined with the 

abundance of patches that are operating near resonance, creates a cancellation of specular 

reflection near the design frequency. However, only 13% of all patches operate within 5% 

of resonance at 5.7 GHz; this leads to a rise in the specularly reflected field. 

A gain-loss budget for this reflectarray at the center frequency of 5.2 GHz is 

shown in Table 3.2. Maximum directivity for the aperture and all losses were computed as 

described in Section 2.6.  Measured gain at 5.2 GHz was 27.0 dBi, yielding an aperture 

efficiency of 58%. The computed gain of 27.53 dBi does not include losses due to 

random phase errors or aperture blockage effects, however, so the fact that the measured 

gain is about 0.5 dB less than the computed gain is not surprising. A plot of computed 

and measured gain is shown in Figure 3.7, and while the computed levels are slightly 

higher for most frequencies, the bandwidth for a 1 dB drop in gain compares well. A 

bandwidth of 5.0% is calculated, while a 4.5% bandwidth was measured. Taking into 

81 



account a possible gain measurement error of ±0.5 dB, a computed bandwidth between 
2.9% and 5.9% is within the limits of measurement error. 
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Figure 3.6. Measured E-plane radiation patterns at 5.2 GHz and 5.7 GHz. 
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Table 3.2. Gain-loss budget for reflectarray #1. 

Maximum Directivity 29.78 dBi 

Spillover Loss -0.66 dB 

Taper Loss -0.83 dB 

Cos 6 Scan Loss -0.43 dB 

Dielectric and Conductor Loss -0.15 dB 

Design Phase Error -0.18 dB 

Computed Gain 27.53 dBi 
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Figure 3.7. Measured and computed gain for reflectarray design example #1. 
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Table 3.3 shows a comparison of the performance of this reflectarray design using 

variable size patches to control the reflection phase versus the design presented in [13], 

which used stub tuned patches. The performance of both reflectarrays is similar, 

supporting the conclusion that both methods achieve essentially the same effect by shifting 

the resonant frequency of each patch. One difference between the performance of the two 

reflectarrays is the gain bandwidth (defined by a 1 dB drop from the peak gain) - 3.7% for 

the stub tuned reflectarray and 4.5% for the reflectarray using variable size patches. A 

possible explanation is the fact that as the frequency shifts, both the electrical size of the 

patch and tuning stub shift in the same direction, causing the reflection phase from the unit 

cell to shift more than it would from just a single patch with no stub attached. However, 

due to the error inherent in the gain measurement, the difference in actaul bandwidth may 

not be significant. 

The use of variable size patches also introduces several favorable design 

characteristics. A triangular grid is no longer needed to accomodate the tuning stubs for 

each patch. Also, square patches may be used for either dual-linear or circular 

polarization. 

Table 3.3. Microstrip reflectarray performance comparison. 

Reflectarray Using Tuning 
Stubs fl31 

Reflectarray Using Variable 
Size Patches 

Peak Gain 27.1 dBi 27.0 dBi 
E-plane Beamwidth 7.7 degrees 7.5 degrees 
H-plane Beamwidth 7.7 degrees 7.5 degrees 
E-plane Sidelobe level -22 dB -20.5 dB 
H-plane Sidelobe level -18 dB -20 dB 
Gain bandwidth 3.7 % 4.6 % 
E-plane cross polarization level -29 dB -40 dB 
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3.3      Microstrip Reflectarrav Design Example #2 

Design example #2 was a Ka-band reflectarray with a center frequency of 27.3 

GHz. The motivation behind this design was to see if the reflectarray concept was feasible 

at this frequency due to the increased fabrication tolerances required, and to see the effect 

of larger random phase errors on the operation of the reflectarray. 

A scaled overhead drawing of this reflectarray is shown in Figure 3.8. This design 

was constructed on a 10 mil thick Taconic woven PTFE substrate, with a relative 

permittivity of 2.95. The loss tangent of the material was estimated to be 0.0074 at 28 

GHz using the guidelines of [20]. Data for the loss tangent of common microwave 

substrates is generally not available at frequencies above 10 GHz, but measured data at 

other frequencies suggests that the loss tangent increases approximately linearly with 

frequency. The reflectarray measured 6"x6", and a rectangular grid spacing was employed 

with a=0.6087cm and b=0.6667cm. The design consisted of 528 square patches of 

varying size. The square patches, while providing less bandwidth than wide fixed-width 

patches, can be used for dual-linear or circular polarization. The feed horn was a 

corrugated conical horn with an aperture radius of 0.88cm and an axial length of 3.55cm. 

