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Abstract 

In this thesis the results of a systematic investigation into the 

behavior of ultrashort optical pulses propagating in dispersive media with 

a Kerr nonlinearity (and intensity-dependent refractive index) are 

presented. The effect of the nonlinear index is to couple the spatial and 

temporal behaviors of the optical field together in a process known as 

spatiotemporal coupling. In the first chapter, a review of the previous 

work done in describing spatiotemporal coupling is presented as well as a 

discussion of its relevance to the remaining chapters. 

Optical wave propagation in general is described by Maxwell's 

equations. In the second chapter Maxwell's equations are used to derive 

the various forms of the nonlinear Schrödinger equation (NSE) which 

describe optical wave propagation in the presence of a Kerr nonlinearity. 

The different forms of the NSE account for different propagation 

geometries and conditions. The numerical model based on the NSE 

which is used to derive many of the results in the remainder of the thesis 

is also described. In chapter three, the numerical model is employed to 

give a thorough description of the dynamics of the pulse behavior in the 

presence of spatiotemporal coupling. An explanation of enhanced beam- 

broadening in self-defocusing media and localized pulse compression in 

normally dispersive self-focusing media are presented. 

The remaining two chapters describe experimental conditions 

under which spatiotemporal coupling may become important. In chapter 

four, the model is used to describe a means to exploit the ultrafast Kerr 

nonlinearity to achieve pulse compression with spatial phase modulation. 

The process relies on the nonlinear coupling among the overlapping 



subbeams produced by the modulation resulting in an intensity- 

dependence of the steering angles of the several peaks of the modulated 

pulse. In the fifth and final chapter, the influence of spatiotemporal 

coupling on Z-scan measurement of the nonlinear refractive index is 

discussed. A numerical investigation followed by an attempt at 

experimental verification shows that spatiotemporal pulse reshaping may 

lead to errors in measurements of the nonlinear index and nonlinear 

absorption performed via the Z-scan technique. 
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Chapter 1 

Introduction 

1.1 Background 

The beginning of the study of nonlinear optics was virtually 

concurrent with the invention of the laser1'2 in 1960. The strength of the 

optical fields produced by lasers gave rise to such novel phenomena as 

self-focusing and self-trapping which warranted a more thorough 

understanding of the influence of an intense optical field on the medium 

in which it propagates. Self-focusing and self-trapping arise from an 

intensity-dependent refractive index (also known as a Kerr-type 

nonlinearity). The index of refraction of a Kerr material is given by n = no 

+ n2l where I is the intensity of the optical field and the parameter n2 is 

known as the nonlinear refractive index. However, the intensity- 

dependent refractive index is by no means the only phenomenon which 

the field of nonlinear optics seeks to describe. It is merely the one on 

which this thesis will concentrate. More complete descriptions of these 

and other effects have been compiled in the texts by Shen,3 Boyd,4 and 

Agrawal.5 

The field of ultrafast optics also came to the fore with the invention 

of the laser.1'2 The first optical laser was a flash-pumped ruby laser which 

produced "ultrafast" nanosecond (10~9 s) pulses.2 As new tools were 

developed which produced shorter pulses, the term "ultrafast" took on 

new meaning. It is now generally accepted6 that an ultrafast optical pulse 

is one with a duration or width To < 10 ps, although the results contained 



in this work generally refer to pulses of 100 fs (10-13 s) or shorter. Through 

the 1980s colliding-pulse modelocked (CPM) lasers lead the way into the 

femtosecond domain7'8 with the first sub-100 fs pulses being generated in 

1981 using a CPM laser.7 A CPM laser was also in 1987 used to produce 

the shortest pulses ever recorded,8 only 6 fs wide. In that experiment 

pulses from the CPM laser were first amplified and then passed through a 

fiber-grating-prism compressor3 to achieve the result. Since that time, 

efforts in ultrafast pulse generation have been directed at creating less- 

complicated devices with a broader range of wavelengths from which to 

choose. The most significant development in these areas has been the 

Ti:Al2Ü3 laser.9 In 1990, Spence et al.9 were able to achieve self- 

modelocking by slightly realigning a modified Ti:Sapphire laser (Spectra- 

Physics Model 3900 CW). They coined the term "self-modelocking" 

because this laser had no elements designed specifically to produce 

modelocking (e.g. modulators or saturable absorbers). With intracavity 

dispersion compensation, they were able to achieve pulse widths less than 

100 fs. Since that time, progress with Ti:Al2Ü3 lasers and the new class of 

related solid state lasers (Nd:YLF, Cr:LiSAF, etc.) has been rapid and 

widespread.10"13 Recently the emphasis in research has switched to 

amplification of these pulses to millijoule levels14"17 and to broadening 

the wavelength range still further through the use of optical parametric 

oscillators (OPO's).18"20 The result of these efforts is that access to high- 

power femtosecond light sources is now almost commonplace. 

Ultrafast optics and nonlinear optics are connected in that ultrafast 

pulses, because of their high peak powers, are frequently used to 

investigate nonlinear phenomena. In particular there have been a variety 

of techniques developed in recent years for measuring the nonlinear 
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refractive index of materials.21"28 Early ri2 measurements exploited three- 

wave21 and four-wave22'23 mixing geometries. Interferometric 

techniques24'25 have also been proposed which are quite sensitive, yet 

frequently quite complicated. More recently Sheik-Bahae26'27 and co- 

workers introduced the Z-scan technique. The basic idea behind this 

technique is to measure the' spatial distortions in the far-field resulting 

from the phase accumulated by a focused beam passing through a 

nonlinear material. Since its introduction, several innovations28"34 have 

increased the accuracy and applicability of the Z-scan technique. Results 

have been presented for Z-scans performed using top-hat beams,28 an 

eclipsed far-field,29 arbitrarily shaped beams30 and thick media,31 as well as 

two-color arrangements32'33 and a method for measuring the polarization 

dependence of the nonlinear response of crystals.34 Further, pump-probe 

arrangements35'36 have been employed to determine the response time of 

the material being investigated. 

In all of the measurements discussed above an unchanging pulse 

shape has been assumed. This assumption is perfectly valid for a broad 

range of experimental parameters that include picosecond pulses or 

samples much thinner than the Rayleigh range of the beam. However, for 

the ubiquitous TiiA^Oz laser and other sub-picosecond sources there are 

conditions under which the pulse may be reshaped upon propagation 

through materials that are thinner than the Rayleigh range of the beam.37 

The result is that the reshaping in time changes the spatial distribution of 

the accumulated phase which in turn alters the far-field. This process is 

known as spatiotemporal coupling. The significance of spatiotemporal 

coupling   is demonstrated in Fig. (1.1), where we plot the results of the 
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Figure (1.1) Time-integrated spatial energy distribution of an ultrashort 
pulse after propagating one diffraction length through a nonlinear 
dispersive medium for the cases of normal dispersion, anomalous 
dispersion and no dispersion. The dispersion produces changes in the 
beam shape via ultrafast nonlinear spatiotemporal coupling . 

numerical simulation of the propagation of a spatially one-dimensional 

pulse through a nonlinear dispersive medium under three different 

assumptions: normal dispersion (ß2 > 0), anomalous dispersion (ß2 < 0) 

and no-dispersion (ß2 = 0). Clearly, the spatial far-field intensity 

distributions will be different for the three different dispersion cases. This 

difference is due to nonlinear ultrafast spatiotemporal coupling. 

1.2 Overview 

What we suggest in Fig. (1.1) is what we intend to demonstrate in 

this document:    in order to use ultrashort pulses in nonlinear optics 
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experiments a clearer understanding of the evolution of the pulse shape 

(than that provided by the dispersionless approximation) as it propagates 

under the influence of diffraction, dispersion and the nonlinearity is 

needed. Fortunately, work in this area has been proceeding for over three 

decades. 

Initially the research, directed at understanding the self-trapping of 

light predicted by Askar'yan38 in 1962, was motivated by the discovery of 

damage tracks in laser crystals. The first papers39'40 on the topic used a 

continuous-wave (cw) approximation with the nonlinear Schrodinger 

equation (NSE) to estimate self-trapping39 conditions and self-focusing40 

thresholds for intense beams in nonlinear media. Later, Zakharov and 

Shabat41 used the inverse scattering method to obtain soliton solutions of 

the one-dimensional NSE as well as a more complete description of two- 

dimensional self-focusing. Hasegawa and Tappert42 followed with 

numerical simulations demonstrating the stability of the soliton solutions 

with respect to noise, perturbations and absorption. These one- 

dimensional results were significant in that they applied to the interaction 

of dispersive effects in the time-domain with the self-focusing 

nonlinearity. Since that time the study of one-dimensional fields, 

corresponding to pulses propagating in optical fibers, has been extensive 

and pulse behavior in fibers is now well understood.3 The first discussion 

of the effect of spatial self-focusing on the shape of the pulse was presented 

by Marburger43 in 1967, although his work was done in the dispersionless 

limit. 

Throughout the 1970's much work was done both theoretically and 

experimentally investigating self-focusing phenomena. Bjorkholm and 

Ashkin44 presented the results of the first quantitative experimental 
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investigation of self-focusing and self-defocusing. They tuned a dye laser 

through the sodium resonance to exploit the changing sign of the 

nonlinear index, and so investigate both phenomena. Later, Askar'yan 

and Mukhamadzhanov45 investigated wave collapse using 10 ns pulses 

from a ruby laser focused into a nitrobenzene cell. An important 

innovation in the theoretical investigation of self-focusing was made by 

Anderson46'47 who employed a variational approach to the problem 

which helped determine the dynamics of the beam width as a function of 

propagation distance. 

The experimental demonstration of fiber solitons lead to an 

increased interest in three-dimensional solitons, or "light bullets." 

Marburger43 had demonstrated that self-focusing could change the pulse 

shape but little was known about the effect of self-focusing on the pulse 

shape when dispersion was included in the model. Zharova et al.48 

presented the first results discussing the self-focusing of short pulses in the 

presence of dispersion. They found that normal dispersion can work as a 

mechanism to create temporal structures in the collapsing wave. Shortly 

thereafter Silberberg49 demonstrated that in the anomalous dispersion 

regime three dimensional soliton solutions to the three-dimensional NSE 

exist but are unstable. This result was followed by the work of Desaix, 

Anderson and Lisak50 who employed a variational approach to describe 

the dynamics of a collapsing wave obtained for different assumptions 

about the input field. They described the different behavior of Gaussian, 

hyperbolic secant and paraxial waves in one, two and three dimensions 

and compared them to the results of numerical simulations for the same 

assumptions. Chernev and Petrov51'52 performed a more thorough 

numerical investigation of self-focusing pulses in normally dispersive 
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media and described both the pulse-splitting phenomenon discussed by 

Zharova et al.48 as well as the phase characteristics of the collapsing wave. 

Rothenberg53 presented similar results almost simultaneously. Recently, 

many of these results were verified experimentally by workers at Cornell54 

who demonstrated pulse splitting with sub-100-fs pulses self-focusing in 

BK7 glass in the normal dispersion regime. 

Much of the multidimensional work in the past five years has been 

concerned with the behavior of optical pulses propagating in the 

anomalous-dispersion regime. The effects of the paraxiality of the 

NSE,55"57 full-wave models based directly on Maxwell's equations,58'59 

saturable nonlinearities,59'60 higher-order nonlinearities,61 temporal 

phase modulation62 and higher-order dispersion63 have all been discussed 

in the context of wave collapse or light bullets. However, Luther and co- 

workers64 have presented extensive numerical and analytical results 

describing the effect of normal dispersion on wave collapse. Some 

progress65"67 has even been made describing multidimensional focusing 

occurring in a Ti:Al203 laser, a normally dispersive medium. We have 

investigated the dynamics of pulse behavior35'68 in both the normal- and 

anomalous-dispersion regimes of self-defocusing and self-focusing media. 

Our work, as will be seen in the remainder of this thesis, has focused on 

the dynamics of beam and pulse shape due to the nonlinear 

spatiotemporal coupling implied by the NSE. 

In chapter 2 we derive the multidimensional NSE and discuss the 

conditions under which the dimensionality can be reduced. We show 

how the NSE implies a spatiotemporal coupling and give a more 

thorough description of what precisely is meant by that expression.   We 
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also describe the numerical model, based on the NSE, (and its limitations) 

used to simulate optical field propagation. 

In chapter 3 we thoroughly describe optical pulse propagation in 

nonlinear dispersive media. We numerically investigate the interplay of 

diffraction, dispersion and the nonlinearity for spatially one and two- 

dimensional pulses for both self-focusing and self-defocusing 

nonlinearities in both normally and anomalously dispersive media. 

In chapter 4 we will discuss beam steering via spatial phase 

modulation in nonlinear dispersive media. We numerically demonstrate 

how spatial solitons can influence the efficiency of the beam steering 

process. We then show how nonlinear spatiotemporal coupling can be 

exploited to shape as well as steer ultrashort pulses. 

In chapter 5 we discuss the implications of spatiotemporal coupling 

for Z-scan experiments. We look at the results of simulations of spatially 

one-dimensional Z-scans using ultrashort pulses. These results show 

qualitatively how spatiotemporal coupling affects the measurements 

when an actual three-dimensional Z-scan is performed. We then discuss 

the results of Z-scan experiments performed with a Ti:Al203 laser and look 

for qualitative confirmation of the conclusions derived from our 

simulations. 
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Chapter 2 

The Nonlinear Schrödinger Equation 
and  Spatiotemporal Coupling 

2.1 The Nonlinear Schrödinger Equation 

Work on intensity-dependent refractive indices has been extensive 

both theoretically and experimentally.1'16 The initial motivation of the 

research was to explain damage tracks found in laser crystals, later shown 

to be the result of the self-focusing properties of the crystals.1-4 The index 

of refraction of the crystals increased with the intensity of the light. 

Theoretical investigations into this phenomenon lead to a description of 

both spatial and temporal solitons,5'6 the former being a result of the 

balance between the self-focusing nonlinearity and diffraction while the 

latter is a manifestation of the time-domain interaction of the nonlinear 

index and the material dispersion. Both types of solitons are solutions to 

the one-dimensional nonlinear Schrödinger equation7 (NSE) which 

describes a one-dimensional field propagating in a nonlinear medium. A 

spatially one-dimensional field describes a cw beam propagating in a 

planar waveguide, whereas a temporally one-dimensional result describes 

the evolution of pulses in a fiber. Two-dimensional fields, such as for 

pulses in planar waveguides or a cw beams in bulk media, are described by 

the two-dimensional NSE. The propagation of pulsed optical fields in 

bulk nonlinear media is described by the three-dimensional NSE. The 

derivation of the three-dimensional NSE that follows is intended to be 

illustrative rather than rigorous. 
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VB = = 0 

VxH = 
3D 
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VxE = 
3B 

"at' 

In general, the proper description of the propagation of light in a 

nonlinear, dispersive medium requires an analysis of the evolution of the 

optical field in time as well as in all three spatial dimensions.8 The 

behavior of the optical field under the influence of dispersion, diffraction 

and an intensity-dependent refractive index is described by the three- 

dimensional NSE. The derivation of the three-dimensional NSE begins 

with Maxwell's equations for a source-free medium written as (in MKS 

units): 

V-D = 0 (2.1) 

(2.2) 

(2.3) 

(2.4) 

where  D and B   are the electric and magnetic flux  density vectors 

respectively, while E  and H are the electric and magnetic field vectors 

respectively. In eqns. (2.1-4) densities and fields are related via the 

constitutive relations: 

D = eoE + P (2.5) 

and 

B = jioH. (2.6) 

The constants eo and JJ.O are the electric permittivity and magnetic 

permeability of free space, respectively. P is the macroscopic material 

polarization induced by the electric field in the medium. 

Equations (2.5) and (2.6) can be used to eliminate D and B from 

eqns. (2.3) and (2.4): 
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V x H = |"(e0E + P) (2.7) 
at 

VxE = -f(MoH). (2.8) 
at 

Taking the curl of eqn. (2.8) and substituting in from eqn. (2.7) results in: 

V xV x E = - fno |"(eoE + P) (2.9a) 
at     at 

or: 

- V2 E + V(V- E) = - ^ J|E - ^P- (2.9b) 

Consider for a moment the second term on the left hand side (LHS) of eqn. 

(2.9). For linear, isotropic source-free media, V- E = eoV- D hence this term 

vanishes. It is common to assume that this term's, contribution even in 

the case of nonlinear media, is negligible compared to that of other terms 

in eqn. (2.9b) hence it is usually neglected.   Neglecting this term results in: 

1 32 32 
c2^E = ^L V2E-^—E = no^P, (2.10) 

which is in the form of a wave equation for E driven by the second 

derivative of P. 

The polarization P generally consists of a linear part PL and a 

nonlinear part PNL- The linear part is related linearly to the electric field 

via the linear electric susceptibility of the medium, %(!): 
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PL(t) = eo Jx(i)(t-f)E(t')df   . (2.11) 
-oo 

In the most general case, %(*) is a time-dependent tensor relating all 

components of either field, but for isotropic media it is simply a time- 

dependent scalar. 

For  linearly polarized  fields  in  the  slowly  varying  envelope 

approximation we can write the polarization and electric fields as follows: 

PL = 2 £{pL exp(-icoot) + c.c.}, (2.12a) 
I 

PNL = 2 £{PNL exp(-icoot) + c.c.}, (2.12b) 

E = £ x{E exp(-icoot) + c.c.}. (2.12c) 

Here coo is the assumed central oscillation frequency; PL, PNL 
and E are the 

slowly-varying envelopes of the polarization and electric fields 

respectively, c.c. is an abbreviation for "complex conjugate", and x is the 

unit vector in the polarization direction. For isotropic media we can then 

take %(1) to be a scalar and rewrite eqn. (2.11) as : 

oo 

PL(0 = Eo Jx<l>(t-f) E(t') dt\ (2.13) 

an equation relating the scalar magnitudes of the fields.   Then rewriting 

eqn. (2.10) in terms of the single field component of our linearly polarized 

field: 
1+ Y(1) d2 d2 

V  E-~c^E = M^t?NL- <2-14> 
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In the general case of an intensity-dependent index of refraction, the 

nonlinear part of the polarization is related to the electric field via the 

third-order electric susceptibility of the medium by the relation: 

oo   oo     oo 

PNL = £0 J  J   J X(3)(t-ti,t-t2,t-t3) E(ti)E(t2)E(t3) dtidt2dt3 •       (2.15) 
-oo -oo   -oo 

This reduces to a scalar form similar to eqn. (2.13) for isotropic media and 

linearly polarized fields. Moreover, assuming an instantaneous response 

the nonlinear polarization component oscillating at the carrier frequency 

of the input field COQ is given by: 

PNL=-f-IE|2E. (2.16) 

The typical approach to the problem from this point is to treat the 

nonlinear polarization perturbatively by taking PNL = EOENLE, where ENL - 

3&x^ IEI 2/4 and neglecting the time-dependence of ENL for the remainder 

of the derivation. Thus, substituting eqn. (2.16) into eqn. (2.14) and taking 

the Fourier transform results in: 

V2£ +E(co)k0
2E = 0, (2.17) 

where ko = co/c and the Fourier transform is defined as: 

oo 

E(r,co-coo)=   jE(r,t)exp[i(co-coo)t]dt, (2.18) 
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and 

e(co) = 1+ X(1)M + ENL (2.19) 

Next, the paraxial approximation is made by assuming  the  field E 

propagates with propagation constant ßo, thus: 

E = Ä exp(ißoz) (2.20) 

Substituting eqn.(2.20) into eqn. (2.17) and dropping the 92Ä/3z2 terms 

under the paraxial approximation results in: 

3x2 + fy2^ 
dk 

A + 2iß0— + [e(co)ko2 - ßo2] Ä = 0 . (2.21) 
8z 

Then, taking 

and 

results in: 

ß2 = e(co) ko2 

ß2 - ßo2 = (ß + ßo)(ß - ßo) - 2ß0(ß - ßo) 

(2.22) 

(2.23) 

(a2      32 V       n 3Ä     n 
+ 1-7 IA + 2iß0— + 2ß0(ß - ßo) A = - eNL k0

2A . (2.24) 
3x2     3y2 dz 

Next, ß is expanded in a Taylor series about ßo: 

ß2 
ß = ßo + ßi(o) - too) + y(co - ©o)2 + (2.25) 

where ßn = anß/aco0. Putting eqn. (2.25) into eqn. (2.24) results in: 



0 0 

2ß0 { 3x2 + ay2 y 

-     9Ä   i 
ßi(co - coo) + y(w - coo)2 + 

2ßo 

A 

(2.26) 

Reversing the Fourier transform with the correspondence 

i— <-» (co - coo) 
ot 

(2.27) 

and neglecting third and higher-order dispersion terms in the expansion 

of eqn. (2.25) leaves: 

.„ 3A    .3A      1  C 32     S2 x      p2 32A   £NLko2 4 

Next, changing variables to a frame moving with the group velocity of the 

pulse such that T = t - ßiz results in: 

.8A_J_A_a_2_   _9M      ß2 92A   eNLk02 
1 dz "2ßo[ax2 + ay2jA" 2 5T2+ 2ß0  

A' (2.29) 

Then, assuming an input field of the form 

A(x,y,z,T) = U(x/c, y/o, z/(o2ß0), T/T0) = U&n&x), (2.30) 

eqn. (2.29) can be rewritten in terms of the normalized transverse 

coordinates £ = x/a, TJ = y/o (here a cylindrical symmetry is assumed but 

the approach is readily generalizable to elliptical beams), x = T/To and the 
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propagation distance C, = z/Ld = z/(a2ßo), normalized to the diffraction 

length  or Rayleigh range of the incident field, leaving 

.3U        If  d2     92U  >,    o2ßoß2  92        g2eNLko2 

a;     z i d& + ^2 2To2   aT2 
U —^-V. (2.31) 

Finally, the field is normalized to its peak input intensity such that 

U(£,T|/£,T) = Uou(^,r|,^/x) which results in the normalized three- 

dimensional NSE: 

au ( a2    d2 \    d a2u 
i + 

a^     2la&:2  an2 u + 2^- sgn(n2) N2 I u 12u. (2.32) 

Here, the magnitude of the dispersion parameter d = sgn(ß2)Ld/Lo = 

G2ßoß2/To2 is a ratio of the diffraction length to the dispersion length (LQ = 

To2/ I ß2 I) and is a measure of the relative strengths of the influence of 

dispersion and diffraction on the input field. Here, ß2 is the group velocity 

dispersion (GVD) parameter and can make d either positive or negative 

depending on whether the medium is normally or anomalously 

dispersive respectively. The nonlinearity parameter N2 = (27io/?i)2no I n21 Io 

represents the strength of the Kerr nonlinearity with the quantity I n2 I Io 

being equal to the magnitude of the maximum nonlinear index change 

induced by the input field for an input peak intensity Io- This change can 

be either positive or negative depending on whether the medium is self- 

focusing (n2 > 0) or self-defocusing (n2 < 0). Eqn. (2.32) accurately describes 

three-dimensional optical field propagation under the influences of 

diffraction, dispersion and an intensity-dependent index of refraction. 
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2.2 Spatial and Temporal Solitons 

The three-dimensional NSE is a cumbersome tool to work with 

because of its complexity. A logical question to ask is whether or not there 

exist circumstances under which that complexity can be reduced. The 

answer is yes. To observe the influence of spatiotemporal coupling on the 

propagation of ultrashort pulses, we must first understand how light 

behaves in its absence. There are two ways to reduce the dimensionality of 

the NSE which will allow us to see the behavior of light in the absence of 

spatiotemporal coupling. 

