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ABSTRACT

TWO SELECTED TOPICS INVOLVING THEORY AND APPLICATIONS OF
INFINITE ARRAYS OF MICROSTRIP ELEMENTS

SEPTEMBER 1995
STEPHEN DONALD TARGONSKI
B.S.EEE., UNIVERSITY OF MASSACHUSETTS
M.S.E.E., UNIVERSITY OF MASSACHUSETTS
Ph.D., UNIVERSITY OF MASSACHUSETTS
Directed by: Professor David M. Pozar

The objective of this work was to develop theory for infinite arrays of microstrip elements,
and incorporate that theory into the modeling of large finite arrays. The first topic, the
effect of random positioning errors on the input impedance of an infinite array of printed
dipoles, utilizes the infinite array solution to gain insight into the reduction or possible
elimination of scan blindness for these arrays through the intentional introduction of
random element positioning errors. Both planar and linear infinite random arrays are
examined. In the second topic, the analysis and design of a microstrip reflectarray using
patches of variable size, a rigorous solution to plane wave scattering from an infinite array
of microstrip patches is performed. The data from this solution is then used to design a
finite sized microstrip reflectarray. Several new topics in reflectarray analysis and design

are examined, including the design of millimeter wave microstrip reflectarrays.
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CHAPTER 1

EFFECT OF RANDOM POSITIONING ERRORS ON THE INPUT IMPEDANCE
OF AN INFINITE ARRAY OF PRINTED DIPOLES

1.1  Introduction

| A problem in the use of phased arrays of printed elements is the appearance of
scan blindnesses at certain angles [1]. These blindnesses occur because the mutual
coupling between the elements in the array add in phase at the blind angles, creating a
highly reactive input impedance. This problem can be alleviated by introducing random
positioning of the elements in the array, thereby randomizing the phase of the mutual

impedance between the elements.

Two articles discuss the removal of scan blindness through the use of random
element positioning [2,3]. However, these and other papers on random arrays have
always studied the effect on the array pattern only, and have not examined the input

impedance of the elements.

In order to study the effect of random positioning errors in an infinite array an
impedance analysis must be done, since there is no specific definition of an antenna pattern
for an infinite array. The active element pattern is often referred to, however, this also
depénds on the input impedance of the elements. In this chapter the solution for the
expected value of the input impedance of an infinite array of printed dipoles on a dielectric
substrate is presented. However, a limitation exists in the analysis in the fact that the

terminal current at each dipole must be fixed.




Specifically, in this chapter:

» Two infinite planar arrays with random positioning and varying degrees of

randomization will be analyzed.

« Two infinite linear arrays with random positioning and varying degrees of

randomization will be analyzed.
» Averaged results from several large, but finite, random linear arrays will be

compared to the results from an infinite random linear array to validate the
analysis.

1.2 The Infinite Random Planar Array

The geometry of the infinite random planar array is shown in Figure 1.1. The
element positions along the x axis are placed at x, =ma+A,_, where the A_'s are
independent identically distributed uniform random variables with zero mean defined on
the interval [-3,8]. This formulation is of the form of a "binned" random array [4], as
compared to the totally random array. It has been shown that for element spacings of less
than a wavelength, scan blindness for this array geometry occurs primarily in the E-plane

[1]. Therefore, randomization has only been introduced in the x-direction.
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Figure 1.1 Geometry of the infinite random planar array of printed dipoles.

A theoretical approach similar to the one presented in reference [1] was used,

with a single PWS mode assumed for the current on each dipole. The single PWS mode,

while not providing a rigorous solution for the actual input impedance, should be sufficient

for predicting the existence or non-existence of scan blindnesses.

The analysis begins with the Green's function for the electric field at (x,y,d) of a

single infinitesimal electric dipole located at (x,,y,,d) on a grounded dielectric slab,

.Z ® ® . ,_.,;
G (x,x,,y,) = —#k— [ [0, k)06 gk gk (1-1)

0 —o0—-t0

where Z,, is the intrinsic impedance of free space and the kernel function Q,, is listed in the
Appendix.




For the infinite planar random array, the total electric field is the superposition of
the electric field from each element. The elements are phased to produce a beam in the
(u,v)=(sin O cos ¢, sin O sin ¢) direction, and the appropriate phasing is selected to

account for the non-periodic positioning. This yields

E,(x,y)=——41”‘—22—°];— >, Y et [ (k,,k,)F(k,, k)&t 0 g g,

0 M=—® p=—co ~00 —00

(1-2)

In the above expression, F(k,,k,) is the Fourier transform of the piecewise

sinusoidal mode used on the dipoles, given by

2k, (cosk,h—cosk,h) sink,w/2
sinkh(k?-k)  k,w/2

F(k,,k,)= (1-3)

where h is the mode half-length and £, = ko,/ (e,+1)/2.

The input impedance of the (m,n)=(0,0) dipole can then be computed as
2y = -[[E,(x,9)-J.(x,y)dxdy (1-4)
S

where the area of integration is over the surface of the dipole. This yields




y _;ZZOk Z Z eﬂt,(mam»nbv) j J Qxx ( kx’ ky ) Fz ( kx’ ky ) ejk,m e}'k,nb ei(k.,u—k,)(A.,—Ao) dk,dky

0 M=—0 p=—0 -0 —00

zZ) =

(1-5)

The above equation for the input impedance is a random variable which is a
function of the independent random variables A . The expected value of a function of a

random variable is computed as

E[Y]= [g(x)fx(x) dx (1-6)

where the random variable Y is a function of the random variable X, i.e. Y=g(X). Also,

fx(x) is the probability density function for X.

Using (1-6), the expected value of input impedance is computed as

E[Z,]= ZJE—Z;;-{— Z_m _Z_,,, ™) [ [ (k. k)P (K, k)™ e E[e/® Xt 1dk_d,
(1-7a)
where
1 ; m=0
E[ ej(kau_kx HAn—Ag) ] - ( 1 -7b)
S(k); m=0
and



sin(kou—k,)5)2 (1-Tc)

S(k) 2( (ku—k)8

While the input impedance of (1-6) is not periodic, the expected value of (1-7a) is.
Therefore, the Poisson sum formula can be applied to this expression. Applying the

formula and performing some algebraic manipulation yields

2R : _ JZ, & 3 -
=y Zm _[, (k.. k,)F* (k,,k,)[1 S(k,)]dk,+abk > D Ok, k,)F*(k.,k,)S(k,)

0 Mm=-® n=-o

E[Z,]=

(1-8)

The first term in (1-7) resembles the solution for an infinite H-plane linear array,
while the second term resembles the solution of an infinite planar array. For E-plane scan
the first term remains constant, but the second term contributes a scan blindness. This

blindness is caused by coupling to higher-order Floquet modes [1].

An interesting result occurs when the degree of randomization is increased by
enlarging 5. As 6 approaches 0.5a, its maximum allowable extent, the function S(k,)
approaches zero for m=0. This has the effect of eliminating coupling to any higher-order

Floquet modes, thereby eliminating the scan blindness, at least in the average sense.

At this time an important point must be brought up in the analysis. In the above
formulation, the terminal current on each dipole is held constant with uniform amplitude.
While this assumption is valid for the periodic array, in the case of the random array

differences in the mutual coupling between elements will in general excite different



currents on each dipole. Therefore, for the analysis to be valid, each dipole must be fed
with a current generator which holds the dipole currents fixed as their positions are varied
inside each bin. This gives rise to the equivalent circuit shown in Figure 1.2. Here a
current generator with internal impedance Z,* feeds the dipole with input impedance Z,.

As the position of the dipole varies inside the bin, the current supplied by the generator
changes accordingly to keep the current i; constant. This fact is not critical in interpreting
the results of the infinite array analysis, however, it becomes crucial when formulating

large finite arrays that simulate the behavior of the random infinite array.

.

l’(o'r <> Vd Z; Zd

Figure 1.2. Equivalent circuit for dipoles fed with current generators.



From this equivalent circuit, the total power supplied and the portion supplied to
the dipole can be easily computed. Keeping in mind that the magnitude of the dipole

current, iy, is unity and is fixed, we get

2
P, = Re{l—z-‘-’-l—+z,} (1-9a)
Z, ‘
P, =Re{Z,} (1-9b)

In the case of the random infinite array considered here, Z;~=E[Z,]. The power P,
as defined in (1-9b) can be interpreted as the average combined radiated power and power

launched into surface waves.

The surface wave efficiency, computed from the expected value of radiated power
and power coupled into surface waves, of the infinite random planar array is an interesting
topic. For the periodic infinite planar array, there is no power transferred into surface
waves except exactly when scan blindness occurs - i.e. for all other scan angles the surface
wave efficiency is 100%. However, as randomization of the element positioning is
introduced, power can be coupled into surface waves. The mathematical interpretation of
this power is the contribution of the surface wave poles in the first term of (1-8). The
contribution of these poles is included in the numerical calculation of the infinite integral,

and is denoted as Z__,. The surface wave efficiency is then computed as -

_Re{E[Z,1-Z,}
e = Re{E1Z, 1}

(1-10)




Examples of the ratio of average power dissipated by the dipole array to the total
power supplied by the source are shown in Figures 1.3a and 1.3b. Scan is in the E-plane.
The average power is plotted for various degrees of randomization. It is evident from the
figure that for the periodic array (6=0) a scan blindness occurs around 45° for both cases.
The blindness is narrowed as randomization is introduced but is not completely removed

until the maximum amount of randomization (8=.251) is introduced.

The expected value of input impedance for an infinite random planar array is
plotted on a 50 ohm Smith chart in Figure 1.4. Again, it is evident that a blindness
appears at 45.6° in the E-plane. This plot gives an insight into the blindness phenomenon
for the infinite random array, especially the curve for 8=0.2A. The expected value of the
impedance for this particular randomization follows the curve for §=0.25A closely except
near the blindness angle, where it exhibits behavior similar to the periodic array. As will be

seen in the next section, blindness in the infinite linear array exhibits a different behavior.

The surface wave efficiency for both examples is shown in Figures 1.5a and 1.5b.
For the periodic array, no power is coupled into the surface wave except exactly at
blindness, yielding and efficiency of unity at all other angles. As the degree of
randomization is increased, more power is allowed to be coupled into a surface wave
thereby decreasing the efficiency. The efficiency of the example shown in Figure 1.4b has

a markedly lower efficiency than the example of Figure 1.4a, suggesting a "stronger"

surface wave in this case.
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Figure 1.3. Ratio of average dipole (radiated & surface wave) power to total power supplied by
source for an infinite planar array of printed dipoles. E-plane scan. Values are

normalized at broadside. (2) a=b=0.5A, L=0.39A, w=0.01A, d=0.19A, £,=2.55.
(b) a=b=0.5A, L=0.156A, w=0.01A, d=0.06A, e,~12.8.




Figure 1.4. Expected value of input impedance for infinite random planar array versus E-plane
scan. Normalized to 50 ohms. a=b=0.5A, L=0.39A, w=0.01A, d=0.19A, e,=2.55.
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Figure 1.5. Surface wave efficiency versus E-plane scan for infinite random planar array.
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d=0.06A, e,=12.8.