The feed was a prime focus feed placed 10cm over the face of the array, giving a f/D ratio 

of 0.656. As with the first design, the main beam was scanned 25° off broadside in the E- 

plane. 

A curve of total reflection phase versus patch length for this design for broadside 

incidence was shown in Figure 2.12. The familiar "s-shaped" curve is evident - this curve 

is characteristics of all of the design examples presented here. Analyzing the data shown 

in Figure 2.12 yields the slope of the linear region to be 477mil, with a 16.6° region of 

phases that cannot be attained. The slope of the linear region is increased by a factor of 

85 



W W M  Ü W  H wmw 

mmmmwwwwwmmww 
WmWWWWWWWmWWW 
wwmwmwwwumwmw 

mwwmwmwuwwmmw 
wwwwwmwmwwwmm 
wwwmwmwwwwmmw 
wwmwwwwmwwmww 

mwmmmmwnwwwm 

wmwmwmwwmwwm 

w wmmwM w 

mmm 
m ww 

mmm 
mmm 
mmm 
mmm 

H W H H M M 
H M W W. W W 
mwwwww 
m m m w w B 
M m M m m m 
wmwwww 
mwmwww 
wwwwmm 

m w 

-> x 

wwwwmmwwm'® 

mwwmwmmwmw 
wmmmwmmwww. 
mwmwwwwmww. 

wmmm mm 
mmm mmm 

m n n m 

w w w. w 

Figure 3.8. Scaled drawing of reflectarray design example #2. 
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13 over that of design example #1, thereby greatly increasing the potential random phase 

error that can result from errors in fabrication. 

Computed and measured E-plane radiation patterns taken at the center-band 

frequency of 27.3 GHz are shown in Figure 3.9, and similar H-plane patterns are shown in 

Figure 3.10. This center frequency is also slightly lower than the design frequency of 28 

GHz due to the fact that the design was performed before the edge mode of Section 2.2.1 

was introduced into the program and that inspection underneath a microscope found the 

patches to be underetched by an average of 0.002". Use of one entire domain mode and 

one edge condition mode as described in Section 2.2.1 predicts a center frequency of 27.7 

GHz, which is a 1% shift from the original design frequency. Examination of the radiation 

patterns again shows a very good comparison of measured and computed results similar to 

those of design example #1. The H-plane patterns are in very close agreement, while the 

measured sidelobe level and 3dB beamwidth are again slightly higher in the E-plane, 

possibly due to aperture blockage or phase errors not included in the analysis. Measured 

and computed patterns for frequencies other than 27.3 GHz exhibit the same behavior as 

those of design example #1 with a rise in specular reflection and beam squint with 

frequency, which are characteristics of all prime focus fed microstrip reflectarrays with 

beams scanned off broadside. 

A gain-loss budget for this reflectarray at the center frequency is shown in Table 

3.4. Measured gain at 27.3 GHz was 28.5 dBi, yielding an aperture efficiency of 35%. 

The computed gain of 29.52 dBi is 1 dB greater than the measured gain; the difference can 

be explained by directivity loss due to random phase errors incurred during fabrication. A 

great deal of ohmic loss occurs because of the high loss tangent of the material, and this 

decreases the aperture efficiency significantly. This reasoning was verified by changing the 

substrate material in example #3. 
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Figure 3.9. Measured and computed E-pIane radiation patterns at 27.3 GHz for design example #2. 
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Figure 3.10.  Measured and computed H-plane radiation patterns at 27.3 GHz for design example 
#2. 

89 



A plot of computed and measured gain is shown in Figure 3.11. The computed 

levels are again slightly higher for most frequencies, since the effect of random phase 

errors due to fabrication is not included. The bandwidth for a ldB drop in gain compares 

well; a bandwidth of 2.3% is calculated, while a 2.7% bandwidth was measured. Taking 

into account a possible gain measurement error of ±0.5 dB, a computed bandwidth 

between 1.5% and 2.8% is within the limits of measurement error. 

Table 3.4. Gain-loss budget for reflectarray #2. 