2.2.1Temporal Solitons 

Perhaps the most common condition for which the dimensionality 

of the NSE is reduced occurs when it is used to describe the propagation of 

pulses in an optical fiber. In a fiber the maximum index change due to the 

nonlinearity is typically much less than the index step between the core 

and the cladding layers of the fiber. Under these conditions the spatial 

behavior of the field is governed by the linear waveguiding effects of the 

fiber7'9 and eqn. (2.17) is solved via separation of variables by assuming a 

solution of the form: 

E(r,G>) = f(x,y) ä(z,a>) exp(iß0z) (2.33) 

and substituting into eqn. (2.17) to get: 

( 32       9M 
9x2 + ay2 

f+[e(Q))ko2-ß2]f = 0/ (2.34a) 

2iß0— +(ß2-ßo2)ä = 0. (2.34b) 
dz 
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Here the 3%/3z2 term has been dropped in the paraxial approximation to 

form eqn. (2.34b). Eqn. (2.34a) is an eigenvalue equation for the 

propagation constant ß of the waveguide mode f(x,y) and can be solved by 

the usual techniques.7 Using the solution of eqn. (2.34a) to gain ß, 

eqn(2.33b) is solved via perturbation theory and an approach similar to the 

one used above to arrive at eqn. (2.31). This results in, 

.3a      ß2   a2 .   |2 (2.35) 

Here ß = ß + Aß, with Aß is the perturbation to the mode propagation 

constant, ß caused by the nonlinearity, is used to obtain ß2 = 32ß/8o)2 and T 

= t - (9ß/3o))z. The nonlinearity parameter y = n2ö)o/cAeff contains the 

waveguide mode structure through the effective area, 

Aeff = 

Jlf(x,y)|2dxdy 

Jlf(x,y)|4dxdy 

(2.36) 

After normalizing the propagation distance to the dispersion length, £T = 

z/(To2/ I ß21)/ eqn. (2.35) becomes the one-dimensional, temporal 

nonlinear Schrödinger equation: 

. dux      sgn(ß2) 92uT 
i ^T =      2 ^2~~ sSn(n2) Nt2 I ux 12uT, (2.37) 
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where now NT = yPoTo2/ I ß2 1/ with Po the peak power of the incident 

pulse, and Nt is known as the soliton number. 

In the case of a weak nonlinearity, Nx~ 0 and eqn. (2.37) reduces to 

9uI = s^ß2)^u_L/ 

a&t      2     ax2 

which can be solved analytically using Fourier transform methods. The 

solutions allow us to see the effect of dispersion on pulse shape. For an 

input Gaussian pulse of the form, 

uT(0/c) = exp[-x2(l + iC)/2], (2.39) 

the parameter C is the chirp parameter and is used to describe the 

temporal phase distribution of the input field. With a pulse of this form, 

the solution of eqn. (2.38) is: 

UT(CTA) = 
l-sgn(ß2)Ct(l + iQ. 

1/2      L "(1 + iQc , 
eXP[   2[l - sgn(ß2)Cx(l + iQ]f ' 

The input pulse and the solutions at C,x = 1 for several conditions are 

plotted in fig. (2.1). For the case C = 0, the pulse broadens equally for either 

type of dispersion, anomalous (ß2 < 0) or normal (ß2 > 0). For the case C = 

1 and anomalous dispersion, the pulse is compressed at £x = 1/ while for 

normal dispersion the pulse broadens more than in the unchirped case. 

This effect is seen clearly in fig. (2.2) which shows the evolution of the 

pulse full width at half maximum (FWHM) as a function of C,x for the 
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Figure (2.1) In the linear regime the interaction of dispersion and initial 
temporal phase modulation or chirp affect the pulse shape. The shape of 
an initially Gaussian pulse with and without chirp after propagating one 
dispersion length shows that the pulse can be compressed or broadened 
depending on whether or not the medium is anomalously dispersive (ß2 
< 0) or normally dispersive (ß2 > 0) respectively. 

chirped and unchirped cases. In general, when Cß2 > 0 the pulse broadens 

monotonically while for Cß2 < 0 the pulse is initially compressed before 

broadening monotonically. 

For very high peak powers or long pulses, NT » 1 and the 

dispersion term in eqn. (2.37) can be neglected, 

i —1 = - sgn(n2) NT
2 I uT 12ux. 

dCyc 
(2.41) 

This allows study of the affect of the nonlinearity on the optical field as it 

propagates. Eqn. (2.41) is readily solved to give 
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Figure (2.2) The effect of the interaction of dispersion and chirp in a linear 
medium on the pulse FWHM as a function of propagation distance is 
plotted.  In the anomalous dispersion regime (ß2 < 0) the pulse is initially 
compressed while in the normal dispersion regime (ß2 > 0) the pulse is 
broadened faster than in the unchirped case. 

ux(Cc/iO = UX(0,T) exp[ i sgn(n2)NT
21 UX(0,T) 12 Cj 

= ux(0/c) exp(i<|>NL) • 

(2.42a) 

(2.42b) 

From this equation we can see that the effect of the nonlinearity on the 

pulse is to give it a time-dependent phase. Thus the nonlinearity chirps 

the pulse, in a process known as self-phase modulation (SPM). In the 

frequency domain, the effect of SPM is to broaden the spectrum of the 

field, while in the time domain the pulse shape remains unchanged. 

Having just seen how dispersion can broaden or compress a chirped 

pulse it is now time to look at the effect of dispersion on a nonlinearly 
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chirped pulse.   For an initially unchirped Gaussian, the nonlinear phase 

shift due to SPM is given by, 

<j>NL = sgn(n2)Nx2exp(-x2)CT (2.43a) 

«sgn(n2)NT2(l-T2)£T. (2.43b) 

Thus, SPM induces a chirp approximately given by CSPM ~ sgn(n2) NT
2C,X. 

From the discussion following eqn. (2.40) we know that this can lead to 

pulse compression provided CsPMß2 < 0 (or broadening for CspMp2 > 0). 

Thus for an anomalously dispersive medium, a self-focusing nonlinearity 

will induce a chirp on an input pulse such that it will interact with the 

dispersion to compress the pulse. The same holds true in a normally 

dispersive medium for a self-defocusing nonlinearity. The question is, 

under which conditions will this SPM-induced chirp be strong enough to 

compete with the tendency of the initially unchirped pulse to dispersively 

broaden? 

This question is answered by returning to eqn. (2.37). Analytic 

solutions to this equation, known as bright solitons, can be determined via 

the inverse scattering method.5 The fundamental bright soliton occurs for 

NT = 1 and represents the perfect balance between the nonlinear SPM and 

dispersive broadening.  The solution, 

uT(;x/c) = sech(x) exp(iCx/2), (2.44) 

maintains its shape on propagation and even through collisions with 

other   pulses.   Higher-order solitons have more complicated expressions 
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NT= 3 Soliton 

Figure (2.3) The evolution of a third order (NT = 3) bright temporal soliton 
is illustrated. The input sech(x) pulse compresses, splits , compresses and 
recovers its original shape at £T = n/2. 

and behaviors. The behavior shown in fig. (2.3) for an NT = 3 or third- 

order soliton is typical. Numerical simulations have shown the input 

sech(-c) field is compressed initially reaching its smallest width at C,x ~ 

0.5/Nt + 1.73/NX
2 with a compression factor given by Fc = 4.1NT. The 

compression is followed by a splitting, then another compression, then at 

£x = rc/2 the soliton regains its original shape and the process repeats itself. 

An interesting issue to consider is the influence of the nonlinearity 

and dispersion on the pulse shape when Cspmß2 > 0, i.e. when they are 

both acting to broaden the pulse. This situation arises in a self-defocusing 

medium in the anomalous dispersion regime and in a self-focusing 

medium in the normal dispersion regime. When the two effects are 

acting in concert we expect the dispersive pulse broadening to be 
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Figure (2.4) The width of a pulse propagating in a self-focusing (N = 3), 
normally dispersive (ß2 > 0) medium increases faster than in the linear 
case. Frequency chirp can either increase or decrease the rate of pulse 
broadening. 

enhanced. As shown in fig. (2.4), where we plot pulse width as a function 

of propagation distance for these two cases, we see that in fact the 

nonlinearity does lead to an enhanced pulse broadening. Whether or not 

the pulse broadens as fast as an initially chirped pulse in a linear medium 

depends on the strength of the chirp and the strength of the nonlinearity. 

In any case the linearly chirped input pulse broadens faster initially while 

the nonlinearly broadening pulse requires more distance to reach the 

same pulse width since its chirp accumulates as it propagates. More 

interesting perhaps is the case in which the input pulse is chirped so as to 

initially linearly compress the pulse. What we find is that because the 

linear compression increases the peak intensity, the nonlinear phase 
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accumulation at the pulse peak also increases thereby enhancing the 

broadening of the pulse after the compression. 

2.2.2 Spatial Solitons 

A simpler way to reduce the dimensionality of the NSE of eqn. 

(2.32) is to make the cw approximation. This is done simply by assuming 

that dispersive effects occur on a much longer distance scale than 

diffractive effects and is true for weakly dispersive media or long pulses 

such that d « 1 in eqn. (2.32). In this situation the third term on the right 

hand side (RHS) of eqn. (2.32) can be neglected, resulting in an equation 

describing cw self-focusing in bulk media, 

9£ "~2|^2 + aT12 u - sgn(n2) N2 I u 12u. (2.45) 

There are two situations in which the dimensionality of this equation can 

be further reduced. 

Recall that eqn. (2.32) was derived by assuming a cylindrical 

symmetry in the transverse coordinate normalizations. If instead we 

allow the spatial profile of the field to have nonuniform dimensions such 

that ox * 0"y then normalizing the transverse coordinates as £ = x/ax and r\ 

= y/Oy results in the modified two-dimensional NSE, 

3u        If d2      .32 
l 

a2       a2 ^ 
— + dy —-r   u - sgn(n2) N2 I u 12u, 

ac     2la*    ydn2J 
(2.46) 
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N = 3 Soliton 

Figure (2.5) The evolution of a third order (N = 3) bright spatial soliton is 
illustrated. This is identical to the behavior shown in fig. (2.3) except that 
it describes spatial rather than temporal field behavior. 

where dy = cx
2/ay

2. In the case of a highly elliptical beam such that 

0"x«o"y we know intuitively that diffraction will be much weaker in the y 

plane than in the x plane. The dy parameter verifies our intuition since in 

that case dy « 1 and eqn. (2.46) can be rewritten, after neglecting the 

second term, as 
9u        192U . 

(2.47) ac 
1 d2u „ 
l^-SEPto)™   lul2u, 9^2 

the spatial one-dimensional NSE. This equation is isomorphic to 

equation eqn. (2.37), the temporal one-dimensional NSE, for p2 < 0 and so 

supports bright solitons for n2 > 0. 

There are two important distinctions between eqn. (2.47) and eqn. 

(2.37).   First is that eqn. (2.47) describes the spatial evolution of the field 
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N = 3 Defocusing 

Figure (2.6) The evolution of a cw beam in a N = 3 defocusing medium. 
The field broadens faster than it would in a linear medium under the 
influence of diffraction alone. 

and so the solitons it supports are spatial solitons. Second, given the 

absence of anomalous diffraction, there are only two regimes to consider: 

self-focusing and self-defocusing. In the former, bright spatial solitons 

exist. The behavior of an N = 3 bright spatial soliton is shown in fig. (2.5). 

Note that the graph is identical to that of fig. (2.3) with the exception of the 

labels on the horizontal axes. Indeed, spatial solitons behave identically as 

temporal solitons. Spatial solitons such that N > 1 narrow to a minimum 

spatial FWHM at £, ~ 0.5/N + 1.73/N2 with a compression factor given by 

Fc = 4.1N. The narrowing is followed by a splitting then an eventual 

recovery of the input field shape at £ = xc/2. 

In the self-defocusing regime, fig. (2.6) shows the behavior typically 

described by eqn. (2.47). The beam broadens monotonically and faster than 

it would under the influence of diffraction alone. A lens will produce the 
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spatial phase curvature analogous to the frequency chirp described earlier 

with similar effects. In a self-defocusing medium, the effect of focusing 

the beam with a lens is to initially override the impact of the 

nonlinearity. The final result, however, is a broader beam in the far field 

because the initial focusing by the lens increases the nonlinear phase 

accumulated by the field which enhances the broadening. Conversely, a 

defocusing lens, because it will reduce the accumulated nonlinear phase, 

will narrow the far field of a beam propagating through a self-defocusing 

medium. 

The other condition whereby the dimensionality of eqn. (2.45) can 

be reduced is that of a beam in a planar waveguide. As in the case of an 

optical fiber, the index step used to create the waveguide is usually more 

than an order of magnitude greater than any change in the refractive 

index due to nonlinear effects. Thus we can neglect the nonlinearity 

when describing the spatial characteristics of the field in the direction 

perpendicular to the plane of the waveguide. This manifests itself by 

starting at eqn. (2.32) and assuming a solution of the form, 

E(r,(D) = g(y)ä(x,z,co) exp(-ißoz), (2.48) 

then separating variables to arrive at the pair of equations for the field in 

the waveguide: 
32g 

2+(e(a))ko2-ß2)g = 0, (2.49a) 

-^ + 2ißo^ + (ß2 - ßo2) ä = 0 . (2.49b) 
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Here eqn. (2.49a) is an eigenvalue equation for the propagation constant ß 

of the planar waveguide mode g and it can be solved using the usual 

techniques. In a procedure exactly analogous to the one used to derive the 

temporal NSE, a perturbative approach is used to arrive at, 

9a 1    32a      ß2 32a 

T,--Wo^ + ^^'yiaia- <2'50) 

If the propagation distance is now normalized with respect to the 

diffraction length such that C, = z/(27ta2A), this equation becomes the two- 

dimensional spatiotemporal NSE, 

du        Id2 d  92 , 0 ,     0 
l — =-2^2u + 2 a""^ ~ ssn(n2)N   'u' u' (2-51) 

where d is defined as in eqn. (2.31) with ß2 containing via ß the nonlinear 

perturbation to the propagation constant of the waveguide mode and N = 

(27tG/X,)2no I n2 I Io also as in eqn. (2.32). This equation describes the 

behavior of pulses in a planar waveguide. As in the derivation of eqn. 

(2.47) in the long-pulse limit or cw approximation d«l. Thus, in this 

limit the dispersion term can be neglected, resulting in the one- 

dimensional spatial NSE, eqn. (2.47). 

2.3 Spatiotemporal Coupling 

The two-dimensional spatiotemporal NSE, eqn. (2.51) enables the 

investigation of nonlinear spatiotemporal coupling with minimum 

complexity.  The first evidence of spatiotemporal coupling can be obtained 
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from analyzing the equation itself.  In the low-power limit, N ~ 0 and eqn. 

(2.51) reduces to, 
. 3u        1  32        d 32 

which can be solved by separation of variables. This techniques 

necessarily requires that the time-domain and space-domain behaviors 

evolve independent of one another. When nonlinear effects become 

significant enough that eqn. (2.51) must be employed, separation of 

variables can no longer be used to find the solution. Thus, we must 

conclude that the two behaviors no longer evolve independent of one 

another, i.e. the space and time behaviors are coupled to one another by 

the nonlinearity. 

Although analytical solutions of eqn. (2.51) exist11 their stability and 

applicability to physical problems is limited. We obtain further evidence 

of spatiotemporal coupling by solving eqn. (2.51) numerically. The details 

of such work will consume the bulk of this thesis, presently however one 

example will suffice. In figs. (2.3) and (2.6) we plotted the temporal and 

spatial evolution of an N = 3 pulse in a self-defocusing, normally 

dispersive medium in the absence of spatiotemporal coupling. Note that 

the compression of the pulse reaches a maximum at £t = 0.2 while at £ = 

0.2 the beam in fig. (2.6) has merely broadened 18%. Now in fig. (2.7) we 

plot the spatial and temporal evolution of the same optical field but with 

spatiotemporal coupling included in the model. In a two-dimensional 

simulation it is not possible to plot the entire field as in figs. (2.3) and (2.6), 

instead we look at a slice through the center of the field. Fig. (2.7a) shows 

the evolution of I U(0,T,Q I 2 , a slice in time through the spatial center of 
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(a)Temporal Profile 

(b)Spatial Profile 

Figure (2.7) The effects of spatiotemporal coupling on the beam and pulse 
shapes as a two-dimensional field propagates in a self-defocusing (N = 3) 
normally dispersive medium. In (a) the behavior of the field at £ = 0 
when compared to fig. (2.3) shows a reduced pulse compression. But in (b) 
the field at x = 0 shows a localized beam narrowing which is the opposite 
of the behavior shown in fig. (2.6). 



39 

the two-dimensional field. Note that while the compression still occurs at 

£ = 0.2 (When d = 1 the dispersion length and the diffraction length are 

equal hence £x = C) it is reduced from that obtained for the one- 

dimensional simulation. An even more dramatic change in behavior is 

observed for the field behavior at the pulse center, I u(^,0,C) 12 shown in fig. 

(2.7b). Here the monotonic broadening is gone, replaced by an initial 

compression then an enhanced broadening. Thus figs. (2.7) show that a 

moderate (N = 3) nonlinearity can provide enough spatiotemporal 

coupling to significantly alter the field behavior in both space and time. 

2.4 Numerical Model 

While in recent years some significant progress has been made 

analytically describing the behavior of the field governed by the NSE, the 

most fruitful avenue of research has been numerical simulations.7'12"16 

There are generally two ways to approach the problem of 

multidimensional wave propagation simulation: finite difference 

methods and pseudospectral methods. We use the latter with a technique 

known as the split-step Fourier method. The basic idea stems from 

recognizing that the NSE can be written in terms of operators, 

3u        1/A     A\ 
i^=-2\D + N)u (2-53) 

where, 
A     82      32        32 

N = 2N2lul2. (2.54b) 



The D operator contains the effects of dispersion and diffraction, while the 
A 

nonlinear operator N contains the effect of the nonlinearity.   The solution 

to eqn. (2.53) correct to third-order in the step size h is 
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h A /n A \ 
u(£+h,£,r|,T) = exp jD   exp 

1      fA 
2 jNdC 

h A 
exp ?D U(C£,TI/C).   (2.55) 

This describes the propagation of the wave for one half-step under the 

influence of diffraction and dispersion only, followed by a propagation for 

a full step under just the influence of the nonlinearity and finally another 

diffractive-dispersive half-step. The middle step is computed by an 

approximation to the integral using the trapezoidal rule and an iterative 

procedure to determine the field at £ + h. In practice the exponential of 

the differentials is computed by performing a multi-dimensional fast 

Fourier transform (FFT) of the field so that the differentiations become 

multiplications: 

Fsexp 
9^2 + an2~daT2 

P 
= exp i y( - ki;2 - V + kx2 ) (2.56) 

This makes the evaluation of exp( i h D )/4) much easier in the Fourier 

domain. Once the multiplication is performed the FFT is reversed so the 

nonlinear effects may be introduced via a simple multiplication by a field- 

dependent phase. Finally the first process is repeated for the second 

dispersive-diffractive half-step. The process extends readily to any number 

of dimensions by reducing (or increasing) the dimensionality of the FFT 

employed in the dispersive-diffractive half-step. 
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For three-dimensional simulations, memory usage and 

computation time need to be considered. To ensure acceptable frequency 

resolution over the entire propagation distance, we attempt to ensure that 

the grid on which the data is stored is a minimum of five times as large as 

the pulse width. With a wave modeled to a resolution of xp/20 (or c^/20) 

this means a grid with a minimum of 100 points in each dimension. 