13 The Infinite Random Linear Array

The geometry of the infinite random linear array is shown in Figure 1.6. The
geometry is similar to that of the planar array, with element positions along the x axis
given by x_ =ma+A_, where the A s are as defined in the previous section. The equivalent

circuit shown in Figure 1.2 is used to feed the elements. An E-plane array is considered.

TY
Eﬁf" EJL-i:m:—)x 8,
m
:muun PLANE
Top View Side View

Figure 1.6 Geometry of the infinite random linear array of printed dipoles.

The method of analysis closely follows that of the planar array with a single PWS
mode assumed for the current on each dipole. The total electric field for the array in the
array plane is given by

E(xy)=-7 xzk D ehlmarta j jQ (ks k,YF (K, k)& 50e™ di_di (1-11)

0 m=—o ~a0 —c0

Following the same steps taken in the analysis of the planar array yields the

expected value of the input impedance as

JZ‘}c > I Ok, k, ) F*(k,, k, )S(k, )dk,

EZ,)= 47er | Jok, k)P (k. k)1-S(k, )k dk, + L2

0 —® —a 0 M=—0 o

(1-11)




Examples of the ratio of average power dissipated by the dipole array to the total
power supplied by the source are shown in Figures 1.7a and 1.7b. For the periodic array
(86=0) a scan blindness occurs around 45° for both cases. As was the case with the infinite
planar array, the blindness is narrowed greatly as randomization is introduced but is not

completely removed until the maximum amount of randomization (§=.25)) is introduced.

The surface wave efficiency for both examples is shown in Figures 1.8a and 1.8b.
The infinite linear array differs from the planar array in that even in the periodic case a
surface wave can be launched (the periodic planar array can support a surface wave only
exactly at blindness). For scan angles that are greater than the blindness angle, a large
amount of power is coupled into this surface wave, thereby lowering the efficiency. As
the degree of randomization is increased, the efficiency decreases near broadside but
increases for those angles which are greater than the blindness angle. Again, the average
efficiency of the example with high relative permittivity has a markedly lower efficiency

than the example of Figure 1.8a.

1.4 A Finite Linear Array Example

The ultimate goal of any infinite array analysis is to try to effectively model large
finite arrays with the added bonus of increased computational efficiency. Therefore, a set
of fixed parameters for a large finite linear array were chosen and several random arrays
were analyzed to see if the solution for the infinite array does in fact model the behavior of
the finite array. Also, looking at the input impedances of the individual elements in the

finite random array gives a good idea of the variance of the input impedance, a calculation

which is extremely complicated for the infinite array. The average surface wave efficiency
for the finite arrays can also be examined. For this example, linear arrays consisting of 99

elements were considered with the other parameters as listed in Figure 1.8b.

14

.




—

Pd/Ptot

Pd/Ptot

s ﬁ
L S
1.2 oo Tt
L e o o T . (U S T S—
L e 50
: —eo— 5=0.1A
0.6 | —7— =022
: %l —¥— 5=0.25A
04 |
02} 1
o'”...,....,..................l.‘..,
0 10 20 30 40 50 60 70 80 90
Scan Angle (degrees)
(a)
14
1.2 o WU e RS S
- : mm— S
1 !—nggg\\ ¥ f///ﬁ/ SRS SR
“ N v 7 50
[ \ / —eo— §=0.1A
0.6 | —— §=0.21
j \R T o
0.4 |
0.2 | &\ SR N— [ ——
0 10 20 30 40 50 60 70 80 80
Scan Angle (degrees)
®)

Figure 1.7. Ratio of average dipole (radiated & surface wave) power to total power supplied by

source for an infinite E-plane linear array of printed dipoles. Values are normalized at
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In order to provide data to compare to the infinite array solution, several random
finite arrays were generated and the results from each were averaged. The element
positions along the x axis are given by x, =ma+A,, and for each element the value A was
generated from a uniform random variable with zero mean defined on the interval [-5,8].

The result is a finite array with fixed, but non periodic, element positions.

For large degrees of randomization many arrays had to be analyzed to get a good
average result due to the large variance in input impedance. For this purpose a full-wave
moment method solution for the finite array, even using only a single mode on each dipole,
is computationally impractical. Fortunately an asymptotic expression for the mutual
impedance between elements exists [5] and data computed by this method can easily be
curve fitted for the case of the linear E-plane array. For closely spaced elements the
mutual impedance was computed using a spectral domain integration and also curve-fitted.
With this approach solutions for several random finite arrays with a large number of

elements can be computed rapidly with a great deal of accuracy.

The analysis proceeds similarly to that of the infinite random linear array with a

fixed terminal current on each dipole. The input impedance for the n dipole is then -

computed as
. JZ, X k(% —%) T 2 ik (% —%1)
e ,.zz,:e] L :[DQ,,(k,,,k,)F (k, k)™= dk die,  (1-12)

where N is the number of elements and x_, is the position of the m element. The spectral

integral in (1-12) is just the mutual impedance of two dipoles in the array (obviously the

17




dipole self-impedance in the case where m=n) so the asymptotic data mentioned above

may be used and the input impedance computed as

z

n_ jZo .kau(xn-xll)z - 1-13
Zin 47[2k Zel mu((xm xn) ( )

0 m=1

Plots comparing the ratio of average power dissipated by the dipole array to the
total power supplied by the source for the finite and infinite cases are shown in Figures
1.9a,b,c,d for cases with 6=0, 8=0.1A, §=0.2A, and =0.25A respectively. Twenty-five
distinct finite arrays were used to generate the data. The agreement is quite good in all
cases, and while a true blindness is not seen in the finite array, a dip in the power ratio is
evident near the 45° scan angle except for the =0.25A case. The case of free excitation
for a finite array is also considered in Figure 1.9. It is seen that with varying
randomization the blindness is reduced to a greater extent with free excitation than by
using fixed terminal currents at each dipole. The results between the two cases are not

significantly different, however.

The average value of input impedance for the finite and infinite arrays is compared
in Figures 1.10a,b,c,d for cases with =0, §=0.1A, §=0.24, and =0.25\ respectively.
Agreement is excellent, with slight deviations at the blindness angle due to the finite size

of the array and possible errors in the curve fit used for the mutual impedance.

The calculation of surface wave efficiency for the finite arrays is much more
involved than in the case of the infinite array. Because a curve fit was used to find the
mutual impedance between elements, Z_, cannot be computed and (1-10) cannot be used.
However, the total radiated power can be computed by integrating the far-fields of the

array, and the surface wave efficiency defined as
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N, = (1-14)

- N
2B
n=1

where P} is the power delivered to the n* dipole as is given by (1-9b).

To find the radiated far field of the dipoie array, a stationary phase evaluation of
the Green's function is performed [6]. The far field of the n't dipole with an x-directed

current is given by

etz . kXsinkd .
E,=-I, - Z—;t-e'*”F(k,,k,)("—Ti)cosesmfp (1-15a)

e

"'jkor

e™ Z, . k, k sinkd
E, =1 =M F(k, k)| 1=
T om (k. y)(

)cosﬂcos«p (1-15b)

m

k.=sinBcos¢ ; k, =sinbsing

where Z, is the intrinsic impedance of free space and , = e’~™¢ is the dipole terminal

current. The expressions for k,, k,, T,, and T, are given in the Appendix.

The total radiated far field from the array is then given by

N
Ey =) E,e/"mntt (1-16a)

n=1
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N
E, =) E,e"" ! (1-16b)
n=1
The radiated power is then found by integrating the far fields,
1 pr2xpn2 2 2\ .
P, = Z jo jo (|E,,| +|E,| )sm 8d6d¢ (1-17)

Plots comparing the average surface wave efficiency of the finite arrays to the
surface wave efficiency of the infinite random linear array are shown in Figures 1.11a,b,c,d
for cases with 8=0, §=0.1A, 8=0.2A, and §=0.25A respectively. To find the average
surface wave efficiency, the surface wave efficiency of each individual finite array is
computed using (1-14), and the results are averaged. The agreement in all cases is
excellent, thereby validating the use of (1-10) in computing the surface wave efficiency for
the infinite array and showing that the infinite array solution sufficiently models the

behavior of the finite arrays.

To complete the analysis, the computed reflection coefficient for each dipole in the
finite arrays was also calculated. The matching impedance, Z,, used in the calculation was

the expected value for the infinite array at broadside, and the dipoles were conjugate
I,|=(Z.-2,)/(Z] + Z,). While this calculation does not present any

matched, i.e.

significant physical meaning, it does give some insight into the variance of the input

impedance as the dipole positions are randomized.

Histograms showing the distribution of the magnitude of this reflection coefficient
are shown for no randomization in Figures 1.12a&b, and for cases with §=0.25A in

Figures 1.13a&b. In the periodic case the reflection coefficient is quite small for the great
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majority of the dipoles, with elements near the edge exhibiting a slightly higher reflection
coefficient magnitude. The case with §=0.25A is much more interesting. The majority of
dipoles at broadside have reflection coefficient magnitudes in the 0.3 to 0.6 range,
showing that the median and mean values for the input impedance are quite different.
Also, there are a few elements exhibiting reflection coefficient magnitudes of greater than

unity.

While this seems like an erroneous result at first glance, it can be explained by
mutual coupling of power between the dipoles [7]. When the mutual coupling betwéen
elements is strong, a great deal of power can be delivered through this mutual coupling to
some elements, and in some cases this coupled power exceeds the power supplied to the
element by the feed. This results in a negative input resistance for the element and a
greater than unity magnitude reflection coefficient. The total power balance for the array

is preserved, however.

In this chapter the solution for the expected value of input impedance for an
infinite array of printed dipoles was presented. Planar and linear E-plane arrays were
considered. The scan blindness phenomenon was seen to be reduced with the introduction
of randomization, and to disappear completely only when the full extent of randomization
was introduced. Several large finite arrays with element positions generated from a
uniform random variable were analyzed and averaged data from these arrays compared

well with the infinite array calculation.

A limitation of the practicality of this analysis is the stipulation of a fixed terminal
current at each dipole, which would be a difficult and cost prohibitive measure to
implement in an array of printed dipoles. A fixed terminal current at each dipole reduces

the effects of mutual coupling on the array pattern, however, which can be quite severe in
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arandom array. The alternative is the case of using free excitation for each dipole. This
method, while being easily implemented, suffers greatly from mutual coupling effects in

the random array environment.

These effects can be seen by examining the patterns shown in Figure 1.14. The
patterns shown are for the cases of free excitation and fixed terminal current, and for both
cases the element positions are the same. The effect of mutual coupling in the free
excitation case is easily seen in the high sidelobes that are present in the radiation pattern,
which is a major problem associated with randomly spaced arrays. For the case of fixed

terminal currents, the sidelobes are of much lower intensity.