Maximum Directivity 33.48 dBi 

Spillover Loss -0.74 dB 

Taper Loss -0.61 dB 

Cos 0 Scan Loss -0.43 dB 

Dielectric and Conductor Loss -2.03 dB 

Design Phase Error -0.15 dB 

Computed Gain 29.52 dBi 
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Figure 3.11 Measured and computed gain for reflectarray design example #2. 
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3.4      Microstrip Reflectarrav Design Example #3 

Design example #3 was a Ka-band reflectarray with a center operating frequency 

of 28.5 GHz, similar to example #2. The motivation behind this design was to increase the 

aperture efficiency of the previous design by trying to reduce the dielectric losses and 

amount of phase error contributed from fabrication errors. To accomplish this, a thicker 

substrate with lower dielectric constant and a lower loss tangent was used for the design. 

This decreases both the dielectric loss and the slope of the linear region of the reflection 

phase curve, thereby increasing the bandwidth of the patch elements and minimizing the 

effects of etching errors. The efficiency due to dielectric loss is significantly improved. 

A scaled drawing of this reflectarray is shown in Figure 3.12. This design was 

constructed on a 20 mil thick Rogers 5880 Duroid substrate, with a relative permittivity of 

2.2. The loss tangent of the material was estimated to be 0.0028 at 28 GHz, compared to 

the value of 0.0074 for the Taconic material used in example #2. The reflectarray 

measured 6"x6", and a rectangular grid spacing was employed with a=b=0.5442cm. This 

grid spacing allowed for the azimuth angle to be taken into account in the analysis without 

the appearance of grating lobes for the infinite array. The design consisted of 784 square 

patches of varying length. The same feed horn and f/D ratio from design example #2 was 

used, and the main beam was scanned to 25° off broadside in the E-plane. 

The curve of total reflection phase versus patch length for this design for broadside 

incidence yields the slope of the linear region to be 127mil and a 34° region of phases that 

cannot be attained. The slope of the linear region is decreased by almost a factor of 4 over 

that of design example #2, but the range of phases that cannot be obtained was increased 

by more than a factor of 2. This decreases the potential random phase error that can result 

from errors in fabrication, but increases the amount of phase error that is inherent in the 
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design. Radiation patterns for this example were similar to those of design example #2, 

and are not included here. 

-»X 

Figure 3.12. Scaled drawing of reflectarray design example #3. 
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A gain-loss budget for this reflectarray at the center frequency is shown in Table 

3.5. Measured gain at 28.5 GHz was 30.9 dBi, yielding an aperture efficiency of 52% - a 

17% increase over the previous design. The maximum computed gain of 31.68 dBi is 

0.8dB greater than the measured gain.   Comparison to the 1 dB difference of the previous 

design suggests a decrease in sensitivity to fabrication tolerances, however, the closer 

element spacing in this design has the potential to increase phase errors due to mutual 

coupling. Also, ohmic losses in this design were reduced by 1.78 dB through the choice 

of dielectric material. Phase errors inherent in the design were increased only by 0.07 dB. 

A plot of computed and measured gain is shown in Figure 3.13. There is a 1.8% 

frequency shift between the peak gain for the computed and measured results. The 

bandwidth for a ldB drop in gain has increased over design #2; a bandwidth of 6.1% is 

calculated, while a 4.9% bandwidth was measured. Taking into account a possible gain 

measurement error of+0.5 dB, a computed bandwidth between 2.5% and 6.1% is within 

the limits of measurement error. 

Table 3.5. Gain-loss budget for reflectarray #3. 

Maximum Directivity 

Spillover Loss 

Taper Loss 

Cos G Scan Loss 

Dielectric and Conductor Loss 

Design Phase Error 

Computed Gain 

34.05 dBi 

-0.75 dB 

-0.72 dB 

-0.43 dB 

-0.25 dB 

-0.22 dB 

31.68 dBi 
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Figure 3.13. Measured and computed gain for reflectarray design example #3 
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3.5      Microstrip Reflectarrav Design Example #4 

Design example #4 was a circular shaped Ka-band reflectarray operating around 

27-28 GHz. The motivation behind this design was to incorporate a backfire feed [21] 

into the design and to compare the performance of a circluar aperture microstrip 

reflectarray with a similarly sized parabolic dish. 