Consequently, for accurate three-dimensional modeling a 128x128x128 grid 

is employed. Storing 2xl06 complex data points requires approximately 

16 MB (or 32 MB if double precision is used) and processing a data set that 

large is extremely computationally intensive. As a result, the bulk of the 

results presented here are for simulations of the field described by the two- 

dimensional spatiotemporal NSE, eqn. (2.51). These simulations are 

performed using a 256x256 point grid with step sizes ranging from 0.01 to 

0.0001 diffraction lengths depending on the size of the nonlinearity being 

modeled. In general, the step size is chosen such that hN21 umax 12 < 0.01 

over the course of the simulation. 
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Chapter 3 

Pulse Propagation in Dispersive Nonlinear 
Media 

3.1 Background 

It has been well established for many years that, to lowest order, 

pulse propagation in nonlinear dispersive media is described accurately by 

the nonlinear Schrödinger equation (NSE).1 As we discussed in chapter 1, 

the NSE has helped provide an understanding of a wide variety of effects 

such as beam steering,2'3 soliton formation and propagation,4-5 self- 

focusing6"16 and pulse compression.1'9'17"19 Pulse compression has been a 

subject of intense interest for many years due to its wide ranging 

applications in areas such as optical communications and ultrafast 

phenomena.1'19 Attempts to fully understand self-focusing began more 

than 25 years ago and have evolved from analytic approximations for cw 

beams6"8 to the moving focus model for the self-focusing of long (>1 ns) or 

non-dispersive pulses.9'10 However, it is only recently that the full three- 

dimensional NSE has been employed for the investigation of self-focusing 

of ultrashort pulses in normally-dispersive media.11"15 Moreover because 

the nonlinearity makes the NSE inseparable, it is only in its 

multidimensional form that the coupling between the spatial and 

temporal behaviors can be investigated. The impact of the nonlinearity 

on both the spatial and the temporal behavior can be investigated with the 

two-dimensional NSE, eqn. (2.50), 
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du     l a2      d a2 . 
l— =~2 ^ u + 2 T^u- sgn(n2) N2 lul2u. (3.1) 

This equation governs pulse propagation in planar waveguides and in 

bulk media for highly elliptical beams. For many years, optical pulse 

propagation in fibers has been an area of intense investigation.1 Apart 

from the obvious communication applications, optical fibers are 

important because they provide a simplified environment in which to 

study nonlinear effects. Planar waveguides are similar to fibers in that 

there is still good field confinement. But since the confinement is only 

one-dimensional, it is possible to study the influence of diffractive effects 

on the field dynamics in the presence of the Kerr nonlinearity responsible 

for self-focusing or defocusing. This interplay is particularly interesting 

when the field is in the form of an ultrashort pulse, in which case not only 

do the dispersive and diffractive effects occur simultaneously but also the 

spatial behavior is coupled via the nonlinearity to the temporal behavior. 

This chapter is devoted to studying the effects of such a spatiotemporal 

coupling in planar optical waveguides modeled as a dispersive nonlinear 

medium. 

Self-focusing and self-defocusing are well-known nonlinear 

phenomena4'7-10'12*16 leading to contraction or expansion of an optical 

beam as it propagates in a Kerr medium whose refractive index increases 

or decreases linearly with optical intensity. The interaction of dispersion 

and self-focusing has been studied extensively. In the first part of this 

chapter we show how self-focusing and pulse compression are related via 

spatiotemporal coupling. However, self-defocusing has attracted relatively 

little attention since it leads to a uniform broadening of the optical beam. 
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It was pointed out recently that a beam propagating in a self-defocusing 

medium may actually narrow if it is launched together with an intense 

pump beam.20'22 The physical mechanism behind such an induced 

focusing is spatial cross-phase modulation, a nonlinear phenomena in 

which an intense pump beam changes the phase front of the signal beam 

locally in such a way that it leads to beam narrowing in a self-defocusing 

medium. In the second part of this chapter we show that with a single, 

pulsed, optical beam the beam-broadening due to self-defocusing can be 

either enhanced or suppressed through temporal self-phase modulation 

depending on the nature of group-velocity dispersion inside the nonlinear 

medium. The physical mechanism in this case is the spatiotemporal 

coupling occurring when dispersion and diffraction act together on a 

pulsed optical beam. 

3.2 Self-Focusing Nonlinearity 

For a narrow beam of ultrashort pulses, dispersion and diffraction 

have roughly equal influence on the behavior of the optical field and thus 

d « 1 in eqn. (3.1). We can then make neither the plane wave nor the cw 

approximations (discussed in chapter 2) and so must use the two- 

dimensional NSE [eqn. (3.1)] to describe the field evolution. The question 

then arises: how does the presence of the added dimension affect the 

outcome of the simulation, i.e. how does spatiotemporal coupling 

manifest itself in this situation? One might guess that, since anomalous 

dispersion and diffraction both lead to field compression in the presence of 

the self-focusing nonlinearity, when both effects are included the degree of 

compression would increase.    In fact it does, and for nonlinearities such 
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that N > A/2, self-focusing eventually leads to wave collapse and a 

breakdown23 of our model [in reality the wave collapse is averted by 

higher-order nonlinearities,24 higher-order dispersion,25 non- 

paraxiality26'27 and self-steepening1 terms neglected in eqn. (3.1)]. The 

dynamics of the catastrophic wave collapse have been investigated by 

several authors23"27 and provided many useful insights into a variety of 

experimentally observed phenomena. The focus of those early 

investigations was on arriving at an understanding of the damaging 

effects of the wave collapse rather than spatiotemporal coupling, hence we 

will not revisit many of these results here. 

Spatiotemporal coupling was evident in the results of the wave 

collapse investigations because it was found that the addition of a third 

dimension to the simulations resulted in a more rapid collapse, hence the 

interaction of the dispersion and the nonlinear index provided an 

additional mechanism for concentrating the field energy. To show how 

spatiotemporal coupling can be used to advantage we apply a quadratic 

spatial phase modulation (a thin lens) to the Gaussian input field, 

u(S/c,0) = exp 
£2 + T2)' 

exp[i<Ktt)]. (3-2) 

by choosing ()>(£,T) = - £2/2f where f is the focal length of the lens the field 

passes through prior to entering the nonlinear medium. In fig. (3.1), we 

plot the spatially-averaged pulse width (FWHM) and the time-averaged 

beam width (FWHM) as a function of propagation distance for a range of 

focal lengths f with N = 3 and d = -1. As seen there, a focusing modulation 

(f > 0) can hasten the collapse while a defocusing modulation can either 
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delay or eliminate it entirely depending on the modulation amplitude and 

the length of the nonlinear medium, with larger amplitudes (smaller 

values of f) being required to overcome larger nonlinearities. The 

noteworthy point here is that the time-domain behavior is altered with a 

spatial manipulation. The mechanism at work is fairly simple. The 

spatial phase modulation for f < 0 merely spreads energy out (or helps 

concentrate it for f > 0) from the center of the field thereby reducing (or 

enhancing) the nonlinearity-induced phase curvature of the field which is 

the cause of the collapse. This result is analogous to that of ref. 23 in 

which the self-focusing of chirped pulses in the anomalous dispersion 

regime was numerically and analytically investigated. There, the authors 

found that the wave collapse could be either hastened or postponed, 

depending on the type of temporal phase modulation. 

In the normal-dispersion regime and negligible diffraction (plane- 

wave approximation), the interaction of the dispersion and the 

nonlinearity leads to a monotonic pulse spreading as seen in fig. (3.2a). 

As we discussed briefly in the previous chapter, however, the inclusion of 

the diffractive term when d « 1 can lead to a modest degree of localized 

pulse compression. We see this in fig. (3.3a) where we plot the pulse 

width wTo (FWHM) at the beam center % = 0, normalized to its input 

value, as a function of propagation distance for a range of dispersion 

strengths. This effect can be understood by recalling that higher-order (N > 

1) spatial solitons [see fig. (3.2b)] undergo periodic beam narrowing (and a 

corresponding increase in intensity) and that the distance to the first 

minimum decreases as N increases. In the non-dispersive case (d = 0), an 

input pulse with N > 1 can be viewed as a continuous series of spatial 

solitons ranging from zeroth-order at the wings of the pulse to order N at 
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(a) N = 3 Soliton 

(b) N = 3 Broadening 

Figure (3.2) The results of one-dimensional simulations showing the two 
types of behaviors described by the NSE for a self-focusing nonlinearity. 
For an input Gaussian field with N = 3 we have (a) the evolution through 
compression, splitting and recovery of a bright spatial soliton and (b) the 
monotonic broadening of a pulse in the normal dispersion regime. 
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its center. Since the center has the highest order, it will spatially narrow at 

a shorter distance than the wings. As a result, the pulse appears 

compressed because the center has become more intense while the wings 

have remained virtually unchanged. As we saw in the previous chapter, 

when normal dispersion interacts with a self-focusing nonlinearity (n2 > 

0), the effect is to spread power from the peak of the pulse to the wings. 

For weak dispersion (d = 0.1) this effect is minimal compared to the spatial 

soliton effects; thus the compression is strongest. As the strength of the 

dispersion is increased, the effect becomes more important, until at d = 1, a 

large nonlinearity (N = 5) is required to achieve even a minimal (3%) 

reduction in pulse width [fig. (3.3b)] at the beam center. 

When we view the entire beam by integrating over £, before 

measuring the pulse width we find that if d > 0 the average pulse width 

increases and if d < 0 the pulse is compressed provided I N2/d I > 1. This is 

precisely the result obtained in the previous chapter for the one- 

dimensional case described by the one-dimensional temporal NSE, 

. 9ux      sgn(ß2) 32ux j        = s— _ _ Sgn(n2) Nx
2 I ux 12ux. (3.3) 

However, spatio-temporal coupling still plays a role in the field behavior. 

The spatial self-focusing dominates the field behavior initially, creating 

the large peak intensity and localized pulse compression of fig. (3.3a). The 

large peak intensity creates a large nonlinearity-induced phase curvature 

which fuels the pulse broadening. Consequently, the more dominant the 

initial self-focusing, the broader the pulse will be at large £. To understand 

the influence of spatio-temporal coupling, we should plot the pulse width 
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dispersion regime depends on both the amount of dispersion and strength 
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strength of the dispersion is increased, and (b) for d = 1, a strong 
nonlinearity (N = 5) is required to compress the pulse below its input 
width. 
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as a function of dispersion length for a constant value of N2/d. Thus in 

fig. (3.4a), where we plot the spatially averaged pulse width, w?, as a 

function of C,' = C,d for two dispersion strengths (d = 0.1,1) and I N2/d I = 16, 

we see that the pulse is broader at t,' = 0.4 for the d = 1 case because the 

spatial self-focusing is initially ten times stronger than in the d = 0.1 case. 

Similarly, a strong initial dispersion which reduces the peak field strength 

quickly will in turn reduce the strength of the spatial self-focüsing. 

Referring to fig. (3.4b) where we plot the temporally-averaged beam width, 

w^, normalized to its input value for N = 3 and a range of dispersion 

strengths we see that as the strength of the dispersion is increased, the 

overall beam narrowing influence of the self-focusing medium is first 

reduced before increasing again. The reason for this is that the strength of 

the nonlinear pulse broadening depends on N2/d while the distance over 

which its effects become important is proportional to d, consequently the 

beam-broadening influence of the dispersion reaches a minimum at 

approximately d = 0.5. 

We can further exploit the spatio-temporal coupling with spatial 

phase modulation and either enhance or suppress the pulse compression. 

As seen in fig. (3.5a), where we plot wTo as a function of £, the degree of 

localized pulse compression for a given nonlinearity can be either 

increased or decreased depending on the type of lens used to modulate the 

beam. A focusing lens aids the field compressive action of the self- 

focusing nonlinearity and hence the localized pulse compression is 

increased. A diverging lens has the opposite effect. Note that with the f = 

1 focusing lens the N = 3 field can be compressed more than the N = 4 field 

that has passed through an f = -1 lens, thus the degree of maximum local 

compression is not determined only by the nonlinearity.   Hence, with the 
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Figure (3.4) The interplay of spatial-self-focusing and dispersive pulse 
broadening is shown. In (a) for I N2/d I = 16 the integrated pulse width as a 
function of dispersion length the stronger self-focusing (for d = 1) 
eventually creates a broader pulse. In (b) for N = 3 increasing the strength 
of the dispersion first enhances (d = 0.5) the self-focusing and then 
saturates it so that for d = 1 the self-focusing is actually weaker. 
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Figure (3.5) The influence of spatial phase modulation on the temporal 
behavior is shown for d = 0.5 and two different nonlinearities.   In (a) the 
plot of the pulse width at t, = 0 shows that depending on the lens, the 
localized compression can be either enhanced or compressed with spatial 
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enhance the integrated-pulse broadening. 
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Figure (3.6) A simple filtering scheme for pulse compression. The pulses 
pass through a lens and enter a nonlinear medium. The action of the 
nonlinear medium compresses the pulse but only at the beam center. The 
slit selects the center of the beam and thus the transmitted pulse is 
compressed. 

spatial phase modulation, localized pulse compression can occur over a 

wide range of nonlinearities where it would not occur at all in its absence. 

However, even with a large modulation amplitude and a weak positive 

dispersion (d = 0.1), there is still no spatially averaged pulse compression. 

In fig. (3.5b), we see that the effect of the modulation on the spatially- 

integrated pulse width, wT, is as expected from the discussion in the 

preceding paragraph. Whatever enhances (reduces) wxo for small C, will 

reduce (enhance) wT at large C,. 

From a practical standpoint, it would be useful to be able to 

capitalize on this localized pulse compression. The most obvious way is 

the simple filtering scheme illustrated in fig. (3.6).    Placing a spatial 
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Figure (3.7) The shape in time of a pulse transmitted by the filtering 
arrangement of fig.  (3.6) compared to the input pulse shape.    The 
parameters are N=3, £ = 0.33, d = 0.1 and chosen to correspond to the point 
of maximum pulse compression observed in fig. (3.3a). The pulse width is 
reduced to 78% of its initial value. 
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aperture or slit at the distance of minimum local pulse width could 

effectively compress the pulse by selecting that portion of the field that is 

temporally narrow. The results of such a filter are illustrated in fig. (3.7) 

where we plot the pulse transmitted by a slit placed at C, = 0.33 (the point of 

minimum wto) for the case of an input Gaussian beam with dispersion 

parameter d = 0.1 and N = 3 at input. When compared to the spatially- 

integrated input field (dashed line) we see that there is indeed significant 

pulse compression. We illustrate the drawbacks of such a compression 

scheme by plotting the instantaneous phase of the field after it has 

propagated to £ = 0.33 in fig. (3.8). There are two important points to note 

about fig. (3.8).    First, the spatial curvature of the phase is quite large and 
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Figure (3.8)  The instantaneous phase of the field arriving at the slit in figs. 
(3.6-7). The contours are equally spaced between -2rc and 2K. Note the 
steep spatial and temporal phase curvatures of that portion of the field 
that is incident on the slit. 

indicates that the pulse once through the slit will spatially diverge quite 

rapidly. Moreover, the spatial curvature of the phase depends on x as well, 

thus time-dependent collection optics would be required to re-collimate 

the beam. This also brings up the second point: the temporal phase 

curvature of the center of field in fig. (3.8) is also quite large and hence, as 

we saw in chapter 2, transmission through a normally dispersive medium 

(such as the type of which many lenses are made) will result in rapid 

temporal broadening. Nonetheless, it is conceivable that with 

anomalously dispersive lenses following the slit the arrangement 

illustrated in fig. (3.6) could be used to compress pulses into a somewhat 

collimated beam. We will see in the next chapter that there is a simpler 

arrangement for compressing pulses using a nonlinear medium and a slit. 
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However, in both cases it is important to note that the compression occurs 

in spite of the dispersion rather than as a direct result of it as in the 

anomalous dispersion case. 

3.3 Self-Defocusing Nonlinearity 

A self-defocusing nonlinear medium is one in which the index of 

refraction of the material decreases as the intensity of the optical field 

increases. In the self-defocusing case with the plane-wave approximation, 

the roles of the two dispersion regimes are reversed. The nonlinearity 

now works with anomalous dispersion and the pulse broadens exactly as it 

does in the normal-dispersion regime of a self-focusing medium [fig. 

(3.2a)]. Conversely, the normal-dispersion regime with a defocusing 

nonlinearity supports temporal solitons [fig. (3.2b)]. The picture becomes 

more interesting when we include diffraction. In the anomalous 

dispersion case, diffraction and dispersion work together to broaden the 

field in both dimensions. As illustrated in fig. (3.9a), for small C, the pulse 

at the beam center broadens more quickly than in the one-dimensional 

(plane wave) case. But, as we see in fig. (3.9b) since this reduces the 

strength of the nonlinearity, the effect for large £ is a more slowly 

broadening spatially-averaged pulse. Spatial phase modulation in this 

case can slow the rate of pulse broadening by broadening the beam 

spatially (a perhaps undesirable result) effectively reducing the peak power 

and thus the nonlinearity induced temporal phase curvature which is 

what broadens the pulse. 

In the absence of diffraction, the effect of normal dispersion 

interacting with the defocusing nonlinearity is to compress the pulse 
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Figure (3.9) In the anomalous dispersion regime with a self-defocusing 
nonlinearity the pulse and beam broaden monotonically. In (a) including 
diffraction in the model is seen to initially slightly increase the pulse 
width at the beam center, while in (b) the effect of diffraction on the 
spatially integrated pulse width is the opposite: the rate of broadening is 
decreased. 
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[fig. (3.2b)], the compression factor getting larger as the nonlinearity is 

increased. Similarly, cw simulations show that the effect of diffraction 

interacting with the nonlinearity is to increase the rate of beam 

broadening. It is therefore not surprising that when the diffractive effects 

of a waveguide are included with a defocusing nonlinearity, the result is a 

more moderate pulse compre'ssion (rather than a wave collapse) as seen in 

fig. (3.10a). The reason for this is that although the dispersion and the 

nonlinearity are acting to bring energy in from the temporal wings of the 

field, the diffraction is using the nonlinearity to move energy out to the 

spatial wings thereby reducing the peak field strength and thus the pulse 

compression. The self-defocusing-induced beam spreading can be 

counteracted by imposing a focusing spatial phase curvature on the input 

field which the diffraction must overcome before it can reduce the peak 

power. Thus, because of the spatio-temporal coupling we are again able to 

enhance (or reduce) the pulse compression with spatial phase modulation. 

As seen in fig. (3.10b), with a very tight focus such as f = 0.5 we can achieve 

even greater pulse compression than that obtained without diffraction. 

Alternatively, we may eliminate the pulse compression with a very strong 

diverging lens. 

Another interesting aspect of the spatio-temporal coupling 

occurring in planar waveguides is the counterintuitive result that as the 

strength of the defocusing nonlinearity is increased, the spatial width of 

the field at the peak of the pulse can be reduced (the beam can be focused) 

as evidenced by the data in figs. (3.11). In fig. (3.11a) we plot the beam 

width (FWHM) at the pulse peak w^o normalized to its input value as a 

function of the propagation distance for d = 2 and a range of beam 

intensities.   We see that except for the N = 2 case, there is a secondary 
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Figure (3.10) In the normal dispersion regime with a self-defocusing 
nonlinearity the pulse compresses while the beam broadens. In (a) the 
effect of including diffractive effects on the spatially-integrated pulse is to 
reduce the broadening, while in (b) spatial phase modulation is employed 
to enhance the pulse-broadening. 
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minimum in w^o which gets deeper as the strength of the nonlinearity is 

increased. Were we to plot the analogous parameter for the temporal 

FWHM at the beam center, we would find that the (spatial) secondary 

minima occur at approximately the same position as the point of 

maximum temporal compression. Of course for d = 2 and N = 2 there is 

no temporal compression because the distance over which the temporal 

compression would occur in the absence of spatial effects is larger than the 

distance necessary for the nonlinearity-induced spatial phase curvature to 

become significant, as a result, there is no secondary minimum in £o 

either. However, since the distance to the point of maximum pulse 

compression is proportional to 1/N2 as the nonlinearity is increased the 

temporal compression soon dominates the spatial defocusing and the 

localized minima occur. 

The dependence of the spatial width on the pulse compression takes 

an interesting turn when we consider the effect of increasing dispersion as 

in fig. (3.11b). Here, we again plot the beam width at the pulse peak w^o as 

a function of propagation distance, but for a constant nonlinearity (N = 4) 

and dispersion parameters ranging from 0 to 10. We again see the 

secondary minima associated with the point of maximum pulse 

compression. Since the distance to the point of maximum temporal 

compression is roughly proportional to d, and this is also the distance over 

which self-defocusing must act to spread the field, one might expect the 

minimum w^o to decrease as the strength of the dispersion increases. But, 

since the maximum pulse compression increases as N2/d, the temporal 

compression weakens as the strength of the dispersion is increased. 

Therefore, as we see in fig. (3.11b), the minimum w^o actually occurs at 

about d = 5 where the pulse is compressed quickly and strongly enough to 
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Figure (3.11) To show the impact of the N and d parameters, the width 
(FWHM) of the spatial intensity distribution through the center of the 
pulse (x = 0) normalized to its input value is plotted as a function of 
propagation distance. In (a) the effect of increasing the strength of the 
nonlinearity is to increase the localized spatial narrowing, while in (b) the 
dispersion-induced enhancement of the localized narrowing saturates 
near d = 5. 
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Figure (3.12) Temporal phase modulation can be used to control the beam 
width in a self-defocusing medium.   In (a) an upchirp (C > 0) is seen to 
reduce the localized beam narrowing occurring at x = 0, while a downchirp 
(C < 0) is seen to enhance it. In (b) the effect of chirp on the time- 
integrated beam width is such that an upchirp leads to a slower beam 
broadening while a down chirp increases the beam width. In an 
anomalously dispersive medium the effects of the upchirp and downchirp 
would be reversed. 