A conclusion of this work is that the method of using randomly spaced elements in
an array of printed dipoles, while being a valid technique for eliminating scan blindnesses,

is not very attractive in terms of performance and cost. A much more practical method is

to make a proper choice of substrate in order to move any scan blindness effects near

endfire.
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Figure 1.14. Radiation patterns for a 99 element E-plane linear array of printed dipoles with
1=0.156A, w=0.01A, d=0.06A, £,~12.8.
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CHAPTER 2

ANALYSIS AND DESIGN OF MICROSTRIP REFLECTARRAYS USING
PATCHES OF VARIABLE SIZE

2.1  Introduction

In a great number of microwave applications a highly directive antenna with a main
beam scanned to a certain angle is required. Two types of antennas that do this are
reflectors and arrays. The reflector antenna uses its georhetry to create the deéired phase
across the aperture, while an array antenna employs distinct elements fed with progressive
phasing. Reflector antennas are advantageous in that they typically exhibit large
bandwidth and low loss; the main disadvantage of the reflector is the geometrical
constraint it imposes on the design. The most widely used reflector, the parabolic
reflector, also produces a cross polarized field which is inherent in its geometry.
Microstrip patch arrays are lightweight, low-profile antennas that are capable of low cross
polarization levels but typically have small bandwidth and fairly large loss at microwave

frequencies.

Obviously, cases arise where it would be beneficial to combine some of the more
attractive features of reflectors and arrays. This is accomplished by the reflectarray [8].
- Reflectarrays are illuminated by a feed antenna which excites an array of radiating

elements comprising a reflecting surface, and these elements produce a scattered field.

Many types of reflectarrays, the microstrip reflectarray included, also produce a specularly
reflected field component as in the case of a geometric reflector. The total field then
consists of the scattered field and any specular reflection. The array elements can be

tuned to produce the required phasing over the aperture, thereby eliminating the
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geometrical constraint of ordinary reflectors. Also, the radiating elements are typically

tuned so that the radiated field reacts favorably with any specularly reflected field.

Early reflectarray designs employed arrays of dipoles, spirals, and waveguides [8],
[9], [10]. By using microstrip elements in the reflectarray, one gains all of the advantages
of microstrip, and with this reasoning a microstrip reflectarray using circular elements was
proposed in 1978 by Malagisi [11]. More work on microstrip reflectarrays with circular
elements, including a treatment of scattering from infinite aﬁays, was performed by

Montgomery [12].

In [13], a microstrip reflectarray was designed using patches with an attached
microstrip line stub for phasing as radiating elements. In [14], it was shown that the same
type of phase control could be achieved by using patches of variable resonant length,
without tuning stubs. This technique eliminates the need for a triangular grid spacing to
accomodate the stubs, and produces a slightly larger bandwidth since the bandwidth of the

stubs is no longer a factor.

In this chapter the steps taken in the design of a microstrip reflectarray using
patches of variable size will be outlined. The design procedure will be similar to that of
[13], using the moment method solution for plane wave scattering from an infinite array of
microstrip patches as a building block on which to design the electrically large, albeit finite
sized, reflectarray. At each unit cell in the reflectarray, reflection phase data computed
from the solution of plane wave scattering from infinte array of uniformly sized patches is
used to pick a patch length, and then a patch of the required length is placed in the
corresponding unit cell of the reflectarray. This results in a large array of elements, each
with a slighly different resonant length. Each unit cell in the reflectarray is then assumed

to radiate with the same characteristics as if it was in the infinite array environment.
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Several topics in the analysis and design of microstrip reflectarrays which were not

treated in [13] are discussed in this chapter, specifically:

o Computational efficiency issues for the moment method analysis, with a marked

increase in resulting efficiency .

+ The effect of including both TE and TM polarized field components in describing the
incident field, including the generation of a cross polarized field similar to that
produced by a parabolic reflector.

o The effect of using an offset feed to reduce beam squint with frequency.

o A detailed analysis of dielectric and conductor losses.

* Aninvolved discussion on potential sources of phase error that can degrade the

performance of the reflectarray.

o The design, manufacture, and test of several millimeter wave microstrip reflectarrays

to see if the concept is feasible at these frequencies.

22  The Moment Method Solution of Plane Wave Scattering From an Infinite Array of

Microstrip Patches

The moment method solution for plane wave scattering from an infinite array of
stub tuned patches is described in great detail in [13]. For that problem, piecewise

sinusoidal (PWS) modes were used in the analysis. These modes were needed due to the
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irregular shape of the stub tuned patch. In [14], a similar solution is performed on patches
of varying length, however, due to the simple rectangular shape of the patches, entire

domain modes were used. This speeds up the analysis since fewer modes are needed.

In both cases the results from the moment method solution are employed in
designing a finite reflectarray. It should be noted that both of these methods achieve
essentially the same effect; the relative phase of the total far field as the patch is operated
off resonance is tailored to produce a collimated beam. In [13], a variable length stub on a
fixed size patch shifts the resonant frequency; in [14] a variable length patch produces the

same result.

The geometry of the infinite array problem is shown in Figure 2.1. A patch of
length / and width w resides in a unit cell of dimensions a and 5 in the x and y direction,
respectively. The patches reside a distance d above a ground plane, separated by a
dielectric substrate with relative permittivity €,. A triangular grid is used for the first
design example in Chapter 3, however, the rectangular grid is used for all other examples

and presented results.

A brief outline of the moment method solution described in [14] is now presented.

The incident field is a plane wave of the form

E" = E gomorrerients) 2-1)

In general, the incident field contains a TM component (6 polarized) and a TE
component (¢ polarized). Since the reflecting surface is infinite, we can also describe the

specularly reflected and scattered fields as plane waves. The specularly reflected and

scattered fields are given by
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EY = _k: . _oe""o(“‘o*yv,—tcosﬂ.,) (2-2)
Esoat = ? . _E_a ejk,(w,+ w,~zc068,) ’ (2_3)
u, =sin6, cos¢, v, =sin6, sing,
where
= 0 = |Sg S,
0 R, Sso See

The total field is then the vector sum of the specularly reflected and scattered
fields. The specular reflection matrix can be computed easily through a transmission line

analogy, and the scattering matrix is computed using the moment method solution. The
patch current is expanded in a set of N basis functions,

N
J(x,y)=3 1J,(x,y)

i=1

(2-5)

where the /; are the unknown coefficients of each mode, and each expansion mode has a

Fourier Transform F(k,, k,). The unknown coefficients can then be found as

I=Z''v
where

(2-6)

(2-7a)

for the rectangular grid, and, for the triangular grid [13]
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LT - —_‘ .=. —. 2-
% absm ,,Z_,, ,,Z_,,F: G5 (2-0)
Also,
z:jj],.-(EW+E"f)ds (2-8)
S

In equations (2-7a) and (2-7b), G isthe dyadic Green's function for an electric
current source on a dielectric substrate [13], and in (2-8) the area of integration § is the

area of the patch.

The summations in (2-7a) are over the Floquet modes defined as

k =ku +2™" (2-92)
a
k=ky, + 22 (2-9b)
while in (2-7b), (2-9b) becomes
k, =k, +—2__ 21 (2-9¢)

bsinaa atano

2.2.1 An Efficient Mode Set for the Plane Wave Scattering Problem

In the computer program that implements the moment method solution most of the
CPU time required is in computing the impedance matrix elements of (2-7), since the
expression for each matrix element is not in closed form, but in the form of an infinite sum.
Therefore, choosing a set of basis functions which provides convergence with a minimum

number of modes is essential for obtaining good computational efficiency.




The set of basis functions used in [14] is a set of entire domain sine modes,

sinZX(x+1/2), for|x|<1/2
[l (x)= (2-10)
0 for|x|>1/2

with Fourier Transforms given by

2mnm coskl/2

I (mm)
== -k
GE

F"(k,)= (2-11)

where 1 is the mode length.

For the plane wave scattering problem, odd modes (those with an even numbered
index) make a negligible contribution for incidence angles of less than 60°. Therefore, in
all calculations presented here, only even modes will be used. Even using just these

modes, a large number are needed for convergence of the moment method problem.

A plot of computed reflection phase versus number of entire domain modes used is
shown in Figure 2.2. It is evident from this plot that convergence of the phase does not
occur until over 100 modes are used, resulting in a huge impedance matrix, and long
computation times. This is due to the fact that the computed resonant frequency of the
patch changes slightly as more modes are used. For very narrowband patches, such as the
one in this example, a slight shift in resonant frequency produces a large shift in reflection
phase. For patches that exhibit wider bandwidth, the reflection phase is not as dependent
on resonant frequency, and the moment method solution converges with fewer modes.

However, more than twenty modes are needed for almost all cases, and the matrix fill time

is significant.
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Figure 2.2. Computed reflection phase of infinite array of microstrip patches versus number of
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entire domain mode and one edge condition mode. f=27.3 GHz, a=.6087cm, b=.6667cm,
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magnitude drops off as »°, where s=-1.5 is the slope of the line.

In order to find a more efficient mode set for this problem, the current vector of
(2-6) was examined. For many different test cases, it was found that the current
coefficients were all in phase and their magnitude dropped off asymptotically, with
| increasing index. A plot of the magnitude of the current coefficients is shown in Figure

2.3. The logarithmic graph shows a linear dependence for n>2 modes, suggesting that the

1k

0.01

Current Coefficient Magnitude

AN

0.001
1 10

Number of Expansion Mode

8=0°, ¢=0°.
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Figure 2.3. Computed magnitude of current coefficients of entire domain expansion modes for the
moment method solution of an infinite array of microstrip patches versus mode number.
=27.3 GHz, a=.6087cm, b=.6667cm, €,=2.95, d=.0254cm, tan 8=.0074, I=.3cm, w=.3cm,



Since only even entire domain modes are used, the current coefficients are akin to
the coefficients of a Fourier cosine series. A suitable expansion mode whose Fourier
cosine series coefficients exhibit the same asymptotic behavior shown in Figure 2.3 is the

edge condition mode [15] given by

J(x,y)= —1—\/ a*-x* (2-12a)
a
with Fourier transform
F(k)=-"Ji(ka) (2-12b)

x

where J,(x) is the Bessel function of the first kind with order one. The large argument

formula for this Bessel function is

Ji(x)= \/%cos(x—%?—) (2-13)

Substitution of (2-13) into (2-12b) reveals the asymptotic behavior of Figure 2.3.

By using this edge condition mode, only two expansion modes are needed for
convergence of the moment method solution - the first mode in the entire domain
expansion of (2-10) and the edge condition mode of (2-12). The computed reflection
phase using these two modes for the case in Figure 2.3 was 171.5 degrees, the same value
arrived at with the entire domain expansion, but using over one hundred fewer modes.

Adding more modes along with the edge condition mode does not change the value of the

reflection phase, showing that the solution has indeed converged.




2.2.2 Increasing the Computational Efficiency of the Floquet Mode Summation

The infinite sums of (2-7) are computed numericélly, therefore, a limit must be set
by which to truncate the series. In [1] a range of -60 <m < 60, -60 < n < 60 provided
sufficient convergence, and that range also provides sufficient convergence for most cases
in the present case. This gives a summation over the square region of the £, &, plane as

shown in Figure 2.4a.

Such a wide region is not needed for convergence, however. Because the infinite
array assumption provides a summation over discrete Floquet modes instead of an
integration over a continuous spectrum, performing the calculation over an irregularly
shaped region is easily implemented - only a single FORTRAN program line was needed
to define the region shown in Figure 2.4b. For a single element or finite array, where an
integration in polar coordinates is performed, the technique is still valid but the

implementation is much more complex.