A scale drawing of this reflectarray is shown in Figure 3.14. This design was 

constructed on the same Taconic material as was used for design example #2. The 

reflectarray had a 9" diameter, and a rectangular grid spacing was employed with 

a=0.56cm and b=0.6667cm. The design consisted of 996 rectangular patches of varying 

length and a fixed width of 0.4cm, and the center four patches are left out in order to leave 

room for the circular waveguide section for the feed.   Analyzing the reflection phase 

versus patch length curves for this design yields the slope of the linear region to be 377mil 

and a 16.6° region of phases that cannot be attained. The slope of the linear region is 

slightly decreased from that of design example #2 due to the fact that the fixed-width 

patches exhibit slightly larger bandwidth. The phase center of the feed element was placed 

7.54cm above the face of the reflectarray, giving an f/D ratio of 0.33. The aperture phase 

was tailored to produce a broadside beam. 

The feed element is shown in Figure 3.15. A section of circular waveguide leads 

into a dielectric (Rexolite) cone which is metallized with a splash plate. Measured E-plane 

and H-plane patterns for this feed are shown in Figures 3.16 and 3.17, respectively. To 

perform these measurements, the feed element was placed in front of a large ground plane 

and the resulting reflection off of the ground plane was measured. A great deal of ripple is 

present in the measured patterns, possibly due to diffraction effects from the edge of the 

splash plate and ground plane. Since a computer model for this type of feed was not 
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Figure 3.14. Scaled drawing of reflectarray design example #4. 
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Figure 3.15.  Backfire feed used in reflectarray design example #4. 
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Figure 3.16. Measured E-plane pattern from backfire feed and computed pattern from pyramidal 
horn used to model feed. Frequency = 27 GHz. 
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Figure 3.17. Measured H-plane pattern from backfire feed and computed pattern from pyramidal 
horn used to model feed. Frequency = 27 GHz. 
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available, a pyramidal horn with an H-plane aperture dimension of 1.2cm, an E-plane 

dimension of 1.0cm, and an axial length of 4cm was used to model the feed illumination. 

Computed E-plane and H-plane patterns for this horn are shown along with the measured 

patterns in Figures 3.16 and 3.17. 

Computed and measured E-plane radiation patterns taken at 27.3 GHz from the 

reflectarrray are shown in Figure 3.18, and similar H-plane patterns are shown in Figure 

3.19. Examination of the measured and computed patterns shows a slightly smaller 

measured beamwidth in the E-plane and slightly larger measured beamwidth in the H- 

plane. This difference is most likely due to the approximate model used for the feed 

illumination. Also, measured sidelobe levels are higher in the E-plane, which could be a 

sign of phase error. 

A gain-loss budget for this reflectarray at the center frequency is shown in Table 

3.6. A peak measured gain of 31.2 dBi occurred at 27.2 GHz, yielding an aperture 

efficiency of 34%. This low value is not totally unexpected, based on the results of 

example #2 which used the same Taconic substrate. Ohmic losses in this design were 

reduced by approximately 0.5dB over design example #2 due to the fact that the wider 

patches exhibit lower loss. Taper loss is quite high, and could possibly be rninimized 

through optimization of the feed. Phase errors inherent in the design were quite large due 

to the increased dependence on azimuth incidence angle for designs with a low f/D ratio. 

This dependence was not taken into account in the design process, since an early version 

of the design program which did not include this effect was used. 

A plot of measured gain versus frequency is shown in Figure 3.20. The phase 

center of the feed element moves with frequency, making the bandwidth of the feed the 

limiting factor for gain bandwidth. This effect is seen by changing the positioning of the 
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Figure 3.18. Measured and computed E-plane radiation patterns at 27.3 GHz for reflectarray #4. 
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Figure 3.19. Measured and computed H-plane radiation patterns at 27.3 GHz for reflectarray #4. 
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feed element - by adjusting the height of the feed over the face of the reflectarray, the 

frequency at which the peak gain occurs is changed. This is seen in Figure 3.20. For feed 

positioning #1, a peak gain of 31.2 dBi occurs at 27.2 GHz, and for feed positioning #2 a 

peak gain of 30.8 dBi occurs at 27.6 GHz. The measured bandwidth for a ldB drop in 

gain is 1.8% in both cases, while a bandwidth of 2.9% is calculated with the pyramidal 

horn feed. 