66 

dominate the self-defocusing.   This is also the dispersion for which the 

beam is broadest at large C,. 

By the same reasoning, a temporal phase modulation (frequency 

chirp) which will enhance (suppress) the pulse compression will also 

enhance (suppress) the localized beam narrowing at small C,. This 

behavior is shown in fig. (3.12a) where we plot the normalized beam 

width at the pulse peak w^o for N = 3 and a range of chirp parameters, C = 

-5 to 5. As before, when we observe the effect of modulation on the 

temporally-integrated beam width at large C, we see that the effect of the 

spatio-temporal coupling on the field behavior is the opposite of that 

observed at the pulse peak for small £. In fig. (3.12b) we plot time- 

integrated beam width, w^ for the same parameters as in fig. (3.12a) and we 

see that at large C, the effect of positive chirp is to reduce the influence of 

self-defocusing, while the effect of negative chirp is to enhance it. In 

neither case, however, does the modulation come close to compensating 

for the influence of the nonlinearity on the beam width. 

3.4 Pulse Propagation in Bulk Media 

Although the reduced dimensionality of eqn. (3.1) results in much 

less computationally intensive simulations, many practical applications 

require an understanding of pulse propagation in bulk media. In the 

absence of confining structures (waveguides or fibers) the equation which 

describes optical pulse propagation in nonlinear dispersive media is the 

three-dimensional NSE, eqn. (2.32), 
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du       1 ( d2     d2 \ 
i + 

ac     21 a^2   an2 
d 92 

V"^     "'i  y 

u + ~ —u - sgn(ri2) N2 I u 12u. (3.4) 

In this form eqn. (3.4) implies a symmetry in the two transverse spatial 

coordinates, £ and r|, by normalizing them with respect to the assumed 

input beam width, a. This symmetry may be broken with an input spatial 

dependence of the field that is non-symmetric in £, and T) [e.g. u(£,r|,T,0) = 

exp(-£2/2)exp(-r|2/4)f(T)]. However, our focus here is on extending the 

understanding gleaned from the earlier results of this chapter to the three 

dimensional case. Consequently, our discussion will concern the effects of 

the added dimension rather than the subtleties associated with elliptical 

beam propagation.28 

We already have some information on two-dimensional spatial 

self-focusing and self-defocusing. The form of the NSE describing these 

two phenomena in the dispersionless limit is 

a u ( a2    a2 A 
i + 

ac     21 a^2   an2 u - sgn(n2) N2 I u I 2u. (3.5) 

This equation is isomorphic to eqn. (3.1) for d < 0 (anomalous dispersion) 

thus our earlier two-dimensional results for the anomalous dispersion 

regime also describe spatial self-focusing and self-defocusing in bulk 

media. The self-focusing of beams in bulk media leads to wave collapse as 

does the propagation of pulses in the anomalous dispersion regime in self- 

focusing planar waveguides. In the self-defocusing case illustrated by fig. 

(3.9), we saw that the second dimension had the effect of enhancing the 

nonlinear broadening of the beam. The question we really seek to answer 

is:    how does dispersion effect the propagation of pulses in nonlinear 
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Figure (3.13) The results of propagation in bulk media are compared to 
those of lesser dimensionality for a self-focusing nonlinearity. In (a) the 
normal dispersion regime the second dimension is dispersion which 
spreads the field energy which leads to a broader beam than in the ID case, 
while the third dimension is diffraction which works with the 
nonlinearity to compress the beam making the field spatially narrower 
again. In (b) anomalously dispersive media the dispersion and the 
diffraction both work to contract the field energy leading to a more rapid 
wave collapse as the dimensionality is increased. 
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media? As before the answer depends on the type of dispersion and the 

sign of the nonlinear index. 

In figs. (3.13) we seek to distinguish the behavior of pulses 

propagating in bulk self-focusing media from those propagating in media 

of lower dimensionality. In this as well as the next plot the ID case refers 

to cw propagation in a planar waveguide, the 2D case refers to pulse 

propagation in the presence of dispersion in a planar waveguide and the 

3D case refers to pulse propagation in bulk media. In the normal 

dispersion regime [fig. (3.13a)] the dispersion reacts to the nonlinear index 

in a manner opposite to that of diffraction in that it spreads energy away 

from the center of the field. Thus the difference in the ID and 2D cases, a 

reduced narrowing of the beam, is because the inclusion of dispersion 

reduces the peak field strength which in turn reduces the nonlinear phase 

accumulation. Adding the third dimension increases the beam narrowing 

because the third dimension is diffractive which, when combined with a 

self-focusing nonlinearity, provides another mechanism for energy 

concentration. In the anomalous case the dispersion also provides a 

mechanism for field compression hence addition of the second and then 

third dimension [fig. (3.13b)] both increase the beam narrowing and lead to 

a more rapid wave collapse. 

For a self-defocusing nonlinearity the roles of the two dispersion 

regimes are reversed in the sense that now the anomalous dispersion 

works to broaden the field and the normal dispersion works to compress 

it. We illustrate the two cases in figs. (3.14). In normally dispersive media 

[fig(3.14a)] the addition of the temporal dimension (the 2D case) results in 

an initially more compressed field which, because it results in a higher 

peak intensity and thus higher nonlinear phase curvature, leads to a 
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Figure (3.14) For a self-defocusing nonlinearity the third dimension 
provides another avenue to deplete the strength of the nonlinearity. In (a) 
the normal dispersion regime the temporal compression enhances the 
broadening in the 2D case while in the 3D case the field is initially 
broadening faster spatially than temporally which quickly reduces the 
nonlinear contribution to the beam size. In (a) the anomalous case all 
dimensions work to broaden the field which leads to broader beams at 
small £ and smaller beams at large C, as the dimensionality is increased. 
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greater broadening than the ID case. In the 3D case the temporal 

compression has the effect of spatially flattening the field so that the rate of 

broadening is even less than in the ID case. For the case of anomalous 

dispersion [fig. (3.14b)] the three dimensions all provide broadening 

mechanisms thus as the dimensionality is increased the initial broadening 

of the field increases. As a result the intensity at the center of the field 

drops so rapidly that the nonlinear contribution to the phase 

accumulation soon becomes negligible. This leads to the somewhat 

counterintuitive result that as the dimensionality is increased the 

broadening of the beam is reduced at large £. 

3.5 Conclusions 

In this chapter we have presented an overview of the effects of 

spatio-temporal coupling on the behavior of ultrashort pulses traveling in 

nonlinear planar optical waveguides. We have seen that in a waveguide 

with n2 > 0 and ß2 > 0, a strong nonlinearity can bring energy in from the 

spatial wings of the field faster than the normal dispersion can move it to 

the temporal wings, thus making a localized pulse compression possible 

in the normal dispersion regime. This initial compression at the center of 

the beam, however creates an enhanced pulse broadening at larger 

propagation distances. Further, since the initial compression is driven by 

spatial self-focusing, a focusing spatial "phase modulation will enhance 

both the initial compression and eventual pulse broadening occurring at 

large C,. Conversely, a defocusing spatial phase modulation will reduce 

both the initial compression and the later broadening. We have also seen 

that with n2 < 0 and ß2 > 0 a strong nonlinearity can bring energy in from 
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the temporal wings faster than the diffraction can spread it to the spatial 

wings, making a localized beam narrowing in a self-defocusing medium 

possible. This initial narrowing at the peak of the pulse fuels an even 

greater self-defocusing at large distances which may be enhanced or 

reduced with temporal phase modulation (frequency chirp). In both cases 

the mechanism is the same: a strong compressive effect initially 

overpowers a broadening effect which in turn strengthens the eventual 

broadening occurring at larger propagation distances. 

There are a variety of materials and devices in which nonlinearity- 

induced spatio-temporal coupling plays an important role. This coupling 

will also be important in materials which exhibit Kerr-like nonlinearities 

such as the resonant nonlinearities of semiconductors and semiconductor- 

doped glasses. As discussed in chapter 1, spatio-temporal coupling is 

behind the self-mode-locking29"31 of the new generation of ultrafast solid- 

state lasers (TKAI2O3, Cr:LiSrAlF6 etc.) and further developments in this 

area necessarily require a clear understanding of this mechanism. A 

proposed ultrafast pulse-shaping technique also exploits the spatio- 

temporal coupling provided by the Kerr nonlinearity. Another 

application where spatio-temporal coupling should be important is in Z- 

scan measurements of the nonlinearity of dispersive materials using 

ultrashort pulses, particularly for thicker samples. Both of these 

techniques will be discussed in the chapters to follow. 
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Chapter 4 

Spatiotemporal Coupling in 
Spatial Soliton Beam Steering 

4.1 Background 

In both the spatial and temporal domains, the nonlinear 

Schrödinger equation (NSE) has long been a useful tool in describing the 

behavior of optical fields in nonlinear dispersive media. In recent years 

the NSE has proven useful in describing some of the new innovations in 

beam steering.1"7'11"15 One technique uses spatial intensity modulation of 

a second beam to induce a temporal prism in the nonlinear medium 

which then deflects the beam.1 Others have employed single beams with 

asymmetric power profiles which resulted in self-bending on 

propagation.2"4 Also, both bright5'6 and dark7 spatial solitons have been 

suggested as tools for creating steerable optical waveguides in nonlinear 

media. There are also a variety of techniques for steering beams in linear 

media. Some recent innovations include microlens arrays,8 integrated 

gratings,9 and photorefractive holograms.10 

The results we discuss here have their beginnings in the work of 

Stentz et al.11 In their experiment, quasi-cw (100 ns) pulses from a dye 

laser were tuned to the defocusing side of the sodium D2 resonance. A 

pump-probe arrangement was then used to steer the probe pulses by 

exploiting the phase curvature created by cross-phase modulation from 

the pump beam propagating in the nonlinear medium. They showed that 

the presence of the pump beam altered the position of the probe beam by 
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several beam widths after propagating through the medium. A similar 

result was achieved by Barthelemy and co-workers12 who used 30 ps 

pulses shaped into a highly elliptical beam to produce spatial solitons in a 

CS2 cell. To stabilize the solitons, they propagated two beams of equal 

intensity at a small angle (0.0532 rad) and discovered that the position of 

the two beams in the far-field was different by as much as 0.61 mrad from 

that expected from simple linear propagation. Moreover, the deflection 

was peak-intensity dependent so they were able to shorten their pulses by a 

factor of five by employing a slit in the far-field to spatially filter the beam. 

Later, a group in Sofia13 showed that a pump-probe arrangement could be 

used as an extension of this technique to shape pulses when both the 

pump and probe beam are pulsed. Because the deflection via cross-phase 

modulation is dependent on the power of the pump beam, when the 

pump beam is pulsed the angle of deflection of the probe is nonuniform 

in time. A slit in the far-field is then used to shape the probe pulse by 

selecting only that portion of the pulse that is of interest. 

The technique discussed here employs a sinusoidal spatial phase 

modulation of the beam entering a nonlinear medium as depicted in fig. 

(4.1).14'15 Spatial phase modulation splits the input beam into multiple 

sub-beams while the nonlinear medium traps several of the sub-beams 

into a spatial soliton in such a way that most of the beam power appears in 

a narrow beam whose direction can be controlled by changes in the 

modulation parameters. Moreover, because of the nonlinear cross-phase- 

modulation among the sub-beams, the direction of the steered soliton 

depends on the input power of the beam. Thus, when the steered beam is 

pulsed, we find that spatial filtering with a slit provides a mechanism for 

pulse shaping in a manner analogous to that achieved by the authors12'13 
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Input Pulse 
Modulator       Aperture 

Compressed 

Pulse 

Phase Modulation: <|)(x) = (J>osin( 27tpxx + 5) 

Figure (4.1) The beam steering and pulse shaping apparatus we are 
discussing is similar to the one proposed in chapter 3. A beam of pulses 
passes through a sinusoidal phase grating prior to entering a nonlinear 
medium. At the exit of the medium a slit is positioned to select that 
portion of the field that is of interest. 

discussed above. We first study the dynamics of cw beam steering with 

one-dimensional simulations, then look at the influence of 

spatiotemporal coupling on the situation by simulating the steering of 

pulsed beams. 

4.2 CW Beam Steering 

We focus first on the case of spatially one-dimensional beam 

steering, i.e. beam steering in nonlinear planar waveguides. The spatial 

one-dimensional NSE, eqn. (2.46) is solved for a phase-modulated 

Gaussian input beam having an input spatial profile, 
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u(tO) = exp(- ^2/2) exp[i 4>©]. (4.1) 

For the case of sinusoidal phase modulation, §(£) has the form, 

(|>ß) = <t>osin(2jipS + 8), (4.2) 

where <t>o is the amplitude of the modulation, p is the spatial modulation 

frequency, and 8 is a constant phase shift. In our normalized coordinates, 

the p = opx where px is the actual modulation frequency of the system we 

are attempting to model and a is the width of the input beam in non- 

normalized coordinates. The parameters of the physical system depicted 

in fig. (4.1) also determine the modulation amplitude through <\>o = 

4rcAnL A, where L the thickness of the modulator and An the amplitude of 

its index variation. When the modulator is thin enough that phase- 

matching considerations are unimportant we may treat the effect of the 

modulation as a simple multiplicative phase factor as in eqn. (4.1). This 

process is known as Raman-Nath scattering.16 

By using a standard Bessel-function expansion of the modulation 

term,16 we see that phase modulation breaks up the input beam into 

multiple sub-beams propagating at different angles, 

oo 

u&O) = exp(- ^2/2) £ Jm((|>0)exp[im(27ü p$ + 8)]. (4.3) 
-00 

Here Jm^o) is the m01 order Bessel function of the first kind evaluated at 

§Q. With the expression for the input field in this form it is clear that the 

amplitude of each sub-beam is determined through the modulation 
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amplitude tyo and that the steering angles are determined from the 

modulation frequency p. Thus our numerical simulations attempt to 

model the interaction and evolution of these initially intersecting sub- 

beams as they propagate through a Kerr medium. We show that with the 

proper choice of modulation parameters we can steer most of the power 

into a single direction. 

4.2.1 Linear Beam Steering 

As with our discussion of self-phase modulation and solitons in 

Chapter 2, in order to fully understand the effect of the nonlinearity on the 

field behavior it is important to first understand the field behavior in its 

absence. We begin by looking at the evolution of just one of the beamlets 

in the summation of eqn. (4.3). At the entrance of the modulated beam 

into the medium, the qth beamlet is described by 

uqß,0) = Jq(<to)exp(- $2/2)exp(i 27tpqJ;) exp(i q5), (4.4) 

(q is an integer).   The field behavior is governed by the one-dimensional 

spatial NSE, eqn. (2.46), which for linear evolution (N « 0) becomes 

•flu        132u „ a lat-Sip- (45) 

Eqn. (4.5) can be solved with the initial condition of eqn. (4.4) with the 

Fourier transform method.  The solution is, 
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/c r.    Jq(<t>o)exp(iq8) 
Uq&O = M    . ^    exp 

exp 

(£ - 27tpqQ2- 

2(1+ C2)   . 
expr 2d H2) J 

(4.6) 

Eqn. (4.6) describes a wave propagating at an angle 0q = arctan(27tpq) with 

respect to the original propagation direction. Thus, after propagating a 

distance C, the beamlet still has a Gaussian distribution, but it is centered at 

£ = 2rcpqC and broadened to "V 1 + £2 times its original width. In other 

words, the modulation frequency, p, determines the steering angle of the 

beamlet. In order for the paraxial approximation (with which the NSE 

was derived) to remain valid we will choose p < 1. From both eqn. (4.6) 

and eqn. (4.3) we can see that the amount of power initially in a sub-beam 

also depends critically on the modulation amplitude, §o, through the 

factor Jq(())o). Indeed, for <|>o < 1, there are only five (q = 0, ± 1, ± 2) beamlets 

with any significant power. But the ideal choice of modulation depth is <t>o 

= 2.405, the first zero of Jo- For this choice of modulation depth, phase 

modulation leaves no power in the central, undeflected portion of the 

beam and hence all of the power in the original beam is steered into 

beamlets moving away from the original propagation direction. For 

higher modulation amplitudes, not only will some power creep back into 

the central sub-beam, but more power will leak into the higher-order sub- 

beams at the wider deflection angles. For low modulation amplitudes, the 

effect of the modulation is merely to shed some of the power from the 

central sub-beam. 

The absence of power in the q = 0 beamlet (for §o = 2.405) does not, 

however, imply that the input beam is steered off-axis. In figs. (4.2), we see 
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(a) <5= 0 

(b) ö= -n/2 

•<_ 

(c)   (5=   7T 

Figure (4.2) To show the effect of the modulation phase shift 8 we plot the 
intensity of a modulated beam as a function of £ and £ for an N = 1 
Gaussian input field and the modulation parameters of eqn. (4.2) given by 
% = 2.405 and p = 0.2. With (a) 8 = 0 the bulk of the beam power is steered 
to £ > 0; (b) 8 = 7i/2 the beam remains symmetric with respect to the 
original propagation direction; (c) 8 = ±7t the beam is steered to £ < 0. 
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the effects of the modulation phase shift, 8, on the beam steering. The 

resultant beam can still be centered at £, = 0 even with <t>o = 2.405 provided 5 

= ± Ti/2. It would appear that the role of the modulation phase shift, 8, is 

more subtle than that of the modulation amplitude or frequency. At first 

glance, 8 merely appears as a relative phase factor for each beamlet. The 

different phases of the beamlets, however, ultimately determine the 

direction of power flow. As shown in fig. (4.2b), for 8 = 0 all the beamlets 

have the same phase, but because J-q(<|>o) = ("l)q JqMo) (for integral q > 0) 

only the beamlets steered to £ > 0 (q > 0) are in phase, while the beamlets 

steered to £ < 0 have alternating sign and thus interfere destructively. As a 

result most of the input beam power is steered to £ > 0. Conversely, when 

8 = ± 7t as in fig. (4.2c) the situation is reversed and much of the power is 

steered to £ < 0. This behavior can be understood by referring to fig. (4.3) 

where we plot the input field with the input phase modulation on the 

same horizontal scale for 8 = 7i/2 and % for the modulation parameters 

used to create figs. (4.2). When 8 = ± 7c/2 the phase modulation is nearly 

equivalent to placing a lens in the beam path, as it produces a nearly 

quadratic variation of the phase front. By contrast, for the phase shift 8 = 0 

or 7i, the phase modulation is nearly linear and therefore nearly 

equivalent to placing a prism in the beam path, resulting in beam 

deflection. 

Perhaps the most important aspect of linear beam steering in terms 

of its influence on the nonlinear beam steering problem is the overlap of 

the sub-beams. Returning to eqn. (4.6) we can obtain an estimate of the 

overlap distance. If we define the sub-beams as overlapped provided the 

peak of adjacent sub-beams are separated by less than twice the 1/e2 

halfwidth of the beamlets, then this is equivalent to requiring, 



84 

ULP 

CD 
W 
CO 

3.0   - 

1.0  - 

■1.0   ■ 

-3.0 

—« 1— • 

  5 = 0      ■ 
- (a) --- 8 = 71/2 ' 
»          ^"«v ,^^   s" V                                              f ' 

■ A      \ <   y 
\                       / / \      \ /    / * \                   ' /   \      \ '    /  ^ \                 / 

/    \       ) '     /   * \               / L      \ '     /     * \            /           ■ 
\ '     /      * \       /         L 
\ 
\ \ 

/     / 
i     j x         \    '         / \         \  /         /- 

\ 
\ 

\ / x     V     / ■ 
\ 

S 
A 

i 

\/V : 
-5.0 

Space, £ 
5.0 

Figure (4.3) Spatial phase modulation function for the parameters of fig. 
(4.2) on the same horizontal scale as the Gaussian input field. For 8 = 0 the 
phase modulation varies nearly linearly across much of the beam, while 
for 5 = 7i/2 the phase modulation is nearly quadratic. 
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C<(7c2p2-l)-l/2 (4.7) 

for overlap. Notice that when p < TT
1
, this condition cannot be met which 

simply means that sub-beams broaden faster than they diverge and hence 

are always overlapped. Consequently small modulation frequencies do 

not truly separate the input beam into series of sub-beams as suggested by 

eqn. (4.3). The result is that most of the power of the beam steered with 

such a modulation frequency in a linear medium is contained in a central 

peak with oscillatory wings as seen in figs. (4.2). Contrary to what occurs 

in a linear medium, a nonlinear medium may either enhance or suppress 

the broadening of the sub-beams, hence changing the distance over which 

the sub-beams overlap. More importantly however, the nonlinearity also 

provides a mechanism for the sub-beams to interact, consequently the 

overlap of the sub-beams has an enormous influence on the quality, shape 

and even power of a beam steered in a nonlinear medium. The behavior 

of the deflected beam as it propagates in a nonlinear medium is the topic 

of the next section. 