To find a suitable region to sum over, the magnitude of the quantity inside the
suﬁlmation of (2-7) was examined. Areas inside the region depicted in Figure 2.4a where
the magnitude is sufficiently small can be neglected in the summation, as their contribution
to the final sum is negligible. A contour plot of this quantity is shown in Figure 2.5.
Parameters for a typical case were used to construct the plot, and the patches are near
resonance. Entire domain cosine modes were used as the expansion and testing modes,
however, using the edge mode of (2-12a) produces similar results. From this plot it is
readily seen that the summation of the Floquet modes only needs to be performed over a
hyperbolic region as shown in Figure 2.4b. This region is defined by the equation

abs(m’n)< a (2-14)
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where a is a constant. A value of 4000 provides excellent convergence while resulting in a
4 to 1 savings in CPU time needed to compute each impedance matrix element. In order
to validate that the region is large enough to ensure convergence of the summation,
several curves of reflection phase versus element length were computed using the
parémeters given in Figure 2.5. The results are shown in Figure 2.6. It is seen that the

hyperbolic region is indeed large enough for convergence.

The hyperbolic region is valid for most practical cases, and it also appears to be
valid for any moment method solution involving microstrip patches where ;nﬁre domain
modes are used. However, the extents of the region vary with some of the parameters
used. This is due to the fact that the region is formed mostly by the shape of the Fourier
transforms of the expansion and testing functions. Entire domain modes with higher
indices will increase the size of the region, as will the use of very small patch dimensions

since both of these factors have the effect of "widening" the respective Fourier transforms.

For the problem of plane wave scattering, however, the phase response is
dominated by the specular reflection when the patch dimensions are small. Also, as was
shown in the previous section, entire domain expansion modes with indices higher than
one are not needed for convergence of the moment method solution, and the behavior of
the edge mode of (2-12a) is very similar to that shown in this section. Therefore we can

use the same hyperbolic region for all patch lengths with a great deal of accuracy.

23 Effect of Using TE and TM _Incident Field Components

For the reflectarray design process described in [13], the incident field at each

unit cell is locally approximated by a TM polarized plane wave incident at angle (0,¢)=
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(6,,0). This gives a x-polarized tangential field across the dielectric-free space boundary,
and also reduces the complexity of the scattering problem since for this case only a TM

polarized scattered field will result. The pattern function is then generated by

N
F(6,¢)=Y E, -R., -&*"
i=1

where

E, = incident field at i*® patch
R, = Re+5y

(2-15)
; is a vector from the origin to the i* patch

7, is a unit vector in the direction (6, ¢)

Because only one polarization is assumed, all quantities above are scalars and

only the co-polarized field can be computed.

The incident field at each unit cell is more accurately described by a
combination of TE and TM polarized plane waves incident at (6,$)=(6,,9,), where the
subscript i denotes the unit cell of interest in the reflectarray. This, however, provides a
much more complex problem. Due to the difference in specular reflection, the moment
method solution must be run separately for the TE and TM components. Also,
computation of the reflectarray scattered field is more complex due to the fact that more

than one field component is now present in the total scattered field.

In order to compute the reflectarray scattered field, equivalent electric currents

are defined which produce the computed total far field. To find these currents, an infinite

array of infinitesimal dipoles on the dielectric substrate is assumed, and the element at the

origin in this infinite array is placed in the unit cell of interest in the finite reflectarray. The
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procedure for defining the infinitesimal current starts by obtaining the total reflected and

scattered far field components,E, and E, from the infinite array solution outlined in

Section 2.2. Then, following theory presented in [13],

E, = cosOcos ¢E, — sin ¢E, (2-16a)
E = cosOsin ¢E, +cos ¢E, ‘ (2-16b)
and
Jo=es® (G E-GE) 2-17
J=es? (-G,E+G.E,) (2-17b)
7 G.G, -G,

where G is the Fourier transform of the Green's function listed in the Appendix and is
evaluated at the point (k,,k,) = (sin 6cos ¢,sin Osin ¢).

An infinite array of these infinitesimal dipoles (with appropriate phasing to
generate a plane wave at the required angle) produces the same fotal field (specular and
radiated) that was computed from the moment method solution. Then, the "unit cell"
concept is employed and the infinitesimal current located at the origin is placed in the unit
cell of interest in the finite reflectarray. Repeating this procedure for each cell in the
reflectarray produces a finite array of infinitesimal dipoles that is the same size as the
reflectarray. The pattern function for this array is then easily computed. An alternative

method for the calculation of the pattern function for the reflectarray without using these

equivalent currents is presented in [16].




By using this approach, it is possible to see the dependence of reflection phase
versus azimuth incidence angle. A plot of the normalized reflection phase for the co-
polarized field versus azimuth incidence angle for severai different incidence angles in
elevation is shown in Figure 2.7. It is seen that when the elevation angle is small there is
not much difference in the reflection phase versus azimuth, but as the elevation angle
increases there is a large deviation in the reflection phase. This result is not unexpected,

since for larger incidence angles in elevation there is a marked difference in the specular
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Figure 2.7. Computed reflection coefficient phase versus azimuth incidence angle for different
elevation incidence angles. f=28 GHz, a=.5442cm, b=.5442cm, €,=2.2, d=.0508cm,
tan 5=.0028, I=.315cm, w=.315cm




reflection phase for TE and TM components of the reflected field. Howeuver, it is
interesting to note that the reflection phase for purely TM (¢$=0°) and purely TE
(¢=90°) incidence is not that different; it is the case where the ratio of TM and TE
components in the incident field is almost equal (around $=45°) where the largest

deviation in reflection phase (as referenced to the value for purely TM incidence) occurs.

For reflectarray designs with an f/D ratio of 0.7 or higher, there are few unit
cells where the elevation incidence angle is large enough to cause any significant change in
the reflection phase versus azimuth, and in these cases the approximation of using a TM
polarized plane wave incident at angle (8,¢)=(0,,0) at each unit cell is quite good.
However, for designs with a lesser f/D, care should be taken in the design process to

account for phase deviation with azimuth as this effect is more significant.

Another interesting phenomenon which occurs in using this approach is the
generation of a cross-polarized field. Again, due to the difference in the specular
reflection phase for TE and TM components of the reflected field, a cross-polarized field
results. This field is not unlike the cross-polarized component generated by a parabolic
reflector; for a broadside beam the cross-polarized field is zero in the principal planes and
has its maximum in the diagonal plane. In the analysis presented here, the cross-polarized

field is modeled by the y-directed currents as given in (2-17b).

An example of the currents used in the computer model is shown in Figure 2.8.
For this design, the main beam was scanned off to 25° in the E-plane (x-direction). Note
the anti-symmetry of the y-directed currents with respect to the x-axis; this produces a null
in the E-plane for the cross-polarized field. If the reflectarray was designed to produce a

broadside beam, a similar anti-symmetry would exist with respect to the y-axis, producing
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Figure 2.8. Example of equivalent currents used in computer model for reflectarray scattered field.
f=27.3 GHz, a=.6087cm, b=.6667cm, £,=2.95, d=.0254cm, tan 5=.0074, I=.3cm,
w=.3cm, 6=0°, ¢=0°,
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a null in the cross-polarized field in the H-plane. Measured results support this type of

behavior, as will be shown in Chapter 3.

24 Finite Reflectarray Design

As previously stated, the "unit cell" concept is employed in the process of using
the data from the solution of the infinite array problem to design the finite sized
reflectarray. The incident spherical wave from the feed is locally approximated by a plane
wave at each unit cell. The required phase is achieved by selecting the proper patch length
from the infinite array data, and a patch of that size is placed inside the corresponding unit
cell in the finite reflectarray. This design process has been used before [13],[14], but is

included here for completeness.

The required phase at each element is arrived at by ray tracing, and the
geometry of the finite reflectarray is shown in Figure 2.9. The incident phase at each unit
cell is -k R;, where k is the free space wavenumber at the design frequency. In order to
offset the phase delay from the incident spherical wave, a phase shift of +k R, is required.
Then, to create a planar wavefront at angle 0, an additional phase shift is needed. This

gives the total required phase shift at each element as
¢ =k, (R -F;-F,) (2-18)

where 7, is a unit vector in the direction of the main beam. In this work, only cases where

the main beam is scanned off broadside in the E-plane are considered. This simplifies

(2-18) to

¢, =k,(R -1, sinGo)v (2-19)
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2.5 Prime Focus and Offset Feeds

Using a prime focus feed is the most straightforward design approach for a

reflector or reflectarray. This corresponds to the geometry of Figure 2.9 by having x =0

and 6.=0°. Unfortunately, this configuration results in aperture blockage effects and, in
reflectarrays which are scanned off broadside, beam squint with frequency occurs. For

high gain reflectarrays with narrow beamwidths, this poses a serious problem.

The offset feed is more attractive in the sense that aperture blockage effects are
minimized, at the expense of a slightly more complicated design and analysis procedure.
Also, the effect of beam squint with frequency can be greatly minimized by choosing the

correct offset distance.

To gain insight into how beam squint with frequency occurs in reflectarrays
scanned off broadside, a linear E-plane reflectarray is considered. For collimation of the
main beam at angle 6, the progressive total phase (including all time delay effects from

feed radiation and total reflection phase of the elements) is

&(x) =~k xsin6, (2-20)

where £_is the free space wavenumber at some frequency other than the design frequency.

The beam pointing angle then depends on the differential phase,

6(x) = sin-'(-ki d"’(")] @-21)
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Note that the main beam angle given by (2-21) depends on position in general.
This can be interpreted as if a pair of elements close to that position are trying to create a
main beam at angle 6(x). If there is no dependence on position, i.e. the derivative of ¢(x)
is constant, then there is no phase error across the the array and a well defined beam will

be produced at angle 6.

Assuming that the incident phase at each patch is -k R,, using (2-19) gives the

total differential phase across the aperture as

d
D) k- ky)

xX-X,

Lk xsin6, | (2-22)
R

For a prime focus feed, x,;~0, and substitution into (2-21) yields

k, —k
6(x) = sin™ (—"—LA +% gn 9") (2-23)
R &k k

The position dependent term in (2-23) comes from a non-progressive quadratic
phase error which results in higher sidelobes and loss in gain but does not affect the
position of the main beam [17]. With this in mind, the beam pointing angle becomes

independent of position and is given by

0=sin" (E‘L sin 6,,] (2-24)
ks
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For the offset feed, the position dependent term in (2-22) results from a
combination of linear and quadratic phase errors, so that this term now affects the position
of the main beam. However, we can use this linear phase error to reduce the beam squint

effect in (2-24) with the correct choice of feed offset.

Using the condition in (2-20), no beam squint will occur if

do(x .
%(x——)— =—k,sin6, (2-25)
Substitution into (2-22) yields
sin@, = —of (2-26)
R,

The above condition is again a function of position, and cannot be met for all
values of x. The beam position then depends on a weighted average of 8(x) as defined by
(2-21). A very good criterion to use for reducing beam squint with frequency is to

enforce (2-26) at x=0. This yields simply,

0,=86, (2-27)

where 6, is defined as the angle from the phase center of the feed element to the center of

the array, as depicted in Figure 2.9.