Table 3.6. Gain-loss budget for reflectarray #4. 

Maximum Directivity 35.91 dBi 

Spillover Loss -0.46 dB 

Taper Loss -1.12 dB 

Dielectric and Conductor Loss -1.51 dB 

Design Phase Error -0.87 dB 

Computed Gain 31.95 dBi 

Measured Gain 31.2 dBi 
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Figure 3.20. Measured gain for reflectarray design example #4. 
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The gain performance of this reflectarray was also compared with that of a 

parabolic reflector. The parabolic reflector was constructed from metallized plastic with a 

9" diameter and an f/D ratio of 0.44, which produced a total subtended angle for the feed 

of 118° as compared to 113° for the reflectarray. These two values were close enough to 

give a one-on-one comparison of the gain performance of each antenna. 

To model the feed illumination of the reflector the same pyramidal horn used for 

modeling the reflectarray was employed. A gain-loss budget for the parabolic dish at 27.3 

GHz is shown in Table 3.7. The maximum directivity for the dish is slightly higher than 

that of the reflectarray since the value for the reflectarray only includes the area occupied 

by the unit cells in the array. This model does not account for different phase centers in 

the principal planes for the feed, so the measured gain is expected to be decreased by this 

phase error. Also, losses due to surface roughness of the dish are not included. These 

two factors can explain the ldB difference in measured and computed gain. 

Comparing the gain of the dish and reflectarray shows that the measured gain for 

the dish was 2.3 dB higher than for the reflectarray. Computed gain for the dish was 2.5 

dB higher than the computed gain for the reflectarray, showing an excellent comparison 

between computed and measured results in this sense. The 2.5 dB difference between 

computed values is due almost totally to ohmic losses and phase errors present in the 

design, which could be minimized by approximately 2 dB through a change in the design 

process and the substrate material used. 

The difference between measured and computed gain values for both antennas are 

also close (1.0 dB difference for the dish, 0.75 dB difference for the reflectarray). Since 

the same feed was used for both cases, this result implies that the effects of fabricational 
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errors - mis surface roughness for the dish and etching & substrate tolerances for the 

reflectarray - on the gain of the antenna are not much different for both antennas. 

Table 3.7. Gain-loss budget for 9" diameter parabolic reflector. 

Maximum Directivity 36.29 dBi 

Spillover Loss -0.39 dB 

Taper Loss -1.45 dB 

Computed Gain 34.45 dBi 

Measured Gain 33.5 dBi 

3.6      Microstrip Reflectarray Design Example #5 

Design example #5 was a 6" square W-band reflectarray with a design frequency 

of 76.5 GHz. The motivation behind this design was similar to the motivation behind the 

previous designs - to see if the microstrip reflectarray concept is feasible at this high 

frequency and to quantify sources of loss in the reflectarray. Also, sets of phase versus 

patch length data were computed for azimuth incidence angles of 0, 45, and 90 degrees. 

Each set of data contained curves for elevation incidence angles from 0 to 60 degrees in 

increments of 5 degrees. The azimuth incidence angle was taken into account in the 

design process by linearly interpolating in between the different sets of data. 

A scale drawing of this reflectarray is shown in Figure 3.21. This design was 

constructed on a 0.005" thick Rogers Duroid 5880 substrate. The estimated loss tangent 

was 0.0077 at 76.5 GHz. The reflectarray measured 6" on each side, and a rectangular 

grid spacing was employed with a = b = 0.2005cm. The design consisted of 5776 

rectangular patches of varying length and a fixed width of 0.135cm.  Analyzing the 
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Figure 3.21. Actual size overhead drawing of reflectarray design example #5. 
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reflection phase versus patch length curves for this design yields the slope of the linear 

region to be 497mil and a 23.3° region of phases that cannot be attained.  The feed 

element was an open-ended section of W-band waveguide that was slightly flared to give a 

0.3cm square aperture. The phase center of the feed was placed 5.03cm above the face 

of the reflectarray, giving an f/D ratio of 0.33. The aperture phase of the reflectarray was 

tailored to produce a broadside beam. 

Computed and measured E-plane radiation patterns taken at 75 GHz are shown in 

Figure 3.22a, and H-plane patterns are shown in Figure 3.22b. Examination of the 

measured and computed patterns show that the measured and computed beamwidths in 

the E-plane and H-plane are nearly equal. Measured sidelobes are somewhat higher than 

computed, which is most likely due to phase errors incurred by fabricational errors. 