4.2.2 Nonlinear Beam Steering 

When the peak power of the incident beam is such that N = 0.1 or 

higher, eqn. (4.5) is no longer adequate for describing the field behavior 

and we must return to eqn. (2.46), 

du    _192u 
^ =-2^-sgn(n2)N2 lu|2U/ (4.8) 
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(a) N = 0 

(b) N = 1 

Figure (4.4) To show the effect of a nonlinearity on the beam steering we 
plot the intensity of a beam steered with modulation parameters 00 = 2.405, 
p = 0.2 and 5 = 0 for several different intensities. For (a) N = 0 we see the 
steered beam diverges; (b) N = 1 the divergence of the steered beam is 
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suppressed; (c) N = 2 the steered beam forms a fundamental spatial soliton 
which does not diverge as it propagates beyond the initial overlap region; 
(d) N = 3 the phase modulation creates two spatial solitons steered to £ > 0 
via soliton dragging. 
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and numerical simulations to study the field behavior. In fig. (4.4) we see 

the effect of a self-focusing nonlinear medium on Raman-Nath beam 

steering. Fig. (4.4) compares the beam evolution in a nonlinear medium 

for several values of N (or peak intensity). As seen in fig. (4.4a), for low 

powers the steered beam diverges on propagation since the medium is 

nearly linear. But as the power is increased for figs. (4.4b-d), the primary 

part of the beam exhibits soliton propagation, whereas the remaining low- 

power sections of the beam merely diverge. At still higher powers, as in 

fig. (4.4d), a secondary steered spatial soliton is formed. 

To determine the value of N for which the steered beam propagates 

as a soliton, a clearer understanding of the dynamics is necessary. One 

might naively think that the soliton condition is satisfied only whenever 

the amplitude of the beamlet with the greatest power exceeds that required 

to form a soliton. With this assumption and the modulation parameters 

in fig. (4.4) we would estimate the soliton condition for the first sub-beam 

to be, N > 0.5/Ji(2.405) = 0.96. Unfortunately, this neglects the nonlinear 

interaction of the overlapping sub-beams. It is possible to obtain 

information about the field behavior using analytical methods. Cao et 

al.15 used some assumptions about the shape of the field and exploited the 

conservation laws associated with the NSE to obtain, 

N2> 
(V2-V^/W) 

2   C(d<\> 
l-2(ed)2 + -pj^jexp(-x2)dx (4.9) 

as a condition for soliton propagation with an arbitrary phase modulation 

$(x). Here W is the width of the region within which it is assumed the 

beam energy is confined and 8d is the beam deflection angle.  For W » 1 
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and  a  sinusoidal phase  modulation such as  is proposed  here,  this 

condition becomes,15 

N2> -^{1 + 47t2p2(t>o2 [1 + cos(28)exp(-47r2p2) - 2 cos25 exp(-2rc2p2)}. (4.10) 

Note the strong dependence of this soliton condition on the modulation 

frequency and thus the overlap of the sub-beams. It is also important to 

note however, that this is a condition for soliton formation for the entire 

field, not just one particular sub-beam. Indeed the derivation of this 

condition, as well as an estimate for the steering angle and the optimum 

modulation frequency are all obtained15 without reference to the sub- 

beams described by eqn. (4.3). The analytical methods employed in ref. 15 

are useful because they produce such results as eqns. (4.9) and (4.10) yet 

limited because they do not produce explicit solutions. For more 

information on the behavior of the steered sub-beams we must resort to 

our intuition and numerical simulations. 

An important insight into the dynamics of the overlapping sub- 

beams comes from the paper of Stentz et al.11 in which was plotted the 

instantaneous nonlinear phase shift and the resulting contribution to the 

transverse wave vector due to the presence of a Gaussian beam in a self- 

defocusing nonlinear medium. In fig. (4.5) we reproduce the plot for a 

self-focusing nonlinearity such as we model here and we see that for 2; < 0 

there is a positive contribution to the transverse momentum from the 

nonlinear phase and a negative contribution for £ > 0. The key point is 

that the presence of a beam changes the transverse momentum of any 

beam passing through it in such a fashion that the second beam is steered 

closer to the direction of the first and vice-versa.   Thus after the initial 
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Figure (4.5) The overlapping sub-beams influence one another through 
cross phase modulation. Here we plot the (solid line) instantaneous 
nonlinear phase shift due to the presence of a Gaussian beam in a self- 
focusing nonlinear medium and the (dashed line) contribution to the 
transverse momentum that results from such a phase shift. 

phase modulation provided by the modulator, the interacting sub-beams 

begin to steer one another. The second way in which the sub-beams 

interact is through power transfer. By definition, a spatial soliton will not 

lose power during a collision with another soliton. However, during the 

initial interaction phase described here, the sub-beams have neither the 

required shape nor power to be true solitons. Consequently, dispersive 

wave coupling leads to a transfer of power among the sub-beams. The 

analogy of this type of sub-beam interaction to temporal soliton trapping is 

summarized concisely by the authors of ref. 15: "Just as the Kerr 

nonlinearity can negate the modal dispersion between the fast and slow 

modes and fuse two subpulses propagating along the fast and the slow axes 
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of a birefringent fiber to form a single solitary wave (so-called soliton 

trapping), the same nonlinearity can also negate the spatial dispersion (of 

diffraction) between several sub-beams. The physical meaning of this 

analogy is that it is possible to divert power from various sub-beams and 

form a single spatial soliton." 

In the preceding discussion we described how the medium 

nonlinearity causes the interaction among the overlapping sub-beams. As 

shown in figs. (4.4) the presence of the nonlinearity can also significantly 

affect the quality of the steered beam, changing it from a broad, dispersing 

beam in the linear case to a more confined distribution as the power is 

increased.  A more subtle effect of increasing the nonlinearity is that it can 
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Figure (4.6)  The steering angle of the peaks of the beam are dependent on 
the strength of the nonlinearity.  We plot the intensity distribution at £ = 1 
for a modulated beam and nonlinearities N = 0,1,2, and 3. 
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change the steering angles of the spatial solitons generated by the 

interaction. This is simply because the magnitude of the nonlinear phase 

contribution, and hence the contribution to the transverse momentum [as 

in fig. (4.5)] of one sub-beam to another passing through it, increases with 

the strength of the nonlinearity. This affect is not noticeable using the 

methods of ref. 15 simply because the results therein apply to the entire 

field, whereas the effect we are about to discuss concerns the behavior of 

only parts of the field. In figs. (4.6-7) we demonstrate the change in 

steering angle with increasing nonlinearity by plotting in fig. (4.6) the 

intensity as a function of £ of steered beams after propagating one 

diffraction length (C, = 1) and in fig. (4.7) we plot the £ position of the peaks 

at C, - 1 as a function of N2 for a large range of nonlinearities.   Several 
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Figure (4.7)  The shape of the beam and position of its peaks are intensity 
dependent.  We plot the position of the peaks of the modulated beam at C, 
- 1 as a function of N. 
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observations can be made from this data. First, the lateral position of the 

peak of the primary steered beam increases slowly with N. Second, the 

secondary peak position increases quite rapidly as the strength of the 

nonlinearity increases and the position of the tertiary peak also changes 

rapidly. These dramatic changes in steered beam direction as the 

nonlinearity is increased are a result of cross phase modulation among the 

sub-beams discussed above. 

Another interesting feature of nonlinear beam steering is the 

transfer of power among the beamlets. When the intensities of fig. (4.6) 

are integrated to obtain the power carried in each of the peaks we find that 

there is a change in the power carried by each peak as well. In fig. (4.8) we 

plot the normalized power carried in each of these peaks under the same 
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I    I    I    I 
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■  i  i  ■ 
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Figure (4.8)    The power carried in each of the peaks created by the 
modulation changes as the nonlinearity changes because of the changing 
strength of the dispersive wave coupling.   The power steered to % > 0 
(upper curve) remains roughly constant. 
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conditions as in fig. (4.7). One interesting feature is that the primary beam 

power decreases immediately with increasing N, while the secondary 

beam power increases immediately with N, reaches a maximum then 

begins a slow decay. Yet the total power deflected to £ > 0 is roughly 

constant (the fluctuations arise as the sub-beams cross the £ = 0 axis and so 

contribute to the integral without actually being steered off-axis). It is 

interesting to note that the position of the center of the beam <£>, also a 

measure of the steering angle,15 given by 

JcJu&Q^dt, 

<£> = — , (4.10) 
oo 

Jlu(tC)!2^ 
-oo 

remains unchanged regardless of the value of N. Thus energy is passed 

from sub-beam to sub-beam during the initial interaction in such a 

fashion that although the shapes and peak intensities of the sub-beams 

may change, the steering angle remains the same. This is merely the 

conservation of momentum15 and can be employed as a check on the 

accuracy of the simulations. 

Since the secondary and tertiary peaks initially arise on the \ < 0 

side of the initial propagation direction, questions arise as to what extent 

these peaks are related to the sub-beams of eqn. (4.3). To resolve the 

questions we must recall that, with these modulation parameters, in the 

linear regime the sub-beams are always overlapped. Indeed, even in the 

far-field intensity distribution shown in fig. (4.9) the individual sub-beams 
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Figure (4.9)  Far-field intensity distribution of a phase modulated Gaussian 
beam after propagating in a linear medium. 

cannot be distinguished. Nonetheless the multi-peaked structure of 

fig. (4.9) is a result of their interference. Moreover, we can see that this 

structure consists of one large peak on the 6 < 0 side and two smaller ones 

on the 9 > 0 side. The primary peak is due to the constructive interference 

of all the sub-beams of positive order [m > 0 in eqn. (4.4)]. The two largest 

peaks on the 8 > 0 side are due essentially to the interference among the 

m= -1,-2 and -3 sub-beams. It is these three peaks, a result of the 

interference among the sub-beams not the sub-beams themselves, that 

evolve into the steered beams described by figs. (4.6)-(4.8). As the 

nonlinearity is increased the dispersive wave coupling among those 

interfering beamlets allows the peaks to coalesce into spatial solitons. 
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4.3 Pulsed Beam Steering and Pulse Shaping 

The study of the behavior of pulsed optical fields can be broken into 

regimes based on the width of the pulse and the dispersion of the 

medium. For an 800-nm, 10-ps pulse in fused silica, the dispersion length 

is on the order of 2500 meters. For beam widths much less than 0.5 cm 

such pulses may be treated as dispersionless without introducing 

significant error due to pulse broadening or reshaping. For shorter pulses, 

the dispersion term of eqn. (2.50) must be included in the analysis. 

4.3.1 The Dispersionless Limit 

Now that we understand cw beam steering, the special features of 

pulsed beam steering become more accessible. In the dispersionless limit 

eqn. (4.8) describes the behavior of a two-dimensional field without the 

longitudinal transfer of energy within the pulse. Consequently the results 

of figs. (4.6)-(4.9) can provide us with a complete understanding of pulse 

behavior in this regime. In this limit a pulse may be regarded as a 

continuous series of cw beams of varying intensity. Then according to figs. 

(4.6-7) the center (x = 0) of the pulse should get deflected further than its 

tails but because of the energy transfer among sub-beams the center should 

also get flattened somewhat. As discussed earlier, it is difficult to concisely 

depict the evolution of a two-dimensional field graphically. In fig. (4.10) 

we plot the two-dimensional analog to fig. (4.6) for the N = 3 case. In this 

contour plot, the contours are logarithmically spaced such that each 

successive contour represents an intensity two times higher than the 

previous contour with the outermost contour corresponding to an 
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Figure (4.10)   A contour plot of the intensity distribution of an initially 
Gaussian two-dimensional (^ and x) field after spatial phase modulation 
and propagation to £ = 1 in a nonlinear medium such that N = 3 at the 
pulse peak at L, = 0 demonstrates the steering of pulsed beams in the 
dispersionless [d = 0 in eqn. (4.11)] limit. The power dependence of the 
steering angle results in crescent-shaped peaks. 

intensity of 0.01. This is the intensity distribution as a function of £ and x 

at C, = 1.0 of a pulse that is initially Gaussian in both space and time. We 

see that the center of the pulse is indeed deflected further than the tails 

thus producing a crescent-shaped structure in both of the large spatial 

peaks. The energy transfer also flattens the peak of the pulse as expected 

but the primary mechanism for shaping the pulse is the power 

dependence of the deflection angle. 

If the field of fig. (4.10) were spatially integrated we would find that 

the initial Gaussian temporal energy distribution would be retained 

simply because there is no dispersion in the model to change it, hence 
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there is no actual change in pulse shape when the entire field is 

considered. However, as in the work of Barthelemy12 and Dreischuh,13 

spatial filtering of the output beam can be used to select that portion of the 

field in which there is pulse shaping. In figs. (4.11-13) we show the effects 

on pulse shape produced by deploying a slit at several % positions at a 

propagation distance of C, = 1.0 for the field in fig. (4.10). We choose a slit 

width equal to 0.2 of the incident beam width. Concentrating first on the 

primary deflected peak we see in fig (4.11a) that centering the slit at £, = 2.9 

results in the modestly flattened and compressed pulse discussed 

previously. Depending on the slit width, the pulse width may be reduced 

to 70% of its initial value with this set of parameters. As we move the slit 

inward to £ = 2.75 we find a pulse with a two peaked structure which 

grows more pronounced until we get the split pulse of fig. (4.11d) at t, = 2.3. 

Moreover each of the sub-pulses of fig. (4.lid) are shorter than the input 

pulse by nearly a factor of 3. The higher compression is due to the fact that 

the change in deflection angle of the primary peak changes more rapidly at 

lower powers as indicated in fig. (4.7) thus the slit selects a smaller range of 

intensities. Unfortunately the compression of the pulse is obtained at the 

cost of a considerable reduction in the pulse energy. The energy in each of 

the split pulses is approximately 1/11 of the energy in the pulse obtained 

by filtering at the peak of the field at t, = 2.9. 

If we next focus on the effect of spatially filtering the secondary 

spatial peak of fig. (4.10), we find that a greater pulse compression is 

possible than that obtained by filtering the primary peak. When the slit is 

positioned at £ = 1.35 as in fig. (4.12a) the pulsewidth coming out of the slit 

is just 42% of the pulsewidth incident on the nonlinear medium.   This is 
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Figure (4.11) A slit may be used to select a portion of the field in fig. (4.10) 
and so produce pulse shaping. The spatially integrated pulse shape of the 
entire field, normalized so the peak intensity is unity, is shown for 
comparison with the pulse shape transmitted through a slit at t, = 1, also 
normalized.   With a slit placed at   (a) £ = 2.9 the transmitted pulse is 
slightly compressed and flattened; (b) £ = 2.75 the slit now selects a two- 
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again the result of the stronger dependence on intensity of the deflection 

angle of the secondary beam as indicated by the steeper slope of the lower 

curve of fig. (4.7). Although this is an improvement over the 

compression observed in the primary peak, much of the input field energy 

remains in the primary peak where it is weakly compressed. Also, with 

the lower powers the field is less spatially confined and as a result the 

spatial spreading of the peak obscures the splitting of the pulse. But, as 

with the primary peak, the split pulses are compressed further still to less 

than 1/3 of the input pulse width at £ = 0.1. 

The results of filtering the field of fig. (4.10) are summarized in fig. 

(4.13) where we plot the temporal FWHM of the field transmitted through 

the slit. In cases where the filtering results in a split pulse, the program 

automatically calculates the width of the peak at the earliest (most 

negative) x. The jumps in the graph occur as the field transmitted by the 

slit evolves from a single, splitting pulse to two separate pulses. There are 

six distinct features in fig. (4.13) corresponding to the different structures 

in the field. The slowly increasing curve from t, -3 to -0.8 is a result of 

the slit transmitting the weak tertiary peak discussed previously. The 

pulses transmitted by the slit in this region have such little energy as to be 

of no immediate practical interest. As the slit passes through the region 

from t, -0.7 to 0.3 it transmits the split pulses produced by the curvature 

and tails of the secondary peak. It is here that the maximum pulse 

compression is achieved as indicated by the minimum at \ = 0.1. The next 

region, from £, 0.5 to 1.6, corresponds to transmission of the unsplit 

section of the secondary peak. The split and unsplit portions of the 

primary peak are transmitted by the slit in the regions £    1.7 to 2.5 and 
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Figure (4.12) Spatially filtering the secondary peak of fig. (4.10) produces 
similar results to those of fig. (4.11). With a slit placed at (a) £ = 1.35 the 
pulse is compressed by more than a factor of 2; (b) £ = the pulse begins to 



103 

0.8   - 

CO c 

^  0.4 

0.0 

0.8 

CO c 
CD 

^  0.4 

0.0 

split; (c) £ = the splitting is more pronounced; (d) £ = 0.1 the split pulses 
transmitted are compressed by more than a factor of three from the input 
field. 
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Figure (4.13) We plot the temporal FWHM of the pulse as a function of 
slit position. The slit is 0.2 times as wide as the input field. As the pulse 
changes from a single to split pulse there are jumps in the FWHM. 

h,   2.6 to 3.2 respectively.   The extreme temporal edges of the input field 

are so weak that the self-focusing nonlinearity does little to alter their 

behavior from that described by linear beam steering.   Consequently, the 

diffraction of the field results in a very weak pair of pulses transmitted 

through the slit in the region £ >3.4. 

Because the pulse compression of the lower power peak is greater, 

the question arises if it might be more useful to explore spatially filtering a 

less intense beam and so take advantage of the steeply sloped portion of 

the upper curve in fig. (4.7). The results of such efforts are shown in fig. 

(4.14) where we plot the logarithmic intensity countours in \ and x at C, = 

1.0 for N = 2 and the same modulation parameters as in figs. (4.11-13).  As 
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Figure (4.14) A contour plot of the intensity distribution of an initially 
Gaussian  two-dimensional field after spatial phase modulation and 
propagation to C, = 1 in a nonlinear medium such that N = 2 at the pulse 
peak at C, = 0 demonstrates the steering of pulsed beams in the 
dispersionless [d = 0 in eqn. (4.11)] limit. The power dependence of the 
steering of pulsed beams is observed by comparison with fig. (4.10). 

expected from the one-dimensional results, the lower nonlinearity results 

in a weaker deflection of the secondary peak and more energy in the 

primary peak. The crescent shape of each peak is also noticeable. In figs. 

(4.15-16) we see that the effects of propagation and filtering on this field are 

not as pronounced as in the N = 3 case. In particular, the compression of 

the transmitted pulse is reduced in nearly all cases and the splitting of the 

pulse is considerably obscured as well. Both effects occur because the lower 

energy spatial solitons are not as spatially confined as those produced by 

phase modulating an N = 3 beam. The energy at the temporal center of 

the primary peak may be steered at a greater angle on average than the 
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to split; (c) 2; = 1.25 the pulse is completely split and the two pulses are 40% 
of the input width. 

energy in the temporal wings of the peak, but the spatial spreading due to 

the weaker nonlinearity causes energy from the temporal center to leak 

through the slit when it is centered in a position designed to capture the 

split pulse of the tails and vice versa. The former effect results in the 

splitting being less pronounced, as in fig. (4.15b-c), and the latter results in 

the center of the pulse being less compressed, as in fig. (4.15a), than in the 

N = 3 case. These results are summarized in fig. (4.16) where we plot the 

FWHM of the pulse transmitted by the slit. The tertiary peak is deflected 

towards % < -3 consequently its behavior does not affect fig. (4.16), the 

remaining five regions correspond to those of fig. (4.13) with differences in 

position and size due to the weaker nonlinearity in this simulation. The 

results of figs. (4.10-16) are consistent with the general conclusion that 
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Figure (4.16) We plot the temporal FWHM of the transmitted pulse as a 
function of slit position. The pulse is produced by spatially filtering the 
field of fig. (4.14) 

greater pulse shaping and shortening is possible as the strength of the 

nonlinearity is increased. 

There are several other parameters affecting pulse shape that are 

worthy of investigation in the beam steering experiment. The slit width 

affects the results by blurring the lines between the regions of figs. (4.13) 

and (4.16) as it is increased. A larger slit width also generally transmits a 

broader pulse. The distance of propagation in the nonlinear medium also 

plays an important role. A greater propagation distance affects the 

transmitted pulse in two ways. First, since the intensity determines the 

steering angle, the greater the propagation distance the smaller range of 

intensities transmitted by a given slit position and width. We illustrate 

this in fig. (4.17) where we plot the field of fig. (4.10) after it has propagated 



109 

CD 
E 

4-r 

-2 - 

Figure (4.17)  The field of fig. (4.10) (N = 3, <|>o = 2.405, p = 0.2, 8 = 0) after 
propagating to C, = 2. The different steering angles produced by the 
interaction of the sub-beams after the reaction has had a more dramatic 
effect on the field structure than in fig. (4.10). 

an additional diffraction length. Note that the curvature of the peaks, the 

secondary peak in particular, are now much more pronounced. Filtering 

of this field with the same slit used to produce fig. (4.13) produces fig. (4.18) 

which indicates a general improvement in pulse compression over the 

range of slit positions. There is again a trade-off with less energy being 

transmitted in proportion to the improved compression. The second 

effect of the increased propagation distance is more subtle and only applies 

to higher intensity (N > 3) fields. Spatial solitons of greater than 

fundamental (N > 3/2) order undergo oscillations in their spatial width as 

they propagate. When the peak intensity of the input pulse is such that 

some portion of the primary steered peak is intense enough to support 
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Figure (4.18) The temporal FWHM of the field produced by filtering the 
field of fig. (4.17) with a slit, as a function of slit position. The result is a 
greater pulse compression throughout when compared to fig. (4.13). 

greater than fundamental order solitons, the oscillations in the spatial 

width of the temporal center of the primary steered peak will produce 

nonuniform changes in the pulse width transmitted by a slit placed near 

the primary peak. These oscillations are responsible for the fluctuations 

near ^ = 2.0 in fig. (4.13) as well as the ripples visible near ^ = 6 in fig. (4.18). 