In order to show the reduction in beam squint with frequency for the offset

feed, a 64 element linear E-plane reflectarray using constant phase shifters for the
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elements was analyzed for both offset and prime focus feeds. The condition of (2-27) was
implemented for the offset feed, and the main beam was scanned to 40° in the E-plane at
the center frequency of 11.95 GHz. A plot of main beam position versus frequency for
both cases is shown in Figure 2.10. It is evident that the beam squint is eliminated for the
offset case, while there is a great deal of movement of the main beam with the prime focus

feed.

The condition of (2-27) is generally good enough to prevent any appreciable
squint of the main beam, however, the position of the main beam is also a hmction of the
feed illumination. The tilt angle of the feed horn with respect to the normai to the
reflectarray plane, 6,, can also slightly affect beam squint. Setting 6,=6,=40° gave a total
beam squint of 10.1° over the frequency range shown, while setting 6,=42° gave the result

of Figure 2.10, an elimination of practically all beam squint over the range of frequencies.

2.6 Computation of Reflectarray Directivity

The pattern function, F(6,¢), of (2-15) computes only the co-polarized
component of the reflectarray scattered field. However, since the amount of power in the
cross-polarized field is extremely small, (2-15) can be used in computing the directivity of

the reflectarray. The simplicity of the equation also makes it well suited for this purpose.
The directivity of the reflectarray can be computed as

F*(6,
D‘,=471:2,”r ( ¢)I‘“”‘

| [ F*(8,9)sin 6d6d
00

(2-28)
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The denominator is the radiated power from the reflectarray. However, the
double integration in this expression must be computed numerically. Each point taken for
the integration involves a summation over all unit cells as defined in (2-15). For the cases
of interest in this work, high gain reflectarrays with hundreds or even thousands of
elements, this approach is computationally infeasible. Also, the narrow beamwidths of

these arrays require many more integration points to be taken.

To increase the computational efficiency of the problem, the directivity is
computed by an approximate method which is accurate when there is not a very large
amount of phase error across the array. The radiated power is computed as the sum of the
reflected power (same as incident power for the lossless case) from each unit cell. Each
unit cell is modeled as a uniform aperture; the expression for the radiated far-field of the
uniform aperture [18] is used in computing the numerator, while the aperture distribution

itself is integrated to find the radiated power. The expression for directivity then becomes

N 2

ZE:"C ‘R'-w’ .ejk(iffo)

i=1

cos 6, —— - (2-29)
Z Eiinc' Ritol
i=1

4mab
D, = 7

where the unit vector 7, is in the direction of maximum radiation. The cos 0, term takes
into account the projected aperture as the main beam is scanned off broadside. This
expression takes taper losses into account, but does not include spillover losses. These

losses will be explained more fully in section 2.7.1.
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2.7 Microstrip Reflectarray Gain-Loss Budget

An excellent way to gain insight into the performance of microstrip reflectarrays
is through a gain-loss budget. By examining such a budget, one can establish the
maximum gain possible for a given size reflectarray, quantify all sources of loss, and then

use that information to improve on a particular design.

The maximum directivity for the reflectarray aperture occurs when all terms in

the numerator summation of (2-29) are in phase and equal in magnitude, yielding

D= = 4”’;“” cos#, (2-30)

The gain of the reflectarray is then related to the maximum directivity by

G =np™ (2-31)

The overall efficiency of the reflectarray, n, is a product of several individual

sources of loss which decrease the gain. In general, the efficiency is given by

n = ns nl np ncnd nx nb nr (2-3 2)

where

63



n, = spillover efficiency

1, = taper efficiency

7, = phase efficiency

7. = conductor efficiency

n, = dielectric efficiency

1, = polarization efficiency

1, = aperture blockage efficiency
n,, = surface wave efficiency

1, = random error efficiency

The main sources of loss in the reflectarray are spillover, taper, conductor,
dielectric, and phase error loss, and therefore these losses only will be considered.
Polarization loss, resulting from power being scattered into cross-polarized fields, and
aperture blockage loss, resulting from power reflected from the reflectarray surface being
blocked by the feed or its supporting structure, are very small as compared to other
sources of loss and are therefore ignored. For very large planar microstrip arrays such as
the ones incorporated into the typical microstrip reflectarray design, surface wave losses

are also very small. Losses due to random surface errors are included in phase loss.

2.7.1 Spillover and Taper Loss

Spillover loss occurs from power radiated by the feed that is not intercepted by
the reflecting surface, i.e. it "spills over" the edge. Taper loss occurs from having a non-
uniform field incident on the reflectarray surface. An ideal feed source would provide
uniform illumination over the surface of the reflectarray and would not radiate at all in

other regions, but this is not physically realizable.




For practical feeds, there exists a tradeoff between spillover and taper loss. A
good basis for choosing a feed is for it to have about a -10dB taper at the edge of the
reﬂectaﬁay, which usually provides a near optimal tradeoff between spillover and taper
losses. The maximum product of spillover and taper efficiencies is approximately 0.8 for

practical feeds.

Spillover efficiency can be computed by integrating the Poynting vector over

the reflectarray surface and dividing the result by the total radiated power from the feed.

S[ExE a5
_ns = 2za2 £ (2-33)
j F,.,(6,¢)sin 6d6d¢

00

where Fp,, is the power pattern of the feed and the integration in the numerator is over

the reflectarray surface. Some algebraic manipulation yields

F, (6,
”—ﬁ%@ws 0ds
n,= 2,,-:/‘2 (2'34)
| [ Fra (8,9)sin 6d6dg
00

Both of these integrations are easily computed numerically, and the integration
in the numerator can be in either rectangular or polar coordinates, depending on the

surface geometry.

Taper efficiency can be computed easily by eliminating phase error from (2-29)

and comparing the result to the maximum directivity of (2-30). This yields

65



N z
(Z' Eimc . &lol )
i (2-35)

ilEx‘iM'Rx‘M 2

i=1

n =

272 Dielectric and Conductor Loss

At millimeter wave frequencies, dielectric and conductor losses m large
microstrip structures can become quite high. Microstripline fed arrays typically suffer
from high losses in the feed network. One of the distinct advantages of microstrip
reflectarrays over series or corporate fed microstrip arrays at these frequencies is the
elimination of feed network losses, however, dielectric and conductor losses are still

present in a microstrip reflectarray.

Dielectric loss is easily found by using a complex permittivity in the moment

method analysis,
e=¢,€,(1- jtan ) (2-36)
Conductor loss is slightly more involved to calculate. It can be computed in the
moment method solution by enforcing the condition E,_ = Z,J on the patch surface,

where Z, is the surface impedance of the conductor [15]. This changes the impedance

matrix elements of (2-7) to
> SF-G-F+Az (2-37)
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where

Az, =Z[],7,ds (2-38)

Z,=(1+) ;’—ﬁ (2-39)

With the edge mode of (2-12a) having the index 1 and the entire domain mode

of (2-10) (with m=1) having the index 2, substitution of these modes into (2-38) yields

AZ,, =—= (2-40a)
3w
AZ, =J,(m/2) 2 =0.5668 2 (2-40b)
w w
Zl
AZ, === 2-40
22w (2-40c)

where / is the patch length and w the patch width.

Due to the nature of the moment method solution, dielectric and conductor loss
cannot be separated without running the solution twice to isolate each source of loss.
Therefore, it is convenient to consider both sources of loss in one variable as the

conductor-dielectric efficiency.

The total conductor-dielectric efficiency can be computed as

67




N
Z K’W
Moy = (2-41)

Figure 2.11a shows the total conductor and dielectric loss for patches of
different lengths and constant width on various substrate thicknesses. It is evident that the
loss is large for patches near resonance, but is smaller for patches of other lengths. A
slight shift in resonant frequency between the two cases is also evident. This is due to the
fact that the fields underneath the patch are intensified near resonance, and the high loss
tangent of the material causes a large amount of dielectric loss. Patches on thicker

substrates have significantly less loss than those on thin substrates.

Figure 2.11b shows total conductor and dielectric loss for patches of various
widths and lengths, while the substrate thickness is held constant. Loss for the thin dipole
is much greater near resonance than for the wide patch, however, the loss for the dipole
drops off sharply so that loss for the wide patch is slightly greater for patches off
resonance. This is explained by the narrowband nature of the printed dipole. The higher
loss for the resonant dipole is explained by increased conductor loss which is caused by

high current density on the dipole.

273 Losses Due to Phase Errors

In the microstrip reflectarray application, there are two main sources of phase
error, namely, phase error incurred in the design process and random phase errors

resulting from fabrication tolerances. These phase errors reduce the directivity of the

array, and therefore decrease the overall efficiency.
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Figure 2.11. Computed ohmic (conductor and dielectric) losses for reflectarray elements. (a) for
varying substrate thicknesses; element width is 0.4cm. (b) for varying element widths;
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Three types of phase error occur in the design process. One source is the
dependence on the reflection phase versus azimuth incidence angle, as was described in
Section 2.3. For most of the designs presented in the next chapter, only the incidence
angle in elevation was considered in the design process. For the other designs, sets of data
were computed at azimuth incidences of 0°, 45°, and 90°, and the appropriate patch
lengths were interpolated from this data. Each design method contributes some small
phase error, however, and the resultant directivity loss can be quantified by taking azimuth

incidence angle into account in the reflectarray analysis.

Phase error also results from the fact that the entire range of reflection phases
from 0 to 360 degrees cannot be achieved, as can be seen by examining the reflection
phase versus patch length curve of Figure 2.12. Basically, the range of unattainable
phases is equal to 2k d cos 6 for square or wide patches. This phenomenon occurs
because the grid of patches looks like a ground plane as the patch sizes approach the size
of the unit cell. For narrow width dipoles, this eﬁ‘gct is not as apparent and a greater
range of phases may be attained. Phase error contributed in this manner can be also be

quantified in the reflectarray analysis.

Another source of error that occurs in the design process comes from the use of
the infinite array approximation. When computing the reflection phase it is assumed that
all elements are of equal dimensions, but in the actual reflectarray this is not the case as
each unit cell contains a patch of a different length. The effect of mutual coupling, albeit
small, is obviously different in these two cases, resulting in an error in the computed
resonant frequency of each patch, and therefore phase error. This phase error is smaller
for patches with wider bandwidth, as for these cases a shift in resonant frequency

contributes less phase error. Unfortunately this error can not be quantified without
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computing the actual moment method solution for the finite reflectarray, which is

computationally impractical.

At millimeter wave frequencies, slight random errors in fabrication (specifically,
etching errors which affect the size of each patch) have the potential to create large phase
errors. This is separate from systematic errors in fabrication, which will instead cause a
shift in operating frequency. The potential for phase error is evident by examining the
reflection phase versus length curve as depicted in Figure 2.12. Most patches in a typical
reflectarray design are close to resonant length and operate in the linear region of the
curve. For the particular case shown, the slope of the linear region is 47°/mil, and for a
fabrication tolerance of 0.5 mil for each edge, random fabricational error can contribute as
much as 47° of phase error. Again, this effect is not as significant for patches that exhibit

wider bandwidths since the slope of the linear region is not as great.

Random phase error contributed from fabrication tolerances, substrate
inhomogeneties, surface errors, etc. also cannot be quantified analytically. All of the phase
errors that cannot be quantified analytically are a possible source of directivity loss. If the
rms phase error is known, the approximate directivity loss for small phase errors is given

by [19]

(2-41)

where D, is the directivity without phase error and & is the rms phase error across the

array. As will be demonstrated in the next chapter, these phase errors are not large

enough to disable the beam collimation effect of the reflectarray.