A gain-loss budget for this reflectarray at the center frequency is shown in Table 

3.8. A peak measured gain of 36.0 dBi occurred at 74.5 GHz, yielding an aperture 

efficiency of 22%. Ohmic losses in this design were not too great, showing that the 

Rogers substrate has resonable loss characteristics even at W-band. Phase errors inherent 

in the design were diminished due to the azimuth interpolation included in the analysis. 

A difference of about 3.5 dB remains between the measured and computed gain. 

This difference could result from many factors which are negligible at lower frequencies 

but could become a factor at W-band. Loss in the long waveguide section of the feed, 

errors due to the reflectarray surface not being perfectly flat, and slight positioning errors 

for the feed can all decrease the overall gain of the reflectarray. Unfortunately, only very 

limited measurements were able to be taken since they were performed at an outside 

facility. 
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Figure 3.22.  Computed and measured radiation patterns for reflectarray #5. Measured patterns at 
75 GHz; computed at 76.5 GHz. (a) E-plane. (b) H-plane. 
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Table 3.8. Gain-loss budget for reflectarray #5. 

Maximum Directivity 42.55 dBi 

Spillover Loss -0.85 dB 

Taper Loss -0.96 dB 

Dielectric and Conductor Loss -1.13 dB 

Design Phase Error -0.08 dB 

Computed Gain 39.53 dBi 

Measured Gain 36.0 dBi 

3.7      Microstrip Reflectarray Design Example #6 

Design example #6 was a square W-band reflectarray with a design frequency of 

76.5 GHz. The reflectarray itself was exactly the same as used in design #5, but the feed 

was changed to a cassegrain configuration. The geometry of the cassegrain feed is shown 

in Figure 3.23. The primary feed element was a conical horn with an aperture radius of 

0.625cm and an axial length of 4cm. The subreflector shape was a hyperboloid in the x-z 

and y-z planes and circular with a radius of 0.762cm in the x-y plane. The virtual feed 

concept for a cassegrain reflector antenna [22] was used in the analysis. 

Computed and measured E-plane radiation patterns taken at 76.5 GHz are shown 

in Figure 3.24a, and similar H-plane patterns are shown in Figure 3.24b. Examination of 

the measured and computed patterns show that the measured and computed beamwidths 

in the E-plane and H-plane are again nearly equal. The measured patterns shown for the 

cassegrain reflectarray exhibit better sidelobe levels and beam shape than the patterns for 

the prime focus case, however. 
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Figure 3.23. Geometry of cassegrain feed for reflectarray design example #6. 
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Figure 3.24. Measured and computed radiation patterns at 76.5 GHz for reflectarray #6. 
(a)E-plane. (b)H-plane. 
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A gain-loss budget for this reflectarray at the center frequency is shown in Table 

3.9. A peak measured gain of 37.0 dBi occurred at 76.5 GHz, yielding an aperture 

efficiency of 26%. The spillover loss in this design is quite large due to a non-optimized 

feed and subreflector combination, i.e. the product of spillover and taper efficiency is not 

close to the maximum value of approximately 0.8. However, the measured gain is 1 dB 

higher than that of the prime focus fed reflectarray and the difference between computed 

and measured gain has been reduced to about 2 dB. These facts suggest that the former 

design may have suffered from more severe fabricational errors, a possible defocused feed, 

or higher than expected waveguide loss. 

Table 3.9. Gain-loss budget for reflectarray #6. 

Maximum Directivity 

Spillover Loss 

Taper Loss 

Dielectric and Conductor Loss 

Design Phase Error 

Computed Gain 

Measured Gain 

42.78 dBi 

■1.55 dB 

-0.96 dB 

■1.13 dB 

-0.08 dB 

39.06 dBi 

37.0 dBi 
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CHAPTER 4 

CONCLUSIONS 

Two topics dealing with infinite arrays of microstrip elements were presented in 

this work. The first topic, the effect of random positioning errors on the input impedance 

of an infinite array of printed dipoles, deals mainly with the infinite array analysis, and 

provides insight into the scan blindness phenomenon for large arrays. The second topic, 

the analysis and design of microstrip reflectarrays, utilizes the data from the solution of 

plane wave scattering from an infinite array of microstrip patches to design a large, but 

finite sized, reflectarray. 