The improvement of the pulse compression with increased 

nonlinear propagation speaks to the reliability of this scheme versus one 

using only the nonlinear medium to shape the pulse (as discussed in 

chapter 3). This is further borne out by an investigation of the 

instantaneous optical phase of the wave as it propagates. In fig. (4.19) we 

plot the phase of the wave of fig. (4.10).   There are several points to be 
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Figure (4.19) The phase distribution of the field of fig. (4.10). The range of 
the function has been extended from (-71,7t) to (-2, 23) for the data shown 
here. The contours are equally spaced f radian apart. The discontinuities 
occur when the field of fig. (4.10) passes through zero. 

made about fig. (4.19). First, to improve readability the range of the phase 

has been extended to (-2, 23). Nonetheless there are still several 

discontinuities [at (£, T) = (0.9, ±1.2) e.g.] in the phase at the points where 

the field strength passes through zero. Second, although there are several 

regions with both large spatial and temporal phase curvatures, there are 

also several in which the spatial phase variation is nearly linear. If we 

plot the derivative of the phase with respect to position 5 along the line 

T = 0, as in fig. (4.20) we see that these regions which have nearly linear 

phase variation (9<|>/3!; « constant) coincide with some of the optimum slit 

positions for pulse compression. Moreover, if we repeat the process and 

plot 3<J)/3^ at several x positions, we find that there are regions of nearly 
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Figure (4.20)  To demonstrate the quality of the steered and filtered pulse 
we plot the spatial derivative of the phase, 3<t>/3£, at several values of x. 
Note that in the region near 2; = 2.9 the derivative is nearly constant at all 
values of x. 

linear spatial phase which do not change position significantly with local 

time, x. Thus, with this arrangement, no special (i.e. non-physical) 

collection optics are required to recollimate the beam after steering and 

compression. The pulses are, however, temporally phase modulated as 

indicated in fig. (4.21) which shows the phase of a pulse transmitted by a 

slit positioned at £ = 2.9 for the field of fig. (4.10). For a dispersionless 

medium, the transmitted pulse will always be upchirped so with the 

addition of a linear yet anomalously dispersive medium following the slit 

the pulses could be further compressed. 



1 13 

£   15.0 
-e- 
CD 
CO 
CO .c 

Q_ 

5.0 

■  ■  1  '  '  '  1  ■  '  '  1  '   '   '   1   ■   ■ 1 

■ • 
. « 

•     5 = 2.9 ■ 

■ ■ 

- - 

:   c=i.o     j 
a 

-      N = 3         / _ 

/ ' 
/ * 

^^r . 
■ 

■4.0 -2.0 0.0 
Time i 

2.0 4.0 

Figure (4.21)   The temporal phase distribution of a pulse transmitted by 
filtering the field of fig. (4.10) with a slit placed at "t, = 2.9.   The pulse is 
upchirped. 

The modulation parameters can also be expected to change the 

pulse shaping effects of the proposed arrangement. The influence of the 

modulation parameters on the pulse shaping is best understood by 

considering their influence on the sub-beams of the expansion of 

eqn. (4.3). As we showed in the discussion of linear beam steering, a 

smaller modulation frequency will result in greater overlap and thus 

greater interaction among the beamlets which should increase the 

dependence of the steering angle on the nonlinearity. But since the 

steered angle is smaller with the smaller frequencies, a greater propagation 

distance is required to take full advantage of the greater sub-beam 

interaction.   Conversely, a higher modulation frequency will result in a 
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weaker sub-beam interaction but a greater steered angle which in turn 

requires a smaller propagation distance for effective pulse shaping. 

Changes in the modulation amplitude have a related effect. A low 

modulation amplitude excites only a few sub-beams with small transverse 

momenta, which necessarily have a large percentage of the field power. 

The effect is similar to that produced by using a small modulation 

frequency. Conversely, large modulation amplitudes excite beamlets with 

larger transverse momenta thus directing the steered peaks at greater 

angles and producing a weaker interaction, all of which is similar to the 

effect produced by a higher modulation frequency. At present the 

complexities of the problem have frustrated attempts to arrive at an 

analytical determination of the optimum modulation parameters for 

pulse compression and shaping. Determination of the optimum 

parameters is then left to continued numerical exploration of the 

parameter space or laboratory experimentation. 

4.3.2 Pulsed Beam Steering with Dispersion 

The next issue to address is how the pulse behavior changes due to 

the presence of dispersion. Dispersion must be considered in the model 

when we are considering pulses less than 10 ps in beams narrower than a 

few millimeters. To describe pulsed beam steering in the presence of 

dispersion, we must resort to the two-dimensional NSE, eqn.(2.50), 

du       1  92        d 32 „ 
ldt =~2 a72U + 2 ^u-sgn(n2)N

2 lul2u. (4.11) 
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We can perhaps combine the understanding created in the previous 

section with that of Chapter 3 to predict the behavior of the optical field 

under these conditions. We expect that anomalous dispersion will 

enhance the pulse compression and pulse shaping somewhat while 

normal dispersion will suppress them. The most important issue is the 

extent of the change produced by the nonlinear spatiotemporal coupling. 

Cao et al.15 have also produced some interesting results for the behavior 

of the entire field when it is governed by this equation, however the 

clearest picture of the pulse/sub-beam dynamics comes from continued 

numerical simulations. 

The most illustrative way to investigate the influence of dispersion 

on the pulse shaping effects of Raman-Nath beam steering is to measure 

how a small amount perturbs the dispersionless results. As observed in 

chapter 3, two-dimensional pulse propagation in a self-focusing 

anomalously dispersive medium can lead to wave collapse. 

Consequently, when we model beam steering in this regime we are 

limited to either shorter propagation distances or very small amounts of 

anomalous dispersion. Conversely, a significant amount of normal 

dispersion interacting with a self-focusing nonlinearity leads to a rapid 

broadening of the pulse. The pulse-compression technique proposed here 

is not strong enough to overcome significant broadening. We will thus 

limit our discussion to regimes of pulse propagation best described as 

weakly dispersive, such that I d I < 0.5 in eqn. (2.50). 

In the previous section we demonstrated just how important the 

lateral transfer of energy can be to the temporal shape of the field. 

Although the dispersion is weak, working in concert with the 

nonlinearity, it provides a mechanism for the longitudinal transfer of 
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Figure (4.22) We illustrate the effect of dispersion on the pulse shaping 
with contour plots of the field at £ = 0.5 for an initially N = 2 input 
Gaussian field. In (a) we show the dispersionless limit for comparison to 
(b) the weakly normally dispersive case [d = 0.2 in eqn. (4.11)] and (c) the 
weakly anomalously dispersive case (d = -0.2). The compression is reduced 
in the former and enhanced in the latter. 
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energy within the wave in much the same fashion as the diffraction 

provides for lateral transfer. In figs. (4.22) we see how much stronger the 

influence of dispersion is on the pulse shape. In fig. (4.22a-c) we plot the 

intensity of the field as a function of % and x at C, = 0.5 for an initially 

Gaussian field with an input intensity such that N = 2 in eqn. (2.50) and 

dispersion parameters d = -0:2,0.0 and 0.2 respectively. As we might infer 

from chapter 3, in the normally dispersive case (d = 0.2) the pulse splitting 

is enhanced and in the anomalously dispersive case (d = -0.2) the pulse 

compression is enhanced. What is most astonishing about these plots is 

the degree to which this relatively weak dispersion qualitatively affects the 

outcome of the simulation. The quantitative differences are significant as 

well. In fig. (4.23) we plot the temporal FWHM as a function of slit 

position for the three cases in fig. (4.22) and two more intermediate cases 

(d = ± 0.1). We find that these results bear out our intuition. In the region 

£ = 0.7 to 1.7 the pulse compression is enhanced due to the anomalous 

dispersion and suppressed due to the normal dispersion. When the slit is 

positioned slightly closer to the initial propagation direction at £ = 0.7 to 

0.8, we find that the split pulses produced by spatial phase modulation and 

filtering will be roughly equal in duration for both types of media at this 

propagation distance. The compressive behavior of the primary peak is 

repeated in the secondary peak (selected by the slit positioned at £ = -0.6 to 

0.6) where again the pulses in the anomalous medium are more 

compressed than in the normal medium. The variation in pulse widths at 

this peak is much smaller than in the primary peak because the lower 

power leads to less nonlinear temporal compression (anomalous) or 

broadening (normal). 
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Figure (4.23) To quantify the effect of dispersion on the pulse compression 
we plot the temporal FWHM of the field transmitted by a slit as a function 
of slit position for the fields in fig. (4.23) and for the d = ± 0.1 cases as well. 
The compression is enhanced for the anomalous dispersion and the 
regions of pulse splitting are made broader by the normal dispersion. 

In figs. (4.24a-c) we repeat the above investigation at a higher 

nonlinearity and a weaker dispersion. The input field intensity is chosen 

such that N = 3 in eqn. (2.50) and the dispersion parameters are set to d = 

-0.05, 0.0 and 0.05 respectively. This weak dispersion is necessary because 

with a nonlinearity this high combined with the focusing influence of the 

spatial phase modulation the model breaks down in the anomalous 

dispersion regime due to wave collapse at propagation distances on the 

order C, = 0.5 for d > 0.1. But even with the weak dispersion used to obtain 

figs. (4.24a-c) we can observe significant qualitative differences in the field 

at £ = 0.5 based on the sign of the dispersion.    Again, the anomalous 
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Figure (4.24) To illustrate how the strength of the nonlinearity changes 
the influence of the spatiotemporal coupling on the pulse shaping we 
show contour plots of a Gaussian input field with an initial intensity such 
that N = 3 and dispersion parameters (a) d= -0.05, (b) d = 0 and (c) d = 0.05 
after propagating to C, = 0.5. 
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dispersion enhances and the normal dispersion suppresses the pulse 

compression in both the primary and secondary peaks of figs. (4.24). 

Moreover, the pulse splitting in the normal dispersion regime is more 

pronounced than in the anomalous dispersion regime. The latter point is 

more apparent in fig. (4.25) where we plot the FWHM of the pulse 

transmitted by a slit for the fields of figs. (4.24). We see that the split-pulse 

compression regime between £ = 1.0 and £ = 1.4 for the d = 0.05 case 

narrows for the d = 0.0 case and then disappears when d = -0.05. The 

reason may be inferred from figs. (4.24) but is apparent in fig. (4.26) where 

we plot the pulses transmitted by a slit at £ = 1.2 in the three cases. As we 

can see the compressed pulse at the primary spatial peak in the anomalous 

medium has broad enough spatial wings that they leak energy through the 

2.0 

x 
"■  1.0 
CD 

_CO 
13 

Q. 

0.0 

I        I        I        I 

d = -0.05 
d = 0.0 
d = 0.05 

j L 

-2 
Slit Position £ 

Figure (4.25) The temporal FWHM of the pulse produced by spatially 
filtering the fields of fig. (4.24) with a slit as a function of the slit position. 
The anomalous dispersion enhances and the normal dispersion reduces 
the pulse compression. 
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Figure (4.26) The pulses produced by spatially filtering the fields of 
fig. (4.24) with a slit at £ = 1.2 show the effect of dispersion on the pulse 
shaping. 

slit when it is positioned to capture only the split tails of the pulse. This 

leakage prevents a complete splitting of the pulse in the anomalous 

dispersion regime. In the normal dispersion regime, the nonlinear phase 

accumulation that would split the pulse in the absence of phase 

modulation moves energy from the temporal peak into the tails as it is 

deflected. These results are due to the fact that the normal dispersion 

works with the pulse splitting mechanism created by the spatial phase 

modulation and slit, whereas the anomalous dispersion works against it. 
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4.4 Experimental Considerations 

In order to translate an optical wave manipulation scheme, such as 

discussed in the preceding pages, from numerical simulations to 

laboratory verification, several issues need to be considered. First, we need 

to consider that in a laboratory there is no savings in experimentation 

time associated with beam steering in a waveguide or with elliptical beams 

versus experimentation in bulk media. Indeed, it is generally easier to not 

have to couple light in and out of a waveguide. Consequently, a question 

that needs to be addressed is: how will propagation in bulk media affect 

the beam steering and pulse shaping results discussed here? We can get 

some idea from our attempts to steer beams in the anomalous dispersion 

regime. The added dimension of self-focusing implies that the distance of 

propagation in the nonlinear medium needs to be shortened considerably 

in order to avoid catastrophic wave collapse. But the same forces driving 

the wave collapse also drive a stronger interaction of the sub-beams, 

consequently lengthy nonlinear propagation may not be required for 

effective beam steering and pulse shaping. We illustrate this with the 

results of a simulation of beam steering in bulk media in figs. (4.27) in the 

dispersionless limit. In fig. (4.27a) we plot the two-dimensional slice of the 

field through TJ = 0 after modulation in the ^-direction with the usual 

modulation parameters [i.e. <t>(£,r|,T) = 2.405 sin(0.2£)] and N = 3 at the input 

to the nonlinear medium and propagation to C, = 0.2. The collapse distance 

in this case is £c ~ 0.3, consequently the field at this point is dominated by 

two-dimensional self-focusing. A very compressed pulse could be 

obtained with a circular aperture centered at r\ = 0 and £ = 1.2, but the 

problems with the output spatial behavior due to the nonlinear phase 

accumulation discussed in chapter 3 are present as indicated by the far- 
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Figure (4.27) The results of a simulation of propagation in bulk media 
with the input intensity N = 3. (a)The intensity distribution of the field in 
the plane i\ = 0 after propagation to £ = 0.2. . The logarithmic contour 
lines are necessary in this case in order to be able to see even the secondary 
peak as the primary peak is very large due to the self-focusing in the n 
direction, (b) The far-field intensity distribution indicates the problems 
that arise due to spatial self-focusing. 
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Figure (4.28) Propagation in bulk media with an N = 2 input field, (a) The 
weaker nonlinearity results in a weaker pulse shaping, but (b) the far-field 
is better behaved. 



125 

field intensity distribution shown in fig. (4.27b). In order to have a 

manageable spatial phase distribution at the output of the medium, we 

must choose an input field weak enough that the two-dimensional spatial 

self-focusing does not dominate the field behavior, yet strong enough that 

the nonlinear sub-beam coupling can still play an important role. In figs. 

(4.28) we see the effects of steering a field with an input intensity such that 

N = 2. As we observed in the (spatially) one-dimensional simulations, the 

sub-beam coupling (and consequently the pulse shaping) is weaker here as 

indicated by the less-pronounced temporal curvature of the peaks in fig. 

(4.28a). Yet the spatial-self-focusing is no longer dominant at this power 

level as indicated by the well-defined peaks of the far-field intensity 

distribution shown in fig. (4.28b). 

The next issue to address is the light source. As an example let us 

compare the pulses from an actively modelocked Nd:YAG laser and those 

from a self-modelocked Ti:Sapphire as possible sources. A modelocked 

Nd:YAG laser may produce pulse of 60 ps duration with 60 |ij per pulse. 

For a collimated beam with a 100 \im diameter, the peak intensity would 

be on the order of 5xl010 W/cm2. Thus, for this field a nonlinear index of 

n2 = 2xl0"16 cm2/W would be required to produce an N = 1 input field. 

The effect of dispersion in this case would be negligible since this type of 

pulse propagating in glass would have a dispersion length of 180 km 

compared to 2.2 cm for the diffraction length. With a Ti:Sapphire pulse 

the numbers are somewhat different. Such a pulse typically has an energy 

of 5 nj and a duration of 30 fs for a peak power of 167 kW. Collimated into 

a 100 um beam it would require a nonlinear index n2 = 7xlO_16cm2/W to 

produce an N = 1 pulse. Further, in this case the pulse would have a 

dispersion length of 3 cm in glass, which means d = 0.95 for this field. 
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Although both lasers can produce sufficient intensity for the observation 

of these pulse shaping effects, the negligible dispersion associated with the 

Nd:YAG pulses make this laser the better choice. 

4.5 Conclusions 

In this chapter we have discussed the effects of sinusoidal spatial 

phase modulation on optical wave propagation in nonlinear dispersive 

media. We showed how this type of modulation breaks the input beam 

into a series of overlapping sub-beams. In the case of linear media we 

showed the effects of the various modulation parameters on the sub-beam 

behavior and we noted that there is a range of modulation frequencies for 

which the sub-beams always overlap. For this range of modulation 

frequencies the beam shape is a result of interference among the 

overlapping sub-beams rather than the sub-beams themselves. We then 

discussed beam steering in this modulation regime in nonlinear media. 

We showed that because of the nonlinearity the position of the peaks 

created by the sub-beam overlap is peak-intensity dependent. Thus when 

pulses are modulated, their deflection becomes time dependent. 

Employing a slit for filtering then allows us to shape the pulse. Thus the 

combination of spatial phase modulation, filtering and nonlinearity gives 

us some control over the time-domain behavior. Hence, we have 

spatiotemporal coupling even in the absence of dispersion. When we 

included dispersion in the simulations, we found that this coupling still 

exists but is much weaker than that provided by the dispersion interacting 

with the nonlinearity. We showed that for dispersion parameters I d I > 

0.1 the dispersive effects overwhelmed the pulse shaping influence of the 
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spatial phase modulation and filtering. Although the initial simulations 

were performed for a waveguide geometry, we found that simulations in 

bulk media produce new challenges. In particular, in order for this 

mechanism to be effective the intensity of the input field must be chosen 

carefully so as to avoid the problems due to spatial self-focusing. We also 

showed that because of the possible dominance of dispersive effects it 

would be more advisable to use pulses from a NdrYAG laser rather than 

those from a TirSapphire laser in this experiment. The large dispersive 

effects obtained with the ultrafast pulses (20-40 fs) coming from a 

TirSapphire laser are the subject of the next chapter. 
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Chapter 5 

Spatiotemporal Coupling in 
Z-scan Measurements  of Optical 

Nonlinearities 

5.1 Background 

Throughout this thesis we have been attempting to describe the 

unique behavior of ultrashort optical pulses in the presence of the Kerr 

nonlinearity, or intensity-dependent index of refraction. Quantitative 

experimental verification of any of the effects described in previous 

chapters necessarily includes an accurate measurement of the nonlinear 

index, n2, of the material in which the experiment is to be performed. 

Recently, the Z-scan measurement, a relatively simple technique for 

determining the nonlinear index of a material was introduced by Sheik- 

Bahae et al.1 The basic idea is to measure the change in the axial 

transmittance of an aperture in the far-field of a focusing Gaussian beam 

as the sample being measured is translated through the focus of the beam. 

For a sample thin enough that the beam does not reshape itself while in 

the sample, the difference in peak and minimum transmittance is linearly 

proportional to the nonlinear refractive index. 

Since its introduction, several modifications and improvements to 

the basic technique have been proposed and implemented by both the 

original authors1"5 and new workers6'11 in the field. The consequences of 

using non-Gaussian beams6'7 or thicker samples6'8 have been investigated 

and demonstrated by several workers.   The response time of   the optical 
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nonlinearity has been investigated using pump-probe Z-scans.4'9 Different 

beam polarizations have also been employed in the investigation of the 

anisotropy of the optical nonlinearity.3'12 The Z-scan technique has been 

employed in a number of papers as the primary method for characterizing 

both the nonlinear index and nonlinear absorption of a variety of 

materials ranging from semiconductor-doped13 and high-index glasses12 

to polymers,6 semiconductors12*15 and composite materials.6 Proper 

characterization of these materials requires that the dispersion of the 

nonlinear index be determined by measurements made at several 

wavelengths. Frequently the only available light source at a given 

wavelength consists of ultrashort pulses, in which case the linear index 

dispersion and the resultant nonlinear pulse reshaping must be 

considered. 