CHAPTER 3
MICROSTRIP REFLECTARRAY DESIGN EXAMPLES

3.1 Introduction

In order to test the validity and feasibility of the analysis and design procedure

described in the previous chapter, six reflectarray examples were designed, fabricated, and

tested. A short description of each of these reflectarray examples is given in Table 3.1.

Table 3.1. List of microstrip reflectarray designs.

Design # Approximate Size Substrate F/D Ratio Feed Type
Design (e~ thickness)
Frequency
1 5.3 GHz 18"x24" Rogers 5870 0.866 Pyramidal
2.33,62 mil Hom
2 28 GHz 6"x6" Taconic TLE 0.656 Corrugated
2.95, 10 mil Conical Horn
3 28 GHz 6"x6" Rogers 5880 0.656 Corrugated
2.20, 20 mil Conical Horn
4 28 GHz 9" diameter Taconic TLE 0.33 Backfire Feed
circular 2.95, 10 mil [21]
5 76 GHz 6"x6" Rogers 5880 0.33 Open-ended
2.20, 5 mil waveguide
6 76 GHz 6"x6" Rogers 5880 0.33 Cassegrain
2.20, 5 mil

In this chapter, measured results are presented for each of the design examples and

are compared with theoretical predictions. Differences between measured and computed

results are discussed, along with possible explanations for the discrepancies. A gain-loss

budget is presented for each example, and each budget is examined in order to gain insight

on how to improve the design. Also, several theoretical and measured radiation patterns

are presented for each design over a given bandwidth.
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32 Microstrip Reflectarray Design Examgle #1

Design #1 was constructed in order to provide a direct comparison with the stub-
tuned microstrip reflectarray presented in [13]. This is a C-band design with the only
difference from [13] being that variable sized patches are used to provide phase shift
instead of stub tuned patches. The performance of both the stub-tuned reflectarray and

the reflectarray using variable size patches is then compared.

A scaled mask of this reflectarray is shown in Figure 3.1. This design was
constructed on a 62 mil thick Rogers 5870 substrate, with a relative permittivity of 2.33.
The reflectarray measured 18"x24", and a triangular grid spacing was employed with
a=5.39cm, b=3.23cm, and a=33.4°. The design consisted of 263 patches with a fixed
width of 2.382cm and varying length. Wide fixed-width patches provide better bandwidth
than square patches, however, they can only be used for linear polarization. The feed horn
was a pyramidal horn with the same dimensions as that in [13], with an aperture size of
12.7cm x 8.89cm in the H-plane and E-plane, respectively. The feed was a prime focus
feed placed 46.67cm over the face of the array, giving a f/D ratio of 0.866 with respect to
the x-dimension of the reflectarray. The phase across the reflectarray was chosen to

produce a main beam scanned to 25° in the E-plane (x-direction).

A curve of total reflection phase versus patch length for this design for broadside
incidence is shown in Figure 3.2. Graphs such as this are the essential building block in
the design process, but they can also lend some insight into the performance of the
reflectarray even before it is analyzed. The familiar "s-shaped" curve that was evident in
Figure 2.12 is also apparent here. Two aspects of the curve that lend insight into the

performance of the reflectarray are the slope of the linear region near resonance and the
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Figure 3.1. Scaled drawing of reflectarray design example #1.
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range of reflection phases that cannot be attained, which is aprroximately equal to 2k d for
patches. The slope of the linear region is directly related to the operating bandwidth of
the reflectarray, and also can be a sign of how critical fabrication tolerances will be.
Normally the range of phases that cannot be attained is small enough not to cause a
significant change in the performance of the reflectarray, however, a region of 60° or more
has the potential to deteriorate the performance significantly. Analyzing the data shown in
Figure 3.2 yields the slope of the linear region to be 3.6°/mil and a 20° range of phases

that cannot be attained.

Computed and measured E-plane radiation patterns taken at the center-band
frequency of 5.2 GHz are shown in Figure 3.3, and similar H-plane patterns are shown in
Figure 3.4. This center frequency is slightly lower than the design frequency of 5.305
GHz due to the fact that only 7 entire domain modes were used in the design process,
which employed an early version of the moment method computer program. Use of one
entire domain mode and one edge condition mode as described in Section 2.2.1 predicts
this frequency shift. Examination of the radiation patterns shows a very good comparison
of measured and computed results. The H-plane patterns are in very close agreement,
while the measured sidelobe level and 3dB beamwidth are slightly higher in the E-plane.
These effects can be attributed to aperture blockage effects and phase errors that were not
included in the analysis. In either event, the overall result is a small drop in directivity for

the reflectarray.

Measured and computed H-plane cross-polarization patterns are shown in Figure
3.5. Agreement between measured and computed patterns is fairly good, considering the
low level of cross-polarized radiation present. The measured level of -30dB relative to the
co-polarized field is 3dB higher than the computed level but still very low. With such a

low level of cross-polarized radiation, many factors can alter the measured patterns or
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Figure 3.3. E-plane patterns at 5.2 GHz for reflectarray example #1.
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Figure 3.5. H-plane cross-polarization patterns at 5.2 GHz for reflectarray example #1,




relative amplitude of the field, such as scattering off of the feed or its supporting structure

or misalignment between the feed, radiating patches, and the transmit horn.

To understand the degradation of the performance of the reflectarray with
frequency, one can examine the radiation patterns at frequencies other than the design
frequency. Such a plot is shown in Figure 3.6 - a plot of measured E-plane patterns at 5.2
GHz and 5.7 GHz. Two effects are immediately apparent from examining the plots; a
beam squint with frequency as described in Section 2.5, and also a rise in the specular

reflection from the reflectarray surface.

In most microstrip reflectarray designs, the majority of patches operate close to
resonance at the center frequency. For this design example, 53% of all patches are within
5% of the resonant length of 1.71cm at 5.2 GHz. Also, at resonance, the scattered field is
180° out of phase with the specularly reflected field [13]. This fact, combined with the
abundance of patches that are operating near resonance, creates a cancellation of specular
reflection near the design frequency. However, only 13% of all patches operate within 5%

of resonance at 5.7 GHz; this leads to a rise in the specularly reflected field.

A gain-loss budget for this reflectarray at the center frequency of 5.2 GHz is
shown in Table 3.2. Maximum directivity for the aperture and all losses were computed as
described in Section 2.6. Measured gain at 5.2 GHz was 27.0 dBi, yielding an aperture
efficiency of 58%. The computed gain of 27.53 dBi does not include losses due to
random phase errors or aperture blockage effects, however, so the fact that the measured
gain is about 0.5 dB less than the computed gain is not surprising. A plot of computed
and measured gain is shown in Figure 3.7, and while the computed levels are slightly
higher for most frequencies, the bandwidth for a 1dB drop in gain compares well. A
bandwidth of 5.0% is calculated, while a 4.5% bandwidth was measured. Taking into
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account a possible gain measurement error of £0.5 dB, a computed bandwidth between
2.9% and 5.9% is within the limits of measurement error.
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Figure 3.6. Measured E-plane radiation patterns at 5.2 GHz and 5.7 GHz.
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Table 3.2. Gain-loss budget for reflectarray #1.

Maximum Directivity 29.78 dBi
Spillover Loss -0.66 dB
Taper Loss -0.83 dB
Cos 6 Scan Loss -0.43 dB
Dielectric and Conductor Loss -0.15dB
Design Phase Error -0.18 dB
Computed Gain 27.53 dBi
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Figure 3.7. Measured and computed gain for reflectarray design example #1.
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Table 3.3 shows a comparison of the performance of this reflectarray design using
variable size patches to control the reflection phase versus the design presented in [13],
which used stub tuned patches. The performance of both reflectarrays is similar,
supporting the conclusion that both methods achieve essentially the same effect by shifting
the resonant frequency of each patch. One difference between the performance of the two
reflectarrays is the gain bandwidth (defined by a 1dB drop from the peak gain) - 3.7% for
the stub tuned reflectarray and 4.5% for the reflectarray using variable size patches. A
possible explanation is the fact that as the frequency shifts, both the electrical size of the
patch and tuning stub shift in the same direction, causing the reflection phd.s'»e from the unit
cell to shift more than it would from just a single patch with no stub attachéd. However,
due to the error inherent in the gain measurement, the difference in actaul bandwidth may

not be significant.

The use of variable size patches also introduces several favorable design
characteristics. A triangular grid is no longer needed to accomodate the tuning stubs for

each patch. Also, square patches may be used for either dual-linear or circular

polarization.
Table 3.3. Microstrip reflectarray performance comparison.
Reflectarray Using Tuning Reflectarray Using Variable
Stubs [13] Size Patches
Peak Gain 27.1dBi 27.0 dBi
E-plane Beamwidth 7.7 degrees 7.5 degrees
H-plane Beamwidth 7.7 degrees 7.5 degrees
E-plane Sidelobe level -22 dB -20.5 dB
H-plane Sidelobe level -18 dB -20 dB
Gain bandwidth 3.7% 4.6 %
E-plane cross polarization level -29 dB -40 dB




33 Microstrip Reflectarray Design Example #2

Design example #2 was a Ka-band reflectarray with a center frequency of 27.3
GHz. The motivation behind this design was to see if the reflectarray concept was feasible
at this frequency due to the increased fabrication tolerances required, and to see the effect

of larger random phase errors on the operation of the reflectarray.

A scaled overhead drawing of this reflectarray is shown in Figure 3.8. This design
was constructed on a 10 mil thick Taconic woven PTFE substrate, with a relative
permittivity of 2.95. The loss tangent of the material was estimated to be 0.0074 at 28
GHz using the guidelines of [20]. Data for the loss tangent of common microwave
substrates is generally not available at frequencies above 10 GHz, but measured data at
other frequencies suggests that the loss tangent increases approximately linearly with
frequency. The reflectarray measured 6"x6", and a rectangular grid spacing was employed
with a=0.6087cm and b=0.6667cm. The design consisted of 528 square patches of
varying size. The square patches, while providing less bandwidth than wide fixed-width
patches, can be used for dual-linear or circular polarization. The feed horn was a
corrugated conical horn with an aperture radius of 0.88cm and an axial length of 3.55cm.
The feed was a prime focus feed placed 10cm over the face of the array, giving a f/D ratio
0f 0.656. As with the first design, the main beam was scanned 25° off broadside in the E-

plane.

A curve of total reflection phase versus patch length for this design for broadside
incidence was shown in Figure 2.12. The familiar "s-shaped" curve is evident - this curve
is characteristics of all of the design examples presented here. Analyzing the data shown
in Figure 2.12 yields the slope of the linear region to be 47°/mil, with a 16.6° region of

phases that cannot be attained. The slope of the linear region is increased by a factor of
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Figure 3.8. Scaled drawing of reflectarray design example #2.




13 over that of design example #1, thereby greatly increasing the potential random phase

error that can result from errors in fabrication.