In the first chapter, the solution for the expected value of input impedance for an 

infinite array of printed dipoles was presented, with both planar arrays and linear E-plane 

arrays being considered. The scan blindness phenomenon was seen to be reduced with the 

introduction of randomization, and to disappear completely only when the full extent of 

randomization was introduced. The limitation of a fixed terminal current on each dipole 

presents a formidable problem in implementing such a solution, however, such an 

implementation would have the added advantage of eliminating mutual coupling effects on 

the array pattern. 

In the second chapter, topics in the analysis and design of microstrip reflectarrays 

are presented, with an added emphasis on reflectarrays operating in the millimeter wave 

frequency range. Problems such as loss and beam squint with frequency were analyzed, 

and options were presented so as to reduce the effects of both of these problems. 

Computational efficiency issues involving the infinite array scattering problem were also 

addressed, with a marked increase in efficiency resulting. The third chapter presented 
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measured results from six reflectarrays designed using the guidelines of the previous 

chapter. 

The work presented here represents a step toward understanding the complex 

scattering mechanism of the microstrip reflectarray, especially at millimeter wave 

frequencies where ohmic losses and the potential for phase errors increase. However, in 

order to make the microstrip reflectarray a practical alternative for many applications 

where reflectors are normally used, much work still needs to be done. 

A primary concern is the limited bandwidth of the microstrip reflectarray. This 

bandwidth is usually on the order of 3 to 5 percent, which is too small for many 

applications which employ reflector antennas. An increase in bandwidth may be achieved 

by using a thick foam substrate, with the use of thin dipoles for some elements to increase 

the range of reflection phases that may be achieved. A greater increase in bandwidth 

could possibly result from using stacked patches. 

For shaped beam applications, a very precise knowledge of the total reflection 

phase from each element is needed. Therefore, in these applications, it would be beneficial 

to know the effect of mutual coupling in the reflectarray environment. Unfortunately, 

such a solution would involve a moment method computation for the entire reflectarray, 

which is computationally infeasible. A potential way around this problem would be to first 

design a reflectarray using the infinite array data and then perform three separate analyses 

for scattering from each element in the reflectarray - an analysis of the isolated element 

itself, a finite subarray composed of only the nearest neighbors to the element under 

analysis, and an infinite array of similar elements. Comparing the data from these 

solutions should give an idea as to the effect of mutual coupling on the reflection phase of 

each element in the reflectarray environment. 
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APPENDIX 

GREEN'S FUNCTION FOR THE MICROSTRIP ELEMENT 

Many calculations in this dissertation involve the use of the microstrip Green's 

function in the spectral domain. Expressions for this Green's function that are needed for 

calculations in the dissertation are presented here. 

The dyadic spectral domain Green's function for the electric field at (x,y,d) of a 

single infinitesimal electric dipole located at (x^y^d) on a grounded dielectric slab is, 

G(x,y\x0,y0) = --&- ) )Q{kx,ky)eß^e*™dkjk, (A-l) 

In this work we are only concerned with the tangential fields that produced by the 

currents on the surface described by z=d, i.e. the x and y directed electric fields due to the 

x and y directed currents. 

The kernel functions for use in (A-l) are as follows: 

For the x directed electric field produced by a x directed electric current: 

{erkl-kl)k2cos{kld) + jkx{k
2

0-kl)sm{k,d) 
Qn = — sin(*,</) (A-2) 

e    m 
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For the x directed electric field produced by a y directed electric current: 

kxky[k2 cos(kAd)+j% sin(£,</)] . 
FT. "" Qv = - XyV 11 /Jsin(^) (A-3) 

For the y directed electric field produced by a x directed electric current: 

Qyx=Qxy (A-4) 

For the y directed electric field produced by a y directed electric current: 

(erkyk2
y)k2cos(kld)+jk,{kyey)sm(kld) , 

ZT_ Q„ = " „V y' sin(M) (A-5) 

In the above expressions: 

*I = VM?-*?-*?    ;   Im(Ä1)<0 (A-6) 

K^^l-kl-k)    ;   lm(£2)<0 (A-7) 

Te = k, cos(fy/)+jk2 sin(^) (A-8) 

Tm = eX. cos(k,d)+j% sin(£,</) (A-9) 
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