5.2 Theory 

The Z-scan apparatus is depicted in fig. (5.1). It consists essentially of 

a spatially Gaussian beam incident on a lens of focal length F. The beam is 

focused to a waist, wo, at which we define the zero of sample position. The 

typical practice is to measure the sample position in diffraction lengths of 

the focused beam, defining Z = z/zo where zo = 27two2A is the diffraction 

length of the beam with wavelength X. The "Z-scan" takes placed as the 

sample is scanned along the axis of the lens through the region about Z = 

0. A detector measures the power transmitted through an aperture in the 

far-field. When the sample is between the lens and the focus, the 

nonlinear refraction complements the focusing effects of the lens which 

results in a broader far-field and reduced transmission through the 
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Sample 

Figure (5.1) The Z-scan experiment is performed when a sample is 
translated through the focal region (in the 'Z' direction) of an intense 
beam of light. The effect of the nonlinear refraction in the sample is 
quantified by detecting the light transmitted through an aperture in the 
far-field with detector Dl. The effect of nonlinear absorption is quantified 
by measuring the total transmittance of the sample with detector D2. 
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Figure (5.2) A typical closed-aperture Z-scan signal as measured by detector 
Dl in fig. (5.1). With the sample on the lens-side (Z < 0) of the focus, the 
nonlinear refraction adds to the phase curvature of the beam, increasing 
the size of the beam in the far-field. When the sample is on the far side of 
the focus, the nonlinear refraction reduces the phase curvature of the 
beam, narrowing the far-field. 

aperture. On the far side of the focus the nonlinear refraction narrows the 

beam, increasing the transmission through the aperture producing the 

characteristic Z-scan signal depicted in fig. (5.2). For a self-defocusing 

nonlinearity the sample has the opposite effect and the behavior is 

reversed. For a sample with nonlinear absorption, we employ an open- 

aperture Z-scan to determine the nonlinear absorption coefficient, CX2- The 

effect of opening the aperture allows us to measure the total transmission 

of the sample as a function of its position. As the sample is translated 

along Z, the peak intensity of the beam goes through a maximum as does 
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Figure (5.3) A typical open-aperture Z-scan signal as measured by detector 
D2 in fig. (5.1). As the sample moves through the focus the intensity of 
the beam increases; thus the light lost due to nonlinear absorption 
increases as well, as a result the total power transmitted by the sample goes 
through a minimum at the focus. 

the amount of light lost due to nonlinear absorption. Consequently, the 

measured total transmittance of the sample goes through a minimum 

with the characteristic shape shown in fig. (5.3). Alternatively, both 

measurements may be made simultaneously with the aid of a beam 

splitter as depicted in fig. (5.1) where detector Dl reads the closed-aperture 

scan and detector D2 measures the open-aperture data. 
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5.2.1 Analytical Description 

One of the chief advantages of the Z-scan technique, as pointed out 

by Sheik-Bahae et al. in their original paper on the subject,1 is that the 

apparatus of fig. (5.1) is simple enough that an analytical description of the 

signal is possible provided a few simplifying assumptions are made.  They 

found that in order to obtain consistent measurements, generally it was 

sufficient to constrain the sample length L such that L < zo-   They 

postulated that if the sample is thin enough that the changes in the beam 

shape within the sample due to both diffraction and nonlinear refraction 

can be neglected, then the effect of the sample on the field can be treated as 

an instantaneous, spatially dependent phase shift.   The magnitude of the 

phase shift is dependent on sample position through the relation 

A*n(t) 
A0o(Z,t) = Y^|f . (5.1) 

Here the peak phase shift A4>o(t), as derived with the slowly varying 

envelope approximation (SVEA), is related to the nonlinear index, n2, 

peak intensity at the focus, Io(t), and wave number, k, via the relation 

A4>0(t) = k n2 Io(t) Leff (5.2) 

where Leff = [1 - exp(-ctoL)]/ao is the effective length of the sample and cto 

is the linear loss. The spatial dependence of the phase of the light exiting 

the sample is determined by the spatial dependence of the intensity. For a 

spatially Gaussian beam, the beam decomposition method of Weaire et 

al.16 is used to derive the intensity distribution at an aperture in the far- 

field.  The Z-scan signal for a given sample position is then calculated by 
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integrating the far-field intensity distribution so derived, over the area of 

the aperture. A typical result is shown in fig. (5.2). The most important 

features of the Z-scan signal are the peak and valley. From their positions 

relative to the focus we can immediately obtain the sign of n2. The 

authors of ref. 1 also noted that for a cubic nonlinearity the peak-valley 

separation is nearly constant and is given by 

Azp-v ~ 1.7 zo. (5.3) 

The magnitude of the nonlinearity is then obtained from the change in 

transmittance between the peak and the valley. For small phase 

distortions and small apertures, the change in transmittance is nearly 

linearly related to the peak axial phase shift 

ATp.v =0.406 lAOol, (5.4) 

where the transmittance is normalized so that when the sample is far 

from the focus the transmittance is one. Thus, once we have measured 

the peak to valley change in transmittance we can immediately obtain the 

magnitude of the nonlinearity as well, provided we know the thickness, 

absorption and linear index of the sample as well as the wavelength and 

intensity of the beam. In the case of pulsed beams, the intensity is not 

constant and it becomes necessary to determine the time-averaged index 

change based on assumptions about the response and decay times of the 

nonlinearity. 
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In the presence of nonlinear absorption, the total transmitted 

energy is not constant with respect to sample position.   The nonlinear 

absorption coefficient, ct2 is defined by the relation, 

a(I) = ao + 0C2l, (5.5) 

where a is the total absorption coefficient. With the aperture removed, 

the SVEA can be used to compute the total transmitted power as a 

function of sample position, 

ln[l + q0(Z,t)] 
r^,t; = riw exp^- aoL; 

where 

P(Z,t) = Pi(t) exp(- aoL)       qo(Zt) (5.7) 

,~.s    «2 Io(t) Leff 
q0(Z,t)=—1 + Z2 (5.8) 

and Pi(t) = 7ü wo2 Io(t)/2 is the input power. At large Z, the right-hand-side 

of eqn. (5.7) reduces to Pi(t)exp(-ocoL), thus we define our normalized open- 

aperture transmittance, Toa(Z) = P(Z,t)/Pi(t)exp(-ocoL). In an open-aperture 

Z-scan Toa(Z) is plotted, displaying the characteristic single-valley behavior 

shown in fig. (5.3). The depth of the valley can be quickly computed from 

eqn. (5.7) by setting Z = 0. It is useful to construct the conversion chart of 

fig. (5.4) based on eqn. (5.7) where we plot Toa(0) as a function of qo(0,0). 

For the pulsed case we assume a Gaussian pulse and integrate eqn. (5.7) in 

time. Once the effective length is computed and the beam intensity is 

measured fig. (5.4) can be used to quickly obtain c*2 for a given Toa(0). 
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Figure (5.4) The minimum normalized transmittance of an open-aperture 
Z-scan is dependent on the product of nonlinear loss, CC2, peak intensity, Io, 
and effective length, Leff in a logarithmic fashion. The reduced absorption 
in the pulsed case occurs because the pulse is less intense on average than 
a cw beam of the same peak intensity. 

Determining the nonlinear refraction in the presence of nonlinear 

absorption is more complicated. In the presence of nonlinear absorption, 

the SVEA gives the phase shift at the exit of the sample1 as 

kn2 
A<|>(Z,r,t)= — In [l + q(Z,r,t)] 

(X2 
(5.9) 

where q(Z,r,t) = 0.2 I(Z,r,t)Leff. A zeroth-order Hankel transform is used to 

derive a new more complicated expression for the power transmitted by 

the far-field aperture.1 Once the nonlinear absorption is determined from 

fig. (5.4), it can be used with eqn. (5.9) and the resulting far-field expression 
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to determine 112.  A simpler technique,1 although less accurate, is to divide 

the closed aperture Z-scan (with the background subtracted) by the open 

aperture Z-scan and treat the resulting data as a purely refractive Z-scan. 

This is accurate to within 10% provided qo(0,0) < 1 and cc2/2kn2 < 1. 

Using the expressions found in Ref. 1 for the field at the aperture, it 

is a relatively simple procedure to write a computer program to compute 

the Z-scan for a given beam shape, pulse shape and nonlinear index. Just 

as it is assumed the beam shape is unchanging due to nonlinear refraction 

or diffraction, it is also assumed that the pulse shape does not change due 

to nonlinear self-phase-modulation or dispersion. Although several 

authors6'7 have described methods to adapt the analysis for media thick 

enough to reshape the beam, none have discussed the effects of pulse 

reshaping in the sample. The criterion L < zo works well provided the 

sample dispersion length can be neglected relative to the diffraction 

length. However, as we have seen in chapter 3 and chapter 4 a modest 

amount of dispersion can significantly affect the beam shape over 

distances much less than the diffraction length. Unfortunately, in this 

case analytical solutions are difficult to obtain and we must return to 

numerical simulations. 

5.2.2 Numerical Simulations of Ultrashort Pulse Z-scans 

In order to simulate the Z-scan experiment as performed with 

beams of ultrashort pulses we adapt the code used to obtain the results of 

the previous chapters to fit the system described by fig. (5.1). In our 

normalized coordinates, an input Gaussian field is first spatially phase 

modulated, 
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U(5,TI,T,0) = exp 
(  Z? + TV* + T2 ^ 

exp [i<|»(^Tl)], (5.10) 

where the phase modulation is now quadratic or lens like such that 

<K£/n) = - (£2 + T|2)/2f with f = F/Ld is the focal length of the lens 

normalized via the diffraction length Ld of the incident beam. 

Propagation from the lens to the sample is through air which we can take 

to be linear and non-dispersive. The field at the sample is then obtained 

by solving the Helmholtz equation, 

3C _"2^2 + dn2y 
u (5.11) 

with the Fourier transform method.  The solution is simply, 

exp(-rV2) 
U(£,TI,T,C)= p—*—, ^fexpS 

[1+<1+?1 
2 

1 + 

1 + i 4^ 
(5.12) 

where £ is the distance of the sample beyond the lens. Rather than 

continue with this cumbersome formula, we note that the beam width 

reaches a minimum at £o = f/(l + f2) which is related to the incident beam 

width, c, by 

wo f 

a    Vl + f2 
(5.13a) 
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and this results in a new diffraction length, zo related to the diffraction 

length before the lens by 

q-TTP- (513b) 

respectively. Eqns. (5.13) are then used to obtain a new set of coordinates, 

normalized to the new beam width and diffraction length. In these 

coordinates, eqn. (5.12) can be rewritten, 

U(^TV,T,Z) = exp(-c2/2) j^—^r expj- ^-y-J- (j^ J |,       (5.14) 

where £' = £o/wo, if = T|a/wo and Z = (£ - £o)Ld/zo is the same Z used to 

describe the sample position in the Z-scan measurements. 

The field is propagated through the sample using the split-step 

Fourier method algorithm described in chapter 2. The field at the exit face 

of the sample, ue(£',T|'/t,Z) is then propagated a distance za to the aperture 

using the Fresnel diffraction formula, 

u(Una,T,Z) = ^^exp[i ^ ßa2 + na2)] 

oo   oo 

J J { UeßX/cZ) exp[i ± (£2 + n'2)]} exp[ - i £ (^ + H'TU)] d$ dn 
-oo -oo 

(5.15) 

which can be written as a Fourier transform of the field at the exit face. 

Thus this last step is performed with a FFT algorithm. The value of the 

detected pulse energy for a given sample position is then obtained by 
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integrating over all time and spatially over the aperture area. This process 

is repeated for many sample positions. Parameters such as sample 

thickness, aperture size, pulse duration, beam size, wavelength, linear and 

nonlinear index of refraction, and medium losses are read as input and 

translated into the normalized parameters and coordinates of the previous 

chapters. 

As the preceding discussion indicates, this code is more complicated 

than the generic propagation code we have been employing to this point. 

As a check on the accuracy of the results, the simulation was performed in 

the dispersionless approximation and compared to results obtained using 

the formulae of the previous section. When dispersion was included in 

the model, we used the invariance of the results with respect to grid and 

step size as the criterion for accuracy. As indicated by our discussion of the 

numerical model in chapter 2 and the difficulties associated with 

calculations involving three-dimensional fields due to the memory 

requirements, the simulation of a single pulsed Z-scan was extremely 

computationally intensive. Consequently, we would perform simulations 

designed to calculate the point in the Z-scan corresponding to the sample 

positioned exactly at the focus as an error check rather than an entire 

(much lengthier) Z-scan. This was done because the field is most intense 

with the sample positioned there and thus the resultant computation 

errors are largest there as well. Also, most of the work was performed 

simulating Z-scans with only one spatial dimension in order to get a 

qualitative understanding of the influence of spatiotemporal pulse 

reshaping on the n2 measurements. Moreover, the spatially one- 

dimensional Z-scans are verifiable in the laboratory by performing the 

measurements with an elliptical beam. 
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5.3 Numerical Experiments 

The goal of the numerical experiments was to establish a qualitative 

understanding of the effects which the spatiotemporal coupling induced 

pulse and beam shaping could have on the nonlinear refraction and 

absorption measurements obtained from a Z-scan experiment.   With an 

eye to the eventual laboratory verification of the results, the code was 

rewritten   to   translate   information   from   the   laboratory   into   the 

normalized parameters for which the code was originally designed. 

5.3.1 Nonlinear Refraction 

For the case of a purely refractive nonlinearity (no nonlinear 

absorption) the split-step Fourier algorithm did not need to be modified. 

But, because of the computationally intensive nature of the simulations, 

much of the work was done simulating spatially one-dimensional Z-scans. 

As in chapter 3, the spatially one-dimensional simulations still allow us to 

observe the spatiotemporal coupling and obtain a qualitative 

understanding of its influence on the measurement. With the eventual 

goal of experimental verification, we sought to explore the four regimes of 

propagation (defined by the signs of the dispersion and nonlinear index) to 

establish in which the effect was most noticeable. 

The affects of dispersion on the Z-scan signal in the four regimes in 

the weak nonlinearity limit is exhibited in fig. (5.5). Here we have 

performed a simulation of a Z-scan with one spatial dimension as we 

might obtain with light from the Ti:Sapphire system described below. The 

value of %@) = 2 x 10'13 and our incident pulse energy of 2 nj combine to 

give a peak nonlinear phase shift of 0.57 radians, with an effective 
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Figure (5.5) In the weak nonlinearity limit dispersive broadening has the 
effect of reducing the Z-scan measurement in both the normal and 
anomalous dispersion regimes for both types of nonlinearity. 
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N2 = 0.77 at the focus. The dispersion of the material and the pulse length 

are such that there is no nonlinear pulse compression, hence in both the 

anomalous and normal dispersion regimes the peak field strength is 

reduced by the dispersion. Thus in both regimes, the effect of the 

dispersion on the measurement is to reduce the change in transmittance 

and resultant measured value of %(3). Note that in the self-focusing case 

the normally dispersive medium gives a marginally smaller change in 

transmission than the anomalously dispersive case because what little 

temporal nonlinear phase is accumulated aids the pulse broadening in the 

normally dispersive medium and reduces it in the anomalously 

dispersive medium. The opposite effect with regard to dispersion type 

occurs in the self-defocusing medium. 

Given that linear dispersion can affect the Z-scan measurement, a 

natural question to ask is what role may be played by frequency chirp. We 

try to answer that question with fig. (5.6) where plot simulations under the 

same conditions as figs. (5.5) yet with a chirped input pulse. We define 

our chirp parameter C such that our normalized input field has the form 

ufoTi/cO) = expf - ^-y^ jexp( - iCx2) (5.16) 

As we can see in figs. (5.6) the effect of chirp can be quite dramatic. In the 

self-focusing case [fig. (5.6a)] a chirp pulsed such that C = 2 almost perfectly 

compensates for the dispersive broadening in the anomalous dispersion 

case. Moreover the chirp in this case results in an overestimate of yP)t the 

opposite of the error observed for an unchirped pulse. Conversely, the 

chirped pulse in the Z-scan of a normally dispersive self-focusing medium 
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Figure (5.6) In the presence of frequency chirp, pulse reshaping due to 
linear effects can dominate the Z-scan measurement for either type of 
nonlinearity. The error is dependent on the product of C and p2- 
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Figure (5.7) When the nonlinearity is strong enough that there is 
nonlinear pulse reshaping the sign of the error in the Z-scan depends on 
the type of dispersion in the material. 

results in an underestimation of %(3). In fig. (5.6b) we see that chirped 

pulses in the Z-scan of a self-defocusing medium also lead to misleading 

results such that the effects due to the chirp can either add to the errors 

due to dispersive broadening or negate them. 

The next issue to address is the effect of nonlinear spatiotemporal 

pulse reshaping which occurs when the nonlinear phase accumulated by 

the pulse is of the same order or greater as that described by the frequency 

chirp in fig. (5.6). For a simulation such that %@) = 10"11 esu the nonlinear 

pulse reshaping dominates the effect of the spatiotemporal coupling on 

the Z-scan measurement as shown in the simulations of fig. (5.7). Here 

the nonlinear pulse compression due to the anomalously dispersive 
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medium occurs so rapidly that Z-scan reads erroneously large, whereas the 

normal dispersion leads to a rapid pulse broadening which reduces the 

measured value of %&). Depending on the size of %(3) the error due to 

nonlinear spatiotemporal coupling may be even larger than that due to 

the dispersive reshaping of a chirped pulse. 

5.3.2 Nonlinear Absorption 

In order to determine the effects of spatiotemporal coupling on 

open-aperture Z-scans which are designed to measure the nonlinear 

absorption of a sample, it was first necessary to include nonlinear 

absorption in the model. The nonlinear absorption can be traced to the 

imaginary part of the nonlinear susceptibility, %&) but eqn. (5.10) gives a 

more intuitive representation for the nonlinear absorption coefficient, 0C2. 

With nonlinear absorption included in the model the NSE becomes, 

3u        If d2     32 ^      d 92 
itr=-2l^ + ^Ju + 2 5SU-(88n(n2)N2 + iNa2>lu,2u-  <5-17> 

where   Na is related to the nonlinear absorption coefficient, a2 of 

eqn. (5.10) via 

Na = —f $r (5.18) 

This added nonlinear term is included simply as a multiplicative factor in 

the nonlinear part of the split-step algorithm. The results of simulated 

spatially one-dimensional Z-scans with an open aperture are shown in 

fig. (5.8) for a self-focusing nonlinearity and the cases of normal and 
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Figure (5.8) In the weak nonlinearity limit both types of dispersion affect 
the open-aperture Z-scan measurement in a similar manner. The Z-scan 
for the normally dispersive medium (dot-dashed line) is invisible because 
it is laying on top of the anomalous medium Z-scan (solid line). 

anomalous dispersion. Here the parameters are identical to those of figs. 

(5.5) but with a nonlinear absorption coefficient chosen such that 

0C2 = 7 cm/GW. Results similar to that obtained for the closed-aperture 

case are observed here. In the absence of chirp and a weak nonlinearity 

both types of dispersion lead to pulse broadening and a diminished signal. 

When chirp is included in the model, the effect of the chirp is to enhance 

or reduce the measurement depending on whether or not the chirp 

broadens or compresses the pulse. The effect on the nonlinear absorption 

measurements of dispersive pulse broadening and increasing nonlinear 

pulse reshaping with peak power  is demonstrated in fig. (5.9).   Here we 
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Figure (5.9) For higher nonlinearities, the nonlinear pulse reshaping 
affects the open-aperture measurement in a manner dependent on the 
type of dispersion present in the material. 

reproduce the conversion chart of fig. (5.4) with points added 

corresponding to the results of three-dimensional simulations in 

anomalously (dark triangles) and normally (light squares) dispersive 

media. As in the closed-aperture case, the effect of the dispersion in both 

types of media at low powers is to reduce the open-aperture signal by 

reducing the peak power. As the pulse energy is increased the nonlinear 

pulse shaping begins to effect the results and the error due to pulse 

broadening is reduced in the anomalously dispersive medium and 

increased in the normally dispersive medium. For a less dispersive 

medium the effective temporal nonlinearity (Nx = N/yfd ) would be 

greater and the nonlinear pulse shaping effects would dominate at lower 
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powers causing the triangles to separate faster. The result would be 

different measured nonlinear absorption coefficients for different pulse 

energies. As in the closed aperture case, the pulse compression in the 

anomalous dispersion regime would lead to an enhanced signal while the 

pulse broadening in the normal dispersion regime would diminish the 

signal (assuming a self-focusing nonlinearity). 

5.4 Laboratory Experiments 

The Z-scan simulations discussed above have assumed a Gaussian 

beam of ultrashort pulses with a well-determined phase distribution 

incident on a highly dispersive nonlinear medium. In order to perform 

these experiments in the laboratory it is first necessary to acquire both a 

pulse source and highly dispersive nonlinear medium. The former was 

the greatest obstacle to experimental verification. 

5.4.1 The Pulse Source 

In fig. (5.10) is a schematic layout of the system used to generate the 

pulses employed in this experiment. The system is an Argon-ion laser 

pumped self-modelocked Ti:Sapphire laser with a prism-pair pulse 

compressor. The Argon pump beam is first focused by the lens LI, then 

enters the Ti:Sapphire cavity through the dichroic mirror Ml. The pump 

beam is absorbed by the crystal X. The mirrors Ml and M2 focus the 

intracavity beam into the crystal. The long arm of the cavity is composed 

primarily of the pair of prisms PI and P2 which were introduced to 

compensate for the gain and index dispersion in the crystal.   Both PI and 
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Figure (5.10) A schematic layout of the Argon-laser pumped Ti:Sapphire 
cavity used to generate the pulses in this experiment. The pump beam is 
focused by the lens, LI, into the crystal X. The folding mirrors, Ml and M2, 
focus the intracavity beam into the crystal and redirect the beam towards 
the output coupler, OC, and dispersive delay arm of the cavity 
respectively. The prisms in the dispersive delay arm, PI and P2, give the 
lower frequencies a longer optical path thus compensating for gain and 
material dispersion in the crystal. 
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P2 could be translated into the intracavity beam path to increase or 

decrease the overall dispersion in the cavity which had the effect of 

narrowing or broadening the pulse spectrum. The pulse spectrum as 

measured by a Digikrom 240/480 monochromator is shown in fig. (5.11). 

The spectrum shown here has a FWHM of 50 nm or 22.5 THz with a peak 

at 820 nm. The laser was capable of producing pulses with spectra as broad 

as 60 nm (~30 THZ), but it was difficult to achieve such spectra and long- 

term (~2 hours) stability simultaneously. The problems with stability 

stemmed primarily from environmental conditions, in particular the 

temperature of the pump laser cooling water and the crystal cooling water. 

The starting or ending of an experiment in another laboratory which had a 

770       790       810       830       850 
Wavelength (nm) 

870 

Figure (5.11)  The typical spectrum of the pulses produced by the laser in 
fig. (5.10) had a bandwidth of 50 nm (22.5 THz) centered at 820-830 nm. 
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laser on the same water line could change the state of the laser (We 

became accustomed to working around the "4:30 effect" so named because 

4:30 pm was typically the time several of the other lasers in the building 

were shut off every day and it was almost expected that our laser 

modelocking would be lost at this hour). In general, the narrower the 

spectrum the more stable the pulses but in order to witness strong 

dispersive effects the broadest spectrum possible was desired. Moreover, a 

broader spectrum made shorter pulses possible which lead to a higher 

possible peak power. The spectrum of fig. (5.11) represents the most 

reproducible compromise between stability and dispersion. We were able 

to produce this spectrum to within the measurement error (± 5 nm due to 

the noise from the photodetector) on a daily basis. 