Computed and measured E-plane radiation patterns taken at the center-band
frequency of 27.3 GHz are shown in Figure 3.9, and similar H-plane patterns are shown in
Figure 3.10. This center frequency is also slightly lower than the design frequency of 28
GHz due to the fact that the design was performed before the edge mode of Section 2.2.1
was introduced into the program and that inspection underneath a microscope found the
patches to be underetched by an average of 0.002". Use of one entire domain mode and
one edge condition mode as described in Section 2.2.1 predicts a center frequency of 27.7
GHz, which is a 1% shift from the original design frequency. Examination of the radiation
patterns again shows a very good comparison of measured and computed results similar to
those of design example #1. The H-plane patterns are in very close agreement, while the
measured sidelobe level and 3dB beamwidth are again slightly higher in the E-plane,
possibly due to aperture blockage or phase errors not included in the analysis. Measured
and computed patterns for frequencies other than 27.3 GHz exhibit the same behavior as
those of design example #1 with a rise in specular reflection and beam squint with
frequency, which are characteristics of all prime focus fed microstrip reflectarrays with

beams scanned off broadside.

A gain-loss budget for this reflectarray at the center frequency is shown in Table
3.4. Measured gain at 27.3 GHz was 28.5 dBi, yielding an aperture efficiency of 35%.
The computed gain of 29.52 dBi is 1dB greater than the measured gain; the difference can
be explained by directivity loss due to random phase errors incurred during fabrication. A
great deal of ohmic loss occurs because of the high loss tangent of the material, and this

decreases the aperture efficiency significantly. This reasoning was verified by changing the

substrate material in example #3.



Computed
————— Measured

270

180

Figure 3.9. Measured and computed E-plane radiation patterns at 27.3 GHz for design example #2.
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Figure 3.10. Measured and computed H-plane radiation patterns at 27.3 GHz for design example
#2,




A plot of computed and measured gain is shown in Figure 3.11. The computed
levels are again slightly higher for most frequencies, since the effect of random phase
errors due to fabrication is not included. The bandwidth for a 1dB drop in gain compares
well, a bandwidth of 2.3% is calculated, while a 2.7% bandwidth was measured. Taking
into account a possible gain measurement error of 0.5 dB, a computed bandwidth

between 1.5% and 2.8% is within the limits of measurement error.

Table 3.4. Gain-loss budget for reflectarray #2.

Maximum Directivity 33.48 dBi
Spillover Loss -0.74 dB
Taper Loss -0.61 dB
Cos 6 Scan Loss -0.43 dB
Dielectric and Conductor Loss -2.03 dB
Design Phase Error -0.15dB
Computed Gain 29.52 dBi




dBi

30 |

2| ol

4 Computed
i / I I \ ————— Measured
28 // p : \
27 ; 7 7/ ) \\
[ / AN
26 7 X
B \
: ’/ \\\
o / N
2 [ ) / AN
| \
L AY
24 \

23“,1..,....,...........J..J,..........
264 266 268 27 272 2714 276 278 28 282
Frequency (GHz)

Figure 3.11 Measured and computed gain for reflectarray design example #2.
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34 Microstrip Reflectarray Design Example #3

Design example #3 was a Ka-band reflectarray with a center operating frequency
of 28.5 GHz, similar to example #2. The motivation behind this design was to increase the
aperture efficiency of the previous design by trying to reduce the dielectric losses and
amount of phase error contributed from fabrication errors. To accomplish this, a thicker
substrate with lower dielectric constant and a lower loss tangent was used for the design.
This decreases both the dielectric loss and the slope of the linear region of the reflection
phase curve, thereby increasing the bandwidth of the patch elements and minimizing the

effects of etching errors. The efficiency due to dielectric loss is significantly improved.

A scaled drawing of this reflectarray is shown in Figure 3.12. This design was
constructed on a 20 mil thick Rogers 5880 Duroid substrate, with a relative permittivity of
2.2. The loss tangent of the material was estimated to be 0.0028 at 28 GHz, compared to
the value of 0.0074 for the Taconic material used in example #2. The reflectarray
measured 6"x6", and a rectangular grid spacing was employed with a=b=0.5442cm. This
grid spacing allowed for the azimuth angle to be taken into account in the analysis without
the appearance of grating lobes for the infinite array. The design consisted of 784 square
patches of varying length. The same feed horn and /D ratio from design example #2 was

used, and the main beam was scanned to 25° off broadside in the E-plane.

The curve of total reflection phase versus patch length for this design for broadside
incidence yields the slope of the linear region to be 12°/mil and a 34° region of phases that
cannot be attained. The slope of the linear region is decreased by almost a factor of 4 over
that of design example #2, but the range of phases that cannot be obtained was increased
by more than a factor of 2. This decreases the potential random phase error that can result

from errors in fabrication, but increases the amount of phase error that is inherent in the
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design. Radiation patterns for this example were similar to those of design example #2,

and are not included here.

Figure 3.12. Scaled drawing of reflectarray design example #3.




A gain-loss budget for this reflectarray at the center frequency is shown in Table
3.5. Measured gain at 28.5 GHz was 30.9 dBi, yielding an aperture efficiency of 52% - a
17% increase over the previous design. The maximum computed gain of 31.68 dBi is
0.8dB greater than the measured gain. Comparison to the 1 dB difference of the previous
design suggests a decrease in sensitivity to fabrication tolerances, however, the closer
element spacing in this design has the potential to increase phase errors due to mutual
coupling. Also, ohmic losses in this design were reduced by 1.78 dB through the choice

of dielectric material. Phase errors inherent in the design were increased only by 0.07 dB.

A plot of computed and measured gain is shown in Figure 3.13. Thereis a 1.8%
frequency shift between the peak gain for the computed and measured results. The
bandwidth for a 1dB drop in gain has increased over design #2; a bandwidth of 6.1% is
calculated, while a 4.9% bandwidth was measured. Taking into account a possible gain
measurement error of 10.5 dB, a computed bandwidth between 2.5% and 6.1% is within

the limits of measurement error.

Table 3.5, Gain-loss budget for reflectarray #3.

Maximum Directivity 34.05 dBi
Spillover Loss -0.75 dB
Taper Loss -0.72 dB
Cos 6 Scan Loss -0.43 dB
Dielectric and Conductor Loss -0.25 dB
Design Phase Error -0.22 dB
Computed Gain 31.68 dBi
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Figure 3.13. Measured and computed gain for reflectarray design example #3




3.5 Microstrip Reflectarray Design Example #4

Design example #4 was a circular shaped Ka-band reflectarray operating around
27-28 GHz. The motivation behind this design was to incorporate a backfire feed [21]
into the design and to compare the performance of a circluar aperture microstrip

reflectarray with a similarly sized parabolic dish.

A scale drawing of this reflectarray is shown in Figure 3.14. This design was
constructed on the same Taconic material as was used for design example #2 The
reflectarray had a 9" diameter, and a rectangular grid spacing was employed with
a=0.56cm and b=0.666’7cm. The design consisted of 996 rectangular patches of varying
length and a fixed width of 0.4cm, and the center four patches are left out in order to leave
room for the circular waveguide section for the feed. Analyzing the reflection phase
versus patch length curves for this design yields the slope of the linear region to be 37°/mil
and a 16.6° region of phases that cannot be attained. The slope of the linear region is
slightly decreased from that of design example #2 due to the fact that the fixed-width
patches exhibit slightly larger bandwidth. The phase center of the feed element was placed
7.54cm above the face of the reflectarray, giving an £/D ratio of 0.33. The aperture phase

was tailored to produce a broadside beam.

The feed element is shown in Figure 3.15. A section of circular waveguide leads
into a dielectric (Rexolite) cone which is metallized with a splash plate. Measured E-plane
and H-plane patterns for this feed are shown in Figures 3.16 and 3. 17, respectively. To
perform these measurements, the feed element was placed in front of a large ground plane
and the resulting reflection off of the ground plane was measured. A great deal of ripple is
present in the measured patterns, possibly due to diffraction effects from the edge of the

splash plate and ground plane. Since a computer model for this type of feed was not
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Figure 3.15. Backfire feed used in reflectarray design example #4.
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Figure 3.16. Measured E-plane pattern from backfire feed and computed pattern from pyramidal
horn used to model feed. Frequency =27 GHz.
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Figure 3.17. Measured H-plane pattern from backfire feed and computed pattern from pyramidal
horn used to model feed. Frequency = 27 GHz.




available, a pyramidal horn with an H-plane aperture dimension of 1.2cm, an E-plane
dimension of 1.0cm, and an axial length of 4cm was used to model the feed illumination.
Computed E-plane and H-plane patterns for this horn are shown along with the measured

patterns in Figures 3.16 and 3.17.

Computed and measured E-plane radiation patterns taken at 27.3 GHz from the
reflectarrray are shown in Figure 3.18, and similar H-plane patterns are shown in Figure
3.19. Examination of the measured and computed patterns shows a slightly smaller
measured beamwidth in the E-plane and slightly larger measured beamwidth in the H-
plane. This difference is most likely due to the approximate model used for the feed
illumination. Also, measured sidelobe levels are higher in the E-plane, which could be a

sign of phase error.

A gain-loss budget for this reflectarray at the center frequency is shown in Table
3.6. A peak measured gain of 31.2 dBi occurred at 27.2 GHz, yielding an aperture
efficiency of 34%. This low value is not totally unexpected, based on the results of
example #2 which used the same Taconic substrate. Ohmic losses in this design were
reduced by approximately 0.5dB over design example #2 due to the fact that the wider
patches exhibit lower loss. Taper loss is quite high, and could possibly be minimized
through optimization of the feed. Phase errors inherent in the design were quite large due
to the increased dependence on azimuth incidence angle for designs with a low /D ratio.
This dependence was not taken into account in the design process, since an early version

of the design program which did not include this effect was used.

A plot of measured gain versus frequency is shown in Figure 3.20. The phase
center of the feed element moves with frequency, making the bandwidth of the feed the

limiting factor for gain bandwidth. This effect is seen by changing the positioning of the
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Figure 3.18. Measured and computed E-plane radiation patterns at 27.3 GHz for reflectarray #4.
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Figure 3.19. Measured and computed H-plane radiation patterns at 27.3 GHz for reflectarray #4.
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feed element - by adjusting the height of the feed over the face of the reflectarray, the
frequency at which the peak gain occurs is changed. This is seen in Figure 3.20. For feed
positioning #1, a peak gain of 31.2 dBi occurs at 27.2 GHz, and for feed positioning #2 a
peak gain of 30.8 dBi occurs at 27.6 GHz. The measured bandwidth for a 1dB drop in
gain is 1.8% in both cases, while a bandwidth of 2.9% is calculated with the pyramidal
horn feed.

Table 3.6. Gain-loss budget for reflectarray #4.

Maximum Directivity 35.91 dBi
Spillover Loss -0.46 dB
Taper Loss -1.12dB
Dielectric and Conductor Loss -1.51 dB
Design Phase Error -0.87 dB
Computed Gain 31.95 dBi
Measured Gain 31.2 dBi
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Figure 3.20. Measured gain for reflectarray design example #4.
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The gain performance of this reflectarray was also compared with that of a
parabolic reflector. The parabolic reflector was constructed from metallized plastic with a
9" diameter and an f/D ratio of 0.44, which produced a total subtended angle for the feed
of 118° as compared to 113° for the reflectarray. These two values were close enough to

give a one-on-one comparison of the gain performance of each antenna.