The next criterion for determining the acceptability of the laser 

mode was the autocorrelation trace of the compressed pulses. The 

autocorrelator19 was the modified Michelson interferometer shown in 

fig. (5.12). The incoming pulse is split into the two arms of the 

interferometer by the beam splitter. The optical path of one arm is varied 

by moving the corner cube with a servo motor controlled by the signal 

from a function generator. The optical path difference of the two arms 

produces a time-delay, id, between the arrival of the two pulses at the 

microscope objective. The KD*P crystal and filter combination at the focus 

of the microscope objective result in a second-harmonic signal at the 

photodetector. The signal at the photodetector, s(td), was related19 to the 

intensity of the pulses via 
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Figure (5.12)  A modified Michelson interferometer is used as an intensity 
autocorrelator to characterize the pulses. 
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s(Td) =Ci 1 + 

2  J I(t)I(t - xd) dt 

J I(t)2 dt 

(5.19) 

where Ci is a normalization constant generally chosen such that s(id) = 1 

for large td- The slow response of the photodiode relative to the pulse 

duration performs the indicated integration. The signal from the 

photodiode and the function generator are then sent to a storage 

oscilloscope which allows us to retrieve the function of eqn. (5.19) for 

analysis. The shape of the peak above the background is simply the 

autocorrelation of the pulse intensity. There is a constant relationship 

between the width of the autocorrelation trace and the width of the pulse 

which is dependent on the pulse shape. For hyperbolic secant pulses as 

may come from a Kerr-lens modelocked TirSapphire laser, the pulsewidth 

is 0.636 times the autocorrelation width. 

With the autocorrelator we could directly observe the effect of the 

pulse compressor.20 In fig. (5.13) we show the different autocorrelations 

produced by different prism positions. Note that since this compressor is 

outside the laser cavity (and the peak intensity of the pulse is such that 

spectral broadening due to self-phase-modulation can be neglected), the 

spectrum is constant for the different autocorrelations shown here, 

however there is a significant increase in pulse width from adding just 

4 mm of prism glass (note that this distance is a translation of the base of 

the prism and that the pulse traverses the prism twice thus the actual 

amount of glass the pulse sees is increased approximately 9.2 mm). This is 
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Figure (5.13) An external cavity prism-pair pulse compressor was used to 
control the pulse width in the experiment. Adding 4 mm of glass into the 
path of the beam could drastically affect the pulse width. 

due to simple dispersive broadening of the pulse as it travels through 

those few mm. Given that our autocorrelator itself has a rather thick 

microscope objective contained within it, we must assume that it too 

broadens the pulse. In order to compensate for the broadening caused by 

the autocorrelator, it was necessary to obtain an estimate of its effect. This 

was achieved by passing the pulses through two simultaneous microscope 

objectives positioned so that there was no net effect on the spatial 

behavior of the field, then measuring the change in prism position 

necessary to reacquire a minimum autocorrelation width. A similar 

procedure was performed with the focusing lens to be used in the Z-scan 

measurements [see fig. (5.1)].  The distances necessary to move the prism 



158 

in order to reacquire the minimum pulse width in both cases were halved 

and the prism moved to that position relative to the position of the 

measured minimum. This was done in an effort to both minimize the 

chirp on the pulse and to obtain the most accurate estimate of the width of 

the pulse as it interacted with the sample in the Z-scan measurement. 

Although we could attempt to minimize the chirp with the pulse 

compressor, higher-order dispersion was beyond our control. Due to 

third- and higher-order dispersion the minimum pulse width achievable 

always increased as more optical elements were placed in the beam path. 

Moreover, we were not equipped to accurately measure the phase 

distribution of the field. Thus, unlike the simulations described above, 

the phase of the field was an unknown quantity. By compensating for the 

dispersion of the lens and using the minimum pulse width we attempted 

to keep the unknown phase distribution constant and minimum, thus 

making it more likely that the nonlinear phase accumulation would 

produce a measurable effect. 

The dispersion from the microscope objective and the focusing lens 

in the Z-scan were not the only sources of error in the pulse 

measurements. Inasmuch as the pulses we were measuring were on the 

order of a few tens of femtoseconds in time, their spatial length was 

approximately 10 \im (for a 33 fs pulse). Thus the optical path of the two 

arms of the interferometer were equal to within a pulse length for only a 

very small range (± 5 urn) of mirror positions. Determining the ratio of 

servo signal voltage to mirror position thus became the limiting factor in 

the pulse width measurement. For a given voltage the mirror position 

could be measured to ± l^im. Combined with errors due to the assumed 

linearity between driving voltage amplitude and mirror position as well 
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as the phase uncertainties discussed above, the error in the pulsewidth 

was generally taken to be ± 15 fs. 

The simulations above also assume a circularly symmetric Gaussian 

beam. In the event of nonuniformities in the spatial intensity 

distribution, spatial filtering is typically employed to produce Gaussian 

output. Unfortunately, beam power is frequently sacrificed to beam shape 

in this case. In the experiments described here no spatial filtering of the 

TirSapphire beam was performed for several reasons. First, the 

microscope objective needed for the spatial filtering would have added yet 

more unwanted chirp to the pulse. Second, when the Ti:Sapphire is most 

stably modelocked, its output is very nearly Gaussian. Moreover, when it 

is passed through the external cavity compressor an effective alignment 

check is to see that the beam remains Gaussian after exiting the 

compressor. The beam shape was measured using a 25-\im pinhole as it 

was translated across the beam path in both the x- and y-directions at the 

point where the focusing lens for the Z-scan was to be placed and again at a 

distance 50 cm further. Typical results are shown in figs. (5.14) as well as 

Gaussian fits to the data. In this case the beam is slightly astigmatic in that 

the modest ellipticity observed at the first position has increased by the 

second. Minor deviations from circular symmetry such as this are due to 

misalignment of the pulse compressor and resulted in an uncertainty in 

the minimum beam width of approximately 15%. Although the pulse 

energy could be measured relatively accurately (± 2 %), the uncertainty in 

beam width and pulse width combined to give an estimate of the peak 

intensity of the focused beam to be 11 ± 7 GW/cm2 for a 4 nj pulse focused 

by an 8.8 cm lens. 
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Figure (5.14) In order to measure the beam width and shape a 25 |im 
pinhole was scanned across the beam path. The data obtained in the x- 
and y-directions indicate a slightly elliptical beam. 
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5.4.2 The Samples 

Two types of nonlinear media were employed in the Z-scan 

experiments: high-index glasses and conjugated polymer solutions. The 

criterion for selecting these samples was their reported large electronic 

nonlinearities.13'17'18 Limited to pulse energies of less than 5 nj and pulse 

peak powers of 150kW, samples with large third-order susceptibilities were 

desired. The polymer nonlinearity was reported18 to be %(3) = 10"10 esu, 

which reduces to 10"13 in a 0.1% solution. The high-index glasses had 

reported13 %(3) values of as high as 7.6 x 10~12 esu at 770 nm and were also 

know to be quite dispersive. 

There were two high-index glass samples, obtained from workers at 

Corning Inc., denoted DY and DZ. The glasses were composites made of 

Tl2O(40);Bi2O5(40):Ga2O3(20) and Tl2O(30);Bi2O5(50):Ga2O3(20) respectively, 

with indices of refraction estimated at approximately 2.5. The index of 

refraction of the glasses was measured by a simple technique which is the 

basis of ellipsometry. The sample was mounted on a rotating stage and 

the angle at which the reflected, linearly polarized light was minimized 

was taken as Brewster's angle from which the index of refraction could be 

determined via the relation, no = naarctan(6min). Taking the index of air, 

na, as unity the indices of the samples were measured with the 

modelocked TirSapphire light and found to be 2.44 and 2.42 respectively. 

The linear absorption of the samples was measured with a simple 

transmission experiment. After accounting for losses due to Fresnel 

reflection, the linear absorption coefficients for the two glasses were 

determined to be 1.53 ± 0.05 cm"1 and 1.18 + 0.05 cm"1 for DY and DZ 

respectively. The 5-mm samples thus had effective lengths of 3.49 mm 

and 3.77 mm respectively. 
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The polymer samples were 0.1 wt % solutions of the fused aromatic 

ladder polymer poly(benzimidazobenzophenanthroline), BBL-20 and 

BBL-32, with estimated nonlinear susceptibilies18 of 10-10 esu before 

solution. The solutions were placed in quartz cuvettes for the 

experiments. The linear index of the polymer solutions were obtained 

with the aid of the autocorrelator. The difference in position, Ax, of the 

autocorrelation peak with and without the cuvette in the reference arm of 

the interferometer was related to the index difference via n = 1 + Ax/h 

where h is the thickness of the solution and Ax has been corrected for the 

contribution due to the quartz walls of the cuvette. Using this technique 

we obtained indices of 1.40 and 1.44 for the BBL-20 and BBL-32 solutions 

respectively. The absorption measurements were carried out in the same 

manner as for the glasses and we obtained absorption coefficients of oco = 

0.59 ± .05 cm"1 for the BBL-32 and ot0 = 0.35 ± 0.05 cm"1 for the BBL-20. 

Using the 5-mm cuvette, these absorptions gave effective lengths of 4.3 

mm and 4.6 mm respectively. 

In as much as we were attempting to observe the effects of 

dispersive and nonlinear pulse broadening on Z-scan measurements, we 

tried to quantify the broadening influence of the samples on the pulse. 

This was done by inserting the sample into the beam path prior to the 

autocorrelator and measuring the increase in pulse width due to its 

presence. It was at this stage that the first problems arose. A number of 

factors made obtaining a dispersion measurement for the glass samples 

difficult. First, imperfections in the surfaces of the samples badly degraded 

the beam quality upon transmission. Second, absorption, transmission 

and scattering losses significantly reduced the optical power of the beam 

that was transmitted.   Finally, the faces of the samples were not ground 
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plane parallel thus deflecting and distorting the beam. This last problem 

proved insurmountable. The cuvettes in which the polymer samples 

were contained had no surface imperfections of any kind. The problem 

with the polymer solutions was the large defocusing thermal nonlinearity. 

The effect was so strong that the unfocused circular beam was converted 

into an annulus upon propagation through the 5-mm cuvette. A weak 

beam passing through the 1-mm cuvette filled with BBL-20 solution 

broadened the pulse autocorrelation trace by an amount less than the 

uncertainty of the autocorrelation measurement, as a result the strength of 

the dispersion of the samples remained unknown. However, the lack of 

measurable broadening in the 1-mm cuvette gave an upper bound to the 

dispersion of the BBL-20 solution of 100 ps2/km. 

5.4.3 The Z-scan Measurements 

The experimental set-up was as shown in fig. (5.15). The 

arrangement of the Z-scan apparatus is as shown in fig. (5.1) except that the 

open- and closed-aperture measurements were not performed 

simultaneously. A lens was also added after the aperture to aid the 

collection of light by the detector. The focal length of the lens was typically 

between 7.5 cm and 10.0 cm giving a diffraction length of between 5 mm 

and 7 mm for our 830 ran input pulses. The aperture was a variable iris 

diaphragm and the detector was a Newport model 818-IR photovoltaic 

detector. Because there was no equipment available to select individual 

pulses from the 85 MHz pulse train, the detector measured average power. 

In order to obtain consistent results, we required constant pulse shape and 

energy over the course of the measurement.  Previous work characterizing 
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Ti: Sapphire Laser 

Z-scan 
Apparatus 

Figure (5.15) The experimental set-up consisted of the Z-scan apparatus of 
fig. (5.1) and a video camera to monitor the spatial mode of the laser 
which was related to the pulse shape. Prior to the Z-scan, the pulses were 
characterized with a monochromator and autocorrelator (not shown). 
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Figure (5.16)   The closed-aperture Z-scans of the high-index glasses were 
affected by the non-plane-parallel nature of the samples. 

the pulses with the autocorrelator and a photodiode had indicated that 

consistent pulse shape and energy could be maintained provided the laser 

stayed in the same spatial mode. The laser mode was monitored by 

splitting a small percentage of the beam from the pulse compressor to a 

video camera. Changes in the spatial mode could be as subtle as a switch 

from a circular to an elliptical beam shape or as obvious as a loss of 

modelocking characterized by the appearance of speckle in the video 

image. Occasionally, the mode change would be too subtle for even a 

trained eye to detect, but such changes were usually discernible when 

observing the data from a Z-scan. 

The  typical  procedure  was  to  first  measure  and  store  the 

autocorrelation traces of the pulse for several prism positions, then insert 
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Figure (5.17) The open-aperture Z-scans of the DZ glass produced 
consistently low results for the nonlinear absorption measurements as 
expected for the case of dispersive pulse broadening in the sample.    The 
result (X2 = 2.1 ± 1.4 cm/GW was lower than the value of 0:2 = 9.4 cm/GW 
measured at 770 nm by other workers. 

the Z-scan apparatus, and commence taking data. First a low power (< 1 

pj/pulse) Z-scan was taken which was stored so that it could later be 

subtracted from the higher power data to account for losses due to surface 

roughness. Next Z-scans with a range of powers and prism positions were 

taken. The different pulse energies were obtained with the aid of neutral 

density filters. The first measurements undertaken were those of the 

high-index glasses. In fig. (5.16) we plot the results of closed-aperture 

Z-scans of the DZ glass. After correcting for the nonlinear absorption [see 

fig. (5.17) above], there are still obvious differences between the results 

depicted here and those predicted by the analytical or even numerical 



167 

11 i i I i i i l i i i 11 l « • ' I 

H  0.4 

0.0 

AEp = 2.3nJH 
2.3 nJ fit 

< Ep = 380 pJ 
 380 pJ fit   ' 

■ 111111111111 ^MJLJLMIML . I • ' • ■ ■ 

-2 0 2 
Position, Z = z/z0 

Figure (5.18) The open aperture Z-scans of the DY glass gave 0C2 = 1.7 ± 1.3 
cm/GW at both power levels. 

theory of the earlier sections of this chapter. The surface irregularities 

have already been accounted for by subtracting the low-power Z-scan for 

the data shown here. However, the effects of the non-plane-parallel 

nature of the samples could not be accounted for by simple low-power 

subtraction, nor by any other means of which we are aware. The effect of 

the wedge in the sample was to make it impossible to keep the aperture 

positioned at the center of the beam for every sample position 

because the center of the far field moved laterally as the sample moved 

through the focus. In fig. (5.16) the observed change in transmission is 

greater for the broader (and hence lower peak power) pulse. This indicates 

that the effects of the wedge in the sample are strong enough to dominate 

any effects due to spatiotemporal coupling.  As a result, we concentrated 
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our efforts on observing the effects of spatiotemporal coupling in the 

nonlinear absorption measurements from open-aperture Z-scans. 

In general the open-aperture data was much more consistent. A 

lens placed shortly after the sample could collect all of the light exiting the 

sample regardless of small changes in position due to the wedge. The 

open-aperture results shown in fig. (5.17) were obtained with 35 fs pulses 

and the fits to the data come from the analytical result of eqn. (5.7). The 

high-power (2.35 nj pulse) Z-scan resulted in a measurement of 2.3 ±1.5 

cm/GW and the lower-powered (310 pj pulse) result was 2.1 ± 1.4 cm/GW 

both of which are well below the reported13 values for this glass of 9.4 

cm/GW measured at 770 nm with much broader pulses. These lower 

values are consistent with a dispersively broadened pulse reducing the 

expected peak power of the pulse in the medium. Moreover, if the glass 

was anomalously dispersive the higher (X2 measurement for the 2.35 nj 

pulse would be consistent with our understanding of the affect of 

spatiotemporal coupling on the measurement. The results obtained for 

the open aperture scans of the DY glass are shown in fig. (5.18). The 2.3 nj 

pulses returned values 0:2 = 1.6 ± 1.3 cm/GW, while the 380 pj pulses 

produced scans which measured ot2 = 1.7 ± 1.3 cm/GW. While there have 

been no measurements of the nonlinear absorption coefficient reported 

for this glass, its similar composition to the DZ glass indicates that it 

should have similar characteristics. In this case, normal dispersion in the 

glass would be needed to account for the small discrepancy between the 0:2 

measurements at the different powers. In both cases, the size of the 

experimental errors in the measurement from other sources prohibits 

decisively ascribing the discrepancies to dispersion or nonlinear pulse 

reshaping. 
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Figure (5.19) The Z-scan measurements of the conjugated polymer 
solutions were not affected by poor surface quality. Unfortunately, (a) the 
closed aperture Z-scans were dominated by a slow thermal nonlinearity 
which even affected (b) the open aperture data. The measured value of ai 
was 0.8 ± 0.5 cm/GW. 
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The large thermal nonlinearities of the BBL-20 polymer solution 

are evidenced by the closed-aperture Z-scan of fig. (5.19a). The peak on the 

lens-side of the focus corresponds to a defocusing nonlinearity such as one 

would expect when the index change is due to the heating of the solution. 

Moreover, the change in transmittance of the sample as well as the 

position of the transmittance peak and valley are independent of the pulse 

duration, hence the conclusion that the nonlinear refraction effects are 

due to the average power of the pulse train (-200 mW) rather than the 

peak power of the individual pulses (-100 kW). Thus, studying ultrafast 

spatiotemporal coupling in the nonlinear refraction measurements of the 

polymer was not possible since the slowly-responding thermal 

nonlinearity dominated the measurement. The thermal nonlinearity was 

so large in fact that it even affected the open-aperture results, shown in 

fig. (5.19b). The defocusing beam, traversing the sample when it was 

positioned on the far-side of the focus, was broadened so rapidly that the 

lens, positioned 5 cm from the sample, could not collect all the exiting 

light. Fortunately, when the sample was on the lens-side of the focus the 

nonlinearity was competing with rather than adding to the phase 

curvature from the lens. As a result we believe the data for Z < 0 is 

unaffected by the thermal defocusing of the beam. Moreover, because the 

nonlinear absorption measurement is really only dependent on two data 

points, [Toa(0) and Toa(00)] we were able to obtain a measurement of 0C2 for 

each of the Z-scans in fig. (5.19b). The Z-scan with the 35 fs pulse gave a 

value of 0C2 = 0.8 ± 0.5 cm/GW while the 70 fs pulse Z-scan gave a value of 

a2 = 1.2 + 0.4 cm/GW. These results are consistent with our 

understanding of the affect of dispersive pulse broadening on the 

measurements as discussed in section 5.3 and depicted in fig. (5.9).   The 
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shorter pulse will broaden more in the medium thus leading to less 

absorption than would be expected based on the input peak power. As a 

result, the measured value of a2 is lower for the shorter pulse. 

Unfortunately, without proper phase characterization of the field, this is 

merely speculation. 

5.5 Conclusions 

In this chapter we have discussed the effects of spatiotemporal 

coupling on Z-scan measurements performed with ultrashort pulses. The 

simulations of Z-scans with one spatial and one temporal dimension 

showed that dispersion can indeed affect the measurement when 

ultrashort pulses are employed. For weak nonlinearities, linear dispersion 

can influence the Z-scan measurement by broadening the pulse as it 

propagates in the sample. The effect is the same in all four of the 

propagation regimes defined by the sign of the nonlinearity and the 

dispersion: the dispersive broadening leads to a reduced %(3) 

measurement. When the input pulse has a frequency chirp then the 

effects become even more dramatic. Because the pulse can be either 

compressed or broaden depending on whether or not p2C > 0, the chirp 

can produce a result that is either erroneously large or small. When the 

nonlinearity being measured is large enough that nonlinear pulse 

compression is possible then the dispersion regimes exhibit quite different 

behavior. 

Although the experimental results were consistent with the 

numerical predictions on several points, experimental verification of 

these phenomena was hampered by several factors.  The primary problem 
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that needs to be dealt with is our inability to accurately characterize the 

shape and phase of the pulses used in the experiment. Given that the 

phase of a sub-100 fs pulse is difficult to measure and even more so to 

control, a transform limited pulse is more closely related to theoretical 

fantasy than it is to experimental reality. Moreover, due to the large 

influence of frequency chirp on the measurement, as indicated by figs. 

(5.5), and the limited expected nonlinear phase accumulation, 

uncertainties in the initial phase of the field dictate a large uncertainty in 

our ability to ascribe discrepancies in the measurements to the nonlinear 

spatiotemporal coupling described by the previous chapters of this thesis. 

There may also have been a related problem from the pulse compressor 

contributions to the spatial phase distribution of the field. There were 

other problems with the samples themselves. The wedge in the glass 

samples as well as poor surface quality eliminated the possibility of 

accurately performing the phase-sensitive closed-aperture Z-scans that 

were the initial motivation for the experiment. Although the glass 

samples were hygroscopic we did attempt to polish them using ethylene 

glycol; this approach was unsuccessful, resulting in the destruction of one 

of the samples. The surfaces of the cuvettes and hence the optical quality 

of the polymer samples were excellent, however the large thermal 

nonlinearity could not be avoided with the large average power of our 85 

MHz pulse train. Without a Pockel's cell or some other means of selecting 

single pulses, the slow thermal contribution to %(3) will dominate any 

measurements of nonlinear index change made with the polymers and 

can even corrupt the open-aperture Z-scans. 

Inasmuch as this entire chapter has been spent searching for 

problems with the Z-scan measurement technique, it is only fair to point 
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out that in order to find measurable errors due to nonlinear 

spatiotemporal coupling it was necessary to postulate some fairly extreme 

conditions in the simulations. In particular, the samples were nearly as 

large as the diffraction length of the focused beam and the assumed 

dispersion of the material was on the order of ten times that of bulk silica. 

Although we did find that frequency chirp may play an important role, 

this should merely serve as a motivation for the development of more 

effective ultrashort pulse characterization techniques. Given well- 

characterized pulses, the Z-scan technique appears to be a very robust 

measurement tool. 
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