To model the feed illumination of the reflector the same pyramidal horn used for
modeling the reflectarray was employed. A gain-loss budget for the parabolic dish at 27.3
GHz is shown in Table 3.7. The maximum directivity for the dish is slightly higher than
that of the reflectarray since the value for the reflectarray only includes the area occupied
by the unit cells in the array. This model does not account for different phase centers in
the principal planes for the feed, so the measured gain is expected to be decreased by this
phase error. Also, losses due to surface roughness of the dish are not included. These

two factors can explain the 1dB difference in measured and computed gain.

Comparing the gain of the dish and reflectarray shows that the measured gain for
the dish was 2.3 dB higher than for the reflectarray. Computed gain for the dish was 2.5
dB higher than the computed gain for the reflectarray, showing an excellent comparison
between computed and measured results in this sense. The 2.5 dB difference between
computed values is due almost totally to ohmic losses and phase errors present in the
design, which could be minimized by approximately 2 dB through a change in the design

process and the substrate material used.
The difference between measured and computed gain values for both antennas are

also close (1.0 dB difference for the dish, 0.75 dB difference for the reflectarray). Since

the same feed was used for both cases, this result implies that the effects of fabricational
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errors - rms surface roughness for the dish and etching & substrate tolerances for the

reflectarray - on the gain of the antenna are not much different for both antennas.

Table 3.7. Gain-loss budget for 9" diameter parabolic reflector.

Maximum Directivity 36.29 dBi
Spillover Loss -0.39dB
Taper Loss -~ -145dB
Computed Gain 34.45 dBi
Measured Gain 33.5 dBi

3.6 Microstrip Reflectarray Design Example #5

Design example #5 was a 6" square W-band reflectarray with a design frequency
of 76.5 GHz. The motivation behind this design was similar to the motivation behind the
previous designs - to see if the microstrip reflectarray concept is feasible at this high
frequency and to quantify sources of loss in the reflectarray. Also, sets of phase versus
patch length data were computed for azimuth incidence angles of 0, 45, and 90 degrees.
Each set of data contained curves for elevation incidence angles from 0 to 60 degrees in
increments of 5 degrees. The azimuth incidence angle was taken into account in the

- design process by linearly interpolating in between the different sets of data.

A scale drawing of this reflectarray is shown in Figure 3.21. This design was
constructed on a 0.005" thick Rogers Duroid 5880 substrate. The estimated loss tangent
was 0.0077 at 76.5 GHz. The reflectarray measured 6" on each side, and a rectangular
grid spacing was employed with a =b = 0.2005cm. The design consisted of 5776
rectangular patches of varying length and a fixed width of 0.135cm. Analyzing the
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Figure 3.21. Actual size overhead drawing of reflectarray design example #5.
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reflection phase versus patch length curves for this design yields the slope of the linear
region to be 49°/mil and a 23.3° region of phases that cannot be attained. The feed
element was an open-ended section of W-band waveguide that was slightly flared to give a
0.3cm square aperture. The phase center of the feed was placed 5.03cm above the face
of the reflectarray, giving an f/D ratio of 0.33. The aperture phase of the reflectarray was

tailored to produce a broadside beam.

Computed and measured E-plane radiation patterns taken at 75 GHz are shown in
Figure 3.22a, and H-plane patterns are shown in Figure 3.22b. Examinati(;n of the
measured and computed patterns show that the measured and computed beamwidths in
the E-plane and H-plane are nearly equal. Measured sidelobes are somewhat higher than

computed, which is most likely due to phase errors incurred by fabricational errors.

A gain-loss budget for this reflectarray at the center frequency is shown in Table
3.8. A peak measured gain of 36.0 dBi occurred at 74.5 GHz, yielding an aperture
efficiency of 22%. Ohmic losses in this design were not too great, showing that the
Rogers substrate has resonable loss characteristics even at W-band. Phase errors inherent

in the design were diminished due to the azimuth interpolation included in the analysis.

A difference of about 3.5 dB remains between the measured and computed gain.
This difference could result from many factors which are negligible at lower frequencies
but could become a factor at W-band. Loss in the long waveguide section of the feed,
errors due to the reflectarray surface not being perfectly flat, and slight positioning errors
for the feed can all decrease the overall gain of the reflectarray. Unfortunately, only very
limited measurements were able to be taken since they were performed at an outside

facility.
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Figure 3.22. Computed and measured radiation patterns for reflectarray #5. Measured patterns at
75 GHz; computed at 76.5 GHz. (a) E-plane. (b) H-plane.
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Table 3.8. Gain-loss budget for reflectarray #5S.

Maximum Directivity 42.55 dBi
Spillover Loss -0.85 dB
Taper Loss -0.96 dB
Dielectric and Conductor Loss -1.13 dB
Design Phase Error -0.08 dB
Computed Gain 39.53 dBi
Measured Gain 36.0 dBi

3.7  Microstrip Reflectarray Design Example #6

Design example #6 was a square W-band reflectarray with a design frequency of
76.5 GHz. The reflectarray itself was exactly the same as used in design #5, but the feed
was changed to a cassegrain configuration. The geometry of the cassegrain feed is shown
in Figure 3.23. The primary feed element was a conical horn with an aperture radius of
0.625cm and an axial length of 4cm. The subreflector shape was a hyperboloid in the x-z
and y-z planes and circular with a radius of 0.762cm in the x-y plane. The virtual feed

concept for a cassegrain reflector antenna [22] was used in the analysis.

Computed and measured E-plane radiation patterns taken at 76.5 GHz are shown
in Figure 3.24a, and similar H-plane patterns are shown in Figure 3.24b. Examination of
the measured and computed patterns show that the measured and computed beamwidths
in the E-plane and H-plane are again nearly equal. The measured patterns shown for the
cassegrain reflectarray exhibit better sidelobe levels and beam shape than the patterns for

the prime focus case, however.
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Figure 3.23. Geometry of cassegrain feed for reflectarray design example #6.
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A gain-loss budget for this reflectarray at the center frequency is shown in Table
3.9. A peak measured gain of 37.0 dBi occurred at 76.5 GHz, yielding an aperture
efficiency of 26%. The spillover loss in this design is quite large due to a non-optimized
feed and subreflector combination, i.e. the product of spillover and taper efficiency is not
close to the maximum value of approximately 0.8. However, the measured gain is 1 dB
higher than that of the prime focus fed reflectarray and the difference between computed
and measured gain has been reduced to about 2 dB. These facts suggest that the former
design may have suffered from more severe fabricational errors, a possible defocused feed,

or higher than expected waveguide loss.

Table 3.9. Gain-loss budget for reflectarray #6.

Maximum Directivity 42.78 dBi
Spillover Loss -1.55dB
Taper<Loss -0.96 dB
Dielectric and Conductor Loss -1.13 dB
Design Phase Error -0.08 dB
Computed Gain 39.06 dBi
Measured Gain 37.0 dBi
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CHAPTER 4
CONCLUSIONS

Two topics dealing with infinite arrays of microstrip elements were presented in
this work. The first topic, the effect of random positioning errors on the input impedance
of an infinite array of printed dipoles, deals mainly with the infinite array analysis, and
provides insight into the scan blindness phenomenon for large arrays. The second topic,
the analysis and design of microstrip reflectarrays, utilizes the data from the solution of
plane wave scattering from an infinite array of microstrip patches to designl a large, but

finite sized, reflectarray.

In the first chapter, the solution for the expected value of input impedance for an
infinite array of printed dipoles was presented, with both planar arrays and linear E-plane
arrays being considered. The scan blindness phenomenon was seen to be reduced with the
introduction of randomization, and to disappear completely only when the full extent of
randomization was introduced. The limitation of a fixed terminal current on each dipole
presents a formidable problem in implementing such a solution, however, such an
implementation would have the added advantage of eliminating mutual coupling effects on

the array pattern.

In the second chapter, topics in the analysis and design of microstrip reflectarrays
are presented, with an added emphasis on reflectarrays operating in the millimeter wave
frequency range. Problems such as loss and beam squint with frequency were analyzed,
and options were presented so as to reduce the effects of both of these problems.
Computational efficiency issues involvihg the infinite array scattering problem were also

addressed, with a marked increase in efficiency resulting. The third chapter presented




measured results from six reflectarrays designed using the guidelines of the previous

chapter.

The work presented here represents a step toward understanding the complex
scattering mechanism of the microstrip reflectarray, especially at millimeter wave
frequencies where ohmic losses and the potential for phase errors increase. However, in
order to make the microstrip reflectarray a practical alternative for many applications

where reflectors are normally used, much work still needs to be done.

A primary concern is the limited bandwidth of the microstrip reflectarray. This
bandwidth is usually on the order of 3 to 5 percent, which is too small for many
applications which employ reflector antennas. An increase in bandwidth may be achieved
by using a thick foam substrate, with the use of thin dipoles for some elements to increase
the range of reflection phases that may be achieved. A greater increase in bandwidth

could possibly result from using stacked patches.

For shaped beam applications, a very precise knowledge of the total reflection
phase from each element is needed. Therefore, in these applications, it would be beneficial
to know the effect of mutual coupling in the reflectarray environment. Unfortunately,
such a solution would involve a moment method computation for the entire reflectarray,
which is computationally infeasible. A potential way around this problem would be to first
design a reflectarray using the infinite array data and then perform three separate analyses
for scattering from each element in the reflectarray - an analysis of the isolated element
itself, a finite subarray composed of only the nearest neighbors to the element under
analysis, and an infinite array of similar elements. Comparing the data from these
solutions should give an idea as to the effect of mutual coupling on the reflection phase of

each element in the reflectarray environment.
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APPENDIX
GREEN'S FUNCTION FOR THE MICROSTRIP ELEMENT

Many calculations in this dissertation involve the use of the microstrip Green's
function in the spectral domain. Expressions for this Green's function that are needed for

calculations in the dissertation are presented here.

The dyadic spectral domain Green's function for the electric field at (x,y,d) of a
single infinitesimal electric dipole located at (x,,y,,d) on a grounded dielectric slab is,

o

G (x,)1%,,7,) = "Z%}T [ [2 kb =2e™ 0 g g (A-1)

In this work we are only concerned with the tangential fields that produced by the
currents on the surface described by z=d, i.e. the x and y directed electric fields due to the

x and y directed currents.
The kernel functions for use in (A-1) are as follows:

For the x directed electric field produced by a x directed electric current:

JEES) 2 _p2):
o Lok x)szOS(/ﬁf;);fkl(ko Blintkd) o a2
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For the x directed electric field produced by a y directed electric current:

sz=—

k,k [k, cos(kd )+ jk, sin(k,d)]

LT,

sin(k,d)

For the y directed electric field produced by a x directed electric current:

0,.=0,

For the y directed electric field produced by a y directed electric current:

(e,k2 - 2k, cos(kd) + jk, (k2 ~ K )sin(kd)

¥y

In the above expressions:

LT,

k=&l -k -k ; Im(k)<0
k2=,/kf—kf~—kf ; Im(k,)<0

T, = k,cos(k,d)+ jk, sin(k,d)

T, = ¢ k, cos(kd)+ jk, sin(kd)

sin(k,d)

(A-3)

(A-4)

(A-5)

(A-6)
(A-7)
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